Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34         PERF_TYPE_BREAKPOINT                    = 5,
35
36         PERF_TYPE_MAX,                          /* non-ABI */
37 };
38
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45         /*
46          * Common hardware events, generalized by the kernel:
47          */
48         PERF_COUNT_HW_CPU_CYCLES                = 0,
49         PERF_COUNT_HW_INSTRUCTIONS              = 1,
50         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
51         PERF_COUNT_HW_CACHE_MISSES              = 3,
52         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
53         PERF_COUNT_HW_BRANCH_MISSES             = 5,
54         PERF_COUNT_HW_BUS_CYCLES                = 6,
55         PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
56         PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
57         PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
58
59         PERF_COUNT_HW_MAX,                      /* non-ABI */
60 };
61
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70         PERF_COUNT_HW_CACHE_L1D                 = 0,
71         PERF_COUNT_HW_CACHE_L1I                 = 1,
72         PERF_COUNT_HW_CACHE_LL                  = 2,
73         PERF_COUNT_HW_CACHE_DTLB                = 3,
74         PERF_COUNT_HW_CACHE_ITLB                = 4,
75         PERF_COUNT_HW_CACHE_BPU                 = 5,
76         PERF_COUNT_HW_CACHE_NODE                = 6,
77
78         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82         PERF_COUNT_HW_CACHE_OP_READ             = 0,
83         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
84         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
85
86         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
91         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
92
93         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
94 };
95
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103         PERF_COUNT_SW_CPU_CLOCK                 = 0,
104         PERF_COUNT_SW_TASK_CLOCK                = 1,
105         PERF_COUNT_SW_PAGE_FAULTS               = 2,
106         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
107         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
108         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
109         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
110         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
111         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
112
113         PERF_COUNT_SW_MAX,                      /* non-ABI */
114 };
115
116 /*
117  * Bits that can be set in attr.sample_type to request information
118  * in the overflow packets.
119  */
120 enum perf_event_sample_format {
121         PERF_SAMPLE_IP                          = 1U << 0,
122         PERF_SAMPLE_TID                         = 1U << 1,
123         PERF_SAMPLE_TIME                        = 1U << 2,
124         PERF_SAMPLE_ADDR                        = 1U << 3,
125         PERF_SAMPLE_READ                        = 1U << 4,
126         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
127         PERF_SAMPLE_ID                          = 1U << 6,
128         PERF_SAMPLE_CPU                         = 1U << 7,
129         PERF_SAMPLE_PERIOD                      = 1U << 8,
130         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
131         PERF_SAMPLE_RAW                         = 1U << 10,
132         PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
133
134         PERF_SAMPLE_MAX = 1U << 12,             /* non-ABI */
135 };
136
137 /*
138  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
139  *
140  * If the user does not pass priv level information via branch_sample_type,
141  * the kernel uses the event's priv level. Branch and event priv levels do
142  * not have to match. Branch priv level is checked for permissions.
143  *
144  * The branch types can be combined, however BRANCH_ANY covers all types
145  * of branches and therefore it supersedes all the other types.
146  */
147 enum perf_branch_sample_type {
148         PERF_SAMPLE_BRANCH_USER         = 1U << 0, /* user branches */
149         PERF_SAMPLE_BRANCH_KERNEL       = 1U << 1, /* kernel branches */
150         PERF_SAMPLE_BRANCH_HV           = 1U << 2, /* hypervisor branches */
151
152         PERF_SAMPLE_BRANCH_ANY          = 1U << 3, /* any branch types */
153         PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << 4, /* any call branch */
154         PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << 5, /* any return branch */
155         PERF_SAMPLE_BRANCH_IND_CALL     = 1U << 6, /* indirect calls */
156
157         PERF_SAMPLE_BRANCH_MAX          = 1U << 7, /* non-ABI */
158 };
159
160 #define PERF_SAMPLE_BRANCH_PLM_ALL \
161         (PERF_SAMPLE_BRANCH_USER|\
162          PERF_SAMPLE_BRANCH_KERNEL|\
163          PERF_SAMPLE_BRANCH_HV)
164
165 /*
166  * The format of the data returned by read() on a perf event fd,
167  * as specified by attr.read_format:
168  *
169  * struct read_format {
170  *      { u64           value;
171  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
172  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
173  *        { u64         id;           } && PERF_FORMAT_ID
174  *      } && !PERF_FORMAT_GROUP
175  *
176  *      { u64           nr;
177  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
178  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
179  *        { u64         value;
180  *          { u64       id;           } && PERF_FORMAT_ID
181  *        }             cntr[nr];
182  *      } && PERF_FORMAT_GROUP
183  * };
184  */
185 enum perf_event_read_format {
186         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
187         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
188         PERF_FORMAT_ID                          = 1U << 2,
189         PERF_FORMAT_GROUP                       = 1U << 3,
190
191         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
192 };
193
194 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
195 #define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
196 #define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
197
198 /*
199  * Hardware event_id to monitor via a performance monitoring event:
200  */
201 struct perf_event_attr {
202
203         /*
204          * Major type: hardware/software/tracepoint/etc.
205          */
206         __u32                   type;
207
208         /*
209          * Size of the attr structure, for fwd/bwd compat.
210          */
211         __u32                   size;
212
213         /*
214          * Type specific configuration information.
