Merge branch 'linux-linaro-lsk' into linux-linaro-lsk-android
[firefly-linux-kernel-4.4.55.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;      /* Handle normal Linux uptimes. */
91 int nr_threads;                 /* The idle threads do not count.. */
92
93 int max_threads;                /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102         return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109         int cpu;
110         int total = 0;
111
112         for_each_possible_cpu(cpu)
113                 total += per_cpu(process_counts, cpu);
114
115         return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132         kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148                                                   int node)
149 {
150         struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151                                              THREAD_SIZE_ORDER);
152
153         return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158         free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164                                                   int node)
165 {
166         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171         kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177                                               THREAD_SIZE, 0, NULL);
178         BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 /* Notifier list called when a task struct is freed */
202 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206         struct zone *zone = page_zone(virt_to_page(ti));
207
208         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213         account_kernel_stack(tsk->stack, -1);
214         arch_release_thread_info(tsk->stack);
215         free_thread_info(tsk->stack);
216         rt_mutex_debug_task_free(tsk);
217         ftrace_graph_exit_task(tsk);
218         put_seccomp_filter(tsk);
219         arch_release_task_struct(tsk);
220         free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226         taskstats_tgid_free(sig);
227         sched_autogroup_exit(sig);
228         kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233         if (atomic_dec_and_test(&sig->sigcnt))
234                 free_signal_struct(sig);
235 }
236
237 int task_free_register(struct notifier_block *n)
238 {
239         return atomic_notifier_chain_register(&task_free_notifier, n);
240 }
241 EXPORT_SYMBOL(task_free_register);
242
243 int task_free_unregister(struct notifier_block *n)
244 {
245         return atomic_notifier_chain_unregister(&task_free_notifier, n);
246 }
247 EXPORT_SYMBOL(task_free_unregister);
248
249 void __put_task_struct(struct task_struct *tsk)
250 {
251         WARN_ON(!tsk->exit_state);
252         WARN_ON(atomic_read(&tsk->usage));
253         WARN_ON(tsk == current);
254
255         security_task_free(tsk);
256         exit_creds(tsk);
257         delayacct_tsk_free(tsk);
258         put_signal_struct(tsk->signal);
259
260         atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
261         if (!profile_handoff_task(tsk))
262                 free_task(tsk);
263 }
264 EXPORT_SYMBOL_GPL(__put_task_struct);
265
266 void __init __weak arch_task_cache_init(void) { }
267
268 void __init fork_init(unsigned long mempages)
269 {
270 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
271 #ifndef ARCH_MIN_TASKALIGN
272 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
273 #endif
274         /* create a slab on which task_structs can be allocated */
275         task_struct_cachep =
276                 kmem_cache_create("task_struct", sizeof(struct task_struct),
277                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
278 #endif
279
280         /* do the arch specific task caches init */
281         arch_task_cache_init();
282
283         /*
284          * The default maximum number of threads is set to a safe
285          * value: the thread structures can take up at most half
286          * of memory.
287          */
288         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
289
290         /*
291          * we need to allow at least 20 threads to boot a system
292          */
293         if (max_threads < 20)
294                 max_threads = 20;
295
296         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
297         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
298         init_task.signal->rlim[RLIMIT_SIGPENDING] =
299                 init_task.signal->rlim[RLIMIT_NPROC];
300 }
301
302 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
303                                                struct task_struct *src)
304 {
305         *dst = *src;
306         return 0;
307 }
308
309 static struct task_struct *dup_task_struct(struct task_struct *orig)
310 {
311         struct task_struct *tsk;
312         struct thread_info *ti;
313         unsigned long *stackend;
314         int node = tsk_fork_get_node(orig);
315         int err;
316
317         tsk = alloc_task_struct_node(node);
318         if (!tsk)
319                 return NULL;
320
321         ti = alloc_thread_info_node(tsk, node);
322         if (!ti)
323                 goto free_tsk;
324
325         err = arch_dup_task_struct(tsk, orig);
326         if (err)
327                 goto free_ti;
328
329         tsk->stack = ti;
330 #ifdef CONFIG_SECCOMP
331         /*
332          * We must handle setting up seccomp filters once we're under
333          * the sighand lock in case orig has changed between now and
334          * then. Until then, filter must be NULL to avoid messing up
335          * the usage counts on the error path calling free_task.
336          */
337         tsk->seccomp.filter = NULL;
338 #endif
339
340         setup_thread_stack(tsk, orig);
341         clear_user_return_notifier(tsk);
342         clear_tsk_need_resched(tsk);
343         stackend = end_of_stack(tsk);
344         *stackend = STACK_END_MAGIC;    /* for overflow detection */
345
346 #ifdef CONFIG_CC_STACKPROTECTOR
347         tsk->stack_canary = get_random_int();
348 #endif
349
350         /*
351          * One for us, one for whoever does the "release_task()" (usually
352          * parent)
353          */
354         atomic_set(&tsk->usage, 2);
355 #ifdef CONFIG_BLK_DEV_IO_TRACE
356         tsk->btrace_seq = 0;
357 #endif
358         tsk->splice_pipe = NULL;
359         tsk->task_frag.page = NULL;
360
361         account_kernel_stack(ti, 1);
362
363         return tsk;
364
365 free_ti:
366         free_thread_info(ti);
367 free_tsk:
368         free_task_struct(tsk);
369         return NULL;
370 }
371
372 #ifdef CONFIG_MMU
373 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
374 {
375         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
376         struct rb_node **rb_link, *rb_parent;
377         int retval;
378         unsigned long charge;
379         struct mempolicy *pol;
380
381         uprobe_start_dup_mmap();
382         down_write(&oldmm->mmap_sem);
383         flush_cache_dup_mm(oldmm);
384         uprobe_dup_mmap(oldmm, mm);
385         /*
386          * Not linked in yet - no deadlock potential:
387          */
388         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
389
390         mm->locked_vm = 0;
391         mm->mmap = NULL;
392         mm->mmap_cache = NULL;
393         mm->free_area_cache = oldmm->mmap_base;
394         mm->cached_hole_size = ~0UL;
395         mm->map_count = 0;
396         cpumask_clear(mm_cpumask(mm));
397         mm->mm_rb = RB_ROOT;
398         rb_link = &mm->mm_rb.rb_node;
399         rb_parent = NULL;
400         pprev = &mm->mmap;
401         retval = ksm_fork(mm, oldmm);
402         if (retval)
403                 goto out;
404         retval = khugepaged_fork(mm, oldmm);
405         if (retval)
406                 goto out;
407
408         prev = NULL;
409         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
410                 struct file *file;
411
412                 if (mpnt->vm_flags & VM_DONTCOPY) {
413                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
414                                                         -vma_pages(mpnt));
415                         continue;
416                 }
417                 charge = 0;
418                 if (mpnt->vm_flags & VM_ACCOUNT) {
419                         unsigned long len = vma_pages(mpnt);
420
421                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
422                                 goto fail_nomem;
423                         charge = len;
424                 }
425                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
426                 if (!tmp)
427                         goto fail_nomem;
428                 *tmp = *mpnt;
429                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
430                 pol = mpol_dup(vma_policy(mpnt));
431                 retval = PTR_ERR(pol);
432                 if (IS_ERR(pol))
433                         goto fail_nomem_policy;
434                 vma_set_policy(tmp, pol);
435                 tmp->vm_mm = mm;
436                 if (anon_vma_fork(tmp, mpnt))
437                         goto fail_nomem_anon_vma_fork;
438                 tmp->vm_flags &= ~VM_LOCKED;
439                 tmp->vm_next = tmp->vm_prev = NULL;
440                 file = tmp->vm_file;
441                 if (file) {
442                         struct inode *inode = file_inode(file);
443                         struct address_space *mapping = file->f_mapping;
444
445                         get_file(file);
446                         if (tmp->vm_flags & VM_DENYWRITE)
447                                 atomic_dec(&inode->i_writecount);
448                         mutex_lock(&mapping->i_mmap_mutex);
449                         if (tmp->vm_flags & VM_SHARED)
450                                 mapping->i_mmap_writable++;
451                         flush_dcache_mmap_lock(mapping);
452                         /* insert tmp into the share list, just after mpnt */
453                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
454                                 vma_nonlinear_insert(tmp,
455                                                 &mapping->i_mmap_nonlinear);
456                         else
457                                 vma_interval_tree_insert_after(tmp, mpnt,
458                                                         &mapping->i_mmap);
459                         flush_dcache_mmap_unlock(mapping);
460                         mutex_unlock(&mapping->i_mmap_mutex);
461                 }
462
463                 /*
464                  * Clear hugetlb-related page reserves for children. This only
465                  * affects MAP_PRIVATE mappings. Faults generated by the child
466                  * are not guaranteed to succeed, even if read-only
467                  */
468                 if (is_vm_hugetlb_page(tmp))
469                         reset_vma_resv_huge_pages(tmp);
470
471                 /*
472                  * Link in the new vma and copy the page table entries.
