Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47  * allows us to skip the uprobe_mmap if there are no uprobe events active
48  * at this time.  Probably a fine grained per inode count is better?
49  */
50 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN        0
63
64 struct uprobe {
65         struct rb_node          rb_node;        /* node in the rb tree */
66         atomic_t                ref;
67         struct rw_semaphore     register_rwsem;
68         struct rw_semaphore     consumer_rwsem;
69         struct list_head        pending_list;
70         struct uprobe_consumer  *consumers;
71         struct inode            *inode;         /* Also hold a ref to inode */
72         loff_t                  offset;
73         unsigned long           flags;
74
75         /*
76          * The generic code assumes that it has two members of unknown type
77          * owned by the arch-specific code:
78          *
79          *      insn -  copy_insn() saves the original instruction here for
80          *              arch_uprobe_analyze_insn().
81          *
82          *      ixol -  potentially modified instruction to execute out of
83          *              line, copied to xol_area by xol_get_insn_slot().
84          */
85         struct arch_uprobe      arch;
86 };
87
88 struct return_instance {
89         struct uprobe           *uprobe;
90         unsigned long           func;
91         unsigned long           orig_ret_vaddr; /* original return address */
92         bool                    chained;        /* true, if instance is nested */
93
94         struct return_instance  *next;          /* keep as stack */
95 };
96
97 /*
98  * Execute out of line area: anonymous executable mapping installed
99  * by the probed task to execute the copy of the original instruction
100  * mangled by set_swbp().
101  *
102  * On a breakpoint hit, thread contests for a slot.  It frees the
103  * slot after singlestep. Currently a fixed number of slots are
104  * allocated.
105  */
106 struct xol_area {
107         wait_queue_head_t       wq;             /* if all slots are busy */
108         atomic_t                slot_count;     /* number of in-use slots */
109         unsigned long           *bitmap;        /* 0 = free slot */
110         struct page             *page;
111
112         /*
113          * We keep the vma's vm_start rather than a pointer to the vma
114          * itself.  The probed process or a naughty kernel module could make
115          * the vma go away, and we must handle that reasonably gracefully.
116          */
117         unsigned long           vaddr;          /* Page(s) of instruction slots */
118 };
119
120 /*
121  * valid_vma: Verify if the specified vma is an executable vma
122  * Relax restrictions while unregistering: vm_flags might have
123  * changed after breakpoint was inserted.
124  *      - is_register: indicates if we are in register context.
125  *      - Return 1 if the specified virtual address is in an
126  *        executable vma.
127  */
128 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
129 {
130         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
131
132         if (is_register)
133                 flags |= VM_WRITE;
134
135         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
136 }
137
138 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
139 {
140         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
141 }
142
143 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
144 {
145         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
146 }
147
148 /**
149  * __replace_page - replace page in vma by new page.
150  * based on replace_page in mm/ksm.c
151  *
152  * @vma:      vma that holds the pte pointing to page
153  * @addr:     address the old @page is mapped at
154  * @page:     the cowed page we are replacing by kpage
155  * @kpage:    the modified page we replace page by
156  *
157  * Returns 0 on success, -EFAULT on failure.
158  */
159 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
160                                 struct page *page, struct page *kpage)
161 {
162         struct mm_struct *mm = vma->vm_mm;
163         spinlock_t *ptl;
164         pte_t *ptep;
165         int err;
166         /* For mmu_notifiers */
167         const unsigned long mmun_start = addr;
168         const unsigned long mmun_end   = addr + PAGE_SIZE;
169
170         /* For try_to_free_swap() and munlock_vma_page() below */
171         lock_page(page);
172
173         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
174         err = -EAGAIN;
175         ptep = page_check_address(page, mm, addr, &ptl, 0);
176         if (!ptep)
177                 goto unlock;
178
179         get_page(kpage);
180         page_add_new_anon_rmap(kpage, vma, addr);
181
182         if (!PageAnon(page)) {
183                 dec_mm_counter(mm, MM_FILEPAGES);
184                 inc_mm_counter(mm, MM_ANONPAGES);
185         }
186
187         flush_cache_page(vma, addr, pte_pfn(*ptep));
188         ptep_clear_flush(vma, addr, ptep);
189         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
190
191         page_remove_rmap(page);
192         if (!page_mapped(page))
193                 try_to_free_swap(page);
194         pte_unmap_unlock(ptep, ptl);
195
196         if (vma->vm_flags & VM_LOCKED)
197                 munlock_vma_page(page);
198         put_page(page);
199
200         err = 0;
201  unlock:
202         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
203         unlock_page(page);
204         return err;
205 }
206
207 /**
208  * is_swbp_insn - check if instruction is breakpoint instruction.
209  * @insn: instruction to be checked.
210  * Default implementation of is_swbp_insn
211  * Returns true if @insn is a breakpoint instruction.
212  */
213 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
214 {
215         return *insn == UPROBE_SWBP_INSN;
216 }
217
218 /**
219  * is_trap_insn - check if instruction is breakpoint instruction.
220  * @insn: instruction to be checked.
221  * Default implementation of is_trap_insn
222  * Returns true if @insn is a breakpoint instruction.
223  *
224  * This function is needed for the case where an architecture has multiple
225  * trap instructions (like powerpc).
226  */
227 bool __weak is_trap_insn(uprobe_opcode_t *insn)
228 {
229         return is_swbp_insn(insn);
230 }
231
232 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
233 {
234         void *kaddr = kmap_atomic(page);
235         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
236         kunmap_atomic(kaddr);
237 }
238
239 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
240 {
241         void *kaddr = kmap_atomic(page);
242         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
243         kunmap_atomic(kaddr);
244 }
245
246 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
247 {
248         uprobe_opcode_t old_opcode;
249         bool is_swbp;
250
251         /*
252          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
253          * We do not check if it is any other 'trap variant' which could
254          * be conditional trap instruction such as the one powerpc supports.
255          *
256          * The logic is that we do not care if the underlying instruction
257          * is a trap variant; uprobes always wins over any other (gdb)
258          * breakpoint.
259          */
260         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
261         is_swbp = is_swbp_insn(&old_opcode);
262
263         if (is_swbp_insn(new_opcode)) {
264                 if (is_swbp)            /* register: already installed? */
265                         return 0;
266         } else {
267                 if (!is_swbp)           /* unregister: was it changed by us? */
268                         return 0;
269         }
270
271         return 1;
272 }
273
274 /*
275  * NOTE:
276  * Expect the breakpoint instruction to be the smallest size instruction for
277  * the architecture. If an arch has variable length instruction and the
278  * breakpoint instruction is not of the smallest length instruction
279  * supported by that architecture then we need to modify is_trap_at_addr and
280  * uprobe_write_opcode accordingly. This would never be a problem for archs
281  * that have fixed length instructions.