215          */
216         __u64                   config;
217
218         union {
219                 __u64           sample_period;
220                 __u64           sample_freq;
221         };
222
223         __u64                   sample_type;
224         __u64                   read_format;
225
226         __u64                   disabled       :  1, /* off by default        */
227                                 inherit        :  1, /* children inherit it   */
228                                 pinned         :  1, /* must always be on PMU */
229                                 exclusive      :  1, /* only group on PMU     */
230                                 exclude_user   :  1, /* don't count user      */
231                                 exclude_kernel :  1, /* ditto kernel          */
232                                 exclude_hv     :  1, /* ditto hypervisor      */
233                                 exclude_idle   :  1, /* don't count when idle */
234                                 mmap           :  1, /* include mmap data     */
235                                 comm           :  1, /* include comm data     */
236                                 freq           :  1, /* use freq, not period  */
237                                 inherit_stat   :  1, /* per task counts       */
238                                 enable_on_exec :  1, /* next exec enables     */
239                                 task           :  1, /* trace fork/exit       */
240                                 watermark      :  1, /* wakeup_watermark      */
241                                 /*
242                                  * precise_ip:
243                                  *
244                                  *  0 - SAMPLE_IP can have arbitrary skid
245                                  *  1 - SAMPLE_IP must have constant skid
246                                  *  2 - SAMPLE_IP requested to have 0 skid
247                                  *  3 - SAMPLE_IP must have 0 skid
248                                  *
249                                  *  See also PERF_RECORD_MISC_EXACT_IP
250                                  */
251                                 precise_ip     :  2, /* skid constraint       */
252                                 mmap_data      :  1, /* non-exec mmap data    */
253                                 sample_id_all  :  1, /* sample_type all events */
254
255                                 exclude_host   :  1, /* don't count in host   */
256                                 exclude_guest  :  1, /* don't count in guest  */
257
258                                 __reserved_1   : 43;
259
260         union {
261                 __u32           wakeup_events;    /* wakeup every n events */
262                 __u32           wakeup_watermark; /* bytes before wakeup   */
263         };
264
265         __u32                   bp_type;
266         union {
267                 __u64           bp_addr;
268                 __u64           config1; /* extension of config */
269         };
270         union {
271                 __u64           bp_len;
272                 __u64           config2; /* extension of config1 */
273         };
274         __u64   branch_sample_type; /* enum branch_sample_type */
275 };
276
277 /*
278  * Ioctls that can be done on a perf event fd:
279  */
280 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
281 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
282 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
283 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
284 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
285 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
286 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
287
288 enum perf_event_ioc_flags {
289         PERF_IOC_FLAG_GROUP             = 1U << 0,
290 };
291
292 /*
293  * Structure of the page that can be mapped via mmap
294  */
295 struct perf_event_mmap_page {
296         __u32   version;                /* version number of this structure */
297         __u32   compat_version;         /* lowest version this is compat with */
298
299         /*
300          * Bits needed to read the hw events in user-space.
301          *
302          *   u32 seq, time_mult, time_shift, idx, width;
303          *   u64 count, enabled, running;
304          *   u64 cyc, time_offset;
305          *   s64 pmc = 0;
306          *
307          *   do {
308          *     seq = pc->lock;
309          *     barrier()
310          *
311          *     enabled = pc->time_enabled;
312          *     running = pc->time_running;
313          *
314          *     if (pc->cap_usr_time && enabled != running) {
315          *       cyc = rdtsc();
316          *       time_offset = pc->time_offset;
317          *       time_mult   = pc->time_mult;
318          *       time_shift  = pc->time_shift;
319          *     }
320          *
321          *     idx = pc->index;
322          *     count = pc->offset;
323          *     if (pc->cap_usr_rdpmc && idx) {
324          *       width = pc->pmc_width;
325          *       pmc = rdpmc(idx - 1);
326          *     }
327          *
328          *     barrier();
329          *   } while (pc->lock != seq);
330          *
331          * NOTE: for obvious reason this only works on self-monitoring
332          *       processes.
333          */
334         __u32   lock;                   /* seqlock for synchronization */
335         __u32   index;                  /* hardware event identifier */
336         __s64   offset;                 /* add to hardware event value */
337         __u64   time_enabled;           /* time event active */
338         __u64   time_running;           /* time event on cpu */
339         union {
340                 __u64   capabilities;
341                 __u64   cap_usr_time  : 1,
342                         cap_usr_rdpmc : 1,
343                         cap_____res   : 62;
344         };
345
346         /*
347          * If cap_usr_rdpmc this field provides the bit-width of the value
348          * read using the rdpmc() or equivalent instruction. This can be used
349          * to sign extend the result like:
350          *
351          *   pmc <<= 64 - width;
352          *   pmc >>= 64 - width; // signed shift right
353          *   count += pmc;
354          */
355         __u16   pmc_width;
356
357         /*
358          * If cap_usr_time the below fields can be used to compute the time
359          * delta since time_enabled (in ns) using rdtsc or similar.
