Merge remote-tracking branch 'lsk/v3.10/topic/arm64-bl-cpufreq' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/gfp.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/bit_spinlock.h>
19 #include <linux/shrinker.h>
20
21 struct mempolicy;
22 struct anon_vma;
23 struct anon_vma_chain;
24 struct file_ra_state;
25 struct user_struct;
26 struct writeback_control;
27
28 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
29 extern unsigned long max_mapnr;
30 #endif
31
32 extern unsigned long num_physpages;
33 extern unsigned long totalram_pages;
34 extern void * high_memory;
35 extern int page_cluster;
36
37 #ifdef CONFIG_SYSCTL
38 extern int sysctl_legacy_va_layout;
39 #else
40 #define sysctl_legacy_va_layout 0
41 #endif
42
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/processor.h>
46
47 extern unsigned long sysctl_user_reserve_kbytes;
48 extern unsigned long sysctl_admin_reserve_kbytes;
49
50 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
51
52 /* to align the pointer to the (next) page boundary */
53 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
54
55 /*
56  * Linux kernel virtual memory manager primitives.
57  * The idea being to have a "virtual" mm in the same way
58  * we have a virtual fs - giving a cleaner interface to the
59  * mm details, and allowing different kinds of memory mappings
60  * (from shared memory to executable loading to arbitrary
61  * mmap() functions).
62  */
63
64 extern struct kmem_cache *vm_area_cachep;
65
66 #ifndef CONFIG_MMU
67 extern struct rb_root nommu_region_tree;
68 extern struct rw_semaphore nommu_region_sem;
69
70 extern unsigned int kobjsize(const void *objp);
71 #endif
72
73 /*
74  * vm_flags in vm_area_struct, see mm_types.h.
75  */
76 #define VM_NONE         0x00000000
77
78 #define VM_READ         0x00000001      /* currently active flags */
79 #define VM_WRITE        0x00000002
80 #define VM_EXEC         0x00000004
81 #define VM_SHARED       0x00000008
82
83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
84 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
85 #define VM_MAYWRITE     0x00000020
86 #define VM_MAYEXEC      0x00000040
87 #define VM_MAYSHARE     0x00000080
88
89 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
90 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
91 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
92
93 #define VM_LOCKED       0x00002000
94 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
95
96                                         /* Used by sys_madvise() */
97 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
98 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
99
100 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
101 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
102 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
103 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
104 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
105 #define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
106 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
107 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
108
109 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
110 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
111 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
112 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
113
114 #if defined(CONFIG_X86)
115 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
116 #elif defined(CONFIG_PPC)
117 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
118 #elif defined(CONFIG_PARISC)
119 # define VM_GROWSUP     VM_ARCH_1
120 #elif defined(CONFIG_METAG)
121 # define VM_GROWSUP     VM_ARCH_1
122 #elif defined(CONFIG_IA64)
123 # define VM_GROWSUP     VM_ARCH_1
124 #elif !defined(CONFIG_MMU)
125 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
126 #endif
127
128 #ifndef VM_GROWSUP
129 # define VM_GROWSUP     VM_NONE
130 #endif
131
132 /* Bits set in the VMA until the stack is in its final location */
133 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
134
135 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
136 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
137 #endif
138
139 #ifdef CONFIG_STACK_GROWSUP
140 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
141 #else
142 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
143 #endif
144
145 #define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
146 #define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
147 #define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
148 #define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
149 #define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)
150
151 /*
152  * Special vmas that are non-mergable, non-mlock()able.
153  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
154  */
155 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
156
157 /*
158  * mapping from the currently active vm_flags protection bits (the
159  * low four bits) to a page protection mask..
160  */
161 extern pgprot_t protection_map[16];
162
163 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
164 #define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */
165 #define FAULT_FLAG_MKWRITE      0x04    /* Fault was mkwrite of existing pte */
166 #define FAULT_FLAG_ALLOW_RETRY  0x08    /* Retry fault if blocking */
167 #define FAULT_FLAG_RETRY_NOWAIT 0x10    /* Don't drop mmap_sem and wait when retrying */
168 #define FAULT_FLAG_KILLABLE     0x20    /* The fault task is in SIGKILL killable region */
169 #define FAULT_FLAG_TRIED        0x40    /* second try */
170
171 /*
172  * vm_fault is filled by the the pagefault handler and passed to the vma's
173  * ->fault function. The vma's ->fault is responsible for returning a bitmask
174  * of VM_FAULT_xxx flags that give details about how the fault was handled.
175  *
176  * pgoff should be used in favour of virtual_address, if possible. If pgoff
177  * is used, one may implement ->remap_pages to get nonlinear mapping support.
178  */
179 struct vm_fault {
180         unsigned int flags;             /* FAULT_FLAG_xxx flags */
181         pgoff_t pgoff;                  /* Logical page offset based on vma */
182         void __user *virtual_address;   /* Faulting virtual address */
183
184         struct page *page;              /* ->fault handlers should return a
185                                          * page here, unless VM_FAULT_NOPAGE
186                                          * is set (which is also implied by
187                                          * VM_FAULT_ERROR).
188                                          */
189 };
190
191 /*
192  * These are the virtual MM functions - opening of an area, closing and
193  * unmapping it (needed to keep files on disk up-to-date etc), pointer
194  * to the functions called when a no-page or a wp-page exception occurs. 
195  */
196 struct vm_operations_struct {
197         void (*open)(struct vm_area_struct * area);
198         void (*close)(struct vm_area_struct * area);
199         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
200
201         /* notification that a previously read-only page is about to become
202          * writable, if an error is returned it will cause a SIGBUS */
203         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
204
205         /* called by access_process_vm when get_user_pages() fails, typically
206          * for use by special VMAs that can switch between memory and hardware
207          */
208         int (*access)(struct vm_area_struct *vma, unsigned long addr,
209                       void *buf, int len, int write);
210 #ifdef CONFIG_NUMA
211         /*
212          * set_policy() op must add a reference to any non-NULL @new mempolicy
213          * to hold the policy upon return.  Caller should pass NULL @new to
214          * remove a policy and fall back to surrounding context--i.e. do not
215          * install a MPOL_DEFAULT policy, nor the task or system default
216          * mempolicy.
217          */
218         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
219
220         /*
221          * get_policy() op must add reference [mpol_get()] to any policy at
222          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
223          * in mm/mempolicy.c will do this automatically.
224          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
225          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
226          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
227          * must return NULL--i.e., do not "fallback" to task or system default
228          * policy.
