uprobes: __replace_page() should not use page_address_in_vma()
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h>         /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h>         /* try_to_free_swap */
33 #include <linux/ptrace.h>       /* user_enable_single_step */
34 #include <linux/kdebug.h>       /* notifier mechanism */
35
36 #include <linux/uprobes.h>
37
38 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
40
41 static struct rb_root uprobes_tree = RB_ROOT;
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46
47 /*
48  * We need separate register/unregister and mmap/munmap lock hashes because
49  * of mmap_sem nesting.
50  *
51  * uprobe_register() needs to install probes on (potentially) all processes
52  * and thus needs to acquire multiple mmap_sems (consequtively, not
53  * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54  * for the particular process doing the mmap.
55  *
56  * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57  * because of lock order against i_mmap_mutex. This means there's a hole in
58  * the register vma iteration where a mmap() can happen.
59  *
60  * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61  * install a probe where one is already installed.
62  */
63
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
66
67 #define uprobes_hash(v)         (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
68
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
72
73 /*
74  * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75  * events active at this time.  Probably a fine grained per inode count is
76  * better?
77  */
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
79
80 struct uprobe {
81         struct rb_node          rb_node;        /* node in the rb tree */
82         atomic_t                ref;
83         struct rw_semaphore     consumer_rwsem;
84         struct list_head        pending_list;
85         struct uprobe_consumer  *consumers;
86         struct inode            *inode;         /* Also hold a ref to inode */
87         loff_t                  offset;
88         int                     flags;
89         struct arch_uprobe      arch;
90 };
91
92 /*
93  * valid_vma: Verify if the specified vma is an executable vma
94  * Relax restrictions while unregistering: vm_flags might have
95  * changed after breakpoint was inserted.
96  *      - is_register: indicates if we are in register context.
97  *      - Return 1 if the specified virtual address is in an
98  *        executable vma.
99  */
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
101 {
102         if (!vma->vm_file)
103                 return false;
104
105         if (!is_register)
106                 return true;
107
108         if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109                                 == (VM_READ|VM_EXEC))
110                 return true;
111
112         return false;
113 }
114
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
116 {
117         loff_t vaddr;
118
119         vaddr = vma->vm_start + offset;
120         vaddr -= vma->vm_pgoff << PAGE_SHIFT;
121
122         return vaddr;
123 }
124
125 /**
126  * __replace_page - replace page in vma by new page.
127  * based on replace_page in mm/ksm.c
128  *
129  * @vma:      vma that holds the pte pointing to page
130  * @addr:     address the old @page is mapped at
131  * @page:     the cowed page we are replacing by kpage
132  * @kpage:    the modified page we replace page by
133  *
134  * Returns 0 on success, -EFAULT on failure.
135  */
136 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
137                                 struct page *page, struct page *kpage)
138 {
139         struct mm_struct *mm = vma->vm_mm;
140         spinlock_t *ptl;
141         pte_t *ptep;
142
143         ptep = page_check_address(page, mm, addr, &ptl, 0);
144         if (!ptep)
145                 return -EAGAIN;
146
147         get_page(kpage);
148         page_add_new_anon_rmap(kpage, vma, addr);
149
150         if (!PageAnon(page)) {
151                 dec_mm_counter(mm, MM_FILEPAGES);
152                 inc_mm_counter(mm, MM_ANONPAGES);
153         }
154
155         flush_cache_page(vma, addr, pte_pfn(*ptep));
156         ptep_clear_flush(vma, addr, ptep);
157         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
158
159         page_remove_rmap(page);
160         if (!page_mapped(page))
161                 try_to_free_swap(page);
162         put_page(page);
163         pte_unmap_unlock(ptep, ptl);
164
165         return 0;
166 }
167
168 /**
169  * is_swbp_insn - check if instruction is breakpoint instruction.
170  * @insn: instruction to be checked.
171  * Default implementation of is_swbp_insn
172  * Returns true if @insn is a breakpoint instruction.
173  */
174 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
175 {
176         return *insn == UPROBE_SWBP_INSN;
177 }
178
179 /*
180  * NOTE:
181  * Expect the breakpoint instruction to be the smallest size instruction for
182  * the architecture. If an arch has variable length instruction and the
183  * breakpoint instruction is not of the smallest length instruction
184  * supported by that architecture then we need to modify read_opcode /
185  * write_opcode accordingly. This would never be a problem for archs that
186  * have fixed length instructions.
187  */
188
189 /*
190  * write_opcode - write the opcode at a given virtual address.
191  * @auprobe: arch breakpointing information.
192  * @mm: the probed process address space.
193  * @vaddr: the virtual address to store the opcode.
194  * @opcode: opcode to be written at @vaddr.
195  *
196  * Called with mm->mmap_sem held (for read and with a reference to
197  * mm).
198  *
199  * For mm @mm, write the opcode at @vaddr.
200  * Return 0 (success) or a negative errno.
201  */
202 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
203                         unsigned long vaddr, uprobe_opcode_t opcode)
204 {
205         struct page *old_page, *new_page;
206         void *vaddr_old, *vaddr_new;
207         struct vm_area_struct *vma;
208         int ret;
209
210 retry:
211         /* Read the page with vaddr into memory */
212         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
213         if (ret <= 0)
214                 return ret;
215
216         ret = -ENOMEM;
217         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
218         if (!new_page)
219                 goto put_out;
220
221         __SetPageUptodate(new_page);
222
223         /*
224          * lock page will serialize against do_wp_page()'s
225          * PageAnon() handling
226          */
227         lock_page(old_page);
228         /* copy the page now that we've got it stable */
229         vaddr_old = kmap_atomic(old_page);
230         vaddr_new = kmap_atomic(new_page);
231
232         memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
233         memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
234
235         kunmap_atomic(vaddr_new);
236         kunmap_atomic(vaddr_old);
237
238         ret = anon_vma_prepare(vma);
239         if (ret)
240                 goto unlock_out;
241
242         lock_page(new_page);
243         ret = __replace_page(vma, vaddr, old_page, new_page);
244         unlock_page(new_page);
245
246 unlock_out:
247         unlock_page(old_page);
248         page_cache_release(new_page);
249
250 put_out:
251         put_page(old_page);
252
253         if (unlikely(ret == -EAGAIN))
254                 goto retry;
255         return ret;
256 }
257
258 /**
259  * read_opcode - read the opcode at a given virtual address.
