HID: picolcd: sanity check report size in raw_event() callback
[firefly-linux-kernel-4.4.55.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN        0
64
65 struct uprobe {
66         struct rb_node          rb_node;        /* node in the rb tree */
67         atomic_t                ref;
68         struct rw_semaphore     register_rwsem;
69         struct rw_semaphore     consumer_rwsem;
70         struct list_head        pending_list;
71         struct uprobe_consumer  *consumers;
72         struct inode            *inode;         /* Also hold a ref to inode */
73         loff_t                  offset;
74         unsigned long           flags;
75
76         /*
77          * The generic code assumes that it has two members of unknown type
78          * owned by the arch-specific code:
79          *
80          *      insn -  copy_insn() saves the original instruction here for
81          *              arch_uprobe_analyze_insn().
82          *
83          *      ixol -  potentially modified instruction to execute out of
84          *              line, copied to xol_area by xol_get_insn_slot().
85          */
86         struct arch_uprobe      arch;
87 };
88
89 struct return_instance {
90         struct uprobe           *uprobe;
91         unsigned long           func;
92         unsigned long           orig_ret_vaddr; /* original return address */
93         bool                    chained;        /* true, if instance is nested */
94
95         struct return_instance  *next;          /* keep as stack */
96 };
97
98 /*
99  * Execute out of line area: anonymous executable mapping installed
100  * by the probed task to execute the copy of the original instruction
101  * mangled by set_swbp().
102  *
103  * On a breakpoint hit, thread contests for a slot.  It frees the
104  * slot after singlestep. Currently a fixed number of slots are
105  * allocated.
106  */
107 struct xol_area {
108         wait_queue_head_t       wq;             /* if all slots are busy */
109         atomic_t                slot_count;     /* number of in-use slots */
110         unsigned long           *bitmap;        /* 0 = free slot */
111         struct page             *page;
112
113         /*
114          * We keep the vma's vm_start rather than a pointer to the vma
115          * itself.  The probed process or a naughty kernel module could make
116          * the vma go away, and we must handle that reasonably gracefully.
117          */
118         unsigned long           vaddr;          /* Page(s) of instruction slots */
119 };
120
121 /*
122  * valid_vma: Verify if the specified vma is an executable vma
123  * Relax restrictions while unregistering: vm_flags might have
124  * changed after breakpoint was inserted.
125  *      - is_register: indicates if we are in register context.
126  *      - Return 1 if the specified virtual address is in an
127  *        executable vma.
128  */
129 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
130 {
131         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
132
133         if (is_register)
134                 flags |= VM_WRITE;
135
136         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
137 }
138
139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
140 {
141         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
142 }
143
144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
145 {
146         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
147 }
148
149 /**
150  * __replace_page - replace page in vma by new page.
151  * based on replace_page in mm/ksm.c
152  *
153  * @vma:      vma that holds the pte pointing to page
154  * @addr:     address the old @page is mapped at
155  * @page:     the cowed page we are replacing by kpage
156  * @kpage:    the modified page we replace page by
157  *
158  * Returns 0 on success, -EFAULT on failure.
159  */
160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161                                 struct page *page, struct page *kpage)
162 {
163         struct mm_struct *mm = vma->vm_mm;
164         spinlock_t *ptl;
165         pte_t *ptep;
166         int err;
167         /* For mmu_notifiers */
168         const unsigned long mmun_start = addr;
169         const unsigned long mmun_end   = addr + PAGE_SIZE;
170
171         /* For try_to_free_swap() and munlock_vma_page() below */
172         lock_page(page);
173
174         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
175         err = -EAGAIN;
176         ptep = page_check_address(page, mm, addr, &ptl, 0);
177         if (!ptep)
178                 goto unlock;
179
180         get_page(kpage);
181         page_add_new_anon_rmap(kpage, vma, addr);
182
183         if (!PageAnon(page)) {
184                 dec_mm_counter(mm, MM_FILEPAGES);
185                 inc_mm_counter(mm, MM_ANONPAGES);
186         }
187
188         flush_cache_page(vma, addr, pte_pfn(*ptep));
189         ptep_clear_flush(vma, addr, ptep);
190         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
191
192         page_remove_rmap(page);
193         if (!page_mapped(page))
194                 try_to_free_swap(page);
195         pte_unmap_unlock(ptep, ptl);
196
197         if (vma->vm_flags & VM_LOCKED)
198                 munlock_vma_page(page);
199         put_page(page);
200
201         err = 0;
202  unlock:
203         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
204         unlock_page(page);
205         return err;
206 }
207
208 /**
209  * is_swbp_insn - check if instruction is breakpoint instruction.
210  * @insn: instruction to be checked.
211  * Default implementation of is_swbp_insn
212  * Returns true if @insn is a breakpoint instruction.
213  */
214 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
215 {
216         return *insn == UPROBE_SWBP_INSN;
217 }
218
219 /**
220  * is_trap_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_trap_insn
223  * Returns true if @insn is a breakpoint instruction.
224  *
225  * This function is needed for the case where an architecture has multiple
226  * trap instructions (like powerpc).
227  */
228 bool __weak is_trap_insn(uprobe_opcode_t *insn)
229 {
230         return is_swbp_insn(insn);
231 }
232
233 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
234 {
235         void *kaddr = kmap_atomic(page);
236         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
237         kunmap_atomic(kaddr);
238 }
239
240 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
241 {
242         void *kaddr = kmap_atomic(page);
243         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
244         kunmap_atomic(kaddr);
245 }
246
247 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
248 {
249         uprobe_opcode_t old_opcode;
250         bool is_swbp;
251
252         /*
253          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
254          * We do not check if it is any other 'trap variant' which could
255          * be conditional trap instruction such as the one powerpc supports.
256          *
257          * The logic is that we do not care if the underlying instruction
258          * is a trap variant; uprobes always wins over any other (gdb)
259          * breakpoint.
260          */
261         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
262         is_swbp = is_swbp_insn(&old_opcode);
263
264         if (is_swbp_insn(new_opcode)) {
265                 if (is_swbp)            /* register: already installed? */
266                         return 0;
267         } else {
268                 if (!is_swbp)           /* unregister: was it changed by us? */
269                         return 0;
270         }
271
272         return 1;
273 }
274
275 /*
276  * NOTE:
277  * Expect the breakpoint instruction to be the smallest size instruction for
278  * the architecture. If an arch has variable length instruction and the
279  * breakpoint instruction is not of the smallest length instruction
280  * supported by that architecture then we need to modify is_trap_at_addr and
281  * uprobe_write_opcode accordingly. This would never be a problem for archs
282  * that have fixed length instructions.
283  *
284  * uprobe_write_opcode - write the opcode at a given virtual address.
285  * @mm: the probed process address space.
