2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/cpuset.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DEFINE_SPINLOCK(css_set_lock);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DEFINE_SPINLOCK(css_set_lock);
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
104 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 static DEFINE_SPINLOCK(release_agent_path_lock);
112 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
125 static struct workqueue_struct *cgroup_destroy_wq;
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
131 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 static struct cgroup_subsys *cgroup_subsys[] = {
136 #include <linux/cgroup_subsys.h>
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name[] = {
143 #include <linux/cgroup_subsys.h>
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true *cgroup_subsys_enabled_key[] = {
158 #include <linux/cgroup_subsys.h>
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164 #include <linux/cgroup_subsys.h>
169 * The default hierarchy, reserved for the subsystems that are otherwise
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
173 struct cgroup_root cgrp_dfl_root;
174 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
180 static bool cgrp_dfl_root_visible;
182 /* some controllers are not supported in the default hierarchy */
183 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
185 /* The list of hierarchy roots */
187 static LIST_HEAD(cgroup_roots);
188 static int cgroup_root_count;
190 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
191 static DEFINE_IDR(cgroup_hierarchy_idr);
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
200 static u64 css_serial_nr_next = 1;
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
207 static unsigned long have_fork_callback __read_mostly;
208 static unsigned long have_exit_callback __read_mostly;
209 static unsigned long have_free_callback __read_mostly;
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
214 static struct file_system_type cgroup2_fs_type;
215 static struct cftype cgroup_dfl_base_files[];
216 static struct cftype cgroup_legacy_base_files[];
218 static int rebind_subsystems(struct cgroup_root *dst_root,
219 unsigned long ss_mask);
220 static void css_task_iter_advance(struct css_task_iter *it);
221 static int cgroup_destroy_locked(struct cgroup *cgrp);
222 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
224 static void css_release(struct percpu_ref *ref);
225 static void kill_css(struct cgroup_subsys_state *css);
226 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
227 struct cgroup *cgrp, struct cftype cfts[],
231 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
232 * @ssid: subsys ID of interest
234 * cgroup_subsys_enabled() can only be used with literal subsys names which
235 * is fine for individual subsystems but unsuitable for cgroup core. This
236 * is slower static_key_enabled() based test indexed by @ssid.
238 static bool cgroup_ssid_enabled(int ssid)
240 if (CGROUP_SUBSYS_COUNT == 0)
243 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
247 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
248 * @cgrp: the cgroup of interest
250 * The default hierarchy is the v2 interface of cgroup and this function
251 * can be used to test whether a cgroup is on the default hierarchy for
252 * cases where a subsystem should behave differnetly depending on the
255 * The set of behaviors which change on the default hierarchy are still
256 * being determined and the mount option is prefixed with __DEVEL__.
258 * List of changed behaviors:
260 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
261 * and "name" are disallowed.
263 * - When mounting an existing superblock, mount options should match.
265 * - Remount is disallowed.
267 * - rename(2) is disallowed.
269 * - "tasks" is removed. Everything should be at process granularity. Use
270 * "cgroup.procs" instead.
272 * - "cgroup.procs" is not sorted. pids will be unique unless they got
273 * recycled inbetween reads.
275 * - "release_agent" and "notify_on_release" are removed. Replacement
276 * notification mechanism will be implemented.
278 * - "cgroup.clone_children" is removed.
280 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
281 * and its descendants contain no task; otherwise, 1. The file also
282 * generates kernfs notification which can be monitored through poll and
283 * [di]notify when the value of the file changes.
285 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
286 * take masks of ancestors with non-empty cpus/mems, instead of being
287 * moved to an ancestor.
289 * - cpuset: a task can be moved into an empty cpuset, and again it takes
290 * masks of ancestors.
292 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
295 * - blkcg: blk-throttle becomes properly hierarchical.
297 * - debug: disallowed on the default hierarchy.
299 static bool cgroup_on_dfl(const struct cgroup *cgrp)
301 return cgrp->root == &cgrp_dfl_root;
304 /* IDR wrappers which synchronize using cgroup_idr_lock */
305 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
310 idr_preload(gfp_mask);
311 spin_lock_bh(&cgroup_idr_lock);
312 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
313 spin_unlock_bh(&cgroup_idr_lock);
318 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
322 spin_lock_bh(&cgroup_idr_lock);
323 ret = idr_replace(idr, ptr, id);
324 spin_unlock_bh(&cgroup_idr_lock);
328 static void cgroup_idr_remove(struct idr *idr, int id)
330 spin_lock_bh(&cgroup_idr_lock);
332 spin_unlock_bh(&cgroup_idr_lock);
335 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
337 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
340 return container_of(parent_css, struct cgroup, self);
345 * cgroup_css - obtain a cgroup's css for the specified subsystem
346 * @cgrp: the cgroup of interest
347 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
349 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
350 * function must be called either under cgroup_mutex or rcu_read_lock() and
351 * the caller is responsible for pinning the returned css if it wants to
352 * keep accessing it outside the said locks. This function may return
353 * %NULL if @cgrp doesn't have @subsys_id enabled.
355 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
356 struct cgroup_subsys *ss)
359 return rcu_dereference_check(cgrp->subsys[ss->id],
360 lockdep_is_held(&cgroup_mutex));
366 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
367 * @cgrp: the cgroup of interest
368 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
370 * Similar to cgroup_css() but returns the effective css, which is defined
371 * as the matching css of the nearest ancestor including self which has @ss
372 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
373 * function is guaranteed to return non-NULL css.
375 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
376 struct cgroup_subsys *ss)
378 lockdep_assert_held(&cgroup_mutex);
383 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
387 * This function is used while updating css associations and thus
388 * can't test the csses directly. Use ->child_subsys_mask.
390 while (cgroup_parent(cgrp) &&
391 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
392 cgrp = cgroup_parent(cgrp);
394 return cgroup_css(cgrp, ss);
398 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
399 * @cgrp: the cgroup of interest
400 * @ss: the subsystem of interest
402 * Find and get the effective css of @cgrp for @ss. The effective css is
403 * defined as the matching css of the nearest ancestor including self which
404 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
405 * the root css is returned, so this function always returns a valid css.
406 * The returned css must be put using css_put().
408 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
409 struct cgroup_subsys *ss)
411 struct cgroup_subsys_state *css;
416 css = cgroup_css(cgrp, ss);
418 if (css && css_tryget_online(css))
420 cgrp = cgroup_parent(cgrp);
423 css = init_css_set.subsys[ss->id];
430 /* convenient tests for these bits */
431 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
433 return !(cgrp->self.flags & CSS_ONLINE);
436 static void cgroup_get(struct cgroup *cgrp)
438 WARN_ON_ONCE(cgroup_is_dead(cgrp));
439 css_get(&cgrp->self);
442 static bool cgroup_tryget(struct cgroup *cgrp)
444 return css_tryget(&cgrp->self);
447 static void cgroup_put(struct cgroup *cgrp)
449 css_put(&cgrp->self);
452 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
454 struct cgroup *cgrp = of->kn->parent->priv;
455 struct cftype *cft = of_cft(of);
458 * This is open and unprotected implementation of cgroup_css().
459 * seq_css() is only called from a kernfs file operation which has
460 * an active reference on the file. Because all the subsystem
461 * files are drained before a css is disassociated with a cgroup,
462 * the matching css from the cgroup's subsys table is guaranteed to
463 * be and stay valid until the enclosing operation is complete.
466 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
470 EXPORT_SYMBOL_GPL(of_css);
473 * cgroup_is_descendant - test ancestry
474 * @cgrp: the cgroup to be tested
475 * @ancestor: possible ancestor of @cgrp
477 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
478 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
479 * and @ancestor are accessible.
481 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
484 if (cgrp == ancestor)
486 cgrp = cgroup_parent(cgrp);
491 static int notify_on_release(const struct cgroup *cgrp)
493 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
497 * for_each_css - iterate all css's of a cgroup
498 * @css: the iteration cursor
499 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
500 * @cgrp: the target cgroup to iterate css's of
502 * Should be called under cgroup_[tree_]mutex.
504 #define for_each_css(css, ssid, cgrp) \
505 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
506 if (!((css) = rcu_dereference_check( \
507 (cgrp)->subsys[(ssid)], \
508 lockdep_is_held(&cgroup_mutex)))) { } \
512 * for_each_e_css - iterate all effective css's of a cgroup
513 * @css: the iteration cursor
514 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
515 * @cgrp: the target cgroup to iterate css's of
517 * Should be called under cgroup_[tree_]mutex.
519 #define for_each_e_css(css, ssid, cgrp) \
520 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
521 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
526 * for_each_subsys - iterate all enabled cgroup subsystems
527 * @ss: the iteration cursor
528 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
530 #define for_each_subsys(ss, ssid) \
531 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
532 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
535 * for_each_subsys_which - filter for_each_subsys with a bitmask
536 * @ss: the iteration cursor
537 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
538 * @ss_maskp: a pointer to the bitmask
540 * The block will only run for cases where the ssid-th bit (1 << ssid) of
543 #define for_each_subsys_which(ss, ssid, ss_maskp) \
544 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
547 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
548 if (((ss) = cgroup_subsys[ssid]) && false) \
552 /* iterate across the hierarchies */
553 #define for_each_root(root) \
554 list_for_each_entry((root), &cgroup_roots, root_list)
556 /* iterate over child cgrps, lock should be held throughout iteration */
557 #define cgroup_for_each_live_child(child, cgrp) \
558 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
559 if (({ lockdep_assert_held(&cgroup_mutex); \
560 cgroup_is_dead(child); })) \
564 static void cgroup_release_agent(struct work_struct *work);
565 static void check_for_release(struct cgroup *cgrp);
568 * A cgroup can be associated with multiple css_sets as different tasks may
569 * belong to different cgroups on different hierarchies. In the other
570 * direction, a css_set is naturally associated with multiple cgroups.
571 * This M:N relationship is represented by the following link structure
572 * which exists for each association and allows traversing the associations
575 struct cgrp_cset_link {
576 /* the cgroup and css_set this link associates */
578 struct css_set *cset;
580 /* list of cgrp_cset_links anchored at cgrp->cset_links */
581 struct list_head cset_link;
583 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
584 struct list_head cgrp_link;
588 * The default css_set - used by init and its children prior to any
589 * hierarchies being mounted. It contains a pointer to the root state
590 * for each subsystem. Also used to anchor the list of css_sets. Not
591 * reference-counted, to improve performance when child cgroups
592 * haven't been created.
594 struct css_set init_css_set = {
595 .refcount = ATOMIC_INIT(1),
596 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
597 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
598 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
599 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
600 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
601 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
604 static int css_set_count = 1; /* 1 for init_css_set */
607 * css_set_populated - does a css_set contain any tasks?
608 * @cset: target css_set
610 static bool css_set_populated(struct css_set *cset)
612 lockdep_assert_held(&css_set_lock);
614 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
618 * cgroup_update_populated - updated populated count of a cgroup
619 * @cgrp: the target cgroup
620 * @populated: inc or dec populated count
622 * One of the css_sets associated with @cgrp is either getting its first
623 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
624 * count is propagated towards root so that a given cgroup's populated_cnt
625 * is zero iff the cgroup and all its descendants don't contain any tasks.
627 * @cgrp's interface file "cgroup.populated" is zero if
628 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
629 * changes from or to zero, userland is notified that the content of the
630 * interface file has changed. This can be used to detect when @cgrp and
631 * its descendants become populated or empty.
633 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
635 lockdep_assert_held(&css_set_lock);
641 trigger = !cgrp->populated_cnt++;
643 trigger = !--cgrp->populated_cnt;
648 check_for_release(cgrp);
649 cgroup_file_notify(&cgrp->events_file);
651 cgrp = cgroup_parent(cgrp);
656 * css_set_update_populated - update populated state of a css_set
657 * @cset: target css_set
658 * @populated: whether @cset is populated or depopulated
660 * @cset is either getting the first task or losing the last. Update the
661 * ->populated_cnt of all associated cgroups accordingly.
663 static void css_set_update_populated(struct css_set *cset, bool populated)
665 struct cgrp_cset_link *link;
667 lockdep_assert_held(&css_set_lock);
669 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
670 cgroup_update_populated(link->cgrp, populated);
674 * css_set_move_task - move a task from one css_set to another
675 * @task: task being moved
676 * @from_cset: css_set @task currently belongs to (may be NULL)
677 * @to_cset: new css_set @task is being moved to (may be NULL)
678 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
680 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
681 * css_set, @from_cset can be NULL. If @task is being disassociated
682 * instead of moved, @to_cset can be NULL.
684 * This function automatically handles populated_cnt updates and
685 * css_task_iter adjustments but the caller is responsible for managing
686 * @from_cset and @to_cset's reference counts.
688 static void css_set_move_task(struct task_struct *task,
689 struct css_set *from_cset, struct css_set *to_cset,
692 lockdep_assert_held(&css_set_lock);
695 struct css_task_iter *it, *pos;
697 WARN_ON_ONCE(list_empty(&task->cg_list));
700 * @task is leaving, advance task iterators which are
701 * pointing to it so that they can resume at the next
702 * position. Advancing an iterator might remove it from
703 * the list, use safe walk. See css_task_iter_advance*()
706 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
708 if (it->task_pos == &task->cg_list)
709 css_task_iter_advance(it);
711 list_del_init(&task->cg_list);
712 if (!css_set_populated(from_cset))
713 css_set_update_populated(from_cset, false);
715 WARN_ON_ONCE(!list_empty(&task->cg_list));
720 * We are synchronized through cgroup_threadgroup_rwsem
721 * against PF_EXITING setting such that we can't race
722 * against cgroup_exit() changing the css_set to
723 * init_css_set and dropping the old one.
725 WARN_ON_ONCE(task->flags & PF_EXITING);
727 if (!css_set_populated(to_cset))
728 css_set_update_populated(to_cset, true);
729 rcu_assign_pointer(task->cgroups, to_cset);
730 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
736 * hash table for cgroup groups. This improves the performance to find
737 * an existing css_set. This hash doesn't (currently) take into
738 * account cgroups in empty hierarchies.
740 #define CSS_SET_HASH_BITS 7
741 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
743 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
745 unsigned long key = 0UL;
746 struct cgroup_subsys *ss;
749 for_each_subsys(ss, i)
750 key += (unsigned long)css[i];
751 key = (key >> 16) ^ key;
756 static void put_css_set_locked(struct css_set *cset)
758 struct cgrp_cset_link *link, *tmp_link;
759 struct cgroup_subsys *ss;
762 lockdep_assert_held(&css_set_lock);
764 if (!atomic_dec_and_test(&cset->refcount))
767 /* This css_set is dead. unlink it and release cgroup and css refs */
768 for_each_subsys(ss, ssid) {
769 list_del(&cset->e_cset_node[ssid]);
770 css_put(cset->subsys[ssid]);
772 hash_del(&cset->hlist);
775 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
776 list_del(&link->cset_link);
777 list_del(&link->cgrp_link);
778 if (cgroup_parent(link->cgrp))
779 cgroup_put(link->cgrp);
783 kfree_rcu(cset, rcu_head);
786 static void put_css_set(struct css_set *cset)
789 * Ensure that the refcount doesn't hit zero while any readers
790 * can see it. Similar to atomic_dec_and_lock(), but for an
793 if (atomic_add_unless(&cset->refcount, -1, 1))
796 spin_lock_bh(&css_set_lock);
797 put_css_set_locked(cset);
798 spin_unlock_bh(&css_set_lock);
802 * refcounted get/put for css_set objects
804 static inline void get_css_set(struct css_set *cset)
806 atomic_inc(&cset->refcount);
810 * compare_css_sets - helper function for find_existing_css_set().
811 * @cset: candidate css_set being tested
812 * @old_cset: existing css_set for a task
813 * @new_cgrp: cgroup that's being entered by the task
814 * @template: desired set of css pointers in css_set (pre-calculated)
816 * Returns true if "cset" matches "old_cset" except for the hierarchy
817 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
819 static bool compare_css_sets(struct css_set *cset,
820 struct css_set *old_cset,
821 struct cgroup *new_cgrp,
822 struct cgroup_subsys_state *template[])
824 struct list_head *l1, *l2;
827 * On the default hierarchy, there can be csets which are
828 * associated with the same set of cgroups but different csses.
829 * Let's first ensure that csses match.
831 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
835 * Compare cgroup pointers in order to distinguish between
836 * different cgroups in hierarchies. As different cgroups may
837 * share the same effective css, this comparison is always
840 l1 = &cset->cgrp_links;
841 l2 = &old_cset->cgrp_links;
843 struct cgrp_cset_link *link1, *link2;
844 struct cgroup *cgrp1, *cgrp2;
848 /* See if we reached the end - both lists are equal length. */
849 if (l1 == &cset->cgrp_links) {
850 BUG_ON(l2 != &old_cset->cgrp_links);
853 BUG_ON(l2 == &old_cset->cgrp_links);
855 /* Locate the cgroups associated with these links. */
856 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
857 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
860 /* Hierarchies should be linked in the same order. */
861 BUG_ON(cgrp1->root != cgrp2->root);
864 * If this hierarchy is the hierarchy of the cgroup
865 * that's changing, then we need to check that this
866 * css_set points to the new cgroup; if it's any other
867 * hierarchy, then this css_set should point to the
868 * same cgroup as the old css_set.
