seccomp: Replace BUG(!spin_is_locked()) with assert_spin_lock
[firefly-linux-kernel-4.4.55.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;      /* Handle normal Linux uptimes. */
91 int nr_threads;                 /* The idle threads do not count.. */
92
93 int max_threads;                /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102         return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109         int cpu;
110         int total = 0;
111
112         for_each_possible_cpu(cpu)
113                 total += per_cpu(process_counts, cpu);
114
115         return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132         kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148                                                   int node)
149 {
150         struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151                                              THREAD_SIZE_ORDER);
152
153         return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158         free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164                                                   int node)
165 {
166         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171         kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177                                               THREAD_SIZE, 0, NULL);
178         BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 /* Notifier list called when a task struct is freed */
202 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206         struct zone *zone = page_zone(virt_to_page(ti));
207
208         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213         account_kernel_stack(tsk->stack, -1);
214         arch_release_thread_info(tsk->stack);
215         free_thread_info(tsk->stack);
216         rt_mutex_debug_task_free(tsk);
217         ftrace_graph_exit_task(tsk);
218         put_seccomp_filter(tsk);
219         arch_release_task_struct(tsk);
220         free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226         taskstats_tgid_free(sig);
227         sched_autogroup_exit(sig);
228         kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233         if (atomic_dec_and_test(&sig->sigcnt))
234                 free_signal_struct(sig);
235 }
236
237 int task_free_register(struct notifier_block *n)
238 {
239         return atomic_notifier_chain_register(&task_free_notifier, n);
240 }
241 EXPORT_SYMBOL(task_free_register);
242
243 int task_free_unregister(struct notifier_block *n)
244 {
245         return atomic_notifier_chain_unregister(&task_free_notifier, n);
246 }
247 EXPORT_SYMBOL(task_free_unregister);
248
249 void __put_task_struct(struct task_struct *tsk)
250 {
251         WARN_ON(!tsk->exit_state);
252         WARN_ON(atomic_read(&tsk->usage));
253         WARN_ON(tsk == current);
254
255         security_task_free(tsk);
256         exit_creds(tsk);
257         delayacct_tsk_free(tsk);
258         put_signal_struct(tsk->signal);
259
260         atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
261         if (!profile_handoff_task(tsk))
262                 free_task(tsk);
263 }
264 EXPORT_SYMBOL_GPL(__put_task_struct);
265
266 void __init __weak arch_task_cache_init(void) { }
267
268 void __init fork_init(unsigned long mempages)
269 {
270 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
271 #ifndef ARCH_MIN_TASKALIGN
272 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
273 #endif
274         /* create a slab on which task_structs can be allocated */
275         task_struct_cachep =
276                 kmem_cache_create("task_struct", sizeof(struct task_struct),
277                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
278 #endif
279
280         /* do the arch specific task caches init */
281         arch_task_cache_init();
282
283         /*
284          * The default maximum number of threads is set to a safe
285          * value: the thread structures can take up at most half
286          * of memory.
287          */
288         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
289
290         /*
291          * we need to allow at least 20 threads to boot a system
292          */
293         if (max_threads < 20)
294                 max_threads = 20;
295
296         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
297         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
298         init_task.signal->rlim[RLIMIT_SIGPENDING] =
299                 init_task.signal->rlim[RLIMIT_NPROC];
300 }
301
302 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
303                                                struct task_struct *src)
304 {
305         *dst = *src;
306         return 0;
307 }
308
309 static struct task_struct *dup_task_struct(struct task_struct *orig)
310 {
311         struct task_struct *tsk;
312         struct thread_info *ti;
313         unsigned long *stackend;
314         int node = tsk_fork_get_node(orig);
315         int err;
316
317         tsk = alloc_task_struct_node(node);
318         if (!tsk)
319                 return NULL;
320
321         ti = alloc_thread_info_node(tsk, node);
322         if (!ti)
323                 goto free_tsk;
324
325         err = arch_dup_task_struct(tsk, orig);
326         if (err)
327                 goto free_ti;
328
329         tsk->stack = ti;
330 #ifdef CONFIG_SECCOMP
331         /*
332          * We must handle setting up seccomp filters once we're under
333          * the sighand lock in case orig has changed between now and
334          * then. Until then, filter must be NULL to avoid messing up
335          * the usage counts on the error path calling free_task.
336          */
337         tsk->seccomp.filter = NULL;
338 #endif
339
340         setup_thread_stack(tsk, orig);
341         clear_user_return_notifier(tsk);
342         clear_tsk_need_resched(tsk);
343         stackend = end_of_stack(tsk);
344         *stackend = STACK_END_MAGIC;    /* for overflow detection */
345
346 #ifdef CONFIG_CC_STACKPROTECTOR
347         tsk->stack_canary = get_random_int();
348 #endif
349
350         /*
351          * One for us, one for whoever does the "release_task()" (usually
352          * parent)
353          */
354         atomic_set(&tsk->usage, 2);
355 #ifdef CONFIG_BLK_DEV_IO_TRACE
356         tsk->btrace_seq = 0;
357 #endif
358         tsk->splice_pipe = NULL;
359         tsk->task_frag.page = NULL;
360
361         account_kernel_stack(ti, 1);
362
363         return tsk;
364
365 free_ti:
366         free_thread_info(ti);
367 free_tsk:
368         free_task_struct(tsk);
369         return NULL;
370 }
371
372 #ifdef CONFIG_MMU
373 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
374 {
375         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
376         struct rb_node **rb_link, *rb_parent;
377         int retval;
378         unsigned long charge;
379         struct mempolicy *pol;
380
381         uprobe_start_dup_mmap();
382         down_write(&oldmm->mmap_sem);
383         flush_cache_dup_mm(oldmm);
384         uprobe_dup_mmap(oldmm, mm);
385         /*
386          * Not linked in yet - no deadlock potential:
387          */
388         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
389
390         mm->locked_vm = 0;
391         mm->mmap = NULL;
392         mm->mmap_cache = NULL;
393         mm->free_area_cache = oldmm->mmap_base;
394         mm->cached_hole_size = ~0UL;
395         mm->map_count = 0;
396         cpumask_clear(mm_cpumask(mm));
397         mm->mm_rb = RB_ROOT;
398         rb_link = &mm->mm_rb.rb_node;
399         rb_parent = NULL;
400         pprev = &mm->mmap;
401         retval = ksm_fork(mm, oldmm);
402         if (retval)
403                 goto out;
404         retval = khugepaged_fork(mm, oldmm);
405         if (retval)
406                 goto out;
407
408         prev = NULL;
409         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
410                 struct file *file;
411
412                 if (mpnt->vm_flags & VM_DONTCOPY) {
413                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
414                                                         -vma_pages(mpnt));
415                         continue;
416                 }
417                 charge = 0;
418                 if (mpnt->vm_flags & VM_ACCOUNT) {
419                         unsigned long len = vma_pages(mpnt);
420
421                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
422                                 goto fail_nomem;
423                         charge = len;
424                 }
425                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
426                 if (!tmp)
427                         goto fail_nomem;
428                 *tmp = *mpnt;
429                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
430                 pol = mpol_dup(vma_policy(mpnt));
431                 retval = PTR_ERR(pol);
432                 if (IS_ERR(pol))
433                         goto fail_nomem_policy;
434                 vma_set_policy(tmp, pol);
435                 tmp->vm_mm = mm;
436                 if (anon_vma_fork(tmp, mpnt))
437                         goto fail_nomem_anon_vma_fork;
438                 tmp->vm_flags &= ~VM_LOCKED;
439                 tmp->vm_next = tmp->vm_prev = NULL;
440                 file = tmp->vm_file;
441                 if (file) {
442                         struct inode *inode = file_inode(file);
443                         struct address_space *mapping = file->f_mapping;
444
445                         get_file(file);
446                         if (tmp->vm_flags & VM_DENYWRITE)
447                                 atomic_dec(&inode->i_writecount);
448                         mutex_lock(&mapping->i_mmap_mutex);
449                         if (tmp->vm_flags & VM_SHARED)
450                                 mapping->i_mmap_writable++;
451                         flush_dcache_mmap_lock(mapping);
452                         /* insert tmp into the share list, just after mpnt */
453                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
454                                 vma_nonlinear_insert(tmp,
455                                                 &mapping->i_mmap_nonlinear);
456                         else
457                                 vma_interval_tree_insert_after(tmp, mpnt,
458                                                         &mapping->i_mmap);
459                         flush_dcache_mmap_unlock(mapping);
460                         mutex_unlock(&mapping->i_mmap_mutex);
461                 }
462
463                 /*
464                  * Clear hugetlb-related page reserves for children. This only
465                  * affects MAP_PRIVATE mappings. Faults generated by the child
466                  * are not guaranteed to succeed, even if read-only
467                  */
468                 if (is_vm_hugetlb_page(tmp))
469                         reset_vma_resv_huge_pages(tmp);
470
471                 /*
472                  * Link in the new vma and copy the page table entries.