286  * @vaddr: the virtual address to store the opcode.
287  * @opcode: opcode to be written at @vaddr.
288  *
289  * Called with mm->mmap_sem held for write.
290  * Return 0 (success) or a negative errno.
291  */
292 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
293                         uprobe_opcode_t opcode)
294 {
295         struct page *old_page, *new_page;
296         struct vm_area_struct *vma;
297         int ret;
298
299 retry:
300         /* Read the page with vaddr into memory */
301         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
302         if (ret <= 0)
303                 return ret;
304
305         ret = verify_opcode(old_page, vaddr, &opcode);
306         if (ret <= 0)
307                 goto put_old;
308
309         ret = anon_vma_prepare(vma);
310         if (ret)
311                 goto put_old;
312
313         ret = -ENOMEM;
314         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
315         if (!new_page)
316                 goto put_old;
317
318         if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
319                 goto put_new;
320
321         __SetPageUptodate(new_page);
322         copy_highpage(new_page, old_page);
323         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324
325         ret = __replace_page(vma, vaddr, old_page, new_page);
326         if (ret)
327                 mem_cgroup_uncharge_page(new_page);
328
329 put_new:
330         page_cache_release(new_page);
331 put_old:
332         put_page(old_page);
333
334         if (unlikely(ret == -EAGAIN))
335                 goto retry;
336         return ret;
337 }
338
339 /**
340  * set_swbp - store breakpoint at a given address.
341  * @auprobe: arch specific probepoint information.
342  * @mm: the probed process address space.
343  * @vaddr: the virtual address to insert the opcode.
344  *
345  * For mm @mm, store the breakpoint instruction at @vaddr.
346  * Return 0 (success) or a negative errno.
347  */
348 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
349 {
350         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
351 }
352
353 /**
354  * set_orig_insn - Restore the original instruction.
355  * @mm: the probed process address space.
356  * @auprobe: arch specific probepoint information.
357  * @vaddr: the virtual address to insert the opcode.
358  *
359  * For mm @mm, restore the original opcode (opcode) at @vaddr.
360  * Return 0 (success) or a negative errno.
361  */
362 int __weak
363 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
364 {
365         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
366 }
367
368 static int match_uprobe(struct uprobe *l, struct uprobe *r)
369 {
370         if (l->inode < r->inode)
371                 return -1;
372
373         if (l->inode > r->inode)
374                 return 1;
375
376         if (l->offset < r->offset)
377                 return -1;
378
379         if (l->offset > r->offset)
380                 return 1;
381
382         return 0;
383 }
384
385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
386 {
387         struct uprobe u = { .inode = inode, .offset = offset };
388         struct rb_node *n = uprobes_tree.rb_node;
389         struct uprobe *uprobe;
390         int match;
391
392         while (n) {
393                 uprobe = rb_entry(n, struct uprobe, rb_node);
394                 match = match_uprobe(&u, uprobe);
395                 if (!match) {
396                         atomic_inc(&uprobe->ref);
397                         return uprobe;
398                 }
399
400                 if (match < 0)
401                         n = n->rb_left;
402                 else
403                         n = n->rb_right;
404         }
405         return NULL;
406 }
407
408 /*
409  * Find a uprobe corresponding to a given inode:offset
410  * Acquires uprobes_treelock
411  */
412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
413 {
414         struct uprobe *uprobe;
415
416         spin_lock(&uprobes_treelock);
417         uprobe = __find_uprobe(inode, offset);
418         spin_unlock(&uprobes_treelock);
419
420         return uprobe;
421 }
422
423 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
424 {
425         struct rb_node **p = &uprobes_tree.rb_node;
426         struct rb_node *parent = NULL;
427         struct uprobe *u;
428         int match;
429
430         while (*p) {
431                 parent = *p;
432                 u = rb_entry(parent, struct uprobe, rb_node);
433                 match = match_uprobe(uprobe, u);
434                 if (!match) {
435                         atomic_inc(&u->ref);
436                         return u;
437                 }
438
439                 if (match < 0)
440                         p = &parent->rb_left;
441                 else
442                         p = &parent->rb_right;
443
444         }
445
446         u = NULL;
447         rb_link_node(&uprobe->rb_node, parent, p);
448         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
449         /* get access + creation ref */
450         atomic_set(&uprobe->ref, 2);
451
452         return u;
453 }
454
455 /*
456  * Acquire uprobes_treelock.
457  * Matching uprobe already exists in rbtree;
458  *      increment (access refcount) and return the matching uprobe.
459  *
460  * No matching uprobe; insert the uprobe in rb_tree;
461  *      get a double refcount (access + creation) and return NULL.
462  */
463 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
464 {
465         struct uprobe *u;
466
467         spin_lock(&uprobes_treelock);
468         u = __insert_uprobe(uprobe);
469         spin_unlock(&uprobes_treelock);
470
471         return u;
472 }
473
474 static void put_uprobe(struct uprobe *uprobe)
475 {
476         if (atomic_dec_and_test(&uprobe->ref))
477                 kfree(uprobe);
478 }
479
480 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
481 {
482         struct uprobe *uprobe, *cur_uprobe;
483
484         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
485         if (!uprobe)
486                 return NULL;
487
488         uprobe->inode = igrab(inode);
489         uprobe->offset = offset;
490         init_rwsem(&uprobe->register_rwsem);
491         init_rwsem(&uprobe->consumer_rwsem);
492
493         /* add to uprobes_tree, sorted on inode:offset */
494         cur_uprobe = insert_uprobe(uprobe);
495         /* a uprobe exists for this inode:offset combination */
496         if (cur_uprobe) {
497                 kfree(uprobe);
498                 uprobe = cur_uprobe;
499                 iput(inode);
500         }
501
502         return uprobe;
503 }
504
505 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
506 {
507         down_write(&uprobe->consumer_rwsem);
508         uc->next = uprobe->consumers;
509         uprobe->consumers = uc;
510         up_write(&uprobe->consumer_rwsem);
511 }
512
513 /*
514  * For uprobe @uprobe, delete the consumer @uc.
515  * Return true if the @uc is deleted successfully
516  * or return false.
517  */
518 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
519 {
520         struct uprobe_consumer **con;
521         bool ret = false;
522
523         down_write(&uprobe->consumer_rwsem);
524         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
525                 if (*con == uc) {
526                         *con = uc->next;
527                         ret = true;
528                         break;
529                 }
530         }
531         up_write(&uprobe->consumer_rwsem);
532
533         return ret;
534 }
535
536 static int __copy_insn(struct address_space *mapping, struct file *filp,
537                         void *insn, int nbytes, loff_t offset)
538 {
539         struct page *page;
540         /*
541          * Ensure that the page that has the original instruction is populated
542          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
543          * see uprobe_register().
