Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / include / linux / mmzone.h
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coalesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37
38 enum {
39         MIGRATE_UNMOVABLE,
40         MIGRATE_RECLAIMABLE,
41         MIGRATE_MOVABLE,
42         MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
43         MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44 #ifdef CONFIG_CMA
45         /*
46          * MIGRATE_CMA migration type is designed to mimic the way
47          * ZONE_MOVABLE works.  Only movable pages can be allocated
48          * from MIGRATE_CMA pageblocks and page allocator never
49          * implicitly change migration type of MIGRATE_CMA pageblock.
50          *
51          * The way to use it is to change migratetype of a range of
52          * pageblocks to MIGRATE_CMA which can be done by
53          * __free_pageblock_cma() function.  What is important though
54          * is that a range of pageblocks must be aligned to
55          * MAX_ORDER_NR_PAGES should biggest page be bigger then
56          * a single pageblock.
57          */
58         MIGRATE_CMA,
59 #endif
60         MIGRATE_ISOLATE,        /* can't allocate from here */
61         MIGRATE_TYPES
62 };
63
64 #ifdef CONFIG_CMA
65 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66 #  define cma_wmark_pages(zone) zone->min_cma_pages
67 #else
68 #  define is_migrate_cma(migratetype) false
69 #  define cma_wmark_pages(zone) 0
70 #endif
71
72 #define for_each_migratetype_order(order, type) \
73         for (order = 0; order < MAX_ORDER; order++) \
74                 for (type = 0; type < MIGRATE_TYPES; type++)
75
76 extern int page_group_by_mobility_disabled;
77
78 static inline int get_pageblock_migratetype(struct page *page)
79 {
80         return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81 }
82
83 struct free_area {
84         struct list_head        free_list[MIGRATE_TYPES];
85         unsigned long           nr_free;
86 };
87
88 struct pglist_data;
89
90 /*
91  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92  * So add a wild amount of padding here to ensure that they fall into separate
93  * cachelines.  There are very few zone structures in the machine, so space
94  * consumption is not a concern here.
95  */
96 #if defined(CONFIG_SMP)
97 struct zone_padding {
98         char x[0];
99 } ____cacheline_internodealigned_in_smp;
100 #define ZONE_PADDING(name)      struct zone_padding name;
101 #else
102 #define ZONE_PADDING(name)
103 #endif
104
105 enum zone_stat_item {
106         /* First 128 byte cacheline (assuming 64 bit words) */
107         NR_FREE_PAGES,
108         NR_LRU_BASE,
109         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
111         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
112         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
113         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
114         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
115         NR_ANON_PAGES,  /* Mapped anonymous pages */
116         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
117                            only modified from process context */
118         NR_FILE_PAGES,
119         NR_FILE_DIRTY,
120         NR_WRITEBACK,
121         NR_SLAB_RECLAIMABLE,
122         NR_SLAB_UNRECLAIMABLE,
123         NR_PAGETABLE,           /* used for pagetables */
124         NR_KERNEL_STACK,
125         /* Second 128 byte cacheline */
126         NR_UNSTABLE_NFS,        /* NFS unstable pages */
127         NR_BOUNCE,
128         NR_VMSCAN_WRITE,
129         NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
130         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
131         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
132         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
133         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
134         NR_DIRTIED,             /* page dirtyings since bootup */
135         NR_WRITTEN,             /* page writings since bootup */
136 #ifdef CONFIG_NUMA
137         NUMA_HIT,               /* allocated in intended node */
138         NUMA_MISS,              /* allocated in non intended node */
139         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
140         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
141         NUMA_LOCAL,             /* allocation from local node */
142         NUMA_OTHER,             /* allocation from other node */
143 #endif
144         NR_ANON_TRANSPARENT_HUGEPAGES,
145         NR_VM_ZONE_STAT_ITEMS };
146
147 /*
148  * We do arithmetic on the LRU lists in various places in the code,
149  * so it is important to keep the active lists LRU_ACTIVE higher in
150  * the array than the corresponding inactive lists, and to keep
151  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
152  *
153  * This has to be kept in sync with the statistics in zone_stat_item
154  * above and the descriptions in vmstat_text in mm/vmstat.c
155  */
156 #define LRU_BASE 0
157 #define LRU_ACTIVE 1
158 #define LRU_FILE 2
159
160 enum lru_list {
161         LRU_INACTIVE_ANON = LRU_BASE,
162         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
163         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
164         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
165         LRU_UNEVICTABLE,
166         NR_LRU_LISTS
167 };
168
169 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
170
171 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
172
173 static inline int is_file_lru(enum lru_list lru)
174 {
175         return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
176 }
177
178 static inline int is_active_lru(enum lru_list lru)
179 {
180         return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
181 }
182
183 static inline int is_unevictable_lru(enum lru_list lru)
184 {
185         return (lru == LRU_UNEVICTABLE);
186 }
187
188 struct zone_reclaim_stat {
189         /*
190          * The pageout code in vmscan.c keeps track of how many of the
191          * mem/swap backed and file backed pages are refeferenced.