870 if (cgrp1->root == new_cgrp->root) {
871 if (cgrp1 != new_cgrp)
882 * find_existing_css_set - init css array and find the matching css_set
883 * @old_cset: the css_set that we're using before the cgroup transition
884 * @cgrp: the cgroup that we're moving into
885 * @template: out param for the new set of csses, should be clear on entry
887 static struct css_set *find_existing_css_set(struct css_set *old_cset,
889 struct cgroup_subsys_state *template[])
891 struct cgroup_root *root = cgrp->root;
892 struct cgroup_subsys *ss;
893 struct css_set *cset;
898 * Build the set of subsystem state objects that we want to see in the
899 * new css_set. while subsystems can change globally, the entries here
900 * won't change, so no need for locking.
902 for_each_subsys(ss, i) {
903 if (root->subsys_mask & (1UL << i)) {
905 * @ss is in this hierarchy, so we want the
906 * effective css from @cgrp.
908 template[i] = cgroup_e_css(cgrp, ss);
911 * @ss is not in this hierarchy, so we don't want
914 template[i] = old_cset->subsys[i];
918 key = css_set_hash(template);
919 hash_for_each_possible(css_set_table, cset, hlist, key) {
920 if (!compare_css_sets(cset, old_cset, cgrp, template))
923 /* This css_set matches what we need */
927 /* No existing cgroup group matched */
931 static void free_cgrp_cset_links(struct list_head *links_to_free)
933 struct cgrp_cset_link *link, *tmp_link;
935 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
936 list_del(&link->cset_link);
942 * allocate_cgrp_cset_links - allocate cgrp_cset_links
943 * @count: the number of links to allocate
944 * @tmp_links: list_head the allocated links are put on
946 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
947 * through ->cset_link. Returns 0 on success or -errno.
949 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
951 struct cgrp_cset_link *link;
954 INIT_LIST_HEAD(tmp_links);
956 for (i = 0; i < count; i++) {
957 link = kzalloc(sizeof(*link), GFP_KERNEL);
959 free_cgrp_cset_links(tmp_links);
962 list_add(&link->cset_link, tmp_links);
968 * link_css_set - a helper function to link a css_set to a cgroup
969 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
970 * @cset: the css_set to be linked
971 * @cgrp: the destination cgroup
973 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
976 struct cgrp_cset_link *link;
978 BUG_ON(list_empty(tmp_links));
980 if (cgroup_on_dfl(cgrp))
981 cset->dfl_cgrp = cgrp;
983 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
988 * Always add links to the tail of the lists so that the lists are
989 * in choronological order.
991 list_move_tail(&link->cset_link, &cgrp->cset_links);
992 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
994 if (cgroup_parent(cgrp))
999 * find_css_set - return a new css_set with one cgroup updated
1000 * @old_cset: the baseline css_set
1001 * @cgrp: the cgroup to be updated
1003 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1004 * substituted into the appropriate hierarchy.
1006 static struct css_set *find_css_set(struct css_set *old_cset,
1007 struct cgroup *cgrp)
1009 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1010 struct css_set *cset;
1011 struct list_head tmp_links;
1012 struct cgrp_cset_link *link;
1013 struct cgroup_subsys *ss;
1017 lockdep_assert_held(&cgroup_mutex);
1019 /* First see if we already have a cgroup group that matches
1020 * the desired set */
1021 spin_lock_bh(&css_set_lock);
1022 cset = find_existing_css_set(old_cset, cgrp, template);
1025 spin_unlock_bh(&css_set_lock);
1030 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1034 /* Allocate all the cgrp_cset_link objects that we'll need */
1035 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1040 atomic_set(&cset->refcount, 1);
1041 INIT_LIST_HEAD(&cset->cgrp_links);
1042 INIT_LIST_HEAD(&cset->tasks);
1043 INIT_LIST_HEAD(&cset->mg_tasks);
1044 INIT_LIST_HEAD(&cset->mg_preload_node);
1045 INIT_LIST_HEAD(&cset->mg_node);
1046 INIT_LIST_HEAD(&cset->task_iters);
1047 INIT_HLIST_NODE(&cset->hlist);
1049 /* Copy the set of subsystem state objects generated in
1050 * find_existing_css_set() */
1051 memcpy(cset->subsys, template, sizeof(cset->subsys));
1053 spin_lock_bh(&css_set_lock);
1054 /* Add reference counts and links from the new css_set. */
1055 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1056 struct cgroup *c = link->cgrp;
1058 if (c->root == cgrp->root)
1060 link_css_set(&tmp_links, cset, c);
1063 BUG_ON(!list_empty(&tmp_links));
1067 /* Add @cset to the hash table */
1068 key = css_set_hash(cset->subsys);
1069 hash_add(css_set_table, &cset->hlist, key);
1071 for_each_subsys(ss, ssid) {
1072 struct cgroup_subsys_state *css = cset->subsys[ssid];
1074 list_add_tail(&cset->e_cset_node[ssid],
1075 &css->cgroup->e_csets[ssid]);
1079 spin_unlock_bh(&css_set_lock);
1084 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1086 struct cgroup *root_cgrp = kf_root->kn->priv;
1088 return root_cgrp->root;
1091 static int cgroup_init_root_id(struct cgroup_root *root)
1095 lockdep_assert_held(&cgroup_mutex);
1097 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1101 root->hierarchy_id = id;
1105 static void cgroup_exit_root_id(struct cgroup_root *root)
1107 lockdep_assert_held(&cgroup_mutex);
1109 if (root->hierarchy_id) {
1110 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1111 root->hierarchy_id = 0;
1115 static void cgroup_free_root(struct cgroup_root *root)
1118 /* hierarchy ID should already have been released */
1119 WARN_ON_ONCE(root->hierarchy_id);
1121 idr_destroy(&root->cgroup_idr);
1126 static void cgroup_destroy_root(struct cgroup_root *root)
1128 struct cgroup *cgrp = &root->cgrp;
1129 struct cgrp_cset_link *link, *tmp_link;
1131 mutex_lock(&cgroup_mutex);
1133 BUG_ON(atomic_read(&root->nr_cgrps));
1134 BUG_ON(!list_empty(&cgrp->self.children));
1136 /* Rebind all subsystems back to the default hierarchy */
1137 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1140 * Release all the links from cset_links to this hierarchy's
1143 spin_lock_bh(&css_set_lock);
1145 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1146 list_del(&link->cset_link);
1147 list_del(&link->cgrp_link);
1151 spin_unlock_bh(&css_set_lock);
1153 if (!list_empty(&root->root_list)) {
1154 list_del(&root->root_list);
1155 cgroup_root_count--;
1158 cgroup_exit_root_id(root);
1160 mutex_unlock(&cgroup_mutex);
1162 kernfs_destroy_root(root->kf_root);
1163 cgroup_free_root(root);
1166 /* look up cgroup associated with given css_set on the specified hierarchy */
1167 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1168 struct cgroup_root *root)
1170 struct cgroup *res = NULL;
1172 lockdep_assert_held(&cgroup_mutex);
1173 lockdep_assert_held(&css_set_lock);
1175 if (cset == &init_css_set) {
1178 struct cgrp_cset_link *link;
1180 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1181 struct cgroup *c = link->cgrp;
1183 if (c->root == root) {
1195 * Return the cgroup for "task" from the given hierarchy. Must be
1196 * called with cgroup_mutex and css_set_lock held.
1198 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1199 struct cgroup_root *root)
1202 * No need to lock the task - since we hold cgroup_mutex the
1203 * task can't change groups, so the only thing that can happen
1204 * is that it exits and its css is set back to init_css_set.
1206 return cset_cgroup_from_root(task_css_set(task), root);
1210 * A task must hold cgroup_mutex to modify cgroups.
1212 * Any task can increment and decrement the count field without lock.
1213 * So in general, code holding cgroup_mutex can't rely on the count
1214 * field not changing. However, if the count goes to zero, then only
1215 * cgroup_attach_task() can increment it again. Because a count of zero
1216 * means that no tasks are currently attached, therefore there is no
1217 * way a task attached to that cgroup can fork (the other way to
1218 * increment the count). So code holding cgroup_mutex can safely
1219 * assume that if the count is zero, it will stay zero. Similarly, if
1220 * a task holds cgroup_mutex on a cgroup with zero count, it
1221 * knows that the cgroup won't be removed, as cgroup_rmdir()
1224 * A cgroup can only be deleted if both its 'count' of using tasks
1225 * is zero, and its list of 'children' cgroups is empty. Since all
1226 * tasks in the system use _some_ cgroup, and since there is always at
1227 * least one task in the system (init, pid == 1), therefore, root cgroup
1228 * always has either children cgroups and/or using tasks. So we don't
1229 * need a special hack to ensure that root cgroup cannot be deleted.
1231 * P.S. One more locking exception. RCU is used to guard the
1232 * update of a tasks cgroup pointer by cgroup_attach_task()
1235 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1236 static const struct file_operations proc_cgroupstats_operations;
1238 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1241 struct cgroup_subsys *ss = cft->ss;
1243 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1244 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1245 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1246 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1249 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1254 * cgroup_file_mode - deduce file mode of a control file
1255 * @cft: the control file in question
1257 * S_IRUGO for read, S_IWUSR for write.
1259 static umode_t cgroup_file_mode(const struct cftype *cft)
1263 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1266 if (cft->write_u64 || cft->write_s64 || cft->write) {
1267 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1277 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1278 * @cgrp: the target cgroup
1279 * @subtree_control: the new subtree_control mask to consider
1281 * On the default hierarchy, a subsystem may request other subsystems to be
1282 * enabled together through its ->depends_on mask. In such cases, more
1283 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1285 * This function calculates which subsystems need to be enabled if
1286 * @subtree_control is to be applied to @cgrp. The returned mask is always
1287 * a superset of @subtree_control and follows the usual hierarchy rules.
1289 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1290 unsigned long subtree_control)
1292 struct cgroup *parent = cgroup_parent(cgrp);
1293 unsigned long cur_ss_mask = subtree_control;
1294 struct cgroup_subsys *ss;
1297 lockdep_assert_held(&cgroup_mutex);
1299 if (!cgroup_on_dfl(cgrp))
1303 unsigned long new_ss_mask = cur_ss_mask;
1305 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1306 new_ss_mask |= ss->depends_on;
1309 * Mask out subsystems which aren't available. This can
1310 * happen only if some depended-upon subsystems were bound
1311 * to non-default hierarchies.
1314 new_ss_mask &= parent->child_subsys_mask;
1316 new_ss_mask &= cgrp->root->subsys_mask;
1318 if (new_ss_mask == cur_ss_mask)
1320 cur_ss_mask = new_ss_mask;
1327 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1328 * @cgrp: the target cgroup
1330 * Update @cgrp->child_subsys_mask according to the current
1331 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1333 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1335 cgrp->child_subsys_mask =
1336 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1340 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1341 * @kn: the kernfs_node being serviced
1343 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1344 * the method finishes if locking succeeded. Note that once this function
1345 * returns the cgroup returned by cgroup_kn_lock_live() may become
1346 * inaccessible any time. If the caller intends to continue to access the
1347 * cgroup, it should pin it before invoking this function.
1349 static void cgroup_kn_unlock(struct kernfs_node *kn)
1351 struct cgroup *cgrp;
1353 if (kernfs_type(kn) == KERNFS_DIR)
1356 cgrp = kn->parent->priv;
1358 mutex_unlock(&cgroup_mutex);
1360 kernfs_unbreak_active_protection(kn);
1365 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1366 * @kn: the kernfs_node being serviced
1368 * This helper is to be used by a cgroup kernfs method currently servicing
1369 * @kn. It breaks the active protection, performs cgroup locking and
1370 * verifies that the associated cgroup is alive. Returns the cgroup if
1371 * alive; otherwise, %NULL. A successful return should be undone by a
1372 * matching cgroup_kn_unlock() invocation.
1374 * Any cgroup kernfs method implementation which requires locking the
1375 * associated cgroup should use this helper. It avoids nesting cgroup
1376 * locking under kernfs active protection and allows all kernfs operations
1377 * including self-removal.
1379 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1381 struct cgroup *cgrp;
1383 if (kernfs_type(kn) == KERNFS_DIR)
1386 cgrp = kn->parent->priv;
1389 * We're gonna grab cgroup_mutex which nests outside kernfs
1390 * active_ref. cgroup liveliness check alone provides enough
1391 * protection against removal. Ensure @cgrp stays accessible and
1392 * break the active_ref protection.
1394 if (!cgroup_tryget(cgrp))
1396 kernfs_break_active_protection(kn);
1398 mutex_lock(&cgroup_mutex);
1400 if (!cgroup_is_dead(cgrp))
1403 cgroup_kn_unlock(kn);
1407 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1409 char name[CGROUP_FILE_NAME_MAX];
1411 lockdep_assert_held(&cgroup_mutex);
1413 if (cft->file_offset) {
1414 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1415 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1417 spin_lock_irq(&cgroup_file_kn_lock);
1419 spin_unlock_irq(&cgroup_file_kn_lock);
1422 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1426 * css_clear_dir - remove subsys files in a cgroup directory
1428 * @cgrp_override: specify if target cgroup is different from css->cgroup
1430 static void css_clear_dir(struct cgroup_subsys_state *css,
1431 struct cgroup *cgrp_override)
1433 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1434 struct cftype *cfts;
1436 list_for_each_entry(cfts, &css->ss->cfts, node)
1437 cgroup_addrm_files(css, cgrp, cfts, false);
1441 * css_populate_dir - create subsys files in a cgroup directory
1443 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1445 * On failure, no file is added.
1447 static int css_populate_dir(struct cgroup_subsys_state *css,
1448 struct cgroup *cgrp_override)
1450 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1451 struct cftype *cfts, *failed_cfts;
1455 if (cgroup_on_dfl(cgrp))
1456 cfts = cgroup_dfl_base_files;
1458 cfts = cgroup_legacy_base_files;
1460 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1463 list_for_each_entry(cfts, &css->ss->cfts, node) {
1464 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1472 list_for_each_entry(cfts, &css->ss->cfts, node) {
1473 if (cfts == failed_cfts)
1475 cgroup_addrm_files(css, cgrp, cfts, false);
1480 static int rebind_subsystems(struct cgroup_root *dst_root,
1481 unsigned long ss_mask)
1483 struct cgroup *dcgrp = &dst_root->cgrp;
1484 struct cgroup_subsys *ss;
1485 unsigned long tmp_ss_mask;
1488 lockdep_assert_held(&cgroup_mutex);
1490 for_each_subsys_which(ss, ssid, &ss_mask) {
1491 /* if @ss has non-root csses attached to it, can't move */
1492 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1495 /* can't move between two non-dummy roots either */
1496 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1500 /* skip creating root files on dfl_root for inhibited subsystems */
1501 tmp_ss_mask = ss_mask;
1502 if (dst_root == &cgrp_dfl_root)
1503 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1505 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1506 struct cgroup *scgrp = &ss->root->cgrp;
1509 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1514 * Rebinding back to the default root is not allowed to
1515 * fail. Using both default and non-default roots should
1516 * be rare. Moving subsystems back and forth even more so.
1517 * Just warn about it and continue.
1519 if (dst_root == &cgrp_dfl_root) {
1520 if (cgrp_dfl_root_visible) {
1521 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1523 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1528 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1531 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1537 * Nothing can fail from this point on. Remove files for the
1538 * removed subsystems and rebind each subsystem.