544          */
545         if (mapping->a_ops->readpage)
546                 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
547         else
548                 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
549         if (IS_ERR(page))
550                 return PTR_ERR(page);
551
552         copy_from_page(page, offset, insn, nbytes);
553         page_cache_release(page);
554
555         return 0;
556 }
557
558 static int copy_insn(struct uprobe *uprobe, struct file *filp)
559 {
560         struct address_space *mapping = uprobe->inode->i_mapping;
561         loff_t offs = uprobe->offset;
562         void *insn = &uprobe->arch.insn;
563         int size = sizeof(uprobe->arch.insn);
564         int len, err = -EIO;
565
566         /* Copy only available bytes, -EIO if nothing was read */
567         do {
568                 if (offs >= i_size_read(uprobe->inode))
569                         break;
570
571                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
572                 err = __copy_insn(mapping, filp, insn, len, offs);
573                 if (err)
574                         break;
575
576                 insn += len;
577                 offs += len;
578                 size -= len;
579         } while (size);
580
581         return err;
582 }
583
584 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
585                                 struct mm_struct *mm, unsigned long vaddr)
586 {
587         int ret = 0;
588
589         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
590                 return ret;
591
592         /* TODO: move this into _register, until then we abuse this sem. */
593         down_write(&uprobe->consumer_rwsem);
594         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
595                 goto out;
596
597         ret = copy_insn(uprobe, file);
598         if (ret)
599                 goto out;
600
601         ret = -ENOTSUPP;
602         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
603                 goto out;
604
605         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
606         if (ret)
607                 goto out;
608
609         /* uprobe_write_opcode() assumes we don't cross page boundary */
610         BUG_ON((uprobe->offset & ~PAGE_MASK) +
611                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
612
613         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
614         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
615
616  out:
617         up_write(&uprobe->consumer_rwsem);
618
619         return ret;
620 }
621
622 static inline bool consumer_filter(struct uprobe_consumer *uc,
623                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
624 {
625         return !uc->filter || uc->filter(uc, ctx, mm);
626 }
627
628 static bool filter_chain(struct uprobe *uprobe,
629                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
630 {
631         struct uprobe_consumer *uc;
632         bool ret = false;
633
634         down_read(&uprobe->consumer_rwsem);
635         for (uc = uprobe->consumers; uc; uc = uc->next) {
636                 ret = consumer_filter(uc, ctx, mm);
637                 if (ret)
638                         break;
639         }
640         up_read(&uprobe->consumer_rwsem);
641
642         return ret;
643 }
644
645 static int
646 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
647                         struct vm_area_struct *vma, unsigned long vaddr)
648 {
649         bool first_uprobe;
650         int ret;
651
652         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
653         if (ret)
654                 return ret;
655
656         /*
657          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
658          * the task can hit this breakpoint right after __replace_page().
659          */
660         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
661         if (first_uprobe)
662                 set_bit(MMF_HAS_UPROBES, &mm->flags);
663
664         ret = set_swbp(&uprobe->arch, mm, vaddr);
665         if (!ret)
666                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
667         else if (first_uprobe)
668                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
669
670         return ret;
671 }
672
673 static int
674 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
675 {
676         set_bit(MMF_RECALC_UPROBES, &mm->flags);
677         return set_orig_insn(&uprobe->arch, mm, vaddr);
678 }
679
680 static inline bool uprobe_is_active(struct uprobe *uprobe)
681 {
682         return !RB_EMPTY_NODE(&uprobe->rb_node);
683 }
684 /*
685  * There could be threads that have already hit the breakpoint. They
686  * will recheck the current insn and restart if find_uprobe() fails.
687  * See find_active_uprobe().
688  */
689 static void delete_uprobe(struct uprobe *uprobe)
690 {
691         if (WARN_ON(!uprobe_is_active(uprobe)))
692                 return;
693
694         spin_lock(&uprobes_treelock);
695         rb_erase(&uprobe->rb_node, &uprobes_tree);
696         spin_unlock(&uprobes_treelock);
697         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
698         iput(uprobe->inode);
699         put_uprobe(uprobe);
700 }
701
702 struct map_info {
703         struct map_info *next;
704         struct mm_struct *mm;
705         unsigned long vaddr;
706 };
707
708 static inline struct map_info *free_map_info(struct map_info *info)
709 {
710         struct map_info *next = info->next;
711         kfree(info);
712         return next;
713 }
714
715 static struct map_info *
716 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
717 {
718         unsigned long pgoff = offset >> PAGE_SHIFT;
719         struct vm_area_struct *vma;
720         struct map_info *curr = NULL;
721         struct map_info *prev = NULL;
722         struct map_info *info;
723         int more = 0;
724
725  again:
726         mutex_lock(&mapping->i_mmap_mutex);
727         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
728                 if (!valid_vma(vma, is_register))
729                         continue;
730
731                 if (!prev && !more) {
732                         /*
733                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
734                          * reclaim. This is optimistic, no harm done if it fails.
735                          */
736                         prev = kmalloc(sizeof(struct map_info),
737                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
738                         if (prev)
739                                 prev->next = NULL;
740                 }
741                 if (!prev) {
742                         more++;
743                         continue;
744                 }
745
746                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
747                         continue;
748
749                 info = prev;
750                 prev = prev->next;
751                 info->next = curr;
752                 curr = info;
753
754                 info->mm = vma->vm_mm;
755                 info->vaddr = offset_to_vaddr(vma, offset);
756         }
757         mutex_unlock(&mapping->i_mmap_mutex);
758
759         if (!more)
760                 goto out;
761
762         prev = curr;
763         while (curr) {
764                 mmput(curr->mm);
765                 curr = curr->next;
766         }
767
768         do {
769                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
770                 if (!info) {
771                         curr = ERR_PTR(-ENOMEM);
772                         goto out;
773                 }
774                 info->next = prev;
775                 prev = info;
776         } while (--more);
777
778         goto again;
779  out:
780         while (prev)
781                 prev = free_map_info(prev);
782         return curr;
783 }
784
785 static int
786 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
787 {
788         bool is_register = !!new;
789         struct map_info *info;
790         int err = 0;
791
792         percpu_down_write(&dup_mmap_sem);
793         info = build_map_info(uprobe->inode->i_mapping,
794                                         uprobe->offset, is_register);
795         if (IS_ERR(info)) {
796                 err = PTR_ERR(info);
797                 goto out;
798         }
799
800         while (info) {
801                 struct mm_struct *mm = info->mm;
802                 struct vm_area_struct *vma;
803
804                 if (err && is_register)
805                         goto free;
806
807                 down_write(&mm->mmap_sem);
808                 vma = find_vma(mm, info->vaddr);
809                 if (!vma || !valid_vma(vma, is_register) ||
810                     file_inode(vma->vm_file) != uprobe->inode)
811                         goto unlock;
812
813                 if (vma->vm_start > info->vaddr ||
814                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
815                         goto unlock;
816
817                 if (is_register) {
818                         /* consult only the "caller", new consumer. */
819                         if (consumer_filter(new,
820                                         UPROBE_FILTER_REGISTER, mm))
821                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
822                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
823                         if (!filter_chain(uprobe,
824                                         UPROBE_FILTER_UNREGISTER, mm))
825                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
826                 }
827
828  unlock:
829                 up_write(&mm->mmap_sem);
830  free:
831                 mmput(mm);
832                 info = free_map_info(info);
833         }
834  out:
835         percpu_up_write(&dup_mmap_sem);
836         return err;
837 }
838
839 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
840 {
841         consumer_add(uprobe, uc);
842         return register_for_each_vma(uprobe, uc);
843 }
844
845 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
846 {
847         int err;
848
849         if (WARN_ON(!consumer_del(uprobe, uc)))
850                 return;
851
852         err = register_for_each_vma(uprobe, NULL);
853         /* TODO : cant unregister? schedule a worker thread */
854         if (!uprobe->consumers && !err)
855                 delete_uprobe(uprobe);
856 }
857
858 /*
859  * uprobe_register - register a probe
860  * @inode: the file in which the probe has to be placed.
