Merge branch 'upstream/android-3.10' into 'linaro-fixes/android-3.10'
[firefly-linux-kernel-4.4.55.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;      /* Handle normal Linux uptimes. */
91 int nr_threads;                 /* The idle threads do not count.. */
92
93 int max_threads;                /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102         return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109         int cpu;
110         int total = 0;
111
112         for_each_possible_cpu(cpu)
113                 total += per_cpu(process_counts, cpu);
114
115         return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132         kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148                                                   int node)
149 {
150         struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151                                              THREAD_SIZE_ORDER);
152
153         return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158         free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164                                                   int node)
165 {
166         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171         kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177                                               THREAD_SIZE, 0, NULL);
178         BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 /* Notifier list called when a task struct is freed */
202 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
203
204 static void account_kernel_stack(struct thread_info *ti, int account)
205 {
206         struct zone *zone = page_zone(virt_to_page(ti));
207
208         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
209 }
210
211 void free_task(struct task_struct *tsk)
212 {
213         account_kernel_stack(tsk->stack, -1);
214         arch_release_thread_info(tsk->stack);
215         free_thread_info(tsk->stack);
216         rt_mutex_debug_task_free(tsk);
217         ftrace_graph_exit_task(tsk);
218         put_seccomp_filter(tsk);
219         arch_release_task_struct(tsk);
220         free_task_struct(tsk);
221 }
222 EXPORT_SYMBOL(free_task);
223
224 static inline void free_signal_struct(struct signal_struct *sig)
225 {
226         taskstats_tgid_free(sig);
227         sched_autogroup_exit(sig);
228         kmem_cache_free(signal_cachep, sig);
229 }
230
231 static inline void put_signal_struct(struct signal_struct *sig)
232 {
233         if (atomic_dec_and_test(&sig->sigcnt))
234                 free_signal_struct(sig);
235 }
236
237 int task_free_register(struct notifier_block *n)
238 {
239         return atomic_notifier_chain_register(&task_free_notifier, n);
240 }
241 EXPORT_SYMBOL(task_free_register);
242
243 int task_free_unregister(struct notifier_block *n)
244 {
245         return atomic_notifier_chain_unregister(&task_free_notifier, n);
246 }
247 EXPORT_SYMBOL(task_free_unregister);
248
249 void __put_task_struct(struct task_struct *tsk)
250 {
251         WARN_ON(!tsk->exit_state);
252         WARN_ON(atomic_read(&tsk->usage));
253         WARN_ON(tsk == current);
254
255         security_task_free(tsk);
256         exit_creds(tsk);
257         delayacct_tsk_free(tsk);
258         put_signal_struct(tsk->signal);
259
260         atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
261         if (!profile_handoff_task(tsk))
262                 free_task(tsk);
263 }
264 EXPORT_SYMBOL_GPL(__put_task_struct);
265
266 void __init __weak arch_task_cache_init(void) { }
267
268 void __init fork_init(unsigned long mempages)
269 {
270 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
271 #ifndef ARCH_MIN_TASKALIGN
272 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
273 #endif
274         /* create a slab on which task_structs can be allocated */
275         task_struct_cachep =
276                 kmem_cache_create("task_struct", sizeof(struct task_struct),
277                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
278 #endif
279
280         /* do the arch specific task caches init */
281         arch_task_cache_init();
282
283         /*
284          * The default maximum number of threads is set to a safe
285          * value: the thread structures can take up at most half
286          * of memory.
287          */
288         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
289
290         /*
291          * we need to allow at least 20 threads to boot a system
292          */
293         if (max_threads < 20)
294                 max_threads = 20;
295
296         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
297         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
298         init_task.signal->rlim[RLIMIT_SIGPENDING] =
299                 init_task.signal->rlim[RLIMIT_NPROC];
300 }
301
302 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
303                                                struct task_struct *src)
304 {
305         *dst = *src;
306         return 0;
307 }
308
309 static struct task_struct *dup_task_struct(struct task_struct *orig)
310 {
311         struct task_struct *tsk;
312         struct thread_info *ti;
313         unsigned long *stackend;
314         int node = tsk_fork_get_node(orig);
315         int err;
316
317         tsk = alloc_task_struct_node(node);
318         if (!tsk)
319                 return NULL;
320
321         ti = alloc_thread_info_node(tsk, node);
322         if (!ti)
323                 goto free_tsk;
324
325         err = arch_dup_task_struct(tsk, orig);
326         if (err)
327                 goto free_ti;
328
329         tsk->stack = ti;
330 #ifdef CONFIG_SECCOMP
331         /*
332          * We must handle setting up seccomp filters once we're under
333          * the sighand lock in case orig has changed between now and
334          * then. Until then, filter must be NULL to avoid messing up
335          * the usage counts on the error path calling free_task.
336          */
337         tsk->seccomp.filter = NULL;
338 #endif
339
340         setup_thread_stack(tsk, orig);
341         clear_user_return_notifier(tsk);
342         clear_tsk_need_resched(tsk);
343         stackend = end_of_stack(tsk);
344         *stackend = STACK_END_MAGIC;    /* for overflow detection */
345
346 #ifdef CONFIG_CC_STACKPROTECTOR
347         tsk->stack_canary = get_random_int();
348 #endif
349
350         /*
351          * One for us, one for whoever does the "release_task()" (usually
352          * parent)
353          */
354         atomic_set(&tsk->usage, 2);
355 #ifdef CONFIG_BLK_DEV_IO_TRACE
356         tsk->btrace_seq = 0;
357 #endif
358         tsk->splice_pipe = NULL;
359         tsk->task_frag.page = NULL;
360
361         account_kernel_stack(ti, 1);
362
363         return tsk;
364
365 free_ti:
366         free_thread_info(ti);
367 free_tsk:
368         free_task_struct(tsk);
369         return NULL;
370 }
371
372 #ifdef CONFIG_MMU
373 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
374 {
375         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
376         struct rb_node **rb_link, *rb_parent;
377         int retval;
378         unsigned long charge;
379         struct mempolicy *pol;
380
381         uprobe_start_dup_mmap();
382         down_write(&oldmm->mmap_sem);
383         flush_cache_dup_mm(oldmm);
384         uprobe_dup_mmap(oldmm, mm);
385         /*
386          * Not linked in yet - no deadlock potential:
387          */
388         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
389
390         mm->locked_vm = 0;
391         mm->mmap = NULL;
392         mm->mmap_cache = NULL;
393         mm->free_area_cache = oldmm->mmap_base;
394         mm->cached_hole_size = ~0UL;
395         mm->map_count = 0;
396         cpumask_clear(mm_cpumask(mm));
397         mm->mm_rb = RB_ROOT;
398         rb_link = &mm->mm_rb.rb_node;
399         rb_parent = NULL;
400         pprev = &mm->mmap;
401         retval = ksm_fork(mm, oldmm);
402         if (retval)
403                 goto out;
404         retval = khugepaged_fork(mm, oldmm);