1540 for_each_subsys_which(ss, ssid, &ss_mask) {
1541 struct cgroup_root *src_root = ss->root;
1542 struct cgroup *scgrp = &src_root->cgrp;
1543 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1544 struct css_set *cset;
1546 WARN_ON(!css || cgroup_css(dcgrp, ss));
1548 css_clear_dir(css, NULL);
1550 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1551 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1552 ss->root = dst_root;
1553 css->cgroup = dcgrp;
1555 spin_lock_bh(&css_set_lock);
1556 hash_for_each(css_set_table, i, cset, hlist)
1557 list_move_tail(&cset->e_cset_node[ss->id],
1558 &dcgrp->e_csets[ss->id]);
1559 spin_unlock_bh(&css_set_lock);
1561 src_root->subsys_mask &= ~(1 << ssid);
1562 scgrp->subtree_control &= ~(1 << ssid);
1563 cgroup_refresh_child_subsys_mask(scgrp);
1565 /* default hierarchy doesn't enable controllers by default */
1566 dst_root->subsys_mask |= 1 << ssid;
1567 if (dst_root == &cgrp_dfl_root) {
1568 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1570 dcgrp->subtree_control |= 1 << ssid;
1571 cgroup_refresh_child_subsys_mask(dcgrp);
1572 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1579 kernfs_activate(dcgrp->kn);
1583 static int cgroup_show_options(struct seq_file *seq,
1584 struct kernfs_root *kf_root)
1586 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1587 struct cgroup_subsys *ss;
1590 if (root != &cgrp_dfl_root)
1591 for_each_subsys(ss, ssid)
1592 if (root->subsys_mask & (1 << ssid))
1593 seq_show_option(seq, ss->legacy_name, NULL);
1594 if (root->flags & CGRP_ROOT_NOPREFIX)
1595 seq_puts(seq, ",noprefix");
1596 if (root->flags & CGRP_ROOT_XATTR)
1597 seq_puts(seq, ",xattr");
1599 spin_lock(&release_agent_path_lock);
1600 if (strlen(root->release_agent_path))
1601 seq_show_option(seq, "release_agent",
1602 root->release_agent_path);
1603 spin_unlock(&release_agent_path_lock);
1605 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1606 seq_puts(seq, ",clone_children");
1607 if (strlen(root->name))
1608 seq_show_option(seq, "name", root->name);
1612 struct cgroup_sb_opts {
1613 unsigned long subsys_mask;
1615 char *release_agent;
1616 bool cpuset_clone_children;
1618 /* User explicitly requested empty subsystem */
1622 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1624 char *token, *o = data;
1625 bool all_ss = false, one_ss = false;
1626 unsigned long mask = -1UL;
1627 struct cgroup_subsys *ss;
1631 #ifdef CONFIG_CPUSETS
1632 mask = ~(1U << cpuset_cgrp_id);
1635 memset(opts, 0, sizeof(*opts));
1637 while ((token = strsep(&o, ",")) != NULL) {
1642 if (!strcmp(token, "none")) {
1643 /* Explicitly have no subsystems */
1647 if (!strcmp(token, "all")) {
1648 /* Mutually exclusive option 'all' + subsystem name */
1654 if (!strcmp(token, "noprefix")) {
1655 opts->flags |= CGRP_ROOT_NOPREFIX;
1658 if (!strcmp(token, "clone_children")) {
1659 opts->cpuset_clone_children = true;
1662 if (!strcmp(token, "xattr")) {
1663 opts->flags |= CGRP_ROOT_XATTR;
1666 if (!strncmp(token, "release_agent=", 14)) {
1667 /* Specifying two release agents is forbidden */
1668 if (opts->release_agent)
1670 opts->release_agent =
1671 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1672 if (!opts->release_agent)
1676 if (!strncmp(token, "name=", 5)) {
1677 const char *name = token + 5;
1678 /* Can't specify an empty name */
1681 /* Must match [\w.-]+ */
1682 for (i = 0; i < strlen(name); i++) {
1686 if ((c == '.') || (c == '-') || (c == '_'))
1690 /* Specifying two names is forbidden */
1693 opts->name = kstrndup(name,
1694 MAX_CGROUP_ROOT_NAMELEN - 1,
1702 for_each_subsys(ss, i) {
1703 if (strcmp(token, ss->legacy_name))
1705 if (!cgroup_ssid_enabled(i))
1708 /* Mutually exclusive option 'all' + subsystem name */
1711 opts->subsys_mask |= (1 << i);
1716 if (i == CGROUP_SUBSYS_COUNT)
1721 * If the 'all' option was specified select all the subsystems,
1722 * otherwise if 'none', 'name=' and a subsystem name options were
1723 * not specified, let's default to 'all'
1725 if (all_ss || (!one_ss && !opts->none && !opts->name))
1726 for_each_subsys(ss, i)
1727 if (cgroup_ssid_enabled(i))
1728 opts->subsys_mask |= (1 << i);
1731 * We either have to specify by name or by subsystems. (So all
1732 * empty hierarchies must have a name).
1734 if (!opts->subsys_mask && !opts->name)
1738 * Option noprefix was introduced just for backward compatibility
1739 * with the old cpuset, so we allow noprefix only if mounting just
1740 * the cpuset subsystem.
1742 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1745 /* Can't specify "none" and some subsystems */
1746 if (opts->subsys_mask && opts->none)
1752 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1755 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1756 struct cgroup_sb_opts opts;
1757 unsigned long added_mask, removed_mask;
1759 if (root == &cgrp_dfl_root) {
1760 pr_err("remount is not allowed\n");
1764 mutex_lock(&cgroup_mutex);
1766 /* See what subsystems are wanted */
1767 ret = parse_cgroupfs_options(data, &opts);
1771 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1772 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1773 task_tgid_nr(current), current->comm);
1775 added_mask = opts.subsys_mask & ~root->subsys_mask;
1776 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1778 /* Don't allow flags or name to change at remount */
1779 if ((opts.flags ^ root->flags) ||
1780 (opts.name && strcmp(opts.name, root->name))) {
1781 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1782 opts.flags, opts.name ?: "", root->flags, root->name);
1787 /* remounting is not allowed for populated hierarchies */
1788 if (!list_empty(&root->cgrp.self.children)) {
1793 ret = rebind_subsystems(root, added_mask);
1797 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1799 if (opts.release_agent) {
1800 spin_lock(&release_agent_path_lock);
1801 strcpy(root->release_agent_path, opts.release_agent);
1802 spin_unlock(&release_agent_path_lock);
1805 kfree(opts.release_agent);
1807 mutex_unlock(&cgroup_mutex);
1812 * To reduce the fork() overhead for systems that are not actually using
1813 * their cgroups capability, we don't maintain the lists running through
1814 * each css_set to its tasks until we see the list actually used - in other
1815 * words after the first mount.
1817 static bool use_task_css_set_links __read_mostly;
1819 static void cgroup_enable_task_cg_lists(void)
1821 struct task_struct *p, *g;
1823 spin_lock_bh(&css_set_lock);
1825 if (use_task_css_set_links)
1828 use_task_css_set_links = true;
1831 * We need tasklist_lock because RCU is not safe against
1832 * while_each_thread(). Besides, a forking task that has passed
1833 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1834 * is not guaranteed to have its child immediately visible in the
1835 * tasklist if we walk through it with RCU.
1837 read_lock(&tasklist_lock);
1838 do_each_thread(g, p) {
1839 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1840 task_css_set(p) != &init_css_set);
1843 * We should check if the process is exiting, otherwise
1844 * it will race with cgroup_exit() in that the list
1845 * entry won't be deleted though the process has exited.
1846 * Do it while holding siglock so that we don't end up
1847 * racing against cgroup_exit().
1849 spin_lock_irq(&p->sighand->siglock);
1850 if (!(p->flags & PF_EXITING)) {
1851 struct css_set *cset = task_css_set(p);
1853 if (!css_set_populated(cset))
1854 css_set_update_populated(cset, true);
1855 list_add_tail(&p->cg_list, &cset->tasks);
1858 spin_unlock_irq(&p->sighand->siglock);
1859 } while_each_thread(g, p);
1860 read_unlock(&tasklist_lock);
1862 spin_unlock_bh(&css_set_lock);
1865 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1867 struct cgroup_subsys *ss;
1870 INIT_LIST_HEAD(&cgrp->self.sibling);
1871 INIT_LIST_HEAD(&cgrp->self.children);
1872 INIT_LIST_HEAD(&cgrp->cset_links);
1873 INIT_LIST_HEAD(&cgrp->pidlists);
1874 mutex_init(&cgrp->pidlist_mutex);
1875 cgrp->self.cgroup = cgrp;
1876 cgrp->self.flags |= CSS_ONLINE;
1878 for_each_subsys(ss, ssid)
1879 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1881 init_waitqueue_head(&cgrp->offline_waitq);
1882 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1885 static void init_cgroup_root(struct cgroup_root *root,
1886 struct cgroup_sb_opts *opts)
1888 struct cgroup *cgrp = &root->cgrp;
1890 INIT_LIST_HEAD(&root->root_list);
1891 atomic_set(&root->nr_cgrps, 1);
1893 init_cgroup_housekeeping(cgrp);
1894 idr_init(&root->cgroup_idr);
1896 root->flags = opts->flags;
1897 if (opts->release_agent)
1898 strcpy(root->release_agent_path, opts->release_agent);
1900 strcpy(root->name, opts->name);
1901 if (opts->cpuset_clone_children)
1902 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1905 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1907 LIST_HEAD(tmp_links);
1908 struct cgroup *root_cgrp = &root->cgrp;
1909 struct css_set *cset;
1912 lockdep_assert_held(&cgroup_mutex);
1914 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1917 root_cgrp->id = ret;
1919 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1925 * We're accessing css_set_count without locking css_set_lock here,
1926 * but that's OK - it can only be increased by someone holding
1927 * cgroup_lock, and that's us. The worst that can happen is that we
1928 * have some link structures left over
1930 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1934 ret = cgroup_init_root_id(root);
1938 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1939 KERNFS_ROOT_CREATE_DEACTIVATED,
1941 if (IS_ERR(root->kf_root)) {
1942 ret = PTR_ERR(root->kf_root);
1945 root_cgrp->kn = root->kf_root->kn;
1947 ret = css_populate_dir(&root_cgrp->self, NULL);
1951 ret = rebind_subsystems(root, ss_mask);
1956 * There must be no failure case after here, since rebinding takes
1957 * care of subsystems' refcounts, which are explicitly dropped in
1958 * the failure exit path.
1960 list_add(&root->root_list, &cgroup_roots);
1961 cgroup_root_count++;
1964 * Link the root cgroup in this hierarchy into all the css_set
1967 spin_lock_bh(&css_set_lock);
1968 hash_for_each(css_set_table, i, cset, hlist) {
1969 link_css_set(&tmp_links, cset, root_cgrp);
1970 if (css_set_populated(cset))
1971 cgroup_update_populated(root_cgrp, true);
1973 spin_unlock_bh(&css_set_lock);
1975 BUG_ON(!list_empty(&root_cgrp->self.children));
1976 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1978 kernfs_activate(root_cgrp->kn);
1983 kernfs_destroy_root(root->kf_root);
1984 root->kf_root = NULL;
1986 cgroup_exit_root_id(root);
1988 percpu_ref_exit(&root_cgrp->self.refcnt);
1990 free_cgrp_cset_links(&tmp_links);
1994 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1995 int flags, const char *unused_dev_name,
1998 bool is_v2 = fs_type == &cgroup2_fs_type;
1999 struct super_block *pinned_sb = NULL;
2000 struct cgroup_subsys *ss;
2001 struct cgroup_root *root;
2002 struct cgroup_sb_opts opts;
2003 struct dentry *dentry;
2009 * The first time anyone tries to mount a cgroup, enable the list
2010 * linking each css_set to its tasks and fix up all existing tasks.
2012 if (!use_task_css_set_links)
2013 cgroup_enable_task_cg_lists();
2017 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2018 return ERR_PTR(-EINVAL);
2020 cgrp_dfl_root_visible = true;
2021 root = &cgrp_dfl_root;
2022 cgroup_get(&root->cgrp);
2026 mutex_lock(&cgroup_mutex);
2028 /* First find the desired set of subsystems */
2029 ret = parse_cgroupfs_options(data, &opts);
2034 * Destruction of cgroup root is asynchronous, so subsystems may
2035 * still be dying after the previous unmount. Let's drain the
2036 * dying subsystems. We just need to ensure that the ones
2037 * unmounted previously finish dying and don't care about new ones
2038 * starting. Testing ref liveliness is good enough.
2040 for_each_subsys(ss, i) {
2041 if (!(opts.subsys_mask & (1 << i)) ||
2042 ss->root == &cgrp_dfl_root)
2045 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2046 mutex_unlock(&cgroup_mutex);
2048 ret = restart_syscall();
2051 cgroup_put(&ss->root->cgrp);
2054 for_each_root(root) {
2055 bool name_match = false;
2057 if (root == &cgrp_dfl_root)
2061 * If we asked for a name then it must match. Also, if
2062 * name matches but sybsys_mask doesn't, we should fail.
2063 * Remember whether name matched.
2066 if (strcmp(opts.name, root->name))
2072 * If we asked for subsystems (or explicitly for no
2073 * subsystems) then they must match.
2075 if ((opts.subsys_mask || opts.none) &&
2076 (opts.subsys_mask != root->subsys_mask)) {
2083 if (root->flags ^ opts.flags)
2084 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2087 * We want to reuse @root whose lifetime is governed by its
2088 * ->cgrp. Let's check whether @root is alive and keep it
2089 * that way. As cgroup_kill_sb() can happen anytime, we
2090 * want to block it by pinning the sb so that @root doesn't
2091 * get killed before mount is complete.
2093 * With the sb pinned, tryget_live can reliably indicate
2094 * whether @root can be reused. If it's being killed,
2095 * drain it. We can use wait_queue for the wait but this
2096 * path is super cold. Let's just sleep a bit and retry.
2098 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2099 if (IS_ERR(pinned_sb) ||
2100 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2101 mutex_unlock(&cgroup_mutex);
2102 if (!IS_ERR_OR_NULL(pinned_sb))
2103 deactivate_super(pinned_sb);
2105 ret = restart_syscall();
2114 * No such thing, create a new one. name= matching without subsys
2115 * specification is allowed for already existing hierarchies but we
2116 * can't create new one without subsys specification.
2118 if (!opts.subsys_mask && !opts.none) {
2123 root = kzalloc(sizeof(*root), GFP_KERNEL);
2129 init_cgroup_root(root, &opts);
2131 ret = cgroup_setup_root(root, opts.subsys_mask);
2133 cgroup_free_root(root);
2136 mutex_unlock(&cgroup_mutex);
2138 kfree(opts.release_agent);
2142 return ERR_PTR(ret);
2144 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2145 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2147 if (IS_ERR(dentry) || !new_sb)
2148 cgroup_put(&root->cgrp);
2151 * If @pinned_sb, we're reusing an existing root and holding an
2152 * extra ref on its sb. Mount is complete. Put the extra ref.
2156 deactivate_super(pinned_sb);
2162 static void cgroup_kill_sb(struct super_block *sb)
2164 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2165 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2168 * If @root doesn't have any mounts or children, start killing it.
2169 * This prevents new mounts by disabling percpu_ref_tryget_live().
2170 * cgroup_mount() may wait for @root's release.
2172 * And don't kill the default root.
2174 if (!list_empty(&root->cgrp.self.children) ||
2175 root == &cgrp_dfl_root)
2176 cgroup_put(&root->cgrp);
2178 percpu_ref_kill(&root->cgrp.self.refcnt);
2183 static struct file_system_type cgroup_fs_type = {
2185 .mount = cgroup_mount,
2186 .kill_sb = cgroup_kill_sb,
2189 static struct file_system_type cgroup2_fs_type = {
2191 .mount = cgroup_mount,
2192 .kill_sb = cgroup_kill_sb,
2196 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2197 * @task: target task
2198 * @buf: the buffer to write the path into
2199 * @buflen: the length of the buffer
2201 * Determine @task's cgroup on the first (the one with the lowest non-zero
2202 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2203 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2204 * cgroup controller callbacks.
2206 * Return value is the same as kernfs_path().
2208 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2210 struct cgroup_root *root;
2211 struct cgroup *cgrp;
2212 int hierarchy_id = 1;
2215 mutex_lock(&cgroup_mutex);
2216 spin_lock_bh(&css_set_lock);
2218 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2221 cgrp = task_cgroup_from_root(task, root);
2222 path = cgroup_path(cgrp, buf, buflen);
2224 /* if no hierarchy exists, everyone is in "/" */
2225 if (strlcpy(buf, "/", buflen) < buflen)
2229 spin_unlock_bh(&css_set_lock);
2230 mutex_unlock(&cgroup_mutex);
2233 EXPORT_SYMBOL_GPL(task_cgroup_path);
2235 /* used to track tasks and other necessary states during migration */
2236 struct cgroup_taskset {
2237 /* the src and dst cset list running through cset->mg_node */
2238 struct list_head src_csets;
2239 struct list_head dst_csets;
2241 /* the subsys currently being processed */
2245 * Fields for cgroup_taskset_*() iteration.
2247 * Before migration is committed, the target migration tasks are on
2248 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2249 * the csets on ->dst_csets. ->csets point to either ->src_csets
2250 * or ->dst_csets depending on whether migration is committed.
2252 * ->cur_csets and ->cur_task point to the current task position
2255 struct list_head *csets;
2256 struct css_set *cur_cset;
2257 struct task_struct *cur_task;
2260 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2261 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2262 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2263 .csets = &tset.src_csets, \
2267 * cgroup_taskset_add - try to add a migration target task to a taskset
2268 * @task: target task
2269 * @tset: target taskset
2271 * Add @task, which is a migration target, to @tset. This function becomes
2272 * noop if @task doesn't need to be migrated. @task's css_set should have
2273 * been added as a migration source and @task->cg_list will be moved from
2274 * the css_set's tasks list to mg_tasks one.
2276 static void cgroup_taskset_add(struct task_struct *task,
2277 struct cgroup_taskset *tset)
2279 struct css_set *cset;
2281 lockdep_assert_held(&css_set_lock);
2283 /* @task either already exited or can't exit until the end */
2284 if (task->flags & PF_EXITING)
2287 /* leave @task alone if post_fork() hasn't linked it yet */
2288 if (list_empty(&task->cg_list))
2291 cset = task_css_set(task);
2292 if (!cset->mg_src_cgrp)
2295 list_move_tail(&task->cg_list, &cset->mg_tasks);
2296 if (list_empty(&cset->mg_node))
2297 list_add_tail(&cset->mg_node, &tset->src_csets);
2298 if (list_empty(&cset->mg_dst_cset->mg_node))
2299 list_move_tail(&cset->mg_dst_cset->mg_node,
2304 * cgroup_taskset_first - reset taskset and return the first task
2305 * @tset: taskset of interest
2306 * @dst_cssp: output variable for the destination css
2308 * @tset iteration is initialized and the first task is returned.