473                  */
474                 *pprev = tmp;
475                 pprev = &tmp->vm_next;
476                 tmp->vm_prev = prev;
477                 prev = tmp;
478
479                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
480                 rb_link = &tmp->vm_rb.rb_right;
481                 rb_parent = &tmp->vm_rb;
482
483                 mm->map_count++;
484                 retval = copy_page_range(mm, oldmm, mpnt);
485
486                 if (tmp->vm_ops && tmp->vm_ops->open)
487                         tmp->vm_ops->open(tmp);
488
489                 if (retval)
490                         goto out;
491         }
492         /* a new mm has just been created */
493         arch_dup_mmap(oldmm, mm);
494         retval = 0;
495 out:
496         up_write(&mm->mmap_sem);
497         flush_tlb_mm(oldmm);
498         up_write(&oldmm->mmap_sem);
499         uprobe_end_dup_mmap();
500         return retval;
501 fail_nomem_anon_vma_fork:
502         mpol_put(pol);
503 fail_nomem_policy:
504         kmem_cache_free(vm_area_cachep, tmp);
505 fail_nomem:
506         retval = -ENOMEM;
507         vm_unacct_memory(charge);
508         goto out;
509 }
510
511 static inline int mm_alloc_pgd(struct mm_struct *mm)
512 {
513         mm->pgd = pgd_alloc(mm);
514         if (unlikely(!mm->pgd))
515                 return -ENOMEM;
516         return 0;
517 }
518
519 static inline void mm_free_pgd(struct mm_struct *mm)
520 {
521         pgd_free(mm, mm->pgd);
522 }
523 #else
524 #define dup_mmap(mm, oldmm)     (0)
525 #define mm_alloc_pgd(mm)        (0)
526 #define mm_free_pgd(mm)
527 #endif /* CONFIG_MMU */
528
529 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
530
531 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
532 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
533
534 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
535
536 static int __init coredump_filter_setup(char *s)
537 {
538         default_dump_filter =
539                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
540                 MMF_DUMP_FILTER_MASK;
541         return 1;
542 }
543
544 __setup("coredump_filter=", coredump_filter_setup);
545
546 #include <linux/init_task.h>
547
548 static void mm_init_aio(struct mm_struct *mm)
549 {
550 #ifdef CONFIG_AIO
551         spin_lock_init(&mm->ioctx_lock);
552         INIT_HLIST_HEAD(&mm->ioctx_list);
553 #endif
554 }
555
556 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
557 {
558         atomic_set(&mm->mm_users, 1);
559         atomic_set(&mm->mm_count, 1);
560         init_rwsem(&mm->mmap_sem);
561         INIT_LIST_HEAD(&mm->mmlist);
562         mm->flags = (current->mm) ?
563                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
564         mm->core_state = NULL;
565         mm->nr_ptes = 0;
566         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
567         spin_lock_init(&mm->page_table_lock);
568         mm->free_area_cache = TASK_UNMAPPED_BASE;
569         mm->cached_hole_size = ~0UL;
570         mm_init_aio(mm);
571         mm_init_owner(mm, p);
572         clear_tlb_flush_pending(mm);
573
574         if (likely(!mm_alloc_pgd(mm))) {
575                 mm->def_flags = 0;
576                 mmu_notifier_mm_init(mm);
577                 return mm;
578         }
579
580         free_mm(mm);
581         return NULL;
582 }
583
584 static void check_mm(struct mm_struct *mm)
585 {
586         int i;
587
588         for (i = 0; i < NR_MM_COUNTERS; i++) {
589                 long x = atomic_long_read(&mm->rss_stat.count[i]);
590
591                 if (unlikely(x))
592                         printk(KERN_ALERT "BUG: Bad rss-counter state "
593                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
594         }
595
596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
597         VM_BUG_ON(mm->pmd_huge_pte);
598 #endif
599 }
600
601 /*
602  * Allocate and initialize an mm_struct.
603  */
604 struct mm_struct *mm_alloc(void)
605 {
606         struct mm_struct *mm;
607
608         mm = allocate_mm();
609         if (!mm)
610                 return NULL;
611
612         memset(mm, 0, sizeof(*mm));
613         mm_init_cpumask(mm);
614         return mm_init(mm, current);
615 }
616
617 /*
618  * Called when the last reference to the mm
619  * is dropped: either by a lazy thread or by
620  * mmput. Free the page directory and the mm.
621  */
622 void __mmdrop(struct mm_struct *mm)
623 {
624         BUG_ON(mm == &init_mm);
625         mm_free_pgd(mm);
626         destroy_context(mm);
627         mmu_notifier_mm_destroy(mm);
628         check_mm(mm);
629         free_mm(mm);
630 }
631 EXPORT_SYMBOL_GPL(__mmdrop);
632
633 /*
634  * Decrement the use count and release all resources for an mm.