405         if (retval)
406                 goto out;
407
408         prev = NULL;
409         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
410                 struct file *file;
411
412                 if (mpnt->vm_flags & VM_DONTCOPY) {
413                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
414                                                         -vma_pages(mpnt));
415                         continue;
416                 }
417                 charge = 0;
418                 if (mpnt->vm_flags & VM_ACCOUNT) {
419                         unsigned long len = vma_pages(mpnt);
420
421                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
422                                 goto fail_nomem;
423                         charge = len;
424                 }
425                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
426                 if (!tmp)
427                         goto fail_nomem;
428                 *tmp = *mpnt;
429                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
430                 pol = mpol_dup(vma_policy(mpnt));
431                 retval = PTR_ERR(pol);
432                 if (IS_ERR(pol))
433                         goto fail_nomem_policy;
434                 vma_set_policy(tmp, pol);
435                 tmp->vm_mm = mm;
436                 if (anon_vma_fork(tmp, mpnt))
437                         goto fail_nomem_anon_vma_fork;
438                 tmp->vm_flags &= ~VM_LOCKED;
439                 tmp->vm_next = tmp->vm_prev = NULL;
440                 file = tmp->vm_file;
441                 if (file) {
442                         struct inode *inode = file_inode(file);
443                         struct address_space *mapping = file->f_mapping;
444
445                         get_file(file);
446                         if (tmp->vm_flags & VM_DENYWRITE)
447                                 atomic_dec(&inode->i_writecount);
448                         mutex_lock(&mapping->i_mmap_mutex);
449                         if (tmp->vm_flags & VM_SHARED)
450                                 mapping->i_mmap_writable++;
451                         flush_dcache_mmap_lock(mapping);
452                         /* insert tmp into the share list, just after mpnt */
453                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
454                                 vma_nonlinear_insert(tmp,
455                                                 &mapping->i_mmap_nonlinear);
456                         else
457                                 vma_interval_tree_insert_after(tmp, mpnt,
458                                                         &mapping->i_mmap);
459                         flush_dcache_mmap_unlock(mapping);
460                         mutex_unlock(&mapping->i_mmap_mutex);
461                 }
462
463                 /*
464                  * Clear hugetlb-related page reserves for children. This only
465                  * affects MAP_PRIVATE mappings. Faults generated by the child
466                  * are not guaranteed to succeed, even if read-only
467                  */
468                 if (is_vm_hugetlb_page(tmp))
469                         reset_vma_resv_huge_pages(tmp);
470
471                 /*
472                  * Link in the new vma and copy the page table entries.
473                  */
474                 *pprev = tmp;
475                 pprev = &tmp->vm_next;
476                 tmp->vm_prev = prev;
477                 prev = tmp;
478
479                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
480                 rb_link = &tmp->vm_rb.rb_right;
481                 rb_parent = &tmp->vm_rb;
482
483                 mm->map_count++;
484                 retval = copy_page_range(mm, oldmm, mpnt);
485
486                 if (tmp->vm_ops && tmp->vm_ops->open)
487                         tmp->vm_ops->open(tmp);
488
489                 if (retval)
490                         goto out;
491         }
492         /* a new mm has just been created */
493         arch_dup_mmap(oldmm, mm);
494         retval = 0;
495 out:
496         up_write(&mm->mmap_sem);
497         flush_tlb_mm(oldmm);
498         up_write(&oldmm->mmap_sem);
499         uprobe_end_dup_mmap();
500         return retval;
501 fail_nomem_anon_vma_fork:
502         mpol_put(pol);
503 fail_nomem_policy:
504         kmem_cache_free(vm_area_cachep, tmp);
505 fail_nomem:
506         retval = -ENOMEM;
507         vm_unacct_memory(charge);
508         goto out;
509 }
510
511 static inline int mm_alloc_pgd(struct mm_struct *mm)
512 {
513         mm->pgd = pgd_alloc(mm);
514         if (unlikely(!mm->pgd))
515                 return -ENOMEM;
516         return 0;
517 }
518
519 static inline void mm_free_pgd(struct mm_struct *mm)
520 {
521         pgd_free(mm, mm->pgd);
522 }
523 #else
524 #define dup_mmap(mm, oldmm)     (0)
525 #define mm_alloc_pgd(mm)        (0)
526 #define mm_free_pgd(mm)
527 #endif /* CONFIG_MMU */
528
529 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
530
531 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
532 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
533
534 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
535
536 static int __init coredump_filter_setup(char *s)
537 {
538         default_dump_filter =
539                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
540                 MMF_DUMP_FILTER_MASK;
541         return 1;
542 }
543
544 __setup("coredump_filter=", coredump_filter_setup);
545
546 #include <linux/init_task.h>
547
548 static void mm_init_aio(struct mm_struct *mm)
549 {
550 #ifdef CONFIG_AIO
551         spin_lock_init(&mm->ioctx_lock);
552         INIT_HLIST_HEAD(&mm->ioctx_list);
553 #endif
554 }
555
556 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
557 {
558         atomic_set(&mm->mm_users, 1);
559         atomic_set(&mm->mm_count, 1);
560         init_rwsem(&mm->mmap_sem);
561         INIT_LIST_HEAD(&mm->mmlist);
562         mm->flags = (current->mm) ?
563                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
564         mm->core_state = NULL;
565         mm->nr_ptes = 0;
566         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
567         spin_lock_init(&mm->page_table_lock);
568         mm->free_area_cache = TASK_UNMAPPED_BASE;
569         mm->cached_hole_size = ~0UL;
570         mm_init_aio(mm);
571         mm_init_owner(mm, p);
572
573         if (likely(!mm_alloc_pgd(mm))) {
574                 mm->def_flags = 0;
575                 mmu_notifier_mm_init(mm);
576                 return mm;
577         }
578
579         free_mm(mm);
580         return NULL;
581 }
582
583 static void check_mm(struct mm_struct *mm)
584 {
585         int i;
586
587         for (i = 0; i < NR_MM_COUNTERS; i++) {
588                 long x = atomic_long_read(&mm->rss_stat.count[i]);
589
590                 if (unlikely(x))
591                         printk(KERN_ALERT "BUG: Bad rss-counter state "
592                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
593         }
594
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596         VM_BUG_ON(mm->pmd_huge_pte);
597 #endif
598 }
599
600 /*
601  * Allocate and initialize an mm_struct.
602  */
603 struct mm_struct *mm_alloc(void)
604 {
605         struct mm_struct *mm;
606
607         mm = allocate_mm();
608         if (!mm)
609                 return NULL;
610
611         memset(mm, 0, sizeof(*mm));
612         mm_init_cpumask(mm);
613         return mm_init(mm, current);
614 }
615
616 /*
617  * Called when the last reference to the mm
618  * is dropped: either by a lazy thread or by
619  * mmput. Free the page directory and the mm.
620  */
621 void __mmdrop(struct mm_struct *mm)
622 {
623         BUG_ON(mm == &init_mm);
624         mm_free_pgd(mm);
625         destroy_context(mm);
626         mmu_notifier_mm_destroy(mm);
627         check_mm(mm);
628         free_mm(mm);
629 }
630 EXPORT_SYMBOL_GPL(__mmdrop);
631
632 /*
633  * Decrement the use count and release all resources for an mm.