260  * @mm: the probed process address space.
261  * @vaddr: the virtual address to read the opcode.
262  * @opcode: location to store the read opcode.
263  *
264  * Called with mm->mmap_sem held (for read and with a reference to
265  * mm.
266  *
267  * For mm @mm, read the opcode at @vaddr and store it in @opcode.
268  * Return 0 (success) or a negative errno.
269  */
270 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
271 {
272         struct page *page;
273         void *vaddr_new;
274         int ret;
275
276         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
277         if (ret <= 0)
278                 return ret;
279
280         lock_page(page);
281         vaddr_new = kmap_atomic(page);
282         vaddr &= ~PAGE_MASK;
283         memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
284         kunmap_atomic(vaddr_new);
285         unlock_page(page);
286
287         put_page(page);
288
289         return 0;
290 }
291
292 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
293 {
294         uprobe_opcode_t opcode;
295         int result;
296
297         if (current->mm == mm) {
298                 pagefault_disable();
299                 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
300                                                                 sizeof(opcode));
301                 pagefault_enable();
302
303                 if (likely(result == 0))
304                         goto out;
305         }
306
307         result = read_opcode(mm, vaddr, &opcode);
308         if (result)
309                 return result;
310 out:
311         if (is_swbp_insn(&opcode))
312                 return 1;
313
314         return 0;
315 }
316
317 /**
318  * set_swbp - store breakpoint at a given address.
319  * @auprobe: arch specific probepoint information.
320  * @mm: the probed process address space.
321  * @vaddr: the virtual address to insert the opcode.
322  *
323  * For mm @mm, store the breakpoint instruction at @vaddr.
324  * Return 0 (success) or a negative errno.
325  */
326 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
327 {
328         int result;
329         /*
330          * See the comment near uprobes_hash().
331          */
332         result = is_swbp_at_addr(mm, vaddr);
333         if (result == 1)
334                 return -EEXIST;
335
336         if (result)
337                 return result;
338
339         return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
340 }
341
342 /**
343  * set_orig_insn - Restore the original instruction.
344  * @mm: the probed process address space.
345  * @auprobe: arch specific probepoint information.
346  * @vaddr: the virtual address to insert the opcode.
347  * @verify: if true, verify existance of breakpoint instruction.
348  *
349  * For mm @mm, restore the original opcode (opcode) at @vaddr.
350  * Return 0 (success) or a negative errno.
351  */
352 int __weak
353 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
354 {
355         if (verify) {
356                 int result;
357
358                 result = is_swbp_at_addr(mm, vaddr);
359                 if (!result)
360                         return -EINVAL;
361
362                 if (result != 1)
363                         return result;
364         }
365         return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
366 }
367
368 static int match_uprobe(struct uprobe *l, struct uprobe *r)
369 {
370         if (l->inode < r->inode)
371                 return -1;
372
373         if (l->inode > r->inode)
374                 return 1;
375
376         if (l->offset < r->offset)
377                 return -1;
378
379         if (l->offset > r->offset)
380                 return 1;
381
382         return 0;
383 }
384
385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
386 {
387         struct uprobe u = { .inode = inode, .offset = offset };
388         struct rb_node *n = uprobes_tree.rb_node;
389         struct uprobe *uprobe;
390         int match;
391
392         while (n) {
393                 uprobe = rb_entry(n, struct uprobe, rb_node);
394                 match = match_uprobe(&u, uprobe);
395                 if (!match) {
396                         atomic_inc(&uprobe->ref);
397                         return uprobe;
398                 }
399
400                 if (match < 0)
401                         n = n->rb_left;
402                 else
403                         n = n->rb_right;
404         }
405         return NULL;
406 }
407
408 /*
409  * Find a uprobe corresponding to a given inode:offset
410  * Acquires uprobes_treelock
411  */
412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
413 {
414         struct uprobe *uprobe;
415         unsigned long flags;
416
417         spin_lock_irqsave(&uprobes_treelock, flags);
418         uprobe = __find_uprobe(inode, offset);
419         spin_unlock_irqrestore(&uprobes_treelock, flags);
420
421         return uprobe;
422 }
423
424 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
425 {
426         struct rb_node **p = &uprobes_tree.rb_node;
427         struct rb_node *parent = NULL;
428         struct uprobe *u;
429         int match;
430
431         while (*p) {
432                 parent = *p;
433                 u = rb_entry(parent, struct uprobe, rb_node);
434                 match = match_uprobe(uprobe, u);
435                 if (!match) {
436                         atomic_inc(&u->ref);
437                         return u;
438                 }
439
440                 if (match < 0)
441                         p = &parent->rb_left;
442                 else
443                         p = &parent->rb_right;
444
445         }
446
447         u = NULL;
448         rb_link_node(&uprobe->rb_node, parent, p);
449         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
450         /* get access + creation ref */
451         atomic_set(&uprobe->ref, 2);
452
453         return u;
454 }
455
456 /*
457  * Acquire uprobes_treelock.
458  * Matching uprobe already exists in rbtree;
459  *      increment (access refcount) and return the matching uprobe.