282  */
283
284 /*
285  * uprobe_write_opcode - write the opcode at a given virtual address.
286  * @mm: the probed process address space.
287  * @vaddr: the virtual address to store the opcode.
288  * @opcode: opcode to be written at @vaddr.
289  *
290  * Called with mm->mmap_sem held (for read and with a reference to
291  * mm).
292  *
293  * For mm @mm, write the opcode at @vaddr.
294  * Return 0 (success) or a negative errno.
295  */
296 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
297                         uprobe_opcode_t opcode)
298 {
299         struct page *old_page, *new_page;
300         struct vm_area_struct *vma;
301         int ret;
302
303 retry:
304         /* Read the page with vaddr into memory */
305         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
306         if (ret <= 0)
307                 return ret;
308
309         ret = verify_opcode(old_page, vaddr, &opcode);
310         if (ret <= 0)
311                 goto put_old;
312
313         ret = -ENOMEM;
314         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315         if (!new_page)
316                 goto put_old;
317
318         __SetPageUptodate(new_page);
319
320         copy_highpage(new_page, old_page);
321         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
322
323         ret = anon_vma_prepare(vma);
324         if (ret)
325                 goto put_new;
326
327         ret = __replace_page(vma, vaddr, old_page, new_page);
328
329 put_new:
330         page_cache_release(new_page);
331 put_old:
332         put_page(old_page);
333
334         if (unlikely(ret == -EAGAIN))
335                 goto retry;
336         return ret;
337 }
338
339 /**
340  * set_swbp - store breakpoint at a given address.
341  * @auprobe: arch specific probepoint information.
342  * @mm: the probed process address space.
343  * @vaddr: the virtual address to insert the opcode.
344  *
345  * For mm @mm, store the breakpoint instruction at @vaddr.
346  * Return 0 (success) or a negative errno.
347  */
348 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
349 {
350         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
351 }
352
353 /**
354  * set_orig_insn - Restore the original instruction.
355  * @mm: the probed process address space.
356  * @auprobe: arch specific probepoint information.
357  * @vaddr: the virtual address to insert the opcode.
358  *
359  * For mm @mm, restore the original opcode (opcode) at @vaddr.
360  * Return 0 (success) or a negative errno.
361  */
362 int __weak
363 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
364 {
365         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
366 }
367
368 static int match_uprobe(struct uprobe *l, struct uprobe *r)
369 {
370         if (l->inode < r->inode)
371                 return -1;
372
373         if (l->inode > r->inode)
374                 return 1;
375
376         if (l->offset < r->offset)
377                 return -1;
378
379         if (l->offset > r->offset)
380                 return 1;
381
382         return 0;
383 }
384
385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
386 {
387         struct uprobe u = { .inode = inode, .offset = offset };
388         struct rb_node *n = uprobes_tree.rb_node;
389         struct uprobe *uprobe;
390         int match;
391
392         while (n) {
393                 uprobe = rb_entry(n, struct uprobe, rb_node);
394                 match = match_uprobe(&u, uprobe);
395                 if (!match) {
396                         atomic_inc(&uprobe->ref);
397                         return uprobe;
398                 }
399
400                 if (match < 0)
401                         n = n->rb_left;
402                 else
403                         n = n->rb_right;
404         }
405         return NULL;
406 }
407
408 /*
409  * Find a uprobe corresponding to a given inode:offset
410  * Acquires uprobes_treelock
411  */
412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
413 {
414         struct uprobe *uprobe;
415
416         spin_lock(&uprobes_treelock);
417         uprobe = __find_uprobe(inode, offset);
418         spin_unlock(&uprobes_treelock);
419
420         return uprobe;
421 }
422
423 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
424 {
425         struct rb_node **p = &uprobes_tree.rb_node;
426         struct rb_node *parent = NULL;
427         struct uprobe *u;
428         int match;
429
430         while (*p) {
431                 parent = *p;
432                 u = rb_entry(parent, struct uprobe, rb_node);
433                 match = match_uprobe(uprobe, u);
434                 if (!match) {
435                         atomic_inc(&u->ref);
436                         return u;
437                 }
438
439                 if (match < 0)
440                         p = &parent->rb_left;
441                 else
442                         p = &parent->rb_right;
443
444         }
445
446         u = NULL;
447         rb_link_node(&uprobe->rb_node, parent, p);
448         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449         /* get access + creation ref */
450         atomic_set(&uprobe->ref, 2);
451
452         return u;
453 }
454
455 /*
456  * Acquire uprobes_treelock.
457  * Matching uprobe already exists in rbtree;
458  *      increment (access refcount) and return the matching uprobe.
459  *
460  * No matching uprobe; insert the uprobe in rb_tree;
461  *      get a double refcount (access + creation) and return NULL.
462  */
463 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
464 {
465         struct uprobe *u;
466
467         spin_lock(&uprobes_treelock);
468         u = __insert_uprobe(uprobe);
469         spin_unlock(&uprobes_treelock);
470
471         return u;
472 }
473
474 static void put_uprobe(struct uprobe *uprobe)
475 {
476         if (atomic_dec_and_test(&uprobe->ref))
477                 kfree(uprobe);
478 }
479
480 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
481 {
482         struct uprobe *uprobe, *cur_uprobe;
483
484         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
485         if (!uprobe)
486                 return NULL;
487
488         uprobe->inode = igrab(inode);
489         uprobe->offset = offset;
490         init_rwsem(&uprobe->register_rwsem);
491         init_rwsem(&uprobe->consumer_rwsem);
492
493         /* add to uprobes_tree, sorted on inode:offset */
494         cur_uprobe = insert_uprobe(uprobe);
495         /* a uprobe exists for this inode:offset combination */
496         if (cur_uprobe) {
497                 kfree(uprobe);
498                 uprobe = cur_uprobe;
499                 iput(inode);
500         }
501
502         return uprobe;
503 }
504
505 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
506 {
507         down_write(&uprobe->consumer_rwsem);
508         uc->next = uprobe->consumers;
509         uprobe->consumers = uc;
510         up_write(&uprobe->consumer_rwsem);
511 }
512
513 /*
514  * For uprobe @uprobe, delete the consumer @uc.
515  * Return true if the @uc is deleted successfully
516  * or return false.
517  */
518 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
519 {
520         struct uprobe_consumer **con;
521         bool ret = false;
522
523         down_write(&uprobe->consumer_rwsem);
524         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
525                 if (*con == uc) {
526                         *con = uc->next;
527                         ret = true;
528                         break;
529                 }
530         }
531         up_write(&uprobe->consumer_rwsem);
532
533         return ret;
534 }
535
536 static int __copy_insn(struct address_space *mapping, struct file *filp,
537                         void *insn, int nbytes, loff_t offset)
538 {
539         struct page *page;
540
541         if (!mapping->a_ops->readpage)
542                 return -EIO;
543         /*
544          * Ensure that the page that has the original instruction is
545          * populated and in page-cache.