634  */
635 void mmput(struct mm_struct *mm)
636 {
637         might_sleep();
638
639         if (atomic_dec_and_test(&mm->mm_users)) {
640                 uprobe_clear_state(mm);
641                 exit_aio(mm);
642                 ksm_exit(mm);
643                 khugepaged_exit(mm); /* must run before exit_mmap */
644                 exit_mmap(mm);
645                 set_mm_exe_file(mm, NULL);
646                 if (!list_empty(&mm->mmlist)) {
647                         spin_lock(&mmlist_lock);
648                         list_del(&mm->mmlist);
649                         spin_unlock(&mmlist_lock);
650                 }
651                 if (mm->binfmt)
652                         module_put(mm->binfmt->module);
653                 mmdrop(mm);
654         }
655 }
656 EXPORT_SYMBOL_GPL(mmput);
657
658 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
659 {
660         if (new_exe_file)
661                 get_file(new_exe_file);
662         if (mm->exe_file)
663                 fput(mm->exe_file);
664         mm->exe_file = new_exe_file;
665 }
666
667 struct file *get_mm_exe_file(struct mm_struct *mm)
668 {
669         struct file *exe_file;
670
671         /* We need mmap_sem to protect against races with removal of exe_file */
672         down_read(&mm->mmap_sem);
673         exe_file = mm->exe_file;
674         if (exe_file)
675                 get_file(exe_file);
676         up_read(&mm->mmap_sem);
677         return exe_file;
678 }
679
680 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
681 {
682         /* It's safe to write the exe_file pointer without exe_file_lock because
683          * this is called during fork when the task is not yet in /proc */
684         newmm->exe_file = get_mm_exe_file(oldmm);
685 }
686
687 /**
688  * get_task_mm - acquire a reference to the task's mm
689  *
690  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
691  * this kernel workthread has transiently adopted a user mm with use_mm,
692  * to do its AIO) is not set and if so returns a reference to it, after
693  * bumping up the use count.  User must release the mm via mmput()
694  * after use.  Typically used by /proc and ptrace.
695  */
696 struct mm_struct *get_task_mm(struct task_struct *task)
697 {
698         struct mm_struct *mm;
699
700         task_lock(task);
701         mm = task->mm;
702         if (mm) {
703                 if (task->flags & PF_KTHREAD)
704                         mm = NULL;
705                 else
706                         atomic_inc(&mm->mm_users);
707         }
708         task_unlock(task);
709         return mm;
710 }
711 EXPORT_SYMBOL_GPL(get_task_mm);
712
713 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
714 {
715         struct mm_struct *mm;
716         int err;
717
718         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
719         if (err)
720                 return ERR_PTR(err);
721
722         mm = get_task_mm(task);
723         if (mm && mm != current->mm &&
724                         !ptrace_may_access(task, mode) &&
725                         !capable(CAP_SYS_RESOURCE)) {
726                 mmput(mm);
727                 mm = ERR_PTR(-EACCES);
728         }
729         mutex_unlock(&task->signal->cred_guard_mutex);
730
731         return mm;
732 }
733
734 static void complete_vfork_done(struct task_struct *tsk)
735 {
736         struct completion *vfork;
737
738         task_lock(tsk);
739         vfork = tsk->vfork_done;
740         if (likely(vfork)) {
741                 tsk->vfork_done = NULL;
742                 complete(vfork);
743         }
744         task_unlock(tsk);
745 }
746
747 static int wait_for_vfork_done(struct task_struct *child,
748                                 struct completion *vfork)
749 {
750         int killed;
751
752         freezer_do_not_count();
753         killed = wait_for_completion_killable(vfork);
754         freezer_count();
755
756         if (killed) {
757                 task_lock(child);
758                 child->vfork_done = NULL;
759                 task_unlock(child);
760         }
761
762         put_task_struct(child);
763         return killed;
764 }
765
766 /* Please note the differences between mmput and mm_release.
767  * mmput is called whenever we stop holding onto a mm_struct,
768  * error success whatever.
769  *
770  * mm_release is called after a mm_struct has been removed
771  * from the current process.
772  *
773  * This difference is important for error handling, when we
774  * only half set up a mm_struct for a new process and need to restore
775  * the old one.  Because we mmput the new mm_struct before
776  * restoring the old one. . .
777  * Eric Biederman 10 January 1998
778  */
779 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
780 {
781         /* Get rid of any futexes when releasing the mm */
782 #ifdef CONFIG_FUTEX
783         if (unlikely(tsk->robust_list)) {
784                 exit_robust_list(tsk);
785                 tsk->robust_list = NULL;
786         }
787 #ifdef CONFIG_COMPAT
788         if (unlikely(tsk->compat_robust_list)) {
789                 compat_exit_robust_list(tsk);
790                 tsk->compat_robust_list = NULL;
791         }
792 #endif
793         if (unlikely(!list_empty(&tsk->pi_state_list)))
794                 exit_pi_state_list(tsk);
795 #endif
796
797         uprobe_free_utask(tsk);
798
799         /* Get rid of any cached register state */
800         deactivate_mm(tsk, mm);
801
802         /*
803          * If we're exiting normally, clear a user-space tid field if
804          * requested.  We leave this alone when dying by signal, to leave
805          * the value intact in a core dump, and to save the unnecessary
806          * trouble, say, a killed vfork parent shouldn't touch this mm.
807          * Userland only wants this done for a sys_exit.
808          */
809         if (tsk->clear_child_tid) {
810                 if (!(tsk->flags & PF_SIGNALED) &&
811                     atomic_read(&mm->mm_users) > 1) {
812                         /*
813                          * We don't check the error code - if userspace has
814                          * not set up a proper pointer then tough luck.
815                          */
816                         put_user(0, tsk->clear_child_tid);
817                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
818                                         1, NULL, NULL, 0);
819                 }
820                 tsk->clear_child_tid = NULL;
821         }
822
823         /*
824          * All done, finally we can wake up parent and return this mm to him.
825          * Also kthread_stop() uses this completion for synchronization.
826          */
827         if (tsk->vfork_done)
828                 complete_vfork_done(tsk);
829 }
830
831 /*
832  * Allocate a new mm structure and copy contents from the
833  * mm structure of the passed in task structure.
834  */
835 struct mm_struct *dup_mm(struct task_struct *tsk)
836 {
837         struct mm_struct *mm, *oldmm = current->mm;
838         int err;
839
840         if (!oldmm)
841                 return NULL;
842
843         mm = allocate_mm();
844         if (!mm)
845                 goto fail_nomem;
846
847         memcpy(mm, oldmm, sizeof(*mm));
848         mm_init_cpumask(mm);
849
850 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
851         mm->pmd_huge_pte = NULL;
852 #endif
853 #ifdef CONFIG_NUMA_BALANCING
854         mm->first_nid = NUMA_PTE_SCAN_INIT;
855 #endif
856         if (!mm_init(mm, tsk))
857                 goto fail_nomem;
858
859         if (init_new_context(tsk, mm))
860                 goto fail_nocontext;
861
862         dup_mm_exe_file(oldmm, mm);
863
864         err = dup_mmap(mm, oldmm);
865         if (err)
866                 goto free_pt;
867
868         mm->hiwater_rss = get_mm_rss(mm);
869         mm->hiwater_vm = mm->total_vm;
870
871         if (mm->binfmt && !try_module_get(mm->binfmt->module))
872                 goto free_pt;
873
874         return mm;
875
876 free_pt:
877         /* don't put binfmt in mmput, we haven't got module yet */
878         mm->binfmt = NULL;
879         mmput(mm);
880
881 fail_nomem:
882         return NULL;
883
884 fail_nocontext:
885         /*
886          * If init_new_context() failed, we cannot use mmput() to free the mm
887          * because it calls destroy_context()
888          */
889         mm_free_pgd(mm);
890         free_mm(mm);
891         return NULL;
892 }
893
894 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
895 {
896         struct mm_struct *mm, *oldmm;
897         int retval;
898
899         tsk->min_flt = tsk->maj_flt = 0;
900         tsk->nvcsw = tsk->nivcsw = 0;
901 #ifdef CONFIG_DETECT_HUNG_TASK
902         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
903 #endif
904
905         tsk->mm = NULL;
906         tsk->active_mm = NULL;
907
908         /*
909          * Are we cloning a kernel thread?