460  *
461  * No matching uprobe; insert the uprobe in rb_tree;
462  *      get a double refcount (access + creation) and return NULL.
463  */
464 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
465 {
466         unsigned long flags;
467         struct uprobe *u;
468
469         spin_lock_irqsave(&uprobes_treelock, flags);
470         u = __insert_uprobe(uprobe);
471         spin_unlock_irqrestore(&uprobes_treelock, flags);
472
473         /* For now assume that the instruction need not be single-stepped */
474         uprobe->flags |= UPROBE_SKIP_SSTEP;
475
476         return u;
477 }
478
479 static void put_uprobe(struct uprobe *uprobe)
480 {
481         if (atomic_dec_and_test(&uprobe->ref))
482                 kfree(uprobe);
483 }
484
485 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
486 {
487         struct uprobe *uprobe, *cur_uprobe;
488
489         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
490         if (!uprobe)
491                 return NULL;
492
493         uprobe->inode = igrab(inode);
494         uprobe->offset = offset;
495         init_rwsem(&uprobe->consumer_rwsem);
496
497         /* add to uprobes_tree, sorted on inode:offset */
498         cur_uprobe = insert_uprobe(uprobe);
499
500         /* a uprobe exists for this inode:offset combination */
501         if (cur_uprobe) {
502                 kfree(uprobe);
503                 uprobe = cur_uprobe;
504                 iput(inode);
505         } else {
506                 atomic_inc(&uprobe_events);
507         }
508
509         return uprobe;
510 }
511
512 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
513 {
514         struct uprobe_consumer *uc;
515
516         if (!(uprobe->flags & UPROBE_RUN_HANDLER))
517                 return;
518
519         down_read(&uprobe->consumer_rwsem);
520         for (uc = uprobe->consumers; uc; uc = uc->next) {
521                 if (!uc->filter || uc->filter(uc, current))
522                         uc->handler(uc, regs);
523         }
524         up_read(&uprobe->consumer_rwsem);
525 }
526
527 /* Returns the previous consumer */
528 static struct uprobe_consumer *
529 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
530 {
531         down_write(&uprobe->consumer_rwsem);
532         uc->next = uprobe->consumers;
533         uprobe->consumers = uc;
534         up_write(&uprobe->consumer_rwsem);
535
536         return uc->next;
537 }
538
539 /*
540  * For uprobe @uprobe, delete the consumer @uc.
541  * Return true if the @uc is deleted successfully
542  * or return false.
543  */
544 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
545 {
546         struct uprobe_consumer **con;
547         bool ret = false;
548
549         down_write(&uprobe->consumer_rwsem);
550         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
551                 if (*con == uc) {
552                         *con = uc->next;
553                         ret = true;
554                         break;
555                 }
556         }
557         up_write(&uprobe->consumer_rwsem);
558
559         return ret;
560 }
561
562 static int
563 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
564                         unsigned long nbytes, loff_t offset)
565 {
566         struct page *page;
567         void *vaddr;
568         unsigned long off;
569         pgoff_t idx;
570
571         if (!filp)
572                 return -EINVAL;
573
574         if (!mapping->a_ops->readpage)
575                 return -EIO;
576
577         idx = offset >> PAGE_CACHE_SHIFT;
578         off = offset & ~PAGE_MASK;
579
580         /*
581          * Ensure that the page that has the original instruction is
582          * populated and in page-cache.
583          */
584         page = read_mapping_page(mapping, idx, filp);
585         if (IS_ERR(page))
586                 return PTR_ERR(page);
587
588         vaddr = kmap_atomic(page);
589         memcpy(insn, vaddr + off, nbytes);
590         kunmap_atomic(vaddr);
591         page_cache_release(page);
592
593         return 0;
594 }
595
596 static int copy_insn(struct uprobe *uprobe, struct file *filp)
597 {
598         struct address_space *mapping;
599         unsigned long nbytes;
600         int bytes;
601
602         nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
603         mapping = uprobe->inode->i_mapping;
604
605         /* Instruction at end of binary; copy only available bytes */
606         if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
607                 bytes = uprobe->inode->i_size - uprobe->offset;
608         else
609                 bytes = MAX_UINSN_BYTES;
610
611         /* Instruction at the page-boundary; copy bytes in second page */
612         if (nbytes < bytes) {
613                 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
614                                 bytes - nbytes, uprobe->offset + nbytes);
615                 if (err)
616                         return err;
617                 bytes = nbytes;
618         }
619         return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
620 }
621
622 /*
623  * How mm->uprobes_state.count gets updated
624  * uprobe_mmap() increments the count if
625  *      - it successfully adds a breakpoint.
626  *      - it cannot add a breakpoint, but sees that there is a underlying
627  *        breakpoint (via a is_swbp_at_addr()).
628  *
629  * uprobe_munmap() decrements the count if
630  *      - it sees a underlying breakpoint, (via is_swbp_at_addr)
631  *        (Subsequent uprobe_unregister wouldnt find the breakpoint
632  *        unless a uprobe_mmap kicks in, since the old vma would be
633  *        dropped just after uprobe_munmap.)
634  *
635  * uprobe_register increments the count if:
636  *      - it successfully adds a breakpoint.
637  *
638  * uprobe_unregister decrements the count if:
639  *      - it sees a underlying breakpoint and removes successfully.
640  *        (via is_swbp_at_addr)
641  *        (Subsequent uprobe_munmap wouldnt find the breakpoint
642  *        since there is no underlying breakpoint after the
643  *        breakpoint removal.)