360          *
361          *   u64 quot, rem;
362          *   u64 delta;
363          *
364          *   quot = (cyc >> time_shift);
365          *   rem = cyc & ((1 << time_shift) - 1);
366          *   delta = time_offset + quot * time_mult +
367          *              ((rem * time_mult) >> time_shift);
368          *
369          * Where time_offset,time_mult,time_shift and cyc are read in the
370          * seqcount loop described above. This delta can then be added to
371          * enabled and possible running (if idx), improving the scaling:
372          *
373          *   enabled += delta;
374          *   if (idx)
375          *     running += delta;
376          *
377          *   quot = count / running;
378          *   rem  = count % running;
379          *   count = quot * enabled + (rem * enabled) / running;
380          */
381         __u16   time_shift;
382         __u32   time_mult;
383         __u64   time_offset;
384
385                 /*
386                  * Hole for extension of the self monitor capabilities
387                  */
388
389         __u64   __reserved[120];        /* align to 1k */
390
391         /*
392          * Control data for the mmap() data buffer.
393          *
394          * User-space reading the @data_head value should issue an rmb(), on
395          * SMP capable platforms, after reading this value -- see
396          * perf_event_wakeup().
397          *
398          * When the mapping is PROT_WRITE the @data_tail value should be
399          * written by userspace to reflect the last read data. In this case
400          * the kernel will not over-write unread data.
401          */
402         __u64   data_head;              /* head in the data section */
403         __u64   data_tail;              /* user-space written tail */
404 };
405
406 #define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
407 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
408 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
409 #define PERF_RECORD_MISC_USER                   (2 << 0)
410 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
411 #define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
412 #define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
413
414 /*
415  * Indicates that the content of PERF_SAMPLE_IP points to
416  * the actual instruction that triggered the event. See also
417  * perf_event_attr::precise_ip.
418  */
419 #define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
420 /*
421  * Reserve the last bit to indicate some extended misc field
422  */
423 #define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
424
425 struct perf_event_header {
426         __u32   type;
427         __u16   misc;
428         __u16   size;
429 };
430
431 enum perf_event_type {
432
433         /*
434          * If perf_event_attr.sample_id_all is set then all event types will
435          * have the sample_type selected fields related to where/when
436          * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
437          * described in PERF_RECORD_SAMPLE below, it will be stashed just after
438          * the perf_event_header and the fields already present for the existing
439          * fields, i.e. at the end of the payload. That way a newer perf.data
440          * file will be supported by older perf tools, with these new optional
441          * fields being ignored.
442          *
443          * The MMAP events record the PROT_EXEC mappings so that we can
444          * correlate userspace IPs to code. They have the following structure:
445          *
446          * struct {
447          *      struct perf_event_header        header;
448          *
449          *      u32                             pid, tid;
450          *      u64                             addr;
451          *      u64                             len;
452          *      u64                             pgoff;
453          *      char                            filename[];
454          * };
455          */
456         PERF_RECORD_MMAP                        = 1,
457
458         /*
459          * struct {
460          *      struct perf_event_header        header;
461          *      u64                             id;
462          *      u64                             lost;
463          * };
464          */
465         PERF_RECORD_LOST                        = 2,
466
467         /*
468          * struct {
469          *      struct perf_event_header        header;
470          *
471          *      u32                             pid, tid;
472          *      char                            comm[];
473          * };
474          */
475         PERF_RECORD_COMM                        = 3,
476
477         /*
478          * struct {
479          *      struct perf_event_header        header;
480          *      u32                             pid, ppid;
481          *      u32                             tid, ptid;
482          *      u64                             time;
483          * };
484          */
485         PERF_RECORD_EXIT                        = 4,
486
487         /*
488          * struct {
489          *      struct perf_event_header        header;
490          *      u64                             time;
491          *      u64                             id;
492          *      u64                             stream_id;
493          * };
494          */
495         PERF_RECORD_THROTTLE                    = 5,
496         PERF_RECORD_UNTHROTTLE                  = 6,
497
498         /*
499          * struct {
500          *      struct perf_event_header        header;
501          *      u32                             pid, ppid;
502          *      u32                             tid, ptid;
503          *      u64                             time;
504          * };
505          */
506         PERF_RECORD_FORK                        = 7,
507
508         /*
509          * struct {
510          *      struct perf_event_header        header;
511          *      u32                             pid, tid;
512          *
513          *      struct read_format              values;
514          * };
515          */
516         PERF_RECORD_READ                        = 8,
517
518         /*
519          * struct {
520          *      struct perf_event_header        header;
521          *
522          *      { u64                   ip;       } && PERF_SAMPLE_IP
523          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
524          *      { u64                   time;     } && PERF_SAMPLE_TIME
525          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
526          *      { u64                   id;       } && PERF_SAMPLE_ID
527          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
528          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
529          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
530          *
531          *      { struct read_format    values;   } && PERF_SAMPLE_READ
532          *
533          *      { u64                   nr,
534          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
535          *
536          *      #
537          *      # The RAW record below is opaque data wrt the ABI
538          *      #
539          *      # That is, the ABI doesn't make any promises wrt to
540          *      # the stability of its content, it may vary depending
541          *      # on event, hardware, kernel version and phase of
542          *      # the moon.