546          */
547         page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
548         if (IS_ERR(page))
549                 return PTR_ERR(page);
550
551         copy_from_page(page, offset, insn, nbytes);
552         page_cache_release(page);
553
554         return 0;
555 }
556
557 static int copy_insn(struct uprobe *uprobe, struct file *filp)
558 {
559         struct address_space *mapping = uprobe->inode->i_mapping;
560         loff_t offs = uprobe->offset;
561         void *insn = &uprobe->arch.insn;
562         int size = sizeof(uprobe->arch.insn);
563         int len, err = -EIO;
564
565         /* Copy only available bytes, -EIO if nothing was read */
566         do {
567                 if (offs >= i_size_read(uprobe->inode))
568                         break;
569
570                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
571                 err = __copy_insn(mapping, filp, insn, len, offs);
572                 if (err)
573                         break;
574
575                 insn += len;
576                 offs += len;
577                 size -= len;
578         } while (size);
579
580         return err;
581 }
582
583 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
584                                 struct mm_struct *mm, unsigned long vaddr)
585 {
586         int ret = 0;
587
588         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
589                 return ret;
590
591         /* TODO: move this into _register, until then we abuse this sem. */
592         down_write(&uprobe->consumer_rwsem);
593         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
594                 goto out;
595
596         ret = copy_insn(uprobe, file);
597         if (ret)
598                 goto out;
599
600         ret = -ENOTSUPP;
601         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
602                 goto out;
603
604         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
605         if (ret)
606                 goto out;
607
608         /* uprobe_write_opcode() assumes we don't cross page boundary */
609         BUG_ON((uprobe->offset & ~PAGE_MASK) +
610                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
611
612         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
613         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
614
615  out:
616         up_write(&uprobe->consumer_rwsem);
617
618         return ret;
619 }
620
621 static inline bool consumer_filter(struct uprobe_consumer *uc,
622                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
623 {
624         return !uc->filter || uc->filter(uc, ctx, mm);
625 }
626
627 static bool filter_chain(struct uprobe *uprobe,
628                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
629 {
630         struct uprobe_consumer *uc;
631         bool ret = false;
632
633         down_read(&uprobe->consumer_rwsem);
634         for (uc = uprobe->consumers; uc; uc = uc->next) {
635                 ret = consumer_filter(uc, ctx, mm);
636                 if (ret)
637                         break;
638         }
639         up_read(&uprobe->consumer_rwsem);
640
641         return ret;
642 }
643
644 static int
645 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
646                         struct vm_area_struct *vma, unsigned long vaddr)
647 {
648         bool first_uprobe;
649         int ret;
650
651         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
652         if (ret)
653                 return ret;
654
655         /*
656          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
657          * the task can hit this breakpoint right after __replace_page().
658          */
659         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
660         if (first_uprobe)
661                 set_bit(MMF_HAS_UPROBES, &mm->flags);
662
663         ret = set_swbp(&uprobe->arch, mm, vaddr);
664         if (!ret)
665                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
666         else if (first_uprobe)
667                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
668
669         return ret;
670 }
671
672 static int
673 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
674 {
675         set_bit(MMF_RECALC_UPROBES, &mm->flags);
676         return set_orig_insn(&uprobe->arch, mm, vaddr);
677 }
678
679 static inline bool uprobe_is_active(struct uprobe *uprobe)
680 {
681         return !RB_EMPTY_NODE(&uprobe->rb_node);
682 }
683 /*
684  * There could be threads that have already hit the breakpoint. They
685  * will recheck the current insn and restart if find_uprobe() fails.
686  * See find_active_uprobe().
687  */
688 static void delete_uprobe(struct uprobe *uprobe)
689 {
690         if (WARN_ON(!uprobe_is_active(uprobe)))
691                 return;
692
693         spin_lock(&uprobes_treelock);
694         rb_erase(&uprobe->rb_node, &uprobes_tree);
695         spin_unlock(&uprobes_treelock);
696         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
697         iput(uprobe->inode);
698         put_uprobe(uprobe);
699 }
700
701 struct map_info {
702         struct map_info *next;
703         struct mm_struct *mm;
704         unsigned long vaddr;
705 };
706
707 static inline struct map_info *free_map_info(struct map_info *info)
708 {
709         struct map_info *next = info->next;
710         kfree(info);
711         return next;
712 }
713
714 static struct map_info *
715 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
716 {
717         unsigned long pgoff = offset >> PAGE_SHIFT;
718         struct vm_area_struct *vma;
719         struct map_info *curr = NULL;
720         struct map_info *prev = NULL;
721         struct map_info *info;
722         int more = 0;
723
724  again:
725         mutex_lock(&mapping->i_mmap_mutex);
726         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
727                 if (!valid_vma(vma, is_register))
728                         continue;
729
730                 if (!prev && !more) {
731                         /*
732                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
733                          * reclaim. This is optimistic, no harm done if it fails.
734                          */
735                         prev = kmalloc(sizeof(struct map_info),
736                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
737                         if (prev)
738                                 prev->next = NULL;
739                 }
740                 if (!prev) {
741                         more++;
742                         continue;
743                 }
744
745                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
746                         continue;
747
748                 info = prev;
749                 prev = prev->next;
750                 info->next = curr;
751                 curr = info;
752
753                 info->mm = vma->vm_mm;
754                 info->vaddr = offset_to_vaddr(vma, offset);
755         }
756         mutex_unlock(&mapping->i_mmap_mutex);
757
758         if (!more)
759                 goto out;
760
761         prev = curr;
762         while (curr) {
763                 mmput(curr->mm);
764                 curr = curr->next;
765         }
766
767         do {
768                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
769                 if (!info) {
770                         curr = ERR_PTR(-ENOMEM);
771                         goto out;
772                 }
773                 info->next = prev;
774                 prev = info;
775         } while (--more);
776
777         goto again;
778  out:
779         while (prev)
780                 prev = free_map_info(prev);
781         return curr;
782 }
783
784 static int
785 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
786 {
787         bool is_register = !!new;
788         struct map_info *info;
789         int err = 0;
790
791         percpu_down_write(&dup_mmap_sem);
792         info = build_map_info(uprobe->inode->i_mapping,
793                                         uprobe->offset, is_register);
794         if (IS_ERR(info)) {
795                 err = PTR_ERR(info);
796                 goto out;
797         }
798
799         while (info) {
800                 struct mm_struct *mm = info->mm;
801                 struct vm_area_struct *vma;
802
803                 if (err && is_register)
804                         goto free;
805
806                 down_write(&mm->mmap_sem);
807                 vma = find_vma(mm, info->vaddr);
808                 if (!vma || !valid_vma(vma, is_register) ||
809                     file_inode(vma->vm_file) != uprobe->inode)
810                         goto unlock;
811
812                 if (vma->vm_start > info->vaddr ||
813                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
814                         goto unlock;
815
816                 if (is_register) {
817                         /* consult only the "caller", new consumer. */
818                         if (consumer_filter(new,
819                                         UPROBE_FILTER_REGISTER, mm))
820                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
821                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
822                         if (!filter_chain(uprobe,
823                                         UPROBE_FILTER_UNREGISTER, mm))
824                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
825                 }
826
827  unlock:
828                 up_write(&mm->mmap_sem);
829  free:
830                 mmput(mm);
831                 info = free_map_info(info);
832         }
833  out:
834         percpu_up_write(&dup_mmap_sem);
835         return err;
836 }
837
838 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
839 {
840         consumer_add(uprobe, uc);
841         return register_for_each_vma(uprobe, uc);
842 }
843
844 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
845 {
846         int err;
847
848         if (!consumer_del(uprobe, uc))  /* WARN? */
849                 return;
850
851         err = register_for_each_vma(uprobe, NULL);
852         /* TODO : cant unregister? schedule a worker thread */
853         if (!uprobe->consumers && !err)
854                 delete_uprobe(uprobe);
855 }
856
857 /*
858  * uprobe_register - register a probe
859  * @inode: the file in which the probe has to be placed.