644  */
645 static int
646 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
647                         struct vm_area_struct *vma, unsigned long vaddr)
648 {
649         int ret;
650
651         /*
652          * If probe is being deleted, unregister thread could be done with
653          * the vma-rmap-walk through. Adding a probe now can be fatal since
654          * nobody will be able to cleanup. Also we could be from fork or
655          * mremap path, where the probe might have already been inserted.
656          * Hence behave as if probe already existed.
657          */
658         if (!uprobe->consumers)
659                 return -EEXIST;
660
661         if (!(uprobe->flags & UPROBE_COPY_INSN)) {
662                 ret = copy_insn(uprobe, vma->vm_file);
663                 if (ret)
664                         return ret;
665
666                 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
667                         return -ENOTSUPP;
668
669                 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
670                 if (ret)
671                         return ret;
672
673                 /* write_opcode() assumes we don't cross page boundary */
674                 BUG_ON((uprobe->offset & ~PAGE_MASK) +
675                                 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
676
677                 uprobe->flags |= UPROBE_COPY_INSN;
678         }
679
680         /*
681          * Ideally, should be updating the probe count after the breakpoint
682          * has been successfully inserted. However a thread could hit the
683          * breakpoint we just inserted even before the probe count is
684          * incremented. If this is the first breakpoint placed, breakpoint
685          * notifier might ignore uprobes and pass the trap to the thread.
686          * Hence increment before and decrement on failure.
687          */
688         atomic_inc(&mm->uprobes_state.count);
689         ret = set_swbp(&uprobe->arch, mm, vaddr);
690         if (ret)
691                 atomic_dec(&mm->uprobes_state.count);
692
693         return ret;
694 }
695
696 static void
697 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
698 {
699         if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
700                 atomic_dec(&mm->uprobes_state.count);
701 }
702
703 /*
704  * There could be threads that have already hit the breakpoint. They
705  * will recheck the current insn and restart if find_uprobe() fails.
706  * See find_active_uprobe().
707  */
708 static void delete_uprobe(struct uprobe *uprobe)
709 {
710         unsigned long flags;
711
712         spin_lock_irqsave(&uprobes_treelock, flags);
713         rb_erase(&uprobe->rb_node, &uprobes_tree);
714         spin_unlock_irqrestore(&uprobes_treelock, flags);
715         iput(uprobe->inode);
716         put_uprobe(uprobe);
717         atomic_dec(&uprobe_events);
718 }
719
720 struct map_info {
721         struct map_info *next;
722         struct mm_struct *mm;
723         unsigned long vaddr;
724 };
725
726 static inline struct map_info *free_map_info(struct map_info *info)
727 {
728         struct map_info *next = info->next;
729         kfree(info);
730         return next;
731 }
732
733 static struct map_info *
734 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
735 {
736         unsigned long pgoff = offset >> PAGE_SHIFT;
737         struct prio_tree_iter iter;
738         struct vm_area_struct *vma;
739         struct map_info *curr = NULL;
740         struct map_info *prev = NULL;
741         struct map_info *info;
742         int more = 0;
743
744  again:
745         mutex_lock(&mapping->i_mmap_mutex);
746         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
747                 if (!valid_vma(vma, is_register))
748                         continue;
749
750                 if (!prev && !more) {
751                         /*
752                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
753                          * reclaim. This is optimistic, no harm done if it fails.
754                          */
755                         prev = kmalloc(sizeof(struct map_info),
756                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
757                         if (prev)
758                                 prev->next = NULL;
759                 }
760                 if (!prev) {
761                         more++;
762                         continue;
763                 }
764
765                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
766                         continue;
767
768                 info = prev;
769                 prev = prev->next;
770                 info->next = curr;
771                 curr = info;
772
773                 info->mm = vma->vm_mm;
774                 info->vaddr = vma_address(vma, offset);
775         }
776         mutex_unlock(&mapping->i_mmap_mutex);
777
778         if (!more)
779                 goto out;
780
781         prev = curr;
782         while (curr) {
783                 mmput(curr->mm);
784                 curr = curr->next;
785         }
786
787         do {
788                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
789                 if (!info) {
790                         curr = ERR_PTR(-ENOMEM);
791                         goto out;
792                 }
793                 info->next = prev;
794                 prev = info;
795         } while (--more);
796
797         goto again;
798  out:
799         while (prev)
800                 prev = free_map_info(prev);
801         return curr;
802 }
803
804 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
805 {
806         struct map_info *info;
807         int err = 0;
808
809         info = build_map_info(uprobe->inode->i_mapping,
810                                         uprobe->offset, is_register);
811         if (IS_ERR(info))
812                 return PTR_ERR(info);
813
814         while (info) {
815                 struct mm_struct *mm = info->mm;
816                 struct vm_area_struct *vma;
817
818                 if (err)
819                         goto free;
820
821                 down_write(&mm->mmap_sem);
822                 vma = find_vma(mm, (unsigned long)info->vaddr);
823                 if (!vma || !valid_vma(vma, is_register))
824                         goto unlock;
825
826                 if (vma->vm_file->f_mapping->host != uprobe->inode ||
827                     vma_address(vma, uprobe->offset) != info->vaddr)
828                         goto unlock;
829
830                 if (is_register) {
831                         err = install_breakpoint(uprobe, mm, vma, info->vaddr);
832                         /*
833                          * We can race against uprobe_mmap(), see the
834                          * comment near uprobe_hash().
835                          */
836                         if (err == -EEXIST)
837                                 err = 0;
838                 } else {
839                         remove_breakpoint(uprobe, mm, info->vaddr);
840                 }
841  unlock:
842                 up_write(&mm->mmap_sem);
843  free:
844                 mmput(mm);
845                 info = free_map_info(info);
846         }
847
848         return err;
849 }
850
851 static int __uprobe_register(struct uprobe *uprobe)
852 {
853         return register_for_each_vma(uprobe, true);
854 }
855
856 static void __uprobe_unregister(struct uprobe *uprobe)
857 {
858         if (!register_for_each_vma(uprobe, false))
859                 delete_uprobe(uprobe);
860
861         /* TODO : cant unregister? schedule a worker thread */
862 }
863
864 /*
865  * uprobe_register - register a probe
866  * @inode: the file in which the probe has to be placed.