861  * @offset: offset from the start of the file.
862  * @uc: information on howto handle the probe..
863  *
864  * Apart from the access refcount, uprobe_register() takes a creation
865  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
866  * inserted into the rbtree (i.e first consumer for a @inode:@offset
867  * tuple).  Creation refcount stops uprobe_unregister from freeing the
868  * @uprobe even before the register operation is complete. Creation
869  * refcount is released when the last @uc for the @uprobe
870  * unregisters.
871  *
872  * Return errno if it cannot successully install probes
873  * else return 0 (success)
874  */
875 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
876 {
877         struct uprobe *uprobe;
878         int ret;
879
880         /* Uprobe must have at least one set consumer */
881         if (!uc->handler && !uc->ret_handler)
882                 return -EINVAL;
883
884         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
885         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
886                 return -EIO;
887         /* Racy, just to catch the obvious mistakes */
888         if (offset > i_size_read(inode))
889                 return -EINVAL;
890
891  retry:
892         uprobe = alloc_uprobe(inode, offset);
893         if (!uprobe)
894                 return -ENOMEM;
895         /*
896          * We can race with uprobe_unregister()->delete_uprobe().
897          * Check uprobe_is_active() and retry if it is false.
898          */
899         down_write(&uprobe->register_rwsem);
900         ret = -EAGAIN;
901         if (likely(uprobe_is_active(uprobe))) {
902                 ret = __uprobe_register(uprobe, uc);
903                 if (ret)
904                         __uprobe_unregister(uprobe, uc);
905         }
906         up_write(&uprobe->register_rwsem);
907         put_uprobe(uprobe);
908
909         if (unlikely(ret == -EAGAIN))
910                 goto retry;
911         return ret;
912 }
913 EXPORT_SYMBOL_GPL(uprobe_register);
914
915 /*
916  * uprobe_apply - unregister a already registered probe.
917  * @inode: the file in which the probe has to be removed.
918  * @offset: offset from the start of the file.
919  * @uc: consumer which wants to add more or remove some breakpoints
920  * @add: add or remove the breakpoints
921  */
922 int uprobe_apply(struct inode *inode, loff_t offset,
923                         struct uprobe_consumer *uc, bool add)
924 {
925         struct uprobe *uprobe;
926         struct uprobe_consumer *con;
927         int ret = -ENOENT;
928
929         uprobe = find_uprobe(inode, offset);
930         if (WARN_ON(!uprobe))
931                 return ret;
932
933         down_write(&uprobe->register_rwsem);
934         for (con = uprobe->consumers; con && con != uc ; con = con->next)
935                 ;
936         if (con)
937                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
938         up_write(&uprobe->register_rwsem);
939         put_uprobe(uprobe);
940
941         return ret;
942 }
943
944 /*
945  * uprobe_unregister - unregister a already registered probe.
946  * @inode: the file in which the probe has to be removed.
947  * @offset: offset from the start of the file.
948  * @uc: identify which probe if multiple probes are colocated.
949  */
950 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
951 {
952         struct uprobe *uprobe;
953
954         uprobe = find_uprobe(inode, offset);
955         if (WARN_ON(!uprobe))
956                 return;
957
958         down_write(&uprobe->register_rwsem);
959         __uprobe_unregister(uprobe, uc);
960         up_write(&uprobe->register_rwsem);
961         put_uprobe(uprobe);
962 }
963 EXPORT_SYMBOL_GPL(uprobe_unregister);
964
965 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
966 {
967         struct vm_area_struct *vma;
968         int err = 0;
969
970         down_read(&mm->mmap_sem);
971         for (vma = mm->mmap; vma; vma = vma->vm_next) {
972                 unsigned long vaddr;
973                 loff_t offset;
974
975                 if (!valid_vma(vma, false) ||
976                     file_inode(vma->vm_file) != uprobe->inode)
977                         continue;
978
979                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
980                 if (uprobe->offset <  offset ||
981                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
982                         continue;
983
984                 vaddr = offset_to_vaddr(vma, uprobe->offset);
985                 err |= remove_breakpoint(uprobe, mm, vaddr);
986         }
987         up_read(&mm->mmap_sem);
988
989         return err;
990 }
991
992 static struct rb_node *
993 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
994 {
995         struct rb_node *n = uprobes_tree.rb_node;
996
997         while (n) {
998                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
999
1000                 if (inode < u->inode) {
1001                         n = n->rb_left;
1002                 } else if (inode > u->inode) {
1003                         n = n->rb_right;
1004                 } else {
1005                         if (max < u->offset)
1006                                 n = n->rb_left;
1007                         else if (min > u->offset)
1008                                 n = n->rb_right;
1009                         else
1010                                 break;
1011                 }
1012         }
1013
1014         return n;
1015 }
1016
1017 /*
1018  * For a given range in vma, build a list of probes that need to be inserted.