910          *
911          * We need to steal a active VM for that..
912          */
913         oldmm = current->mm;
914         if (!oldmm)
915                 return 0;
916
917         if (clone_flags & CLONE_VM) {
918                 atomic_inc(&oldmm->mm_users);
919                 mm = oldmm;
920                 goto good_mm;
921         }
922
923         retval = -ENOMEM;
924         mm = dup_mm(tsk);
925         if (!mm)
926                 goto fail_nomem;
927
928 good_mm:
929         tsk->mm = mm;
930         tsk->active_mm = mm;
931         return 0;
932
933 fail_nomem:
934         return retval;
935 }
936
937 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
938 {
939         struct fs_struct *fs = current->fs;
940         if (clone_flags & CLONE_FS) {
941                 /* tsk->fs is already what we want */
942                 spin_lock(&fs->lock);
943                 if (fs->in_exec) {
944                         spin_unlock(&fs->lock);
945                         return -EAGAIN;
946                 }
947                 fs->users++;
948                 spin_unlock(&fs->lock);
949                 return 0;
950         }
951         tsk->fs = copy_fs_struct(fs);
952         if (!tsk->fs)
953                 return -ENOMEM;
954         return 0;
955 }
956
957 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
958 {
959         struct files_struct *oldf, *newf;
960         int error = 0;
961
962         /*
963          * A background process may not have any files ...
964          */
965         oldf = current->files;
966         if (!oldf)
967                 goto out;
968
969         if (clone_flags & CLONE_FILES) {
970                 atomic_inc(&oldf->count);
971                 goto out;
972         }
973
974         newf = dup_fd(oldf, &error);
975         if (!newf)
976                 goto out;
977
978         tsk->files = newf;
979         error = 0;
980 out:
981         return error;
982 }
983
984 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
985 {
986 #ifdef CONFIG_BLOCK
987         struct io_context *ioc = current->io_context;
988         struct io_context *new_ioc;
989
990         if (!ioc)
991                 return 0;
992         /*
993          * Share io context with parent, if CLONE_IO is set
994          */
995         if (clone_flags & CLONE_IO) {
996                 ioc_task_link(ioc);
997                 tsk->io_context = ioc;
998         } else if (ioprio_valid(ioc->ioprio)) {
999                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1000                 if (unlikely(!new_ioc))
1001                         return -ENOMEM;
1002
1003                 new_ioc->ioprio = ioc->ioprio;
1004                 put_io_context(new_ioc);
1005         }
1006 #endif
1007         return 0;
1008 }
1009
1010 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1011 {
1012         struct sighand_struct *sig;
1013
1014         if (clone_flags & CLONE_SIGHAND) {
1015                 atomic_inc(&current->sighand->count);
1016                 return 0;
1017         }
1018         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1019         rcu_assign_pointer(tsk->sighand, sig);
1020         if (!sig)
1021                 return -ENOMEM;
1022         atomic_set(&sig->count, 1);
1023         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1024         return 0;
1025 }
1026
1027 void __cleanup_sighand(struct sighand_struct *sighand)
1028 {
1029         if (atomic_dec_and_test(&sighand->count)) {
1030                 signalfd_cleanup(sighand);
1031                 kmem_cache_free(sighand_cachep, sighand);
1032         }
1033 }
1034
1035
1036 /*
1037  * Initialize POSIX timer handling for a thread group.
1038  */
1039 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1040 {
1041         unsigned long cpu_limit;
1042
1043         /* Thread group counters. */
1044         thread_group_cputime_init(sig);
1045
1046         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1047         if (cpu_limit != RLIM_INFINITY) {
1048                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1049                 sig->cputimer.running = 1;
1050         }
1051
1052         /* The timer lists. */
1053         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1054         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1055         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1056 }
1057
1058 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1059 {
1060         struct signal_struct *sig;
1061
1062         if (clone_flags & CLONE_THREAD)
1063                 return 0;
1064
1065         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1066         tsk->signal = sig;
1067         if (!sig)
1068                 return -ENOMEM;
1069
1070         sig->nr_threads = 1;
1071         atomic_set(&sig->live, 1);
1072         atomic_set(&sig->sigcnt, 1);
1073         init_waitqueue_head(&sig->wait_chldexit);
1074         sig->curr_target = tsk;
1075         init_sigpending(&sig->shared_pending);
1076         INIT_LIST_HEAD(&sig->posix_timers);
1077
1078         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1079         sig->real_timer.function = it_real_fn;
1080
1081         task_lock(current->group_leader);
1082         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1083         task_unlock(current->group_leader);
1084
1085         posix_cpu_timers_init_group(sig);
1086
1087         tty_audit_fork(sig);
1088         sched_autogroup_fork(sig);
1089
1090 #ifdef CONFIG_CGROUPS
1091         init_rwsem(&sig->group_rwsem);
1092 #endif
1093
1094         sig->oom_score_adj = current->signal->oom_score_adj;
1095         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1096
1097         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1098                                    current->signal->is_child_subreaper;
1099
1100         mutex_init(&sig->cred_guard_mutex);
1101
1102         return 0;
1103 }
1104
1105 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1106 {
1107         unsigned long new_flags = p->flags;
1108
1109         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1110         new_flags |= PF_FORKNOEXEC;
1111         p->flags = new_flags;
1112 }
1113
1114 static void copy_seccomp(struct task_struct *p)
1115 {
1116 #ifdef CONFIG_SECCOMP
1117         /*
1118          * Must be called with sighand->lock held, which is common to
1119          * all threads in the group. Holding cred_guard_mutex is not
1120          * needed because this new task is not yet running and cannot
1121          * be racing exec.
1122          */
1123         BUG_ON(!spin_is_locked(&current->sighand->siglock));
1124
1125         /* Ref-count the new filter user, and assign it. */
1126         get_seccomp_filter(current);
1127         p->seccomp = current->seccomp;
1128
1129         /*
1130          * Explicitly enable no_new_privs here in case it got set
1131          * between the task_struct being duplicated and holding the
1132          * sighand lock. The seccomp state and nnp must be in sync.