867  * @offset: offset from the start of the file.
868  * @uc: information on howto handle the probe..
869  *
870  * Apart from the access refcount, uprobe_register() takes a creation
871  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
872  * inserted into the rbtree (i.e first consumer for a @inode:@offset
873  * tuple).  Creation refcount stops uprobe_unregister from freeing the
874  * @uprobe even before the register operation is complete. Creation
875  * refcount is released when the last @uc for the @uprobe
876  * unregisters.
877  *
878  * Return errno if it cannot successully install probes
879  * else return 0 (success)
880  */
881 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
882 {
883         struct uprobe *uprobe;
884         int ret;
885
886         if (!inode || !uc || uc->next)
887                 return -EINVAL;
888
889         if (offset > i_size_read(inode))
890                 return -EINVAL;
891
892         ret = 0;
893         mutex_lock(uprobes_hash(inode));
894         uprobe = alloc_uprobe(inode, offset);
895
896         if (uprobe && !consumer_add(uprobe, uc)) {
897                 ret = __uprobe_register(uprobe);
898                 if (ret) {
899                         uprobe->consumers = NULL;
900                         __uprobe_unregister(uprobe);
901                 } else {
902                         uprobe->flags |= UPROBE_RUN_HANDLER;
903                 }
904         }
905
906         mutex_unlock(uprobes_hash(inode));
907         put_uprobe(uprobe);
908
909         return ret;
910 }
911
912 /*
913  * uprobe_unregister - unregister a already registered probe.
914  * @inode: the file in which the probe has to be removed.
915  * @offset: offset from the start of the file.
916  * @uc: identify which probe if multiple probes are colocated.
917  */
918 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
919 {
920         struct uprobe *uprobe;
921
922         if (!inode || !uc)
923                 return;
924
925         uprobe = find_uprobe(inode, offset);
926         if (!uprobe)
927                 return;
928
929         mutex_lock(uprobes_hash(inode));
930
931         if (consumer_del(uprobe, uc)) {
932                 if (!uprobe->consumers) {
933                         __uprobe_unregister(uprobe);
934                         uprobe->flags &= ~UPROBE_RUN_HANDLER;
935                 }
936         }
937
938         mutex_unlock(uprobes_hash(inode));
939         if (uprobe)
940                 put_uprobe(uprobe);
941 }
942
943 /*
944  * Of all the nodes that correspond to the given inode, return the node
945  * with the least offset.
946  */
947 static struct rb_node *find_least_offset_node(struct inode *inode)
948 {
949         struct uprobe u = { .inode = inode, .offset = 0};
950         struct rb_node *n = uprobes_tree.rb_node;
951         struct rb_node *close_node = NULL;
952         struct uprobe *uprobe;
953         int match;
954
955         while (n) {
956                 uprobe = rb_entry(n, struct uprobe, rb_node);
957                 match = match_uprobe(&u, uprobe);
958
959                 if (uprobe->inode == inode)
960                         close_node = n;
961
962                 if (!match)
963                         return close_node;
964
965                 if (match < 0)
966                         n = n->rb_left;
967                 else
968                         n = n->rb_right;
969         }
970
971         return close_node;
972 }
973
974 /*
975  * For a given inode, build a list of probes that need to be inserted.
976  */
977 static void build_probe_list(struct inode *inode, struct list_head *head)
978 {
979         struct uprobe *uprobe;
980         unsigned long flags;
981         struct rb_node *n;
982
983         spin_lock_irqsave(&uprobes_treelock, flags);
984
985         n = find_least_offset_node(inode);
986
987         for (; n; n = rb_next(n)) {
988                 uprobe = rb_entry(n, struct uprobe, rb_node);
989                 if (uprobe->inode != inode)
990                         break;
991
992                 list_add(&uprobe->pending_list, head);
993                 atomic_inc(&uprobe->ref);
994         }
995
996         spin_unlock_irqrestore(&uprobes_treelock, flags);
997 }
998
999 /*
1000  * Called from mmap_region.
1001  * called with mm->mmap_sem acquired.
1002  *
1003  * Return -ve no if we fail to insert probes and we cannot
1004  * bail-out.
1005  * Return 0 otherwise. i.e:
1006  *
1007  *      - successful insertion of probes
1008  *      - (or) no possible probes to be inserted.
1009  *      - (or) insertion of probes failed but we can bail-out.
1010  */
1011 int uprobe_mmap(struct vm_area_struct *vma)
1012 {
1013         struct list_head tmp_list;
1014         struct uprobe *uprobe;
1015         struct inode *inode;
1016         int ret, count;
1017
1018         if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1019                 return 0;
1020
1021         inode = vma->vm_file->f_mapping->host;
1022         if (!inode)
1023                 return 0;
1024
1025         INIT_LIST_HEAD(&tmp_list);
1026         mutex_lock(uprobes_mmap_hash(inode));
1027         build_probe_list(inode, &tmp_list);
1028
1029         ret = 0;
1030         count = 0;
1031
1032         list_for_each_entry(uprobe, &tmp_list, pending_list) {
1033                 if (!ret) {
1034                         loff_t vaddr = vma_address(vma, uprobe->offset);
1035
1036                         if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1037                                 put_uprobe(uprobe);
1038                                 continue;
1039                         }
1040
1041                         ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1042                         /*
1043                          * We can race against uprobe_register(), see the
1044                          * comment near uprobe_hash().