473                  */
474                 *pprev = tmp;
475                 pprev = &tmp->vm_next;
476                 tmp->vm_prev = prev;
477                 prev = tmp;
478
479                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
480                 rb_link = &tmp->vm_rb.rb_right;
481                 rb_parent = &tmp->vm_rb;
482
483                 mm->map_count++;
484                 retval = copy_page_range(mm, oldmm, mpnt);
485
486                 if (tmp->vm_ops && tmp->vm_ops->open)
487                         tmp->vm_ops->open(tmp);
488
489                 if (retval)
490                         goto out;
491         }
492         /* a new mm has just been created */
493         arch_dup_mmap(oldmm, mm);
494         retval = 0;
495 out:
496         up_write(&mm->mmap_sem);
497         flush_tlb_mm(oldmm);
498         up_write(&oldmm->mmap_sem);
499         uprobe_end_dup_mmap();
500         return retval;
501 fail_nomem_anon_vma_fork:
502         mpol_put(pol);
503 fail_nomem_policy:
504         kmem_cache_free(vm_area_cachep, tmp);
505 fail_nomem:
506         retval = -ENOMEM;
507         vm_unacct_memory(charge);
508         goto out;
509 }
510
511 static inline int mm_alloc_pgd(struct mm_struct *mm)
512 {
513         mm->pgd = pgd_alloc(mm);
514         if (unlikely(!mm->pgd))
515                 return -ENOMEM;
516         return 0;
517 }
518
519 static inline void mm_free_pgd(struct mm_struct *mm)
520 {
521         pgd_free(mm, mm->pgd);
522 }
523 #else
524 #define dup_mmap(mm, oldmm)     (0)
525 #define mm_alloc_pgd(mm)        (0)
526 #define mm_free_pgd(mm)
527 #endif /* CONFIG_MMU */
528
529 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
530
531 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
532 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
533
534 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
535
536 static int __init coredump_filter_setup(char *s)
537 {
538         default_dump_filter =
539                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
540                 MMF_DUMP_FILTER_MASK;
541         return 1;
542 }
543
544 __setup("coredump_filter=", coredump_filter_setup);
545
546 #include <linux/init_task.h>
547
548 static void mm_init_aio(struct mm_struct *mm)
549 {
550 #ifdef CONFIG_AIO
551         spin_lock_init(&mm->ioctx_lock);
552         INIT_HLIST_HEAD(&mm->ioctx_list);
553 #endif
554 }
555
556 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
557 {
558         atomic_set(&mm->mm_users, 1);
559         atomic_set(&mm->mm_count, 1);
560         init_rwsem(&mm->mmap_sem);
561         INIT_LIST_HEAD(&mm->mmlist);
562         mm->flags = (current->mm) ?
563                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
564         mm->core_state = NULL;
565         mm->nr_ptes = 0;
566         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
567         spin_lock_init(&mm->page_table_lock);
568         mm->free_area_cache = TASK_UNMAPPED_BASE;
569         mm->cached_hole_size = ~0UL;
570         mm_init_aio(mm);
571         mm_init_owner(mm, p);
572
573         if (likely(!mm_alloc_pgd(mm))) {
574                 mm->def_flags = 0;
575                 mmu_notifier_mm_init(mm);
576                 return mm;
577         }
578
579         free_mm(mm);
580         return NULL;
581 }
582
583 static void check_mm(struct mm_struct *mm)
584 {
585         int i;
586
587         for (i = 0; i < NR_MM_COUNTERS; i++) {
588                 long x = atomic_long_read(&mm->rss_stat.count[i]);
589
590                 if (unlikely(x))
591                         printk(KERN_ALERT "BUG: Bad rss-counter state "
592                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
593         }
594
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596         VM_BUG_ON(mm->pmd_huge_pte);
597 #endif
598 }
599
600 /*
601  * Allocate and initialize an mm_struct.
602  */
603 struct mm_struct *mm_alloc(void)
604 {
605         struct mm_struct *mm;
606
607         mm = allocate_mm();
608         if (!mm)
609                 return NULL;
610
611         memset(mm, 0, sizeof(*mm));
612         mm_init_cpumask(mm);
613         return mm_init(mm, current);
614 }
615
616 /*
617  * Called when the last reference to the mm
618  * is dropped: either by a lazy thread or by
619  * mmput. Free the page directory and the mm.
620  */
621 void __mmdrop(struct mm_struct *mm)
622 {
623         BUG_ON(mm == &init_mm);
624         mm_free_pgd(mm);
625         destroy_context(mm);
626         mmu_notifier_mm_destroy(mm);
627         check_mm(mm);
628         free_mm(mm);
629 }
630 EXPORT_SYMBOL_GPL(__mmdrop);
631
632 /*
633  * Decrement the use count and release all resources for an mm.