1133          */
1134         if (task_no_new_privs(current))
1135                 task_set_no_new_privs(p);
1136
1137         /*
1138          * If the parent gained a seccomp mode after copying thread
1139          * flags and between before we held the sighand lock, we have
1140          * to manually enable the seccomp thread flag here.
1141          */
1142         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1143                 set_tsk_thread_flag(p, TIF_SECCOMP);
1144 #endif
1145 }
1146
1147 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1148 {
1149         current->clear_child_tid = tidptr;
1150
1151         return task_pid_vnr(current);
1152 }
1153
1154 static void rt_mutex_init_task(struct task_struct *p)
1155 {
1156         raw_spin_lock_init(&p->pi_lock);
1157 #ifdef CONFIG_RT_MUTEXES
1158         plist_head_init(&p->pi_waiters);
1159         p->pi_blocked_on = NULL;
1160 #endif
1161 }
1162
1163 #ifdef CONFIG_MM_OWNER
1164 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1165 {
1166         mm->owner = p;
1167 }
1168 #endif /* CONFIG_MM_OWNER */
1169
1170 /*
1171  * Initialize POSIX timer handling for a single task.
1172  */
1173 static void posix_cpu_timers_init(struct task_struct *tsk)
1174 {
1175         tsk->cputime_expires.prof_exp = 0;
1176         tsk->cputime_expires.virt_exp = 0;
1177         tsk->cputime_expires.sched_exp = 0;
1178         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1179         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1180         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1181 }
1182
1183 /*
1184  * This creates a new process as a copy of the old one,
1185  * but does not actually start it yet.
1186  *
1187  * It copies the registers, and all the appropriate
1188  * parts of the process environment (as per the clone
1189  * flags). The actual kick-off is left to the caller.
1190  */
1191 static struct task_struct *copy_process(unsigned long clone_flags,
1192                                         unsigned long stack_start,
1193                                         unsigned long stack_size,
1194                                         int __user *child_tidptr,
1195                                         struct pid *pid,
1196                                         int trace)
1197 {
1198         int retval;
1199         struct task_struct *p;
1200
1201         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1202                 return ERR_PTR(-EINVAL);
1203
1204         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1205                 return ERR_PTR(-EINVAL);
1206
1207         /*
1208          * Thread groups must share signals as well, and detached threads
1209          * can only be started up within the thread group.
1210          */
1211         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1212                 return ERR_PTR(-EINVAL);
1213
1214         /*
1215          * Shared signal handlers imply shared VM. By way of the above,
1216          * thread groups also imply shared VM. Blocking this case allows
1217          * for various simplifications in other code.
1218          */
1219         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1220                 return ERR_PTR(-EINVAL);
1221
1222         /*
1223          * Siblings of global init remain as zombies on exit since they are
1224          * not reaped by their parent (swapper). To solve this and to avoid
1225          * multi-rooted process trees, prevent global and container-inits
1226          * from creating siblings.
1227          */
1228         if ((clone_flags & CLONE_PARENT) &&
1229                                 current->signal->flags & SIGNAL_UNKILLABLE)
1230                 return ERR_PTR(-EINVAL);
1231
1232         /*
1233          * If the new process will be in a different pid namespace
1234          * don't allow the creation of threads.
1235          */
1236         if ((clone_flags & (CLONE_VM|CLONE_NEWPID)) &&
1237             (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1238                 return ERR_PTR(-EINVAL);
1239
1240         retval = security_task_create(clone_flags);
1241         if (retval)
1242                 goto fork_out;
1243
1244         retval = -ENOMEM;
1245         p = dup_task_struct(current);
1246         if (!p)
1247                 goto fork_out;
1248
1249         ftrace_graph_init_task(p);
1250
1251         rt_mutex_init_task(p);
1252
1253 #ifdef CONFIG_PROVE_LOCKING
1254         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1255         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1256 #endif
1257         retval = -EAGAIN;
1258         if (atomic_read(&p->real_cred->user->processes) >=
1259                         task_rlimit(p, RLIMIT_NPROC)) {
1260                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1261                     p->real_cred->user != INIT_USER)
1262                         goto bad_fork_free;
1263         }
1264         current->flags &= ~PF_NPROC_EXCEEDED;
1265
1266         retval = copy_creds(p, clone_flags);
1267         if (retval < 0)
1268                 goto bad_fork_free;
1269
1270         /*
1271          * If multiple threads are within copy_process(), then this check
1272          * triggers too late. This doesn't hurt, the check is only there
1273          * to stop root fork bombs.
1274          */
1275         retval = -EAGAIN;
1276         if (nr_threads >= max_threads)
1277                 goto bad_fork_cleanup_count;
1278
1279         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1280                 goto bad_fork_cleanup_count;
1281
1282         p->did_exec = 0;
1283         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1284         copy_flags(clone_flags, p);
1285         INIT_LIST_HEAD(&p->children);
1286         INIT_LIST_HEAD(&p->sibling);
1287         rcu_copy_process(p);
1288         p->vfork_done = NULL;
1289         spin_lock_init(&p->alloc_lock);
1290
1291         init_sigpending(&p->pending);
1292
1293         p->utime = p->stime = p->gtime = 0;
1294         p->utimescaled = p->stimescaled = 0;
1295 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1296         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1297 #endif
1298 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1299         seqlock_init(&p->vtime_seqlock);
1300         p->vtime_snap = 0;
1301         p->vtime_snap_whence = VTIME_SLEEPING;
1302 #endif
1303
1304 #if defined(SPLIT_RSS_COUNTING)
1305         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1306 #endif
1307
1308         p->default_timer_slack_ns = current->timer_slack_ns;
1309
1310         task_io_accounting_init(&p->ioac);
1311         acct_clear_integrals(p);
1312
1313         posix_cpu_timers_init(p);
1314
1315         do_posix_clock_monotonic_gettime(&p->start_time);
1316         p->real_start_time = p->start_time;
1317         monotonic_to_bootbased(&p->real_start_time);
1318         p->io_context = NULL;