1045                          */
1046                         if (ret == -EEXIST) {
1047                                 ret = 0;
1048
1049                                 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1050                                         continue;
1051
1052                                 /*
1053                                  * Unable to insert a breakpoint, but
1054                                  * breakpoint lies underneath. Increment the
1055                                  * probe count.
1056                                  */
1057                                 atomic_inc(&vma->vm_mm->uprobes_state.count);
1058                         }
1059
1060                         if (!ret)
1061                                 count++;
1062                 }
1063                 put_uprobe(uprobe);
1064         }
1065
1066         mutex_unlock(uprobes_mmap_hash(inode));
1067
1068         if (ret)
1069                 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1070
1071         return ret;
1072 }
1073
1074 /*
1075  * Called in context of a munmap of a vma.
1076  */
1077 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1078 {
1079         struct list_head tmp_list;
1080         struct uprobe *uprobe;
1081         struct inode *inode;
1082
1083         if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1084                 return;
1085
1086         if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1087                 return;
1088
1089         inode = vma->vm_file->f_mapping->host;
1090         if (!inode)
1091                 return;
1092
1093         INIT_LIST_HEAD(&tmp_list);
1094         mutex_lock(uprobes_mmap_hash(inode));
1095         build_probe_list(inode, &tmp_list);
1096
1097         list_for_each_entry(uprobe, &tmp_list, pending_list) {
1098                 loff_t vaddr = vma_address(vma, uprobe->offset);
1099
1100                 if (vaddr >= start && vaddr < end) {
1101                         /*
1102                          * An unregister could have removed the probe before
1103                          * unmap. So check before we decrement the count.
1104                          */
1105                         if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1106                                 atomic_dec(&vma->vm_mm->uprobes_state.count);
1107                 }
1108                 put_uprobe(uprobe);
1109         }
1110         mutex_unlock(uprobes_mmap_hash(inode));
1111 }
1112
1113 /* Slot allocation for XOL */
1114 static int xol_add_vma(struct xol_area *area)
1115 {
1116         struct mm_struct *mm;
1117         int ret;
1118
1119         area->page = alloc_page(GFP_HIGHUSER);
1120         if (!area->page)
1121                 return -ENOMEM;
1122
1123         ret = -EALREADY;
1124         mm = current->mm;
1125
1126         down_write(&mm->mmap_sem);
1127         if (mm->uprobes_state.xol_area)
1128                 goto fail;
1129
1130         ret = -ENOMEM;
1131
1132         /* Try to map as high as possible, this is only a hint. */
1133         area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1134         if (area->vaddr & ~PAGE_MASK) {
1135                 ret = area->vaddr;
1136                 goto fail;
1137         }
1138
1139         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1140                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1141         if (ret)
1142                 goto fail;
1143
1144         smp_wmb();      /* pairs with get_xol_area() */
1145         mm->uprobes_state.xol_area = area;
1146         ret = 0;
1147
1148 fail:
1149         up_write(&mm->mmap_sem);
1150         if (ret)
1151                 __free_page(area->page);
1152
1153         return ret;
1154 }
1155
1156 static struct xol_area *get_xol_area(struct mm_struct *mm)
1157 {
1158         struct xol_area *area;
1159
1160         area = mm->uprobes_state.xol_area;
1161         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1162
1163         return area;
1164 }
1165
1166 /*
1167  * xol_alloc_area - Allocate process's xol_area.
1168  * This area will be used for storing instructions for execution out of
1169  * line.
1170  *
1171  * Returns the allocated area or NULL.
1172  */
1173 static struct xol_area *xol_alloc_area(void)
1174 {
1175         struct xol_area *area;
1176
1177         area = kzalloc(sizeof(*area), GFP_KERNEL);
1178         if (unlikely(!area))
1179                 return NULL;
1180
1181         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1182
1183         if (!area->bitmap)
1184                 goto fail;
1185
1186         init_waitqueue_head(&area->wq);
1187         if (!xol_add_vma(area))
1188                 return area;
1189
1190 fail:
1191         kfree(area->bitmap);
1192         kfree(area);
1193
1194         return get_xol_area(current->mm);
1195 }
1196
1197 /*
1198  * uprobe_clear_state - Free the area allocated for slots.
1199  */
1200 void uprobe_clear_state(struct mm_struct *mm)
1201 {
1202         struct xol_area *area = mm->uprobes_state.xol_area;
1203
1204         if (!area)
1205                 return;
1206
1207         put_page(area->page);
1208         kfree(area->bitmap);
1209         kfree(area);
1210 }
1211
1212 /*
1213  * uprobe_reset_state - Free the area allocated for slots.
1214  */
1215 void uprobe_reset_state(struct mm_struct *mm)
1216 {
1217         mm->uprobes_state.xol_area = NULL;
1218         atomic_set(&mm->uprobes_state.count, 0);
1219 }
1220
1221 /*
1222  *  - search for a free slot.
1223  */
1224 static unsigned long xol_take_insn_slot(struct xol_area *area)
1225 {
1226         unsigned long slot_addr;
1227         int slot_nr;
1228
1229         do {
1230                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1231                 if (slot_nr < UINSNS_PER_PAGE) {
1232                         if (!test_and_set_bit(slot_nr, area->bitmap))
1233                                 break;
1234
1235                         slot_nr = UINSNS_PER_PAGE;
1236                         continue;
1237                 }
1238                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1239         } while (slot_nr >= UINSNS_PER_PAGE);
1240
1241         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1242         atomic_inc(&area->slot_count);
1243
1244         return slot_addr;
1245 }
1246
1247 /*
1248  * xol_get_insn_slot - If was not allocated a slot, then
1249  * allocate a slot.