192          * The higher the rotated/scanned ratio, the more valuable
193          * that cache is.
194          *
195          * The anon LRU stats live in [0], file LRU stats in [1]
196          */
197         unsigned long           recent_rotated[2];
198         unsigned long           recent_scanned[2];
199 };
200
201 struct lruvec {
202         struct list_head lists[NR_LRU_LISTS];
203         struct zone_reclaim_stat reclaim_stat;
204 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
205         struct zone *zone;
206 #endif
207 };
208
209 /* Mask used at gathering information at once (see memcontrol.c) */
210 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
211 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
212 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
213 #define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
214
215 /* Isolate clean file */
216 #define ISOLATE_CLEAN           ((__force isolate_mode_t)0x1)
217 /* Isolate unmapped file */
218 #define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
219 /* Isolate for asynchronous migration */
220 #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
221
222 /* LRU Isolation modes. */
223 typedef unsigned __bitwise__ isolate_mode_t;
224
225 enum zone_watermarks {
226         WMARK_MIN,
227         WMARK_LOW,
228         WMARK_HIGH,
229         NR_WMARK
230 };
231
232 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
233 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
234 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
235
236 struct per_cpu_pages {
237         int count;              /* number of pages in the list */
238         int high;               /* high watermark, emptying needed */
239         int batch;              /* chunk size for buddy add/remove */
240
241         /* Lists of pages, one per migrate type stored on the pcp-lists */
242         struct list_head lists[MIGRATE_PCPTYPES];
243 };
244
245 struct per_cpu_pageset {
246         struct per_cpu_pages pcp;
247 #ifdef CONFIG_NUMA
248         s8 expire;
249 #endif
250 #ifdef CONFIG_SMP
251         s8 stat_threshold;
252         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
253 #endif
254 };
255
256 #endif /* !__GENERATING_BOUNDS.H */
257
258 enum zone_type {
259 #ifdef CONFIG_ZONE_DMA
260         /*
261          * ZONE_DMA is used when there are devices that are not able
262          * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
263          * carve out the portion of memory that is needed for these devices.
264          * The range is arch specific.
265          *
266          * Some examples
267          *
268          * Architecture         Limit
269          * ---------------------------
270          * parisc, ia64, sparc  <4G
271          * s390                 <2G
272          * arm                  Various
273          * alpha                Unlimited or 0-16MB.
274          *
275          * i386, x86_64 and multiple other arches
276          *                      <16M.
277          */
278         ZONE_DMA,
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281         /*
282          * x86_64 needs two ZONE_DMAs because it supports devices that are
283          * only able to do DMA to the lower 16M but also 32 bit devices that
284          * can only do DMA areas below 4G.
285          */
286         ZONE_DMA32,
287 #endif
288         /*
289          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
290          * performed on pages in ZONE_NORMAL if the DMA devices support
291          * transfers to all addressable memory.
292          */
293         ZONE_NORMAL,
294 #ifdef CONFIG_HIGHMEM
295         /*
296          * A memory area that is only addressable by the kernel through
297          * mapping portions into its own address space. This is for example
298          * used by i386 to allow the kernel to address the memory beyond
299          * 900MB. The kernel will set up special mappings (page
300          * table entries on i386) for each page that the kernel needs to
301          * access.