1319         p->audit_context = NULL;
1320         if (clone_flags & CLONE_THREAD)
1321                 threadgroup_change_begin(current);
1322         cgroup_fork(p);
1323 #ifdef CONFIG_NUMA
1324         p->mempolicy = mpol_dup(p->mempolicy);
1325         if (IS_ERR(p->mempolicy)) {
1326                 retval = PTR_ERR(p->mempolicy);
1327                 p->mempolicy = NULL;
1328                 goto bad_fork_cleanup_cgroup;
1329         }
1330         mpol_fix_fork_child_flag(p);
1331 #endif
1332 #ifdef CONFIG_CPUSETS
1333         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1334         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1335         seqcount_init(&p->mems_allowed_seq);
1336 #endif
1337 #ifdef CONFIG_TRACE_IRQFLAGS
1338         p->irq_events = 0;
1339         p->hardirqs_enabled = 0;
1340         p->hardirq_enable_ip = 0;
1341         p->hardirq_enable_event = 0;
1342         p->hardirq_disable_ip = _THIS_IP_;
1343         p->hardirq_disable_event = 0;
1344         p->softirqs_enabled = 1;
1345         p->softirq_enable_ip = _THIS_IP_;
1346         p->softirq_enable_event = 0;
1347         p->softirq_disable_ip = 0;
1348         p->softirq_disable_event = 0;
1349         p->hardirq_context = 0;
1350         p->softirq_context = 0;
1351 #endif
1352 #ifdef CONFIG_LOCKDEP
1353         p->lockdep_depth = 0; /* no locks held yet */
1354         p->curr_chain_key = 0;
1355         p->lockdep_recursion = 0;
1356 #endif
1357
1358 #ifdef CONFIG_DEBUG_MUTEXES
1359         p->blocked_on = NULL; /* not blocked yet */
1360 #endif
1361 #ifdef CONFIG_MEMCG
1362         p->memcg_batch.do_batch = 0;
1363         p->memcg_batch.memcg = NULL;
1364 #endif
1365 #ifdef CONFIG_BCACHE
1366         p->sequential_io        = 0;
1367         p->sequential_io_avg    = 0;
1368 #endif
1369
1370         /* Perform scheduler related setup. Assign this task to a CPU. */
1371         sched_fork(p);
1372
1373         retval = perf_event_init_task(p);
1374         if (retval)
1375                 goto bad_fork_cleanup_policy;
1376         retval = audit_alloc(p);
1377         if (retval)
1378                 goto bad_fork_cleanup_policy;
1379         /* copy all the process information */
1380         retval = copy_semundo(clone_flags, p);
1381         if (retval)
1382                 goto bad_fork_cleanup_audit;
1383         retval = copy_files(clone_flags, p);
1384         if (retval)
1385                 goto bad_fork_cleanup_semundo;
1386         retval = copy_fs(clone_flags, p);
1387         if (retval)
1388                 goto bad_fork_cleanup_files;
1389         retval = copy_sighand(clone_flags, p);
1390         if (retval)
1391                 goto bad_fork_cleanup_fs;
1392         retval = copy_signal(clone_flags, p);
1393         if (retval)
1394                 goto bad_fork_cleanup_sighand;
1395         retval = copy_mm(clone_flags, p);
1396         if (retval)
1397                 goto bad_fork_cleanup_signal;
1398         retval = copy_namespaces(clone_flags, p);
1399         if (retval)
1400                 goto bad_fork_cleanup_mm;
1401         retval = copy_io(clone_flags, p);
1402         if (retval)
1403                 goto bad_fork_cleanup_namespaces;
1404         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1405         if (retval)
1406                 goto bad_fork_cleanup_io;
1407
1408         if (pid != &init_struct_pid) {
1409                 retval = -ENOMEM;
1410                 pid = alloc_pid(p->nsproxy->pid_ns);
1411                 if (!pid)
1412                         goto bad_fork_cleanup_io;
1413         }
1414
1415         p->pid = pid_nr(pid);
1416         p->tgid = p->pid;
1417         if (clone_flags & CLONE_THREAD)
1418                 p->tgid = current->tgid;
1419
1420         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1421         /*
1422          * Clear TID on mm_release()?
1423          */
1424         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1425 #ifdef CONFIG_BLOCK
1426         p->plug = NULL;
1427 #endif
1428 #ifdef CONFIG_FUTEX
1429         p->robust_list = NULL;
1430 #ifdef CONFIG_COMPAT
1431         p->compat_robust_list = NULL;
1432 #endif
1433         INIT_LIST_HEAD(&p->pi_state_list);
1434         p->pi_state_cache = NULL;
1435 #endif
1436         uprobe_copy_process(p);
1437         /*
1438          * sigaltstack should be cleared when sharing the same VM
1439          */
1440         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1441                 p->sas_ss_sp = p->sas_ss_size = 0;
1442
1443         /*
1444          * Syscall tracing and stepping should be turned off in the
1445          * child regardless of CLONE_PTRACE.
1446          */
1447         user_disable_single_step(p);
1448         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1449 #ifdef TIF_SYSCALL_EMU
1450         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1451 #endif
1452         clear_all_latency_tracing(p);
1453
1454         /* ok, now we should be set up.. */
1455         if (clone_flags & CLONE_THREAD)
1456                 p->exit_signal = -1;
1457         else if (clone_flags & CLONE_PARENT)
1458                 p->exit_signal = current->group_leader->exit_signal;
1459         else
1460                 p->exit_signal = (clone_flags & CSIGNAL);
1461
1462         p->pdeath_signal = 0;
1463         p->exit_state = 0;
1464
1465         p->nr_dirtied = 0;
1466         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1467         p->dirty_paused_when = 0;
1468
1469         /*
1470          * Ok, make it visible to the rest of the system.
1471          * We dont wake it up yet.
1472          */
1473         p->group_leader = p;
1474         INIT_LIST_HEAD(&p->thread_group);
1475         p->task_works = NULL;
1476
1477         /* Need tasklist lock for parent etc handling! */
1478         write_lock_irq(&tasklist_lock);
1479
1480         /* CLONE_PARENT re-uses the old parent */
1481         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1482                 p->real_parent = current->real_parent;
1483                 p->parent_exec_id = current->parent_exec_id;
1484         } else {
1485                 p->real_parent = current;
1486                 p->parent_exec_id = current->self_exec_id;
1487         }
1488
1489         spin_lock(&current->sighand->siglock);
1490
1491         /*
1492          * Copy seccomp details explicitly here, in case they were changed
1493          * before holding sighand lock.
1494          */
1495         copy_seccomp(p);
1496
1497         /*
1498          * Process group and session signals need to be delivered to just the
1499          * parent before the fork or both the parent and the child after the
1500          * fork. Restart if a signal comes in before we add the new process to
1501          * it's process group.
1502          * A fatal signal pending means that current will exit, so the new
1503          * thread can't slip out of an OOM kill (or normal SIGKILL).