229          */
230         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
231                                         unsigned long addr);
232         int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
233                 const nodemask_t *to, unsigned long flags);
234 #endif
235         /* called by sys_remap_file_pages() to populate non-linear mapping */
236         int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
237                            unsigned long size, pgoff_t pgoff);
238 };
239
240 struct mmu_gather;
241 struct inode;
242
243 #define page_private(page)              ((page)->private)
244 #define set_page_private(page, v)       ((page)->private = (v))
245
246 /* It's valid only if the page is free path or free_list */
247 static inline void set_freepage_migratetype(struct page *page, int migratetype)
248 {
249         page->index = migratetype;
250 }
251
252 /* It's valid only if the page is free path or free_list */
253 static inline int get_freepage_migratetype(struct page *page)
254 {
255         return page->index;
256 }
257
258 /*
259  * FIXME: take this include out, include page-flags.h in
260  * files which need it (119 of them)
261  */
262 #include <linux/page-flags.h>
263 #include <linux/huge_mm.h>
264
265 /*
266  * Methods to modify the page usage count.
267  *
268  * What counts for a page usage:
269  * - cache mapping   (page->mapping)
270  * - private data    (page->private)
271  * - page mapped in a task's page tables, each mapping
272  *   is counted separately
273  *
274  * Also, many kernel routines increase the page count before a critical
275  * routine so they can be sure the page doesn't go away from under them.
276  */
277
278 /*
279  * Drop a ref, return true if the refcount fell to zero (the page has no users)
280  */
281 static inline int put_page_testzero(struct page *page)
282 {
283         VM_BUG_ON(atomic_read(&page->_count) == 0);
284         return atomic_dec_and_test(&page->_count);
285 }
286
287 /*
288  * Try to grab a ref unless the page has a refcount of zero, return false if
289  * that is the case.
290  */
291 static inline int get_page_unless_zero(struct page *page)
292 {
293         return atomic_inc_not_zero(&page->_count);
294 }
295
296 extern int page_is_ram(unsigned long pfn);
297
298 /* Support for virtually mapped pages */
299 struct page *vmalloc_to_page(const void *addr);
300 unsigned long vmalloc_to_pfn(const void *addr);
301
302 /*
303  * Determine if an address is within the vmalloc range
304  *
305  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
306  * is no special casing required.
307  */
308 static inline int is_vmalloc_addr(const void *x)
309 {
310 #ifdef CONFIG_MMU
311         unsigned long addr = (unsigned long)x;
312
313         return addr >= VMALLOC_START && addr < VMALLOC_END;
314 #else
315         return 0;
316 #endif
317 }
318 #ifdef CONFIG_MMU
319 extern int is_vmalloc_or_module_addr(const void *x);
320 #else
321 static inline int is_vmalloc_or_module_addr(const void *x)
322 {
323         return 0;
324 }
325 #endif
326
327 static inline void compound_lock(struct page *page)
328 {
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330         VM_BUG_ON(PageSlab(page));
331         bit_spin_lock(PG_compound_lock, &page->flags);
332 #endif
333 }
334
335 static inline void compound_unlock(struct page *page)
336 {
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338         VM_BUG_ON(PageSlab(page));
339         bit_spin_unlock(PG_compound_lock, &page->flags);
340 #endif
341 }
342
343 static inline unsigned long compound_lock_irqsave(struct page *page)
344 {
345         unsigned long uninitialized_var(flags);
346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
347         local_irq_save(flags);
348         compound_lock(page);
349 #endif
350         return flags;
351 }
352
353 static inline void compound_unlock_irqrestore(struct page *page,
354                                               unsigned long flags)
355 {
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357         compound_unlock(page);
358         local_irq_restore(flags);
359 #endif
360 }
361
362 static inline struct page *compound_head(struct page *page)
363 {
364         if (unlikely(PageTail(page))) {
365                 struct page *head = page->first_page;
366
367                 /*
368                  * page->first_page may be a dangling pointer to an old
369                  * compound page, so recheck that it is still a tail
370                  * page before returning.
371                  */
372                 smp_rmb();
373                 if (likely(PageTail(page)))
374                         return head;
375         }
376         return page;
377 }
378
379 /*
380  * The atomic page->_mapcount, starts from -1: so that transitions
381  * both from it and to it can be tracked, using atomic_inc_and_test
382  * and atomic_add_negative(-1).
383  */
384 static inline void page_mapcount_reset(struct page *page)
385 {
386         atomic_set(&(page)->_mapcount, -1);
387 }
388
389 static inline int page_mapcount(struct page *page)
390 {
391         return atomic_read(&(page)->_mapcount) + 1;
392 }
393
394 static inline int page_count(struct page *page)
395 {
396         return atomic_read(&compound_head(page)->_count);
397 }
398
399 static inline void get_huge_page_tail(struct page *page)
400 {
401         /*
402          * __split_huge_page_refcount() cannot run
403          * from under us.
404          */
405         VM_BUG_ON(page_mapcount(page) < 0);
406         VM_BUG_ON(atomic_read(&page->_count) != 0);
407         atomic_inc(&page->_mapcount);
408 }
409
410 extern bool __get_page_tail(struct page *page);
411
412 static inline void get_page(struct page *page)
413 {
414         if (unlikely(PageTail(page)))
415                 if (likely(__get_page_tail(page)))
416                         return;
417         /*
418          * Getting a normal page or the head of a compound page
419          * requires to already have an elevated page->_count.
420          */
421         VM_BUG_ON(atomic_read(&page->_count) <= 0);
422         atomic_inc(&page->_count);
423 }
424
425 static inline struct page *virt_to_head_page(const void *x)
426 {
427         struct page *page = virt_to_page(x);
428         return compound_head(page);
429 }
430
431 /*
432  * Setup the page count before being freed into the page allocator for
433  * the first time (boot or memory hotplug)
434  */
435 static inline void init_page_count(struct page *page)
436 {
437         atomic_set(&page->_count, 1);
438 }
439
440 /*
441  * PageBuddy() indicate that the page is free and in the buddy system
442  * (see mm/page_alloc.c).
443  *
444  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
445  * -2 so that an underflow of the page_mapcount() won't be mistaken
446  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
447  * efficiently by most CPU architectures.
448  */
449 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
450
451 static inline int PageBuddy(struct page *page)
452 {
453         return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
454 }
455
456 static inline void __SetPageBuddy(struct page *page)
457 {
458         VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
459         atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
460 }
461
462 static inline void __ClearPageBuddy(struct page *page)
463 {
464         VM_BUG_ON(!PageBuddy(page));
465         atomic_set(&page->_mapcount, -1);
466 }
467
468 void put_page(struct page *page);
469 void put_pages_list(struct list_head *pages);
470
471 void split_page(struct page *page, unsigned int order);
472 int split_free_page(struct page *page);
473
474 /*
475  * Compound pages have a destructor function.  Provide a
476  * prototype for that function and accessor functions.
477  * These are _only_ valid on the head of a PG_compound page.
