zpool: remove no-op module init/exit
[firefly-linux-kernel-4.4.55.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30 struct bdi_writeback;
31
32 #ifndef CONFIG_NEED_MULTIPLE_NODES      /* Don't use mapnrs, do it properly */
33 extern unsigned long max_mapnr;
34
35 static inline void set_max_mapnr(unsigned long limit)
36 {
37         max_mapnr = limit;
38 }
39 #else
40 static inline void set_max_mapnr(unsigned long limit) { }
41 #endif
42
43 extern unsigned long totalram_pages;
44 extern void * high_memory;
45 extern int page_cluster;
46
47 #ifdef CONFIG_SYSCTL
48 extern int sysctl_legacy_va_layout;
49 #else
50 #define sysctl_legacy_va_layout 0
51 #endif
52
53 #include <asm/page.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56
57 #ifndef __pa_symbol
58 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
59 #endif
60
61 /*
62  * To prevent common memory management code establishing
63  * a zero page mapping on a read fault.
64  * This macro should be defined within <asm/pgtable.h>.
65  * s390 does this to prevent multiplexing of hardware bits
66  * related to the physical page in case of virtualization.
67  */
68 #ifndef mm_forbids_zeropage
69 #define mm_forbids_zeropage(X)  (0)
70 #endif
71
72 extern unsigned long sysctl_user_reserve_kbytes;
73 extern unsigned long sysctl_admin_reserve_kbytes;
74
75 extern int sysctl_overcommit_memory;
76 extern int sysctl_overcommit_ratio;
77 extern unsigned long sysctl_overcommit_kbytes;
78
79 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80                                     size_t *, loff_t *);
81 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82                                     size_t *, loff_t *);
83
84 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85
86 /* to align the pointer to the (next) page boundary */
87 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88
89 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90 #define PAGE_ALIGNED(addr)      IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91
92 /*
93  * Linux kernel virtual memory manager primitives.
94  * The idea being to have a "virtual" mm in the same way
95  * we have a virtual fs - giving a cleaner interface to the
96  * mm details, and allowing different kinds of memory mappings
97  * (from shared memory to executable loading to arbitrary
98  * mmap() functions).
99  */
100
101 extern struct kmem_cache *vm_area_cachep;
102
103 #ifndef CONFIG_MMU
104 extern struct rb_root nommu_region_tree;
105 extern struct rw_semaphore nommu_region_sem;
106
107 extern unsigned int kobjsize(const void *objp);
108 #endif
109
110 /*
111  * vm_flags in vm_area_struct, see mm_types.h.
112  */
113 #define VM_NONE         0x00000000
114
115 #define VM_READ         0x00000001      /* currently active flags */
116 #define VM_WRITE        0x00000002
117 #define VM_EXEC         0x00000004
118 #define VM_SHARED       0x00000008
119
120 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
121 #define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
122 #define VM_MAYWRITE     0x00000020
123 #define VM_MAYEXEC      0x00000040
124 #define VM_MAYSHARE     0x00000080
125
126 #define VM_GROWSDOWN    0x00000100      /* general info on the segment */
127 #define VM_UFFD_MISSING 0x00000200      /* missing pages tracking */
128 #define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
129 #define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */
130 #define VM_UFFD_WP      0x00001000      /* wrprotect pages tracking */
131
132 #define VM_LOCKED       0x00002000
133 #define VM_IO           0x00004000      /* Memory mapped I/O or similar */
134
135                                         /* Used by sys_madvise() */
136 #define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
137 #define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */
138
139 #define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
140 #define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
141 #define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
142 #define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
143 #define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
144 #define VM_ARCH_1       0x01000000      /* Architecture-specific flag */
145 #define VM_ARCH_2       0x02000000
146 #define VM_DONTDUMP     0x04000000      /* Do not include in the core dump */
147
148 #ifdef CONFIG_MEM_SOFT_DIRTY
149 # define VM_SOFTDIRTY   0x08000000      /* Not soft dirty clean area */
150 #else
151 # define VM_SOFTDIRTY   0
152 #endif
153
154 #define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
155 #define VM_HUGEPAGE     0x20000000      /* MADV_HUGEPAGE marked this vma */
156 #define VM_NOHUGEPAGE   0x40000000      /* MADV_NOHUGEPAGE marked this vma */
157 #define VM_MERGEABLE    0x80000000      /* KSM may merge identical pages */
158
159 #if defined(CONFIG_X86)
160 # define VM_PAT         VM_ARCH_1       /* PAT reserves whole VMA at once (x86) */
161 #elif defined(CONFIG_PPC)
162 # define VM_SAO         VM_ARCH_1       /* Strong Access Ordering (powerpc) */
163 #elif defined(CONFIG_PARISC)
164 # define VM_GROWSUP     VM_ARCH_1
165 #elif defined(CONFIG_METAG)
166 # define VM_GROWSUP     VM_ARCH_1
167 #elif defined(CONFIG_IA64)
168 # define VM_GROWSUP     VM_ARCH_1
169 #elif !defined(CONFIG_MMU)
170 # define VM_MAPPED_COPY VM_ARCH_1       /* T if mapped copy of data (nommu mmap) */
171 #endif
172
173 #if defined(CONFIG_X86)
174 /* MPX specific bounds table or bounds directory */
175 # define VM_MPX         VM_ARCH_2
176 #endif
177
178 #ifndef VM_GROWSUP
179 # define VM_GROWSUP     VM_NONE
180 #endif
181
182 /* Bits set in the VMA until the stack is in its final location */
183 #define VM_STACK_INCOMPLETE_SETUP       (VM_RAND_READ | VM_SEQ_READ)
184
185 #ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
186 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
187 #endif
188
189 #ifdef CONFIG_STACK_GROWSUP
190 #define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191 #else
192 #define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193 #endif
194
195 /*
196  * Special vmas that are non-mergable, non-mlock()able.
197  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
198  */
199 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
200
201 /* This mask defines which mm->def_flags a process can inherit its parent */
202 #define VM_INIT_DEF_MASK        VM_NOHUGEPAGE
203
204 /*
205  * mapping from the currently active vm_flags protection bits (the
206  * low four bits) to a page protection mask..
207  */
208 extern pgprot_t protection_map[16];
209
210 #define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
211 #define FAULT_FLAG_MKWRITE      0x02    /* Fault was mkwrite of existing pte */
212 #define FAULT_FLAG_ALLOW_RETRY  0x04    /* Retry fault if blocking */
213 #define FAULT_FLAG_RETRY_NOWAIT 0x08    /* Don't drop mmap_sem and wait when retrying */
214 #define FAULT_FLAG_KILLABLE     0x10    /* The fault task is in SIGKILL killable region */
215 #define FAULT_FLAG_TRIED        0x20    /* Second try */
216 #define FAULT_FLAG_USER         0x40    /* The fault originated in userspace */
217
218 /*
219  * vm_fault is filled by the the pagefault handler and passed to the vma's
220  * ->fault function. The vma's ->fault is responsible for returning a bitmask
221  * of VM_FAULT_xxx flags that give details about how the fault was handled.
222  *
223  * pgoff should be used in favour of virtual_address, if possible.
224  */
225 struct vm_fault {
226         unsigned int flags;             /* FAULT_FLAG_xxx flags */
227         pgoff_t pgoff;                  /* Logical page offset based on vma */
228         void __user *virtual_address;   /* Faulting virtual address */
229
230         struct page *cow_page;          /* Handler may choose to COW */
231         struct page *page;              /* ->fault handlers should return a
232                                          * page here, unless VM_FAULT_NOPAGE
233                                          * is set (which is also implied by
234                                          * VM_FAULT_ERROR).