634  */
635 void mmput(struct mm_struct *mm)
636 {
637         might_sleep();
638
639         if (atomic_dec_and_test(&mm->mm_users)) {
640                 uprobe_clear_state(mm);
641                 exit_aio(mm);
642                 ksm_exit(mm);
643                 khugepaged_exit(mm); /* must run before exit_mmap */
644                 exit_mmap(mm);
645                 set_mm_exe_file(mm, NULL);
646                 if (!list_empty(&mm->mmlist)) {
647                         spin_lock(&mmlist_lock);
648                         list_del(&mm->mmlist);
649                         spin_unlock(&mmlist_lock);
650                 }
651                 if (mm->binfmt)
652                         module_put(mm->binfmt->module);
653                 mmdrop(mm);
654         }
655 }
656 EXPORT_SYMBOL_GPL(mmput);
657
658 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
659 {
660         if (new_exe_file)
661                 get_file(new_exe_file);
662         if (mm->exe_file)
663                 fput(mm->exe_file);
664         mm->exe_file = new_exe_file;
665 }
666
667 struct file *get_mm_exe_file(struct mm_struct *mm)
668 {
669         struct file *exe_file;
670
671         /* We need mmap_sem to protect against races with removal of exe_file */
672         down_read(&mm->mmap_sem);
673         exe_file = mm->exe_file;
674         if (exe_file)
675                 get_file(exe_file);
676         up_read(&mm->mmap_sem);
677         return exe_file;
678 }
679
680 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
681 {
682         /* It's safe to write the exe_file pointer without exe_file_lock because
683          * this is called during fork when the task is not yet in /proc */
684         newmm->exe_file = get_mm_exe_file(oldmm);
685 }
686
687 /**
688  * get_task_mm - acquire a reference to the task's mm
689  *
690  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
691  * this kernel workthread has transiently adopted a user mm with use_mm,
692  * to do its AIO) is not set and if so returns a reference to it, after
693  * bumping up the use count.  User must release the mm via mmput()
694  * after use.  Typically used by /proc and ptrace.
695  */
696 struct mm_struct *get_task_mm(struct task_struct *task)
697 {
698         struct mm_struct *mm;
699
700         task_lock(task);
701         mm = task->mm;
702         if (mm) {
703                 if (task->flags & PF_KTHREAD)
704                         mm = NULL;
705                 else
706                         atomic_inc(&mm->mm_users);
707         }
708         task_unlock(task);
709         return mm;
710 }
711 EXPORT_SYMBOL_GPL(get_task_mm);
712
713 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
714 {
715         struct mm_struct *mm;
716         int err;
717
718         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
719         if (err)
720                 return ERR_PTR(err);
721
722         mm = get_task_mm(task);
723         if (mm && mm != current->mm &&
724                         !ptrace_may_access(task, mode) &&
725                         !capable(CAP_SYS_RESOURCE)) {
726                 mmput(mm);
727                 mm = ERR_PTR(-EACCES);
728         }
729         mutex_unlock(&task->signal->cred_guard_mutex);
730
731         return mm;
732 }
733
734 static void complete_vfork_done(struct task_struct *tsk)
735 {
736         struct completion *vfork;
737
738         task_lock(tsk);
739         vfork = tsk->vfork_done;
740         if (likely(vfork)) {
741                 tsk->vfork_done = NULL;
742                 complete(vfork);
743         }
744         task_unlock(tsk);
745 }
746
747 static int wait_for_vfork_done(struct task_struct *child,
748                                 struct completion *vfork)
749 {
750         int killed;
751
752         freezer_do_not_count();
753         killed = wait_for_completion_killable(vfork);
754         freezer_count();
755
756         if (killed) {
757                 task_lock(child);
758                 child->vfork_done = NULL;
759                 task_unlock(child);
760         }
761
762         put_task_struct(child);
763         return killed;
764 }
765
766 /* Please note the differences between mmput and mm_release.
767  * mmput is called whenever we stop holding onto a mm_struct,
768  * error success whatever.
769  *
770  * mm_release is called after a mm_struct has been removed
771  * from the current process.
772  *
773  * This difference is important for error handling, when we
774  * only half set up a mm_struct for a new process and need to restore
775  * the old one.  Because we mmput the new mm_struct before
776  * restoring the old one. . .
777  * Eric Biederman 10 January 1998
778  */
779 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
780 {
781         /* Get rid of any futexes when releasing the mm */
782 #ifdef CONFIG_FUTEX
783         if (unlikely(tsk->robust_list)) {
784                 exit_robust_list(tsk);
785                 tsk->robust_list = NULL;
786         }
787 #ifdef CONFIG_COMPAT
788         if (unlikely(tsk->compat_robust_list)) {
789                 compat_exit_robust_list(tsk);
790                 tsk->compat_robust_list = NULL;
791         }
792 #endif
793         if (unlikely(!list_empty(&tsk->pi_state_list)))
794                 exit_pi_state_list(tsk);
795 #endif
796
797         uprobe_free_utask(tsk);
798
799         /* Get rid of any cached register state */
800         deactivate_mm(tsk, mm);
801
802         /*
803          * If we're exiting normally, clear a user-space tid field if
804          * requested.  We leave this alone when dying by signal, to leave
805          * the value intact in a core dump, and to save the unnecessary
806          * trouble, say, a killed vfork parent shouldn't touch this mm.
807          * Userland only wants this done for a sys_exit.
808          */
809         if (tsk->clear_child_tid) {
810                 if (!(tsk->flags & PF_SIGNALED) &&
811                     atomic_read(&mm->mm_users) > 1) {
812                         /*
813                          * We don't check the error code - if userspace has
814                          * not set up a proper pointer then tough luck.
815                          */
816                         put_user(0, tsk->clear_child_tid);
817                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
818                                         1, NULL, NULL, 0);
819                 }
820                 tsk->clear_child_tid = NULL;
821         }
822
823         /*
824          * All done, finally we can wake up parent and return this mm to him.
825          * Also kthread_stop() uses this completion for synchronization.
826          */
827         if (tsk->vfork_done)
828                 complete_vfork_done(tsk);
829 }
830
831 /*
832  * Allocate a new mm structure and copy contents from the
833  * mm structure of the passed in task structure.
834  */
835 struct mm_struct *dup_mm(struct task_struct *tsk)
836 {
837         struct mm_struct *mm, *oldmm = current->mm;
838         int err;
839
840         if (!oldmm)
841                 return NULL;
842
843         mm = allocate_mm();
844         if (!mm)
845                 goto fail_nomem;
846
847         memcpy(mm, oldmm, sizeof(*mm));
848         mm_init_cpumask(mm);
849
850 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
851         mm->pmd_huge_pte = NULL;
852 #endif
853 #ifdef CONFIG_NUMA_BALANCING
854         mm->first_nid = NUMA_PTE_SCAN_INIT;
855 #endif
856         if (!mm_init(mm, tsk))
857                 goto fail_nomem;
858
859         if (init_new_context(tsk, mm))
860                 goto fail_nocontext;
861
862         dup_mm_exe_file(oldmm, mm);
863
864         err = dup_mmap(mm, oldmm);
865         if (err)
866                 goto free_pt;
867
868         mm->hiwater_rss = get_mm_rss(mm);
869         mm->hiwater_vm = mm->total_vm;
870
871         if (mm->binfmt && !try_module_get(mm->binfmt->module))
872                 goto free_pt;
873
874         return mm;
875
876 free_pt:
877         /* don't put binfmt in mmput, we haven't got module yet */
878         mm->binfmt = NULL;
879         mmput(mm);
880
881 fail_nomem:
882         return NULL;
883
884 fail_nocontext:
885         /*
886          * If init_new_context() failed, we cannot use mmput() to free the mm
887          * because it calls destroy_context()
888          */
889         mm_free_pgd(mm);
890         free_mm(mm);
891         return NULL;
892 }
893
894 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
895 {
896         struct mm_struct *mm, *oldmm;
897         int retval;
898
899         tsk->min_flt = tsk->maj_flt = 0;
900         tsk->nvcsw = tsk->nivcsw = 0;
901 #ifdef CONFIG_DETECT_HUNG_TASK
902         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
903 #endif
904
905         tsk->mm = NULL;
906         tsk->active_mm = NULL;
907
908         /*
909          * Are we cloning a kernel thread?