478  */
479 typedef void compound_page_dtor(struct page *);
480
481 static inline void set_compound_page_dtor(struct page *page,
482                                                 compound_page_dtor *dtor)
483 {
484         page[1].lru.next = (void *)dtor;
485 }
486
487 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
488 {
489         return (compound_page_dtor *)page[1].lru.next;
490 }
491
492 static inline int compound_order(struct page *page)
493 {
494         if (!PageHead(page))
495                 return 0;
496         return (unsigned long)page[1].lru.prev;
497 }
498
499 static inline int compound_trans_order(struct page *page)
500 {
501         int order;
502         unsigned long flags;
503
504         if (!PageHead(page))
505                 return 0;
506
507         flags = compound_lock_irqsave(page);
508         order = compound_order(page);
509         compound_unlock_irqrestore(page, flags);
510         return order;
511 }
512
513 static inline void set_compound_order(struct page *page, unsigned long order)
514 {
515         page[1].lru.prev = (void *)order;
516 }
517
518 #ifdef CONFIG_MMU
519 /*
520  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
521  * servicing faults for write access.  In the normal case, do always want
522  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
523  * that do not have writing enabled, when used by access_process_vm.
524  */
525 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
526 {
527         if (likely(vma->vm_flags & VM_WRITE))
528                 pte = pte_mkwrite(pte);
529         return pte;
530 }
531 #endif
532
533 /*
534  * Multiple processes may "see" the same page. E.g. for untouched
535  * mappings of /dev/null, all processes see the same page full of
536  * zeroes, and text pages of executables and shared libraries have
537  * only one copy in memory, at most, normally.
538  *
539  * For the non-reserved pages, page_count(page) denotes a reference count.
540  *   page_count() == 0 means the page is free. page->lru is then used for
541  *   freelist management in the buddy allocator.
542  *   page_count() > 0  means the page has been allocated.
543  *
544  * Pages are allocated by the slab allocator in order to provide memory
545  * to kmalloc and kmem_cache_alloc. In this case, the management of the
546  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
547  * unless a particular usage is carefully commented. (the responsibility of
548  * freeing the kmalloc memory is the caller's, of course).
549  *
550  * A page may be used by anyone else who does a __get_free_page().
551  * In this case, page_count still tracks the references, and should only
552  * be used through the normal accessor functions. The top bits of page->flags
553  * and page->virtual store page management information, but all other fields
554  * are unused and could be used privately, carefully. The management of this
555  * page is the responsibility of the one who allocated it, and those who have
556  * subsequently been given references to it.
557  *
558  * The other pages (we may call them "pagecache pages") are completely
559  * managed by the Linux memory manager: I/O, buffers, swapping etc.
560  * The following discussion applies only to them.
561  *
562  * A pagecache page contains an opaque `private' member, which belongs to the
563  * page's address_space. Usually, this is the address of a circular list of
564  * the page's disk buffers. PG_private must be set to tell the VM to call
565  * into the filesystem to release these pages.
566  *
567  * A page may belong to an inode's memory mapping. In this case, page->mapping
568  * is the pointer to the inode, and page->index is the file offset of the page,
569  * in units of PAGE_CACHE_SIZE.
570  *
571  * If pagecache pages are not associated with an inode, they are said to be
572  * anonymous pages. These may become associated with the swapcache, and in that
573  * case PG_swapcache is set, and page->private is an offset into the swapcache.
574  *
575  * In either case (swapcache or inode backed), the pagecache itself holds one
576  * reference to the page. Setting PG_private should also increment the
577  * refcount. The each user mapping also has a reference to the page.
578  *
579  * The pagecache pages are stored in a per-mapping radix tree, which is
580  * rooted at mapping->page_tree, and indexed by offset.
581  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
582  * lists, we instead now tag pages as dirty/writeback in the radix tree.
583  *
584  * All pagecache pages may be subject to I/O:
585  * - inode pages may need to be read from disk,
586  * - inode pages which have been modified and are MAP_SHARED may need
587  *   to be written back to the inode on disk,
588  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
589  *   modified may need to be swapped out to swap space and (later) to be read
590  *   back into memory.
591  */
592
593 /*
594  * The zone field is never updated after free_area_init_core()
595  * sets it, so none of the operations on it need to be atomic.
596  */
597
598 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */
599 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
600 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
601 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
602 #define LAST_NID_PGOFF          (ZONES_PGOFF - LAST_NID_WIDTH)
603
604 /*
605  * Define the bit shifts to access each section.  For non-existent
606  * sections we define the shift as 0; that plus a 0 mask ensures
607  * the compiler will optimise away reference to them.
608  */
609 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
610 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
611 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
612 #define LAST_NID_PGSHIFT        (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0))
613
614 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
615 #ifdef NODE_NOT_IN_PAGE_FLAGS
616 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
617 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
618                                                 SECTIONS_PGOFF : ZONES_PGOFF)
619 #else
620 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
621 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
622                                                 NODES_PGOFF : ZONES_PGOFF)
623 #endif
624
625 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
626
627 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
628 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
629 #endif
630
631 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
632 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
633 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
634 #define LAST_NID_MASK           ((1UL << LAST_NID_WIDTH) - 1)
635 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
636
637 static inline enum zone_type page_zonenum(const struct page *page)
638 {
639         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
640 }
641
642 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
643 #define SECTION_IN_PAGE_FLAGS
644 #endif
645
646 /*
647  * The identification function is only used by the buddy allocator for
648  * determining if two pages could be buddies. We are not really
649  * identifying a zone since we could be using a the section number
650  * id if we have not node id available in page flags.
651  * We guarantee only that it will return the same value for two
652  * combinable pages in a zone.