235                                          */
236         /* for ->map_pages() only */
237         pgoff_t max_pgoff;              /* map pages for offset from pgoff till
238                                          * max_pgoff inclusive */
239         pte_t *pte;                     /* pte entry associated with ->pgoff */
240 };
241
242 /*
243  * These are the virtual MM functions - opening of an area, closing and
244  * unmapping it (needed to keep files on disk up-to-date etc), pointer
245  * to the functions called when a no-page or a wp-page exception occurs. 
246  */
247 struct vm_operations_struct {
248         void (*open)(struct vm_area_struct * area);
249         void (*close)(struct vm_area_struct * area);
250         int (*mremap)(struct vm_area_struct * area);
251         int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
252         int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
253                                                 pmd_t *, unsigned int flags);
254         void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
255
256         /* notification that a previously read-only page is about to become
257          * writable, if an error is returned it will cause a SIGBUS */
258         int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
259
260         /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
261         int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
262
263         /* called by access_process_vm when get_user_pages() fails, typically
264          * for use by special VMAs that can switch between memory and hardware
265          */
266         int (*access)(struct vm_area_struct *vma, unsigned long addr,
267                       void *buf, int len, int write);
268
269         /* Called by the /proc/PID/maps code to ask the vma whether it
270          * has a special name.  Returning non-NULL will also cause this
271          * vma to be dumped unconditionally. */
272         const char *(*name)(struct vm_area_struct *vma);
273
274 #ifdef CONFIG_NUMA
275         /*
276          * set_policy() op must add a reference to any non-NULL @new mempolicy
277          * to hold the policy upon return.  Caller should pass NULL @new to
278          * remove a policy and fall back to surrounding context--i.e. do not
279          * install a MPOL_DEFAULT policy, nor the task or system default
280          * mempolicy.
281          */
282         int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
283
284         /*
285          * get_policy() op must add reference [mpol_get()] to any policy at
286          * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
287          * in mm/mempolicy.c will do this automatically.
288          * get_policy() must NOT add a ref if the policy at (vma,addr) is not
289          * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
290          * If no [shared/vma] mempolicy exists at the addr, get_policy() op
291          * must return NULL--i.e., do not "fallback" to task or system default
292          * policy.
293          */
294         struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
295                                         unsigned long addr);
296 #endif
297         /*
298          * Called by vm_normal_page() for special PTEs to find the
299          * page for @addr.  This is useful if the default behavior
300          * (using pte_page()) would not find the correct page.
301          */
302         struct page *(*find_special_page)(struct vm_area_struct *vma,
303                                           unsigned long addr);
304 };
305
306 struct mmu_gather;
307 struct inode;
308
309 #define page_private(page)              ((page)->private)
310 #define set_page_private(page, v)       ((page)->private = (v))
311
312 /*
313  * FIXME: take this include out, include page-flags.h in
314  * files which need it (119 of them)
315  */
316 #include <linux/page-flags.h>
317 #include <linux/huge_mm.h>
318
319 /*
320  * Methods to modify the page usage count.
321  *
322  * What counts for a page usage:
323  * - cache mapping   (page->mapping)
324  * - private data    (page->private)
325  * - page mapped in a task's page tables, each mapping
326  *   is counted separately
327  *
328  * Also, many kernel routines increase the page count before a critical
329  * routine so they can be sure the page doesn't go away from under them.
330  */
331
332 /*
333  * Drop a ref, return true if the refcount fell to zero (the page has no users)
334  */
335 static inline int put_page_testzero(struct page *page)
336 {
337         VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
338         return atomic_dec_and_test(&page->_count);
339 }
340
341 /*
342  * Try to grab a ref unless the page has a refcount of zero, return false if
343  * that is the case.
344  * This can be called when MMU is off so it must not access
345  * any of the virtual mappings.
346  */
347 static inline int get_page_unless_zero(struct page *page)
348 {
349         return atomic_inc_not_zero(&page->_count);
350 }
351
352 extern int page_is_ram(unsigned long pfn);
353 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
354
355 /* Support for virtually mapped pages */
356 struct page *vmalloc_to_page(const void *addr);
357 unsigned long vmalloc_to_pfn(const void *addr);
358
359 /*
360  * Determine if an address is within the vmalloc range
361  *
362  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
363  * is no special casing required.
364  */
365 static inline int is_vmalloc_addr(const void *x)
366 {
367 #ifdef CONFIG_MMU
368         unsigned long addr = (unsigned long)x;
369
370         return addr >= VMALLOC_START && addr < VMALLOC_END;
371 #else
372         return 0;
373 #endif
374 }
375 #ifdef CONFIG_MMU
376 extern int is_vmalloc_or_module_addr(const void *x);
377 #else
378 static inline int is_vmalloc_or_module_addr(const void *x)
379 {
380         return 0;
381 }
382 #endif
383
384 extern void kvfree(const void *addr);
385
386 static inline void compound_lock(struct page *page)
387 {
388 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
389         VM_BUG_ON_PAGE(PageSlab(page), page);
390         bit_spin_lock(PG_compound_lock, &page->flags);
391 #endif
392 }
393
394 static inline void compound_unlock(struct page *page)
395 {
396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
397         VM_BUG_ON_PAGE(PageSlab(page), page);
398         bit_spin_unlock(PG_compound_lock, &page->flags);
399 #endif
400 }
401
402 static inline unsigned long compound_lock_irqsave(struct page *page)
403 {
404         unsigned long uninitialized_var(flags);
405 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
406         local_irq_save(flags);
407         compound_lock(page);
408 #endif
409         return flags;
410 }
411
412 static inline void compound_unlock_irqrestore(struct page *page,
413                                               unsigned long flags)
414 {
415 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
416         compound_unlock(page);
417         local_irq_restore(flags);
418 #endif
419 }
420
421 static inline struct page *compound_head_by_tail(struct page *tail)
422 {
423         struct page *head = tail->first_page;
424
425         /*
426          * page->first_page may be a dangling pointer to an old
427          * compound page, so recheck that it is still a tail
428          * page before returning.
429          */
430         smp_rmb();
431         if (likely(PageTail(tail)))
432                 return head;
433         return tail;
434 }
435
436 /*
437  * Since either compound page could be dismantled asynchronously in THP
438  * or we access asynchronously arbitrary positioned struct page, there
439  * would be tail flag race. To handle this race, we should call
440  * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
441  */
442 static inline struct page *compound_head(struct page *page)
443 {
444         if (unlikely(PageTail(page)))
445                 return compound_head_by_tail(page);
446         return page;
447 }
448
449 /*
450  * If we access compound page synchronously such as access to
451  * allocated page, there is no need to handle tail flag race, so we can
452  * check tail flag directly without any synchronization primitive.
453  */
454 static inline struct page *compound_head_fast(struct page *page)
455 {
456         if (unlikely(PageTail(page)))
457                 return page->first_page;
458         return page;
459 }
460
461 /*
462  * The atomic page->_mapcount, starts from -1: so that transitions
463  * both from it and to it can be tracked, using atomic_inc_and_test
464  * and atomic_add_negative(-1).