1250  * Returns the allocated slot address or 0.
1251  */
1252 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1253 {
1254         struct xol_area *area;
1255         unsigned long offset;
1256         void *vaddr;
1257
1258         area = get_xol_area(current->mm);
1259         if (!area) {
1260                 area = xol_alloc_area();
1261                 if (!area)
1262                         return 0;
1263         }
1264         current->utask->xol_vaddr = xol_take_insn_slot(area);
1265
1266         /*
1267          * Initialize the slot if xol_vaddr points to valid
1268          * instruction slot.
1269          */
1270         if (unlikely(!current->utask->xol_vaddr))
1271                 return 0;
1272
1273         current->utask->vaddr = slot_addr;
1274         offset = current->utask->xol_vaddr & ~PAGE_MASK;
1275         vaddr = kmap_atomic(area->page);
1276         memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1277         kunmap_atomic(vaddr);
1278
1279         return current->utask->xol_vaddr;
1280 }
1281
1282 /*
1283  * xol_free_insn_slot - If slot was earlier allocated by
1284  * @xol_get_insn_slot(), make the slot available for
1285  * subsequent requests.
1286  */
1287 static void xol_free_insn_slot(struct task_struct *tsk)
1288 {
1289         struct xol_area *area;
1290         unsigned long vma_end;
1291         unsigned long slot_addr;
1292
1293         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1294                 return;
1295
1296         slot_addr = tsk->utask->xol_vaddr;
1297
1298         if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1299                 return;
1300
1301         area = tsk->mm->uprobes_state.xol_area;
1302         vma_end = area->vaddr + PAGE_SIZE;
1303         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1304                 unsigned long offset;
1305                 int slot_nr;
1306
1307                 offset = slot_addr - area->vaddr;
1308                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1309                 if (slot_nr >= UINSNS_PER_PAGE)
1310                         return;
1311
1312                 clear_bit(slot_nr, area->bitmap);
1313                 atomic_dec(&area->slot_count);
1314                 if (waitqueue_active(&area->wq))
1315                         wake_up(&area->wq);
1316
1317                 tsk->utask->xol_vaddr = 0;
1318         }
1319 }
1320
1321 /**
1322  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1323  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1324  * instruction.
1325  * Return the address of the breakpoint instruction.
1326  */
1327 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1328 {
1329         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1330 }
1331
1332 /*
1333  * Called with no locks held.
1334  * Called in context of a exiting or a exec-ing thread.
1335  */
1336 void uprobe_free_utask(struct task_struct *t)
1337 {
1338         struct uprobe_task *utask = t->utask;
1339
1340         if (!utask)
1341                 return;
1342
1343         if (utask->active_uprobe)
1344                 put_uprobe(utask->active_uprobe);
1345
1346         xol_free_insn_slot(t);
1347         kfree(utask);
1348         t->utask = NULL;
1349 }
1350
1351 /*
1352  * Called in context of a new clone/fork from copy_process.
1353  */
1354 void uprobe_copy_process(struct task_struct *t)
1355 {
1356         t->utask = NULL;
1357 }
1358
1359 /*
1360  * Allocate a uprobe_task object for the task.
1361  * Called when the thread hits a breakpoint for the first time.
1362  *
1363  * Returns:
1364  * - pointer to new uprobe_task on success
1365  * - NULL otherwise
1366  */
1367 static struct uprobe_task *add_utask(void)
1368 {
1369         struct uprobe_task *utask;
1370
1371         utask = kzalloc(sizeof *utask, GFP_KERNEL);
1372         if (unlikely(!utask))
1373                 return NULL;
1374
1375         current->utask = utask;
1376         return utask;
1377 }
1378
1379 /* Prepare to single-step probed instruction out of line. */
1380 static int
1381 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1382 {
1383         if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1384                 return 0;
1385
1386         return -EFAULT;
1387 }
1388
1389 /*
1390  * If we are singlestepping, then ensure this thread is not connected to
1391  * non-fatal signals until completion of singlestep.  When xol insn itself
1392  * triggers the signal,  restart the original insn even if the task is
1393  * already SIGKILL'ed (since coredump should report the correct ip).  This
1394  * is even more important if the task has a handler for SIGSEGV/etc, The
1395  * _same_ instruction should be repeated again after return from the signal
1396  * handler, and SSTEP can never finish in this case.
1397  */
1398 bool uprobe_deny_signal(void)
1399 {
1400         struct task_struct *t = current;
1401         struct uprobe_task *utask = t->utask;
1402
1403         if (likely(!utask || !utask->active_uprobe))
1404                 return false;
1405
1406         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1407
1408         if (signal_pending(t)) {
1409                 spin_lock_irq(&t->sighand->siglock);
1410                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1411                 spin_unlock_irq(&t->sighand->siglock);
1412
1413                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1414                         utask->state = UTASK_SSTEP_TRAPPED;
1415                         set_tsk_thread_flag(t, TIF_UPROBE);
1416                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1417                 }
1418         }
1419
1420         return true;
1421 }
1422
1423 /*
1424  * Avoid singlestepping the original instruction if the original instruction
1425  * is a NOP or can be emulated.
1426  */
1427 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1428 {
1429         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1430                 return true;
1431
1432         uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1433         return false;
1434 }
1435
1436 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1437 {
1438         struct mm_struct *mm = current->mm;
1439         struct uprobe *uprobe = NULL;
1440         struct vm_area_struct *vma;
1441
1442         down_read(&mm->mmap_sem);
1443         vma = find_vma(mm, bp_vaddr);
1444         if (vma && vma->vm_start <= bp_vaddr) {
1445                 if (valid_vma(vma, false)) {
1446                         struct inode *inode;
1447                         loff_t offset;
1448
1449                         inode = vma->vm_file->f_mapping->host;
1450                         offset = bp_vaddr - vma->vm_start;
1451                         offset += (vma->vm_pgoff << PAGE_SHIFT);
1452                         uprobe = find_uprobe(inode, offset);
1453                 }
1454
1455                 if (!uprobe)
1456                         *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1457         } else {
1458                 *is_swbp = -EFAULT;
1459         }
1460         up_read(&mm->mmap_sem);
1461
1462         return uprobe;
1463 }
1464
1465 /*
1466  * Run handler and ask thread to singlestep.