653  */
654 static inline int page_zone_id(struct page *page)
655 {
656         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
657 }
658
659 static inline int zone_to_nid(struct zone *zone)
660 {
661 #ifdef CONFIG_NUMA
662         return zone->node;
663 #else
664         return 0;
665 #endif
666 }
667
668 #ifdef NODE_NOT_IN_PAGE_FLAGS
669 extern int page_to_nid(const struct page *page);
670 #else
671 static inline int page_to_nid(const struct page *page)
672 {
673         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
674 }
675 #endif
676
677 #ifdef CONFIG_NUMA_BALANCING
678 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
679 static inline int page_nid_xchg_last(struct page *page, int nid)
680 {
681         return xchg(&page->_last_nid, nid);
682 }
683
684 static inline int page_nid_last(struct page *page)
685 {
686         return page->_last_nid;
687 }
688 static inline void page_nid_reset_last(struct page *page)
689 {
690         page->_last_nid = -1;
691 }
692 #else
693 static inline int page_nid_last(struct page *page)
694 {
695         return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK;
696 }
697
698 extern int page_nid_xchg_last(struct page *page, int nid);
699
700 static inline void page_nid_reset_last(struct page *page)
701 {
702         int nid = (1 << LAST_NID_SHIFT) - 1;
703
704         page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT);
705         page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT;
706 }
707 #endif /* LAST_NID_NOT_IN_PAGE_FLAGS */
708 #else
709 static inline int page_nid_xchg_last(struct page *page, int nid)
710 {
711         return page_to_nid(page);
712 }
713
714 static inline int page_nid_last(struct page *page)
715 {
716         return page_to_nid(page);
717 }
718
719 static inline void page_nid_reset_last(struct page *page)
720 {
721 }
722 #endif
723
724 static inline struct zone *page_zone(const struct page *page)
725 {
726         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
727 }
728
729 #ifdef SECTION_IN_PAGE_FLAGS
730 static inline void set_page_section(struct page *page, unsigned long section)
731 {
732         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
733         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
734 }
735
736 static inline unsigned long page_to_section(const struct page *page)
737 {
738         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
739 }
740 #endif
741
742 static inline void set_page_zone(struct page *page, enum zone_type zone)
743 {
744         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
745         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
746 }
747
748 static inline void set_page_node(struct page *page, unsigned long node)
749 {
750         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
751         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
752 }
753
754 static inline void set_page_links(struct page *page, enum zone_type zone,
755         unsigned long node, unsigned long pfn)
756 {
757         set_page_zone(page, zone);
758         set_page_node(page, node);
759 #ifdef SECTION_IN_PAGE_FLAGS
760         set_page_section(page, pfn_to_section_nr(pfn));
761 #endif
762 }
763
764 /*
765  * Some inline functions in vmstat.h depend on page_zone()
766  */
767 #include <linux/vmstat.h>
768
769 static __always_inline void *lowmem_page_address(const struct page *page)
770 {
771         return __va(PFN_PHYS(page_to_pfn(page)));
772 }
773
774 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
775 #define HASHED_PAGE_VIRTUAL
776 #endif
777
778 #if defined(WANT_PAGE_VIRTUAL)
779 static inline void *page_address(const struct page *page)
780 {
781         return page->virtual;
782 }
783 static inline void set_page_address(struct page *page, void *address)
784 {
785         page->virtual = address;
786 }
787 #define page_address_init()  do { } while(0)
788 #endif
789
790 #if defined(HASHED_PAGE_VIRTUAL)
791 void *page_address(const struct page *page);
792 void set_page_address(struct page *page, void *virtual);
793 void page_address_init(void);
794 #endif
795
796 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
797 #define page_address(page) lowmem_page_address(page)
798 #define set_page_address(page, address)  do { } while(0)
799 #define page_address_init()  do { } while(0)
800 #endif
801
802 /*
803  * On an anonymous page mapped into a user virtual memory area,
804  * page->mapping points to its anon_vma, not to a struct address_space;
805  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
806  *
807  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
808  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
809  * and then page->mapping points, not to an anon_vma, but to a private
810  * structure which KSM associates with that merged page.  See ksm.h.
811  *
812  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
813  *
814  * Please note that, confusingly, "page_mapping" refers to the inode
815  * address_space which maps the page from disk; whereas "page_mapped"
816  * refers to user virtual address space into which the page is mapped.
817  */
818 #define PAGE_MAPPING_ANON       1
819 #define PAGE_MAPPING_KSM        2
820 #define PAGE_MAPPING_FLAGS      (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
821
822 extern struct address_space *page_mapping(struct page *page);
823
824 /* Neutral page->mapping pointer to address_space or anon_vma or other */
825 static inline void *page_rmapping(struct page *page)
826 {
827         return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
828 }
829
830 extern struct address_space *__page_file_mapping(struct page *);
831
832 static inline
833 struct address_space *page_file_mapping(struct page *page)
834 {
835         if (unlikely(PageSwapCache(page)))
836                 return __page_file_mapping(page);
837
838         return page->mapping;
839 }
840
841 static inline int PageAnon(struct page *page)
842 {
843         return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
844 }
845
846 /*
847  * Return the pagecache index of the passed page.  Regular pagecache pages
848  * use ->index whereas swapcache pages use ->private
849  */
850 static inline pgoff_t page_index(struct page *page)
851 {
852         if (unlikely(PageSwapCache(page)))
853                 return page_private(page);
854         return page->index;
855 }
856
857 extern pgoff_t __page_file_index(struct page *page);
858
859 /*
860  * Return the file index of the page. Regular pagecache pages use ->index
861  * whereas swapcache pages use swp_offset(->private)
862  */
863 static inline pgoff_t page_file_index(struct page *page)
864 {
865         if (unlikely(PageSwapCache(page)))
866                 return __page_file_index(page);
867
868         return page->index;
869 }
870
871 /*
872  * Return true if this page is mapped into pagetables.
873  */
874 static inline int page_mapped(struct page *page)
875 {
876         return atomic_read(&(page)->_mapcount) >= 0;
877 }
878
879 /*
880  * Different kinds of faults, as returned by handle_mm_fault().
881  * Used to decide whether a process gets delivered SIGBUS or
882  * just gets major/minor fault counters bumped up.
883  */
884
885 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
886
887 #define VM_FAULT_OOM    0x0001
888 #define VM_FAULT_SIGBUS 0x0002
889 #define VM_FAULT_MAJOR  0x0004
890 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
891 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
892 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
893
894 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
895 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
896 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
897
898 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
899
900 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
901                          VM_FAULT_HWPOISON_LARGE)
902
903 /* Encode hstate index for a hwpoisoned large page */
904 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
905 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
906
907 /*
908  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
909  */
910 extern void pagefault_out_of_memory(void);
911
912 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
913
914 /*
915  * Flags passed to show_mem() and show_free_areas() to suppress output in
916  * various contexts.
917  */
918 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
919 #define SHOW_MEM_FILTER_PAGE_COUNT      (0x0002u)       /* page type count */
920
921 extern void show_free_areas(unsigned int flags);
922 extern bool skip_free_areas_node(unsigned int flags, int nid);
923
924 int shmem_zero_setup(struct vm_area_struct *);
925
926 extern int can_do_mlock(void);
927 extern int user_shm_lock(size_t, struct user_struct *);
928 extern void user_shm_unlock(size_t, struct user_struct *);
929
930 /*
931  * Parameter block passed down to zap_pte_range in exceptional cases.
932  */
933 struct zap_details {
934         struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
935         struct address_space *check_mapping;    /* Check page->mapping if set */
936         pgoff_t first_index;                    /* Lowest page->index to unmap */
937         pgoff_t last_index;                     /* Highest page->index to unmap */
938 };
939
940 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
941                 pte_t pte);
942
943 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
944                 unsigned long size);
945 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
946                 unsigned long size, struct zap_details *);
947 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
948                 unsigned long start, unsigned long end);
949
950 /**
951  * mm_walk - callbacks for walk_page_range
952  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
953  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
954  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
955  *             this handler is required to be able to handle
956  *             pmd_trans_huge() pmds.  They may simply choose to
957  *             split_huge_page() instead of handling it explicitly.
958  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
959  * @pte_hole: if set, called for each hole at all levels
960  * @hugetlb_entry: if set, called for each hugetlb entry
961  *                 *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
962  *                            is used.
