Merge git://www.linux-watchdog.org/linux-watchdog
[firefly-linux-kernel-4.4.55.git] / include / linux / ptrace.h
1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
3
4 #include <linux/compiler.h>             /* For unlikely.  */
5 #include <linux/sched.h>                /* For struct task_struct.  */
6 #include <linux/err.h>                  /* for IS_ERR_VALUE */
7 #include <linux/bug.h>                  /* For BUG_ON.  */
8 #include <uapi/linux/ptrace.h>
9
10 /*
11  * Ptrace flags
12  *
13  * The owner ship rules for task->ptrace which holds the ptrace
14  * flags is simple.  When a task is running it owns it's task->ptrace
15  * flags.  When the a task is stopped the ptracer owns task->ptrace.
16  */
17
18 #define PT_SEIZED       0x00010000      /* SEIZE used, enable new behavior */
19 #define PT_PTRACED      0x00000001
20 #define PT_DTRACE       0x00000002      /* delayed trace (used on m68k, i386) */
21 #define PT_PTRACE_CAP   0x00000004      /* ptracer can follow suid-exec */
22
23 #define PT_OPT_FLAG_SHIFT       3
24 /* PT_TRACE_* event enable flags */
25 #define PT_EVENT_FLAG(event)    (1 << (PT_OPT_FLAG_SHIFT + (event)))
26 #define PT_TRACESYSGOOD         PT_EVENT_FLAG(0)
27 #define PT_TRACE_FORK           PT_EVENT_FLAG(PTRACE_EVENT_FORK)
28 #define PT_TRACE_VFORK          PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
29 #define PT_TRACE_CLONE          PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
30 #define PT_TRACE_EXEC           PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
31 #define PT_TRACE_VFORK_DONE     PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
32 #define PT_TRACE_EXIT           PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
33 #define PT_TRACE_SECCOMP        PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
34
35 #define PT_EXITKILL             (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
36
37 /* single stepping state bits (used on ARM and PA-RISC) */
38 #define PT_SINGLESTEP_BIT       31
39 #define PT_SINGLESTEP           (1<<PT_SINGLESTEP_BIT)
40 #define PT_BLOCKSTEP_BIT        30
41 #define PT_BLOCKSTEP            (1<<PT_BLOCKSTEP_BIT)
42
43 extern long arch_ptrace(struct task_struct *child, long request,
44                         unsigned long addr, unsigned long data);
45 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
46 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
47 extern void ptrace_disable(struct task_struct *);
48 extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
49 extern int ptrace_request(struct task_struct *child, long request,
50                           unsigned long addr, unsigned long data);
51 extern void ptrace_notify(int exit_code);
52 extern void __ptrace_link(struct task_struct *child,
53                           struct task_struct *new_parent);
54 extern void __ptrace_unlink(struct task_struct *child);
55 extern void exit_ptrace(struct task_struct *tracer);
56 #define PTRACE_MODE_READ        0x01
57 #define PTRACE_MODE_ATTACH      0x02
58 #define PTRACE_MODE_NOAUDIT     0x04
59 /* Returns true on success, false on denial. */
60 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
61
62 static inline int ptrace_reparented(struct task_struct *child)
63 {
64         return !same_thread_group(child->real_parent, child->parent);
65 }
66
67 static inline void ptrace_unlink(struct task_struct *child)
68 {
69         if (unlikely(child->ptrace))
70                 __ptrace_unlink(child);
71 }
72
73 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
74                             unsigned long data);
75 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
76                             unsigned long data);
77
78 /**
79  * ptrace_parent - return the task that is tracing the given task
80  * @task: task to consider
81  *
82  * Returns %NULL if no one is tracing @task, or the &struct task_struct
83  * pointer to its tracer.
84  *
85  * Must called under rcu_read_lock().  The pointer returned might be kept
86  * live only by RCU.  During exec, this may be called with task_lock() held
87  * on @task, still held from when check_unsafe_exec() was called.
88  */
89 static inline struct task_struct *ptrace_parent(struct task_struct *task)
90 {
91         if (unlikely(task->ptrace))
92                 return rcu_dereference(task->parent);
93         return NULL;
94 }
95
96 /**
97  * ptrace_event_enabled - test whether a ptrace event is enabled
98  * @task: ptracee of interest
99  * @event: %PTRACE_EVENT_* to test
100  *
101  * Test whether @event is enabled for ptracee @task.
102  *
103  * Returns %true if @event is enabled, %false otherwise.