860  * @offset: offset from the start of the file.
861  * @uc: information on howto handle the probe..
862  *
863  * Apart from the access refcount, uprobe_register() takes a creation
864  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
865  * inserted into the rbtree (i.e first consumer for a @inode:@offset
866  * tuple).  Creation refcount stops uprobe_unregister from freeing the
867  * @uprobe even before the register operation is complete. Creation
868  * refcount is released when the last @uc for the @uprobe
869  * unregisters.
870  *
871  * Return errno if it cannot successully install probes
872  * else return 0 (success)
873  */
874 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
875 {
876         struct uprobe *uprobe;
877         int ret;
878
879         /* Uprobe must have at least one set consumer */
880         if (!uc->handler && !uc->ret_handler)
881                 return -EINVAL;
882
883         /* Racy, just to catch the obvious mistakes */
884         if (offset > i_size_read(inode))
885                 return -EINVAL;
886
887  retry:
888         uprobe = alloc_uprobe(inode, offset);
889         if (!uprobe)
890                 return -ENOMEM;
891         /*
892          * We can race with uprobe_unregister()->delete_uprobe().
893          * Check uprobe_is_active() and retry if it is false.
894          */
895         down_write(&uprobe->register_rwsem);
896         ret = -EAGAIN;
897         if (likely(uprobe_is_active(uprobe))) {
898                 ret = __uprobe_register(uprobe, uc);
899                 if (ret)
900                         __uprobe_unregister(uprobe, uc);
901         }
902         up_write(&uprobe->register_rwsem);
903         put_uprobe(uprobe);
904
905         if (unlikely(ret == -EAGAIN))
906                 goto retry;
907         return ret;
908 }
909 EXPORT_SYMBOL_GPL(uprobe_register);
910
911 /*
912  * uprobe_apply - unregister a already registered probe.
913  * @inode: the file in which the probe has to be removed.
914  * @offset: offset from the start of the file.
915  * @uc: consumer which wants to add more or remove some breakpoints
916  * @add: add or remove the breakpoints
917  */
918 int uprobe_apply(struct inode *inode, loff_t offset,
919                         struct uprobe_consumer *uc, bool add)
920 {
921         struct uprobe *uprobe;
922         struct uprobe_consumer *con;
923         int ret = -ENOENT;
924
925         uprobe = find_uprobe(inode, offset);
926         if (!uprobe)
927                 return ret;
928
929         down_write(&uprobe->register_rwsem);
930         for (con = uprobe->consumers; con && con != uc ; con = con->next)
931                 ;
932         if (con)
933                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
934         up_write(&uprobe->register_rwsem);
935         put_uprobe(uprobe);
936
937         return ret;
938 }
939
940 /*
941  * uprobe_unregister - unregister a already registered probe.
942  * @inode: the file in which the probe has to be removed.
943  * @offset: offset from the start of the file.
944  * @uc: identify which probe if multiple probes are colocated.
945  */
946 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
947 {
948         struct uprobe *uprobe;
949
950         uprobe = find_uprobe(inode, offset);
951         if (!uprobe)
952                 return;
953
954         down_write(&uprobe->register_rwsem);
955         __uprobe_unregister(uprobe, uc);
956         up_write(&uprobe->register_rwsem);
957         put_uprobe(uprobe);
958 }
959 EXPORT_SYMBOL_GPL(uprobe_unregister);
960
961 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
962 {
963         struct vm_area_struct *vma;
964         int err = 0;
965
966         down_read(&mm->mmap_sem);
967         for (vma = mm->mmap; vma; vma = vma->vm_next) {
968                 unsigned long vaddr;
969                 loff_t offset;
970
971                 if (!valid_vma(vma, false) ||
972                     file_inode(vma->vm_file) != uprobe->inode)
973                         continue;
974
975                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
976                 if (uprobe->offset <  offset ||
977                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
978                         continue;
979
980                 vaddr = offset_to_vaddr(vma, uprobe->offset);
981                 err |= remove_breakpoint(uprobe, mm, vaddr);
982         }
983         up_read(&mm->mmap_sem);
984
985         return err;
986 }
987
988 static struct rb_node *
989 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
990 {
991         struct rb_node *n = uprobes_tree.rb_node;
992
993         while (n) {
994                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
995
996                 if (inode < u->inode) {
997                         n = n->rb_left;
998                 } else if (inode > u->inode) {
999                         n = n->rb_right;
1000                 } else {
1001                         if (max < u->offset)
1002                                 n = n->rb_left;
1003                         else if (min > u->offset)
1004                                 n = n->rb_right;
1005                         else
1006                                 break;
1007                 }
1008         }
1009
1010         return n;
1011 }
1012
1013 /*
1014  * For a given range in vma, build a list of probes that need to be inserted.
