Merge remote-tracking branch 'lsk/v3.10/topic/big.LITTLE' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / kernel / events / ring_buffer.c
1 /*
2  * Performance events ring-buffer code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/perf_event.h>
13 #include <linux/vmalloc.h>
14 #include <linux/slab.h>
15
16 #include "internal.h"
17
18 static bool perf_output_space(struct ring_buffer *rb, unsigned long tail,
19                               unsigned long offset, unsigned long head)
20 {
21         unsigned long sz = perf_data_size(rb);
22         unsigned long mask = sz - 1;
23
24         /*
25          * check if user-writable
26          * overwrite : over-write its own tail
27          * !overwrite: buffer possibly drops events.
28          */
29         if (rb->overwrite)
30                 return true;
31
32         /*
33          * verify that payload is not bigger than buffer
34          * otherwise masking logic may fail to detect
35          * the "not enough space" condition
36          */
37         if ((head - offset) > sz)
38                 return false;
39
40         offset = (offset - tail) & mask;
41         head   = (head   - tail) & mask;
42
43         if ((int)(head - offset) < 0)
44                 return false;
45
46         return true;
47 }
48
49 static void perf_output_wakeup(struct perf_output_handle *handle)
50 {
51         atomic_set(&handle->rb->poll, POLL_IN);
52
53         handle->event->pending_wakeup = 1;
54         irq_work_queue(&handle->event->pending);
55 }
56
57 /*
58  * We need to ensure a later event_id doesn't publish a head when a former
59  * event isn't done writing. However since we need to deal with NMIs we
60  * cannot fully serialize things.
61  *
62  * We only publish the head (and generate a wakeup) when the outer-most
63  * event completes.
64  */
65 static void perf_output_get_handle(struct perf_output_handle *handle)
66 {
67         struct ring_buffer *rb = handle->rb;
68
69         preempt_disable();
70         local_inc(&rb->nest);
71         handle->wakeup = local_read(&rb->wakeup);
72 }
73
74 static void perf_output_put_handle(struct perf_output_handle *handle)
75 {
76         struct ring_buffer *rb = handle->rb;
77         unsigned long head;
78
79 again:
80         head = local_read(&rb->head);
81
82         /*
83          * IRQ/NMI can happen here, which means we can miss a head update.
84          */
85
86         if (!local_dec_and_test(&rb->nest))
87                 goto out;
88
89         /*
90          * Since the mmap() consumer (userspace) can run on a different CPU:
91          *
92          *   kernel                             user
93          *
94          *   READ ->data_tail                   READ ->data_head
95          *   smp_mb()   (A)                     smp_rmb()       (C)
96          *   WRITE $data                        READ $data
97          *   smp_wmb()  (B)                     smp_mb()        (D)
98          *   STORE ->data_head                  WRITE ->data_tail
99          *
100          * Where A pairs with D, and B pairs with C.
101          *
102          * I don't think A needs to be a full barrier because we won't in fact
103          * write data until we see the store from userspace. So we simply don't
104          * issue the data WRITE until we observe it. Be conservative for now.
105          *
106          * OTOH, D needs to be a full barrier since it separates the data READ
107          * from the tail WRITE.
108          *
109          * For B a WMB is sufficient since it separates two WRITEs, and for C
110          * an RMB is sufficient since it separates two READs.
111          *
112          * See perf_output_begin().
113          */
114         smp_wmb();
115         rb->user_page->data_head = head;
116
117         /*
118          * Now check if we missed an update, rely on the (compiler)
119          * barrier in atomic_dec_and_test() to re-read rb->head.