1019  */
1020 static void build_probe_list(struct inode *inode,
1021                                 struct vm_area_struct *vma,
1022                                 unsigned long start, unsigned long end,
1023                                 struct list_head *head)
1024 {
1025         loff_t min, max;
1026         struct rb_node *n, *t;
1027         struct uprobe *u;
1028
1029         INIT_LIST_HEAD(head);
1030         min = vaddr_to_offset(vma, start);
1031         max = min + (end - start) - 1;
1032
1033         spin_lock(&uprobes_treelock);
1034         n = find_node_in_range(inode, min, max);
1035         if (n) {
1036                 for (t = n; t; t = rb_prev(t)) {
1037                         u = rb_entry(t, struct uprobe, rb_node);
1038                         if (u->inode != inode || u->offset < min)
1039                                 break;
1040                         list_add(&u->pending_list, head);
1041                         atomic_inc(&u->ref);
1042                 }
1043                 for (t = n; (t = rb_next(t)); ) {
1044                         u = rb_entry(t, struct uprobe, rb_node);
1045                         if (u->inode != inode || u->offset > max)
1046                                 break;
1047                         list_add(&u->pending_list, head);
1048                         atomic_inc(&u->ref);
1049                 }
1050         }
1051         spin_unlock(&uprobes_treelock);
1052 }
1053
1054 /*
1055  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1056  *
1057  * Currently we ignore all errors and always return 0, the callers
1058  * can't handle the failure anyway.
1059  */
1060 int uprobe_mmap(struct vm_area_struct *vma)
1061 {
1062         struct list_head tmp_list;
1063         struct uprobe *uprobe, *u;
1064         struct inode *inode;
1065
1066         if (no_uprobe_events() || !valid_vma(vma, true))
1067                 return 0;
1068
1069         inode = file_inode(vma->vm_file);
1070         if (!inode)
1071                 return 0;
1072
1073         mutex_lock(uprobes_mmap_hash(inode));
1074         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1075         /*
1076          * We can race with uprobe_unregister(), this uprobe can be already
1077          * removed. But in this case filter_chain() must return false, all
1078          * consumers have gone away.
1079          */
1080         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1081                 if (!fatal_signal_pending(current) &&
1082                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1083                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1084                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1085                 }
1086                 put_uprobe(uprobe);
1087         }
1088         mutex_unlock(uprobes_mmap_hash(inode));
1089
1090         return 0;
1091 }
1092
1093 static bool
1094 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1095 {
1096         loff_t min, max;
1097         struct inode *inode;
1098         struct rb_node *n;
1099
1100         inode = file_inode(vma->vm_file);
1101
1102         min = vaddr_to_offset(vma, start);
1103         max = min + (end - start) - 1;
1104
1105         spin_lock(&uprobes_treelock);
1106         n = find_node_in_range(inode, min, max);
1107         spin_unlock(&uprobes_treelock);
1108
1109         return !!n;
1110 }
1111
1112 /*
1113  * Called in context of a munmap of a vma.
1114  */
1115 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1116 {
1117         if (no_uprobe_events() || !valid_vma(vma, false))
1118                 return;
1119
1120         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1121                 return;
1122
1123         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1124              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1125                 return;
1126
1127         if (vma_has_uprobes(vma, start, end))
1128                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1129 }
1130
1131 /* Slot allocation for XOL */
1132 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1133 {
1134         int ret = -EALREADY;
1135
1136         down_write(&mm->mmap_sem);
1137         if (mm->uprobes_state.xol_area)
1138                 goto fail;
1139
1140         if (!area->vaddr) {
1141                 /* Try to map as high as possible, this is only a hint. */
1142                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1143                                                 PAGE_SIZE, 0, 0);
1144                 if (area->vaddr & ~PAGE_MASK) {
1145                         ret = area->vaddr;
1146                         goto fail;
1147                 }
1148         }
1149
1150         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1151                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1152         if (ret)
1153                 goto fail;
1154
1155         smp_wmb();      /* pairs with get_xol_area() */
1156         mm->uprobes_state.xol_area = area;
1157  fail:
1158         up_write(&mm->mmap_sem);
1159
1160         return ret;
1161 }
1162
1163 static struct xol_area *__create_xol_area(unsigned long vaddr)
1164 {
1165         struct mm_struct *mm = current->mm;
1166         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1167         struct xol_area *area;
1168
1169         area = kmalloc(sizeof(*area), GFP_KERNEL);
1170         if (unlikely(!area))
1171                 goto out;
1172
1173         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1174         if (!area->bitmap)
1175                 goto free_area;
1176
1177         area->page = alloc_page(GFP_HIGHUSER);
1178         if (!area->page)
1179                 goto free_bitmap;
1180
1181         area->vaddr = vaddr;
1182         init_waitqueue_head(&area->wq);
1183         /* Reserve the 1st slot for get_trampoline_vaddr() */
1184         set_bit(0, area->bitmap);
1185         atomic_set(&area->slot_count, 1);
1186         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1187
1188         if (!xol_add_vma(mm, area))
1189                 return area;
1190
1191         __free_page(area->page);
1192  free_bitmap:
1193         kfree(area->bitmap);
1194  free_area:
1195         kfree(area);
1196  out:
1197         return NULL;
1198 }
1199
1200 /*
1201  * get_xol_area - Allocate process's xol_area if necessary.
1202  * This area will be used for storing instructions for execution out of line.
1203  *
1204  * Returns the allocated area or NULL.
1205  */
1206 static struct xol_area *get_xol_area(void)
1207 {
1208         struct mm_struct *mm = current->mm;
1209         struct xol_area *area;
1210
1211         if (!mm->uprobes_state.xol_area)
1212                 __create_xol_area(0);
1213
1214         area = mm->uprobes_state.xol_area;
1215         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1216         return area;
1217 }
1218
1219 /*
1220  * uprobe_clear_state - Free the area allocated for slots.
1221  */
1222 void uprobe_clear_state(struct mm_struct *mm)
1223 {
1224         struct xol_area *area = mm->uprobes_state.xol_area;
1225
1226         if (!area)
1227                 return;
1228
1229         put_page(area->page);
1230         kfree(area->bitmap);
1231         kfree(area);
1232 }
1233
1234 void uprobe_start_dup_mmap(void)
1235 {
1236         percpu_down_read(&dup_mmap_sem);
1237 }
1238
1239 void uprobe_end_dup_mmap(void)
1240 {
1241         percpu_up_read(&dup_mmap_sem);
1242 }
1243
1244 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1245 {
1246         newmm->uprobes_state.xol_area = NULL;
1247
1248         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1249                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1250                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1251                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1252         }
1253 }
1254
1255 /*
1256  *  - search for a free slot.
1257  */
1258 static unsigned long xol_take_insn_slot(struct xol_area *area)
1259 {
1260         unsigned long slot_addr;
1261         int slot_nr;
1262
1263         do {
1264                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1265                 if (slot_nr < UINSNS_PER_PAGE) {
1266                         if (!test_and_set_bit(slot_nr, area->bitmap))
1267                                 break;
1268
1269                         slot_nr = UINSNS_PER_PAGE;
1270                         continue;
1271                 }
1272                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1273         } while (slot_nr >= UINSNS_PER_PAGE);
1274
1275         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1276         atomic_inc(&area->slot_count);
1277
1278         return slot_addr;
1279 }
1280
1281 /*
1282  * xol_get_insn_slot - allocate a slot for xol.