302          */
303         ZONE_HIGHMEM,
304 #endif
305         ZONE_MOVABLE,
306         __MAX_NR_ZONES
307 };
308
309 #ifndef __GENERATING_BOUNDS_H
310
311 /*
312  * When a memory allocation must conform to specific limitations (such
313  * as being suitable for DMA) the caller will pass in hints to the
314  * allocator in the gfp_mask, in the zone modifier bits.  These bits
315  * are used to select a priority ordered list of memory zones which
316  * match the requested limits. See gfp_zone() in include/linux/gfp.h
317  */
318
319 #if MAX_NR_ZONES < 2
320 #define ZONES_SHIFT 0
321 #elif MAX_NR_ZONES <= 2
322 #define ZONES_SHIFT 1
323 #elif MAX_NR_ZONES <= 4
324 #define ZONES_SHIFT 2
325 #else
326 #error ZONES_SHIFT -- too many zones configured adjust calculation
327 #endif
328
329 struct zone {
330         /* Fields commonly accessed by the page allocator */
331
332         /* zone watermarks, access with *_wmark_pages(zone) macros */
333         unsigned long watermark[NR_WMARK];
334
335         /*
336          * When free pages are below this point, additional steps are taken
337          * when reading the number of free pages to avoid per-cpu counter
338          * drift allowing watermarks to be breached
339          */
340         unsigned long percpu_drift_mark;
341
342         /*
343          * We don't know if the memory that we're going to allocate will be freeable
344          * or/and it will be released eventually, so to avoid totally wasting several
345          * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346          * to run OOM on the lower zones despite there's tons of freeable ram
347          * on the higher zones). This array is recalculated at runtime if the
348          * sysctl_lowmem_reserve_ratio sysctl changes.
349          */
350         unsigned long           lowmem_reserve[MAX_NR_ZONES];
351
352         /*
353          * This is a per-zone reserve of pages that should not be
354          * considered dirtyable memory.
355          */
356         unsigned long           dirty_balance_reserve;
357
358 #ifdef CONFIG_NUMA
359         int node;
360         /*
361          * zone reclaim becomes active if more unmapped pages exist.
362          */
363         unsigned long           min_unmapped_pages;
364         unsigned long           min_slab_pages;
365 #endif
366         struct per_cpu_pageset __percpu *pageset;
367         /*
368          * free areas of different sizes
369          */
370         spinlock_t              lock;
371         int                     all_unreclaimable; /* All pages pinned */
372 #ifdef CONFIG_MEMORY_HOTPLUG
373         /* see spanned/present_pages for more description */
374         seqlock_t               span_seqlock;
375 #endif
376 #ifdef CONFIG_CMA
377         /*
378          * CMA needs to increase watermark levels during the allocation
379          * process to make sure that the system is not starved.
380          */
381         unsigned long           min_cma_pages;
382 #endif
383         struct free_area        free_area[MAX_ORDER];
384
385 #ifndef CONFIG_SPARSEMEM
386         /*
387          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
388          * In SPARSEMEM, this map is stored in struct mem_section
389          */
390         unsigned long           *pageblock_flags;
391 #endif /* CONFIG_SPARSEMEM */
392
393 #ifdef CONFIG_COMPACTION
394         /*
395          * On compaction failure, 1<<compact_defer_shift compactions
396          * are skipped before trying again. The number attempted since
397          * last failure is tracked with compact_considered.
398          */
399         unsigned int            compact_considered;
400         unsigned int            compact_defer_shift;
401         int                     compact_order_failed;
402 #endif
403
404         ZONE_PADDING(_pad1_)
405
406         /* Fields commonly accessed by the page reclaim scanner */
407         spinlock_t              lru_lock;
408         struct lruvec           lruvec;
409
410         unsigned long           pages_scanned;     /* since last reclaim */
411         unsigned long           flags;             /* zone flags, see below */
412
413         /* Zone statistics */
414         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
415
416         /*
417          * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
418          * this zone's LRU.  Maintained by the pageout code.
419          */
420         unsigned int inactive_ratio;
421
422
423         ZONE_PADDING(_pad2_)
424         /* Rarely used or read-mostly fields */
425
426         /*
427          * wait_table           -- the array holding the hash table
428          * wait_table_hash_nr_entries   -- the size of the hash table array
429          * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
430          *
431          * The purpose of all these is to keep track of the people
432          * waiting for a page to become available and make them
433          * runnable again when possible. The trouble is that this
434          * consumes a lot of space, especially when so few things
435          * wait on pages at a given time. So instead of using
436          * per-page waitqueues, we use a waitqueue hash table.
437          *
438          * The bucket discipline is to sleep on the same queue when
439          * colliding and wake all in that wait queue when removing.
440          * When something wakes, it must check to be sure its page is
441          * truly available, a la thundering herd. The cost of a
442          * collision is great, but given the expected load of the
443          * table, they should be so rare as to be outweighed by the
444          * benefits from the saved space.
445          *
446          * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
447          * primary users of these fields, and in mm/page_alloc.c
448          * free_area_init_core() performs the initialization of them.
449          */
450         wait_queue_head_t       * wait_table;
451         unsigned long           wait_table_hash_nr_entries;
452         unsigned long           wait_table_bits;
453
454         /*
455          * Discontig memory support fields.