120          */
121         if (unlikely(head != local_read(&rb->head))) {
122                 local_inc(&rb->nest);
123                 goto again;
124         }
125
126         if (handle->wakeup != local_read(&rb->wakeup))
127                 perf_output_wakeup(handle);
128
129 out:
130         preempt_enable();
131 }
132
133 int perf_output_begin(struct perf_output_handle *handle,
134                       struct perf_event *event, unsigned int size)
135 {
136         struct ring_buffer *rb;
137         unsigned long tail, offset, head;
138         int have_lost;
139         struct perf_sample_data sample_data;
140         struct {
141                 struct perf_event_header header;
142                 u64                      id;
143                 u64                      lost;
144         } lost_event;
145
146         rcu_read_lock();
147         /*
148          * For inherited events we send all the output towards the parent.
149          */
150         if (event->parent)
151                 event = event->parent;
152
153         rb = rcu_dereference(event->rb);
154         if (!rb)
155                 goto out;
156
157         handle->rb      = rb;
158         handle->event   = event;
159
160         if (!rb->nr_pages)
161                 goto out;
162
163         have_lost = local_read(&rb->lost);
164         if (have_lost) {
165                 lost_event.header.size = sizeof(lost_event);
166                 perf_event_header__init_id(&lost_event.header, &sample_data,
167                                            event);
168                 size += lost_event.header.size;
169         }
170
171         perf_output_get_handle(handle);
172
173         do {
174                 /*
175                  * Userspace could choose to issue a mb() before updating the
176                  * tail pointer. So that all reads will be completed before the
177                  * write is issued.
178                  *
179                  * See perf_output_put_handle().
180                  */
181                 tail = ACCESS_ONCE(rb->user_page->data_tail);
182                 smp_mb();
183                 offset = head = local_read(&rb->head);
184                 head += size;
185                 if (unlikely(!perf_output_space(rb, tail, offset, head)))
186                         goto fail;
187         } while (local_cmpxchg(&rb->head, offset, head) != offset);
188
189         if (head - local_read(&rb->wakeup) > rb->watermark)
190                 local_add(rb->watermark, &rb->wakeup);
191
192         handle->page = offset >> (PAGE_SHIFT + page_order(rb));
193         handle->page &= rb->nr_pages - 1;
194         handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
195         handle->addr = rb->data_pages[handle->page];
196         handle->addr += handle->size;
197         handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;
198
199         if (have_lost) {
200                 lost_event.header.type = PERF_RECORD_LOST;
201                 lost_event.header.misc = 0;
202                 lost_event.id          = event->id;
203                 lost_event.lost        = local_xchg(&rb->lost, 0);
204
205                 perf_output_put(handle, lost_event);
206                 perf_event__output_id_sample(event, handle, &sample_data);
207         }
208
209         return 0;
210
211 fail:
212         local_inc(&rb->lost);
213         perf_output_put_handle(handle);
214 out:
215         rcu_read_unlock();
216
217         return -ENOSPC;
218 }
219
220 unsigned int perf_output_copy(struct perf_output_handle *handle,
221                       const void *buf, unsigned int len)
222 {
223         return __output_copy(handle, buf, len);
224 }
225
226 unsigned int perf_output_skip(struct perf_output_handle *handle,
227                               unsigned int len)
228 {
229         return __output_skip(handle, NULL, len);
230 }
231
232 void perf_output_end(struct perf_output_handle *handle)
233 {
234         perf_output_put_handle(handle);
235         rcu_read_unlock();
236 }
237
238 static void
239 ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
240 {
241         long max_size = perf_data_size(rb);
242
243         if (watermark)
244                 rb->watermark = min(max_size, watermark);
245
246         if (!rb->watermark)
247                 rb->watermark = max_size / 2;
248
249         if (flags & RING_BUFFER_WRITABLE)
250                 rb->overwrite = 0;
251         else
252                 rb->overwrite = 1;
253
254         atomic_set(&rb->refcount, 1);
255