963  *
964  * (see walk_page_range for more details)
965  */
966 struct mm_walk {
967         int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
968                          unsigned long next, struct mm_walk *walk);
969         int (*pud_entry)(pud_t *pud, unsigned long addr,
970                          unsigned long next, struct mm_walk *walk);
971         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
972                          unsigned long next, struct mm_walk *walk);
973         int (*pte_entry)(pte_t *pte, unsigned long addr,
974                          unsigned long next, struct mm_walk *walk);
975         int (*pte_hole)(unsigned long addr, unsigned long next,
976                         struct mm_walk *walk);
977         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
978                              unsigned long addr, unsigned long next,
979                              struct mm_walk *walk);
980         struct mm_struct *mm;
981         void *private;
982 };
983
984 int walk_page_range(unsigned long addr, unsigned long end,
985                 struct mm_walk *walk);
986 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
987                 unsigned long end, unsigned long floor, unsigned long ceiling);
988 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
989                         struct vm_area_struct *vma);
990 void unmap_mapping_range(struct address_space *mapping,
991                 loff_t const holebegin, loff_t const holelen, int even_cows);
992 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
993         unsigned long *pfn);
994 int follow_phys(struct vm_area_struct *vma, unsigned long address,
995                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
996 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
997                         void *buf, int len, int write);
998
999 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1000                 loff_t const holebegin, loff_t const holelen)
1001 {
1002         unmap_mapping_range(mapping, holebegin, holelen, 0);
1003 }
1004
1005 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
1006 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1007 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1008 int truncate_inode_page(struct address_space *mapping, struct page *page);
1009 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1010 int invalidate_inode_page(struct page *page);
1011
1012 #ifdef CONFIG_MMU
1013 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1014                         unsigned long address, unsigned int flags);
1015 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1016                             unsigned long address, unsigned int fault_flags);
1017 #else
1018 static inline int handle_mm_fault(struct mm_struct *mm,
1019                         struct vm_area_struct *vma, unsigned long address,
1020                         unsigned int flags)
1021 {
1022         /* should never happen if there's no MMU */
1023         BUG();
1024         return VM_FAULT_SIGBUS;
1025 }
1026 static inline int fixup_user_fault(struct task_struct *tsk,
1027                 struct mm_struct *mm, unsigned long address,
1028                 unsigned int fault_flags)
1029 {
1030         /* should never happen if there's no MMU */
1031         BUG();
1032         return -EFAULT;
1033 }
1034 #endif
1035
1036 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1037 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1038                 void *buf, int len, int write);
1039
1040 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1041                       unsigned long start, unsigned long nr_pages,
1042                       unsigned int foll_flags, struct page **pages,
1043                       struct vm_area_struct **vmas, int *nonblocking);
1044 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1045                     unsigned long start, unsigned long nr_pages,
1046                     int write, int force, struct page **pages,
1047                     struct vm_area_struct **vmas);
1048 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1049                         struct page **pages);
1050 struct kvec;
1051 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1052                         struct page **pages);
1053 int get_kernel_page(unsigned long start, int write, struct page **pages);
1054 struct page *get_dump_page(unsigned long addr);
1055
1056 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1057 extern void do_invalidatepage(struct page *page, unsigned long offset);
1058
1059 int __set_page_dirty_nobuffers(struct page *page);
1060 int __set_page_dirty_no_writeback(struct page *page);
1061 int redirty_page_for_writepage(struct writeback_control *wbc,
1062                                 struct page *page);
1063 void account_page_dirtied(struct page *page, struct address_space *mapping);
1064 void account_page_writeback(struct page *page);
1065 int set_page_dirty(struct page *page);
1066 int set_page_dirty_lock(struct page *page);
1067 int clear_page_dirty_for_io(struct page *page);
1068
1069 /* Is the vma a continuation of the stack vma above it? */
1070 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1071 {
1072         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1073 }
1074
1075 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1076                                              unsigned long addr)
1077 {
1078         return (vma->vm_flags & VM_GROWSDOWN) &&
1079                 (vma->vm_start == addr) &&
1080                 !vma_growsdown(vma->vm_prev, addr);
1081 }
1082
1083 /* Is the vma a continuation of the stack vma below it? */
1084 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1085 {
1086         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1087 }
1088
1089 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1090                                            unsigned long addr)
1091 {
1092         return (vma->vm_flags & VM_GROWSUP) &&
1093                 (vma->vm_end == addr) &&
1094                 !vma_growsup(vma->vm_next, addr);
1095 }
1096
1097 extern pid_t
1098 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1099
1100 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1101                 unsigned long old_addr, struct vm_area_struct *new_vma,
1102                 unsigned long new_addr, unsigned long len,
1103                 bool need_rmap_locks);
1104 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1105                               unsigned long end, pgprot_t newprot,
1106                               int dirty_accountable, int prot_numa);
1107 extern int mprotect_fixup(struct vm_area_struct *vma,
1108                           struct vm_area_struct **pprev, unsigned long start,
1109                           unsigned long end, unsigned long newflags);
1110
1111 /*
1112  * doesn't attempt to fault and will return short.
1113  */
1114 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1115                           struct page **pages);
1116 /*
1117  * per-process(per-mm_struct) statistics.
1118  */
1119 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1120 {
1121         long val = atomic_long_read(&mm->rss_stat.count[member]);
1122
1123 #ifdef SPLIT_RSS_COUNTING
1124         /*
1125          * counter is updated in asynchronous manner and may go to minus.
1126          * But it's never be expected number for users.
1127          */
1128         if (val < 0)
1129                 val = 0;
1130 #endif
1131         return (unsigned long)val;
1132 }
1133
1134 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1135 {
1136         atomic_long_add(value, &mm->rss_stat.count[member]);
1137 }
1138
1139 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1140 {
1141         atomic_long_inc(&mm->rss_stat.count[member]);
1142 }
1143
1144 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1145 {
1146         atomic_long_dec(&mm->rss_stat.count[member]);
1147 }
1148
1149 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1150 {
1151         return get_mm_counter(mm, MM_FILEPAGES) +
1152                 get_mm_counter(mm, MM_ANONPAGES);
1153 }
1154
1155 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1156 {
1157         return max(mm->hiwater_rss, get_mm_rss(mm));
1158 }
1159
1160 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1161 {
1162         return max(mm->hiwater_vm, mm->total_vm);
1163 }
1164
1165 static inline void update_hiwater_rss(struct mm_struct *mm)
1166 {
1167         unsigned long _rss = get_mm_rss(mm);
1168
1169         if ((mm)->hiwater_rss < _rss)
1170                 (mm)->hiwater_rss = _rss;
1171 }
1172
1173 static inline void update_hiwater_vm(struct mm_struct *mm)
1174 {
1175         if (mm->hiwater_vm < mm->total_vm)
1176                 mm->hiwater_vm = mm->total_vm;
1177 }
1178
1179 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1180                                          struct mm_struct *mm)
1181 {
1182         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1183
1184         if (*maxrss < hiwater_rss)
1185                 *maxrss = hiwater_rss;
1186 }
1187
1188 #if defined(SPLIT_RSS_COUNTING)
1189 void sync_mm_rss(struct mm_struct *mm);
1190 #else
1191 static inline void sync_mm_rss(struct mm_struct *mm)
1192 {
1193 }
1194 #endif
1195
1196 int vma_wants_writenotify(struct vm_area_struct *vma);
1197
1198 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1199                                spinlock_t **ptl);
1200 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1201                                     spinlock_t **ptl)
1202 {
1203         pte_t *ptep;
1204         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1205         return ptep;
1206 }
1207
1208 #ifdef __PAGETABLE_PUD_FOLDED
1209 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1210                                                 unsigned long address)
1211 {
1212         return 0;
1213 }
1214 #else
1215 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1216 #endif
1217
1218 #ifdef __PAGETABLE_PMD_FOLDED
1219 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1220                                                 unsigned long address)
1221 {
1222         return 0;
1223 }
1224 #else
1225 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1226 #endif
1227
1228 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1229                 pmd_t *pmd, unsigned long address);
1230 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1231
1232 /*
1233  * The following ifdef needed to get the 4level-fixup.h header to work.