635  */
636 void mmput(struct mm_struct *mm)
637 {
638         might_sleep();
639
640         if (atomic_dec_and_test(&mm->mm_users)) {
641                 uprobe_clear_state(mm);
642                 exit_aio(mm);
643                 ksm_exit(mm);
644                 khugepaged_exit(mm); /* must run before exit_mmap */
645                 exit_mmap(mm);
646                 set_mm_exe_file(mm, NULL);
647                 if (!list_empty(&mm->mmlist)) {
648                         spin_lock(&mmlist_lock);
649                         list_del(&mm->mmlist);
650                         spin_unlock(&mmlist_lock);
651                 }
652                 if (mm->binfmt)
653                         module_put(mm->binfmt->module);
654                 mmdrop(mm);
655         }
656 }
657 EXPORT_SYMBOL_GPL(mmput);
658
659 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
660 {
661         if (new_exe_file)
662                 get_file(new_exe_file);
663         if (mm->exe_file)
664                 fput(mm->exe_file);
665         mm->exe_file = new_exe_file;
666 }
667
668 struct file *get_mm_exe_file(struct mm_struct *mm)
669 {
670         struct file *exe_file;
671
672         /* We need mmap_sem to protect against races with removal of exe_file */
673         down_read(&mm->mmap_sem);
674         exe_file = mm->exe_file;
675         if (exe_file)
676                 get_file(exe_file);
677         up_read(&mm->mmap_sem);
678         return exe_file;
679 }
680
681 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
682 {
683         /* It's safe to write the exe_file pointer without exe_file_lock because
684          * this is called during fork when the task is not yet in /proc */
685         newmm->exe_file = get_mm_exe_file(oldmm);
686 }
687
688 /**
689  * get_task_mm - acquire a reference to the task's mm
690  *
691  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
692  * this kernel workthread has transiently adopted a user mm with use_mm,
693  * to do its AIO) is not set and if so returns a reference to it, after
694  * bumping up the use count.  User must release the mm via mmput()
695  * after use.  Typically used by /proc and ptrace.
696  */
697 struct mm_struct *get_task_mm(struct task_struct *task)
698 {
699         struct mm_struct *mm;
700
701         task_lock(task);
702         mm = task->mm;
703         if (mm) {
704                 if (task->flags & PF_KTHREAD)
705                         mm = NULL;
706                 else
707                         atomic_inc(&mm->mm_users);
708         }
709         task_unlock(task);
710         return mm;
711 }
712 EXPORT_SYMBOL_GPL(get_task_mm);
713
714 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
715 {
716         struct mm_struct *mm;
717         int err;
718
719         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
720         if (err)
721                 return ERR_PTR(err);
722
723         mm = get_task_mm(task);
724         if (mm && mm != current->mm &&
725                         !ptrace_may_access(task, mode) &&
726                         !capable(CAP_SYS_RESOURCE)) {
727                 mmput(mm);
728                 mm = ERR_PTR(-EACCES);
729         }
730         mutex_unlock(&task->signal->cred_guard_mutex);
731
732         return mm;
733 }
734
735 static void complete_vfork_done(struct task_struct *tsk)
736 {
737         struct completion *vfork;
738
739         task_lock(tsk);
740         vfork = tsk->vfork_done;
741         if (likely(vfork)) {
742                 tsk->vfork_done = NULL;
743                 complete(vfork);
744         }
745         task_unlock(tsk);
746 }
747
748 static int wait_for_vfork_done(struct task_struct *child,
749                                 struct completion *vfork)
750 {
751         int killed;
752
753         freezer_do_not_count();
754         killed = wait_for_completion_killable(vfork);
755         freezer_count();
756
757         if (killed) {
758                 task_lock(child);
759                 child->vfork_done = NULL;
760                 task_unlock(child);
761         }
762
763         put_task_struct(child);
764         return killed;
765 }
766
767 /* Please note the differences between mmput and mm_release.
768  * mmput is called whenever we stop holding onto a mm_struct,
769  * error success whatever.
770  *
771  * mm_release is called after a mm_struct has been removed
772  * from the current process.
773  *
774  * This difference is important for error handling, when we
775  * only half set up a mm_struct for a new process and need to restore
776  * the old one.  Because we mmput the new mm_struct before
777  * restoring the old one. . .
778  * Eric Biederman 10 January 1998
779  */
780 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
781 {
782         /* Get rid of any futexes when releasing the mm */
783 #ifdef CONFIG_FUTEX
784         if (unlikely(tsk->robust_list)) {
785                 exit_robust_list(tsk);
786                 tsk->robust_list = NULL;
787         }
788 #ifdef CONFIG_COMPAT
789         if (unlikely(tsk->compat_robust_list)) {
790                 compat_exit_robust_list(tsk);
791                 tsk->compat_robust_list = NULL;
792         }
793 #endif
794         if (unlikely(!list_empty(&tsk->pi_state_list)))
795                 exit_pi_state_list(tsk);
796 #endif
797
798         uprobe_free_utask(tsk);
799
800         /* Get rid of any cached register state */
801         deactivate_mm(tsk, mm);
802
803         /*
804          * If we're exiting normally, clear a user-space tid field if
805          * requested.  We leave this alone when dying by signal, to leave
806          * the value intact in a core dump, and to save the unnecessary
807          * trouble, say, a killed vfork parent shouldn't touch this mm.
808          * Userland only wants this done for a sys_exit.
809          */
810         if (tsk->clear_child_tid) {
811                 if (!(tsk->flags & PF_SIGNALED) &&
812                     atomic_read(&mm->mm_users) > 1) {
813                         /*
814                          * We don't check the error code - if userspace has
815                          * not set up a proper pointer then tough luck.
816                          */
817                         put_user(0, tsk->clear_child_tid);
818                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
819                                         1, NULL, NULL, 0);
820                 }
821                 tsk->clear_child_tid = NULL;
822         }
823
824         /*
825          * All done, finally we can wake up parent and return this mm to him.
826          * Also kthread_stop() uses this completion for synchronization.
827          */
828         if (tsk->vfork_done)
829                 complete_vfork_done(tsk);
830 }
831
832 /*
833  * Allocate a new mm structure and copy contents from the
834  * mm structure of the passed in task structure.
835  */
836 struct mm_struct *dup_mm(struct task_struct *tsk)
837 {
838         struct mm_struct *mm, *oldmm = current->mm;
839         int err;
840
841         if (!oldmm)
842                 return NULL;
843
844         mm = allocate_mm();
845         if (!mm)
846                 goto fail_nomem;
847
848         memcpy(mm, oldmm, sizeof(*mm));
849         mm_init_cpumask(mm);
850
851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
852         mm->pmd_huge_pte = NULL;
853 #endif
854 #ifdef CONFIG_NUMA_BALANCING
855         mm->first_nid = NUMA_PTE_SCAN_INIT;
856 #endif
857         if (!mm_init(mm, tsk))
858                 goto fail_nomem;
859
860         if (init_new_context(tsk, mm))
861                 goto fail_nocontext;
862
863         dup_mm_exe_file(oldmm, mm);
864
865         err = dup_mmap(mm, oldmm);
866         if (err)
867                 goto free_pt;
868
869         mm->hiwater_rss = get_mm_rss(mm);
870         mm->hiwater_vm = mm->total_vm;
871
872         if (mm->binfmt && !try_module_get(mm->binfmt->module))
873                 goto free_pt;
874
875         return mm;
876
877 free_pt:
878         /* don't put binfmt in mmput, we haven't got module yet */
879         mm->binfmt = NULL;
880         mmput(mm);
881
882 fail_nomem:
883         return NULL;
884
885 fail_nocontext:
886         /*
887          * If init_new_context() failed, we cannot use mmput() to free the mm
888          * because it calls destroy_context()
889          */
890         mm_free_pgd(mm);
891         free_mm(mm);
892         return NULL;
893 }
894
895 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
896 {
897         struct mm_struct *mm, *oldmm;
898         int retval;
899
900         tsk->min_flt = tsk->maj_flt = 0;
901         tsk->nvcsw = tsk->nivcsw = 0;
902 #ifdef CONFIG_DETECT_HUNG_TASK
903         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
904 #endif
905
906         tsk->mm = NULL;
907         tsk->active_mm = NULL;
908
909         /*
910          * Are we cloning a kernel thread?