256         INIT_LIST_HEAD(&rb->event_list);
257         spin_lock_init(&rb->event_lock);
258 }
259
260 #ifndef CONFIG_PERF_USE_VMALLOC
261
262 /*
263  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
264  */
265
266 struct page *
267 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
268 {
269         if (pgoff > rb->nr_pages)
270                 return NULL;
271
272         if (pgoff == 0)
273                 return virt_to_page(rb->user_page);
274
275         return virt_to_page(rb->data_pages[pgoff - 1]);
276 }
277
278 static void *perf_mmap_alloc_page(int cpu)
279 {
280         struct page *page;
281         int node;
282
283         node = (cpu == -1) ? cpu : cpu_to_node(cpu);
284         page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
285         if (!page)
286                 return NULL;
287
288         return page_address(page);
289 }
290
291 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
292 {
293         struct ring_buffer *rb;
294         unsigned long size;
295         int i;
296
297         size = sizeof(struct ring_buffer);
298         size += nr_pages * sizeof(void *);
299
300         rb = kzalloc(size, GFP_KERNEL);
301         if (!rb)
302                 goto fail;
303
304         rb->user_page = perf_mmap_alloc_page(cpu);
305         if (!rb->user_page)
306                 goto fail_user_page;
307
308         for (i = 0; i < nr_pages; i++) {
309                 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
310                 if (!rb->data_pages[i])
311                         goto fail_data_pages;
312         }
313
314         rb->nr_pages = nr_pages;
315
316         ring_buffer_init(rb, watermark, flags);
317
318         return rb;
319
320 fail_data_pages:
321         for (i--; i >= 0; i--)
322                 free_page((unsigned long)rb->data_pages[i]);
323
324         free_page((unsigned long)rb->user_page);
325
326 fail_user_page:
327         kfree(rb);
328
329 fail:
330         return NULL;
331 }
332
333 static void perf_mmap_free_page(unsigned long addr)
334 {
335         struct page *page = virt_to_page((void *)addr);
336
337         page->mapping = NULL;
338         __free_page(page);
339 }
340
341 void rb_free(struct ring_buffer *rb)
342 {
343         int i;
344
345         perf_mmap_free_page((unsigned long)rb->user_page);
346         for (i = 0; i < rb->nr_pages; i++)
347                 perf_mmap_free_page((unsigned long)rb->data_pages[i]);
348         kfree(rb);
349 }
350
351 #else
352 static int data_page_nr(struct ring_buffer *rb)
353 {
354         return rb->nr_pages << page_order(rb);
355 }
356
357 struct page *
358 perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
359 {
360         /* The '>' counts in the user page. */
361         if (pgoff > data_page_nr(rb))
362                 return NULL;
363
364         return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
365 }
366
367 static void perf_mmap_unmark_page(void *addr)
368 {
369         struct page *page = vmalloc_to_page(addr);
370
371         page->mapping = NULL;
372 }
373
374 static void rb_free_work(struct work_struct *work)
375 {
376         struct ring_buffer *rb;
377         void *base;
378         int i, nr;
379
380         rb = container_of(work, struct ring_buffer, work);
381         nr = data_page_nr(rb);
382
383         base = rb->user_page;
384         /* The '<=' counts in the user page. */
385         for (i = 0; i <= nr; i++)
386                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
387
388         vfree(base);
389         kfree(rb);
390 }
391
392 void rb_free(struct ring_buffer *rb)
393 {
394         schedule_work(&rb->work);
395 }
396
397 struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
398 {
399         struct ring_buffer *rb;
400         unsigned long size;
401         void *all_buf;
402
403         size = sizeof(struct ring_buffer);
404         size += sizeof(void *);
405
406         rb = kzalloc(size, GFP_KERNEL);
407         if (!rb)
408                 goto fail;
409
410         INIT_WORK(&rb->work, rb_free_work);
411
412         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
413         if (!all_buf)
414                 goto fail_all_buf;
415
416         rb->user_page = all_buf;
417         rb->data_pages[0] = all_buf + PAGE_SIZE;
418         rb->page_order = ilog2(nr_pages);
419         rb->nr_pages = !!nr_pages;
420
421         ring_buffer_init(rb, watermark, flags);
422
423         return rb;
424
425 fail_all_buf:
426         kfree(rb);
427
428 fail:
429         return NULL;
430 }
431
432 #endif