465  */
466 static inline void page_mapcount_reset(struct page *page)
467 {
468         atomic_set(&(page)->_mapcount, -1);
469 }
470
471 static inline int page_mapcount(struct page *page)
472 {
473         VM_BUG_ON_PAGE(PageSlab(page), page);
474         return atomic_read(&page->_mapcount) + 1;
475 }
476
477 static inline int page_count(struct page *page)
478 {
479         return atomic_read(&compound_head(page)->_count);
480 }
481
482 static inline bool __compound_tail_refcounted(struct page *page)
483 {
484         return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
485 }
486
487 /*
488  * This takes a head page as parameter and tells if the
489  * tail page reference counting can be skipped.
490  *
491  * For this to be safe, PageSlab and PageHeadHuge must remain true on
492  * any given page where they return true here, until all tail pins
493  * have been released.
494  */
495 static inline bool compound_tail_refcounted(struct page *page)
496 {
497         VM_BUG_ON_PAGE(!PageHead(page), page);
498         return __compound_tail_refcounted(page);
499 }
500
501 static inline void get_huge_page_tail(struct page *page)
502 {
503         /*
504          * __split_huge_page_refcount() cannot run from under us.
505          */
506         VM_BUG_ON_PAGE(!PageTail(page), page);
507         VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
508         VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
509         if (compound_tail_refcounted(page->first_page))
510                 atomic_inc(&page->_mapcount);
511 }
512
513 extern bool __get_page_tail(struct page *page);
514
515 static inline void get_page(struct page *page)
516 {
517         if (unlikely(PageTail(page)))
518                 if (likely(__get_page_tail(page)))
519                         return;
520         /*
521          * Getting a normal page or the head of a compound page
522          * requires to already have an elevated page->_count.
523          */
524         VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
525         atomic_inc(&page->_count);
526 }
527
528 static inline struct page *virt_to_head_page(const void *x)
529 {
530         struct page *page = virt_to_page(x);
531
532         /*
533          * We don't need to worry about synchronization of tail flag
534          * when we call virt_to_head_page() since it is only called for
535          * already allocated page and this page won't be freed until
536          * this virt_to_head_page() is finished. So use _fast variant.
537          */
538         return compound_head_fast(page);
539 }
540
541 /*
542  * Setup the page count before being freed into the page allocator for
543  * the first time (boot or memory hotplug)
544  */
545 static inline void init_page_count(struct page *page)
546 {
547         atomic_set(&page->_count, 1);
548 }
549
550 void put_page(struct page *page);
551 void put_pages_list(struct list_head *pages);
552
553 void split_page(struct page *page, unsigned int order);
554 int split_free_page(struct page *page);
555
556 /*
557  * Compound pages have a destructor function.  Provide a
558  * prototype for that function and accessor functions.
559  * These are _only_ valid on the head of a PG_compound page.
560  */
561
562 static inline void set_compound_page_dtor(struct page *page,
563                                                 compound_page_dtor *dtor)
564 {
565         page[1].compound_dtor = dtor;
566 }
567
568 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
569 {
570         return page[1].compound_dtor;
571 }
572
573 static inline int compound_order(struct page *page)
574 {
575         if (!PageHead(page))
576                 return 0;
577         return page[1].compound_order;
578 }
579
580 static inline void set_compound_order(struct page *page, unsigned long order)
581 {
582         page[1].compound_order = order;
583 }
584
585 #ifdef CONFIG_MMU
586 /*
587  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
588  * servicing faults for write access.  In the normal case, do always want
589  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
590  * that do not have writing enabled, when used by access_process_vm.
591  */
592 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
593 {
594         if (likely(vma->vm_flags & VM_WRITE))
595                 pte = pte_mkwrite(pte);
596         return pte;
597 }
598
599 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
600                 struct page *page, pte_t *pte, bool write, bool anon);
601 #endif
602
603 /*
604  * Multiple processes may "see" the same page. E.g. for untouched
605  * mappings of /dev/null, all processes see the same page full of
606  * zeroes, and text pages of executables and shared libraries have
607  * only one copy in memory, at most, normally.
608  *
609  * For the non-reserved pages, page_count(page) denotes a reference count.
610  *   page_count() == 0 means the page is free. page->lru is then used for
611  *   freelist management in the buddy allocator.
612  *   page_count() > 0  means the page has been allocated.
613  *
614  * Pages are allocated by the slab allocator in order to provide memory
615  * to kmalloc and kmem_cache_alloc. In this case, the management of the
616  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
617  * unless a particular usage is carefully commented. (the responsibility of
618  * freeing the kmalloc memory is the caller's, of course).
619  *
620  * A page may be used by anyone else who does a __get_free_page().
621  * In this case, page_count still tracks the references, and should only
622  * be used through the normal accessor functions. The top bits of page->flags
623  * and page->virtual store page management information, but all other fields
624  * are unused and could be used privately, carefully. The management of this
625  * page is the responsibility of the one who allocated it, and those who have
626  * subsequently been given references to it.
627  *
628  * The other pages (we may call them "pagecache pages") are completely
629  * managed by the Linux memory manager: I/O, buffers, swapping etc.
630  * The following discussion applies only to them.
631  *
632  * A pagecache page contains an opaque `private' member, which belongs to the
633  * page's address_space. Usually, this is the address of a circular list of
634  * the page's disk buffers. PG_private must be set to tell the VM to call
635  * into the filesystem to release these pages.
636  *
637  * A page may belong to an inode's memory mapping. In this case, page->mapping
638  * is the pointer to the inode, and page->index is the file offset of the page,
639  * in units of PAGE_CACHE_SIZE.
640  *
641  * If pagecache pages are not associated with an inode, they are said to be
642  * anonymous pages. These may become associated with the swapcache, and in that
643  * case PG_swapcache is set, and page->private is an offset into the swapcache.
644  *
645  * In either case (swapcache or inode backed), the pagecache itself holds one
646  * reference to the page. Setting PG_private should also increment the
647  * refcount. The each user mapping also has a reference to the page.
648  *
649  * The pagecache pages are stored in a per-mapping radix tree, which is
650  * rooted at mapping->page_tree, and indexed by offset.
651  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
652  * lists, we instead now tag pages as dirty/writeback in the radix tree.
653  *
654  * All pagecache pages may be subject to I/O:
655  * - inode pages may need to be read from disk,
656  * - inode pages which have been modified and are MAP_SHARED may need
657  *   to be written back to the inode on disk,
658  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
659  *   modified may need to be swapped out to swap space and (later) to be read
660  *   back into memory.
661  */
662
663 /*
664  * The zone field is never updated after free_area_init_core()
665  * sets it, so none of the operations on it need to be atomic.
666  */
667
668 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
669 #define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
670 #define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
671 #define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)
672 #define LAST_CPUPID_PGOFF       (ZONES_PGOFF - LAST_CPUPID_WIDTH)
673
674 /*
675  * Define the bit shifts to access each section.  For non-existent
676  * sections we define the shift as 0; that plus a 0 mask ensures
677  * the compiler will optimise away reference to them.
678  */
679 #define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
680 #define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
681 #define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))
682 #define LAST_CPUPID_PGSHIFT     (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
683
684 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
685 #ifdef NODE_NOT_IN_PAGE_FLAGS
686 #define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
687 #define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
688                                                 SECTIONS_PGOFF : ZONES_PGOFF)
689 #else
690 #define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
691 #define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
692                                                 NODES_PGOFF : ZONES_PGOFF)
693 #endif
694
695 #define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
696
697 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
698 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
699 #endif
700
701 #define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
702 #define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
703 #define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
704 #define LAST_CPUPID_MASK        ((1UL << LAST_CPUPID_SHIFT) - 1)
705 #define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)
706
707 static inline enum zone_type page_zonenum(const struct page *page)
708 {
709         return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
710 }
711
712 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
713 #define SECTION_IN_PAGE_FLAGS
714 #endif
715
716 /*
717  * The identification function is mainly used by the buddy allocator for
718  * determining if two pages could be buddies. We are not really identifying
719  * the zone since we could be using the section number id if we do not have
720  * node id available in page flags.