1015  */
1016 static void build_probe_list(struct inode *inode,
1017                                 struct vm_area_struct *vma,
1018                                 unsigned long start, unsigned long end,
1019                                 struct list_head *head)
1020 {
1021         loff_t min, max;
1022         struct rb_node *n, *t;
1023         struct uprobe *u;
1024
1025         INIT_LIST_HEAD(head);
1026         min = vaddr_to_offset(vma, start);
1027         max = min + (end - start) - 1;
1028
1029         spin_lock(&uprobes_treelock);
1030         n = find_node_in_range(inode, min, max);
1031         if (n) {
1032                 for (t = n; t; t = rb_prev(t)) {
1033                         u = rb_entry(t, struct uprobe, rb_node);
1034                         if (u->inode != inode || u->offset < min)
1035                                 break;
1036                         list_add(&u->pending_list, head);
1037                         atomic_inc(&u->ref);
1038                 }
1039                 for (t = n; (t = rb_next(t)); ) {
1040                         u = rb_entry(t, struct uprobe, rb_node);
1041                         if (u->inode != inode || u->offset > max)
1042                                 break;
1043                         list_add(&u->pending_list, head);
1044                         atomic_inc(&u->ref);
1045                 }
1046         }
1047         spin_unlock(&uprobes_treelock);
1048 }
1049
1050 /*
1051  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1052  *
1053  * Currently we ignore all errors and always return 0, the callers
1054  * can't handle the failure anyway.
1055  */
1056 int uprobe_mmap(struct vm_area_struct *vma)
1057 {
1058         struct list_head tmp_list;
1059         struct uprobe *uprobe, *u;
1060         struct inode *inode;
1061
1062         if (no_uprobe_events() || !valid_vma(vma, true))
1063                 return 0;
1064
1065         inode = file_inode(vma->vm_file);
1066         if (!inode)
1067                 return 0;
1068
1069         mutex_lock(uprobes_mmap_hash(inode));
1070         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1071         /*
1072          * We can race with uprobe_unregister(), this uprobe can be already
1073          * removed. But in this case filter_chain() must return false, all
1074          * consumers have gone away.
1075          */
1076         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1077                 if (!fatal_signal_pending(current) &&
1078                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1079                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1080                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1081                 }
1082                 put_uprobe(uprobe);
1083         }
1084         mutex_unlock(uprobes_mmap_hash(inode));
1085
1086         return 0;
1087 }
1088
1089 static bool
1090 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1091 {
1092         loff_t min, max;
1093         struct inode *inode;
1094         struct rb_node *n;
1095
1096         inode = file_inode(vma->vm_file);
1097
1098         min = vaddr_to_offset(vma, start);
1099         max = min + (end - start) - 1;
1100
1101         spin_lock(&uprobes_treelock);
1102         n = find_node_in_range(inode, min, max);
1103         spin_unlock(&uprobes_treelock);
1104
1105         return !!n;
1106 }
1107
1108 /*
1109  * Called in context of a munmap of a vma.
1110  */
1111 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1112 {
1113         if (no_uprobe_events() || !valid_vma(vma, false))
1114                 return;
1115
1116         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1117                 return;
1118
1119         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1120              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1121                 return;
1122
1123         if (vma_has_uprobes(vma, start, end))
1124                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1125 }
1126
1127 /* Slot allocation for XOL */
1128 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1129 {
1130         int ret = -EALREADY;
1131
1132         down_write(&mm->mmap_sem);
1133         if (mm->uprobes_state.xol_area)
1134                 goto fail;
1135
1136         if (!area->vaddr) {
1137                 /* Try to map as high as possible, this is only a hint. */
1138                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1139                                                 PAGE_SIZE, 0, 0);
1140                 if (area->vaddr & ~PAGE_MASK) {
1141                         ret = area->vaddr;
1142                         goto fail;
1143                 }
1144         }
1145
1146         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1147                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1148         if (ret)
1149                 goto fail;
1150
1151         smp_wmb();      /* pairs with get_xol_area() */
1152         mm->uprobes_state.xol_area = area;
1153  fail:
1154         up_write(&mm->mmap_sem);
1155
1156         return ret;
1157 }
1158
1159 static struct xol_area *__create_xol_area(unsigned long vaddr)
1160 {
1161         struct mm_struct *mm = current->mm;
1162         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1163         struct xol_area *area;
1164
1165         area = kmalloc(sizeof(*area), GFP_KERNEL);
1166         if (unlikely(!area))
1167                 goto out;
1168
1169         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1170         if (!area->bitmap)
1171                 goto free_area;
1172
1173         area->page = alloc_page(GFP_HIGHUSER);
1174         if (!area->page)
1175                 goto free_bitmap;
1176
1177         area->vaddr = vaddr;
1178         init_waitqueue_head(&area->wq);
1179         /* Reserve the 1st slot for get_trampoline_vaddr() */
1180         set_bit(0, area->bitmap);
1181         atomic_set(&area->slot_count, 1);
1182         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1183
1184         if (!xol_add_vma(mm, area))
1185                 return area;
1186
1187         __free_page(area->page);
1188  free_bitmap:
1189         kfree(area->bitmap);
1190  free_area:
1191         kfree(area);
1192  out:
1193         return NULL;
1194 }
1195
1196 /*
1197  * get_xol_area - Allocate process's xol_area if necessary.
1198  * This area will be used for storing instructions for execution out of line.
1199  *
1200  * Returns the allocated area or NULL.
1201  */
1202 static struct xol_area *get_xol_area(void)
1203 {
1204         struct mm_struct *mm = current->mm;
1205         struct xol_area *area;
1206
1207         if (!mm->uprobes_state.xol_area)
1208                 __create_xol_area(0);
1209
1210         area = mm->uprobes_state.xol_area;
1211         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1212         return area;
1213 }
1214
1215 /*
1216  * uprobe_clear_state - Free the area allocated for slots.
1217  */
1218 void uprobe_clear_state(struct mm_struct *mm)
1219 {
1220         struct xol_area *area = mm->uprobes_state.xol_area;
1221
1222         if (!area)
1223                 return;
1224
1225         put_page(area->page);
1226         kfree(area->bitmap);
1227         kfree(area);
1228 }
1229
1230 void uprobe_start_dup_mmap(void)
1231 {
1232         percpu_down_read(&dup_mmap_sem);
1233 }
1234
1235 void uprobe_end_dup_mmap(void)
1236 {
1237         percpu_up_read(&dup_mmap_sem);
1238 }
1239
1240 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1241 {
1242         newmm->uprobes_state.xol_area = NULL;
1243
1244         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1245                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1246                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1247                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1248         }
1249 }
1250
1251 /*
1252  *  - search for a free slot.
1253  */
1254 static unsigned long xol_take_insn_slot(struct xol_area *area)
1255 {
1256         unsigned long slot_addr;
1257         int slot_nr;
1258
1259         do {
1260                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1261                 if (slot_nr < UINSNS_PER_PAGE) {
1262                         if (!test_and_set_bit(slot_nr, area->bitmap))
1263                                 break;
1264
1265                         slot_nr = UINSNS_PER_PAGE;
1266                         continue;
1267                 }
1268                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1269         } while (slot_nr >= UINSNS_PER_PAGE);
1270
1271         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1272         atomic_inc(&area->slot_count);
1273
1274         return slot_addr;
1275 }
1276
1277 /*
1278  * xol_get_insn_slot - allocate a slot for xol.