911          *
912          * We need to steal a active VM for that..
913          */
914         oldmm = current->mm;
915         if (!oldmm)
916                 return 0;
917
918         if (clone_flags & CLONE_VM) {
919                 atomic_inc(&oldmm->mm_users);
920                 mm = oldmm;
921                 goto good_mm;
922         }
923
924         retval = -ENOMEM;
925         mm = dup_mm(tsk);
926         if (!mm)
927                 goto fail_nomem;
928
929 good_mm:
930         tsk->mm = mm;
931         tsk->active_mm = mm;
932         return 0;
933
934 fail_nomem:
935         return retval;
936 }
937
938 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
939 {
940         struct fs_struct *fs = current->fs;
941         if (clone_flags & CLONE_FS) {
942                 /* tsk->fs is already what we want */
943                 spin_lock(&fs->lock);
944                 if (fs->in_exec) {
945                         spin_unlock(&fs->lock);
946                         return -EAGAIN;
947                 }
948                 fs->users++;
949                 spin_unlock(&fs->lock);
950                 return 0;
951         }
952         tsk->fs = copy_fs_struct(fs);
953         if (!tsk->fs)
954                 return -ENOMEM;
955         return 0;
956 }
957
958 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
959 {
960         struct files_struct *oldf, *newf;
961         int error = 0;
962
963         /*
964          * A background process may not have any files ...
965          */
966         oldf = current->files;
967         if (!oldf)
968                 goto out;
969
970         if (clone_flags & CLONE_FILES) {
971                 atomic_inc(&oldf->count);
972                 goto out;
973         }
974
975         newf = dup_fd(oldf, &error);
976         if (!newf)
977                 goto out;
978
979         tsk->files = newf;
980         error = 0;
981 out:
982         return error;
983 }
984
985 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
986 {
987 #ifdef CONFIG_BLOCK
988         struct io_context *ioc = current->io_context;
989         struct io_context *new_ioc;
990
991         if (!ioc)
992                 return 0;
993         /*
994          * Share io context with parent, if CLONE_IO is set
995          */
996         if (clone_flags & CLONE_IO) {
997                 ioc_task_link(ioc);
998                 tsk->io_context = ioc;
999         } else if (ioprio_valid(ioc->ioprio)) {
1000                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1001                 if (unlikely(!new_ioc))
1002                         return -ENOMEM;
1003
1004                 new_ioc->ioprio = ioc->ioprio;
1005                 put_io_context(new_ioc);
1006         }
1007 #endif
1008         return 0;
1009 }
1010
1011 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1012 {
1013         struct sighand_struct *sig;
1014
1015         if (clone_flags & CLONE_SIGHAND) {
1016                 atomic_inc(&current->sighand->count);
1017                 return 0;
1018         }
1019         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1020         rcu_assign_pointer(tsk->sighand, sig);
1021         if (!sig)
1022                 return -ENOMEM;
1023         atomic_set(&sig->count, 1);
1024         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1025         return 0;
1026 }
1027
1028 void __cleanup_sighand(struct sighand_struct *sighand)
1029 {
1030         if (atomic_dec_and_test(&sighand->count)) {
1031                 signalfd_cleanup(sighand);
1032                 kmem_cache_free(sighand_cachep, sighand);
1033         }
1034 }
1035
1036
1037 /*
1038  * Initialize POSIX timer handling for a thread group.
1039  */
1040 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1041 {
1042         unsigned long cpu_limit;
1043
1044         /* Thread group counters. */
1045         thread_group_cputime_init(sig);
1046
1047         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1048         if (cpu_limit != RLIM_INFINITY) {
1049                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1050                 sig->cputimer.running = 1;
1051         }
1052
1053         /* The timer lists. */
1054         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1055         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1056         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1057 }
1058
1059 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1060 {
1061         struct signal_struct *sig;
1062
1063         if (clone_flags & CLONE_THREAD)
1064                 return 0;
1065
1066         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1067         tsk->signal = sig;
1068         if (!sig)
1069                 return -ENOMEM;
1070
1071         sig->nr_threads = 1;
1072         atomic_set(&sig->live, 1);
1073         atomic_set(&sig->sigcnt, 1);
1074         init_waitqueue_head(&sig->wait_chldexit);
1075         sig->curr_target = tsk;
1076         init_sigpending(&sig->shared_pending);
1077         INIT_LIST_HEAD(&sig->posix_timers);
1078
1079         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1080         sig->real_timer.function = it_real_fn;
1081
1082         task_lock(current->group_leader);
1083         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1084         task_unlock(current->group_leader);
1085
1086         posix_cpu_timers_init_group(sig);
1087
1088         tty_audit_fork(sig);
1089         sched_autogroup_fork(sig);
1090
1091 #ifdef CONFIG_CGROUPS
1092         init_rwsem(&sig->group_rwsem);
1093 #endif
1094
1095         sig->oom_score_adj = current->signal->oom_score_adj;
1096         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1097
1098         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1099                                    current->signal->is_child_subreaper;
1100
1101         mutex_init(&sig->cred_guard_mutex);
1102
1103         return 0;
1104 }
1105
1106 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1107 {
1108         unsigned long new_flags = p->flags;
1109
1110         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1111         new_flags |= PF_FORKNOEXEC;
1112         p->flags = new_flags;
1113 }
1114
1115 static void copy_seccomp(struct task_struct *p)
1116 {
1117 #ifdef CONFIG_SECCOMP
1118         /*
1119          * Must be called with sighand->lock held, which is common to
1120          * all threads in the group. Holding cred_guard_mutex is not
1121          * needed because this new task is not yet running and cannot
1122          * be racing exec.
1123          */
1124         BUG_ON(!spin_is_locked(&current->sighand->siglock));
1125
1126         /* Ref-count the new filter user, and assign it. */
1127         get_seccomp_filter(current);
1128         p->seccomp = current->seccomp;
1129
1130         /*
1131          * Explicitly enable no_new_privs here in case it got set
1132          * between the task_struct being duplicated and holding the
1133          * sighand lock. The seccomp state and nnp must be in sync.
1134          */
1135         if (task_no_new_privs(current))
1136                 task_set_no_new_privs(p);
1137
1138         /*
1139          * If the parent gained a seccomp mode after copying thread
1140          * flags and between before we held the sighand lock, we have
1141          * to manually enable the seccomp thread flag here.