1234  * Remove it when 4level-fixup.h has been removed.
1235  */
1236 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1237 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1238 {
1239         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1240                 NULL: pud_offset(pgd, address);
1241 }
1242
1243 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1244 {
1245         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1246                 NULL: pmd_offset(pud, address);
1247 }
1248 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1249
1250 #if USE_SPLIT_PTLOCKS
1251 /*
1252  * We tuck a spinlock to guard each pagetable page into its struct page,
1253  * at page->private, with BUILD_BUG_ON to make sure that this will not
1254  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1255  * When freeing, reset page->mapping so free_pages_check won't complain.
1256  */
1257 #define __pte_lockptr(page)     &((page)->ptl)
1258 #define pte_lock_init(_page)    do {                                    \
1259         spin_lock_init(__pte_lockptr(_page));                           \
1260 } while (0)
1261 #define pte_lock_deinit(page)   ((page)->mapping = NULL)
1262 #define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1263 #else   /* !USE_SPLIT_PTLOCKS */
1264 /*
1265  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1266  */
1267 #define pte_lock_init(page)     do {} while (0)
1268 #define pte_lock_deinit(page)   do {} while (0)
1269 #define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
1270 #endif /* USE_SPLIT_PTLOCKS */
1271
1272 static inline void pgtable_page_ctor(struct page *page)
1273 {
1274         pte_lock_init(page);
1275         inc_zone_page_state(page, NR_PAGETABLE);
1276 }
1277
1278 static inline void pgtable_page_dtor(struct page *page)
1279 {
1280         pte_lock_deinit(page);
1281         dec_zone_page_state(page, NR_PAGETABLE);
1282 }
1283
1284 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1285 ({                                                      \
1286         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1287         pte_t *__pte = pte_offset_map(pmd, address);    \
1288         *(ptlp) = __ptl;                                \
1289         spin_lock(__ptl);                               \
1290         __pte;                                          \
1291 })
1292
1293 #define pte_unmap_unlock(pte, ptl)      do {            \
1294         spin_unlock(ptl);                               \
1295         pte_unmap(pte);                                 \
1296 } while (0)
1297
1298 #define pte_alloc_map(mm, vma, pmd, address)                            \
1299         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1300                                                         pmd, address))? \
1301          NULL: pte_offset_map(pmd, address))
1302
1303 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1304         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1305                                                         pmd, address))? \
1306                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1307
1308 #define pte_alloc_kernel(pmd, address)                  \
1309         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1310                 NULL: pte_offset_kernel(pmd, address))
1311
1312 extern void free_area_init(unsigned long * zones_size);
1313 extern void free_area_init_node(int nid, unsigned long * zones_size,
1314                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1315 extern void free_initmem(void);
1316
1317 /*
1318  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1319  * into the buddy system. The freed pages will be poisoned with pattern
1320  * "poison" if it's non-zero.
1321  * Return pages freed into the buddy system.
1322  */
1323 extern unsigned long free_reserved_area(unsigned long start, unsigned long end,
1324                                         int poison, char *s);
1325 #ifdef  CONFIG_HIGHMEM
1326 /*
1327  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1328  * and totalram_pages.
1329  */
1330 extern void free_highmem_page(struct page *page);
1331 #endif
1332
1333 static inline void adjust_managed_page_count(struct page *page, long count)
1334 {
1335         totalram_pages += count;
1336 }
1337
1338 /* Free the reserved page into the buddy system, so it gets managed. */
1339 static inline void __free_reserved_page(struct page *page)
1340 {
1341         ClearPageReserved(page);
1342         init_page_count(page);
1343         __free_page(page);
1344 }
1345
1346 static inline void free_reserved_page(struct page *page)
1347 {
1348         __free_reserved_page(page);
1349         adjust_managed_page_count(page, 1);
1350 }
1351
1352 static inline void mark_page_reserved(struct page *page)
1353 {
1354         SetPageReserved(page);
1355         adjust_managed_page_count(page, -1);
1356 }
1357
1358 /*
1359  * Default method to free all the __init memory into the buddy system.
1360  * The freed pages will be poisoned with pattern "poison" if it is
1361  * non-zero. Return pages freed into the buddy system.
1362  */
1363 static inline unsigned long free_initmem_default(int poison)
1364 {
1365         extern char __init_begin[], __init_end[];
1366
1367         return free_reserved_area(PAGE_ALIGN((unsigned long)&__init_begin) ,
1368                                   ((unsigned long)&__init_end) & PAGE_MASK,
1369                                   poison, "unused kernel");
1370 }
1371
1372 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1373 /*
1374  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1375  * zones, allocate the backing mem_map and account for memory holes in a more
1376  * architecture independent manner. This is a substitute for creating the
1377  * zone_sizes[] and zholes_size[] arrays and passing them to
1378  * free_area_init_node()
1379  *
1380  * An architecture is expected to register range of page frames backed by
1381  * physical memory with memblock_add[_node]() before calling
1382  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1383  * usage, an architecture is expected to do something like
1384  *
1385  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1386  *                                                       max_highmem_pfn};
1387  * for_each_valid_physical_page_range()
1388  *      memblock_add_node(base, size, nid)
1389  * free_area_init_nodes(max_zone_pfns);
1390  *
1391  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1392  * registered physical page range.  Similarly
1393  * sparse_memory_present_with_active_regions() calls memory_present() for
1394  * each range when SPARSEMEM is enabled.