1467  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1468  */
1469 static void handle_swbp(struct pt_regs *regs)
1470 {
1471         struct uprobe_task *utask;
1472         struct uprobe *uprobe;
1473         unsigned long bp_vaddr;
1474         int uninitialized_var(is_swbp);
1475
1476         bp_vaddr = uprobe_get_swbp_addr(regs);
1477         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1478
1479         if (!uprobe) {
1480                 if (is_swbp > 0) {
1481                         /* No matching uprobe; signal SIGTRAP. */
1482                         send_sig(SIGTRAP, current, 0);
1483                 } else {
1484                         /*
1485                          * Either we raced with uprobe_unregister() or we can't
1486                          * access this memory. The latter is only possible if
1487                          * another thread plays with our ->mm. In both cases
1488                          * we can simply restart. If this vma was unmapped we
1489                          * can pretend this insn was not executed yet and get
1490                          * the (correct) SIGSEGV after restart.
1491                          */
1492                         instruction_pointer_set(regs, bp_vaddr);
1493                 }
1494                 return;
1495         }
1496
1497         utask = current->utask;
1498         if (!utask) {
1499                 utask = add_utask();
1500                 /* Cannot allocate; re-execute the instruction. */
1501                 if (!utask)
1502                         goto cleanup_ret;
1503         }
1504         utask->active_uprobe = uprobe;
1505         handler_chain(uprobe, regs);
1506         if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1507                 goto cleanup_ret;
1508
1509         utask->state = UTASK_SSTEP;
1510         if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1511                 user_enable_single_step(current);
1512                 return;
1513         }
1514
1515 cleanup_ret:
1516         if (utask) {
1517                 utask->active_uprobe = NULL;
1518                 utask->state = UTASK_RUNNING;
1519         }
1520         if (uprobe) {
1521                 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1522
1523                         /*
1524                          * cannot singlestep; cannot skip instruction;
1525                          * re-execute the instruction.
1526                          */
1527                         instruction_pointer_set(regs, bp_vaddr);
1528
1529                 put_uprobe(uprobe);
1530         }
1531 }
1532
1533 /*
1534  * Perform required fix-ups and disable singlestep.
1535  * Allow pending signals to take effect.
1536  */
1537 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1538 {
1539         struct uprobe *uprobe;
1540
1541         uprobe = utask->active_uprobe;
1542         if (utask->state == UTASK_SSTEP_ACK)
1543                 arch_uprobe_post_xol(&uprobe->arch, regs);
1544         else if (utask->state == UTASK_SSTEP_TRAPPED)
1545                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1546         else
1547                 WARN_ON_ONCE(1);
1548
1549         put_uprobe(uprobe);
1550         utask->active_uprobe = NULL;
1551         utask->state = UTASK_RUNNING;
1552         user_disable_single_step(current);
1553         xol_free_insn_slot(current);
1554
1555         spin_lock_irq(&current->sighand->siglock);
1556         recalc_sigpending(); /* see uprobe_deny_signal() */
1557         spin_unlock_irq(&current->sighand->siglock);
1558 }
1559
1560 /*
1561  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
1562  * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1563  * allows the thread to return from interrupt.
1564  *
1565  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1566  * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1567  * interrupt.
1568  *
1569  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1570  * uprobe_notify_resume().
1571  */
1572 void uprobe_notify_resume(struct pt_regs *regs)
1573 {
1574         struct uprobe_task *utask;
1575
1576         utask = current->utask;
1577         if (!utask || utask->state == UTASK_BP_HIT)
1578                 handle_swbp(regs);
1579         else
1580                 handle_singlestep(utask, regs);
1581 }
1582
1583 /*
1584  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1585  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1586  */
1587 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1588 {
1589         struct uprobe_task *utask;
1590
1591         if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1592                 /* task is currently not uprobed */
1593                 return 0;
1594
1595         utask = current->utask;
1596         if (utask)
1597                 utask->state = UTASK_BP_HIT;
1598
1599         set_thread_flag(TIF_UPROBE);
1600
1601         return 1;
1602 }
1603
1604 /*
1605  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1606  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1607  */
1608 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1609 {
1610         struct uprobe_task *utask = current->utask;
1611
1612         if (!current->mm || !utask || !utask->active_uprobe)
1613                 /* task is currently not uprobed */
1614                 return 0;
1615
1616         utask->state = UTASK_SSTEP_ACK;
1617         set_thread_flag(TIF_UPROBE);
1618         return 1;
1619 }
1620
1621 static struct notifier_block uprobe_exception_nb = {
1622         .notifier_call          = arch_uprobe_exception_notify,
1623         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1624 };
1625
1626 static int __init init_uprobes(void)
1627 {
1628         int i;
1629
1630         for (i = 0; i < UPROBES_HASH_SZ; i++) {
1631                 mutex_init(&uprobes_mutex[i]);
1632                 mutex_init(&uprobes_mmap_mutex[i]);
1633         }
1634
1635         return register_die_notifier(&uprobe_exception_nb);
1636 }
1637 module_init(init_uprobes);
1638
1639 static void __exit exit_uprobes(void)
1640 {
1641 }
1642 module_exit(exit_uprobes);