910          *
911          * We need to steal a active VM for that..
912          */
913         oldmm = current->mm;
914         if (!oldmm)
915                 return 0;
916
917         if (clone_flags & CLONE_VM) {
918                 atomic_inc(&oldmm->mm_users);
919                 mm = oldmm;
920                 goto good_mm;
921         }
922
923         retval = -ENOMEM;
924         mm = dup_mm(tsk);
925         if (!mm)
926                 goto fail_nomem;
927
928 good_mm:
929         tsk->mm = mm;
930         tsk->active_mm = mm;
931         return 0;
932
933 fail_nomem:
934         return retval;
935 }
936
937 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
938 {
939         struct fs_struct *fs = current->fs;
940         if (clone_flags & CLONE_FS) {
941                 /* tsk->fs is already what we want */
942                 spin_lock(&fs->lock);
943                 if (fs->in_exec) {
944                         spin_unlock(&fs->lock);
945                         return -EAGAIN;
946                 }
947                 fs->users++;
948                 spin_unlock(&fs->lock);
949                 return 0;
950         }
951         tsk->fs = copy_fs_struct(fs);
952         if (!tsk->fs)
953                 return -ENOMEM;
954         return 0;
955 }
956
957 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
958 {
959         struct files_struct *oldf, *newf;
960         int error = 0;
961
962         /*
963          * A background process may not have any files ...
964          */
965         oldf = current->files;
966         if (!oldf)
967                 goto out;
968
969         if (clone_flags & CLONE_FILES) {
970                 atomic_inc(&oldf->count);
971                 goto out;
972         }
973
974         newf = dup_fd(oldf, &error);
975         if (!newf)
976                 goto out;
977
978         tsk->files = newf;
979         error = 0;
980 out:
981         return error;
982 }
983
984 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
985 {
986 #ifdef CONFIG_BLOCK
987         struct io_context *ioc = current->io_context;
988         struct io_context *new_ioc;
989
990         if (!ioc)
991                 return 0;
992         /*
993          * Share io context with parent, if CLONE_IO is set
994          */
995         if (clone_flags & CLONE_IO) {
996                 ioc_task_link(ioc);
997                 tsk->io_context = ioc;
998         } else if (ioprio_valid(ioc->ioprio)) {
999                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1000                 if (unlikely(!new_ioc))
1001                         return -ENOMEM;
1002
1003                 new_ioc->ioprio = ioc->ioprio;
1004                 put_io_context(new_ioc);
1005         }
1006 #endif
1007         return 0;
1008 }
1009
1010 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1011 {
1012         struct sighand_struct *sig;
1013
1014         if (clone_flags & CLONE_SIGHAND) {
1015                 atomic_inc(&current->sighand->count);
1016                 return 0;
1017         }
1018         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1019         rcu_assign_pointer(tsk->sighand, sig);
1020         if (!sig)
1021                 return -ENOMEM;
1022         atomic_set(&sig->count, 1);
1023         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1024         return 0;
1025 }
1026
1027 void __cleanup_sighand(struct sighand_struct *sighand)
1028 {
1029         if (atomic_dec_and_test(&sighand->count)) {
1030                 signalfd_cleanup(sighand);
1031                 kmem_cache_free(sighand_cachep, sighand);
1032         }
1033 }
1034
1035
1036 /*
1037  * Initialize POSIX timer handling for a thread group.
1038  */
1039 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1040 {
1041         unsigned long cpu_limit;
1042
1043         /* Thread group counters. */
1044         thread_group_cputime_init(sig);
1045
1046         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1047         if (cpu_limit != RLIM_INFINITY) {
1048                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1049                 sig->cputimer.running = 1;
1050         }
1051
1052         /* The timer lists. */
1053         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1054         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1055         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1056 }
1057
1058 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1059 {
1060         struct signal_struct *sig;
1061
1062         if (clone_flags & CLONE_THREAD)
1063                 return 0;
1064
1065         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1066         tsk->signal = sig;
1067         if (!sig)
1068                 return -ENOMEM;
1069
1070         sig->nr_threads = 1;
1071         atomic_set(&sig->live, 1);
1072         atomic_set(&sig->sigcnt, 1);
1073
1074         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1075         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1076         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1077
1078         init_waitqueue_head(&sig->wait_chldexit);
1079         sig->curr_target = tsk;
1080         init_sigpending(&sig->shared_pending);
1081         INIT_LIST_HEAD(&sig->posix_timers);
1082
1083         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1084         sig->real_timer.function = it_real_fn;
1085
1086         task_lock(current->group_leader);
1087         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1088         task_unlock(current->group_leader);
1089
1090         posix_cpu_timers_init_group(sig);
1091
1092         tty_audit_fork(sig);
1093         sched_autogroup_fork(sig);
1094
1095 #ifdef CONFIG_CGROUPS
1096         init_rwsem(&sig->group_rwsem);
1097 #endif
1098
1099         sig->oom_score_adj = current->signal->oom_score_adj;
1100         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1101
1102         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1103                                    current->signal->is_child_subreaper;
1104
1105         mutex_init(&sig->cred_guard_mutex);
1106
1107         return 0;
1108 }
1109
1110 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1111 {
1112         unsigned long new_flags = p->flags;
1113
1114         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1115         new_flags |= PF_FORKNOEXEC;
1116         p->flags = new_flags;
1117 }
1118
1119 static void copy_seccomp(struct task_struct *p)
1120 {
1121 #ifdef CONFIG_SECCOMP
1122         /*
1123          * Must be called with sighand->lock held, which is common to
1124          * all threads in the group. Holding cred_guard_mutex is not
1125          * needed because this new task is not yet running and cannot
1126          * be racing exec.
1127          */
1128         assert_spin_locked(&current->sighand->siglock);
1129
1130         /* Ref-count the new filter user, and assign it. */
1131         get_seccomp_filter(current);
1132         p->seccomp = current->seccomp;
1133
1134         /*
1135          * Explicitly enable no_new_privs here in case it got set
1136          * between the task_struct being duplicated and holding the
1137          * sighand lock. The seccomp state and nnp must be in sync.
1138          */
1139         if (task_no_new_privs(current))
1140                 task_set_no_new_privs(p);
1141
1142         /*
1143          * If the parent gained a seccomp mode after copying thread
1144          * flags and between before we held the sighand lock, we have
1145          * to manually enable the seccomp thread flag here.