1395  *
1396  * See mm/page_alloc.c for more information on each function exposed by
1397  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1398  */
1399 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1400 unsigned long node_map_pfn_alignment(void);
1401 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1402                                                 unsigned long end_pfn);
1403 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1404                                                 unsigned long end_pfn);
1405 extern void get_pfn_range_for_nid(unsigned int nid,
1406                         unsigned long *start_pfn, unsigned long *end_pfn);
1407 extern unsigned long find_min_pfn_with_active_regions(void);
1408 extern void free_bootmem_with_active_regions(int nid,
1409                                                 unsigned long max_low_pfn);
1410 extern void sparse_memory_present_with_active_regions(int nid);
1411
1412 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1413
1414 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1415     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1416 static inline int __early_pfn_to_nid(unsigned long pfn)
1417 {
1418         return 0;
1419 }
1420 #else
1421 /* please see mm/page_alloc.c */
1422 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1423 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1424 /* there is a per-arch backend function. */
1425 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1426 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1427 #endif
1428
1429 extern void set_dma_reserve(unsigned long new_dma_reserve);
1430 extern void memmap_init_zone(unsigned long, int, unsigned long,
1431                                 unsigned long, enum memmap_context);
1432 extern void setup_per_zone_wmarks(void);
1433 extern int __meminit init_per_zone_wmark_min(void);
1434 extern void mem_init(void);
1435 extern void __init mmap_init(void);
1436 extern void show_mem(unsigned int flags);
1437 extern void si_meminfo(struct sysinfo * val);
1438 extern void si_meminfo_node(struct sysinfo *val, int nid);
1439
1440 extern __printf(3, 4)
1441 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1442
1443 extern void setup_per_cpu_pageset(void);
1444
1445 extern void zone_pcp_update(struct zone *zone);
1446 extern void zone_pcp_reset(struct zone *zone);
1447
1448 /* page_alloc.c */
1449 extern int min_free_kbytes;
1450
1451 /* nommu.c */
1452 extern atomic_long_t mmap_pages_allocated;
1453 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1454
1455 /* interval_tree.c */
1456 void vma_interval_tree_insert(struct vm_area_struct *node,
1457                               struct rb_root *root);
1458 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1459                                     struct vm_area_struct *prev,
1460                                     struct rb_root *root);
1461 void vma_interval_tree_remove(struct vm_area_struct *node,
1462                               struct rb_root *root);
1463 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1464                                 unsigned long start, unsigned long last);
1465 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1466                                 unsigned long start, unsigned long last);
1467
1468 #define vma_interval_tree_foreach(vma, root, start, last)               \
1469         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1470              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1471
1472 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1473                                         struct list_head *list)
1474 {
1475         list_add_tail(&vma->shared.nonlinear, list);
1476 }
1477
1478 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1479                                    struct rb_root *root);
1480 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1481                                    struct rb_root *root);
1482 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1483         struct rb_root *root, unsigned long start, unsigned long last);
1484 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1485         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1486 #ifdef CONFIG_DEBUG_VM_RB
1487 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1488 #endif
1489
1490 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1491         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1492              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1493
1494 /* mmap.c */
1495 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1496 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1497         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1498 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1499         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1500         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1501         struct mempolicy *);
1502 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1503 extern int split_vma(struct mm_struct *,
1504         struct vm_area_struct *, unsigned long addr, int new_below);
1505 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1506 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1507         struct rb_node **, struct rb_node *);
1508 extern void unlink_file_vma(struct vm_area_struct *);
1509 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1510         unsigned long addr, unsigned long len, pgoff_t pgoff,
1511         bool *need_rmap_locks);
1512 extern void exit_mmap(struct mm_struct *);
1513
1514 extern int mm_take_all_locks(struct mm_struct *mm);
1515 extern void mm_drop_all_locks(struct mm_struct *mm);
1516
1517 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1518 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1519
1520 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1521 extern int install_special_mapping(struct mm_struct *mm,
1522                                    unsigned long addr, unsigned long len,
1523                                    unsigned long flags, struct page **pages);
1524
1525 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1526
1527 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1528         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1529 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1530         unsigned long len, unsigned long prot, unsigned long flags,
1531         unsigned long pgoff, unsigned long *populate);
1532 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1533
1534 #ifdef CONFIG_MMU
1535 extern int __mm_populate(unsigned long addr, unsigned long len,
1536                          int ignore_errors);
1537 static inline void mm_populate(unsigned long addr, unsigned long len)
1538 {
1539         /* Ignore errors */
1540         (void) __mm_populate(addr, len, 1);
1541 }
1542 #else
1543 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1544 #endif
1545
1546 /* These take the mm semaphore themselves */
1547 extern unsigned long vm_brk(unsigned long, unsigned long);
1548 extern int vm_munmap(unsigned long, size_t);
1549 extern unsigned long vm_mmap(struct file *, unsigned long,
1550         unsigned long, unsigned long,
1551         unsigned long, unsigned long);
1552
1553 struct vm_unmapped_area_info {
1554 #define VM_UNMAPPED_AREA_TOPDOWN 1
1555         unsigned long flags;
1556         unsigned long length;
1557         unsigned long low_limit;
1558         unsigned long high_limit;
1559         unsigned long align_mask;
1560         unsigned long align_offset;
1561 };
1562
1563 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1564 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1565
1566 /*
1567  * Search for an unmapped address range.
1568  *
1569  * We are looking for a range that:
1570  * - does not intersect with any VMA;
1571  * - is contained within the [low_limit, high_limit) interval;
1572  * - is at least the desired size.