456          */
457         struct pglist_data      *zone_pgdat;
458         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
459         unsigned long           zone_start_pfn;
460
461         /*
462          * zone_start_pfn, spanned_pages and present_pages are all
463          * protected by span_seqlock.  It is a seqlock because it has
464          * to be read outside of zone->lock, and it is done in the main
465          * allocator path.  But, it is written quite infrequently.
466          *
467          * The lock is declared along with zone->lock because it is
468          * frequently read in proximity to zone->lock.  It's good to
469          * give them a chance of being in the same cacheline.
470          */
471         unsigned long           spanned_pages;  /* total size, including holes */
472         unsigned long           present_pages;  /* amount of memory (excluding holes) */
473
474         /*
475          * rarely used fields:
476          */
477         const char              *name;
478 } ____cacheline_internodealigned_in_smp;
479
480 typedef enum {
481         ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
482         ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
483         ZONE_CONGESTED,                 /* zone has many dirty pages backed by
484                                          * a congested BDI
485                                          */
486 } zone_flags_t;
487
488 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
489 {
490         set_bit(flag, &zone->flags);
491 }
492
493 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
494 {
495         return test_and_set_bit(flag, &zone->flags);
496 }
497
498 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
499 {
500         clear_bit(flag, &zone->flags);
501 }
502
503 static inline int zone_is_reclaim_congested(const struct zone *zone)
504 {
505         return test_bit(ZONE_CONGESTED, &zone->flags);
506 }
507
508 static inline int zone_is_reclaim_locked(const struct zone *zone)
509 {
510         return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
511 }
512
513 static inline int zone_is_oom_locked(const struct zone *zone)
514 {
515         return test_bit(ZONE_OOM_LOCKED, &zone->flags);
516 }
517
518 /*
519  * The "priority" of VM scanning is how much of the queues we will scan in one
520  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
521  * queues ("queue_length >> 12") during an aging round.
522  */
523 #define DEF_PRIORITY 12
524
525 /* Maximum number of zones on a zonelist */
526 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
527
528 #ifdef CONFIG_NUMA
529
530 /*
531  * The NUMA zonelists are doubled because we need zonelists that restrict the
532  * allocations to a single node for GFP_THISNODE.
533  *
534  * [0]  : Zonelist with fallback
535  * [1]  : No fallback (GFP_THISNODE)
536  */
537 #define MAX_ZONELISTS 2
538
539
540 /*
541  * We cache key information from each zonelist for smaller cache
542  * footprint when scanning for free pages in get_page_from_freelist().
543  *
544  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
545  *    up short of free memory since the last time (last_fullzone_zap)
546  *    we zero'd fullzones.
547  * 2) The array z_to_n[] maps each zone in the zonelist to its node
548  *    id, so that we can efficiently evaluate whether that node is
549  *    set in the current tasks mems_allowed.
550  *
551  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
552  * indexed by a zones offset in the zonelist zones[] array.
553  *
554  * The get_page_from_freelist() routine does two scans.  During the
555  * first scan, we skip zones whose corresponding bit in 'fullzones'
556  * is set or whose corresponding node in current->mems_allowed (which
557  * comes from cpusets) is not set.  During the second scan, we bypass
558  * this zonelist_cache, to ensure we look methodically at each zone.
559  *
560  * Once per second, we zero out (zap) fullzones, forcing us to
561  * reconsider nodes that might have regained more free memory.
562  * The field last_full_zap is the time we last zapped fullzones.
563  *
564  * This mechanism reduces the amount of time we waste repeatedly
565  * reexaming zones for free memory when they just came up low on
566  * memory momentarilly ago.
567  *
568  * The zonelist_cache struct members logically belong in struct
569  * zonelist.  However, the mempolicy zonelists constructed for
570  * MPOL_BIND are intentionally variable length (and usually much
571  * shorter).  A general purpose mechanism for handling structs with
572  * multiple variable length members is more mechanism than we want
573  * here.  We resort to some special case hackery instead.
574  *
575  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
576  * part because they are shorter), so we put the fixed length stuff
577  * at the front of the zonelist struct, ending in a variable length
578  * zones[], as is needed by MPOL_BIND.
579  *
580  * Then we put the optional zonelist cache on the end of the zonelist
581  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
582  * the fixed length portion at the front of the struct.  This pointer
583  * both enables us to find the zonelist cache, and in the case of
584  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
585  * to know that the zonelist cache is not there.
586  *
587  * The end result is that struct zonelists come in two flavors:
588  *  1) The full, fixed length version, shown below, and
589  *  2) The custom zonelists for MPOL_BIND.