1142          */
1143         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1144                 set_tsk_thread_flag(p, TIF_SECCOMP);
1145 #endif
1146 }
1147
1148 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1149 {
1150         current->clear_child_tid = tidptr;
1151
1152         return task_pid_vnr(current);
1153 }
1154
1155 static void rt_mutex_init_task(struct task_struct *p)
1156 {
1157         raw_spin_lock_init(&p->pi_lock);
1158 #ifdef CONFIG_RT_MUTEXES
1159         plist_head_init(&p->pi_waiters);
1160         p->pi_blocked_on = NULL;
1161 #endif
1162 }
1163
1164 #ifdef CONFIG_MM_OWNER
1165 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1166 {
1167         mm->owner = p;
1168 }
1169 #endif /* CONFIG_MM_OWNER */
1170
1171 /*
1172  * Initialize POSIX timer handling for a single task.
1173  */
1174 static void posix_cpu_timers_init(struct task_struct *tsk)
1175 {
1176         tsk->cputime_expires.prof_exp = 0;
1177         tsk->cputime_expires.virt_exp = 0;
1178         tsk->cputime_expires.sched_exp = 0;
1179         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1180         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1181         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1182 }
1183
1184 /*
1185  * This creates a new process as a copy of the old one,
1186  * but does not actually start it yet.
1187  *
1188  * It copies the registers, and all the appropriate
1189  * parts of the process environment (as per the clone
1190  * flags). The actual kick-off is left to the caller.
1191  */
1192 static struct task_struct *copy_process(unsigned long clone_flags,
1193                                         unsigned long stack_start,
1194                                         unsigned long stack_size,
1195                                         int __user *child_tidptr,
1196                                         struct pid *pid,
1197                                         int trace)
1198 {
1199         int retval;
1200         struct task_struct *p;
1201
1202         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1203                 return ERR_PTR(-EINVAL);
1204
1205         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1206                 return ERR_PTR(-EINVAL);
1207
1208         /*
1209          * Thread groups must share signals as well, and detached threads
1210          * can only be started up within the thread group.
1211          */
1212         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1213                 return ERR_PTR(-EINVAL);
1214
1215         /*
1216          * Shared signal handlers imply shared VM. By way of the above,
1217          * thread groups also imply shared VM. Blocking this case allows
1218          * for various simplifications in other code.
1219          */
1220         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1221                 return ERR_PTR(-EINVAL);
1222
1223         /*
1224          * Siblings of global init remain as zombies on exit since they are
1225          * not reaped by their parent (swapper). To solve this and to avoid
1226          * multi-rooted process trees, prevent global and container-inits
1227          * from creating siblings.
1228          */
1229         if ((clone_flags & CLONE_PARENT) &&
1230                                 current->signal->flags & SIGNAL_UNKILLABLE)
1231                 return ERR_PTR(-EINVAL);
1232
1233         /*
1234          * If the new process will be in a different pid namespace don't
1235          * allow it to share a thread group or signal handlers with the
1236          * forking task.
1237          */
1238         if ((clone_flags & (CLONE_SIGHAND | CLONE_NEWPID)) &&
1239             (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1240                 return ERR_PTR(-EINVAL);
1241
1242         retval = security_task_create(clone_flags);
1243         if (retval)
1244                 goto fork_out;
1245
1246         retval = -ENOMEM;
1247         p = dup_task_struct(current);
1248         if (!p)
1249                 goto fork_out;
1250
1251         ftrace_graph_init_task(p);
1252
1253         rt_mutex_init_task(p);
1254
1255 #ifdef CONFIG_PROVE_LOCKING
1256         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1257         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1258 #endif
1259         retval = -EAGAIN;
1260         if (atomic_read(&p->real_cred->user->processes) >=
1261                         task_rlimit(p, RLIMIT_NPROC)) {
1262                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1263                     p->real_cred->user != INIT_USER)
1264                         goto bad_fork_free;
1265         }
1266         current->flags &= ~PF_NPROC_EXCEEDED;
1267
1268         retval = copy_creds(p, clone_flags);
1269         if (retval < 0)
1270                 goto bad_fork_free;
1271
1272         /*
1273          * If multiple threads are within copy_process(), then this check
1274          * triggers too late. This doesn't hurt, the check is only there
1275          * to stop root fork bombs.
1276          */
1277         retval = -EAGAIN;
1278         if (nr_threads >= max_threads)
1279                 goto bad_fork_cleanup_count;
1280
1281         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1282                 goto bad_fork_cleanup_count;
1283
1284         p->did_exec = 0;
1285         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1286         copy_flags(clone_flags, p);
1287         INIT_LIST_HEAD(&p->children);
1288         INIT_LIST_HEAD(&p->sibling);
1289         rcu_copy_process(p);
1290         p->vfork_done = NULL;
1291         spin_lock_init(&p->alloc_lock);
1292
1293         init_sigpending(&p->pending);
1294
1295         p->utime = p->stime = p->gtime = 0;
1296         p->utimescaled = p->stimescaled = 0;
1297 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1298         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1299 #endif
1300 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1301         seqlock_init(&p->vtime_seqlock);
1302         p->vtime_snap = 0;
1303         p->vtime_snap_whence = VTIME_SLEEPING;
1304 #endif
1305
1306 #if defined(SPLIT_RSS_COUNTING)
1307         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1308 #endif
1309
1310         p->default_timer_slack_ns = current->timer_slack_ns;
1311
1312         task_io_accounting_init(&p->ioac);
1313         acct_clear_integrals(p);
1314
1315         posix_cpu_timers_init(p);
1316
1317         do_posix_clock_monotonic_gettime(&p->start_time);
1318         p->real_start_time = p->start_time;
1319         monotonic_to_bootbased(&p->real_start_time);
1320         p->io_context = NULL;
1321         p->audit_context = NULL;
1322         if (clone_flags & CLONE_THREAD)
1323                 threadgroup_change_begin(current);