2310 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2311 struct cgroup_subsys_state **dst_cssp)
2313 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2314 tset->cur_task = NULL;
2316 return cgroup_taskset_next(tset, dst_cssp);
2320 * cgroup_taskset_next - iterate to the next task in taskset
2321 * @tset: taskset of interest
2322 * @dst_cssp: output variable for the destination css
2324 * Return the next task in @tset. Iteration must have been initialized
2325 * with cgroup_taskset_first().
2327 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2328 struct cgroup_subsys_state **dst_cssp)
2330 struct css_set *cset = tset->cur_cset;
2331 struct task_struct *task = tset->cur_task;
2333 while (&cset->mg_node != tset->csets) {
2335 task = list_first_entry(&cset->mg_tasks,
2336 struct task_struct, cg_list);
2338 task = list_next_entry(task, cg_list);
2340 if (&task->cg_list != &cset->mg_tasks) {
2341 tset->cur_cset = cset;
2342 tset->cur_task = task;
2345 * This function may be called both before and
2346 * after cgroup_taskset_migrate(). The two cases
2347 * can be distinguished by looking at whether @cset
2348 * has its ->mg_dst_cset set.
2350 if (cset->mg_dst_cset)
2351 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2353 *dst_cssp = cset->subsys[tset->ssid];
2358 cset = list_next_entry(cset, mg_node);
2366 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2367 * @tset: taget taskset
2368 * @dst_cgrp: destination cgroup
2370 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2371 * ->can_attach callbacks fails and guarantees that either all or none of
2372 * the tasks in @tset are migrated. @tset is consumed regardless of
2375 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2376 struct cgroup *dst_cgrp)
2378 struct cgroup_subsys_state *css, *failed_css = NULL;
2379 struct task_struct *task, *tmp_task;
2380 struct css_set *cset, *tmp_cset;
2383 /* methods shouldn't be called if no task is actually migrating */
2384 if (list_empty(&tset->src_csets))
2387 /* check that we can legitimately attach to the cgroup */
2388 for_each_e_css(css, i, dst_cgrp) {
2389 if (css->ss->can_attach) {
2391 ret = css->ss->can_attach(tset);
2394 goto out_cancel_attach;
2400 * Now that we're guaranteed success, proceed to move all tasks to
2401 * the new cgroup. There are no failure cases after here, so this
2402 * is the commit point.
2404 spin_lock_bh(&css_set_lock);
2405 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2406 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2407 struct css_set *from_cset = task_css_set(task);
2408 struct css_set *to_cset = cset->mg_dst_cset;
2410 get_css_set(to_cset);
2411 css_set_move_task(task, from_cset, to_cset, true);
2412 put_css_set_locked(from_cset);
2415 spin_unlock_bh(&css_set_lock);
2418 * Migration is committed, all target tasks are now on dst_csets.
2419 * Nothing is sensitive to fork() after this point. Notify
2420 * controllers that migration is complete.
2422 tset->csets = &tset->dst_csets;
2424 for_each_e_css(css, i, dst_cgrp) {
2425 if (css->ss->attach) {
2427 css->ss->attach(tset);
2432 goto out_release_tset;
2435 for_each_e_css(css, i, dst_cgrp) {
2436 if (css == failed_css)
2438 if (css->ss->cancel_attach) {
2440 css->ss->cancel_attach(tset);
2444 spin_lock_bh(&css_set_lock);
2445 list_splice_init(&tset->dst_csets, &tset->src_csets);
2446 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2447 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2448 list_del_init(&cset->mg_node);
2450 spin_unlock_bh(&css_set_lock);
2455 * cgroup_migrate_finish - cleanup after attach
2456 * @preloaded_csets: list of preloaded css_sets
2458 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2459 * those functions for details.
2461 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2463 struct css_set *cset, *tmp_cset;
2465 lockdep_assert_held(&cgroup_mutex);
2467 spin_lock_bh(&css_set_lock);
2468 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2469 cset->mg_src_cgrp = NULL;
2470 cset->mg_dst_cset = NULL;
2471 list_del_init(&cset->mg_preload_node);
2472 put_css_set_locked(cset);
2474 spin_unlock_bh(&css_set_lock);
2478 * cgroup_migrate_add_src - add a migration source css_set
2479 * @src_cset: the source css_set to add
2480 * @dst_cgrp: the destination cgroup
2481 * @preloaded_csets: list of preloaded css_sets
2483 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2484 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2485 * up by cgroup_migrate_finish().
2487 * This function may be called without holding cgroup_threadgroup_rwsem
2488 * even if the target is a process. Threads may be created and destroyed
2489 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2490 * into play and the preloaded css_sets are guaranteed to cover all
2493 static void cgroup_migrate_add_src(struct css_set *src_cset,
2494 struct cgroup *dst_cgrp,
2495 struct list_head *preloaded_csets)
2497 struct cgroup *src_cgrp;
2499 lockdep_assert_held(&cgroup_mutex);
2500 lockdep_assert_held(&css_set_lock);
2503 * If ->dead, @src_set is associated with one or more dead cgroups
2504 * and doesn't contain any migratable tasks. Ignore it early so
2505 * that the rest of migration path doesn't get confused by it.
2510 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2512 if (!list_empty(&src_cset->mg_preload_node))
2515 WARN_ON(src_cset->mg_src_cgrp);
2516 WARN_ON(!list_empty(&src_cset->mg_tasks));
2517 WARN_ON(!list_empty(&src_cset->mg_node));
2519 src_cset->mg_src_cgrp = src_cgrp;
2520 get_css_set(src_cset);
2521 list_add(&src_cset->mg_preload_node, preloaded_csets);
2525 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2526 * @dst_cgrp: the destination cgroup (may be %NULL)
2527 * @preloaded_csets: list of preloaded source css_sets
2529 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2530 * have been preloaded to @preloaded_csets. This function looks up and
2531 * pins all destination css_sets, links each to its source, and append them
2532 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2533 * source css_set is assumed to be its cgroup on the default hierarchy.
2535 * This function must be called after cgroup_migrate_add_src() has been
2536 * called on each migration source css_set. After migration is performed
2537 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2540 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2541 struct list_head *preloaded_csets)
2544 struct css_set *src_cset, *tmp_cset;
2546 lockdep_assert_held(&cgroup_mutex);
2549 * Except for the root, child_subsys_mask must be zero for a cgroup
2550 * with tasks so that child cgroups don't compete against tasks.
2552 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2553 dst_cgrp->child_subsys_mask)
2556 /* look up the dst cset for each src cset and link it to src */
2557 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2558 struct css_set *dst_cset;
2560 dst_cset = find_css_set(src_cset,
2561 dst_cgrp ?: src_cset->dfl_cgrp);
2565 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2568 * If src cset equals dst, it's noop. Drop the src.
2569 * cgroup_migrate() will skip the cset too. Note that we
2570 * can't handle src == dst as some nodes are used by both.
2572 if (src_cset == dst_cset) {
2573 src_cset->mg_src_cgrp = NULL;
2574 list_del_init(&src_cset->mg_preload_node);
2575 put_css_set(src_cset);
2576 put_css_set(dst_cset);
2580 src_cset->mg_dst_cset = dst_cset;
2582 if (list_empty(&dst_cset->mg_preload_node))
2583 list_add(&dst_cset->mg_preload_node, &csets);
2585 put_css_set(dst_cset);
2588 list_splice_tail(&csets, preloaded_csets);
2591 cgroup_migrate_finish(&csets);
2596 * cgroup_migrate - migrate a process or task to a cgroup
2597 * @leader: the leader of the process or the task to migrate
2598 * @threadgroup: whether @leader points to the whole process or a single task
2599 * @cgrp: the destination cgroup
2601 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2602 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2603 * caller is also responsible for invoking cgroup_migrate_add_src() and
2604 * cgroup_migrate_prepare_dst() on the targets before invoking this
2605 * function and following up with cgroup_migrate_finish().
2607 * As long as a controller's ->can_attach() doesn't fail, this function is
2608 * guaranteed to succeed. This means that, excluding ->can_attach()
2609 * failure, when migrating multiple targets, the success or failure can be
2610 * decided for all targets by invoking group_migrate_prepare_dst() before
2611 * actually starting migrating.
2613 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2614 struct cgroup *cgrp)
2616 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2617 struct task_struct *task;
2620 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2621 * already PF_EXITING could be freed from underneath us unless we
2622 * take an rcu_read_lock.
2624 spin_lock_bh(&css_set_lock);
2628 cgroup_taskset_add(task, &tset);
2631 } while_each_thread(leader, task);
2633 spin_unlock_bh(&css_set_lock);
2635 return cgroup_taskset_migrate(&tset, cgrp);
2639 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2640 * @dst_cgrp: the cgroup to attach to
2641 * @leader: the task or the leader of the threadgroup to be attached
2642 * @threadgroup: attach the whole threadgroup?
2644 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2646 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2647 struct task_struct *leader, bool threadgroup)
2649 LIST_HEAD(preloaded_csets);
2650 struct task_struct *task;
2653 /* look up all src csets */
2654 spin_lock_bh(&css_set_lock);
2658 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2662 } while_each_thread(leader, task);
2664 spin_unlock_bh(&css_set_lock);
2666 /* prepare dst csets and commit */
2667 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2669 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2671 cgroup_migrate_finish(&preloaded_csets);
2675 static int cgroup_procs_write_permission(struct task_struct *task,
2676 struct cgroup *dst_cgrp,
2677 struct kernfs_open_file *of)
2679 const struct cred *cred = current_cred();
2680 const struct cred *tcred = get_task_cred(task);
2684 * even if we're attaching all tasks in the thread group, we only
2685 * need to check permissions on one of them.
2687 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2688 !uid_eq(cred->euid, tcred->uid) &&
2689 !uid_eq(cred->euid, tcred->suid) &&
2690 !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
2693 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2694 struct super_block *sb = of->file->f_path.dentry->d_sb;
2695 struct cgroup *cgrp;
2696 struct inode *inode;
2698 spin_lock_bh(&css_set_lock);
2699 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2700 spin_unlock_bh(&css_set_lock);
2702 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2703 cgrp = cgroup_parent(cgrp);
2706 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2708 ret = inode_permission(inode, MAY_WRITE);
2718 * Find the task_struct of the task to attach by vpid and pass it along to the
2719 * function to attach either it or all tasks in its threadgroup. Will lock
2720 * cgroup_mutex and threadgroup.
2722 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2723 size_t nbytes, loff_t off, bool threadgroup)
2725 struct task_struct *tsk;
2726 struct cgroup_subsys *ss;
2727 struct cgroup *cgrp;
2731 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2734 cgrp = cgroup_kn_lock_live(of->kn);
2738 percpu_down_write(&cgroup_threadgroup_rwsem);
2741 tsk = find_task_by_vpid(pid);
2744 goto out_unlock_rcu;
2751 tsk = tsk->group_leader;
2754 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2755 * trapped in a cpuset, or RT worker may be born in a cgroup
2756 * with no rt_runtime allocated. Just say no.
2758 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2760 goto out_unlock_rcu;
2763 get_task_struct(tsk);
2766 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2768 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2770 put_task_struct(tsk);
2771 goto out_unlock_threadgroup;
2775 out_unlock_threadgroup:
2776 percpu_up_write(&cgroup_threadgroup_rwsem);
2777 for_each_subsys(ss, ssid)
2778 if (ss->post_attach)
2780 cgroup_kn_unlock(of->kn);
2781 return ret ?: nbytes;
2785 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2786 * @from: attach to all cgroups of a given task
2787 * @tsk: the task to be attached
2789 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2791 struct cgroup_root *root;
2794 mutex_lock(&cgroup_mutex);
2795 for_each_root(root) {
2796 struct cgroup *from_cgrp;
2798 if (root == &cgrp_dfl_root)
2801 spin_lock_bh(&css_set_lock);
2802 from_cgrp = task_cgroup_from_root(from, root);
2803 spin_unlock_bh(&css_set_lock);
2805 retval = cgroup_attach_task(from_cgrp, tsk, false);
2809 mutex_unlock(&cgroup_mutex);
2813 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2815 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2816 char *buf, size_t nbytes, loff_t off)
2818 return __cgroup_procs_write(of, buf, nbytes, off, false);
2821 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2822 char *buf, size_t nbytes, loff_t off)
2824 return __cgroup_procs_write(of, buf, nbytes, off, true);
2827 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2828 char *buf, size_t nbytes, loff_t off)
2830 struct cgroup *cgrp;
2832 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2834 cgrp = cgroup_kn_lock_live(of->kn);
2837 spin_lock(&release_agent_path_lock);
2838 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2839 sizeof(cgrp->root->release_agent_path));
2840 spin_unlock(&release_agent_path_lock);
2841 cgroup_kn_unlock(of->kn);
2845 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2847 struct cgroup *cgrp = seq_css(seq)->cgroup;
2849 spin_lock(&release_agent_path_lock);
2850 seq_puts(seq, cgrp->root->release_agent_path);
2851 spin_unlock(&release_agent_path_lock);
2852 seq_putc(seq, '\n');
2856 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2858 seq_puts(seq, "0\n");
2862 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2864 struct cgroup_subsys *ss;
2865 bool printed = false;
2868 for_each_subsys_which(ss, ssid, &ss_mask) {
2871 seq_printf(seq, "%s", ss->name);
2875 seq_putc(seq, '\n');
2878 /* show controllers which are currently attached to the default hierarchy */
2879 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2881 struct cgroup *cgrp = seq_css(seq)->cgroup;
2883 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2884 ~cgrp_dfl_root_inhibit_ss_mask);
2888 /* show controllers which are enabled from the parent */
2889 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2891 struct cgroup *cgrp = seq_css(seq)->cgroup;
2893 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2897 /* show controllers which are enabled for a given cgroup's children */
2898 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2900 struct cgroup *cgrp = seq_css(seq)->cgroup;
2902 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2907 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2908 * @cgrp: root of the subtree to update csses for
2910 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2911 * css associations need to be updated accordingly. This function looks up
2912 * all css_sets which are attached to the subtree, creates the matching
2913 * updated css_sets and migrates the tasks to the new ones.
2915 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2917 LIST_HEAD(preloaded_csets);
2918 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2919 struct cgroup_subsys_state *css;
2920 struct css_set *src_cset;
2923 lockdep_assert_held(&cgroup_mutex);
2925 percpu_down_write(&cgroup_threadgroup_rwsem);
2927 /* look up all csses currently attached to @cgrp's subtree */
2928 spin_lock_bh(&css_set_lock);
2929 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2930 struct cgrp_cset_link *link;
2932 /* self is not affected by child_subsys_mask change */
2933 if (css->cgroup == cgrp)
2936 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2937 cgroup_migrate_add_src(link->cset, cgrp,
2940 spin_unlock_bh(&css_set_lock);
2942 /* NULL dst indicates self on default hierarchy */
2943 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2947 spin_lock_bh(&css_set_lock);
2948 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2949 struct task_struct *task, *ntask;
2951 /* src_csets precede dst_csets, break on the first dst_cset */
2952 if (!src_cset->mg_src_cgrp)
2955 /* all tasks in src_csets need to be migrated */
2956 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2957 cgroup_taskset_add(task, &tset);
2959 spin_unlock_bh(&css_set_lock);
2961 ret = cgroup_taskset_migrate(&tset, cgrp);
2963 cgroup_migrate_finish(&preloaded_csets);
2964 percpu_up_write(&cgroup_threadgroup_rwsem);
2968 /* change the enabled child controllers for a cgroup in the default hierarchy */
2969 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2970 char *buf, size_t nbytes,
2973 unsigned long enable = 0, disable = 0;
2974 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2975 struct cgroup *cgrp, *child;
2976 struct cgroup_subsys *ss;
2981 * Parse input - space separated list of subsystem names prefixed
2982 * with either + or -.
2984 buf = strstrip(buf);
2985 while ((tok = strsep(&buf, " "))) {
2986 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2990 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2991 if (!cgroup_ssid_enabled(ssid) ||
2992 strcmp(tok + 1, ss->name))
2996 enable |= 1 << ssid;
2997 disable &= ~(1 << ssid);
2998 } else if (*tok == '-') {
2999 disable |= 1 << ssid;
3000 enable &= ~(1 << ssid);
3006 if (ssid == CGROUP_SUBSYS_COUNT)
3010 cgrp = cgroup_kn_lock_live(of->kn);
3014 for_each_subsys(ss, ssid) {
3015 if (enable & (1 << ssid)) {
3016 if (cgrp->subtree_control & (1 << ssid)) {
3017 enable &= ~(1 << ssid);
3021 /* unavailable or not enabled on the parent? */
3022 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3023 (cgroup_parent(cgrp) &&
3024 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3028 } else if (disable & (1 << ssid)) {
3029 if (!(cgrp->subtree_control & (1 << ssid))) {
3030 disable &= ~(1 << ssid);
3034 /* a child has it enabled? */
3035 cgroup_for_each_live_child(child, cgrp) {
3036 if (child->subtree_control & (1 << ssid)) {
3044 if (!enable && !disable) {
3050 * Except for the root, subtree_control must be zero for a cgroup
3051 * with tasks so that child cgroups don't compete against tasks.
3053 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3059 * Update subsys masks and calculate what needs to be done. More
3060 * subsystems than specified may need to be enabled or disabled
3061 * depending on subsystem dependencies.