543          *      #
544          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
545          *      #
546          *
547          *      { u32                   size;
548          *        char                  data[size];}&& PERF_SAMPLE_RAW
549          *
550          *      { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
551          * };
552          */
553         PERF_RECORD_SAMPLE                      = 9,
554
555         PERF_RECORD_MAX,                        /* non-ABI */
556 };
557
558 enum perf_callchain_context {
559         PERF_CONTEXT_HV                 = (__u64)-32,
560         PERF_CONTEXT_KERNEL             = (__u64)-128,
561         PERF_CONTEXT_USER               = (__u64)-512,
562
563         PERF_CONTEXT_GUEST              = (__u64)-2048,
564         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
565         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
566
567         PERF_CONTEXT_MAX                = (__u64)-4095,
568 };
569
570 #define PERF_FLAG_FD_NO_GROUP           (1U << 0)
571 #define PERF_FLAG_FD_OUTPUT             (1U << 1)
572 #define PERF_FLAG_PID_CGROUP            (1U << 2) /* pid=cgroup id, per-cpu mode only */
573
574 #ifdef __KERNEL__
575 /*
576  * Kernel-internal data types and definitions:
577  */
578
579 #ifdef CONFIG_PERF_EVENTS
580 # include <linux/cgroup.h>
581 # include <asm/perf_event.h>
582 # include <asm/local64.h>
583 #endif
584
585 struct perf_guest_info_callbacks {
586         int                             (*is_in_guest)(void);
587         int                             (*is_user_mode)(void);
588         unsigned long                   (*get_guest_ip)(void);
589 };
590
591 #ifdef CONFIG_HAVE_HW_BREAKPOINT
592 #include <asm/hw_breakpoint.h>
593 #endif
594
595 #include <linux/list.h>
596 #include <linux/mutex.h>
597 #include <linux/rculist.h>
598 #include <linux/rcupdate.h>
599 #include <linux/spinlock.h>
600 #include <linux/hrtimer.h>
601 #include <linux/fs.h>
602 #include <linux/pid_namespace.h>
603 #include <linux/workqueue.h>
604 #include <linux/ftrace.h>
605 #include <linux/cpu.h>
606 #include <linux/irq_work.h>
607 #include <linux/static_key.h>
608 #include <linux/atomic.h>
609 #include <linux/sysfs.h>
610 #include <asm/local.h>
611
612 #define PERF_MAX_STACK_DEPTH            255
613
614 struct perf_callchain_entry {
615         __u64                           nr;
616         __u64                           ip[PERF_MAX_STACK_DEPTH];
617 };
618
619 struct perf_raw_record {
620         u32                             size;
621         void                            *data;
622 };
623
624 /*
625  * single taken branch record layout:
626  *
627  *      from: source instruction (may not always be a branch insn)
628  *        to: branch target
629  *   mispred: branch target was mispredicted
630  * predicted: branch target was predicted
631  *
632  * support for mispred, predicted is optional. In case it
633  * is not supported mispred = predicted = 0.
634  */
635 struct perf_branch_entry {
636         __u64   from;
637         __u64   to;
638         __u64   mispred:1,  /* target mispredicted */
639                 predicted:1,/* target predicted */
640                 reserved:62;
641 };
642
643 /*
644  * branch stack layout:
645  *  nr: number of taken branches stored in entries[]
646  *
647  * Note that nr can vary from sample to sample
648  * branches (to, from) are stored from most recent
649  * to least recent, i.e., entries[0] contains the most
650  * recent branch.
651  */
652 struct perf_branch_stack {
653         __u64                           nr;
654         struct perf_branch_entry        entries[0];
655 };
656
657 struct task_struct;
658
659 /*
660  * extra PMU register associated with an event
661  */
662 struct hw_perf_event_extra {
663         u64             config; /* register value */
664         unsigned int    reg;    /* register address or index */
665         int             alloc;  /* extra register already allocated */
666         int             idx;    /* index in shared_regs->regs[] */
667 };
668
669 /**
670  * struct hw_perf_event - performance event hardware details:
671  */
672 struct hw_perf_event {
673 #ifdef CONFIG_PERF_EVENTS
674         union {
675                 struct { /* hardware */
676                         u64             config;
677                         u64             last_tag;
678                         unsigned long   config_base;
679                         unsigned long   event_base;
680                         int             idx;
681                         int             last_cpu;
682
683                         struct hw_perf_event_extra extra_reg;
684                         struct hw_perf_event_extra branch_reg;
685                 };
686                 struct { /* software */
687                         struct hrtimer  hrtimer;
688                 };
689 #ifdef CONFIG_HAVE_HW_BREAKPOINT
690                 struct { /* breakpoint */
691                         struct arch_hw_breakpoint       info;
692                         struct list_head                bp_list;
693                         /*
694                          * Crufty hack to avoid the chicken and egg
695                          * problem hw_breakpoint has with context
696                          * creation and event initalization.
697                          */
698                         struct task_struct              *bp_target;
699                 };
700 #endif
701         };
702         int                             state;
703         local64_t                       prev_count;
704         u64                             sample_period;
705         u64                             last_period;
706         local64_t                       period_left;
707         u64                             interrupts_seq;
708         u64                             interrupts;
709
710         u64                             freq_time_stamp;
711         u64                             freq_count_stamp;
712 #endif
713 };
714
715 /*
716  * hw_perf_event::state flags
717  */
718 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
719 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
720 #define PERF_HES_ARCH           0x04
721
722 struct perf_event;
723
724 /*
725  * Common implementation detail of pmu::{start,commit,cancel}_txn
726  */
727 #define PERF_EVENT_TXN 0x1
728
729 /**
730  * struct pmu - generic performance monitoring unit
731  */
732 struct pmu {
733         struct list_head                entry;
734
735         struct device                   *dev;
736         const struct attribute_group    **attr_groups;
737         char                            *name;
738         int                             type;
739
740         int * __percpu                  pmu_disable_count;
741         struct perf_cpu_context * __percpu pmu_cpu_context;
742         int                             task_ctx_nr;
743
744         /*
745          * Fully disable/enable this PMU, can be used to protect from the PMI
746          * as well as for lazy/batch writing of the MSRs.