1504         */
1505         recalc_sigpending();
1506         if (signal_pending(current)) {
1507                 spin_unlock(&current->sighand->siglock);
1508                 write_unlock_irq(&tasklist_lock);
1509                 retval = -ERESTARTNOINTR;
1510                 goto bad_fork_free_pid;
1511         }
1512
1513         if (clone_flags & CLONE_THREAD) {
1514                 current->signal->nr_threads++;
1515                 atomic_inc(&current->signal->live);
1516                 atomic_inc(&current->signal->sigcnt);
1517                 p->group_leader = current->group_leader;
1518                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1519         }
1520
1521         if (likely(p->pid)) {
1522                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1523
1524                 if (thread_group_leader(p)) {
1525                         if (is_child_reaper(pid)) {
1526                                 ns_of_pid(pid)->child_reaper = p;
1527                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1528                         }
1529
1530                         p->signal->leader_pid = pid;
1531                         p->signal->tty = tty_kref_get(current->signal->tty);
1532                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1533                         attach_pid(p, PIDTYPE_SID, task_session(current));
1534                         list_add_tail(&p->sibling, &p->real_parent->children);
1535                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1536                         __this_cpu_inc(process_counts);
1537                 }
1538                 attach_pid(p, PIDTYPE_PID, pid);
1539                 nr_threads++;
1540         }
1541
1542         total_forks++;
1543         spin_unlock(&current->sighand->siglock);
1544         write_unlock_irq(&tasklist_lock);
1545         proc_fork_connector(p);
1546         cgroup_post_fork(p);
1547         if (clone_flags & CLONE_THREAD)
1548                 threadgroup_change_end(current);
1549         perf_event_fork(p);
1550
1551         trace_task_newtask(p, clone_flags);
1552
1553         return p;
1554
1555 bad_fork_free_pid:
1556         if (pid != &init_struct_pid)
1557                 free_pid(pid);
1558 bad_fork_cleanup_io:
1559         if (p->io_context)
1560                 exit_io_context(p);
1561 bad_fork_cleanup_namespaces:
1562         exit_task_namespaces(p);
1563 bad_fork_cleanup_mm:
1564         if (p->mm)
1565                 mmput(p->mm);
1566 bad_fork_cleanup_signal:
1567         if (!(clone_flags & CLONE_THREAD))
1568                 free_signal_struct(p->signal);
1569 bad_fork_cleanup_sighand:
1570         __cleanup_sighand(p->sighand);
1571 bad_fork_cleanup_fs:
1572         exit_fs(p); /* blocking */
1573 bad_fork_cleanup_files:
1574         exit_files(p); /* blocking */
1575 bad_fork_cleanup_semundo:
1576         exit_sem(p);
1577 bad_fork_cleanup_audit:
1578         audit_free(p);
1579 bad_fork_cleanup_policy:
1580         perf_event_free_task(p);
1581 #ifdef CONFIG_NUMA
1582         mpol_put(p->mempolicy);
1583 bad_fork_cleanup_cgroup:
1584 #endif
1585         if (clone_flags & CLONE_THREAD)
1586                 threadgroup_change_end(current);
1587         cgroup_exit(p, 0);
1588         delayacct_tsk_free(p);
1589         module_put(task_thread_info(p)->exec_domain->module);
1590 bad_fork_cleanup_count:
1591         atomic_dec(&p->cred->user->processes);
1592         exit_creds(p);
1593 bad_fork_free:
1594         free_task(p);
1595 fork_out:
1596         return ERR_PTR(retval);
1597 }
1598
1599 static inline void init_idle_pids(struct pid_link *links)
1600 {
1601         enum pid_type type;
1602
1603         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1604                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1605                 links[type].pid = &init_struct_pid;
1606         }
1607 }
1608
1609 struct task_struct * __cpuinit fork_idle(int cpu)
1610 {
1611         struct task_struct *task;
1612         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1613         if (!IS_ERR(task)) {
1614                 init_idle_pids(task->pids);
1615                 init_idle(task, cpu);
1616         }
1617
1618         return task;
1619 }
1620
1621 /*
1622  *  Ok, this is the main fork-routine.
1623  *
1624  * It copies the process, and if successful kick-starts
1625  * it and waits for it to finish using the VM if required.
1626  */
1627 long do_fork(unsigned long clone_flags,
1628               unsigned long stack_start,
1629               unsigned long stack_size,
1630               int __user *parent_tidptr,
1631               int __user *child_tidptr)
1632 {
1633         struct task_struct *p;
1634         int trace = 0;
1635         long nr;
1636
1637         /*
1638          * Do some preliminary argument and permissions checking before we
1639          * actually start allocating stuff
1640          */
1641         if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1642                 if (clone_flags & (CLONE_THREAD|CLONE_PARENT))
1643                         return -EINVAL;
1644         }
1645
1646         /*
1647          * Determine whether and which event to report to ptracer.  When
1648          * called from kernel_thread or CLONE_UNTRACED is explicitly
1649          * requested, no event is reported; otherwise, report if the event
1650          * for the type of forking is enabled.
1651          */
1652         if (!(clone_flags & CLONE_UNTRACED)) {
1653                 if (clone_flags & CLONE_VFORK)
1654                         trace = PTRACE_EVENT_VFORK;
1655                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1656                         trace = PTRACE_EVENT_CLONE;
1657                 else
1658                         trace = PTRACE_EVENT_FORK;
1659
1660                 if (likely(!ptrace_event_enabled(current, trace)))
1661                         trace = 0;
1662         }
1663
1664         p = copy_process(clone_flags, stack_start, stack_size,
1665                          child_tidptr, NULL, trace);
1666         /*
1667          * Do this prior waking up the new thread - the thread pointer
1668          * might get invalid after that point, if the thread exits quickly.
1669          */
1670         if (!IS_ERR(p)) {
1671                 struct completion vfork;
1672
1673                 trace_sched_process_fork(current, p);
1674
1675                 nr = task_pid_vnr(p);
1676
1677                 if (clone_flags & CLONE_PARENT_SETTID)
1678                         put_user(nr, parent_tidptr);
1679
1680                 if (clone_flags & CLONE_VFORK) {
1681                         p->vfork_done = &vfork;
1682                         init_completion(&vfork);
1683                         get_task_struct(p);
1684                 }
1685
1686                 wake_up_new_task(p);
1687
1688                 /* forking complete and child started to run, tell ptracer */
1689                 if (unlikely(trace))
1690                         ptrace_event(trace, nr);
1691
1692                 if (clone_flags & CLONE_VFORK) {
1693                         if (!wait_for_vfork_done(p, &vfork))
1694                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1695                 }
1696         } else {
1697                 nr = PTR_ERR(p);
1698         }
1699         return nr;
1700 }
1701
1702 /*
1703  * Create a kernel thread.
1704  */
1705 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1706 {
1707         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1708                 (unsigned long)arg, NULL, NULL);
1709 }
1710
1711 #ifdef __ARCH_WANT_SYS_FORK
1712 SYSCALL_DEFINE0(fork)
1713 {
1714 #ifdef CONFIG_MMU
1715         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1716 #else
1717         /* can not support in nommu mode */
1718         return(-EINVAL);
1719 #endif
1720 }
1721 #endif
1722
1723 #ifdef __ARCH_WANT_SYS_VFORK
1724 SYSCALL_DEFINE0(vfork)
1725 {
1726         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 
1727                         0, NULL, NULL);
1728 }
1729 #endif
1730
1731 #ifdef __ARCH_WANT_SYS_CLONE
1732 #ifdef CONFIG_CLONE_BACKWARDS
1733 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1734                  int __user *, parent_tidptr,
1735                  int, tls_val,
1736                  int __user *, child_tidptr)
1737 #elif defined(CONFIG_CLONE_BACKWARDS2)
1738 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1739                  int __user *, parent_tidptr,
1740                  int __user *, child_tidptr,
1741                  int, tls_val)
1742 #else
1743 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1744                  int __user *, parent_tidptr,
1745                  int __user *, child_tidptr,
1746                  int, tls_val)
1747 #endif
1748 {
1749         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1750 }
1751 #endif
1752
1753 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1754 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1755 #endif
1756
1757 static void sighand_ctor(void *data)
1758 {
1759         struct sighand_struct *sighand = data;
1760
1761         spin_lock_init(&sighand->siglock);
1762         init_waitqueue_head(&sighand->signalfd_wqh);
1763 }
1764
1765 void __init proc_caches_init(void)
1766 {
1767         sighand_cachep = kmem_cache_create("sighand_cache",
1768                         sizeof(struct sighand_struct), 0,
1769                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1770                         SLAB_NOTRACK, sighand_ctor);
1771         signal_cachep = kmem_cache_create("signal_cache",
1772                         sizeof(struct signal_struct), 0,
1773                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1774         files_cachep = kmem_cache_create("files_cache",
1775                         sizeof(struct files_struct), 0,
1776                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1777         fs_cachep = kmem_cache_create("fs_cache",
1778                         sizeof(struct fs_struct), 0,
1779                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1780         /*
1781          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1782          * whole struct cpumask for the OFFSTACK case. We could change
1783          * this to *only* allocate as much of it as required by the
1784          * maximum number of CPU's we can ever have.  The cpumask_allocation
1785          * is at the end of the structure, exactly for that reason.