1146          */
1147         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1148                 set_tsk_thread_flag(p, TIF_SECCOMP);
1149 #endif
1150 }
1151
1152 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1153 {
1154         current->clear_child_tid = tidptr;
1155
1156         return task_pid_vnr(current);
1157 }
1158
1159 static void rt_mutex_init_task(struct task_struct *p)
1160 {
1161         raw_spin_lock_init(&p->pi_lock);
1162 #ifdef CONFIG_RT_MUTEXES
1163         plist_head_init(&p->pi_waiters);
1164         p->pi_blocked_on = NULL;
1165 #endif
1166 }
1167
1168 #ifdef CONFIG_MM_OWNER
1169 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1170 {
1171         mm->owner = p;
1172 }
1173 #endif /* CONFIG_MM_OWNER */
1174
1175 /*
1176  * Initialize POSIX timer handling for a single task.
1177  */
1178 static void posix_cpu_timers_init(struct task_struct *tsk)
1179 {
1180         tsk->cputime_expires.prof_exp = 0;
1181         tsk->cputime_expires.virt_exp = 0;
1182         tsk->cputime_expires.sched_exp = 0;
1183         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1184         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1185         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1186 }
1187
1188 /*
1189  * This creates a new process as a copy of the old one,
1190  * but does not actually start it yet.
1191  *
1192  * It copies the registers, and all the appropriate
1193  * parts of the process environment (as per the clone
1194  * flags). The actual kick-off is left to the caller.
1195  */
1196 static struct task_struct *copy_process(unsigned long clone_flags,
1197                                         unsigned long stack_start,
1198                                         unsigned long stack_size,
1199                                         int __user *child_tidptr,
1200                                         struct pid *pid,
1201                                         int trace)
1202 {
1203         int retval;
1204         struct task_struct *p;
1205
1206         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1207                 return ERR_PTR(-EINVAL);
1208
1209         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1210                 return ERR_PTR(-EINVAL);
1211
1212         /*
1213          * Thread groups must share signals as well, and detached threads
1214          * can only be started up within the thread group.
1215          */
1216         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1217                 return ERR_PTR(-EINVAL);
1218
1219         /*
1220          * Shared signal handlers imply shared VM. By way of the above,
1221          * thread groups also imply shared VM. Blocking this case allows
1222          * for various simplifications in other code.
1223          */
1224         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1225                 return ERR_PTR(-EINVAL);
1226
1227         /*
1228          * Siblings of global init remain as zombies on exit since they are
1229          * not reaped by their parent (swapper). To solve this and to avoid
1230          * multi-rooted process trees, prevent global and container-inits
1231          * from creating siblings.
1232          */
1233         if ((clone_flags & CLONE_PARENT) &&
1234                                 current->signal->flags & SIGNAL_UNKILLABLE)
1235                 return ERR_PTR(-EINVAL);
1236
1237         /*
1238          * If the new process will be in a different pid namespace
1239          * don't allow the creation of threads.
1240          */
1241         if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1242             (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1243                 return ERR_PTR(-EINVAL);
1244
1245         retval = security_task_create(clone_flags);
1246         if (retval)
1247                 goto fork_out;
1248
1249         retval = -ENOMEM;
1250         p = dup_task_struct(current);
1251         if (!p)
1252                 goto fork_out;
1253
1254         ftrace_graph_init_task(p);
1255
1256         rt_mutex_init_task(p);
1257
1258 #ifdef CONFIG_PROVE_LOCKING
1259         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1260         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1261 #endif
1262         retval = -EAGAIN;
1263         if (atomic_read(&p->real_cred->user->processes) >=
1264                         task_rlimit(p, RLIMIT_NPROC)) {
1265                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1266                     p->real_cred->user != INIT_USER)
1267                         goto bad_fork_free;
1268         }
1269         current->flags &= ~PF_NPROC_EXCEEDED;
1270
1271         retval = copy_creds(p, clone_flags);
1272         if (retval < 0)
1273                 goto bad_fork_free;
1274
1275         /*
1276          * If multiple threads are within copy_process(), then this check
1277          * triggers too late. This doesn't hurt, the check is only there
1278          * to stop root fork bombs.
1279          */
1280         retval = -EAGAIN;
1281         if (nr_threads >= max_threads)
1282                 goto bad_fork_cleanup_count;
1283
1284         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1285                 goto bad_fork_cleanup_count;
1286
1287         p->did_exec = 0;
1288         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1289         copy_flags(clone_flags, p);
1290         INIT_LIST_HEAD(&p->children);
1291         INIT_LIST_HEAD(&p->sibling);
1292         rcu_copy_process(p);
1293         p->vfork_done = NULL;
1294         spin_lock_init(&p->alloc_lock);
1295
1296         init_sigpending(&p->pending);
1297
1298         p->utime = p->stime = p->gtime = 0;
1299         p->utimescaled = p->stimescaled = 0;
1300 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1301         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1302 #endif
1303 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1304         seqlock_init(&p->vtime_seqlock);
1305         p->vtime_snap = 0;
1306         p->vtime_snap_whence = VTIME_SLEEPING;
1307 #endif
1308
1309 #if defined(SPLIT_RSS_COUNTING)
1310         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1311 #endif
1312
1313         p->default_timer_slack_ns = current->timer_slack_ns;
1314
1315         task_io_accounting_init(&p->ioac);
1316         acct_clear_integrals(p);
1317
1318         posix_cpu_timers_init(p);
1319
1320         do_posix_clock_monotonic_gettime(&p->start_time);
1321         p->real_start_time = p->start_time;
1322         monotonic_to_bootbased(&p->real_start_time);
1323         p->io_context = NULL;
1324         p->audit_context = NULL;
1325         if (clone_flags & CLONE_THREAD)
1326                 threadgroup_change_begin(current);
1327         cgroup_fork(p);