747          */
748         void (*pmu_enable)              (struct pmu *pmu); /* optional */
749         void (*pmu_disable)             (struct pmu *pmu); /* optional */
750
751         /*
752          * Try and initialize the event for this PMU.
753          * Should return -ENOENT when the @event doesn't match this PMU.
754          */
755         int (*event_init)               (struct perf_event *event);
756
757 #define PERF_EF_START   0x01            /* start the counter when adding    */
758 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
759 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
760
761         /*
762          * Adds/Removes a counter to/from the PMU, can be done inside
763          * a transaction, see the ->*_txn() methods.
764          */
765         int  (*add)                     (struct perf_event *event, int flags);
766         void (*del)                     (struct perf_event *event, int flags);
767
768         /*
769          * Starts/Stops a counter present on the PMU. The PMI handler
770          * should stop the counter when perf_event_overflow() returns
771          * !0. ->start() will be used to continue.
772          */
773         void (*start)                   (struct perf_event *event, int flags);
774         void (*stop)                    (struct perf_event *event, int flags);
775
776         /*
777          * Updates the counter value of the event.
778          */
779         void (*read)                    (struct perf_event *event);
780
781         /*
782          * Group events scheduling is treated as a transaction, add
783          * group events as a whole and perform one schedulability test.
784          * If the test fails, roll back the whole group
785          *
786          * Start the transaction, after this ->add() doesn't need to
787          * do schedulability tests.
788          */
789         void (*start_txn)               (struct pmu *pmu); /* optional */
790         /*
791          * If ->start_txn() disabled the ->add() schedulability test
792          * then ->commit_txn() is required to perform one. On success
793          * the transaction is closed. On error the transaction is kept
794          * open until ->cancel_txn() is called.
795          */
796         int  (*commit_txn)              (struct pmu *pmu); /* optional */
797         /*
798          * Will cancel the transaction, assumes ->del() is called
799          * for each successful ->add() during the transaction.
800          */
801         void (*cancel_txn)              (struct pmu *pmu); /* optional */
802
803         /*
804          * Will return the value for perf_event_mmap_page::index for this event,
805          * if no implementation is provided it will default to: event->hw.idx + 1.
806          */
807         int (*event_idx)                (struct perf_event *event); /*optional */
808
809         /*
810          * flush branch stack on context-switches (needed in cpu-wide mode)
811          */
812         void (*flush_branch_stack)      (void);
813 };
814
815 /**
816  * enum perf_event_active_state - the states of a event
817  */
818 enum perf_event_active_state {
819         PERF_EVENT_STATE_ERROR          = -2,
820         PERF_EVENT_STATE_OFF            = -1,
821         PERF_EVENT_STATE_INACTIVE       =  0,
822         PERF_EVENT_STATE_ACTIVE         =  1,
823 };
824
825 struct file;
826 struct perf_sample_data;
827
828 typedef void (*perf_overflow_handler_t)(struct perf_event *,
829                                         struct perf_sample_data *,
830                                         struct pt_regs *regs);
831
832 enum perf_group_flag {
833         PERF_GROUP_SOFTWARE             = 0x1,
834 };
835
836 #define SWEVENT_HLIST_BITS              8
837 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
838
839 struct swevent_hlist {
840         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
841         struct rcu_head                 rcu_head;
842 };
843
844 #define PERF_ATTACH_CONTEXT     0x01
845 #define PERF_ATTACH_GROUP       0x02
846 #define PERF_ATTACH_TASK        0x04
847
848 #ifdef CONFIG_CGROUP_PERF
849 /*
850  * perf_cgroup_info keeps track of time_enabled for a cgroup.
851  * This is a per-cpu dynamically allocated data structure.
852  */
853 struct perf_cgroup_info {
854         u64                             time;
855         u64                             timestamp;
856 };
857
858 struct perf_cgroup {
859         struct                          cgroup_subsys_state css;
860         struct                          perf_cgroup_info *info; /* timing info, one per cpu */
861 };
862 #endif
863
864 struct ring_buffer;
865
866 /**
867  * struct perf_event - performance event kernel representation:
868  */
869 struct perf_event {
870 #ifdef CONFIG_PERF_EVENTS
871         struct list_head                group_entry;
872         struct list_head                event_entry;
873         struct list_head                sibling_list;
874         struct hlist_node               hlist_entry;
875         int                             nr_siblings;
876         int                             group_flags;
877         struct perf_event               *group_leader;
878         struct pmu                      *pmu;
879
880         enum perf_event_active_state    state;
881         unsigned int                    attach_state;
882         local64_t                       count;
883         atomic64_t                      child_count;
884
885         /*
886          * These are the total time in nanoseconds that the event
887          * has been enabled (i.e. eligible to run, and the task has
888          * been scheduled in, if this is a per-task event)
889          * and running (scheduled onto the CPU), respectively.