1786          */
1787         mm_cachep = kmem_cache_create("mm_struct",
1788                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1789                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1790         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1791         mmap_init();
1792         nsproxy_cache_init();
1793 }
1794
1795 /*
1796  * Check constraints on flags passed to the unshare system call.
1797  */
1798 static int check_unshare_flags(unsigned long unshare_flags)
1799 {
1800         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1801                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1802                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1803                                 CLONE_NEWUSER|CLONE_NEWPID))
1804                 return -EINVAL;
1805         /*
1806          * Not implemented, but pretend it works if there is nothing to
1807          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1808          * needs to unshare vm.
1809          */
1810         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1811                 /* FIXME: get_task_mm() increments ->mm_users */
1812                 if (atomic_read(&current->mm->mm_users) > 1)
1813                         return -EINVAL;
1814         }
1815
1816         return 0;
1817 }
1818
1819 /*
1820  * Unshare the filesystem structure if it is being shared
1821  */
1822 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1823 {
1824         struct fs_struct *fs = current->fs;
1825
1826         if (!(unshare_flags & CLONE_FS) || !fs)
1827                 return 0;
1828
1829         /* don't need lock here; in the worst case we'll do useless copy */
1830         if (fs->users == 1)
1831                 return 0;
1832
1833         *new_fsp = copy_fs_struct(fs);
1834         if (!*new_fsp)
1835                 return -ENOMEM;
1836
1837         return 0;
1838 }
1839
1840 /*
1841  * Unshare file descriptor table if it is being shared
1842  */
1843 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1844 {
1845         struct files_struct *fd = current->files;
1846         int error = 0;
1847
1848         if ((unshare_flags & CLONE_FILES) &&
1849             (fd && atomic_read(&fd->count) > 1)) {
1850                 *new_fdp = dup_fd(fd, &error);
1851                 if (!*new_fdp)
1852                         return error;
1853         }
1854
1855         return 0;
1856 }
1857
1858 /*
1859  * unshare allows a process to 'unshare' part of the process
1860  * context which was originally shared using clone.  copy_*
1861  * functions used by do_fork() cannot be used here directly
1862  * because they modify an inactive task_struct that is being
1863  * constructed. Here we are modifying the current, active,
1864  * task_struct.
1865  */
1866 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1867 {
1868         struct fs_struct *fs, *new_fs = NULL;
1869         struct files_struct *fd, *new_fd = NULL;
1870         struct cred *new_cred = NULL;
1871         struct nsproxy *new_nsproxy = NULL;
1872         int do_sysvsem = 0;
1873         int err;
1874
1875         /*
1876          * If unsharing a user namespace must also unshare the thread.
1877          */
1878         if (unshare_flags & CLONE_NEWUSER)
1879                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1880         /*
1881          * If unsharing a pid namespace must also unshare the thread.
1882          */
1883         if (unshare_flags & CLONE_NEWPID)
1884                 unshare_flags |= CLONE_THREAD;
1885         /*
1886          * If unsharing a thread from a thread group, must also unshare vm.
1887          */
1888         if (unshare_flags & CLONE_THREAD)
1889                 unshare_flags |= CLONE_VM;
1890         /*
1891          * If unsharing vm, must also unshare signal handlers.
1892          */
1893         if (unshare_flags & CLONE_VM)
1894                 unshare_flags |= CLONE_SIGHAND;
1895         /*
1896          * If unsharing namespace, must also unshare filesystem information.
1897          */
1898         if (unshare_flags & CLONE_NEWNS)
1899                 unshare_flags |= CLONE_FS;
1900
1901         err = check_unshare_flags(unshare_flags);
1902         if (err)
1903                 goto bad_unshare_out;
1904         /*
1905          * CLONE_NEWIPC must also detach from the undolist: after switching
1906          * to a new ipc namespace, the semaphore arrays from the old
1907          * namespace are unreachable.
1908          */
1909         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1910                 do_sysvsem = 1;
1911         err = unshare_fs(unshare_flags, &new_fs);
1912         if (err)
1913                 goto bad_unshare_out;
1914         err = unshare_fd(unshare_flags, &new_fd);
1915         if (err)
1916                 goto bad_unshare_cleanup_fs;
1917         err = unshare_userns(unshare_flags, &new_cred);
1918         if (err)
1919                 goto bad_unshare_cleanup_fd;
1920         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1921                                          new_cred, new_fs);
1922         if (err)
1923                 goto bad_unshare_cleanup_cred;
1924
1925         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1926                 if (do_sysvsem) {
1927                         /*
1928                          * CLONE_SYSVSEM is equivalent to sys_exit().
1929                          */
1930                         exit_sem(current);
1931                 }
1932
1933                 if (new_nsproxy)
1934                         switch_task_namespaces(current, new_nsproxy);
1935
1936                 task_lock(current);
1937
1938                 if (new_fs) {
1939                         fs = current->fs;
1940                         spin_lock(&fs->lock);
1941                         current->fs = new_fs;
1942                         if (--fs->users)
1943                                 new_fs = NULL;
1944                         else
1945                                 new_fs = fs;
1946                         spin_unlock(&fs->lock);
1947                 }
1948
1949                 if (new_fd) {
1950                         fd = current->files;
1951                         current->files = new_fd;
1952                         new_fd = fd;
1953                 }
1954
1955                 task_unlock(current);
1956
1957                 if (new_cred) {
1958                         /* Install the new user namespace */
1959                         commit_creds(new_cred);
1960                         new_cred = NULL;
1961                 }
1962         }
1963
1964 bad_unshare_cleanup_cred:
1965         if (new_cred)
1966                 put_cred(new_cred);
1967 bad_unshare_cleanup_fd:
1968         if (new_fd)
1969                 put_files_struct(new_fd);
1970
1971 bad_unshare_cleanup_fs:
1972         if (new_fs)
1973                 free_fs_struct(new_fs);
1974
1975 bad_unshare_out:
1976         return err;
1977 }
1978
1979 /*
1980  *      Helper to unshare the files of the current task.
1981  *      We don't want to expose copy_files internals to
1982  *      the exec layer of the kernel.
1983  */
1984
1985 int unshare_files(struct files_struct **displaced)
1986 {
1987         struct task_struct *task = current;
1988         struct files_struct *copy = NULL;
1989         int error;
1990
1991         error = unshare_fd(CLONE_FILES, &copy);
1992         if (error || !copy) {
1993                 *displaced = NULL;
1994                 return error;
1995         }
1996         *displaced = task->files;
1997         task_lock(task);
1998         task->files = copy;
1999         task_unlock(task);
2000         return 0;
2001 }