3063 old_sc = cgrp->subtree_control;
3064 old_ss = cgrp->child_subsys_mask;
3065 new_sc = (old_sc | enable) & ~disable;
3066 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3068 css_enable = ~old_ss & new_ss;
3069 css_disable = old_ss & ~new_ss;
3070 enable |= css_enable;
3071 disable |= css_disable;
3074 * Because css offlining is asynchronous, userland might try to
3075 * re-enable the same controller while the previous instance is
3076 * still around. In such cases, wait till it's gone using
3079 for_each_subsys_which(ss, ssid, &css_enable) {
3080 cgroup_for_each_live_child(child, cgrp) {
3083 if (!cgroup_css(child, ss))
3087 prepare_to_wait(&child->offline_waitq, &wait,
3088 TASK_UNINTERRUPTIBLE);
3089 cgroup_kn_unlock(of->kn);
3091 finish_wait(&child->offline_waitq, &wait);
3094 return restart_syscall();
3098 cgrp->subtree_control = new_sc;
3099 cgrp->child_subsys_mask = new_ss;
3102 * Create new csses or make the existing ones visible. A css is
3103 * created invisible if it's being implicitly enabled through
3104 * dependency. An invisible css is made visible when the userland
3105 * explicitly enables it.
3107 for_each_subsys(ss, ssid) {
3108 if (!(enable & (1 << ssid)))
3111 cgroup_for_each_live_child(child, cgrp) {
3112 if (css_enable & (1 << ssid))
3113 ret = create_css(child, ss,
3114 cgrp->subtree_control & (1 << ssid));
3116 ret = css_populate_dir(cgroup_css(child, ss),
3124 * At this point, cgroup_e_css() results reflect the new csses
3125 * making the following cgroup_update_dfl_csses() properly update
3126 * css associations of all tasks in the subtree.
3128 ret = cgroup_update_dfl_csses(cgrp);
3133 * All tasks are migrated out of disabled csses. Kill or hide
3134 * them. A css is hidden when the userland requests it to be
3135 * disabled while other subsystems are still depending on it. The
3136 * css must not actively control resources and be in the vanilla
3137 * state if it's made visible again later. Controllers which may
3138 * be depended upon should provide ->css_reset() for this purpose.
3140 for_each_subsys(ss, ssid) {
3141 if (!(disable & (1 << ssid)))
3144 cgroup_for_each_live_child(child, cgrp) {
3145 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3147 if (css_disable & (1 << ssid)) {
3150 css_clear_dir(css, NULL);
3158 * The effective csses of all the descendants (excluding @cgrp) may
3159 * have changed. Subsystems can optionally subscribe to this event
3160 * by implementing ->css_e_css_changed() which is invoked if any of
3161 * the effective csses seen from the css's cgroup may have changed.
3163 for_each_subsys(ss, ssid) {
3164 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3165 struct cgroup_subsys_state *css;
3167 if (!ss->css_e_css_changed || !this_css)
3170 css_for_each_descendant_pre(css, this_css)
3171 if (css != this_css)
3172 ss->css_e_css_changed(css);
3175 kernfs_activate(cgrp->kn);
3178 cgroup_kn_unlock(of->kn);
3179 return ret ?: nbytes;
3182 cgrp->subtree_control = old_sc;
3183 cgrp->child_subsys_mask = old_ss;
3185 for_each_subsys(ss, ssid) {
3186 if (!(enable & (1 << ssid)))
3189 cgroup_for_each_live_child(child, cgrp) {
3190 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3195 if (css_enable & (1 << ssid))
3198 css_clear_dir(css, NULL);
3204 static int cgroup_events_show(struct seq_file *seq, void *v)
3206 seq_printf(seq, "populated %d\n",
3207 cgroup_is_populated(seq_css(seq)->cgroup));
3211 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3212 size_t nbytes, loff_t off)
3214 struct cgroup *cgrp = of->kn->parent->priv;
3215 struct cftype *cft = of->kn->priv;
3216 struct cgroup_subsys_state *css;
3220 return cft->write(of, buf, nbytes, off);
3223 * kernfs guarantees that a file isn't deleted with operations in
3224 * flight, which means that the matching css is and stays alive and
3225 * doesn't need to be pinned. The RCU locking is not necessary
3226 * either. It's just for the convenience of using cgroup_css().
3229 css = cgroup_css(cgrp, cft->ss);
3232 if (cft->write_u64) {
3233 unsigned long long v;
3234 ret = kstrtoull(buf, 0, &v);
3236 ret = cft->write_u64(css, cft, v);
3237 } else if (cft->write_s64) {
3239 ret = kstrtoll(buf, 0, &v);
3241 ret = cft->write_s64(css, cft, v);
3246 return ret ?: nbytes;
3249 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3251 return seq_cft(seq)->seq_start(seq, ppos);
3254 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3256 return seq_cft(seq)->seq_next(seq, v, ppos);
3259 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3261 seq_cft(seq)->seq_stop(seq, v);
3264 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3266 struct cftype *cft = seq_cft(m);
3267 struct cgroup_subsys_state *css = seq_css(m);
3270 return cft->seq_show(m, arg);
3273 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3274 else if (cft->read_s64)
3275 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3281 static struct kernfs_ops cgroup_kf_single_ops = {
3282 .atomic_write_len = PAGE_SIZE,
3283 .write = cgroup_file_write,
3284 .seq_show = cgroup_seqfile_show,
3287 static struct kernfs_ops cgroup_kf_ops = {
3288 .atomic_write_len = PAGE_SIZE,
3289 .write = cgroup_file_write,
3290 .seq_start = cgroup_seqfile_start,
3291 .seq_next = cgroup_seqfile_next,
3292 .seq_stop = cgroup_seqfile_stop,
3293 .seq_show = cgroup_seqfile_show,
3297 * cgroup_rename - Only allow simple rename of directories in place.
3299 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3300 const char *new_name_str)
3302 struct cgroup *cgrp = kn->priv;
3305 if (kernfs_type(kn) != KERNFS_DIR)
3307 if (kn->parent != new_parent)
3311 * This isn't a proper migration and its usefulness is very
3312 * limited. Disallow on the default hierarchy.
3314 if (cgroup_on_dfl(cgrp))
3318 * We're gonna grab cgroup_mutex which nests outside kernfs
3319 * active_ref. kernfs_rename() doesn't require active_ref
3320 * protection. Break them before grabbing cgroup_mutex.
3322 kernfs_break_active_protection(new_parent);
3323 kernfs_break_active_protection(kn);
3325 mutex_lock(&cgroup_mutex);
3327 ret = kernfs_rename(kn, new_parent, new_name_str);
3329 mutex_unlock(&cgroup_mutex);
3331 kernfs_unbreak_active_protection(kn);
3332 kernfs_unbreak_active_protection(new_parent);
3336 /* set uid and gid of cgroup dirs and files to that of the creator */
3337 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3339 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3340 .ia_uid = current_fsuid(),
3341 .ia_gid = current_fsgid(), };
3343 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3344 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3347 return kernfs_setattr(kn, &iattr);
3350 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3353 char name[CGROUP_FILE_NAME_MAX];
3354 struct kernfs_node *kn;
3355 struct lock_class_key *key = NULL;
3358 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3359 key = &cft->lockdep_key;
3361 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3362 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3367 ret = cgroup_kn_set_ugid(kn);
3373 if (cft->file_offset) {
3374 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3376 spin_lock_irq(&cgroup_file_kn_lock);
3378 spin_unlock_irq(&cgroup_file_kn_lock);
3385 * cgroup_addrm_files - add or remove files to a cgroup directory
3386 * @css: the target css
3387 * @cgrp: the target cgroup (usually css->cgroup)
3388 * @cfts: array of cftypes to be added
3389 * @is_add: whether to add or remove
3391 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3392 * For removals, this function never fails.
3394 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3395 struct cgroup *cgrp, struct cftype cfts[],
3398 struct cftype *cft, *cft_end = NULL;
3401 lockdep_assert_held(&cgroup_mutex);
3404 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3405 /* does cft->flags tell us to skip this file on @cgrp? */
3406 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3408 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3410 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3412 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3416 ret = cgroup_add_file(css, cgrp, cft);
3418 pr_warn("%s: failed to add %s, err=%d\n",
3419 __func__, cft->name, ret);
3425 cgroup_rm_file(cgrp, cft);
3431 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3434 struct cgroup_subsys *ss = cfts[0].ss;
3435 struct cgroup *root = &ss->root->cgrp;
3436 struct cgroup_subsys_state *css;
3439 lockdep_assert_held(&cgroup_mutex);
3441 /* add/rm files for all cgroups created before */
3442 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3443 struct cgroup *cgrp = css->cgroup;
3445 if (cgroup_is_dead(cgrp))
3448 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3454 kernfs_activate(root->kn);
3458 static void cgroup_exit_cftypes(struct cftype *cfts)
3462 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3463 /* free copy for custom atomic_write_len, see init_cftypes() */
3464 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3469 /* revert flags set by cgroup core while adding @cfts */
3470 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3474 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3478 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3479 struct kernfs_ops *kf_ops;
3481 WARN_ON(cft->ss || cft->kf_ops);
3484 kf_ops = &cgroup_kf_ops;
3486 kf_ops = &cgroup_kf_single_ops;
3489 * Ugh... if @cft wants a custom max_write_len, we need to
3490 * make a copy of kf_ops to set its atomic_write_len.
3492 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3493 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3495 cgroup_exit_cftypes(cfts);
3498 kf_ops->atomic_write_len = cft->max_write_len;
3501 cft->kf_ops = kf_ops;
3508 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3510 lockdep_assert_held(&cgroup_mutex);
3512 if (!cfts || !cfts[0].ss)
3515 list_del(&cfts->node);
3516 cgroup_apply_cftypes(cfts, false);
3517 cgroup_exit_cftypes(cfts);
3522 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3523 * @cfts: zero-length name terminated array of cftypes
3525 * Unregister @cfts. Files described by @cfts are removed from all
3526 * existing cgroups and all future cgroups won't have them either. This
3527 * function can be called anytime whether @cfts' subsys is attached or not.
3529 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3532 int cgroup_rm_cftypes(struct cftype *cfts)
3536 mutex_lock(&cgroup_mutex);
3537 ret = cgroup_rm_cftypes_locked(cfts);
3538 mutex_unlock(&cgroup_mutex);
3543 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3544 * @ss: target cgroup subsystem
3545 * @cfts: zero-length name terminated array of cftypes
3547 * Register @cfts to @ss. Files described by @cfts are created for all
3548 * existing cgroups to which @ss is attached and all future cgroups will
3549 * have them too. This function can be called anytime whether @ss is
3552 * Returns 0 on successful registration, -errno on failure. Note that this
3553 * function currently returns 0 as long as @cfts registration is successful
3554 * even if some file creation attempts on existing cgroups fail.
3556 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3560 if (!cgroup_ssid_enabled(ss->id))
3563 if (!cfts || cfts[0].name[0] == '\0')
3566 ret = cgroup_init_cftypes(ss, cfts);
3570 mutex_lock(&cgroup_mutex);
3572 list_add_tail(&cfts->node, &ss->cfts);
3573 ret = cgroup_apply_cftypes(cfts, true);
3575 cgroup_rm_cftypes_locked(cfts);
3577 mutex_unlock(&cgroup_mutex);
3582 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3583 * @ss: target cgroup subsystem
3584 * @cfts: zero-length name terminated array of cftypes
3586 * Similar to cgroup_add_cftypes() but the added files are only used for
3587 * the default hierarchy.
3589 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3593 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3594 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3595 return cgroup_add_cftypes(ss, cfts);
3599 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3600 * @ss: target cgroup subsystem
3601 * @cfts: zero-length name terminated array of cftypes
3603 * Similar to cgroup_add_cftypes() but the added files are only used for
3604 * the legacy hierarchies.
3606 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3610 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3611 cft->flags |= __CFTYPE_NOT_ON_DFL;
3612 return cgroup_add_cftypes(ss, cfts);
3616 * cgroup_file_notify - generate a file modified event for a cgroup_file
3617 * @cfile: target cgroup_file
3619 * @cfile must have been obtained by setting cftype->file_offset.
3621 void cgroup_file_notify(struct cgroup_file *cfile)
3623 unsigned long flags;
3625 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3627 kernfs_notify(cfile->kn);
3628 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3632 * cgroup_task_count - count the number of tasks in a cgroup.
3633 * @cgrp: the cgroup in question
3635 * Return the number of tasks in the cgroup.
3637 static int cgroup_task_count(const struct cgroup *cgrp)
3640 struct cgrp_cset_link *link;
3642 spin_lock_bh(&css_set_lock);
3643 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3644 count += atomic_read(&link->cset->refcount);
3645 spin_unlock_bh(&css_set_lock);
3650 * css_next_child - find the next child of a given css
3651 * @pos: the current position (%NULL to initiate traversal)
3652 * @parent: css whose children to walk
3654 * This function returns the next child of @parent and should be called
3655 * under either cgroup_mutex or RCU read lock. The only requirement is
3656 * that @parent and @pos are accessible. The next sibling is guaranteed to
3657 * be returned regardless of their states.
3659 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3660 * css which finished ->css_online() is guaranteed to be visible in the
3661 * future iterations and will stay visible until the last reference is put.
3662 * A css which hasn't finished ->css_online() or already finished
3663 * ->css_offline() may show up during traversal. It's each subsystem's
3664 * responsibility to synchronize against on/offlining.
3666 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3667 struct cgroup_subsys_state *parent)
3669 struct cgroup_subsys_state *next;
3671 cgroup_assert_mutex_or_rcu_locked();
3674 * @pos could already have been unlinked from the sibling list.
3675 * Once a cgroup is removed, its ->sibling.next is no longer
3676 * updated when its next sibling changes. CSS_RELEASED is set when
3677 * @pos is taken off list, at which time its next pointer is valid,
3678 * and, as releases are serialized, the one pointed to by the next
3679 * pointer is guaranteed to not have started release yet. This
3680 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3681 * critical section, the one pointed to by its next pointer is
3682 * guaranteed to not have finished its RCU grace period even if we
3683 * have dropped rcu_read_lock() inbetween iterations.
3685 * If @pos has CSS_RELEASED set, its next pointer can't be
3686 * dereferenced; however, as each css is given a monotonically
3687 * increasing unique serial number and always appended to the
3688 * sibling list, the next one can be found by walking the parent's
3689 * children until the first css with higher serial number than
3690 * @pos's. While this path can be slower, it happens iff iteration
3691 * races against release and the race window is very small.
3694 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3695 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3696 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3698 list_for_each_entry_rcu(next, &parent->children, sibling)
3699 if (next->serial_nr > pos->serial_nr)
3704 * @next, if not pointing to the head, can be dereferenced and is
3707 if (&next->sibling != &parent->children)
3713 * css_next_descendant_pre - find the next descendant for pre-order walk
3714 * @pos: the current position (%NULL to initiate traversal)
3715 * @root: css whose descendants to walk
3717 * To be used by css_for_each_descendant_pre(). Find the next descendant
3718 * to visit for pre-order traversal of @root's descendants. @root is
3719 * included in the iteration and the first node to be visited.
3721 * While this function requires cgroup_mutex or RCU read locking, it
3722 * doesn't require the whole traversal to be contained in a single critical
3723 * section. This function will return the correct next descendant as long
3724 * as both @pos and @root are accessible and @pos is a descendant of @root.
3726 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3727 * css which finished ->css_online() is guaranteed to be visible in the
3728 * future iterations and will stay visible until the last reference is put.
3729 * A css which hasn't finished ->css_online() or already finished
3730 * ->css_offline() may show up during traversal. It's each subsystem's
3731 * responsibility to synchronize against on/offlining.
3733 struct cgroup_subsys_state *
3734 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3735 struct cgroup_subsys_state *root)
3737 struct cgroup_subsys_state *next;
3739 cgroup_assert_mutex_or_rcu_locked();
3741 /* if first iteration, visit @root */
3745 /* visit the first child if exists */
3746 next = css_next_child(NULL, pos);
3750 /* no child, visit my or the closest ancestor's next sibling */
3751 while (pos != root) {
3752 next = css_next_child(pos, pos->parent);
3762 * css_rightmost_descendant - return the rightmost descendant of a css
3763 * @pos: css of interest
3765 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3766 * is returned. This can be used during pre-order traversal to skip
3769 * While this function requires cgroup_mutex or RCU read locking, it
3770 * doesn't require the whole traversal to be contained in a single critical
3771 * section. This function will return the correct rightmost descendant as
3772 * long as @pos is accessible.
3774 struct cgroup_subsys_state *
3775 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3777 struct cgroup_subsys_state *last, *tmp;
3779 cgroup_assert_mutex_or_rcu_locked();
3783 /* ->prev isn't RCU safe, walk ->next till the end */
3785 css_for_each_child(tmp, last)
3792 static struct cgroup_subsys_state *
3793 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3795 struct cgroup_subsys_state *last;
3799 pos = css_next_child(NULL, pos);
3806 * css_next_descendant_post - find the next descendant for post-order walk
3807 * @pos: the current position (%NULL to initiate traversal)
3808 * @root: css whose descendants to walk
3810 * To be used by css_for_each_descendant_post(). Find the next descendant
3811 * to visit for post-order traversal of @root's descendants. @root is
3812 * included in the iteration and the last node to be visited.