890          *
891          * They are computed from tstamp_enabled, tstamp_running and
892          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
893          */
894         u64                             total_time_enabled;
895         u64                             total_time_running;
896
897         /*
898          * These are timestamps used for computing total_time_enabled
899          * and total_time_running when the event is in INACTIVE or
900          * ACTIVE state, measured in nanoseconds from an arbitrary point
901          * in time.
902          * tstamp_enabled: the notional time when the event was enabled
903          * tstamp_running: the notional time when the event was scheduled on
904          * tstamp_stopped: in INACTIVE state, the notional time when the
905          *      event was scheduled off.
906          */
907         u64                             tstamp_enabled;
908         u64                             tstamp_running;
909         u64                             tstamp_stopped;
910
911         /*
912          * timestamp shadows the actual context timing but it can
913          * be safely used in NMI interrupt context. It reflects the
914          * context time as it was when the event was last scheduled in.
915          *
916          * ctx_time already accounts for ctx->timestamp. Therefore to
917          * compute ctx_time for a sample, simply add perf_clock().
918          */
919         u64                             shadow_ctx_time;
920
921         struct perf_event_attr          attr;
922         u16                             header_size;
923         u16                             id_header_size;
924         u16                             read_size;
925         struct hw_perf_event            hw;
926
927         struct perf_event_context       *ctx;
928         struct file                     *filp;
929
930         /*
931          * These accumulate total time (in nanoseconds) that children
932          * events have been enabled and running, respectively.
933          */
934         atomic64_t                      child_total_time_enabled;
935         atomic64_t                      child_total_time_running;
936
937         /*
938          * Protect attach/detach and child_list:
939          */
940         struct mutex                    child_mutex;
941         struct list_head                child_list;
942         struct perf_event               *parent;
943
944         int                             oncpu;
945         int                             cpu;
946
947         struct list_head                owner_entry;
948         struct task_struct              *owner;
949
950         /* mmap bits */
951         struct mutex                    mmap_mutex;
952         atomic_t                        mmap_count;
953         int                             mmap_locked;
954         struct user_struct              *mmap_user;
955         struct ring_buffer              *rb;
956         struct list_head                rb_entry;
957
958         /* poll related */
959         wait_queue_head_t               waitq;
960         struct fasync_struct            *fasync;
961
962         /* delayed work for NMIs and such */
963         int                             pending_wakeup;
964         int                             pending_kill;
965         int                             pending_disable;
966         struct irq_work                 pending;
967
968         atomic_t                        event_limit;
969
970         void (*destroy)(struct perf_event *);
971         struct rcu_head                 rcu_head;
972
973         struct pid_namespace            *ns;
974         u64                             id;
975
976         perf_overflow_handler_t         overflow_handler;
977         void                            *overflow_handler_context;
978
979 #ifdef CONFIG_EVENT_TRACING
980         struct ftrace_event_call        *tp_event;
981         struct event_filter             *filter;
982 #ifdef CONFIG_FUNCTION_TRACER
983         struct ftrace_ops               ftrace_ops;
984 #endif
985 #endif
986
987 #ifdef CONFIG_CGROUP_PERF
988         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
989         int                             cgrp_defer_enabled;
990 #endif
991
992 #endif /* CONFIG_PERF_EVENTS */
993 };
994
995 enum perf_event_context_type {
996         task_context,
997         cpu_context,
998 };
999
1000 /**
1001  * struct perf_event_context - event context structure
1002  *
1003  * Used as a container for task events and CPU events as well:
1004  */
1005 struct perf_event_context {
1006         struct pmu                      *pmu;
1007         enum perf_event_context_type    type;
1008         /*
1009          * Protect the states of the events in the list,
1010          * nr_active, and the list:
1011          */
1012         raw_spinlock_t                  lock;
1013         /*
1014          * Protect the list of events.  Locking either mutex or lock
1015          * is sufficient to ensure the list doesn't change; to change
1016          * the list you need to lock both the mutex and the spinlock.
1017          */
1018         struct mutex                    mutex;
1019
1020         struct list_head                pinned_groups;
1021         struct list_head                flexible_groups;
1022         struct list_head                event_list;
1023         int                             nr_events;
1024         int                             nr_active;
1025         int                             is_active;
1026         int                             nr_stat;
1027         int                             nr_freq;
1028         int                             rotate_disable;
1029         atomic_t                        refcount;
1030         struct task_struct              *task;
1031
1032         /*
1033          * Context clock, runs when context enabled.
1034          */
1035         u64                             time;
1036         u64                             timestamp;
1037
1038         /*
1039          * These fields let us detect when two contexts have both
1040          * been cloned (inherited) from a common ancestor.
1041          */
1042         struct perf_event_context       *parent_ctx;
1043         u64                             parent_gen;
1044         u64                             generation;
1045         int                             pin_count;
1046         int                             nr_cgroups;      /* cgroup evts */
1047         int                             nr_branch_stack; /* branch_stack evt */
1048         struct rcu_head                 rcu_head;
1049 };
1050
1051 /*
1052  * Number of contexts where an event can trigger:
1053  *      task, softirq, hardirq, nmi.