1324         cgroup_fork(p);
1325 #ifdef CONFIG_NUMA
1326         p->mempolicy = mpol_dup(p->mempolicy);
1327         if (IS_ERR(p->mempolicy)) {
1328                 retval = PTR_ERR(p->mempolicy);
1329                 p->mempolicy = NULL;
1330                 goto bad_fork_cleanup_cgroup;
1331         }
1332         mpol_fix_fork_child_flag(p);
1333 #endif
1334 #ifdef CONFIG_CPUSETS
1335         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1336         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1337         seqcount_init(&p->mems_allowed_seq);
1338 #endif
1339 #ifdef CONFIG_TRACE_IRQFLAGS
1340         p->irq_events = 0;
1341         p->hardirqs_enabled = 0;
1342         p->hardirq_enable_ip = 0;
1343         p->hardirq_enable_event = 0;
1344         p->hardirq_disable_ip = _THIS_IP_;
1345         p->hardirq_disable_event = 0;
1346         p->softirqs_enabled = 1;
1347         p->softirq_enable_ip = _THIS_IP_;
1348         p->softirq_enable_event = 0;
1349         p->softirq_disable_ip = 0;
1350         p->softirq_disable_event = 0;
1351         p->hardirq_context = 0;
1352         p->softirq_context = 0;
1353 #endif
1354 #ifdef CONFIG_LOCKDEP
1355         p->lockdep_depth = 0; /* no locks held yet */
1356         p->curr_chain_key = 0;
1357         p->lockdep_recursion = 0;
1358 #endif
1359
1360 #ifdef CONFIG_DEBUG_MUTEXES
1361         p->blocked_on = NULL; /* not blocked yet */
1362 #endif
1363 #ifdef CONFIG_MEMCG
1364         p->memcg_batch.do_batch = 0;
1365         p->memcg_batch.memcg = NULL;
1366 #endif
1367 #ifdef CONFIG_BCACHE
1368         p->sequential_io        = 0;
1369         p->sequential_io_avg    = 0;
1370 #endif
1371
1372         /* Perform scheduler related setup. Assign this task to a CPU. */
1373         sched_fork(p);
1374
1375         retval = perf_event_init_task(p);
1376         if (retval)
1377                 goto bad_fork_cleanup_policy;
1378         retval = audit_alloc(p);
1379         if (retval)
1380                 goto bad_fork_cleanup_policy;
1381         /* copy all the process information */
1382         retval = copy_semundo(clone_flags, p);
1383         if (retval)
1384                 goto bad_fork_cleanup_audit;
1385         retval = copy_files(clone_flags, p);
1386         if (retval)
1387                 goto bad_fork_cleanup_semundo;
1388         retval = copy_fs(clone_flags, p);
1389         if (retval)
1390                 goto bad_fork_cleanup_files;
1391         retval = copy_sighand(clone_flags, p);
1392         if (retval)
1393                 goto bad_fork_cleanup_fs;
1394         retval = copy_signal(clone_flags, p);
1395         if (retval)
1396                 goto bad_fork_cleanup_sighand;
1397         retval = copy_mm(clone_flags, p);
1398         if (retval)
1399                 goto bad_fork_cleanup_signal;
1400         retval = copy_namespaces(clone_flags, p);
1401         if (retval)
1402                 goto bad_fork_cleanup_mm;
1403         retval = copy_io(clone_flags, p);
1404         if (retval)
1405                 goto bad_fork_cleanup_namespaces;
1406         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1407         if (retval)
1408                 goto bad_fork_cleanup_io;
1409
1410         if (pid != &init_struct_pid) {
1411                 retval = -ENOMEM;
1412                 pid = alloc_pid(p->nsproxy->pid_ns);
1413                 if (!pid)
1414                         goto bad_fork_cleanup_io;
1415         }
1416
1417         p->pid = pid_nr(pid);
1418         p->tgid = p->pid;
1419         if (clone_flags & CLONE_THREAD)
1420                 p->tgid = current->tgid;
1421
1422         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1423         /*
1424          * Clear TID on mm_release()?
1425          */
1426         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1427 #ifdef CONFIG_BLOCK
1428         p->plug = NULL;
1429 #endif
1430 #ifdef CONFIG_FUTEX
1431         p->robust_list = NULL;
1432 #ifdef CONFIG_COMPAT
1433         p->compat_robust_list = NULL;
1434 #endif
1435         INIT_LIST_HEAD(&p->pi_state_list);
1436         p->pi_state_cache = NULL;
1437 #endif
1438         uprobe_copy_process(p);
1439         /*
1440          * sigaltstack should be cleared when sharing the same VM
1441          */
1442         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1443                 p->sas_ss_sp = p->sas_ss_size = 0;
1444
1445         /*
1446          * Syscall tracing and stepping should be turned off in the
1447          * child regardless of CLONE_PTRACE.
1448          */
1449         user_disable_single_step(p);
1450         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1451 #ifdef TIF_SYSCALL_EMU
1452         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1453 #endif
1454         clear_all_latency_tracing(p);
1455
1456         /* ok, now we should be set up.. */
1457         if (clone_flags & CLONE_THREAD)
1458                 p->exit_signal = -1;
1459         else if (clone_flags & CLONE_PARENT)
1460                 p->exit_signal = current->group_leader->exit_signal;
1461         else
1462                 p->exit_signal = (clone_flags & CSIGNAL);
1463
1464         p->pdeath_signal = 0;
1465         p->exit_state = 0;
1466
1467         p->nr_dirtied = 0;
1468         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1469         p->dirty_paused_when = 0;
1470
1471         /*
1472          * Ok, make it visible to the rest of the system.
1473          * We dont wake it up yet.
1474          */
1475         p->group_leader = p;
1476         INIT_LIST_HEAD(&p->thread_group);
1477         p->task_works = NULL;
1478
1479         /* Need tasklist lock for parent etc handling! */
1480         write_lock_irq(&tasklist_lock);
1481
1482         /* CLONE_PARENT re-uses the old parent */
1483         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1484                 p->real_parent = current->real_parent;
1485                 p->parent_exec_id = current->parent_exec_id;
1486         } else {
1487                 p->real_parent = current;
1488                 p->parent_exec_id = current->self_exec_id;
1489         }
1490
1491         spin_lock(&current->sighand->siglock);
1492
1493         /*
1494          * Copy seccomp details explicitly here, in case they were changed
1495          * before holding sighand lock.
1496          */
1497         copy_seccomp(p);
1498
1499         /*
1500          * Process group and session signals need to be delivered to just the
1501          * parent before the fork or both the parent and the child after the
1502          * fork. Restart if a signal comes in before we add the new process to
1503          * it's process group.
1504          * A fatal signal pending means that current will exit, so the new
1505          * thread can't slip out of an OOM kill (or normal SIGKILL).