1283  * Returns the allocated slot address or 0.
1284  */
1285 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1286 {
1287         struct xol_area *area;
1288         unsigned long xol_vaddr;
1289
1290         area = get_xol_area();
1291         if (!area)
1292                 return 0;
1293
1294         xol_vaddr = xol_take_insn_slot(area);
1295         if (unlikely(!xol_vaddr))
1296                 return 0;
1297
1298         arch_uprobe_copy_ixol(area->page, xol_vaddr,
1299                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1300
1301         return xol_vaddr;
1302 }
1303
1304 /*
1305  * xol_free_insn_slot - If slot was earlier allocated by
1306  * @xol_get_insn_slot(), make the slot available for
1307  * subsequent requests.
1308  */
1309 static void xol_free_insn_slot(struct task_struct *tsk)
1310 {
1311         struct xol_area *area;
1312         unsigned long vma_end;
1313         unsigned long slot_addr;
1314
1315         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1316                 return;
1317
1318         slot_addr = tsk->utask->xol_vaddr;
1319         if (unlikely(!slot_addr))
1320                 return;
1321
1322         area = tsk->mm->uprobes_state.xol_area;
1323         vma_end = area->vaddr + PAGE_SIZE;
1324         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1325                 unsigned long offset;
1326                 int slot_nr;
1327
1328                 offset = slot_addr - area->vaddr;
1329                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1330                 if (slot_nr >= UINSNS_PER_PAGE)
1331                         return;
1332
1333                 clear_bit(slot_nr, area->bitmap);
1334                 atomic_dec(&area->slot_count);
1335                 if (waitqueue_active(&area->wq))
1336                         wake_up(&area->wq);
1337
1338                 tsk->utask->xol_vaddr = 0;
1339         }
1340 }
1341
1342 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1343                                   void *src, unsigned long len)
1344 {
1345         /* Initialize the slot */
1346         copy_to_page(page, vaddr, src, len);
1347
1348         /*
1349          * We probably need flush_icache_user_range() but it needs vma.
1350          * This should work on most of architectures by default. If
1351          * architecture needs to do something different it can define
1352          * its own version of the function.
1353          */
1354         flush_dcache_page(page);
1355 }
1356
1357 /**
1358  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1359  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1360  * instruction.
1361  * Return the address of the breakpoint instruction.
1362  */
1363 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1364 {
1365         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1366 }
1367
1368 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1369 {
1370         struct uprobe_task *utask = current->utask;
1371
1372         if (unlikely(utask && utask->active_uprobe))
1373                 return utask->vaddr;
1374
1375         return instruction_pointer(regs);
1376 }
1377
1378 /*
1379  * Called with no locks held.
1380  * Called in context of a exiting or a exec-ing thread.
1381  */
1382 void uprobe_free_utask(struct task_struct *t)
1383 {
1384         struct uprobe_task *utask = t->utask;
1385         struct return_instance *ri, *tmp;
1386
1387         if (!utask)
1388                 return;
1389
1390         if (utask->active_uprobe)
1391                 put_uprobe(utask->active_uprobe);
1392
1393         ri = utask->return_instances;
1394         while (ri) {
1395                 tmp = ri;
1396                 ri = ri->next;
1397
1398                 put_uprobe(tmp->uprobe);
1399                 kfree(tmp);
1400         }
1401
1402         xol_free_insn_slot(t);
1403         kfree(utask);
1404         t->utask = NULL;
1405 }
1406
1407 /*
1408  * Allocate a uprobe_task object for the task if if necessary.
1409  * Called when the thread hits a breakpoint.
1410  *
1411  * Returns:
1412  * - pointer to new uprobe_task on success
1413  * - NULL otherwise
1414  */
1415 static struct uprobe_task *get_utask(void)
1416 {
1417         if (!current->utask)
1418                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1419         return current->utask;
1420 }
1421
1422 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1423 {
1424         struct uprobe_task *n_utask;
1425         struct return_instance **p, *o, *n;
1426
1427         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1428         if (!n_utask)
1429                 return -ENOMEM;
1430         t->utask = n_utask;
1431
1432         p = &n_utask->return_instances;
1433         for (o = o_utask->return_instances; o; o = o->next) {
1434                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1435                 if (!n)
1436                         return -ENOMEM;
1437
1438                 *n = *o;
1439                 atomic_inc(&n->uprobe->ref);
1440                 n->next = NULL;
1441
1442                 *p = n;
1443                 p = &n->next;
1444                 n_utask->depth++;
1445         }
1446
1447         return 0;
1448 }
1449
1450 static void uprobe_warn(struct task_struct *t, const char *msg)
1451 {
1452         pr_warn("uprobe: %s:%d failed to %s\n",
1453                         current->comm, current->pid, msg);
1454 }
1455
1456 static void dup_xol_work(struct callback_head *work)
1457 {
1458         if (current->flags & PF_EXITING)
1459                 return;
1460
1461         if (!__create_xol_area(current->utask->dup_xol_addr))
1462                 uprobe_warn(current, "dup xol area");
1463 }
1464
1465 /*
1466  * Called in context of a new clone/fork from copy_process.
1467  */
1468 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1469 {
1470         struct uprobe_task *utask = current->utask;
1471         struct mm_struct *mm = current->mm;
1472         struct xol_area *area;
1473
1474         t->utask = NULL;
1475
1476         if (!utask || !utask->return_instances)
1477                 return;
1478
1479         if (mm == t->mm && !(flags & CLONE_VFORK))
1480                 return;
1481
1482         if (dup_utask(t, utask))
1483                 return uprobe_warn(t, "dup ret instances");
1484
1485         /* The task can fork() after dup_xol_work() fails */
1486         area = mm->uprobes_state.xol_area;
1487         if (!area)
1488                 return uprobe_warn(t, "dup xol area");
1489
1490         if (mm == t->mm)
1491                 return;
1492
1493         t->utask->dup_xol_addr = area->vaddr;
1494         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1495         task_work_add(t, &t->utask->dup_xol_work, true);
1496 }
1497
1498 /*
1499  * Current area->vaddr notion assume the trampoline address is always
1500  * equal area->vaddr.
1501  *
1502  * Returns -1 in case the xol_area is not allocated.