1054  */
1055 #define PERF_NR_CONTEXTS        4
1056
1057 /**
1058  * struct perf_event_cpu_context - per cpu event context structure
1059  */
1060 struct perf_cpu_context {
1061         struct perf_event_context       ctx;
1062         struct perf_event_context       *task_ctx;
1063         int                             active_oncpu;
1064         int                             exclusive;
1065         struct list_head                rotation_list;
1066         int                             jiffies_interval;
1067         struct pmu                      *active_pmu;
1068         struct perf_cgroup              *cgrp;
1069 };
1070
1071 struct perf_output_handle {
1072         struct perf_event               *event;
1073         struct ring_buffer              *rb;
1074         unsigned long                   wakeup;
1075         unsigned long                   size;
1076         void                            *addr;
1077         int                             page;
1078 };
1079
1080 #ifdef CONFIG_PERF_EVENTS
1081
1082 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1083 extern void perf_pmu_unregister(struct pmu *pmu);
1084
1085 extern int perf_num_counters(void);
1086 extern const char *perf_pmu_name(void);
1087 extern void __perf_event_task_sched_in(struct task_struct *prev,
1088                                        struct task_struct *task);
1089 extern void __perf_event_task_sched_out(struct task_struct *prev,
1090                                         struct task_struct *next);
1091 extern int perf_event_init_task(struct task_struct *child);
1092 extern void perf_event_exit_task(struct task_struct *child);
1093 extern void perf_event_free_task(struct task_struct *task);
1094 extern void perf_event_delayed_put(struct task_struct *task);
1095 extern void perf_event_print_debug(void);
1096 extern void perf_pmu_disable(struct pmu *pmu);
1097 extern void perf_pmu_enable(struct pmu *pmu);
1098 extern int perf_event_task_disable(void);
1099 extern int perf_event_task_enable(void);
1100 extern int perf_event_refresh(struct perf_event *event, int refresh);
1101 extern void perf_event_update_userpage(struct perf_event *event);
1102 extern int perf_event_release_kernel(struct perf_event *event);
1103 extern struct perf_event *
1104 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1105                                 int cpu,
1106                                 struct task_struct *task,
1107                                 perf_overflow_handler_t callback,
1108                                 void *context);
1109 extern u64 perf_event_read_value(struct perf_event *event,
1110                                  u64 *enabled, u64 *running);
1111
1112
1113 struct perf_sample_data {
1114         u64                             type;
1115
1116         u64                             ip;
1117         struct {
1118                 u32     pid;
1119                 u32     tid;
1120         }                               tid_entry;
1121         u64                             time;
1122         u64                             addr;
1123         u64                             id;
1124         u64                             stream_id;
1125         struct {
1126                 u32     cpu;
1127                 u32     reserved;
1128         }                               cpu_entry;
1129         u64                             period;
1130         struct perf_callchain_entry     *callchain;
1131         struct perf_raw_record          *raw;
1132         struct perf_branch_stack        *br_stack;
1133 };
1134
1135 static inline void perf_sample_data_init(struct perf_sample_data *data,
1136                                          u64 addr, u64 period)
1137 {
1138         /* remaining struct members initialized in perf_prepare_sample() */
1139         data->addr = addr;
1140         data->raw  = NULL;
1141         data->br_stack = NULL;
1142         data->period    = period;
1143 }
1144
1145 extern void perf_output_sample(struct perf_output_handle *handle,
1146                                struct perf_event_header *header,
1147                                struct perf_sample_data *data,
1148                                struct perf_event *event);
1149 extern void perf_prepare_sample(struct perf_event_header *header,
1150                                 struct perf_sample_data *data,
1151                                 struct perf_event *event,
1152                                 struct pt_regs *regs);
1153
1154 extern int perf_event_overflow(struct perf_event *event,
1155                                  struct perf_sample_data *data,
1156                                  struct pt_regs *regs);
1157
1158 static inline bool is_sampling_event(struct perf_event *event)
1159 {
1160         return event->attr.sample_period != 0;
1161 }
1162
1163 /*
1164  * Return 1 for a software event, 0 for a hardware event
1165  */
1166 static inline int is_software_event(struct perf_event *event)
1167 {
1168         return event->pmu->task_ctx_nr == perf_sw_context;
1169 }
1170
1171 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1172
1173 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1174
1175 #ifndef perf_arch_fetch_caller_regs
1176 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1177 #endif
1178
1179 /*
1180  * Take a snapshot of the regs. Skip ip and frame pointer to
1181  * the nth caller. We only need a few of the regs:
1182  * - ip for PERF_SAMPLE_IP
1183  * - cs for user_mode() tests
1184  * - bp for callchains
1185  * - eflags, for future purposes, just in case
1186  */
1187 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1188 {
1189         memset(regs, 0, sizeof(*regs));
1190
1191         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1192 }
1193
1194 static __always_inline void
1195 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1196 {
1197         struct pt_regs hot_regs;
1198
1199         if (static_key_false(&perf_swevent_enabled[event_id])) {
1200                 if (!regs) {
1201                         perf_fetch_caller_regs(&hot_regs);
1202                         regs = &hot_regs;
1203                 }
1204                 __perf_sw_event(event_id, nr, regs, addr);
1205         }
1206 }
1207
1208 extern struct static_key_deferred perf_sched_events;
1209
1210 static inline void perf_event_task_sched_in(struct task_struct *prev,
1211                                             struct task_struct *task)
1212 {
1213         if (static_key_false(&perf_sched_events.key))
1214                 __perf_event_task_sched_in(prev, task);
1215 }
1216
1217 static inline void perf_event_task_sched_out(struct task_struct *prev,
1218                                              struct task_struct *next)
1219 {
1220         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1221