1328 #ifdef CONFIG_NUMA
1329         p->mempolicy = mpol_dup(p->mempolicy);
1330         if (IS_ERR(p->mempolicy)) {
1331                 retval = PTR_ERR(p->mempolicy);
1332                 p->mempolicy = NULL;
1333                 goto bad_fork_cleanup_cgroup;
1334         }
1335         mpol_fix_fork_child_flag(p);
1336 #endif
1337 #ifdef CONFIG_CPUSETS
1338         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1339         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1340         seqcount_init(&p->mems_allowed_seq);
1341 #endif
1342 #ifdef CONFIG_TRACE_IRQFLAGS
1343         p->irq_events = 0;
1344         p->hardirqs_enabled = 0;
1345         p->hardirq_enable_ip = 0;
1346         p->hardirq_enable_event = 0;
1347         p->hardirq_disable_ip = _THIS_IP_;
1348         p->hardirq_disable_event = 0;
1349         p->softirqs_enabled = 1;
1350         p->softirq_enable_ip = _THIS_IP_;
1351         p->softirq_enable_event = 0;
1352         p->softirq_disable_ip = 0;
1353         p->softirq_disable_event = 0;
1354         p->hardirq_context = 0;
1355         p->softirq_context = 0;
1356 #endif
1357 #ifdef CONFIG_LOCKDEP
1358         p->lockdep_depth = 0; /* no locks held yet */
1359         p->curr_chain_key = 0;
1360         p->lockdep_recursion = 0;
1361 #endif
1362
1363 #ifdef CONFIG_DEBUG_MUTEXES
1364         p->blocked_on = NULL; /* not blocked yet */
1365 #endif
1366 #ifdef CONFIG_MEMCG
1367         p->memcg_batch.do_batch = 0;
1368         p->memcg_batch.memcg = NULL;
1369 #endif
1370 #ifdef CONFIG_BCACHE
1371         p->sequential_io        = 0;
1372         p->sequential_io_avg    = 0;
1373 #endif
1374
1375         /* Perform scheduler related setup. Assign this task to a CPU. */
1376         sched_fork(p);
1377
1378         retval = perf_event_init_task(p);
1379         if (retval)
1380                 goto bad_fork_cleanup_policy;
1381         retval = audit_alloc(p);
1382         if (retval)
1383                 goto bad_fork_cleanup_policy;
1384         /* copy all the process information */
1385         retval = copy_semundo(clone_flags, p);
1386         if (retval)
1387                 goto bad_fork_cleanup_audit;
1388         retval = copy_files(clone_flags, p);
1389         if (retval)
1390                 goto bad_fork_cleanup_semundo;
1391         retval = copy_fs(clone_flags, p);
1392         if (retval)
1393                 goto bad_fork_cleanup_files;
1394         retval = copy_sighand(clone_flags, p);
1395         if (retval)
1396                 goto bad_fork_cleanup_fs;
1397         retval = copy_signal(clone_flags, p);
1398         if (retval)
1399                 goto bad_fork_cleanup_sighand;
1400         retval = copy_mm(clone_flags, p);
1401         if (retval)
1402                 goto bad_fork_cleanup_signal;
1403         retval = copy_namespaces(clone_flags, p);
1404         if (retval)
1405                 goto bad_fork_cleanup_mm;
1406         retval = copy_io(clone_flags, p);
1407         if (retval)
1408                 goto bad_fork_cleanup_namespaces;
1409         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1410         if (retval)
1411                 goto bad_fork_cleanup_io;
1412
1413         if (pid != &init_struct_pid) {
1414                 retval = -ENOMEM;
1415                 pid = alloc_pid(p->nsproxy->pid_ns);
1416                 if (!pid)
1417                         goto bad_fork_cleanup_io;
1418         }
1419
1420         p->pid = pid_nr(pid);
1421         p->tgid = p->pid;
1422         if (clone_flags & CLONE_THREAD)
1423                 p->tgid = current->tgid;
1424
1425         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1426         /*
1427          * Clear TID on mm_release()?
1428          */
1429         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1430 #ifdef CONFIG_BLOCK
1431         p->plug = NULL;
1432 #endif
1433 #ifdef CONFIG_FUTEX
1434         p->robust_list = NULL;
1435 #ifdef CONFIG_COMPAT
1436         p->compat_robust_list = NULL;
1437 #endif
1438         INIT_LIST_HEAD(&p->pi_state_list);
1439         p->pi_state_cache = NULL;
1440 #endif
1441         uprobe_copy_process(p);
1442         /*
1443          * sigaltstack should be cleared when sharing the same VM
1444          */
1445         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1446                 p->sas_ss_sp = p->sas_ss_size = 0;
1447
1448         /*
1449          * Syscall tracing and stepping should be turned off in the
1450          * child regardless of CLONE_PTRACE.
1451          */
1452         user_disable_single_step(p);
1453         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1454 #ifdef TIF_SYSCALL_EMU
1455         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1456 #endif
1457         clear_all_latency_tracing(p);
1458
1459         /* ok, now we should be set up.. */
1460         if (clone_flags & CLONE_THREAD)
1461                 p->exit_signal = -1;
1462         else if (clone_flags & CLONE_PARENT)
1463                 p->exit_signal = current->group_leader->exit_signal;
1464         else
1465                 p->exit_signal = (clone_flags & CSIGNAL);
1466
1467         p->pdeath_signal = 0;
1468         p->exit_state = 0;
1469
1470         p->nr_dirtied = 0;
1471         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1472         p->dirty_paused_when = 0;
1473
1474         /*
1475          * Ok, make it visible to the rest of the system.
1476          * We dont wake it up yet.
1477          */
1478         p->group_leader = p;
1479         INIT_LIST_HEAD(&p->thread_group);
1480         p->task_works = NULL;
1481
1482         /* Need tasklist lock for parent etc handling! */
1483         write_lock_irq(&tasklist_lock);
1484
1485         /* CLONE_PARENT re-uses the old parent */
1486         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1487                 p->real_parent = current->real_parent;
1488                 p->parent_exec_id = current->parent_exec_id;
1489         } else {
1490                 p->real_parent = current;
1491                 p->parent_exec_id = current->self_exec_id;
1492         }
1493
1494         spin_lock(&current->sighand->siglock);
1495
1496         /*
1497          * Copy seccomp details explicitly here, in case they were changed
1498          * before holding sighand lock.
1499          */
1500         copy_seccomp(p);
1501
1502         /*
1503          * Process group and session signals need to be delivered to just the
1504          * parent before the fork or both the parent and the child after the
1505          * fork. Restart if a signal comes in before we add the new process to
1506          * it's process group.
1507          * A fatal signal pending means that current will exit, so the new
1508          * thread can't slip out of an OOM kill (or normal SIGKILL).