1503  */
1504 static unsigned long get_trampoline_vaddr(void)
1505 {
1506         struct xol_area *area;
1507         unsigned long trampoline_vaddr = -1;
1508
1509         area = current->mm->uprobes_state.xol_area;
1510         smp_read_barrier_depends();
1511         if (area)
1512                 trampoline_vaddr = area->vaddr;
1513
1514         return trampoline_vaddr;
1515 }
1516
1517 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1518 {
1519         struct return_instance *ri;
1520         struct uprobe_task *utask;
1521         unsigned long orig_ret_vaddr, trampoline_vaddr;
1522         bool chained = false;
1523
1524         if (!get_xol_area())
1525                 return;
1526
1527         utask = get_utask();
1528         if (!utask)
1529                 return;
1530
1531         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1532                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1533                                 " nestedness limit pid/tgid=%d/%d\n",
1534                                 current->pid, current->tgid);
1535                 return;
1536         }
1537
1538         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1539         if (!ri)
1540                 goto fail;
1541
1542         trampoline_vaddr = get_trampoline_vaddr();
1543         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1544         if (orig_ret_vaddr == -1)
1545                 goto fail;
1546
1547         /*
1548          * We don't want to keep trampoline address in stack, rather keep the
1549          * original return address of first caller thru all the consequent
1550          * instances. This also makes breakpoint unwrapping easier.
1551          */
1552         if (orig_ret_vaddr == trampoline_vaddr) {
1553                 if (!utask->return_instances) {
1554                         /*
1555                          * This situation is not possible. Likely we have an
1556                          * attack from user-space.
1557                          */
1558                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1559                                                 current->pid, current->tgid);
1560                         goto fail;
1561                 }
1562
1563                 chained = true;
1564                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1565         }
1566
1567         atomic_inc(&uprobe->ref);
1568         ri->uprobe = uprobe;
1569         ri->func = instruction_pointer(regs);
1570         ri->orig_ret_vaddr = orig_ret_vaddr;
1571         ri->chained = chained;
1572
1573         utask->depth++;
1574
1575         /* add instance to the stack */
1576         ri->next = utask->return_instances;
1577         utask->return_instances = ri;
1578
1579         return;
1580
1581  fail:
1582         kfree(ri);
1583 }
1584
1585 /* Prepare to single-step probed instruction out of line. */
1586 static int
1587 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1588 {
1589         struct uprobe_task *utask;
1590         unsigned long xol_vaddr;
1591         int err;
1592
1593         utask = get_utask();
1594         if (!utask)
1595                 return -ENOMEM;
1596
1597         xol_vaddr = xol_get_insn_slot(uprobe);
1598         if (!xol_vaddr)
1599                 return -ENOMEM;
1600
1601         utask->xol_vaddr = xol_vaddr;
1602         utask->vaddr = bp_vaddr;
1603
1604         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1605         if (unlikely(err)) {
1606                 xol_free_insn_slot(current);
1607                 return err;
1608         }
1609
1610         utask->active_uprobe = uprobe;
1611         utask->state = UTASK_SSTEP;
1612         return 0;
1613 }
1614
1615 /*
1616  * If we are singlestepping, then ensure this thread is not connected to
1617  * non-fatal signals until completion of singlestep.  When xol insn itself
1618  * triggers the signal,  restart the original insn even if the task is
1619  * already SIGKILL'ed (since coredump should report the correct ip).  This
1620  * is even more important if the task has a handler for SIGSEGV/etc, The
1621  * _same_ instruction should be repeated again after return from the signal
1622  * handler, and SSTEP can never finish in this case.
1623  */
1624 bool uprobe_deny_signal(void)
1625 {
1626         struct task_struct *t = current;
1627         struct uprobe_task *utask = t->utask;
1628
1629         if (likely(!utask || !utask->active_uprobe))
1630                 return false;
1631
1632         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1633
1634         if (signal_pending(t)) {
1635                 spin_lock_irq(&t->sighand->siglock);
1636                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1637                 spin_unlock_irq(&t->sighand->siglock);
1638
1639                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1640                         utask->state = UTASK_SSTEP_TRAPPED;
1641                         set_tsk_thread_flag(t, TIF_UPROBE);
1642                         set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1643                 }
1644         }
1645
1646         return true;
1647 }
1648
1649 static void mmf_recalc_uprobes(struct mm_struct *mm)
1650 {
1651         struct vm_area_struct *vma;
1652
1653         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1654                 if (!valid_vma(vma, false))
1655                         continue;
1656                 /*
1657                  * This is not strictly accurate, we can race with
1658                  * uprobe_unregister() and see the already removed
1659                  * uprobe if delete_uprobe() was not yet called.
1660                  * Or this uprobe can be filtered out.
1661                  */
1662                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1663                         return;
1664         }
1665
1666         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1667 }
1668
1669 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1670 {
1671         struct page *page;
1672         uprobe_opcode_t opcode;
1673         int result;
1674
1675         pagefault_disable();
1676         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1677                                                         sizeof(opcode));
1678         pagefault_enable();
1679
1680         if (likely(result == 0))
1681                 goto out;
1682
1683         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1684         if (result < 0)
1685                 return result;
1686
1687         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1688         put_page(page);
1689  out:
1690         /* This needs to return true for any variant of the trap insn */
1691         return is_trap_insn(&opcode);
1692 }
1693
1694 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1695 {
1696         struct mm_struct *mm = current->mm;
1697         struct uprobe *uprobe = NULL;
1698         struct vm_area_struct *vma;
1699
1700         down_read(&mm->mmap_sem);
1701         vma = find_vma(mm, bp_vaddr);
1702         if (vma && vma->vm_start <= bp_vaddr) {
1703                 if (valid_vma(vma, false)) {
1704                         struct inode *inode = file_inode(vma->vm_file);
1705                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1706
1707                         uprobe = find_uprobe(inode, offset);
1708                 }
1709
1710                 if (!uprobe)
1711                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1712         } else {
1713                 *is_swbp = -EFAULT;
1714         }
1715
1716         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1717                 mmf_recalc_uprobes(mm);
1718         up_read(&mm->mmap_sem);
1719
1720         return uprobe;
1721 }
1722
1723 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1724 {
1725         struct uprobe_consumer *uc;
1726         int remove = UPROBE_HANDLER_REMOVE;
1727         bool need_prep = false; /* prepare return uprobe, when needed */
1728
1729         down_read(&uprobe->register_rwsem);
1730         for (uc = uprobe->consumers; uc; uc = uc->next) {
1731                 int rc = 0;
1732
1733                 if (uc->handler) {
1734                         rc = uc->handler(uc, regs);
1735                         WARN(rc & ~UPROBE_HANDLER_MASK,
1736                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1737                 }
1738
1739                 if (uc->ret_handler)
1740                         need_prep = true;
1741
1742                 remove &= rc;
1743         }
1744
1745         if (need_prep && !remove)
1746                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1747
1748         if (remove && uprobe->consumers) {
1749                 WARN_ON(!uprobe_is_active(uprobe));
1750                 unapply_uprobe(uprobe, current->mm);
1751         }
1752         up_read(&uprobe->register_rwsem);
1753 }
1754
1755 static void
1756 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1757 {
1758         struct uprobe *uprobe = ri->uprobe;
1759         struct uprobe_consumer *uc;
1760
1761         down_read(&uprobe->register_rwsem);
1762         for (uc = uprobe->consumers; uc; uc = uc->next) {
1763                 if (uc->ret_handler)
1764                         uc->ret_handler(uc, ri->func, regs);
1765         }
1766         up_read(&uprobe->register_rwsem);
1767 }
1768
1769 static bool handle_trampoline(struct pt_regs *regs)
1770 {
1771         struct uprobe_task *utask;
1772         struct return_instance *ri, *tmp;
1773         bool chained;
1774
1775         utask = current->utask;
1776         if (!utask)
1777                 return false;
1778
1779         ri = utask->return_instances;
1780         if (!ri)
1781                 return false;
1782
1783         /*
1784          * TODO: we should throw out return_instance's invalidated by
1785          * longjmp(), currently we assume that the probed function always
1786          * returns.