721  * We only guarantee that it will return the same value for two combinable
722  * pages in a zone.
723  */
724 static inline int page_zone_id(struct page *page)
725 {
726         return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
727 }
728
729 static inline int zone_to_nid(struct zone *zone)
730 {
731 #ifdef CONFIG_NUMA
732         return zone->node;
733 #else
734         return 0;
735 #endif
736 }
737
738 #ifdef NODE_NOT_IN_PAGE_FLAGS
739 extern int page_to_nid(const struct page *page);
740 #else
741 static inline int page_to_nid(const struct page *page)
742 {
743         return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
744 }
745 #endif
746
747 #ifdef CONFIG_NUMA_BALANCING
748 static inline int cpu_pid_to_cpupid(int cpu, int pid)
749 {
750         return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
751 }
752
753 static inline int cpupid_to_pid(int cpupid)
754 {
755         return cpupid & LAST__PID_MASK;
756 }
757
758 static inline int cpupid_to_cpu(int cpupid)
759 {
760         return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
761 }
762
763 static inline int cpupid_to_nid(int cpupid)
764 {
765         return cpu_to_node(cpupid_to_cpu(cpupid));
766 }
767
768 static inline bool cpupid_pid_unset(int cpupid)
769 {
770         return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
771 }
772
773 static inline bool cpupid_cpu_unset(int cpupid)
774 {
775         return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
776 }
777
778 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
779 {
780         return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
781 }
782
783 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
784 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
785 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
786 {
787         return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
788 }
789
790 static inline int page_cpupid_last(struct page *page)
791 {
792         return page->_last_cpupid;
793 }
794 static inline void page_cpupid_reset_last(struct page *page)
795 {
796         page->_last_cpupid = -1 & LAST_CPUPID_MASK;
797 }
798 #else
799 static inline int page_cpupid_last(struct page *page)
800 {
801         return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
802 }
803
804 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
805
806 static inline void page_cpupid_reset_last(struct page *page)
807 {
808         int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
809
810         page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
811         page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
812 }
813 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
814 #else /* !CONFIG_NUMA_BALANCING */
815 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
816 {
817         return page_to_nid(page); /* XXX */
818 }
819
820 static inline int page_cpupid_last(struct page *page)
821 {
822         return page_to_nid(page); /* XXX */
823 }
824
825 static inline int cpupid_to_nid(int cpupid)
826 {
827         return -1;
828 }
829
830 static inline int cpupid_to_pid(int cpupid)
831 {
832         return -1;
833 }
834
835 static inline int cpupid_to_cpu(int cpupid)
836 {
837         return -1;
838 }
839
840 static inline int cpu_pid_to_cpupid(int nid, int pid)
841 {
842         return -1;
843 }
844
845 static inline bool cpupid_pid_unset(int cpupid)
846 {
847         return 1;
848 }
849
850 static inline void page_cpupid_reset_last(struct page *page)
851 {
852 }
853
854 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
855 {
856         return false;
857 }
858 #endif /* CONFIG_NUMA_BALANCING */
859
860 static inline struct zone *page_zone(const struct page *page)
861 {
862         return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
863 }
864
865 #ifdef SECTION_IN_PAGE_FLAGS
866 static inline void set_page_section(struct page *page, unsigned long section)
867 {
868         page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
869         page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
870 }
871
872 static inline unsigned long page_to_section(const struct page *page)
873 {
874         return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
875 }
876 #endif
877
878 static inline void set_page_zone(struct page *page, enum zone_type zone)
879 {
880         page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
881         page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
882 }
883
884 static inline void set_page_node(struct page *page, unsigned long node)
885 {
886         page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
887         page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
888 }
889
890 static inline void set_page_links(struct page *page, enum zone_type zone,
891         unsigned long node, unsigned long pfn)
892 {
893         set_page_zone(page, zone);
894         set_page_node(page, node);
895 #ifdef SECTION_IN_PAGE_FLAGS
896         set_page_section(page, pfn_to_section_nr(pfn));
897 #endif
898 }
899
900 /*
901  * Some inline functions in vmstat.h depend on page_zone()
902  */
903 #include <linux/vmstat.h>
904
905 static __always_inline void *lowmem_page_address(const struct page *page)
906 {
907         return __va(PFN_PHYS(page_to_pfn(page)));
908 }
909
910 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
911 #define HASHED_PAGE_VIRTUAL
912 #endif
913
914 #if defined(WANT_PAGE_VIRTUAL)
915 static inline void *page_address(const struct page *page)
916 {
917         return page->virtual;
918 }
919 static inline void set_page_address(struct page *page, void *address)
920 {
921         page->virtual = address;
922 }
923 #define page_address_init()  do { } while(0)
924 #endif
925
926 #if defined(HASHED_PAGE_VIRTUAL)
927 void *page_address(const struct page *page);
928 void set_page_address(struct page *page, void *virtual);
929 void page_address_init(void);
930 #endif
931
932 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
933 #define page_address(page) lowmem_page_address(page)
934 #define set_page_address(page, address)  do { } while(0)
935 #define page_address_init()  do { } while(0)
936 #endif
937
938 extern void *page_rmapping(struct page *page);
939 extern struct anon_vma *page_anon_vma(struct page *page);
940 extern struct address_space *page_mapping(struct page *page);
941
942 extern struct address_space *__page_file_mapping(struct page *);
943
944 static inline
945 struct address_space *page_file_mapping(struct page *page)
946 {
947         if (unlikely(PageSwapCache(page)))
948                 return __page_file_mapping(page);
949
950         return page->mapping;
951 }
952
953 /*
954  * Return the pagecache index of the passed page.  Regular pagecache pages
955  * use ->index whereas swapcache pages use ->private
956  */
957 static inline pgoff_t page_index(struct page *page)
958 {
959         if (unlikely(PageSwapCache(page)))
960                 return page_private(page);
961         return page->index;
962 }
963
964 extern pgoff_t __page_file_index(struct page *page);
965
966 /*
967  * Return the file index of the page. Regular pagecache pages use ->index
968  * whereas swapcache pages use swp_offset(->private)
969  */
970 static inline pgoff_t page_file_index(struct page *page)
971 {
972         if (unlikely(PageSwapCache(page)))
973                 return __page_file_index(page);
974
975         return page->index;
976 }
977
978 /*
979  * Return true if this page is mapped into pagetables.
980  */
981 static inline int page_mapped(struct page *page)
982 {
983         return atomic_read(&(page)->_mapcount) >= 0;
984 }
985
986 /*
987  * Return true only if the page has been allocated with
988  * ALLOC_NO_WATERMARKS and the low watermark was not
989  * met implying that the system is under some pressure.
990  */
991 static inline bool page_is_pfmemalloc(struct page *page)
992 {
993         /*
994          * Page index cannot be this large so this must be
995          * a pfmemalloc page.
996          */
997         return page->index == -1UL;
998 }
999
1000 /*
1001  * Only to be called by the page allocator on a freshly allocated
1002  * page.