1509         */
1510         recalc_sigpending();
1511         if (signal_pending(current)) {
1512                 spin_unlock(&current->sighand->siglock);
1513                 write_unlock_irq(&tasklist_lock);
1514                 retval = -ERESTARTNOINTR;
1515                 goto bad_fork_free_pid;
1516         }
1517
1518         if (clone_flags & CLONE_THREAD) {
1519                 current->signal->nr_threads++;
1520                 atomic_inc(&current->signal->live);
1521                 atomic_inc(&current->signal->sigcnt);
1522                 p->group_leader = current->group_leader;
1523                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1524         }
1525
1526         if (likely(p->pid)) {
1527                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1528
1529                 if (thread_group_leader(p)) {
1530                         if (is_child_reaper(pid)) {
1531                                 ns_of_pid(pid)->child_reaper = p;
1532                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1533                         }
1534
1535                         p->signal->leader_pid = pid;
1536                         p->signal->tty = tty_kref_get(current->signal->tty);
1537                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1538                         attach_pid(p, PIDTYPE_SID, task_session(current));
1539                         list_add_tail(&p->sibling, &p->real_parent->children);
1540                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1541                         __this_cpu_inc(process_counts);
1542                 } else {
1543                         list_add_tail_rcu(&p->thread_node,
1544                                           &p->signal->thread_head);
1545                 }
1546                 attach_pid(p, PIDTYPE_PID, pid);
1547                 nr_threads++;
1548         }
1549
1550         total_forks++;
1551         spin_unlock(&current->sighand->siglock);
1552         write_unlock_irq(&tasklist_lock);
1553         proc_fork_connector(p);
1554         cgroup_post_fork(p);
1555         if (clone_flags & CLONE_THREAD)
1556                 threadgroup_change_end(current);
1557         perf_event_fork(p);
1558
1559         trace_task_newtask(p, clone_flags);
1560
1561         return p;
1562
1563 bad_fork_free_pid:
1564         if (pid != &init_struct_pid)
1565                 free_pid(pid);
1566 bad_fork_cleanup_io:
1567         if (p->io_context)
1568                 exit_io_context(p);
1569 bad_fork_cleanup_namespaces:
1570         exit_task_namespaces(p);
1571 bad_fork_cleanup_mm:
1572         if (p->mm)
1573                 mmput(p->mm);
1574 bad_fork_cleanup_signal:
1575         if (!(clone_flags & CLONE_THREAD))
1576                 free_signal_struct(p->signal);
1577 bad_fork_cleanup_sighand:
1578         __cleanup_sighand(p->sighand);
1579 bad_fork_cleanup_fs:
1580         exit_fs(p); /* blocking */
1581 bad_fork_cleanup_files:
1582         exit_files(p); /* blocking */
1583 bad_fork_cleanup_semundo:
1584         exit_sem(p);
1585 bad_fork_cleanup_audit:
1586         audit_free(p);
1587 bad_fork_cleanup_policy:
1588         perf_event_free_task(p);
1589 #ifdef CONFIG_NUMA
1590         mpol_put(p->mempolicy);
1591 bad_fork_cleanup_cgroup:
1592 #endif
1593         if (clone_flags & CLONE_THREAD)
1594                 threadgroup_change_end(current);
1595         cgroup_exit(p, 0);
1596         delayacct_tsk_free(p);
1597         module_put(task_thread_info(p)->exec_domain->module);
1598 bad_fork_cleanup_count:
1599         atomic_dec(&p->cred->user->processes);
1600         exit_creds(p);
1601 bad_fork_free:
1602         free_task(p);
1603 fork_out:
1604         return ERR_PTR(retval);
1605 }
1606
1607 static inline void init_idle_pids(struct pid_link *links)
1608 {
1609         enum pid_type type;
1610
1611         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1612                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1613                 links[type].pid = &init_struct_pid;
1614         }
1615 }
1616
1617 struct task_struct * __cpuinit fork_idle(int cpu)
1618 {
1619         struct task_struct *task;
1620         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1621         if (!IS_ERR(task)) {
1622                 init_idle_pids(task->pids);
1623                 init_idle(task, cpu);
1624         }
1625
1626         return task;
1627 }
1628
1629 /*
1630  *  Ok, this is the main fork-routine.
1631  *
1632  * It copies the process, and if successful kick-starts
1633  * it and waits for it to finish using the VM if required.
1634  */
1635 long do_fork(unsigned long clone_flags,
1636               unsigned long stack_start,
1637               unsigned long stack_size,
1638               int __user *parent_tidptr,
1639               int __user *child_tidptr)
1640 {
1641         struct task_struct *p;
1642         int trace = 0;
1643         long nr;
1644
1645         /*
1646          * Do some preliminary argument and permissions checking before we
1647          * actually start allocating stuff
1648          */
1649         if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1650                 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1651                         return -EINVAL;
1652         }
1653
1654         /*
1655          * Determine whether and which event to report to ptracer.  When
1656          * called from kernel_thread or CLONE_UNTRACED is explicitly
1657          * requested, no event is reported; otherwise, report if the event
1658          * for the type of forking is enabled.
1659          */
1660         if (!(clone_flags & CLONE_UNTRACED)) {
1661                 if (clone_flags & CLONE_VFORK)
1662                         trace = PTRACE_EVENT_VFORK;
1663                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1664                         trace = PTRACE_EVENT_CLONE;
1665                 else
1666                         trace = PTRACE_EVENT_FORK;
1667
1668                 if (likely(!ptrace_event_enabled(current, trace)))
1669                         trace = 0;
1670         }
1671
1672         p = copy_process(clone_flags, stack_start, stack_size,
1673                          child_tidptr, NULL, trace);
1674         /*
1675          * Do this prior waking up the new thread - the thread pointer
1676          * might get invalid after that point, if the thread exits quickly.
1677          */
1678         if (!IS_ERR(p)) {
1679                 struct completion vfork;
1680
1681                 trace_sched_process_fork(current, p);
1682
1683                 nr = task_pid_vnr(p);
1684
1685                 if (clone_flags & CLONE_PARENT_SETTID)
1686                         put_user(nr, parent_tidptr);
1687
1688                 if (clone_flags & CLONE_VFORK) {
1689                         p->vfork_done = &vfork;
1690                         init_completion(&vfork);
1691                         get_task_struct(p);
1692                 }
1693
1694                 wake_up_new_task(p);
1695
1696                 /* forking complete and child started to run, tell ptracer */
1697                 if (unlikely(trace))
1698                         ptrace_event(trace, nr);
1699
1700                 if (clone_flags & CLONE_VFORK) {
1701                         if (!wait_for_vfork_done(p, &vfork))
1702                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1703                 }
1704         } else {
1705                 nr = PTR_ERR(p);
1706         }
1707         return nr;
1708 }
1709
1710 /*
1711  * Create a kernel thread.
1712  */
1713 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1714 {
1715         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1716                 (unsigned long)arg, NULL, NULL);
1717 }
1718
1719 #ifdef __ARCH_WANT_SYS_FORK
1720 SYSCALL_DEFINE0(fork)
1721 {
1722 #ifdef CONFIG_MMU
1723         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1724 #else
1725         /* can not support in nommu mode */
1726         return(-EINVAL);
1727 #endif
1728 }
1729 #endif
1730
1731 #ifdef __ARCH_WANT_SYS_VFORK
1732 SYSCALL_DEFINE0(vfork)
1733 {
1734         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 
1735                         0, NULL, NULL);
1736 }
1737 #endif
1738
1739 #ifdef __ARCH_WANT_SYS_CLONE
1740 #ifdef CONFIG_CLONE_BACKWARDS
1741 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1742                  int __user *, parent_tidptr,
1743                  int, tls_val,
1744                  int __user *, child_tidptr)
1745 #elif defined(CONFIG_CLONE_BACKWARDS2)
1746 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1747                  int __user *, parent_tidptr,
1748                  int __user *, child_tidptr,
1749                  int, tls_val)
1750 #else
1751 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1752                  int __user *, parent_tidptr,
1753                  int __user *, child_tidptr,
1754                  int, tls_val)
1755 #endif
1756 {
1757         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1758 }
1759 #endif
1760
1761 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1762 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1763 #endif
1764
1765 static void sighand_ctor(void *data)
1766 {
1767         struct sighand_struct *sighand = data;
1768
1769         spin_lock_init(&sighand->siglock);
1770         init_waitqueue_head(&sighand->signalfd_wqh);
1771 }
1772
1773 void __init proc_caches_init(void)
1774 {
1775         sighand_cachep = kmem_cache_create("sighand_cache",
1776                         sizeof(struct sighand_struct), 0,
1777                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1778                         SLAB_NOTRACK, sighand_ctor);
1779         signal_cachep = kmem_cache_create("signal_cache",
1780                         sizeof(struct signal_struct), 0,
1781                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1782         files_cachep = kmem_cache_create("files_cache",
1783                         sizeof(struct files_struct), 0,
1784                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1785         fs_cachep = kmem_cache_create("fs_cache",
1786                         sizeof(struct fs_struct), 0,
1787                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1788         /*
1789          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1790          * whole struct cpumask for the OFFSTACK case. We could change
1791          * this to *only* allocate as much of it as required by the
1792          * maximum number of CPU's we can ever have.  The cpumask_allocation
1793          * is at the end of the structure, exactly for that reason.