590  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
591  *
592  * Even though there may be multiple CPU cores on a node modifying
593  * fullzones or last_full_zap in the same zonelist_cache at the same
594  * time, we don't lock it.  This is just hint data - if it is wrong now
595  * and then, the allocator will still function, perhaps a bit slower.
596  */
597
598
599 struct zonelist_cache {
600         unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
601         DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
602         unsigned long last_full_zap;            /* when last zap'd (jiffies) */
603 };
604 #else
605 #define MAX_ZONELISTS 1
606 struct zonelist_cache;
607 #endif
608
609 /*
610  * This struct contains information about a zone in a zonelist. It is stored
611  * here to avoid dereferences into large structures and lookups of tables
612  */
613 struct zoneref {
614         struct zone *zone;      /* Pointer to actual zone */
615         int zone_idx;           /* zone_idx(zoneref->zone) */
616 };
617
618 /*
619  * One allocation request operates on a zonelist. A zonelist
620  * is a list of zones, the first one is the 'goal' of the
621  * allocation, the other zones are fallback zones, in decreasing
622  * priority.
623  *
624  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
625  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
626  * *
627  * To speed the reading of the zonelist, the zonerefs contain the zone index
628  * of the entry being read. Helper functions to access information given
629  * a struct zoneref are
630  *
631  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
632  * zonelist_zone_idx()  - Return the index of the zone for an entry
633  * zonelist_node_idx()  - Return the index of the node for an entry
634  */
635 struct zonelist {
636         struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
637         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
638 #ifdef CONFIG_NUMA
639         struct zonelist_cache zlcache;                       // optional ...
640 #endif
641 };
642
643 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
644 struct node_active_region {
645         unsigned long start_pfn;
646         unsigned long end_pfn;
647         int nid;
648 };
649 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
650
651 #ifndef CONFIG_DISCONTIGMEM
652 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
653 extern struct page *mem_map;
654 #endif
655
656 /*
657  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
658  * (mostly NUMA machines?) to denote a higher-level memory zone than the
659  * zone denotes.
660  *
661  * On NUMA machines, each NUMA node would have a pg_data_t to describe
662  * it's memory layout.
663  *
664  * Memory statistics and page replacement data structures are maintained on a
665  * per-zone basis.
666  */
667 struct bootmem_data;
668 typedef struct pglist_data {
669         struct zone node_zones[MAX_NR_ZONES];
670         struct zonelist node_zonelists[MAX_ZONELISTS];
671         int nr_zones;
672 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
673         struct page *node_mem_map;
674 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
675         struct page_cgroup *node_page_cgroup;
676 #endif
677 #endif
678 #ifndef CONFIG_NO_BOOTMEM
679         struct bootmem_data *bdata;
680 #endif
681 #ifdef CONFIG_MEMORY_HOTPLUG
682         /*
683          * Must be held any time you expect node_start_pfn, node_present_pages
684          * or node_spanned_pages stay constant.  Holding this will also
685          * guarantee that any pfn_valid() stays that way.
686          *
687          * Nests above zone->lock and zone->size_seqlock.
688          */
689         spinlock_t node_size_lock;
690 #endif
691         unsigned long node_start_pfn;
692         unsigned long node_present_pages; /* total number of physical pages */
693         unsigned long node_spanned_pages; /* total size of physical page
694                                              range, including holes */
695         int node_id;
696         wait_queue_head_t kswapd_wait;
697         struct task_struct *kswapd;
698         int kswapd_max_order;
699         enum zone_type classzone_idx;
700 } pg_data_t;
701
702 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
703 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
704 #ifdef CONFIG_FLAT_NODE_MEM_MAP
705 #define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
706 #else
707 #define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
708 #endif
709 #define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
710
711 #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
712
713 #define node_end_pfn(nid) ({\
714         pg_data_t *__pgdat = NODE_DATA(nid);\
715         __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
716 })
717
718 #include <linux/memory_hotplug.h>
719
720 extern struct mutex zonelists_mutex;
721 void build_all_zonelists(void *data);
722 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
723 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
724                 int classzone_idx, int alloc_flags);
725 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
726                 int classzone_idx, int alloc_flags);
727 enum memmap_context {
728         MEMMAP_EARLY,
729         MEMMAP_HOTPLUG,
730 };
731 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
732                                      unsigned long size,
733                                      enum memmap_context context);
734
735 extern void lruvec_init(struct lruvec *lruvec, struct zone *zone);
736
737 static inline struct zone *lruvec_zone(struct lruvec *lruvec)
738 {
739 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
740         return lruvec->zone;
741 #else
742         return container_of(lruvec, struct zone, lruvec);
743 #endif
744 }
745
746 #ifdef CONFIG_HAVE_MEMORY_PRESENT
747 void memory_present(int nid, unsigned long start, unsigned long end);
748 #else
749 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
750 #endif
751
752 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
753 int local_memory_node(int node_id);
754 #else
755 static inline int local_memory_node(int node_id) { return node_id; };