1506         */
1507         recalc_sigpending();
1508         if (signal_pending(current)) {
1509                 spin_unlock(&current->sighand->siglock);
1510                 write_unlock_irq(&tasklist_lock);
1511                 retval = -ERESTARTNOINTR;
1512                 goto bad_fork_free_pid;
1513         }
1514
1515         if (clone_flags & CLONE_THREAD) {
1516                 current->signal->nr_threads++;
1517                 atomic_inc(&current->signal->live);
1518                 atomic_inc(&current->signal->sigcnt);
1519                 p->group_leader = current->group_leader;
1520                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1521         }
1522
1523         if (likely(p->pid)) {
1524                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1525
1526                 if (thread_group_leader(p)) {
1527                         if (is_child_reaper(pid)) {
1528                                 ns_of_pid(pid)->child_reaper = p;
1529                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1530                         }
1531
1532                         p->signal->leader_pid = pid;
1533                         p->signal->tty = tty_kref_get(current->signal->tty);
1534                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1535                         attach_pid(p, PIDTYPE_SID, task_session(current));
1536                         list_add_tail(&p->sibling, &p->real_parent->children);
1537                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1538                         __this_cpu_inc(process_counts);
1539                 }
1540                 attach_pid(p, PIDTYPE_PID, pid);
1541                 nr_threads++;
1542         }
1543
1544         total_forks++;
1545         spin_unlock(&current->sighand->siglock);
1546         syscall_tracepoint_update(p);
1547         write_unlock_irq(&tasklist_lock);
1548
1549         proc_fork_connector(p);
1550         cgroup_post_fork(p);
1551         if (clone_flags & CLONE_THREAD)
1552                 threadgroup_change_end(current);
1553         perf_event_fork(p);
1554
1555         trace_task_newtask(p, clone_flags);
1556
1557         return p;
1558
1559 bad_fork_free_pid:
1560         if (pid != &init_struct_pid)
1561                 free_pid(pid);
1562 bad_fork_cleanup_io:
1563         if (p->io_context)
1564                 exit_io_context(p);
1565 bad_fork_cleanup_namespaces:
1566         exit_task_namespaces(p);
1567 bad_fork_cleanup_mm:
1568         if (p->mm)
1569                 mmput(p->mm);
1570 bad_fork_cleanup_signal:
1571         if (!(clone_flags & CLONE_THREAD))
1572                 free_signal_struct(p->signal);
1573 bad_fork_cleanup_sighand:
1574         __cleanup_sighand(p->sighand);
1575 bad_fork_cleanup_fs:
1576         exit_fs(p); /* blocking */
1577 bad_fork_cleanup_files:
1578         exit_files(p); /* blocking */
1579 bad_fork_cleanup_semundo:
1580         exit_sem(p);
1581 bad_fork_cleanup_audit:
1582         audit_free(p);
1583 bad_fork_cleanup_policy:
1584         perf_event_free_task(p);
1585 #ifdef CONFIG_NUMA
1586         mpol_put(p->mempolicy);
1587 bad_fork_cleanup_cgroup:
1588 #endif
1589         if (clone_flags & CLONE_THREAD)
1590                 threadgroup_change_end(current);
1591         cgroup_exit(p, 0);
1592         delayacct_tsk_free(p);
1593         module_put(task_thread_info(p)->exec_domain->module);
1594 bad_fork_cleanup_count:
1595         atomic_dec(&p->cred->user->processes);
1596         exit_creds(p);
1597 bad_fork_free:
1598         free_task(p);
1599 fork_out:
1600         return ERR_PTR(retval);
1601 }
1602
1603 static inline void init_idle_pids(struct pid_link *links)
1604 {
1605         enum pid_type type;
1606
1607         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1608                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1609                 links[type].pid = &init_struct_pid;
1610         }
1611 }
1612
1613 struct task_struct * __cpuinit fork_idle(int cpu)
1614 {
1615         struct task_struct *task;
1616         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1617         if (!IS_ERR(task)) {
1618                 init_idle_pids(task->pids);
1619                 init_idle(task, cpu);
1620         }
1621
1622         return task;
1623 }
1624
1625 /*
1626  *  Ok, this is the main fork-routine.
1627  *
1628  * It copies the process, and if successful kick-starts
1629  * it and waits for it to finish using the VM if required.
1630  */
1631 long do_fork(unsigned long clone_flags,
1632               unsigned long stack_start,
1633               unsigned long stack_size,
1634               int __user *parent_tidptr,
1635               int __user *child_tidptr)
1636 {
1637         struct task_struct *p;
1638         int trace = 0;
1639         long nr;
1640
1641         /*
1642          * Do some preliminary argument and permissions checking before we
1643          * actually start allocating stuff
1644          */
1645         if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1646                 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1647                         return -EINVAL;
1648         }
1649
1650         /*
1651          * Determine whether and which event to report to ptracer.  When
1652          * called from kernel_thread or CLONE_UNTRACED is explicitly
1653          * requested, no event is reported; otherwise, report if the event
1654          * for the type of forking is enabled.
1655          */
1656         if (!(clone_flags & CLONE_UNTRACED)) {
1657                 if (clone_flags & CLONE_VFORK)
1658                         trace = PTRACE_EVENT_VFORK;
1659                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1660                         trace = PTRACE_EVENT_CLONE;
1661                 else
1662                         trace = PTRACE_EVENT_FORK;
1663
1664                 if (likely(!ptrace_event_enabled(current, trace)))
1665                         trace = 0;
1666         }
1667
1668         p = copy_process(clone_flags, stack_start, stack_size,
1669                          child_tidptr, NULL, trace);
1670         /*
1671          * Do this prior waking up the new thread - the thread pointer
1672          * might get invalid after that point, if the thread exits quickly.
1673          */
1674         if (!IS_ERR(p)) {
1675                 struct completion vfork;
1676                 struct pid *pid;
1677
1678                 trace_sched_process_fork(current, p);
1679
1680                 pid = get_task_pid(p, PIDTYPE_PID);
1681                 nr = pid_vnr(pid);
1682
1683                 if (clone_flags & CLONE_PARENT_SETTID)
1684                         put_user(nr, parent_tidptr);
1685
1686                 if (clone_flags & CLONE_VFORK) {
1687                         p->vfork_done = &vfork;
1688                         init_completion(&vfork);
1689                         get_task_struct(p);
1690                 }
1691
1692                 wake_up_new_task(p);
1693
1694                 /* forking complete and child started to run, tell ptracer */
1695                 if (unlikely(trace))
1696                         ptrace_event_pid(trace, pid);
1697
1698                 if (clone_flags & CLONE_VFORK) {
1699                         if (!wait_for_vfork_done(p, &vfork))
1700                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1701                 }
1702
1703                 put_pid(pid);
1704         } else {
1705                 nr = PTR_ERR(p);
1706         }
1707         return nr;
1708 }
1709
1710 /*
1711  * Create a kernel thread.
1712  */
1713 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1714 {
1715         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1716                 (unsigned long)arg, NULL, NULL);
1717 }
1718
1719 #ifdef __ARCH_WANT_SYS_FORK
1720 SYSCALL_DEFINE0(fork)
1721 {
1722 #ifdef CONFIG_MMU
1723         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1724 #else
1725         /* can not support in nommu mode */
1726         return(-EINVAL);
1727 #endif
1728 }
1729 #endif
1730
1731 #ifdef __ARCH_WANT_SYS_VFORK
1732 SYSCALL_DEFINE0(vfork)
1733 {
1734         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 
1735                         0, NULL, NULL);
1736 }
1737 #endif
1738
1739 #ifdef __ARCH_WANT_SYS_CLONE
1740 #ifdef CONFIG_CLONE_BACKWARDS
1741 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1742                  int __user *, parent_tidptr,
1743                  int, tls_val,
1744                  int __user *, child_tidptr)
1745 #elif defined(CONFIG_CLONE_BACKWARDS2)
1746 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1747                  int __user *, parent_tidptr,
1748                  int __user *, child_tidptr,
1749                  int, tls_val)
1750 #elif defined(CONFIG_CLONE_BACKWARDS3)
1751 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1752                 int, stack_size,
1753                 int __user *, parent_tidptr,
1754                 int __user *, child_tidptr,
1755                 int, tls_val)
1756 #else
1757 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1758                  int __user *, parent_tidptr,
1759                  int __user *, child_tidptr,
1760                  int, tls_val)
1761 #endif
1762 {
1763         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1764 }
1765 #endif
1766
1767 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1768 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1769 #endif
1770
1771 static void sighand_ctor(void *data)
1772 {
1773         struct sighand_struct *sighand = data;
1774
1775         spin_lock_init(&sighand->siglock);
1776         init_waitqueue_head(&sighand->signalfd_wqh);
1777 }
1778
1779 void __init proc_caches_init(void)
1780 {
1781         sighand_cachep = kmem_cache_create("sighand_cache",
1782                         sizeof(struct sighand_struct), 0,
1783                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1784                         SLAB_NOTRACK, sighand_ctor);
1785         signal_cachep = kmem_cache_create("signal_cache",
1786                         sizeof(struct signal_struct), 0,
1787                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1788         files_cachep = kmem_cache_create("files_cache",
1789                         sizeof(struct files_struct), 0,
1790                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1791         fs_cachep = kmem_cache_create("fs_cache",
1792                         sizeof(struct fs_struct), 0,
1793                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1794         /*
1795          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1796          * whole struct cpumask for the OFFSTACK case. We could change
1797          * this to *only* allocate as much of it as required by the
1798          * maximum number of CPU's we can ever have.  The cpumask_allocation
1799          * is at the end of the structure, exactly for that reason.