1279  * Returns the allocated slot address or 0.
1280  */
1281 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1282 {
1283         struct xol_area *area;
1284         unsigned long xol_vaddr;
1285
1286         area = get_xol_area();
1287         if (!area)
1288                 return 0;
1289
1290         xol_vaddr = xol_take_insn_slot(area);
1291         if (unlikely(!xol_vaddr))
1292                 return 0;
1293
1294         arch_uprobe_copy_ixol(area->page, xol_vaddr,
1295                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1296
1297         return xol_vaddr;
1298 }
1299
1300 /*
1301  * xol_free_insn_slot - If slot was earlier allocated by
1302  * @xol_get_insn_slot(), make the slot available for
1303  * subsequent requests.
1304  */
1305 static void xol_free_insn_slot(struct task_struct *tsk)
1306 {
1307         struct xol_area *area;
1308         unsigned long vma_end;
1309         unsigned long slot_addr;
1310
1311         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1312                 return;
1313
1314         slot_addr = tsk->utask->xol_vaddr;
1315         if (unlikely(!slot_addr))
1316                 return;
1317
1318         area = tsk->mm->uprobes_state.xol_area;
1319         vma_end = area->vaddr + PAGE_SIZE;
1320         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1321                 unsigned long offset;
1322                 int slot_nr;
1323
1324                 offset = slot_addr - area->vaddr;
1325                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1326                 if (slot_nr >= UINSNS_PER_PAGE)
1327                         return;
1328
1329                 clear_bit(slot_nr, area->bitmap);
1330                 atomic_dec(&area->slot_count);
1331                 if (waitqueue_active(&area->wq))
1332                         wake_up(&area->wq);
1333
1334                 tsk->utask->xol_vaddr = 0;
1335         }
1336 }
1337
1338 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1339                                   void *src, unsigned long len)
1340 {
1341         /* Initialize the slot */
1342         copy_to_page(page, vaddr, src, len);
1343
1344         /*
1345          * We probably need flush_icache_user_range() but it needs vma.
1346          * This should work on most of architectures by default. If
1347          * architecture needs to do something different it can define
1348          * its own version of the function.
1349          */
1350         flush_dcache_page(page);
1351 }
1352
1353 /**
1354  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1355  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1356  * instruction.
1357  * Return the address of the breakpoint instruction.
1358  */
1359 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1360 {
1361         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1362 }
1363
1364 /*
1365  * Called with no locks held.
1366  * Called in context of a exiting or a exec-ing thread.
1367  */
1368 void uprobe_free_utask(struct task_struct *t)
1369 {
1370         struct uprobe_task *utask = t->utask;
1371         struct return_instance *ri, *tmp;
1372
1373         if (!utask)
1374                 return;
1375
1376         if (utask->active_uprobe)
1377                 put_uprobe(utask->active_uprobe);
1378
1379         ri = utask->return_instances;
1380         while (ri) {
1381                 tmp = ri;
1382                 ri = ri->next;
1383
1384                 put_uprobe(tmp->uprobe);
1385                 kfree(tmp);
1386         }
1387
1388         xol_free_insn_slot(t);
1389         kfree(utask);
1390         t->utask = NULL;
1391 }
1392
1393 /*
1394  * Allocate a uprobe_task object for the task if if necessary.
1395  * Called when the thread hits a breakpoint.
1396  *
1397  * Returns:
1398  * - pointer to new uprobe_task on success
1399  * - NULL otherwise
1400  */
1401 static struct uprobe_task *get_utask(void)
1402 {
1403         if (!current->utask)
1404                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1405         return current->utask;
1406 }
1407
1408 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1409 {
1410         struct uprobe_task *n_utask;
1411         struct return_instance **p, *o, *n;
1412
1413         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1414         if (!n_utask)
1415                 return -ENOMEM;
1416         t->utask = n_utask;
1417
1418         p = &n_utask->return_instances;
1419         for (o = o_utask->return_instances; o; o = o->next) {
1420                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1421                 if (!n)
1422                         return -ENOMEM;
1423
1424                 *n = *o;
1425                 atomic_inc(&n->uprobe->ref);
1426                 n->next = NULL;
1427
1428                 *p = n;
1429                 p = &n->next;
1430                 n_utask->depth++;
1431         }
1432
1433         return 0;
1434 }
1435
1436 static void uprobe_warn(struct task_struct *t, const char *msg)
1437 {
1438         pr_warn("uprobe: %s:%d failed to %s\n",
1439                         current->comm, current->pid, msg);
1440 }
1441
1442 static void dup_xol_work(struct callback_head *work)
1443 {
1444         if (current->flags & PF_EXITING)
1445                 return;
1446
1447         if (!__create_xol_area(current->utask->dup_xol_addr))
1448                 uprobe_warn(current, "dup xol area");
1449 }
1450
1451 /*
1452  * Called in context of a new clone/fork from copy_process.
1453  */
1454 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1455 {
1456         struct uprobe_task *utask = current->utask;
1457         struct mm_struct *mm = current->mm;
1458         struct xol_area *area;
1459
1460         t->utask = NULL;
1461
1462         if (!utask || !utask->return_instances)
1463                 return;
1464
1465         if (mm == t->mm && !(flags & CLONE_VFORK))
1466                 return;
1467
1468         if (dup_utask(t, utask))
1469                 return uprobe_warn(t, "dup ret instances");
1470
1471         /* The task can fork() after dup_xol_work() fails */
1472         area = mm->uprobes_state.xol_area;
1473         if (!area)
1474                 return uprobe_warn(t, "dup xol area");
1475
1476         if (mm == t->mm)
1477                 return;
1478
1479         t->utask->dup_xol_addr = area->vaddr;
1480         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1481         task_work_add(t, &t->utask->dup_xol_work, true);
1482 }
1483
1484 /*
1485  * Current area->vaddr notion assume the trampoline address is always
1486  * equal area->vaddr.
1487  *
1488  * Returns -1 in case the xol_area is not allocated.