756 #endif
757
758 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
759 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
760 #endif
761
762 /*
763  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
764  */
765 #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
766
767 static inline int populated_zone(struct zone *zone)
768 {
769         return (!!zone->present_pages);
770 }
771
772 extern int movable_zone;
773
774 static inline int zone_movable_is_highmem(void)
775 {
776 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
777         return movable_zone == ZONE_HIGHMEM;
778 #else
779         return 0;
780 #endif
781 }
782
783 static inline int is_highmem_idx(enum zone_type idx)
784 {
785 #ifdef CONFIG_HIGHMEM
786         return (idx == ZONE_HIGHMEM ||
787                 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
788 #else
789         return 0;
790 #endif
791 }
792
793 static inline int is_normal_idx(enum zone_type idx)
794 {
795         return (idx == ZONE_NORMAL);
796 }
797
798 /**
799  * is_highmem - helper function to quickly check if a struct zone is a 
800  *              highmem zone or not.  This is an attempt to keep references
801  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
802  * @zone - pointer to struct zone variable
803  */
804 static inline int is_highmem(struct zone *zone)
805 {
806 #ifdef CONFIG_HIGHMEM
807         int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
808         return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
809                (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
810                 zone_movable_is_highmem());
811 #else
812         return 0;
813 #endif
814 }
815
816 static inline int is_normal(struct zone *zone)
817 {
818         return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
819 }
820
821 static inline int is_dma32(struct zone *zone)
822 {
823 #ifdef CONFIG_ZONE_DMA32
824         return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
825 #else
826         return 0;
827 #endif
828 }
829
830 static inline int is_dma(struct zone *zone)
831 {
832 #ifdef CONFIG_ZONE_DMA
833         return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
834 #else
835         return 0;
836 #endif
837 }
838
839 /* These two functions are used to setup the per zone pages min values */
840 struct ctl_table;
841 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
842                                         void __user *, size_t *, loff_t *);
843 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
844 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
845                                         void __user *, size_t *, loff_t *);
846 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
847                                         void __user *, size_t *, loff_t *);
848 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
849                         void __user *, size_t *, loff_t *);
850 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
851                         void __user *, size_t *, loff_t *);
852
853 extern int numa_zonelist_order_handler(struct ctl_table *, int,
854                         void __user *, size_t *, loff_t *);
855 extern char numa_zonelist_order[];
856 #define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
857
858 #ifndef CONFIG_NEED_MULTIPLE_NODES
859
860 extern struct pglist_data contig_page_data;
861 #define NODE_DATA(nid)          (&contig_page_data)
862 #define NODE_MEM_MAP(nid)       mem_map
863
864 #else /* CONFIG_NEED_MULTIPLE_NODES */
865
866 #include <asm/mmzone.h>
867
868 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
869
870 extern struct pglist_data *first_online_pgdat(void);
871 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
872 extern struct zone *next_zone(struct zone *zone);
873
874 /**
875  * for_each_online_pgdat - helper macro to iterate over all online nodes
876  * @pgdat - pointer to a pg_data_t variable
877  */
878 #define for_each_online_pgdat(pgdat)                    \
879         for (pgdat = first_online_pgdat();              \
880              pgdat;                                     \
881              pgdat = next_online_pgdat(pgdat))
882 /**
883  * for_each_zone - helper macro to iterate over all memory zones
884  * @zone - pointer to struct zone variable
885  *
886  * The user only needs to declare the zone variable, for_each_zone
887  * fills it in.
888  */
889 #define for_each_zone(zone)                             \
890         for (zone = (first_online_pgdat())->node_zones; \
891              zone;                                      \
892              zone = next_zone(zone))
893
894 #define for_each_populated_zone(zone)                   \
895         for (zone = (first_online_pgdat())->node_zones; \
896              zone;                                      \
897              zone = next_zone(zone))                    \
898                 if (!populated_zone(zone))              \
899                         ; /* do nothing */              \
900                 else
901
902 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
903 {
904         return zoneref->zone;
905 }
906
907 static inline int zonelist_zone_idx(struct zoneref *zoneref)
908 {
909         return zoneref->zone_idx;
910 }
911
912 static inline int zonelist_node_idx(struct zoneref *zoneref)
913 {
914 #ifdef CONFIG_NUMA
915         /* zone_to_nid not available in this context */
916         return zoneref->zone->node;
917 #else
918         return 0;
919 #endif /* CONFIG_NUMA */
920 }
921
922 /**
923  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
924  * @z - The cursor used as a starting point for the search
925  * @highest_zoneidx - The zone index of the highest zone to return
926  * @nodes - An optional nodemask to filter the zonelist with
927  * @zone - The first suitable zone found is returned via this parameter
928  *
929  * This function returns the next zone at or below a given zone index that is
930  * within the allowed nodemask using a cursor as the starting point for the
931  * search. The zoneref returned is a cursor that represents the current zone
932  * being examined. It should be advanced by one before calling
933  * next_zones_zonelist again.