1800          */
1801         mm_cachep = kmem_cache_create("mm_struct",
1802                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1803                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1804         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1805         mmap_init();
1806         nsproxy_cache_init();
1807 }
1808
1809 /*
1810  * Check constraints on flags passed to the unshare system call.
1811  */
1812 static int check_unshare_flags(unsigned long unshare_flags)
1813 {
1814         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1815                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1816                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1817                                 CLONE_NEWUSER|CLONE_NEWPID))
1818                 return -EINVAL;
1819         /*
1820          * Not implemented, but pretend it works if there is nothing to
1821          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1822          * needs to unshare vm.
1823          */
1824         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1825                 /* FIXME: get_task_mm() increments ->mm_users */
1826                 if (atomic_read(&current->mm->mm_users) > 1)
1827                         return -EINVAL;
1828         }
1829
1830         return 0;
1831 }
1832
1833 /*
1834  * Unshare the filesystem structure if it is being shared
1835  */
1836 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1837 {
1838         struct fs_struct *fs = current->fs;
1839
1840         if (!(unshare_flags & CLONE_FS) || !fs)
1841                 return 0;
1842
1843         /* don't need lock here; in the worst case we'll do useless copy */
1844         if (fs->users == 1)
1845                 return 0;
1846
1847         *new_fsp = copy_fs_struct(fs);
1848         if (!*new_fsp)
1849                 return -ENOMEM;
1850
1851         return 0;
1852 }
1853
1854 /*
1855  * Unshare file descriptor table if it is being shared
1856  */
1857 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1858 {
1859         struct files_struct *fd = current->files;
1860         int error = 0;
1861
1862         if ((unshare_flags & CLONE_FILES) &&
1863             (fd && atomic_read(&fd->count) > 1)) {
1864                 *new_fdp = dup_fd(fd, &error);
1865                 if (!*new_fdp)
1866                         return error;
1867         }
1868
1869         return 0;
1870 }
1871
1872 /*
1873  * unshare allows a process to 'unshare' part of the process
1874  * context which was originally shared using clone.  copy_*
1875  * functions used by do_fork() cannot be used here directly
1876  * because they modify an inactive task_struct that is being
1877  * constructed. Here we are modifying the current, active,
1878  * task_struct.
1879  */
1880 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1881 {
1882         struct fs_struct *fs, *new_fs = NULL;
1883         struct files_struct *fd, *new_fd = NULL;
1884         struct cred *new_cred = NULL;
1885         struct nsproxy *new_nsproxy = NULL;
1886         int do_sysvsem = 0;
1887         int err;
1888
1889         /*
1890          * If unsharing a user namespace must also unshare the thread.
1891          */
1892         if (unshare_flags & CLONE_NEWUSER)
1893                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1894         /*
1895          * If unsharing a pid namespace must also unshare the thread.
1896          */
1897         if (unshare_flags & CLONE_NEWPID)
1898                 unshare_flags |= CLONE_THREAD;
1899         /*
1900          * If unsharing a thread from a thread group, must also unshare vm.
1901          */
1902         if (unshare_flags & CLONE_THREAD)
1903                 unshare_flags |= CLONE_VM;
1904         /*
1905          * If unsharing vm, must also unshare signal handlers.
1906          */
1907         if (unshare_flags & CLONE_VM)
1908                 unshare_flags |= CLONE_SIGHAND;
1909         /*
1910          * If unsharing namespace, must also unshare filesystem information.
1911          */
1912         if (unshare_flags & CLONE_NEWNS)
1913                 unshare_flags |= CLONE_FS;
1914
1915         err = check_unshare_flags(unshare_flags);
1916         if (err)
1917                 goto bad_unshare_out;
1918         /*
1919          * CLONE_NEWIPC must also detach from the undolist: after switching
1920          * to a new ipc namespace, the semaphore arrays from the old
1921          * namespace are unreachable.
1922          */
1923         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1924                 do_sysvsem = 1;
1925         err = unshare_fs(unshare_flags, &new_fs);
1926         if (err)
1927                 goto bad_unshare_out;
1928         err = unshare_fd(unshare_flags, &new_fd);
1929         if (err)
1930                 goto bad_unshare_cleanup_fs;
1931         err = unshare_userns(unshare_flags, &new_cred);
1932         if (err)
1933                 goto bad_unshare_cleanup_fd;
1934         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1935                                          new_cred, new_fs);
1936         if (err)
1937                 goto bad_unshare_cleanup_cred;
1938
1939         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1940                 if (do_sysvsem) {
1941                         /*
1942                          * CLONE_SYSVSEM is equivalent to sys_exit().
1943                          */
1944                         exit_sem(current);
1945                 }
1946
1947                 if (new_nsproxy)
1948                         switch_task_namespaces(current, new_nsproxy);
1949
1950                 task_lock(current);
1951
1952                 if (new_fs) {
1953                         fs = current->fs;
1954                         spin_lock(&fs->lock);
1955                         current->fs = new_fs;
1956                         if (--fs->users)
1957                                 new_fs = NULL;
1958                         else
1959                                 new_fs = fs;
1960                         spin_unlock(&fs->lock);
1961                 }
1962
1963                 if (new_fd) {
1964                         fd = current->files;
1965                         current->files = new_fd;
1966                         new_fd = fd;
1967                 }
1968
1969                 task_unlock(current);
1970
1971                 if (new_cred) {
1972                         /* Install the new user namespace */
1973                         commit_creds(new_cred);
1974                         new_cred = NULL;
1975                 }
1976         }
1977
1978 bad_unshare_cleanup_cred:
1979         if (new_cred)
1980                 put_cred(new_cred);
1981 bad_unshare_cleanup_fd:
1982         if (new_fd)
1983                 put_files_struct(new_fd);
1984
1985 bad_unshare_cleanup_fs:
1986         if (new_fs)
1987                 free_fs_struct(new_fs);
1988
1989 bad_unshare_out:
1990         return err;
1991 }
1992
1993 /*
1994  *      Helper to unshare the files of the current task.
1995  *      We don't want to expose copy_files internals to
1996  *      the exec layer of the kernel.
1997  */
1998
1999 int unshare_files(struct files_struct **displaced)
2000 {
2001         struct task_struct *task = current;
2002         struct files_struct *copy = NULL;
2003         int error;
2004
2005         error = unshare_fd(CLONE_FILES, &copy);
2006         if (error || !copy) {
2007                 *displaced = NULL;
2008                 return error;
2009         }
2010         *displaced = task->files;
2011         task_lock(task);
2012         task->files = copy;
2013         task_unlock(task);
2014         return 0;
2015 }