1489  */
1490 static unsigned long get_trampoline_vaddr(void)
1491 {
1492         struct xol_area *area;
1493         unsigned long trampoline_vaddr = -1;
1494
1495         area = current->mm->uprobes_state.xol_area;
1496         smp_read_barrier_depends();
1497         if (area)
1498                 trampoline_vaddr = area->vaddr;
1499
1500         return trampoline_vaddr;
1501 }
1502
1503 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1504 {
1505         struct return_instance *ri;
1506         struct uprobe_task *utask;
1507         unsigned long orig_ret_vaddr, trampoline_vaddr;
1508         bool chained = false;
1509
1510         if (!get_xol_area())
1511                 return;
1512
1513         utask = get_utask();
1514         if (!utask)
1515                 return;
1516
1517         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1518                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1519                                 " nestedness limit pid/tgid=%d/%d\n",
1520                                 current->pid, current->tgid);
1521                 return;
1522         }
1523
1524         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1525         if (!ri)
1526                 goto fail;
1527
1528         trampoline_vaddr = get_trampoline_vaddr();
1529         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1530         if (orig_ret_vaddr == -1)
1531                 goto fail;
1532
1533         /*
1534          * We don't want to keep trampoline address in stack, rather keep the
1535          * original return address of first caller thru all the consequent
1536          * instances. This also makes breakpoint unwrapping easier.
1537          */
1538         if (orig_ret_vaddr == trampoline_vaddr) {
1539                 if (!utask->return_instances) {
1540                         /*
1541                          * This situation is not possible. Likely we have an
1542                          * attack from user-space.
1543                          */
1544                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1545                                                 current->pid, current->tgid);
1546                         goto fail;
1547                 }
1548
1549                 chained = true;
1550                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1551         }
1552
1553         atomic_inc(&uprobe->ref);
1554         ri->uprobe = uprobe;
1555         ri->func = instruction_pointer(regs);
1556         ri->orig_ret_vaddr = orig_ret_vaddr;
1557         ri->chained = chained;
1558
1559         utask->depth++;
1560
1561         /* add instance to the stack */
1562         ri->next = utask->return_instances;
1563         utask->return_instances = ri;
1564
1565         return;
1566
1567  fail:
1568         kfree(ri);
1569 }
1570
1571 /* Prepare to single-step probed instruction out of line. */
1572 static int
1573 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1574 {
1575         struct uprobe_task *utask;
1576         unsigned long xol_vaddr;
1577         int err;
1578
1579         utask = get_utask();
1580         if (!utask)
1581                 return -ENOMEM;
1582
1583         xol_vaddr = xol_get_insn_slot(uprobe);
1584         if (!xol_vaddr)
1585                 return -ENOMEM;
1586
1587         utask->xol_vaddr = xol_vaddr;
1588         utask->vaddr = bp_vaddr;
1589
1590         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1591         if (unlikely(err)) {
1592                 xol_free_insn_slot(current);
1593                 return err;
1594         }
1595
1596         utask->active_uprobe = uprobe;
1597         utask->state = UTASK_SSTEP;
1598         return 0;
1599 }
1600
1601 /*
1602  * If we are singlestepping, then ensure this thread is not connected to
1603  * non-fatal signals until completion of singlestep.  When xol insn itself
1604  * triggers the signal,  restart the original insn even if the task is
1605  * already SIGKILL'ed (since coredump should report the correct ip).  This
1606  * is even more important if the task has a handler for SIGSEGV/etc, The
1607  * _same_ instruction should be repeated again after return from the signal
1608  * handler, and SSTEP can never finish in this case.
1609  */
1610 bool uprobe_deny_signal(void)
1611 {
1612         struct task_struct *t = current;
1613         struct uprobe_task *utask = t->utask;
1614
1615         if (likely(!utask || !utask->active_uprobe))
1616                 return false;
1617
1618         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1619
1620         if (signal_pending(t)) {
1621                 spin_lock_irq(&t->sighand->siglock);
1622                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1623                 spin_unlock_irq(&t->sighand->siglock);
1624
1625                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1626                         utask->state = UTASK_SSTEP_TRAPPED;
1627                         set_tsk_thread_flag(t, TIF_UPROBE);
1628                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1629                 }
1630         }
1631
1632         return true;
1633 }
1634
1635 static void mmf_recalc_uprobes(struct mm_struct *mm)
1636 {
1637         struct vm_area_struct *vma;
1638
1639         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1640                 if (!valid_vma(vma, false))
1641                         continue;
1642                 /*
1643                  * This is not strictly accurate, we can race with
1644                  * uprobe_unregister() and see the already removed
1645                  * uprobe if delete_uprobe() was not yet called.
1646                  * Or this uprobe can be filtered out.
1647                  */
1648                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1649                         return;
1650         }
1651
1652         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1653 }
1654
1655 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1656 {
1657         struct page *page;
1658         uprobe_opcode_t opcode;
1659         int result;
1660
1661         pagefault_disable();
1662         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1663                                                         sizeof(opcode));
1664         pagefault_enable();
1665
1666         if (likely(result == 0))
1667                 goto out;
1668
1669         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1670         if (result < 0)
1671                 return result;
1672
1673         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1674         put_page(page);
1675  out:
1676         /* This needs to return true for any variant of the trap insn */
1677         return is_trap_insn(&opcode);
1678 }
1679
1680 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1681 {
1682         struct mm_struct *mm = current->mm;
1683         struct uprobe *uprobe = NULL;
1684         struct vm_area_struct *vma;
1685
1686         down_read(&mm->mmap_sem);
1687         vma = find_vma(mm, bp_vaddr);
1688         if (vma && vma->vm_start <= bp_vaddr) {
1689                 if (valid_vma(vma, false)) {
1690                         struct inode *inode = file_inode(vma->vm_file);
1691                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1692
1693                         uprobe = find_uprobe(inode, offset);
1694                 }
1695
1696                 if (!uprobe)
1697                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1698         } else {
1699                 *is_swbp = -EFAULT;
1700         }
1701
1702         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1703                 mmf_recalc_uprobes(mm);
1704         up_read(&mm->mmap_sem);
1705
1706         return uprobe;
1707 }
1708
1709 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1710 {
1711         struct uprobe_consumer *uc;
1712         int remove = UPROBE_HANDLER_REMOVE;
1713         bool need_prep = false; /* prepare return uprobe, when needed */
1714
1715         down_read(&uprobe->register_rwsem);
1716         for (uc = uprobe->consumers; uc; uc = uc->next) {
1717                 int rc = 0;
1718
1719                 if (uc->handler) {
1720                         rc = uc->handler(uc, regs);
1721                         WARN(rc & ~UPROBE_HANDLER_MASK,
1722                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1723                 }
1724
1725                 if (uc->ret_handler)
1726                         need_prep = true;
1727
1728                 remove &= rc;
1729         }
1730
1731         if (need_prep && !remove)
1732                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1733
1734         if (remove && uprobe->consumers) {
1735                 WARN_ON(!uprobe_is_active(uprobe));
1736                 unapply_uprobe(uprobe, current->mm);
1737         }
1738         up_read(&uprobe->register_rwsem);
1739 }
1740
1741 static void
1742 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1743 {
1744         struct uprobe *uprobe = ri->uprobe;
1745         struct uprobe_consumer *uc;
1746
1747         down_read(&uprobe->register_rwsem);
1748         for (uc = uprobe->consumers; uc; uc = uc->next) {
1749                 if (uc->ret_handler)
1750                         uc->ret_handler(uc, ri->func, regs);
1751         }
1752         up_read(&uprobe->register_rwsem);
1753 }
1754
1755 static bool handle_trampoline(struct pt_regs *regs)
1756 {
1757         struct uprobe_task *utask;
1758         struct return_instance *ri, *tmp;
1759         bool chained;
1760
1761         utask = current->utask;
1762         if (!utask)
1763                 return false;
1764
1765         ri = utask->return_instances;
1766         if (!ri)
1767                 return false;
1768
1769         /*
1770          * TODO: we should throw out return_instance's invalidated by
1771          * longjmp(), currently we assume that the probed function always
1772          * returns.