3814 * While this function requires cgroup_mutex or RCU read locking, it
3815 * doesn't require the whole traversal to be contained in a single critical
3816 * section. This function will return the correct next descendant as long
3817 * as both @pos and @cgroup are accessible and @pos is a descendant of
3820 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3821 * css which finished ->css_online() is guaranteed to be visible in the
3822 * future iterations and will stay visible until the last reference is put.
3823 * A css which hasn't finished ->css_online() or already finished
3824 * ->css_offline() may show up during traversal. It's each subsystem's
3825 * responsibility to synchronize against on/offlining.
3827 struct cgroup_subsys_state *
3828 css_next_descendant_post(struct cgroup_subsys_state *pos,
3829 struct cgroup_subsys_state *root)
3831 struct cgroup_subsys_state *next;
3833 cgroup_assert_mutex_or_rcu_locked();
3835 /* if first iteration, visit leftmost descendant which may be @root */
3837 return css_leftmost_descendant(root);
3839 /* if we visited @root, we're done */
3843 /* if there's an unvisited sibling, visit its leftmost descendant */
3844 next = css_next_child(pos, pos->parent);
3846 return css_leftmost_descendant(next);
3848 /* no sibling left, visit parent */
3853 * css_has_online_children - does a css have online children
3854 * @css: the target css
3856 * Returns %true if @css has any online children; otherwise, %false. This
3857 * function can be called from any context but the caller is responsible
3858 * for synchronizing against on/offlining as necessary.
3860 bool css_has_online_children(struct cgroup_subsys_state *css)
3862 struct cgroup_subsys_state *child;
3866 css_for_each_child(child, css) {
3867 if (child->flags & CSS_ONLINE) {
3877 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3878 * @it: the iterator to advance
3880 * Advance @it to the next css_set to walk.
3882 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3884 struct list_head *l = it->cset_pos;
3885 struct cgrp_cset_link *link;
3886 struct css_set *cset;
3888 lockdep_assert_held(&css_set_lock);
3890 /* Advance to the next non-empty css_set */
3893 if (l == it->cset_head) {
3894 it->cset_pos = NULL;
3895 it->task_pos = NULL;
3900 cset = container_of(l, struct css_set,
3901 e_cset_node[it->ss->id]);
3903 link = list_entry(l, struct cgrp_cset_link, cset_link);
3906 } while (!css_set_populated(cset));
3910 if (!list_empty(&cset->tasks))
3911 it->task_pos = cset->tasks.next;
3913 it->task_pos = cset->mg_tasks.next;
3915 it->tasks_head = &cset->tasks;
3916 it->mg_tasks_head = &cset->mg_tasks;
3919 * We don't keep css_sets locked across iteration steps and thus
3920 * need to take steps to ensure that iteration can be resumed after
3921 * the lock is re-acquired. Iteration is performed at two levels -
3922 * css_sets and tasks in them.
3924 * Once created, a css_set never leaves its cgroup lists, so a
3925 * pinned css_set is guaranteed to stay put and we can resume
3926 * iteration afterwards.
3928 * Tasks may leave @cset across iteration steps. This is resolved
3929 * by registering each iterator with the css_set currently being
3930 * walked and making css_set_move_task() advance iterators whose
3931 * next task is leaving.
3934 list_del(&it->iters_node);
3935 put_css_set_locked(it->cur_cset);
3938 it->cur_cset = cset;
3939 list_add(&it->iters_node, &cset->task_iters);
3942 static void css_task_iter_advance(struct css_task_iter *it)
3944 struct list_head *l = it->task_pos;
3946 lockdep_assert_held(&css_set_lock);
3950 * Advance iterator to find next entry. cset->tasks is consumed
3951 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3956 if (l == it->tasks_head)
3957 l = it->mg_tasks_head->next;
3959 if (l == it->mg_tasks_head)
3960 css_task_iter_advance_css_set(it);
3966 * css_task_iter_start - initiate task iteration
3967 * @css: the css to walk tasks of
3968 * @it: the task iterator to use
3970 * Initiate iteration through the tasks of @css. The caller can call
3971 * css_task_iter_next() to walk through the tasks until the function
3972 * returns NULL. On completion of iteration, css_task_iter_end() must be
3975 void css_task_iter_start(struct cgroup_subsys_state *css,
3976 struct css_task_iter *it)
3978 /* no one should try to iterate before mounting cgroups */
3979 WARN_ON_ONCE(!use_task_css_set_links);
3981 memset(it, 0, sizeof(*it));
3983 spin_lock_bh(&css_set_lock);
3988 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3990 it->cset_pos = &css->cgroup->cset_links;
3992 it->cset_head = it->cset_pos;
3994 css_task_iter_advance_css_set(it);
3996 spin_unlock_bh(&css_set_lock);
4000 * css_task_iter_next - return the next task for the iterator
4001 * @it: the task iterator being iterated
4003 * The "next" function for task iteration. @it should have been
4004 * initialized via css_task_iter_start(). Returns NULL when the iteration
4007 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4010 put_task_struct(it->cur_task);
4011 it->cur_task = NULL;
4014 spin_lock_bh(&css_set_lock);
4017 it->cur_task = list_entry(it->task_pos, struct task_struct,
4019 get_task_struct(it->cur_task);
4020 css_task_iter_advance(it);
4023 spin_unlock_bh(&css_set_lock);
4025 return it->cur_task;
4029 * css_task_iter_end - finish task iteration
4030 * @it: the task iterator to finish
4032 * Finish task iteration started by css_task_iter_start().
4034 void css_task_iter_end(struct css_task_iter *it)
4037 spin_lock_bh(&css_set_lock);
4038 list_del(&it->iters_node);
4039 put_css_set_locked(it->cur_cset);
4040 spin_unlock_bh(&css_set_lock);
4044 put_task_struct(it->cur_task);
4048 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4049 * @to: cgroup to which the tasks will be moved
4050 * @from: cgroup in which the tasks currently reside
4052 * Locking rules between cgroup_post_fork() and the migration path
4053 * guarantee that, if a task is forking while being migrated, the new child
4054 * is guaranteed to be either visible in the source cgroup after the
4055 * parent's migration is complete or put into the target cgroup. No task
4056 * can slip out of migration through forking.
4058 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4060 LIST_HEAD(preloaded_csets);
4061 struct cgrp_cset_link *link;
4062 struct css_task_iter it;
4063 struct task_struct *task;
4066 mutex_lock(&cgroup_mutex);
4068 /* all tasks in @from are being moved, all csets are source */
4069 spin_lock_bh(&css_set_lock);
4070 list_for_each_entry(link, &from->cset_links, cset_link)
4071 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4072 spin_unlock_bh(&css_set_lock);
4074 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4079 * Migrate tasks one-by-one until @form is empty. This fails iff
4080 * ->can_attach() fails.
4083 css_task_iter_start(&from->self, &it);
4084 task = css_task_iter_next(&it);
4086 get_task_struct(task);
4087 css_task_iter_end(&it);
4090 ret = cgroup_migrate(task, false, to);
4091 put_task_struct(task);
4093 } while (task && !ret);
4095 cgroup_migrate_finish(&preloaded_csets);
4096 mutex_unlock(&cgroup_mutex);
4101 * Stuff for reading the 'tasks'/'procs' files.
4103 * Reading this file can return large amounts of data if a cgroup has
4104 * *lots* of attached tasks. So it may need several calls to read(),
4105 * but we cannot guarantee that the information we produce is correct
4106 * unless we produce it entirely atomically.
4110 /* which pidlist file are we talking about? */
4111 enum cgroup_filetype {
4117 * A pidlist is a list of pids that virtually represents the contents of one
4118 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4119 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4122 struct cgroup_pidlist {
4124 * used to find which pidlist is wanted. doesn't change as long as
4125 * this particular list stays in the list.
4127 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4130 /* how many elements the above list has */
4132 /* each of these stored in a list by its cgroup */
4133 struct list_head links;
4134 /* pointer to the cgroup we belong to, for list removal purposes */
4135 struct cgroup *owner;
4136 /* for delayed destruction */
4137 struct delayed_work destroy_dwork;
4141 * The following two functions "fix" the issue where there are more pids
4142 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4143 * TODO: replace with a kernel-wide solution to this problem
4145 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4146 static void *pidlist_allocate(int count)
4148 if (PIDLIST_TOO_LARGE(count))
4149 return vmalloc(count * sizeof(pid_t));
4151 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4154 static void pidlist_free(void *p)
4160 * Used to destroy all pidlists lingering waiting for destroy timer. None
4161 * should be left afterwards.
4163 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4165 struct cgroup_pidlist *l, *tmp_l;
4167 mutex_lock(&cgrp->pidlist_mutex);
4168 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4169 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4170 mutex_unlock(&cgrp->pidlist_mutex);
4172 flush_workqueue(cgroup_pidlist_destroy_wq);
4173 BUG_ON(!list_empty(&cgrp->pidlists));
4176 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4178 struct delayed_work *dwork = to_delayed_work(work);
4179 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4181 struct cgroup_pidlist *tofree = NULL;
4183 mutex_lock(&l->owner->pidlist_mutex);
4186 * Destroy iff we didn't get queued again. The state won't change
4187 * as destroy_dwork can only be queued while locked.
4189 if (!delayed_work_pending(dwork)) {
4190 list_del(&l->links);
4191 pidlist_free(l->list);
4192 put_pid_ns(l->key.ns);
4196 mutex_unlock(&l->owner->pidlist_mutex);
4201 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4202 * Returns the number of unique elements.
4204 static int pidlist_uniq(pid_t *list, int length)
4209 * we presume the 0th element is unique, so i starts at 1. trivial
4210 * edge cases first; no work needs to be done for either
4212 if (length == 0 || length == 1)
4214 /* src and dest walk down the list; dest counts unique elements */
4215 for (src = 1; src < length; src++) {
4216 /* find next unique element */
4217 while (list[src] == list[src-1]) {
4222 /* dest always points to where the next unique element goes */
4223 list[dest] = list[src];
4231 * The two pid files - task and cgroup.procs - guaranteed that the result
4232 * is sorted, which forced this whole pidlist fiasco. As pid order is
4233 * different per namespace, each namespace needs differently sorted list,
4234 * making it impossible to use, for example, single rbtree of member tasks
4235 * sorted by task pointer. As pidlists can be fairly large, allocating one
4236 * per open file is dangerous, so cgroup had to implement shared pool of
4237 * pidlists keyed by cgroup and namespace.
4239 * All this extra complexity was caused by the original implementation
4240 * committing to an entirely unnecessary property. In the long term, we
4241 * want to do away with it. Explicitly scramble sort order if on the
4242 * default hierarchy so that no such expectation exists in the new
4245 * Scrambling is done by swapping every two consecutive bits, which is
4246 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4248 static pid_t pid_fry(pid_t pid)
4250 unsigned a = pid & 0x55555555;
4251 unsigned b = pid & 0xAAAAAAAA;
4253 return (a << 1) | (b >> 1);
4256 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4258 if (cgroup_on_dfl(cgrp))
4259 return pid_fry(pid);
4264 static int cmppid(const void *a, const void *b)
4266 return *(pid_t *)a - *(pid_t *)b;
4269 static int fried_cmppid(const void *a, const void *b)
4271 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4274 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4275 enum cgroup_filetype type)
4277 struct cgroup_pidlist *l;
4278 /* don't need task_nsproxy() if we're looking at ourself */
4279 struct pid_namespace *ns = task_active_pid_ns(current);
4281 lockdep_assert_held(&cgrp->pidlist_mutex);
4283 list_for_each_entry(l, &cgrp->pidlists, links)
4284 if (l->key.type == type && l->key.ns == ns)
4290 * find the appropriate pidlist for our purpose (given procs vs tasks)
4291 * returns with the lock on that pidlist already held, and takes care
4292 * of the use count, or returns NULL with no locks held if we're out of
4295 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4296 enum cgroup_filetype type)
4298 struct cgroup_pidlist *l;
4300 lockdep_assert_held(&cgrp->pidlist_mutex);
4302 l = cgroup_pidlist_find(cgrp, type);
4306 /* entry not found; create a new one */
4307 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4311 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4313 /* don't need task_nsproxy() if we're looking at ourself */
4314 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4316 list_add(&l->links, &cgrp->pidlists);
4321 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4323 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4324 struct cgroup_pidlist **lp)
4328 int pid, n = 0; /* used for populating the array */
4329 struct css_task_iter it;
4330 struct task_struct *tsk;
4331 struct cgroup_pidlist *l;
4333 lockdep_assert_held(&cgrp->pidlist_mutex);
4336 * If cgroup gets more users after we read count, we won't have
4337 * enough space - tough. This race is indistinguishable to the
4338 * caller from the case that the additional cgroup users didn't
4339 * show up until sometime later on.
4341 length = cgroup_task_count(cgrp);
4342 array = pidlist_allocate(length);
4345 /* now, populate the array */
4346 css_task_iter_start(&cgrp->self, &it);
4347 while ((tsk = css_task_iter_next(&it))) {
4348 if (unlikely(n == length))
4350 /* get tgid or pid for procs or tasks file respectively */
4351 if (type == CGROUP_FILE_PROCS)
4352 pid = task_tgid_vnr(tsk);
4354 pid = task_pid_vnr(tsk);
4355 if (pid > 0) /* make sure to only use valid results */
4358 css_task_iter_end(&it);
4360 /* now sort & (if procs) strip out duplicates */
4361 if (cgroup_on_dfl(cgrp))
4362 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4364 sort(array, length, sizeof(pid_t), cmppid, NULL);
4365 if (type == CGROUP_FILE_PROCS)
4366 length = pidlist_uniq(array, length);
4368 l = cgroup_pidlist_find_create(cgrp, type);
4370 pidlist_free(array);
4374 /* store array, freeing old if necessary */
4375 pidlist_free(l->list);
4383 * cgroupstats_build - build and fill cgroupstats
4384 * @stats: cgroupstats to fill information into
4385 * @dentry: A dentry entry belonging to the cgroup for which stats have
4388 * Build and fill cgroupstats so that taskstats can export it to user
4391 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4393 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4394 struct cgroup *cgrp;
4395 struct css_task_iter it;
4396 struct task_struct *tsk;
4398 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4399 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4400 kernfs_type(kn) != KERNFS_DIR)
4403 mutex_lock(&cgroup_mutex);
4406 * We aren't being called from kernfs and there's no guarantee on
4407 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4408 * @kn->priv is RCU safe. Let's do the RCU dancing.
4411 cgrp = rcu_dereference(kn->priv);
4412 if (!cgrp || cgroup_is_dead(cgrp)) {
4414 mutex_unlock(&cgroup_mutex);
4419 css_task_iter_start(&cgrp->self, &it);
4420 while ((tsk = css_task_iter_next(&it))) {
4421 switch (tsk->state) {
4423 stats->nr_running++;
4425 case TASK_INTERRUPTIBLE:
4426 stats->nr_sleeping++;
4428 case TASK_UNINTERRUPTIBLE:
4429 stats->nr_uninterruptible++;
4432 stats->nr_stopped++;
4435 if (delayacct_is_task_waiting_on_io(tsk))
4436 stats->nr_io_wait++;
4440 css_task_iter_end(&it);
4442 mutex_unlock(&cgroup_mutex);
4448 * seq_file methods for the tasks/procs files. The seq_file position is the
4449 * next pid to display; the seq_file iterator is a pointer to the pid
4450 * in the cgroup->l->list array.
4453 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4456 * Initially we receive a position value that corresponds to
4457 * one more than the last pid shown (or 0 on the first call or
4458 * after a seek to the start). Use a binary-search to find the
4459 * next pid to display, if any
4461 struct kernfs_open_file *of = s->private;
4462 struct cgroup *cgrp = seq_css(s)->cgroup;
4463 struct cgroup_pidlist *l;
4464 enum cgroup_filetype type = seq_cft(s)->private;
4465 int index = 0, pid = *pos;
4468 mutex_lock(&cgrp->pidlist_mutex);
4471 * !NULL @of->priv indicates that this isn't the first start()
4472 * after open. If the matching pidlist is around, we can use that.
4473 * Look for it. Note that @of->priv can't be used directly. It
4474 * could already have been destroyed.
4477 of->priv = cgroup_pidlist_find(cgrp, type);
4480 * Either this is the first start() after open or the matching
4481 * pidlist has been destroyed inbetween. Create a new one.