1003  */
1004 static inline void set_page_pfmemalloc(struct page *page)
1005 {
1006         page->index = -1UL;
1007 }
1008
1009 static inline void clear_page_pfmemalloc(struct page *page)
1010 {
1011         page->index = 0;
1012 }
1013
1014 /*
1015  * Different kinds of faults, as returned by handle_mm_fault().
1016  * Used to decide whether a process gets delivered SIGBUS or
1017  * just gets major/minor fault counters bumped up.
1018  */
1019
1020 #define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */
1021
1022 #define VM_FAULT_OOM    0x0001
1023 #define VM_FAULT_SIGBUS 0x0002
1024 #define VM_FAULT_MAJOR  0x0004
1025 #define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */
1026 #define VM_FAULT_HWPOISON 0x0010        /* Hit poisoned small page */
1027 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1028 #define VM_FAULT_SIGSEGV 0x0040
1029
1030 #define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
1031 #define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */
1032 #define VM_FAULT_RETRY  0x0400  /* ->fault blocked, must retry */
1033 #define VM_FAULT_FALLBACK 0x0800        /* huge page fault failed, fall back to small */
1034
1035 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1036
1037 #define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1038                          VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1039                          VM_FAULT_FALLBACK)
1040
1041 /* Encode hstate index for a hwpoisoned large page */
1042 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1043 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1044
1045 /*
1046  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1047  */
1048 extern void pagefault_out_of_memory(void);
1049
1050 #define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)
1051
1052 /*
1053  * Flags passed to show_mem() and show_free_areas() to suppress output in
1054  * various contexts.
1055  */
1056 #define SHOW_MEM_FILTER_NODES           (0x0001u)       /* disallowed nodes */
1057
1058 extern void show_free_areas(unsigned int flags);
1059 extern bool skip_free_areas_node(unsigned int flags, int nid);
1060
1061 int shmem_zero_setup(struct vm_area_struct *);
1062 #ifdef CONFIG_SHMEM
1063 bool shmem_mapping(struct address_space *mapping);
1064 #else
1065 static inline bool shmem_mapping(struct address_space *mapping)
1066 {
1067         return false;
1068 }
1069 #endif
1070
1071 extern int can_do_mlock(void);
1072 extern int user_shm_lock(size_t, struct user_struct *);
1073 extern void user_shm_unlock(size_t, struct user_struct *);
1074
1075 /*
1076  * Parameter block passed down to zap_pte_range in exceptional cases.
1077  */
1078 struct zap_details {
1079         struct address_space *check_mapping;    /* Check page->mapping if set */
1080         pgoff_t first_index;                    /* Lowest page->index to unmap */
1081         pgoff_t last_index;                     /* Highest page->index to unmap */
1082 };
1083
1084 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1085                 pte_t pte);
1086
1087 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1088                 unsigned long size);
1089 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1090                 unsigned long size, struct zap_details *);
1091 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1092                 unsigned long start, unsigned long end);
1093
1094 /**
1095  * mm_walk - callbacks for walk_page_range
1096  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1097  *             this handler is required to be able to handle
1098  *             pmd_trans_huge() pmds.  They may simply choose to
1099  *             split_huge_page() instead of handling it explicitly.
1100  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1101  * @pte_hole: if set, called for each hole at all levels
1102  * @hugetlb_entry: if set, called for each hugetlb entry
1103  * @test_walk: caller specific callback function to determine whether
1104  *             we walk over the current vma or not. A positive returned
1105  *             value means "do page table walk over the current vma,"
1106  *             and a negative one means "abort current page table walk
1107  *             right now." 0 means "skip the current vma."
1108  * @mm:        mm_struct representing the target process of page table walk
1109  * @vma:       vma currently walked (NULL if walking outside vmas)
1110  * @private:   private data for callbacks' usage
1111  *
1112  * (see the comment on walk_page_range() for more details)
1113  */
1114 struct mm_walk {
1115         int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1116                          unsigned long next, struct mm_walk *walk);
1117         int (*pte_entry)(pte_t *pte, unsigned long addr,
1118                          unsigned long next, struct mm_walk *walk);
1119         int (*pte_hole)(unsigned long addr, unsigned long next,
1120                         struct mm_walk *walk);
1121         int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1122                              unsigned long addr, unsigned long next,
1123                              struct mm_walk *walk);
1124         int (*test_walk)(unsigned long addr, unsigned long next,
1125                         struct mm_walk *walk);
1126         struct mm_struct *mm;
1127         struct vm_area_struct *vma;
1128         void *private;
1129 };
1130
1131 int walk_page_range(unsigned long addr, unsigned long end,
1132                 struct mm_walk *walk);
1133 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1134 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1135                 unsigned long end, unsigned long floor, unsigned long ceiling);
1136 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1137                         struct vm_area_struct *vma);
1138 void unmap_mapping_range(struct address_space *mapping,
1139                 loff_t const holebegin, loff_t const holelen, int even_cows);
1140 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1141         unsigned long *pfn);
1142 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1143                 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1144 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1145                         void *buf, int len, int write);
1146
1147 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1148                 loff_t const holebegin, loff_t const holelen)
1149 {
1150         unmap_mapping_range(mapping, holebegin, holelen, 0);
1151 }
1152
1153 extern void truncate_pagecache(struct inode *inode, loff_t new);
1154 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1155 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1156 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1157 int truncate_inode_page(struct address_space *mapping, struct page *page);
1158 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1159 int invalidate_inode_page(struct page *page);
1160
1161 #ifdef CONFIG_MMU
1162 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1163                         unsigned long address, unsigned int flags);
1164 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1165                             unsigned long address, unsigned int fault_flags);
1166 #else
1167 static inline int handle_mm_fault(struct mm_struct *mm,
1168                         struct vm_area_struct *vma, unsigned long address,
1169                         unsigned int flags)
1170 {
1171         /* should never happen if there's no MMU */
1172         BUG();
1173         return VM_FAULT_SIGBUS;
1174 }
1175 static inline int fixup_user_fault(struct task_struct *tsk,
1176                 struct mm_struct *mm, unsigned long address,
1177                 unsigned int fault_flags)
1178 {
1179         /* should never happen if there's no MMU */
1180         BUG();
1181         return -EFAULT;
1182 }
1183 #endif
1184
1185 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1186 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1187                 void *buf, int len, int write);
1188
1189 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1190                       unsigned long start, unsigned long nr_pages,
1191                       unsigned int foll_flags, struct page **pages,
1192                       struct vm_area_struct **vmas, int *nonblocking);
1193 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1194                     unsigned long start, unsigned long nr_pages,
1195                     int write, int force, struct page **pages,
1196                     struct vm_area_struct **vmas);
1197 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1198                     unsigned long start, unsigned long nr_pages,
1199                     int write, int force, struct page **pages,
1200                     int *locked);
1201 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1202                                unsigned long start, unsigned long nr_pages,
1203                                int write, int force, struct page **pages,
1204                                unsigned int gup_flags);
1205 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1206                     unsigned long start, unsigned long nr_pages,
1207                     int write, int force, struct page **pages);
1208 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1209                         struct page **pages);
1210 struct kvec;
1211 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1212                         struct page **pages);
1213 int get_kernel_page(unsigned long start, int write, struct page **pages);
1214 struct page *get_dump_page(unsigned long addr);
1215
1216 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1217 extern void do_invalidatepage(struct page *page, unsigned int offset,
1218                               unsigned int length);
1219
1220 int __set_page_dirty_nobuffers(struct page *page);
1221 int __set_page_dirty_no_writeback(struct page *page);
1222 int redirty_page_for_writepage(struct writeback_control *wbc,
1223                                 struct page *page);
1224 void account_page_dirtied(struct page *page, struct address_space *mapping,
1225                           struct mem_cgroup *memcg);
1226 void account_page_cleaned(struct page *page, struct address_space *mapping,
1227                           struct mem_cgroup *memcg, struct bdi_writeback *wb);
1228 int set_page_dirty(struct page *page);
1229 int set_page_dirty_lock(struct page *page);
1230 void cancel_dirty_page(struct page *page);
1231 int clear_page_dirty_for_io(struct page *page);
1232
1233 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1234
1235 /* Is the vma a continuation of the stack vma above it? */
1236 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1237 {
1238         return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1239 }
1240
1241 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1242 {
1243         return !vma->vm_ops;
1244 }
1245
1246 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1247                                              unsigned long addr)
1248 {
1249         return (vma->vm_flags & VM_GROWSDOWN) &&
1250                 (vma->vm_start == addr) &&
1251                 !vma_growsdown(vma->vm_prev, addr);
1252 }
1253
1254 /* Is the vma a continuation of the stack vma below it? */
1255 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1256 {
1257         return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1258 }
1259
1260 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1261                                            unsigned long addr)
1262 {
1263         return (vma->vm_flags & VM_GROWSUP) &&
1264                 (vma->vm_end == addr) &&
1265                 !vma_growsup(vma->vm_next, addr);
1266 }
1267
1268 extern struct task_struct *task_of_stack(struct task_struct *task,
1269                                 struct vm_area_struct *vma, bool in_group);
1270
1271 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1272                 unsigned long old_addr, struct vm_area_struct *new_vma,
1273                 unsigned long new_addr, unsigned long len,
1274                 bool need_rmap_locks);
1275 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1276                               unsigned long end, pgprot_t newprot,
1277                               int dirty_accountable, int prot_numa);
1278 extern int mprotect_fixup(struct vm_area_struct *vma,
1279                           struct vm_area_struct **pprev, unsigned long start,
1280                           unsigned long end, unsigned long newflags);
1281
1282 /*
1283  * doesn't attempt to fault and will return short.