934  */
935 struct zoneref *next_zones_zonelist(struct zoneref *z,
936                                         enum zone_type highest_zoneidx,
937                                         nodemask_t *nodes,
938                                         struct zone **zone);
939
940 /**
941  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
942  * @zonelist - The zonelist to search for a suitable zone
943  * @highest_zoneidx - The zone index of the highest zone to return
944  * @nodes - An optional nodemask to filter the zonelist with
945  * @zone - The first suitable zone found is returned via this parameter
946  *
947  * This function returns the first zone at or below a given zone index that is
948  * within the allowed nodemask. The zoneref returned is a cursor that can be
949  * used to iterate the zonelist with next_zones_zonelist by advancing it by
950  * one before calling.
951  */
952 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
953                                         enum zone_type highest_zoneidx,
954                                         nodemask_t *nodes,
955                                         struct zone **zone)
956 {
957         return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
958                                                                 zone);
959 }
960
961 /**
962  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
963  * @zone - The current zone in the iterator
964  * @z - The current pointer within zonelist->zones being iterated
965  * @zlist - The zonelist being iterated
966  * @highidx - The zone index of the highest zone to return
967  * @nodemask - Nodemask allowed by the allocator
968  *
969  * This iterator iterates though all zones at or below a given zone index and
970  * within a given nodemask
971  */
972 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
973         for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
974                 zone;                                                   \
975                 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
976
977 /**
978  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
979  * @zone - The current zone in the iterator
980  * @z - The current pointer within zonelist->zones being iterated
981  * @zlist - The zonelist being iterated
982  * @highidx - The zone index of the highest zone to return
983  *
984  * This iterator iterates though all zones at or below a given zone index.
985  */
986 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
987         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
988
989 #ifdef CONFIG_SPARSEMEM
990 #include <asm/sparsemem.h>
991 #endif
992
993 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
994         !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
995 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
996 {
997         return 0;
998 }
999 #endif
1000
1001 #ifdef CONFIG_FLATMEM
1002 #define pfn_to_nid(pfn)         (0)
1003 #endif
1004
1005 #ifdef CONFIG_SPARSEMEM
1006
1007 /*
1008  * SECTION_SHIFT                #bits space required to store a section #
1009  *
1010  * PA_SECTION_SHIFT             physical address to/from section number
1011  * PFN_SECTION_SHIFT            pfn to/from section number
1012  */
1013 #define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1014
1015 #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1016 #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1017
1018 #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1019
1020 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1021 #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1022
1023 #define SECTION_BLOCKFLAGS_BITS \
1024         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1025
1026 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1027 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1028 #endif
1029
1030 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1031 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1032
1033 #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1034 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1035
1036 struct page;
1037 struct page_cgroup;
1038 struct mem_section {
1039         /*
1040          * This is, logically, a pointer to an array of struct
1041          * pages.  However, it is stored with some other magic.
1042          * (see sparse.c::sparse_init_one_section())
1043          *
1044          * Additionally during early boot we encode node id of
1045          * the location of the section here to guide allocation.
1046          * (see sparse.c::memory_present())
1047          *
1048          * Making it a UL at least makes someone do a cast
1049          * before using it wrong.
1050          */
1051         unsigned long section_mem_map;
1052
1053         /* See declaration of similar field in struct zone */
1054         unsigned long *pageblock_flags;
1055 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1056         /*
1057          * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1058          * section. (see memcontrol.h/page_cgroup.h about this.)
1059          */
1060         struct page_cgroup *page_cgroup;
1061         unsigned long pad;
1062 #endif
1063 };
1064
1065 #ifdef CONFIG_SPARSEMEM_EXTREME
1066 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1067 #else
1068 #define SECTIONS_PER_ROOT       1
1069 #endif
1070
1071 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1072 #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1073 #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1074
1075 #ifdef CONFIG_SPARSEMEM_EXTREME
1076 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1077 #else
1078 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1079 #endif
1080
1081 static inline struct mem_section *__nr_to_section(unsigned long nr)
1082 {
1083         if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1084                 return NULL;
1085         return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1086 }
1087 extern int __section_nr(struct mem_section* ms);
1088 extern unsigned long usemap_size(void);
1089
1090 /*
1091  * We use the lower bits of the mem_map pointer to store
1092  * a little bit of information.  There should be at least
1093  * 3 bits here due to 32-bit alignment.