104  */
105 static inline bool ptrace_event_enabled(struct task_struct *task, int event)
106 {
107         return task->ptrace & PT_EVENT_FLAG(event);
108 }
109
110 /**
111  * ptrace_event - possibly stop for a ptrace event notification
112  * @event:      %PTRACE_EVENT_* value to report
113  * @message:    value for %PTRACE_GETEVENTMSG to return
114  *
115  * Check whether @event is enabled and, if so, report @event and @message
116  * to the ptrace parent.
117  *
118  * Called without locks.
119  */
120 static inline void ptrace_event(int event, unsigned long message)
121 {
122         if (unlikely(ptrace_event_enabled(current, event))) {
123                 current->ptrace_message = message;
124                 ptrace_notify((event << 8) | SIGTRAP);
125         } else if (event == PTRACE_EVENT_EXEC) {
126                 /* legacy EXEC report via SIGTRAP */
127                 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
128                         send_sig(SIGTRAP, current, 0);
129         }
130 }
131
132 /**
133  * ptrace_init_task - initialize ptrace state for a new child
134  * @child:              new child task
135  * @ptrace:             true if child should be ptrace'd by parent's tracer
136  *
137  * This is called immediately after adding @child to its parent's children
138  * list.  @ptrace is false in the normal case, and true to ptrace @child.
139  *
140  * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
141  */
142 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
143 {
144         INIT_LIST_HEAD(&child->ptrace_entry);
145         INIT_LIST_HEAD(&child->ptraced);
146 #ifdef CONFIG_HAVE_HW_BREAKPOINT
147         atomic_set(&child->ptrace_bp_refcnt, 1);
148 #endif
149         child->jobctl = 0;
150         child->ptrace = 0;
151         child->parent = child->real_parent;
152
153         if (unlikely(ptrace) && current->ptrace) {
154                 child->ptrace = current->ptrace;
155                 __ptrace_link(child, current->parent);
156
157                 if (child->ptrace & PT_SEIZED)
158                         task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
159                 else
160                         sigaddset(&child->pending.signal, SIGSTOP);
161
162                 set_tsk_thread_flag(child, TIF_SIGPENDING);
163         }
164 }
165
166 /**
167  * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
168  * @task:       task in %EXIT_DEAD state
169  *
170  * Called with write_lock(&tasklist_lock) held.
171  */
172 static inline void ptrace_release_task(struct task_struct *task)
173 {
174         BUG_ON(!list_empty(&task->ptraced));
175         ptrace_unlink(task);
176         BUG_ON(!list_empty(&task->ptrace_entry));
177 }
178
179 #ifndef force_successful_syscall_return
180 /*
181  * System call handlers that, upon successful completion, need to return a
182  * negative value should call force_successful_syscall_return() right before
183  * returning.  On architectures where the syscall convention provides for a
184  * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
185  * others), this macro can be used to ensure that the error flag will not get
186  * set.  On architectures which do not support a separate error flag, the macro
187  * is a no-op and the spurious error condition needs to be filtered out by some
188  * other means (e.g., in user-level, by passing an extra argument to the
189  * syscall handler, or something along those lines).
190  */
191 #define force_successful_syscall_return() do { } while (0)
192 #endif
193
194 #ifndef is_syscall_success
195 /*
196  * On most systems we can tell if a syscall is a success based on if the retval
197  * is an error value.  On some systems like ia64 and powerpc they have different
198  * indicators of success/failure and must define their own.
199  */
200 #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
201 #endif
202
203 /*
204  * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
205  *
206  * These do-nothing inlines are used when the arch does not
207  * implement single-step.  The kerneldoc comments are here
208  * to document the interface for all arch definitions.
209  */
210
211 #ifndef arch_has_single_step
212 /**
213  * arch_has_single_step - does this CPU support user-mode single-step?
214  *
215  * If this is defined, then there must be function declarations or
216  * inlines for user_enable_single_step() and user_disable_single_step().
217  * arch_has_single_step() should evaluate to nonzero iff the machine
218  * supports instruction single-step for user mode.
219  * It can be a constant or it can test a CPU feature bit.
220  */
221 #define arch_has_single_step()          (0)
222
223 /**
224  * user_enable_single_step - single-step in user-mode task
225  * @task: either current or a task stopped in %TASK_TRACED
226  *
227  * This can only be called when arch_has_single_step() has returned nonzero.
228  * Set @task so that when it returns to user mode, it will trap after the
229  * next single instruction executes.  If arch_has_block_step() is defined,
230  * this must clear the effects of user_enable_block_step() too.