1284  */
1285 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1286                           struct page **pages);
1287 /*
1288  * per-process(per-mm_struct) statistics.
1289  */
1290 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1291 {
1292         long val = atomic_long_read(&mm->rss_stat.count[member]);
1293
1294 #ifdef SPLIT_RSS_COUNTING
1295         /*
1296          * counter is updated in asynchronous manner and may go to minus.
1297          * But it's never be expected number for users.
1298          */
1299         if (val < 0)
1300                 val = 0;
1301 #endif
1302         return (unsigned long)val;
1303 }
1304
1305 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1306 {
1307         atomic_long_add(value, &mm->rss_stat.count[member]);
1308 }
1309
1310 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1311 {
1312         atomic_long_inc(&mm->rss_stat.count[member]);
1313 }
1314
1315 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1316 {
1317         atomic_long_dec(&mm->rss_stat.count[member]);
1318 }
1319
1320 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1321 {
1322         return get_mm_counter(mm, MM_FILEPAGES) +
1323                 get_mm_counter(mm, MM_ANONPAGES);
1324 }
1325
1326 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1327 {
1328         return max(mm->hiwater_rss, get_mm_rss(mm));
1329 }
1330
1331 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1332 {
1333         return max(mm->hiwater_vm, mm->total_vm);
1334 }
1335
1336 static inline void update_hiwater_rss(struct mm_struct *mm)
1337 {
1338         unsigned long _rss = get_mm_rss(mm);
1339
1340         if ((mm)->hiwater_rss < _rss)
1341                 (mm)->hiwater_rss = _rss;
1342 }
1343
1344 static inline void update_hiwater_vm(struct mm_struct *mm)
1345 {
1346         if (mm->hiwater_vm < mm->total_vm)
1347                 mm->hiwater_vm = mm->total_vm;
1348 }
1349
1350 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1351 {
1352         mm->hiwater_rss = get_mm_rss(mm);
1353 }
1354
1355 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1356                                          struct mm_struct *mm)
1357 {
1358         unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1359
1360         if (*maxrss < hiwater_rss)
1361                 *maxrss = hiwater_rss;
1362 }
1363
1364 #if defined(SPLIT_RSS_COUNTING)
1365 void sync_mm_rss(struct mm_struct *mm);
1366 #else
1367 static inline void sync_mm_rss(struct mm_struct *mm)
1368 {
1369 }
1370 #endif
1371
1372 int vma_wants_writenotify(struct vm_area_struct *vma);
1373
1374 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1375                                spinlock_t **ptl);
1376 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1377                                     spinlock_t **ptl)
1378 {
1379         pte_t *ptep;
1380         __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1381         return ptep;
1382 }
1383
1384 #ifdef __PAGETABLE_PUD_FOLDED
1385 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1386                                                 unsigned long address)
1387 {
1388         return 0;
1389 }
1390 #else
1391 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1392 #endif
1393
1394 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1395 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1396                                                 unsigned long address)
1397 {
1398         return 0;
1399 }
1400
1401 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1402
1403 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1404 {
1405         return 0;
1406 }
1407
1408 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1409 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1410
1411 #else
1412 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1413
1414 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1415 {
1416         atomic_long_set(&mm->nr_pmds, 0);
1417 }
1418
1419 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1420 {
1421         return atomic_long_read(&mm->nr_pmds);
1422 }
1423
1424 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1425 {
1426         atomic_long_inc(&mm->nr_pmds);
1427 }
1428
1429 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1430 {
1431         atomic_long_dec(&mm->nr_pmds);
1432 }
1433 #endif
1434
1435 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1436                 pmd_t *pmd, unsigned long address);
1437 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1438
1439 /*
1440  * The following ifdef needed to get the 4level-fixup.h header to work.
1441  * Remove it when 4level-fixup.h has been removed.
1442  */
1443 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1444 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1445 {
1446         return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1447                 NULL: pud_offset(pgd, address);
1448 }
1449
1450 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1451 {
1452         return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1453                 NULL: pmd_offset(pud, address);
1454 }
1455 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1456
1457 #if USE_SPLIT_PTE_PTLOCKS
1458 #if ALLOC_SPLIT_PTLOCKS
1459 void __init ptlock_cache_init(void);
1460 extern bool ptlock_alloc(struct page *page);
1461 extern void ptlock_free(struct page *page);
1462
1463 static inline spinlock_t *ptlock_ptr(struct page *page)
1464 {
1465         return page->ptl;
1466 }
1467 #else /* ALLOC_SPLIT_PTLOCKS */
1468 static inline void ptlock_cache_init(void)
1469 {
1470 }
1471
1472 static inline bool ptlock_alloc(struct page *page)
1473 {
1474         return true;
1475 }
1476
1477 static inline void ptlock_free(struct page *page)
1478 {
1479 }
1480
1481 static inline spinlock_t *ptlock_ptr(struct page *page)
1482 {
1483         return &page->ptl;
1484 }
1485 #endif /* ALLOC_SPLIT_PTLOCKS */
1486
1487 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1488 {
1489         return ptlock_ptr(pmd_page(*pmd));
1490 }
1491
1492 static inline bool ptlock_init(struct page *page)
1493 {
1494         /*
1495          * prep_new_page() initialize page->private (and therefore page->ptl)
1496          * with 0. Make sure nobody took it in use in between.