1573  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1574  */
1575 static inline unsigned long
1576 vm_unmapped_area(struct vm_unmapped_area_info *info)
1577 {
1578         if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1579                 return unmapped_area(info);
1580         else
1581                 return unmapped_area_topdown(info);
1582 }
1583
1584 /* truncate.c */
1585 extern void truncate_inode_pages(struct address_space *, loff_t);
1586 extern void truncate_inode_pages_range(struct address_space *,
1587                                        loff_t lstart, loff_t lend);
1588
1589 /* generic vm_area_ops exported for stackable file systems */
1590 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1591 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1592
1593 /* mm/page-writeback.c */
1594 int write_one_page(struct page *page, int wait);
1595 void task_dirty_inc(struct task_struct *tsk);
1596
1597 /* readahead.c */
1598 #define VM_MAX_READAHEAD        128     /* kbytes */
1599 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1600
1601 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1602                         pgoff_t offset, unsigned long nr_to_read);
1603
1604 void page_cache_sync_readahead(struct address_space *mapping,
1605                                struct file_ra_state *ra,
1606                                struct file *filp,
1607                                pgoff_t offset,
1608                                unsigned long size);
1609
1610 void page_cache_async_readahead(struct address_space *mapping,
1611                                 struct file_ra_state *ra,
1612                                 struct file *filp,
1613                                 struct page *pg,
1614                                 pgoff_t offset,
1615                                 unsigned long size);
1616
1617 unsigned long max_sane_readahead(unsigned long nr);
1618 unsigned long ra_submit(struct file_ra_state *ra,
1619                         struct address_space *mapping,
1620                         struct file *filp);
1621
1622 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1623 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1624
1625 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1626 extern int expand_downwards(struct vm_area_struct *vma,
1627                 unsigned long address);
1628 #if VM_GROWSUP
1629 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1630 #else
1631   #define expand_upwards(vma, address) do { } while (0)
1632 #endif
1633
1634 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1635 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1636 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1637                                              struct vm_area_struct **pprev);
1638
1639 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1640    NULL if none.  Assume start_addr < end_addr. */
1641 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1642 {
1643         struct vm_area_struct * vma = find_vma(mm,start_addr);
1644
1645         if (vma && end_addr <= vma->vm_start)
1646                 vma = NULL;
1647         return vma;
1648 }
1649
1650 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1651 {
1652         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1653 }
1654
1655 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1656 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1657                                 unsigned long vm_start, unsigned long vm_end)
1658 {
1659         struct vm_area_struct *vma = find_vma(mm, vm_start);
1660
1661         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1662                 vma = NULL;
1663
1664         return vma;
1665 }
1666
1667 #ifdef CONFIG_MMU
1668 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1669 #else
1670 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1671 {
1672         return __pgprot(0);
1673 }
1674 #endif
1675
1676 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
1677 unsigned long change_prot_numa(struct vm_area_struct *vma,
1678                         unsigned long start, unsigned long end);
1679 #endif
1680
1681 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1682 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1683                         unsigned long pfn, unsigned long size, pgprot_t);
1684 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1685 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1686                         unsigned long pfn);
1687 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1688                         unsigned long pfn);
1689 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1690
1691
1692 struct page *follow_page_mask(struct vm_area_struct *vma,
1693                               unsigned long address, unsigned int foll_flags,
1694                               unsigned int *page_mask);
1695
1696 static inline struct page *follow_page(struct vm_area_struct *vma,
1697                 unsigned long address, unsigned int foll_flags)
1698 {
1699         unsigned int unused_page_mask;
1700         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1701 }
1702
1703 #define FOLL_WRITE      0x01    /* check pte is writable */
1704 #define FOLL_TOUCH      0x02    /* mark page accessed */
1705 #define FOLL_GET        0x04    /* do get_page on page */
1706 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
1707 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
1708 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
1709                                  * and return without waiting upon it */
1710 #define FOLL_MLOCK      0x40    /* mark page as mlocked */
1711 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
1712 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
1713 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
1714 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
1715
1716 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1717                         void *data);
1718 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1719                                unsigned long size, pte_fn_t fn, void *data);
1720
1721 #ifdef CONFIG_PROC_FS
1722 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1723 #else
1724 static inline void vm_stat_account(struct mm_struct *mm,
1725                         unsigned long flags, struct file *file, long pages)
1726 {
1727         mm->total_vm += pages;
1728 }
1729 #endif /* CONFIG_PROC_FS */
1730
1731 #ifdef CONFIG_DEBUG_PAGEALLOC
1732 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1733 #ifdef CONFIG_HIBERNATION
1734 extern bool kernel_page_present(struct page *page);
1735 #endif /* CONFIG_HIBERNATION */
1736 #else
1737 static inline void
1738 kernel_map_pages(struct page *page, int numpages, int enable) {}
1739 #ifdef CONFIG_HIBERNATION
1740 static inline bool kernel_page_present(struct page *page) { return true; }
1741 #endif /* CONFIG_HIBERNATION */
1742 #endif
1743
1744 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1745 #ifdef  __HAVE_ARCH_GATE_AREA
1746 int in_gate_area_no_mm(unsigned long addr);
1747 int in_gate_area(struct mm_struct *mm, unsigned long addr);
1748 #else
1749 int in_gate_area_no_mm(unsigned long addr);
1750 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1751 #endif  /* __HAVE_ARCH_GATE_AREA */
1752
1753 #ifdef CONFIG_SYSCTL
1754 extern int sysctl_drop_caches;
1755 int drop_caches_sysctl_handler(struct ctl_table *, int,
1756                                         void __user *, size_t *, loff_t *);
1757 #endif
1758
1759 unsigned long shrink_slab(struct shrink_control *shrink,
1760                           unsigned long nr_pages_scanned,
1761                           unsigned long lru_pages);
1762
1763 #ifndef CONFIG_MMU
1764 #define randomize_va_space 0
1765 #else
1766 extern int randomize_va_space;
1767 #endif
1768
1769 const char * arch_vma_name(struct vm_area_struct *vma);
1770 void print_vma_addr(char *prefix, unsigned long rip);
1771
1772 void sparse_mem_maps_populate_node(struct page **map_map,
1773                                    unsigned long pnum_begin,
1774                                    unsigned long pnum_end,
1775                                    unsigned long map_count,
1776                                    int nodeid);
1777
1778 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1779 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1780 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1781 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1782 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1783 void *vmemmap_alloc_block(unsigned long size, int node);
1784 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1785 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1786 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1787                                int node);
1788 int vmemmap_populate(unsigned long start, unsigned long end, int node);
1789 void vmemmap_populate_print_last(void);
1790 #ifdef CONFIG_MEMORY_HOTPLUG
1791 void vmemmap_free(unsigned long start, unsigned long end);
1792 #endif
1793 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1794                                   unsigned long size);
1795
1796 enum mf_flags {
1797         MF_COUNT_INCREASED = 1 << 0,
1798         MF_ACTION_REQUIRED = 1 << 1,
1799         MF_MUST_KILL = 1 << 2,
1800 };
1801 extern int memory_failure(unsigned long pfn, int trapno, int flags);
1802 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
1803 extern int unpoison_memory(unsigned long pfn);
1804 extern int sysctl_memory_failure_early_kill;
1805 extern int sysctl_memory_failure_recovery;
1806 extern void shake_page(struct page *p, int access);
1807 extern atomic_long_t num_poisoned_pages;
1808 extern int soft_offline_page(struct page *page, int flags);
1809
1810 extern void dump_page(struct page *page);
1811
1812 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1813 extern void clear_huge_page(struct page *page,
1814                             unsigned long addr,
1815                             unsigned int pages_per_huge_page);
1816 extern void copy_user_huge_page(struct page *dst, struct page *src,
1817                                 unsigned long addr, struct vm_area_struct *vma,
1818                                 unsigned int pages_per_huge_page);
1819 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1820
1821 #ifdef CONFIG_DEBUG_PAGEALLOC
1822 extern unsigned int _debug_guardpage_minorder;
1823
1824 static inline unsigned int debug_guardpage_minorder(void)
1825 {
1826         return _debug_guardpage_minorder;
1827 }
1828
1829 static inline bool page_is_guard(struct page *page)
1830 {
1831         return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1832 }
1833 #else
1834 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1835 static inline bool page_is_guard(struct page *page) { return false; }
1836 #endif /* CONFIG_DEBUG_PAGEALLOC */
1837
1838 #if MAX_NUMNODES > 1
1839 void __init setup_nr_node_ids(void);
1840 #else
1841 static inline void setup_nr_node_ids(void) {}
1842 #endif
1843
1844 #endif /* __KERNEL__ */
1845 #endif /* _LINUX_MM_H */