4484 ret = pidlist_array_load(cgrp, type,
4485 (struct cgroup_pidlist **)&of->priv);
4487 return ERR_PTR(ret);
4492 int end = l->length;
4494 while (index < end) {
4495 int mid = (index + end) / 2;
4496 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4499 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4505 /* If we're off the end of the array, we're done */
4506 if (index >= l->length)
4508 /* Update the abstract position to be the actual pid that we found */
4509 iter = l->list + index;
4510 *pos = cgroup_pid_fry(cgrp, *iter);
4514 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4516 struct kernfs_open_file *of = s->private;
4517 struct cgroup_pidlist *l = of->priv;
4520 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4521 CGROUP_PIDLIST_DESTROY_DELAY);
4522 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4525 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4527 struct kernfs_open_file *of = s->private;
4528 struct cgroup_pidlist *l = of->priv;
4530 pid_t *end = l->list + l->length;
4532 * Advance to the next pid in the array. If this goes off the
4539 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4544 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4546 seq_printf(s, "%d\n", *(int *)v);
4551 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4554 return notify_on_release(css->cgroup);
4557 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4558 struct cftype *cft, u64 val)
4561 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4563 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4567 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4570 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4573 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4574 struct cftype *cft, u64 val)
4577 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4579 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4583 /* cgroup core interface files for the default hierarchy */
4584 static struct cftype cgroup_dfl_base_files[] = {
4586 .name = "cgroup.procs",
4587 .file_offset = offsetof(struct cgroup, procs_file),
4588 .seq_start = cgroup_pidlist_start,
4589 .seq_next = cgroup_pidlist_next,
4590 .seq_stop = cgroup_pidlist_stop,
4591 .seq_show = cgroup_pidlist_show,
4592 .private = CGROUP_FILE_PROCS,
4593 .write = cgroup_procs_write,
4596 .name = "cgroup.controllers",
4597 .flags = CFTYPE_ONLY_ON_ROOT,
4598 .seq_show = cgroup_root_controllers_show,
4601 .name = "cgroup.controllers",
4602 .flags = CFTYPE_NOT_ON_ROOT,
4603 .seq_show = cgroup_controllers_show,
4606 .name = "cgroup.subtree_control",
4607 .seq_show = cgroup_subtree_control_show,
4608 .write = cgroup_subtree_control_write,
4611 .name = "cgroup.events",
4612 .flags = CFTYPE_NOT_ON_ROOT,
4613 .file_offset = offsetof(struct cgroup, events_file),
4614 .seq_show = cgroup_events_show,
4619 /* cgroup core interface files for the legacy hierarchies */
4620 static struct cftype cgroup_legacy_base_files[] = {
4622 .name = "cgroup.procs",
4623 .seq_start = cgroup_pidlist_start,
4624 .seq_next = cgroup_pidlist_next,
4625 .seq_stop = cgroup_pidlist_stop,
4626 .seq_show = cgroup_pidlist_show,
4627 .private = CGROUP_FILE_PROCS,
4628 .write = cgroup_procs_write,
4631 .name = "cgroup.clone_children",
4632 .read_u64 = cgroup_clone_children_read,
4633 .write_u64 = cgroup_clone_children_write,
4636 .name = "cgroup.sane_behavior",
4637 .flags = CFTYPE_ONLY_ON_ROOT,
4638 .seq_show = cgroup_sane_behavior_show,
4642 .seq_start = cgroup_pidlist_start,
4643 .seq_next = cgroup_pidlist_next,
4644 .seq_stop = cgroup_pidlist_stop,
4645 .seq_show = cgroup_pidlist_show,
4646 .private = CGROUP_FILE_TASKS,
4647 .write = cgroup_tasks_write,
4650 .name = "notify_on_release",
4651 .read_u64 = cgroup_read_notify_on_release,
4652 .write_u64 = cgroup_write_notify_on_release,
4655 .name = "release_agent",
4656 .flags = CFTYPE_ONLY_ON_ROOT,
4657 .seq_show = cgroup_release_agent_show,
4658 .write = cgroup_release_agent_write,
4659 .max_write_len = PATH_MAX - 1,
4665 * css destruction is four-stage process.
4667 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4668 * Implemented in kill_css().
4670 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4671 * and thus css_tryget_online() is guaranteed to fail, the css can be
4672 * offlined by invoking offline_css(). After offlining, the base ref is
4673 * put. Implemented in css_killed_work_fn().
4675 * 3. When the percpu_ref reaches zero, the only possible remaining
4676 * accessors are inside RCU read sections. css_release() schedules the
4679 * 4. After the grace period, the css can be freed. Implemented in
4680 * css_free_work_fn().
4682 * It is actually hairier because both step 2 and 4 require process context
4683 * and thus involve punting to css->destroy_work adding two additional
4684 * steps to the already complex sequence.
4686 static void css_free_work_fn(struct work_struct *work)
4688 struct cgroup_subsys_state *css =
4689 container_of(work, struct cgroup_subsys_state, destroy_work);
4690 struct cgroup_subsys *ss = css->ss;
4691 struct cgroup *cgrp = css->cgroup;
4693 percpu_ref_exit(&css->refcnt);
4697 struct cgroup_subsys_state *parent = css->parent;
4701 cgroup_idr_remove(&ss->css_idr, id);
4707 /* cgroup free path */
4708 atomic_dec(&cgrp->root->nr_cgrps);
4709 cgroup_pidlist_destroy_all(cgrp);
4710 cancel_work_sync(&cgrp->release_agent_work);
4712 if (cgroup_parent(cgrp)) {
4714 * We get a ref to the parent, and put the ref when
4715 * this cgroup is being freed, so it's guaranteed
4716 * that the parent won't be destroyed before its
4719 cgroup_put(cgroup_parent(cgrp));
4720 kernfs_put(cgrp->kn);
4724 * This is root cgroup's refcnt reaching zero,
4725 * which indicates that the root should be
4728 cgroup_destroy_root(cgrp->root);
4733 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4735 struct cgroup_subsys_state *css =
4736 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4738 INIT_WORK(&css->destroy_work, css_free_work_fn);
4739 queue_work(cgroup_destroy_wq, &css->destroy_work);
4742 static void css_release_work_fn(struct work_struct *work)
4744 struct cgroup_subsys_state *css =
4745 container_of(work, struct cgroup_subsys_state, destroy_work);
4746 struct cgroup_subsys *ss = css->ss;
4747 struct cgroup *cgrp = css->cgroup;
4749 mutex_lock(&cgroup_mutex);
4751 css->flags |= CSS_RELEASED;
4752 list_del_rcu(&css->sibling);
4755 /* css release path */
4756 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4757 if (ss->css_released)
4758 ss->css_released(css);
4760 /* cgroup release path */
4761 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4765 * There are two control paths which try to determine
4766 * cgroup from dentry without going through kernfs -
4767 * cgroupstats_build() and css_tryget_online_from_dir().
4768 * Those are supported by RCU protecting clearing of
4769 * cgrp->kn->priv backpointer.
4771 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4774 mutex_unlock(&cgroup_mutex);
4776 call_rcu(&css->rcu_head, css_free_rcu_fn);
4779 static void css_release(struct percpu_ref *ref)
4781 struct cgroup_subsys_state *css =
4782 container_of(ref, struct cgroup_subsys_state, refcnt);
4784 INIT_WORK(&css->destroy_work, css_release_work_fn);
4785 queue_work(cgroup_destroy_wq, &css->destroy_work);
4788 static void init_and_link_css(struct cgroup_subsys_state *css,
4789 struct cgroup_subsys *ss, struct cgroup *cgrp)
4791 lockdep_assert_held(&cgroup_mutex);
4795 memset(css, 0, sizeof(*css));
4799 INIT_LIST_HEAD(&css->sibling);
4800 INIT_LIST_HEAD(&css->children);
4801 css->serial_nr = css_serial_nr_next++;
4802 atomic_set(&css->online_cnt, 0);
4804 if (cgroup_parent(cgrp)) {
4805 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4806 css_get(css->parent);
4809 BUG_ON(cgroup_css(cgrp, ss));
4812 /* invoke ->css_online() on a new CSS and mark it online if successful */
4813 static int online_css(struct cgroup_subsys_state *css)
4815 struct cgroup_subsys *ss = css->ss;
4818 lockdep_assert_held(&cgroup_mutex);
4821 ret = ss->css_online(css);
4823 css->flags |= CSS_ONLINE;
4824 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4826 atomic_inc(&css->online_cnt);
4828 atomic_inc(&css->parent->online_cnt);
4833 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4834 static void offline_css(struct cgroup_subsys_state *css)
4836 struct cgroup_subsys *ss = css->ss;
4838 lockdep_assert_held(&cgroup_mutex);
4840 if (!(css->flags & CSS_ONLINE))
4843 if (ss->css_offline)
4844 ss->css_offline(css);
4846 css->flags &= ~CSS_ONLINE;
4847 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4849 wake_up_all(&css->cgroup->offline_waitq);
4853 * create_css - create a cgroup_subsys_state
4854 * @cgrp: the cgroup new css will be associated with
4855 * @ss: the subsys of new css
4856 * @visible: whether to create control knobs for the new css or not
4858 * Create a new css associated with @cgrp - @ss pair. On success, the new
4859 * css is online and installed in @cgrp with all interface files created if
4860 * @visible. Returns 0 on success, -errno on failure.
4862 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4865 struct cgroup *parent = cgroup_parent(cgrp);
4866 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4867 struct cgroup_subsys_state *css;
4870 lockdep_assert_held(&cgroup_mutex);
4872 css = ss->css_alloc(parent_css);
4874 return PTR_ERR(css);
4876 init_and_link_css(css, ss, cgrp);
4878 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4882 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4884 goto err_free_percpu_ref;
4888 err = css_populate_dir(css, NULL);
4893 /* @css is ready to be brought online now, make it visible */
4894 list_add_tail_rcu(&css->sibling, &parent_css->children);
4895 cgroup_idr_replace(&ss->css_idr, css, css->id);
4897 err = online_css(css);
4901 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4902 cgroup_parent(parent)) {
4903 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4904 current->comm, current->pid, ss->name);
4905 if (!strcmp(ss->name, "memory"))
4906 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4907 ss->warned_broken_hierarchy = true;
4913 list_del_rcu(&css->sibling);
4914 css_clear_dir(css, NULL);
4916 cgroup_idr_remove(&ss->css_idr, css->id);
4917 err_free_percpu_ref:
4918 percpu_ref_exit(&css->refcnt);
4920 call_rcu(&css->rcu_head, css_free_rcu_fn);
4924 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4927 struct cgroup *parent, *cgrp;
4928 struct cgroup_root *root;
4929 struct cgroup_subsys *ss;
4930 struct kernfs_node *kn;
4933 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4935 if (strchr(name, '\n'))
4938 parent = cgroup_kn_lock_live(parent_kn);
4941 root = parent->root;
4943 /* allocate the cgroup and its ID, 0 is reserved for the root */
4944 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4950 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4955 * Temporarily set the pointer to NULL, so idr_find() won't return
4956 * a half-baked cgroup.
4958 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4961 goto out_cancel_ref;
4964 init_cgroup_housekeeping(cgrp);
4966 cgrp->self.parent = &parent->self;
4969 if (notify_on_release(parent))
4970 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4972 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4973 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4975 /* create the directory */
4976 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4984 * This extra ref will be put in cgroup_free_fn() and guarantees
4985 * that @cgrp->kn is always accessible.
4989 cgrp->self.serial_nr = css_serial_nr_next++;
4991 /* allocation complete, commit to creation */
4992 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4993 atomic_inc(&root->nr_cgrps);
4997 * @cgrp is now fully operational. If something fails after this
4998 * point, it'll be released via the normal destruction path.
5000 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5002 ret = cgroup_kn_set_ugid(kn);
5006 ret = css_populate_dir(&cgrp->self, NULL);
5010 /* let's create and online css's */
5011 for_each_subsys(ss, ssid) {
5012 if (parent->child_subsys_mask & (1 << ssid)) {
5013 ret = create_css(cgrp, ss,
5014 parent->subtree_control & (1 << ssid));
5021 * On the default hierarchy, a child doesn't automatically inherit
5022 * subtree_control from the parent. Each is configured manually.
5024 if (!cgroup_on_dfl(cgrp)) {
5025 cgrp->subtree_control = parent->subtree_control;
5026 cgroup_refresh_child_subsys_mask(cgrp);
5029 kernfs_activate(kn);
5035 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5037 percpu_ref_exit(&cgrp->self.refcnt);
5041 cgroup_kn_unlock(parent_kn);
5045 cgroup_destroy_locked(cgrp);
5050 * This is called when the refcnt of a css is confirmed to be killed.
5051 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5052 * initate destruction and put the css ref from kill_css().
5054 static void css_killed_work_fn(struct work_struct *work)
5056 struct cgroup_subsys_state *css =
5057 container_of(work, struct cgroup_subsys_state, destroy_work);
5059 mutex_lock(&cgroup_mutex);
5064 /* @css can't go away while we're holding cgroup_mutex */
5066 } while (css && atomic_dec_and_test(&css->online_cnt));
5068 mutex_unlock(&cgroup_mutex);
5071 /* css kill confirmation processing requires process context, bounce */
5072 static void css_killed_ref_fn(struct percpu_ref *ref)
5074 struct cgroup_subsys_state *css =
5075 container_of(ref, struct cgroup_subsys_state, refcnt);
5077 if (atomic_dec_and_test(&css->online_cnt)) {
5078 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5079 queue_work(cgroup_destroy_wq, &css->destroy_work);
5084 * kill_css - destroy a css
5085 * @css: css to destroy
5087 * This function initiates destruction of @css by removing cgroup interface
5088 * files and putting its base reference. ->css_offline() will be invoked
5089 * asynchronously once css_tryget_online() is guaranteed to fail and when
5090 * the reference count reaches zero, @css will be released.
5092 static void kill_css(struct cgroup_subsys_state *css)
5094 lockdep_assert_held(&cgroup_mutex);
5097 * This must happen before css is disassociated with its cgroup.
5098 * See seq_css() for details.
5100 css_clear_dir(css, NULL);
5103 * Killing would put the base ref, but we need to keep it alive
5104 * until after ->css_offline().
5109 * cgroup core guarantees that, by the time ->css_offline() is
5110 * invoked, no new css reference will be given out via
5111 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5112 * proceed to offlining css's because percpu_ref_kill() doesn't
5113 * guarantee that the ref is seen as killed on all CPUs on return.
5115 * Use percpu_ref_kill_and_confirm() to get notifications as each
5116 * css is confirmed to be seen as killed on all CPUs.
5118 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5122 * cgroup_destroy_locked - the first stage of cgroup destruction
5123 * @cgrp: cgroup to be destroyed
5125 * css's make use of percpu refcnts whose killing latency shouldn't be
5126 * exposed to userland and are RCU protected. Also, cgroup core needs to
5127 * guarantee that css_tryget_online() won't succeed by the time
5128 * ->css_offline() is invoked. To satisfy all the requirements,
5129 * destruction is implemented in the following two steps.
5131 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5132 * userland visible parts and start killing the percpu refcnts of
5133 * css's. Set up so that the next stage will be kicked off once all
5134 * the percpu refcnts are confirmed to be killed.
5136 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5137 * rest of destruction. Once all cgroup references are gone, the
5138 * cgroup is RCU-freed.
5140 * This function implements s1. After this step, @cgrp is gone as far as
5141 * the userland is concerned and a new cgroup with the same name may be
5142 * created. As cgroup doesn't care about the names internally, this
5143 * doesn't cause any problem.
5145 static int cgroup_destroy_locked(struct cgroup *cgrp)
5146 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5148 struct cgroup_subsys_state *css;
5149 struct cgrp_cset_link *link;
5152 lockdep_assert_held(&cgroup_mutex);
5155 * Only migration can raise populated from zero and we're already
5156 * holding cgroup_mutex.
5158 if (cgroup_is_populated(cgrp))
5162 * Make sure there's no live children. We can't test emptiness of
5163 * ->self.children as dead children linger on it while being
5164 * drained; otherwise, "rmdir parent/child parent" may fail.
5166 if (css_has_online_children(&cgrp->self))
5170 * Mark @cgrp and the associated csets dead. The former prevents
5171 * further task migration and child creation by disabling
5172 * cgroup_lock_live_group(). The latter makes the csets ignored by
5173 * the migration path.
5175 cgrp->self.flags &= ~CSS_ONLINE;
5177 spin_lock_bh(&css_set_lock);
5178 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5179 link->cset->dead = true;
5180 spin_unlock_bh(&css_set_lock);
5182 /* initiate massacre of all css's */
5183 for_each_css(css, ssid, cgrp)
5187 * Remove @cgrp directory along with the base files. @cgrp has an
5188 * extra ref on its kn.
5190 kernfs_remove(cgrp->kn);
5192 check_for_release(cgroup_parent(cgrp));
5194 /* put the base reference */
5195 percpu_ref_kill(&cgrp->self.refcnt);
5200 static int cgroup_rmdir(struct kernfs_node *kn)
5202 struct cgroup *cgrp;
5205 cgrp = cgroup_kn_lock_live(kn);
5209 ret = cgroup_destroy_locked(cgrp);
5211 cgroup_kn_unlock(kn);
5215 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5216 .remount_fs = cgroup_remount,
5217 .show_options = cgroup_show_options,
5218 .mkdir = cgroup_mkdir,
5219 .rmdir = cgroup_rmdir,
5220 .rename = cgroup_rename,
5223 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5225 struct cgroup_subsys_state *css;
5227 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5229 mutex_lock(&cgroup_mutex);
5231 idr_init(&ss->css_idr);
5232 INIT_LIST_HEAD(&ss->cfts);
5234 /* Create the root cgroup state for this subsystem */
5235 ss->root = &cgrp_dfl_root;
5236 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5237 /* We don't handle early failures gracefully */
5238 BUG_ON(IS_ERR(css));
5239 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5242 * Root csses are never destroyed and we can't initialize
5243 * percpu_ref during early init. Disable refcnting.