1794          */
1795         mm_cachep = kmem_cache_create("mm_struct",
1796                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1797                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1798         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1799         mmap_init();
1800         nsproxy_cache_init();
1801 }
1802
1803 /*
1804  * Check constraints on flags passed to the unshare system call.
1805  */
1806 static int check_unshare_flags(unsigned long unshare_flags)
1807 {
1808         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1809                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1810                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1811                                 CLONE_NEWUSER|CLONE_NEWPID))
1812                 return -EINVAL;
1813         /*
1814          * Not implemented, but pretend it works if there is nothing to
1815          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1816          * needs to unshare vm.
1817          */
1818         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1819                 /* FIXME: get_task_mm() increments ->mm_users */
1820                 if (atomic_read(&current->mm->mm_users) > 1)
1821                         return -EINVAL;
1822         }
1823
1824         return 0;
1825 }
1826
1827 /*
1828  * Unshare the filesystem structure if it is being shared
1829  */
1830 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1831 {
1832         struct fs_struct *fs = current->fs;
1833
1834         if (!(unshare_flags & CLONE_FS) || !fs)
1835                 return 0;
1836
1837         /* don't need lock here; in the worst case we'll do useless copy */
1838         if (fs->users == 1)
1839                 return 0;
1840
1841         *new_fsp = copy_fs_struct(fs);
1842         if (!*new_fsp)
1843                 return -ENOMEM;
1844
1845         return 0;
1846 }
1847
1848 /*
1849  * Unshare file descriptor table if it is being shared
1850  */
1851 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1852 {
1853         struct files_struct *fd = current->files;
1854         int error = 0;
1855
1856         if ((unshare_flags & CLONE_FILES) &&
1857             (fd && atomic_read(&fd->count) > 1)) {
1858                 *new_fdp = dup_fd(fd, &error);
1859                 if (!*new_fdp)
1860                         return error;
1861         }
1862
1863         return 0;
1864 }
1865
1866 /*
1867  * unshare allows a process to 'unshare' part of the process
1868  * context which was originally shared using clone.  copy_*
1869  * functions used by do_fork() cannot be used here directly
1870  * because they modify an inactive task_struct that is being
1871  * constructed. Here we are modifying the current, active,
1872  * task_struct.
1873  */
1874 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1875 {
1876         struct fs_struct *fs, *new_fs = NULL;
1877         struct files_struct *fd, *new_fd = NULL;
1878         struct cred *new_cred = NULL;
1879         struct nsproxy *new_nsproxy = NULL;
1880         int do_sysvsem = 0;
1881         int err;
1882
1883         /*
1884          * If unsharing a user namespace must also unshare the thread.
1885          */
1886         if (unshare_flags & CLONE_NEWUSER)
1887                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1888         /*
1889          * If unsharing a pid namespace must also unshare the thread.
1890          */
1891         if (unshare_flags & CLONE_NEWPID)
1892                 unshare_flags |= CLONE_THREAD;
1893         /*
1894          * If unsharing a thread from a thread group, must also unshare vm.
1895          */
1896         if (unshare_flags & CLONE_THREAD)
1897                 unshare_flags |= CLONE_VM;
1898         /*
1899          * If unsharing vm, must also unshare signal handlers.
1900          */
1901         if (unshare_flags & CLONE_VM)
1902                 unshare_flags |= CLONE_SIGHAND;
1903         /*
1904          * If unsharing namespace, must also unshare filesystem information.
1905          */
1906         if (unshare_flags & CLONE_NEWNS)
1907                 unshare_flags |= CLONE_FS;
1908
1909         err = check_unshare_flags(unshare_flags);
1910         if (err)
1911                 goto bad_unshare_out;
1912         /*
1913          * CLONE_NEWIPC must also detach from the undolist: after switching
1914          * to a new ipc namespace, the semaphore arrays from the old
1915          * namespace are unreachable.
1916          */
1917         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1918                 do_sysvsem = 1;
1919         err = unshare_fs(unshare_flags, &new_fs);
1920         if (err)
1921                 goto bad_unshare_out;
1922         err = unshare_fd(unshare_flags, &new_fd);
1923         if (err)
1924                 goto bad_unshare_cleanup_fs;
1925         err = unshare_userns(unshare_flags, &new_cred);
1926         if (err)
1927                 goto bad_unshare_cleanup_fd;
1928         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1929                                          new_cred, new_fs);
1930         if (err)
1931                 goto bad_unshare_cleanup_cred;
1932
1933         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1934                 if (do_sysvsem) {
1935                         /*
1936                          * CLONE_SYSVSEM is equivalent to sys_exit().
1937                          */
1938                         exit_sem(current);
1939                 }
1940
1941                 if (new_nsproxy)
1942                         switch_task_namespaces(current, new_nsproxy);
1943
1944                 task_lock(current);
1945
1946                 if (new_fs) {
1947                         fs = current->fs;
1948                         spin_lock(&fs->lock);
1949                         current->fs = new_fs;
1950                         if (--fs->users)
1951                                 new_fs = NULL;
1952                         else
1953                                 new_fs = fs;
1954                         spin_unlock(&fs->lock);
1955                 }
1956
1957                 if (new_fd) {
1958                         fd = current->files;
1959                         current->files = new_fd;
1960                         new_fd = fd;
1961                 }
1962
1963                 task_unlock(current);
1964
1965                 if (new_cred) {
1966                         /* Install the new user namespace */
1967                         commit_creds(new_cred);
1968                         new_cred = NULL;
1969                 }
1970         }
1971
1972 bad_unshare_cleanup_cred:
1973         if (new_cred)
1974                 put_cred(new_cred);
1975 bad_unshare_cleanup_fd:
1976         if (new_fd)
1977                 put_files_struct(new_fd);
1978
1979 bad_unshare_cleanup_fs:
1980         if (new_fs)
1981                 free_fs_struct(new_fs);
1982
1983 bad_unshare_out:
1984         return err;
1985 }
1986
1987 /*
1988  *      Helper to unshare the files of the current task.
1989  *      We don't want to expose copy_files internals to
1990  *      the exec layer of the kernel.
1991  */
1992
1993 int unshare_files(struct files_struct **displaced)
1994 {
1995         struct task_struct *task = current;
1996         struct files_struct *copy = NULL;
1997         int error;
1998
1999         error = unshare_fd(CLONE_FILES, &copy);
2000         if (error || !copy) {
2001                 *displaced = NULL;
2002                 return error;
2003         }
2004         *displaced = task->files;
2005         task_lock(task);
2006         task->files = copy;
2007         task_unlock(task);
2008         return 0;
2009 }