1094  */
1095 #define SECTION_MARKED_PRESENT  (1UL<<0)
1096 #define SECTION_HAS_MEM_MAP     (1UL<<1)
1097 #define SECTION_MAP_LAST_BIT    (1UL<<2)
1098 #define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1099 #define SECTION_NID_SHIFT       2
1100
1101 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1102 {
1103         unsigned long map = section->section_mem_map;
1104         map &= SECTION_MAP_MASK;
1105         return (struct page *)map;
1106 }
1107
1108 static inline int present_section(struct mem_section *section)
1109 {
1110         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1111 }
1112
1113 static inline int present_section_nr(unsigned long nr)
1114 {
1115         return present_section(__nr_to_section(nr));
1116 }
1117
1118 static inline int valid_section(struct mem_section *section)
1119 {
1120         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1121 }
1122
1123 static inline int valid_section_nr(unsigned long nr)
1124 {
1125         return valid_section(__nr_to_section(nr));
1126 }
1127
1128 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1129 {
1130         return __nr_to_section(pfn_to_section_nr(pfn));
1131 }
1132
1133 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1134 static inline int pfn_valid(unsigned long pfn)
1135 {
1136         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1137                 return 0;
1138         return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1139 }
1140 #endif
1141
1142 static inline int pfn_present(unsigned long pfn)
1143 {
1144         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1145                 return 0;
1146         return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1147 }
1148
1149 /*
1150  * These are _only_ used during initialisation, therefore they
1151  * can use __initdata ...  They could have names to indicate
1152  * this restriction.
1153  */
1154 #ifdef CONFIG_NUMA
1155 #define pfn_to_nid(pfn)                                                 \
1156 ({                                                                      \
1157         unsigned long __pfn_to_nid_pfn = (pfn);                         \
1158         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1159 })
1160 #else
1161 #define pfn_to_nid(pfn)         (0)
1162 #endif
1163
1164 #define early_pfn_valid(pfn)    pfn_valid(pfn)
1165 void sparse_init(void);
1166 #else
1167 #define sparse_init()   do {} while (0)
1168 #define sparse_index_init(_sec, _nid)  do {} while (0)
1169 #endif /* CONFIG_SPARSEMEM */
1170
1171 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1172 bool early_pfn_in_nid(unsigned long pfn, int nid);
1173 #else
1174 #define early_pfn_in_nid(pfn, nid)      (1)
1175 #endif
1176
1177 #ifndef early_pfn_valid
1178 #define early_pfn_valid(pfn)    (1)
1179 #endif
1180
1181 void memory_present(int nid, unsigned long start, unsigned long end);
1182 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1183
1184 /*
1185  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1186  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1187  * pfn_valid_within() should be used in this case; we optimise this away
1188  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1189  */
1190 #ifdef CONFIG_HOLES_IN_ZONE
1191 #define pfn_valid_within(pfn) pfn_valid(pfn)
1192 #else
1193 #define pfn_valid_within(pfn) (1)
1194 #endif
1195
1196 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1197 /*
1198  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1199  * associated with it or not. In FLATMEM, it is expected that holes always
1200  * have valid memmap as long as there is valid PFNs either side of the hole.
1201  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1202  * entire section.
1203  *
1204  * However, an ARM, and maybe other embedded architectures in the future
1205  * free memmap backing holes to save memory on the assumption the memmap is
1206  * never used. The page_zone linkages are then broken even though pfn_valid()
1207  * returns true. A walker of the full memmap must then do this additional
1208  * check to ensure the memmap they are looking at is sane by making sure
1209  * the zone and PFN linkages are still valid. This is expensive, but walkers
1210  * of the full memmap are extremely rare.
1211  */
1212 int memmap_valid_within(unsigned long pfn,
1213                                         struct page *page, struct zone *zone);
1214 #else
1215 static inline int memmap_valid_within(unsigned long pfn,
1216                                         struct page *page, struct zone *zone)
1217 {
1218         return 1;
1219 }
1220 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1221
1222 #endif /* !__GENERATING_BOUNDS.H */
1223 #endif /* !__ASSEMBLY__ */
1224 #endif /* _LINUX_MMZONE_H */