1773          */
1774         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1775
1776         for (;;) {
1777                 handle_uretprobe_chain(ri, regs);
1778
1779                 chained = ri->chained;
1780                 put_uprobe(ri->uprobe);
1781
1782                 tmp = ri;
1783                 ri = ri->next;
1784                 kfree(tmp);
1785                 utask->depth--;
1786
1787                 if (!chained)
1788                         break;
1789                 BUG_ON(!ri);
1790         }
1791
1792         utask->return_instances = ri;
1793
1794         return true;
1795 }
1796
1797 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1798 {
1799         return false;
1800 }
1801
1802 /*
1803  * Run handler and ask thread to singlestep.
1804  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1805  */
1806 static void handle_swbp(struct pt_regs *regs)
1807 {
1808         struct uprobe *uprobe;
1809         unsigned long bp_vaddr;
1810         int uninitialized_var(is_swbp);
1811
1812         bp_vaddr = uprobe_get_swbp_addr(regs);
1813         if (bp_vaddr == get_trampoline_vaddr()) {
1814                 if (handle_trampoline(regs))
1815                         return;
1816
1817                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1818                                                 current->pid, current->tgid);
1819         }
1820
1821         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1822         if (!uprobe) {
1823                 if (is_swbp > 0) {
1824                         /* No matching uprobe; signal SIGTRAP. */
1825                         send_sig(SIGTRAP, current, 0);
1826                 } else {
1827                         /*
1828                          * Either we raced with uprobe_unregister() or we can't
1829                          * access this memory. The latter is only possible if
1830                          * another thread plays with our ->mm. In both cases
1831                          * we can simply restart. If this vma was unmapped we
1832                          * can pretend this insn was not executed yet and get
1833                          * the (correct) SIGSEGV after restart.
1834                          */
1835                         instruction_pointer_set(regs, bp_vaddr);
1836                 }
1837                 return;
1838         }
1839
1840         /* change it in advance for ->handler() and restart */
1841         instruction_pointer_set(regs, bp_vaddr);
1842
1843         /*
1844          * TODO: move copy_insn/etc into _register and remove this hack.
1845          * After we hit the bp, _unregister + _register can install the
1846          * new and not-yet-analyzed uprobe at the same address, restart.
1847          */
1848         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1849         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1850                 goto out;
1851
1852         /* Tracing handlers use ->utask to communicate with fetch methods */
1853         if (!get_utask())
1854                 goto out;
1855
1856         if (arch_uprobe_ignore(&uprobe->arch, regs))
1857                 goto out;
1858
1859         handler_chain(uprobe, regs);
1860
1861         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1862                 goto out;
1863
1864         if (!pre_ssout(uprobe, regs, bp_vaddr))
1865                 return;
1866
1867         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1868 out:
1869         put_uprobe(uprobe);
1870 }
1871
1872 /*
1873  * Perform required fix-ups and disable singlestep.
1874  * Allow pending signals to take effect.
1875  */
1876 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1877 {
1878         struct uprobe *uprobe;
1879         int err = 0;
1880
1881         uprobe = utask->active_uprobe;
1882         if (utask->state == UTASK_SSTEP_ACK)
1883                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1884         else if (utask->state == UTASK_SSTEP_TRAPPED)
1885                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1886         else
1887                 WARN_ON_ONCE(1);
1888
1889         put_uprobe(uprobe);
1890         utask->active_uprobe = NULL;
1891         utask->state = UTASK_RUNNING;
1892         xol_free_insn_slot(current);
1893
1894         spin_lock_irq(&current->sighand->siglock);
1895         recalc_sigpending(); /* see uprobe_deny_signal() */
1896         spin_unlock_irq(&current->sighand->siglock);
1897
1898         if (unlikely(err)) {
1899                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1900                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1901         }
1902 }
1903
1904 /*
1905  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1906  * allows the thread to return from interrupt. After that handle_swbp()
1907  * sets utask->active_uprobe.
1908  *
1909  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1910  * and allows the thread to return from interrupt.
1911  *
1912  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1913  * uprobe_notify_resume().
1914  */
1915 void uprobe_notify_resume(struct pt_regs *regs)
1916 {
1917         struct uprobe_task *utask;
1918
1919         clear_thread_flag(TIF_UPROBE);
1920
1921         utask = current->utask;
1922         if (utask && utask->active_uprobe)
1923                 handle_singlestep(utask, regs);
1924         else
1925                 handle_swbp(regs);
1926 }
1927
1928 /*
1929  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1930  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1931  */
1932 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1933 {
1934         if (!current->mm)
1935                 return 0;
1936
1937         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1938             (!current->utask || !current->utask->return_instances))
1939                 return 0;
1940
1941         set_thread_flag(TIF_UPROBE);
1942         return 1;
1943 }
1944
1945 /*
1946  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1947  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1948  */
1949 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1950 {
1951         struct uprobe_task *utask = current->utask;
1952
1953         if (!current->mm || !utask || !utask->active_uprobe)
1954                 /* task is currently not uprobed */
1955                 return 0;
1956
1957         utask->state = UTASK_SSTEP_ACK;
1958         set_thread_flag(TIF_UPROBE);
1959         return 1;
1960 }
1961
1962 static struct notifier_block uprobe_exception_nb = {
1963         .notifier_call          = arch_uprobe_exception_notify,
1964         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1965 };
1966
1967 static int __init init_uprobes(void)
1968 {
1969         int i;
1970
1971         for (i = 0; i < UPROBES_HASH_SZ; i++)
1972                 mutex_init(&uprobes_mmap_mutex[i]);
1973
1974         if (percpu_init_rwsem(&dup_mmap_sem))
1975                 return -ENOMEM;
1976
1977         return register_die_notifier(&uprobe_exception_nb);
1978 }
1979 __initcall(init_uprobes);