5245 css->flags |= CSS_NO_REF;
5248 /* allocation can't be done safely during early init */
5251 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5252 BUG_ON(css->id < 0);
5255 /* Update the init_css_set to contain a subsys
5256 * pointer to this state - since the subsystem is
5257 * newly registered, all tasks and hence the
5258 * init_css_set is in the subsystem's root cgroup. */
5259 init_css_set.subsys[ss->id] = css;
5261 have_fork_callback |= (bool)ss->fork << ss->id;
5262 have_exit_callback |= (bool)ss->exit << ss->id;
5263 have_free_callback |= (bool)ss->free << ss->id;
5264 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5266 /* At system boot, before all subsystems have been
5267 * registered, no tasks have been forked, so we don't
5268 * need to invoke fork callbacks here. */
5269 BUG_ON(!list_empty(&init_task.tasks));
5271 BUG_ON(online_css(css));
5273 mutex_unlock(&cgroup_mutex);
5277 * cgroup_init_early - cgroup initialization at system boot
5279 * Initialize cgroups at system boot, and initialize any
5280 * subsystems that request early init.
5282 int __init cgroup_init_early(void)
5284 static struct cgroup_sb_opts __initdata opts;
5285 struct cgroup_subsys *ss;
5288 init_cgroup_root(&cgrp_dfl_root, &opts);
5289 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5291 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5293 for_each_subsys(ss, i) {
5294 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5295 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5296 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5298 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5299 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5302 ss->name = cgroup_subsys_name[i];
5303 if (!ss->legacy_name)
5304 ss->legacy_name = cgroup_subsys_name[i];
5307 cgroup_init_subsys(ss, true);
5312 static unsigned long cgroup_disable_mask __initdata;
5315 * cgroup_init - cgroup initialization
5317 * Register cgroup filesystem and /proc file, and initialize
5318 * any subsystems that didn't request early init.
5320 int __init cgroup_init(void)
5322 struct cgroup_subsys *ss;
5326 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5327 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5328 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5331 * The latency of the synchronize_sched() is too high for cgroups,
5332 * avoid it at the cost of forcing all readers into the slow path.
5334 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5336 mutex_lock(&cgroup_mutex);
5338 /* Add init_css_set to the hash table */
5339 key = css_set_hash(init_css_set.subsys);
5340 hash_add(css_set_table, &init_css_set.hlist, key);
5342 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5344 mutex_unlock(&cgroup_mutex);
5346 for_each_subsys(ss, ssid) {
5347 if (ss->early_init) {
5348 struct cgroup_subsys_state *css =
5349 init_css_set.subsys[ss->id];
5351 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5353 BUG_ON(css->id < 0);
5355 cgroup_init_subsys(ss, false);
5358 list_add_tail(&init_css_set.e_cset_node[ssid],
5359 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5362 * Setting dfl_root subsys_mask needs to consider the
5363 * disabled flag and cftype registration needs kmalloc,
5364 * both of which aren't available during early_init.
5366 if (cgroup_disable_mask & (1 << ssid)) {
5367 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5368 printk(KERN_INFO "Disabling %s control group subsystem\n",
5373 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5375 if (!ss->dfl_cftypes)
5376 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5378 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5379 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5381 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5382 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5386 ss->bind(init_css_set.subsys[ssid]);
5389 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5390 WARN_ON(register_filesystem(&cgroup_fs_type));
5391 WARN_ON(register_filesystem(&cgroup2_fs_type));
5392 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5397 static int __init cgroup_wq_init(void)
5400 * There isn't much point in executing destruction path in
5401 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5402 * Use 1 for @max_active.
5404 * We would prefer to do this in cgroup_init() above, but that
5405 * is called before init_workqueues(): so leave this until after.
5407 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5408 BUG_ON(!cgroup_destroy_wq);
5411 * Used to destroy pidlists and separate to serve as flush domain.
5412 * Cap @max_active to 1 too.
5414 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5416 BUG_ON(!cgroup_pidlist_destroy_wq);
5420 core_initcall(cgroup_wq_init);
5423 * proc_cgroup_show()
5424 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5425 * - Used for /proc/<pid>/cgroup.
5427 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5428 struct pid *pid, struct task_struct *tsk)
5432 struct cgroup_root *root;
5435 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5439 mutex_lock(&cgroup_mutex);
5440 spin_lock_bh(&css_set_lock);
5442 for_each_root(root) {
5443 struct cgroup_subsys *ss;
5444 struct cgroup *cgrp;
5445 int ssid, count = 0;
5447 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5450 seq_printf(m, "%d:", root->hierarchy_id);
5451 if (root != &cgrp_dfl_root)
5452 for_each_subsys(ss, ssid)
5453 if (root->subsys_mask & (1 << ssid))
5454 seq_printf(m, "%s%s", count++ ? "," : "",
5456 if (strlen(root->name))
5457 seq_printf(m, "%sname=%s", count ? "," : "",
5461 cgrp = task_cgroup_from_root(tsk, root);
5464 * On traditional hierarchies, all zombie tasks show up as
5465 * belonging to the root cgroup. On the default hierarchy,
5466 * while a zombie doesn't show up in "cgroup.procs" and
5467 * thus can't be migrated, its /proc/PID/cgroup keeps
5468 * reporting the cgroup it belonged to before exiting. If
5469 * the cgroup is removed before the zombie is reaped,
5470 * " (deleted)" is appended to the cgroup path.
5472 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5473 path = cgroup_path(cgrp, buf, PATH_MAX);
5475 retval = -ENAMETOOLONG;
5484 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5485 seq_puts(m, " (deleted)\n");
5492 spin_unlock_bh(&css_set_lock);
5493 mutex_unlock(&cgroup_mutex);
5499 /* Display information about each subsystem and each hierarchy */
5500 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5502 struct cgroup_subsys *ss;
5505 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5507 * ideally we don't want subsystems moving around while we do this.
5508 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5509 * subsys/hierarchy state.
5511 mutex_lock(&cgroup_mutex);
5513 for_each_subsys(ss, i)
5514 seq_printf(m, "%s\t%d\t%d\t%d\n",
5515 ss->legacy_name, ss->root->hierarchy_id,
5516 atomic_read(&ss->root->nr_cgrps),
5517 cgroup_ssid_enabled(i));
5519 mutex_unlock(&cgroup_mutex);
5523 static int cgroupstats_open(struct inode *inode, struct file *file)
5525 return single_open(file, proc_cgroupstats_show, NULL);
5528 static const struct file_operations proc_cgroupstats_operations = {
5529 .open = cgroupstats_open,
5531 .llseek = seq_lseek,
5532 .release = single_release,
5535 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5537 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5538 return &ss_priv[i - CGROUP_CANFORK_START];
5542 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5544 void **private = subsys_canfork_priv_p(ss_priv, i);
5545 return private ? *private : NULL;
5549 * cgroup_fork - initialize cgroup related fields during copy_process()
5550 * @child: pointer to task_struct of forking parent process.
5552 * A task is associated with the init_css_set until cgroup_post_fork()
5553 * attaches it to the parent's css_set. Empty cg_list indicates that
5554 * @child isn't holding reference to its css_set.
5556 void cgroup_fork(struct task_struct *child)
5558 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5559 INIT_LIST_HEAD(&child->cg_list);
5563 * cgroup_can_fork - called on a new task before the process is exposed
5564 * @child: the task in question.
5566 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5567 * returns an error, the fork aborts with that error code. This allows for
5568 * a cgroup subsystem to conditionally allow or deny new forks.
5570 int cgroup_can_fork(struct task_struct *child,
5571 void *ss_priv[CGROUP_CANFORK_COUNT])
5573 struct cgroup_subsys *ss;
5576 for_each_subsys_which(ss, i, &have_canfork_callback) {
5577 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5585 for_each_subsys(ss, j) {
5588 if (ss->cancel_fork)
5589 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5596 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5597 * @child: the task in question
5599 * This calls the cancel_fork() callbacks if a fork failed *after*
5600 * cgroup_can_fork() succeded.
5602 void cgroup_cancel_fork(struct task_struct *child,
5603 void *ss_priv[CGROUP_CANFORK_COUNT])
5605 struct cgroup_subsys *ss;
5608 for_each_subsys(ss, i)
5609 if (ss->cancel_fork)
5610 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5614 * cgroup_post_fork - called on a new task after adding it to the task list
5615 * @child: the task in question
5617 * Adds the task to the list running through its css_set if necessary and
5618 * call the subsystem fork() callbacks. Has to be after the task is
5619 * visible on the task list in case we race with the first call to
5620 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5623 void cgroup_post_fork(struct task_struct *child,
5624 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5626 struct cgroup_subsys *ss;
5630 * This may race against cgroup_enable_task_cg_lists(). As that
5631 * function sets use_task_css_set_links before grabbing
5632 * tasklist_lock and we just went through tasklist_lock to add
5633 * @child, it's guaranteed that either we see the set
5634 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5635 * @child during its iteration.
5637 * If we won the race, @child is associated with %current's
5638 * css_set. Grabbing css_set_lock guarantees both that the
5639 * association is stable, and, on completion of the parent's
5640 * migration, @child is visible in the source of migration or
5641 * already in the destination cgroup. This guarantee is necessary
5642 * when implementing operations which need to migrate all tasks of
5643 * a cgroup to another.
5645 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5646 * will remain in init_css_set. This is safe because all tasks are
5647 * in the init_css_set before cg_links is enabled and there's no
5648 * operation which transfers all tasks out of init_css_set.
5650 if (use_task_css_set_links) {
5651 struct css_set *cset;
5653 spin_lock_bh(&css_set_lock);
5654 cset = task_css_set(current);
5655 if (list_empty(&child->cg_list)) {
5657 css_set_move_task(child, NULL, cset, false);
5659 spin_unlock_bh(&css_set_lock);
5663 * Call ss->fork(). This must happen after @child is linked on
5664 * css_set; otherwise, @child might change state between ->fork()
5665 * and addition to css_set.
5667 for_each_subsys_which(ss, i, &have_fork_callback)
5668 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5672 * cgroup_exit - detach cgroup from exiting task
5673 * @tsk: pointer to task_struct of exiting process
5675 * Description: Detach cgroup from @tsk and release it.
5677 * Note that cgroups marked notify_on_release force every task in
5678 * them to take the global cgroup_mutex mutex when exiting.
5679 * This could impact scaling on very large systems. Be reluctant to
5680 * use notify_on_release cgroups where very high task exit scaling
5681 * is required on large systems.
5683 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5684 * call cgroup_exit() while the task is still competent to handle
5685 * notify_on_release(), then leave the task attached to the root cgroup in
5686 * each hierarchy for the remainder of its exit. No need to bother with
5687 * init_css_set refcnting. init_css_set never goes away and we can't race
5688 * with migration path - PF_EXITING is visible to migration path.
5690 void cgroup_exit(struct task_struct *tsk)
5692 struct cgroup_subsys *ss;
5693 struct css_set *cset;
5697 * Unlink from @tsk from its css_set. As migration path can't race
5698 * with us, we can check css_set and cg_list without synchronization.
5700 cset = task_css_set(tsk);
5702 if (!list_empty(&tsk->cg_list)) {
5703 spin_lock_bh(&css_set_lock);
5704 css_set_move_task(tsk, cset, NULL, false);
5705 spin_unlock_bh(&css_set_lock);
5710 /* see cgroup_post_fork() for details */
5711 for_each_subsys_which(ss, i, &have_exit_callback)
5715 void cgroup_free(struct task_struct *task)
5717 struct css_set *cset = task_css_set(task);
5718 struct cgroup_subsys *ss;
5721 for_each_subsys_which(ss, ssid, &have_free_callback)
5727 static void check_for_release(struct cgroup *cgrp)
5729 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5730 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5731 schedule_work(&cgrp->release_agent_work);
5735 * Notify userspace when a cgroup is released, by running the
5736 * configured release agent with the name of the cgroup (path
5737 * relative to the root of cgroup file system) as the argument.
5739 * Most likely, this user command will try to rmdir this cgroup.
5741 * This races with the possibility that some other task will be
5742 * attached to this cgroup before it is removed, or that some other
5743 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5744 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5745 * unused, and this cgroup will be reprieved from its death sentence,
5746 * to continue to serve a useful existence. Next time it's released,
5747 * we will get notified again, if it still has 'notify_on_release' set.
5749 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5750 * means only wait until the task is successfully execve()'d. The
5751 * separate release agent task is forked by call_usermodehelper(),
5752 * then control in this thread returns here, without waiting for the
5753 * release agent task. We don't bother to wait because the caller of
5754 * this routine has no use for the exit status of the release agent
5755 * task, so no sense holding our caller up for that.
5757 static void cgroup_release_agent(struct work_struct *work)
5759 struct cgroup *cgrp =
5760 container_of(work, struct cgroup, release_agent_work);
5761 char *pathbuf = NULL, *agentbuf = NULL, *path;
5762 char *argv[3], *envp[3];
5764 mutex_lock(&cgroup_mutex);
5766 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5767 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5768 if (!pathbuf || !agentbuf)
5771 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5779 /* minimal command environment */
5781 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5784 mutex_unlock(&cgroup_mutex);
5785 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5788 mutex_unlock(&cgroup_mutex);
5794 static int __init cgroup_disable(char *str)
5796 struct cgroup_subsys *ss;
5800 while ((token = strsep(&str, ",")) != NULL) {
5804 for_each_subsys(ss, i) {
5805 if (strcmp(token, ss->name) &&
5806 strcmp(token, ss->legacy_name))
5808 cgroup_disable_mask |= 1 << i;
5813 __setup("cgroup_disable=", cgroup_disable);
5816 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5817 * @dentry: directory dentry of interest
5818 * @ss: subsystem of interest
5820 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5821 * to get the corresponding css and return it. If such css doesn't exist
5822 * or can't be pinned, an ERR_PTR value is returned.
5824 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5825 struct cgroup_subsys *ss)
5827 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5828 struct cgroup_subsys_state *css = NULL;
5829 struct cgroup *cgrp;
5831 /* is @dentry a cgroup dir? */
5832 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5833 kernfs_type(kn) != KERNFS_DIR)
5834 return ERR_PTR(-EBADF);
5839 * This path doesn't originate from kernfs and @kn could already
5840 * have been or be removed at any point. @kn->priv is RCU
5841 * protected for this access. See css_release_work_fn() for details.
5843 cgrp = rcu_dereference(kn->priv);
5845 css = cgroup_css(cgrp, ss);
5847 if (!css || !css_tryget_online(css))
5848 css = ERR_PTR(-ENOENT);
5855 * css_from_id - lookup css by id
5856 * @id: the cgroup id
5857 * @ss: cgroup subsys to be looked into
5859 * Returns the css if there's valid one with @id, otherwise returns NULL.
5860 * Should be called under rcu_read_lock().
5862 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5864 WARN_ON_ONCE(!rcu_read_lock_held());
5865 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5868 #ifdef CONFIG_CGROUP_DEBUG
5869 static struct cgroup_subsys_state *
5870 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5872 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5875 return ERR_PTR(-ENOMEM);
5880 static void debug_css_free(struct cgroup_subsys_state *css)
5885 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5888 return cgroup_task_count(css->cgroup);
5891 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5894 return (u64)(unsigned long)current->cgroups;
5897 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5903 count = atomic_read(&task_css_set(current)->refcount);
5908 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5910 struct cgrp_cset_link *link;
5911 struct css_set *cset;
5914 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5918 spin_lock_bh(&css_set_lock);
5920 cset = rcu_dereference(current->cgroups);
5921 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5922 struct cgroup *c = link->cgrp;
5924 cgroup_name(c, name_buf, NAME_MAX + 1);
5925 seq_printf(seq, "Root %d group %s\n",
5926 c->root->hierarchy_id, name_buf);
5929 spin_unlock_bh(&css_set_lock);
5934 #define MAX_TASKS_SHOWN_PER_CSS 25
5935 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5937 struct cgroup_subsys_state *css = seq_css(seq);
5938 struct cgrp_cset_link *link;
5940 spin_lock_bh(&css_set_lock);
5941 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5942 struct css_set *cset = link->cset;
5943 struct task_struct *task;
5946 seq_printf(seq, "css_set %p\n", cset);
5948 list_for_each_entry(task, &cset->tasks, cg_list) {
5949 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5951 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5954 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5955 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5957 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5961 seq_puts(seq, " ...\n");
5963 spin_unlock_bh(&css_set_lock);
5967 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5969 return (!cgroup_is_populated(css->cgroup) &&
5970 !css_has_online_children(&css->cgroup->self));
5973 static struct cftype debug_files[] = {
5975 .name = "taskcount",
5976 .read_u64 = debug_taskcount_read,
5980 .name = "current_css_set",
5981 .read_u64 = current_css_set_read,
5985 .name = "current_css_set_refcount",
5986 .read_u64 = current_css_set_refcount_read,
5990 .name = "current_css_set_cg_links",
5991 .seq_show = current_css_set_cg_links_read,
5995 .name = "cgroup_css_links",
5996 .seq_show = cgroup_css_links_read,
6000 .name = "releasable",
6001 .read_u64 = releasable_read,
6007 struct cgroup_subsys debug_cgrp_subsys = {
6008 .css_alloc = debug_css_alloc,
6009 .css_free = debug_css_free,
6010 .legacy_cftypes = debug_files,
6012 #endif /* CONFIG_CGROUP_DEBUG */