231  */
232 static inline void user_enable_single_step(struct task_struct *task)
233 {
234         BUG();                  /* This can never be called.  */
235 }
236
237 /**
238  * user_disable_single_step - cancel user-mode single-step
239  * @task: either current or a task stopped in %TASK_TRACED
240  *
241  * Clear @task of the effects of user_enable_single_step() and
242  * user_enable_block_step().  This can be called whether or not either
243  * of those was ever called on @task, and even if arch_has_single_step()
244  * returned zero.
245  */
246 static inline void user_disable_single_step(struct task_struct *task)
247 {
248 }
249 #else
250 extern void user_enable_single_step(struct task_struct *);
251 extern void user_disable_single_step(struct task_struct *);
252 #endif  /* arch_has_single_step */
253
254 #ifndef arch_has_block_step
255 /**
256  * arch_has_block_step - does this CPU support user-mode block-step?
257  *
258  * If this is defined, then there must be a function declaration or inline
259  * for user_enable_block_step(), and arch_has_single_step() must be defined
260  * too.  arch_has_block_step() should evaluate to nonzero iff the machine
261  * supports step-until-branch for user mode.  It can be a constant or it
262  * can test a CPU feature bit.
263  */
264 #define arch_has_block_step()           (0)
265
266 /**
267  * user_enable_block_step - step until branch in user-mode task
268  * @task: either current or a task stopped in %TASK_TRACED
269  *
270  * This can only be called when arch_has_block_step() has returned nonzero,
271  * and will never be called when single-instruction stepping is being used.
272  * Set @task so that when it returns to user mode, it will trap after the
273  * next branch or trap taken.
274  */
275 static inline void user_enable_block_step(struct task_struct *task)
276 {
277         BUG();                  /* This can never be called.  */
278 }
279 #else
280 extern void user_enable_block_step(struct task_struct *);
281 #endif  /* arch_has_block_step */
282
283 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
284 extern void user_single_step_siginfo(struct task_struct *tsk,
285                                 struct pt_regs *regs, siginfo_t *info);
286 #else
287 static inline void user_single_step_siginfo(struct task_struct *tsk,
288                                 struct pt_regs *regs, siginfo_t *info)
289 {
290         memset(info, 0, sizeof(*info));
291         info->si_signo = SIGTRAP;
292 }
293 #endif
294
295 #ifndef arch_ptrace_stop_needed
296 /**
297  * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
298  * @code:       current->exit_code value ptrace will stop with
299  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
300  *
301  * This is called with the siglock held, to decide whether or not it's
302  * necessary to release the siglock and call arch_ptrace_stop() with the
303  * same @code and @info arguments.  It can be defined to a constant if
304  * arch_ptrace_stop() is never required, or always is.  On machines where
305  * this makes sense, it should be defined to a quick test to optimize out
306  * calling arch_ptrace_stop() when it would be superfluous.  For example,
307  * if the thread has not been back to user mode since the last stop, the
308  * thread state might indicate that nothing needs to be done.
309  */
310 #define arch_ptrace_stop_needed(code, info)     (0)
311 #endif
312
313 #ifndef arch_ptrace_stop
314 /**
315  * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
316  * @code:       current->exit_code value ptrace will stop with
317  * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
318  *
319  * This is called with no locks held when arch_ptrace_stop_needed() has
320  * just returned nonzero.  It is allowed to block, e.g. for user memory
321  * access.  The arch can have machine-specific work to be done before
322  * ptrace stops.  On ia64, register backing store gets written back to user
323  * memory here.  Since this can be costly (requires dropping the siglock),
324  * we only do it when the arch requires it for this particular stop, as
325  * indicated by arch_ptrace_stop_needed().
326  */
327 #define arch_ptrace_stop(code, info)            do { } while (0)
328 #endif
329
330 #ifndef current_pt_regs
331 #define current_pt_regs() task_pt_regs(current)
332 #endif
333
334 #ifndef ptrace_signal_deliver
335 #define ptrace_signal_deliver() ((void)0)
336 #endif
337
338 /*
339  * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
340  * on *all* architectures; the only reason to have a per-arch definition
341  * is optimisation.
342  */
343 #ifndef signal_pt_regs
344 #define signal_pt_regs() task_pt_regs(current)
345 #endif
346
347 #ifndef current_user_stack_pointer
348 #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
349 #endif
350
351 extern int task_current_syscall(struct task_struct *target, long *callno,
352                                 unsigned long args[6], unsigned int maxargs,
353                                 unsigned long *sp, unsigned long *pc);
354
355 #ifdef CONFIG_HAVE_HW_BREAKPOINT
356 extern int ptrace_get_breakpoints(struct task_struct *tsk);
357 extern void ptrace_put_breakpoints(struct task_struct *tsk);
358 #else
359 static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
360 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
361
362 #endif