1497          *
1498          * It can happen if arch try to use slab for page table allocation:
1499          * slab code uses page->slab_cache and page->first_page (for tail
1500          * pages), which share storage with page->ptl.
1501          */
1502         VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1503         if (!ptlock_alloc(page))
1504                 return false;
1505         spin_lock_init(ptlock_ptr(page));
1506         return true;
1507 }
1508
1509 /* Reset page->mapping so free_pages_check won't complain. */
1510 static inline void pte_lock_deinit(struct page *page)
1511 {
1512         page->mapping = NULL;
1513         ptlock_free(page);
1514 }
1515
1516 #else   /* !USE_SPLIT_PTE_PTLOCKS */
1517 /*
1518  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1519  */
1520 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1521 {
1522         return &mm->page_table_lock;
1523 }
1524 static inline void ptlock_cache_init(void) {}
1525 static inline bool ptlock_init(struct page *page) { return true; }
1526 static inline void pte_lock_deinit(struct page *page) {}
1527 #endif /* USE_SPLIT_PTE_PTLOCKS */
1528
1529 static inline void pgtable_init(void)
1530 {
1531         ptlock_cache_init();
1532         pgtable_cache_init();
1533 }
1534
1535 static inline bool pgtable_page_ctor(struct page *page)
1536 {
1537         inc_zone_page_state(page, NR_PAGETABLE);
1538         return ptlock_init(page);
1539 }
1540
1541 static inline void pgtable_page_dtor(struct page *page)
1542 {
1543         pte_lock_deinit(page);
1544         dec_zone_page_state(page, NR_PAGETABLE);
1545 }
1546
1547 #define pte_offset_map_lock(mm, pmd, address, ptlp)     \
1548 ({                                                      \
1549         spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
1550         pte_t *__pte = pte_offset_map(pmd, address);    \
1551         *(ptlp) = __ptl;                                \
1552         spin_lock(__ptl);                               \
1553         __pte;                                          \
1554 })
1555
1556 #define pte_unmap_unlock(pte, ptl)      do {            \
1557         spin_unlock(ptl);                               \
1558         pte_unmap(pte);                                 \
1559 } while (0)
1560
1561 #define pte_alloc_map(mm, vma, pmd, address)                            \
1562         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,    \
1563                                                         pmd, address))? \
1564          NULL: pte_offset_map(pmd, address))
1565
1566 #define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
1567         ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,   \
1568                                                         pmd, address))? \
1569                 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1570
1571 #define pte_alloc_kernel(pmd, address)                  \
1572         ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1573                 NULL: pte_offset_kernel(pmd, address))
1574
1575 #if USE_SPLIT_PMD_PTLOCKS
1576
1577 static struct page *pmd_to_page(pmd_t *pmd)
1578 {
1579         unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1580         return virt_to_page((void *)((unsigned long) pmd & mask));
1581 }
1582
1583 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1584 {
1585         return ptlock_ptr(pmd_to_page(pmd));
1586 }
1587
1588 static inline bool pgtable_pmd_page_ctor(struct page *page)
1589 {
1590 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1591         page->pmd_huge_pte = NULL;
1592 #endif
1593         return ptlock_init(page);
1594 }
1595
1596 static inline void pgtable_pmd_page_dtor(struct page *page)
1597 {
1598 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1599         VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1600 #endif
1601         ptlock_free(page);
1602 }
1603
1604 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1605
1606 #else
1607
1608 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1609 {
1610         return &mm->page_table_lock;
1611 }
1612
1613 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1614 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1615
1616 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1617
1618 #endif
1619
1620 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1621 {
1622         spinlock_t *ptl = pmd_lockptr(mm, pmd);
1623         spin_lock(ptl);
1624         return ptl;
1625 }
1626
1627 extern void free_area_init(unsigned long * zones_size);
1628 extern void free_area_init_node(int nid, unsigned long * zones_size,
1629                 unsigned long zone_start_pfn, unsigned long *zholes_size);
1630 extern void free_initmem(void);
1631
1632 /*
1633  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1634  * into the buddy system. The freed pages will be poisoned with pattern
1635  * "poison" if it's within range [0, UCHAR_MAX].
1636  * Return pages freed into the buddy system.
1637  */
1638 extern unsigned long free_reserved_area(void *start, void *end,
1639                                         int poison, char *s);
1640
1641 #ifdef  CONFIG_HIGHMEM
1642 /*
1643  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1644  * and totalram_pages.
1645  */
1646 extern void free_highmem_page(struct page *page);
1647 #endif
1648
1649 extern void adjust_managed_page_count(struct page *page, long count);
1650 extern void mem_init_print_info(const char *str);
1651
1652 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1653
1654 /* Free the reserved page into the buddy system, so it gets managed. */
1655 static inline void __free_reserved_page(struct page *page)
1656 {
1657         ClearPageReserved(page);
1658         init_page_count(page);
1659         __free_page(page);
1660 }
1661
1662 static inline void free_reserved_page(struct page *page)
1663 {
1664         __free_reserved_page(page);
1665         adjust_managed_page_count(page, 1);
1666 }
1667
1668 static inline void mark_page_reserved(struct page *page)
1669 {
1670         SetPageReserved(page);
1671         adjust_managed_page_count(page, -1);
1672 }
1673
1674 /*
1675  * Default method to free all the __init memory into the buddy system.
1676  * The freed pages will be poisoned with pattern "poison" if it's within
1677  * range [0, UCHAR_MAX].
1678  * Return pages freed into the buddy system.
1679  */
1680 static inline unsigned long free_initmem_default(int poison)
1681 {
1682         extern char __init_begin[], __init_end[];
1683
1684         return free_reserved_area(&__init_begin, &__init_end,
1685                                   poison, "unused kernel");
1686 }
1687
1688 static inline unsigned long get_num_physpages(void)
1689 {
1690         int nid;
1691         unsigned long phys_pages = 0;
1692
1693         for_each_online_node(nid)
1694                 phys_pages += node_present_pages(nid);
1695
1696         return phys_pages;
1697 }
1698
1699 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1700 /*
1701  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1702  * zones, allocate the backing mem_map and account for memory holes in a more
1703  * architecture independent manner. This is a substitute for creating the
1704  * zone_sizes[] and zholes_size[] arrays and passing them to
1705  * free_area_init_node()
1706  *
1707  * An architecture is expected to register range of page frames backed by
1708  * physical memory with memblock_add[_node]() before calling
1709  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1710  * usage, an architecture is expected to do something like
1711  *
1712  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1713  *                                                       max_highmem_pfn};
1714  * for_each_valid_physical_page_range()
1715  *      memblock_add_node(base, size, nid)
1716  * free_area_init_nodes(max_zone_pfns);
1717  *
1718  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1719  * registered physical page range.  Similarly
1720  * sparse_memory_present_with_active_regions() calls memory_present() for
1721  * each range when SPARSEMEM is enabled.