1787          */
1788         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1789
1790         for (;;) {
1791                 handle_uretprobe_chain(ri, regs);
1792
1793                 chained = ri->chained;
1794                 put_uprobe(ri->uprobe);
1795
1796                 tmp = ri;
1797                 ri = ri->next;
1798                 kfree(tmp);
1799                 utask->depth--;
1800
1801                 if (!chained)
1802                         break;
1803                 BUG_ON(!ri);
1804         }
1805
1806         utask->return_instances = ri;
1807
1808         return true;
1809 }
1810
1811 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1812 {
1813         return false;
1814 }
1815
1816 /*
1817  * Run handler and ask thread to singlestep.
1818  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1819  */
1820 static void handle_swbp(struct pt_regs *regs)
1821 {
1822         struct uprobe *uprobe;
1823         unsigned long bp_vaddr;
1824         int uninitialized_var(is_swbp);
1825
1826         bp_vaddr = uprobe_get_swbp_addr(regs);
1827         if (bp_vaddr == get_trampoline_vaddr()) {
1828                 if (handle_trampoline(regs))
1829                         return;
1830
1831                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1832                                                 current->pid, current->tgid);
1833         }
1834
1835         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1836         if (!uprobe) {
1837                 if (is_swbp > 0) {
1838                         /* No matching uprobe; signal SIGTRAP. */
1839                         send_sig(SIGTRAP, current, 0);
1840                 } else {
1841                         /*
1842                          * Either we raced with uprobe_unregister() or we can't
1843                          * access this memory. The latter is only possible if
1844                          * another thread plays with our ->mm. In both cases
1845                          * we can simply restart. If this vma was unmapped we
1846                          * can pretend this insn was not executed yet and get
1847                          * the (correct) SIGSEGV after restart.
1848                          */
1849                         instruction_pointer_set(regs, bp_vaddr);
1850                 }
1851                 return;
1852         }
1853
1854         /* change it in advance for ->handler() and restart */
1855         instruction_pointer_set(regs, bp_vaddr);
1856
1857         /*
1858          * TODO: move copy_insn/etc into _register and remove this hack.
1859          * After we hit the bp, _unregister + _register can install the
1860          * new and not-yet-analyzed uprobe at the same address, restart.
1861          */
1862         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1863         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1864                 goto out;
1865
1866         /* Tracing handlers use ->utask to communicate with fetch methods */
1867         if (!get_utask())
1868                 goto out;
1869
1870         if (arch_uprobe_ignore(&uprobe->arch, regs))
1871                 goto out;
1872
1873         handler_chain(uprobe, regs);
1874
1875         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1876                 goto out;
1877
1878         if (!pre_ssout(uprobe, regs, bp_vaddr))
1879                 return;
1880
1881         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1882 out:
1883         put_uprobe(uprobe);
1884 }
1885
1886 /*
1887  * Perform required fix-ups and disable singlestep.
1888  * Allow pending signals to take effect.
1889  */
1890 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1891 {
1892         struct uprobe *uprobe;
1893         int err = 0;
1894
1895         uprobe = utask->active_uprobe;
1896         if (utask->state == UTASK_SSTEP_ACK)
1897                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1898         else if (utask->state == UTASK_SSTEP_TRAPPED)
1899                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1900         else
1901                 WARN_ON_ONCE(1);
1902
1903         put_uprobe(uprobe);
1904         utask->active_uprobe = NULL;
1905         utask->state = UTASK_RUNNING;
1906         xol_free_insn_slot(current);
1907
1908         spin_lock_irq(&current->sighand->siglock);
1909         recalc_sigpending(); /* see uprobe_deny_signal() */
1910         spin_unlock_irq(&current->sighand->siglock);
1911
1912         if (unlikely(err)) {
1913                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1914                 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1915         }
1916 }
1917
1918 /*
1919  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1920  * allows the thread to return from interrupt. After that handle_swbp()
1921  * sets utask->active_uprobe.
1922  *
1923  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1924  * and allows the thread to return from interrupt.
1925  *
1926  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1927  * uprobe_notify_resume().
1928  */
1929 void uprobe_notify_resume(struct pt_regs *regs)
1930 {
1931         struct uprobe_task *utask;
1932
1933         clear_thread_flag(TIF_UPROBE);
1934
1935         utask = current->utask;
1936         if (utask && utask->active_uprobe)
1937                 handle_singlestep(utask, regs);
1938         else
1939                 handle_swbp(regs);
1940 }
1941
1942 /*
1943  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1944  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1945  */
1946 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1947 {
1948         if (!current->mm)
1949                 return 0;
1950
1951         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1952             (!current->utask || !current->utask->return_instances))
1953                 return 0;
1954
1955         set_thread_flag(TIF_UPROBE);
1956         return 1;
1957 }
1958
1959 /*
1960  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1961  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1962  */
1963 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1964 {
1965         struct uprobe_task *utask = current->utask;
1966
1967         if (!current->mm || !utask || !utask->active_uprobe)
1968                 /* task is currently not uprobed */
1969                 return 0;
1970
1971         utask->state = UTASK_SSTEP_ACK;
1972         set_thread_flag(TIF_UPROBE);
1973         return 1;
1974 }
1975
1976 static struct notifier_block uprobe_exception_nb = {
1977         .notifier_call          = arch_uprobe_exception_notify,
1978         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1979 };
1980
1981 static int __init init_uprobes(void)
1982 {
1983         int i;
1984
1985         for (i = 0; i < UPROBES_HASH_SZ; i++)
1986                 mutex_init(&uprobes_mmap_mutex[i]);
1987
1988         if (percpu_init_rwsem(&dup_mmap_sem))
1989                 return -ENOMEM;
1990
1991         return register_die_notifier(&uprobe_exception_nb);
1992 }
1993 __initcall(init_uprobes);