1222         if (static_key_false(&perf_sched_events.key))
1223                 __perf_event_task_sched_out(prev, next);
1224 }
1225
1226 extern void perf_event_mmap(struct vm_area_struct *vma);
1227 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1228 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1229 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1230
1231 extern void perf_event_comm(struct task_struct *tsk);
1232 extern void perf_event_fork(struct task_struct *tsk);
1233
1234 /* Callchains */
1235 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1236
1237 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1238 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1239
1240 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1241 {
1242         if (entry->nr < PERF_MAX_STACK_DEPTH)
1243                 entry->ip[entry->nr++] = ip;
1244 }
1245
1246 extern int sysctl_perf_event_paranoid;
1247 extern int sysctl_perf_event_mlock;
1248 extern int sysctl_perf_event_sample_rate;
1249
1250 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1251                 void __user *buffer, size_t *lenp,
1252                 loff_t *ppos);
1253
1254 static inline bool perf_paranoid_tracepoint_raw(void)
1255 {
1256         return sysctl_perf_event_paranoid > -1;
1257 }
1258
1259 static inline bool perf_paranoid_cpu(void)
1260 {
1261         return sysctl_perf_event_paranoid > 0;
1262 }
1263
1264 static inline bool perf_paranoid_kernel(void)
1265 {
1266         return sysctl_perf_event_paranoid > 1;
1267 }
1268
1269 extern void perf_event_init(void);
1270 extern void perf_tp_event(u64 addr, u64 count, void *record,
1271                           int entry_size, struct pt_regs *regs,
1272                           struct hlist_head *head, int rctx);
1273 extern void perf_bp_event(struct perf_event *event, void *data);
1274
1275 #ifndef perf_misc_flags
1276 # define perf_misc_flags(regs) \
1277                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1278 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1279 #endif
1280
1281 static inline bool has_branch_stack(struct perf_event *event)
1282 {
1283         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1284 }
1285
1286 extern int perf_output_begin(struct perf_output_handle *handle,
1287                              struct perf_event *event, unsigned int size);
1288 extern void perf_output_end(struct perf_output_handle *handle);
1289 extern void perf_output_copy(struct perf_output_handle *handle,
1290                              const void *buf, unsigned int len);
1291 extern int perf_swevent_get_recursion_context(void);
1292 extern void perf_swevent_put_recursion_context(int rctx);
1293 extern void perf_event_enable(struct perf_event *event);
1294 extern void perf_event_disable(struct perf_event *event);
1295 extern void perf_event_task_tick(void);
1296 #else
1297 static inline void
1298 perf_event_task_sched_in(struct task_struct *prev,
1299                          struct task_struct *task)                      { }
1300 static inline void
1301 perf_event_task_sched_out(struct task_struct *prev,
1302                           struct task_struct *next)                     { }
1303 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1304 static inline void perf_event_exit_task(struct task_struct *child)      { }
1305 static inline void perf_event_free_task(struct task_struct *task)       { }
1306 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1307 static inline void perf_event_print_debug(void)                         { }
1308 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1309 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1310 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1311 {
1312         return -EINVAL;
1313 }
1314
1315 static inline void
1316 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1317 static inline void
1318 perf_bp_event(struct perf_event *event, void *data)                     { }
1319
1320 static inline int perf_register_guest_info_callbacks
1321 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1322 static inline int perf_unregister_guest_info_callbacks
1323 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1324
1325 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1326 static inline void perf_event_comm(struct task_struct *tsk)             { }
1327 static inline void perf_event_fork(struct task_struct *tsk)             { }
1328 static inline void perf_event_init(void)                                { }
1329 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1330 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1331 static inline void perf_event_enable(struct perf_event *event)          { }
1332 static inline void perf_event_disable(struct perf_event *event)         { }
1333 static inline void perf_event_task_tick(void)                           { }
1334 #endif
1335
1336 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1337
1338 /*
1339  * This has to have a higher priority than migration_notifier in sched.c.
1340  */
1341 #define perf_cpu_notifier(fn)                                           \
1342 do {                                                                    \
1343         static struct notifier_block fn##_nb __cpuinitdata =            \
1344                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
1345         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
1346                 (void *)(unsigned long)smp_processor_id());             \
1347         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
1348                 (void *)(unsigned long)smp_processor_id());             \
1349         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
1350                 (void *)(unsigned long)smp_processor_id());             \
1351         register_cpu_notifier(&fn##_nb);                                \
1352 } while (0)
1353
1354
1355 #define PMU_FORMAT_ATTR(_name, _format)                                 \
1356 static ssize_t                                                          \
1357 _name##_show(struct device *dev,                                        \
1358                                struct device_attribute *attr,           \
1359                                char *page)                              \
1360 {                                                                       \
1361         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1362         return sprintf(page, _format "\n");                             \
1363 }                                                                       \
1364                                                                         \
1365 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1366
1367 #endif /* __KERNEL__ */
1368 #endif /* _LINUX_PERF_EVENT_H */