1722  *
1723  * See mm/page_alloc.c for more information on each function exposed by
1724  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1725  */
1726 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1727 unsigned long node_map_pfn_alignment(void);
1728 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1729                                                 unsigned long end_pfn);
1730 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1731                                                 unsigned long end_pfn);
1732 extern void get_pfn_range_for_nid(unsigned int nid,
1733                         unsigned long *start_pfn, unsigned long *end_pfn);
1734 extern unsigned long find_min_pfn_with_active_regions(void);
1735 extern void free_bootmem_with_active_regions(int nid,
1736                                                 unsigned long max_low_pfn);
1737 extern void sparse_memory_present_with_active_regions(int nid);
1738
1739 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1740
1741 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1742     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1743 static inline int __early_pfn_to_nid(unsigned long pfn,
1744                                         struct mminit_pfnnid_cache *state)
1745 {
1746         return 0;
1747 }
1748 #else
1749 /* please see mm/page_alloc.c */
1750 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1751 /* there is a per-arch backend function. */
1752 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1753                                         struct mminit_pfnnid_cache *state);
1754 #endif
1755
1756 extern void set_dma_reserve(unsigned long new_dma_reserve);
1757 extern void memmap_init_zone(unsigned long, int, unsigned long,
1758                                 unsigned long, enum memmap_context);
1759 extern void setup_per_zone_wmarks(void);
1760 extern int __meminit init_per_zone_wmark_min(void);
1761 extern void mem_init(void);
1762 extern void __init mmap_init(void);
1763 extern void show_mem(unsigned int flags);
1764 extern void si_meminfo(struct sysinfo * val);
1765 extern void si_meminfo_node(struct sysinfo *val, int nid);
1766
1767 extern __printf(3, 4)
1768 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1769
1770 extern void setup_per_cpu_pageset(void);
1771
1772 extern void zone_pcp_update(struct zone *zone);
1773 extern void zone_pcp_reset(struct zone *zone);
1774
1775 /* page_alloc.c */
1776 extern int min_free_kbytes;
1777
1778 /* nommu.c */
1779 extern atomic_long_t mmap_pages_allocated;
1780 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1781
1782 /* interval_tree.c */
1783 void vma_interval_tree_insert(struct vm_area_struct *node,
1784                               struct rb_root *root);
1785 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1786                                     struct vm_area_struct *prev,
1787                                     struct rb_root *root);
1788 void vma_interval_tree_remove(struct vm_area_struct *node,
1789                               struct rb_root *root);
1790 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1791                                 unsigned long start, unsigned long last);
1792 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1793                                 unsigned long start, unsigned long last);
1794
1795 #define vma_interval_tree_foreach(vma, root, start, last)               \
1796         for (vma = vma_interval_tree_iter_first(root, start, last);     \
1797              vma; vma = vma_interval_tree_iter_next(vma, start, last))
1798
1799 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1800                                    struct rb_root *root);
1801 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1802                                    struct rb_root *root);
1803 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1804         struct rb_root *root, unsigned long start, unsigned long last);
1805 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1806         struct anon_vma_chain *node, unsigned long start, unsigned long last);
1807 #ifdef CONFIG_DEBUG_VM_RB
1808 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1809 #endif
1810
1811 #define anon_vma_interval_tree_foreach(avc, root, start, last)           \
1812         for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1813              avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1814
1815 /* mmap.c */
1816 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1817 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1818         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1819 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1820         struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1821         unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1822         struct mempolicy *, struct vm_userfaultfd_ctx);
1823 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1824 extern int split_vma(struct mm_struct *,
1825         struct vm_area_struct *, unsigned long addr, int new_below);
1826 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1827 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1828         struct rb_node **, struct rb_node *);
1829 extern void unlink_file_vma(struct vm_area_struct *);
1830 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1831         unsigned long addr, unsigned long len, pgoff_t pgoff,
1832         bool *need_rmap_locks);
1833 extern void exit_mmap(struct mm_struct *);
1834
1835 static inline int check_data_rlimit(unsigned long rlim,
1836                                     unsigned long new,
1837                                     unsigned long start,
1838                                     unsigned long end_data,
1839                                     unsigned long start_data)
1840 {
1841         if (rlim < RLIM_INFINITY) {
1842                 if (((new - start) + (end_data - start_data)) > rlim)
1843                         return -ENOSPC;
1844         }
1845
1846         return 0;
1847 }
1848
1849 extern int mm_take_all_locks(struct mm_struct *mm);
1850 extern void mm_drop_all_locks(struct mm_struct *mm);
1851
1852 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1853 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1854
1855 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1856 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1857                                    unsigned long addr, unsigned long len,
1858                                    unsigned long flags,
1859                                    const struct vm_special_mapping *spec);
1860 /* This is an obsolete alternative to _install_special_mapping. */
1861 extern int install_special_mapping(struct mm_struct *mm,
1862                                    unsigned long addr, unsigned long len,
1863                                    unsigned long flags, struct page **pages);
1864
1865 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1866
1867 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1868         unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1869 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1870         unsigned long len, unsigned long prot, unsigned long flags,
1871         unsigned long pgoff, unsigned long *populate);
1872 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1873
1874 #ifdef CONFIG_MMU
1875 extern int __mm_populate(unsigned long addr, unsigned long len,
1876                          int ignore_errors);
1877 static inline void mm_populate(unsigned long addr, unsigned long len)
1878 {
1879         /* Ignore errors */
1880         (void) __mm_populate(addr, len, 1);
1881 }
1882 #else
1883 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1884 #endif
1885
1886 /* These take the mm semaphore themselves */
1887 extern unsigned long vm_brk(unsigned long, unsigned long);
1888 extern int vm_munmap(unsigned long, size_t);
1889 extern unsigned long vm_mmap(struct file *, unsigned long,
1890         unsigned long, unsigned long,
1891         unsigned long, unsigned long);
1892
1893 struct vm_unmapped_area_info {
1894 #define VM_UNMAPPED_AREA_TOPDOWN 1
1895         unsigned long flags;
1896         unsigned long length;
1897         unsigned long low_limit;
1898         unsigned long high_limit;
1899         unsigned long align_mask;
1900         unsigned long align_offset;
1901 };
1902
1903 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1904 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1905
1906 /*
1907  * Search for an unmapped address range.
1908  *
1909  * We are looking for a range that:
1910  * - does not intersect with any VMA;
1911  * - is contained within the [low_limit, high_limit) interval;
1912  * - is at least the desired size.
1913  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1914  */
1915 static inline unsigned long
1916 vm_unmapped_area(struct vm_unmapped_area_info *info)
1917 {
1918         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1919                 return unmapped_area_topdown(info);
1920         else
1921                 return unmapped_area(info);
1922 }
1923
1924 /* truncate.c */
1925 extern void truncate_inode_pages(struct address_space *, loff_t);
1926 extern void truncate_inode_pages_range(struct address_space *,
1927                                        loff_t lstart, loff_t lend);
1928 extern void truncate_inode_pages_final(struct address_space *);
1929
1930 /* generic vm_area_ops exported for stackable file systems */
1931 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1932 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1933 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1934
1935 /* mm/page-writeback.c */
1936 int write_one_page(struct page *page, int wait);
1937 void task_dirty_inc(struct task_struct *tsk);
1938
1939 /* readahead.c */
1940 #define VM_MAX_READAHEAD        128     /* kbytes */
1941 #define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */
1942
1943 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1944                         pgoff_t offset, unsigned long nr_to_read);
1945
1946 void page_cache_sync_readahead(struct address_space *mapping,
1947                                struct file_ra_state *ra,
1948                                struct file *filp,
1949                                pgoff_t offset,
1950                                unsigned long size);
1951
1952 void page_cache_async_readahead(struct address_space *mapping,
1953                                 struct file_ra_state *ra,
1954                                 struct file *filp,
1955                                 struct page *pg,
1956                                 pgoff_t offset,
1957                                 unsigned long size);
1958
1959 unsigned long max_sane_readahead(unsigned long nr);
1960
1961 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1962 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1963
1964 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1965 extern int expand_downwards(struct vm_area_struct *vma,
1966                 unsigned long address);
1967 #if VM_GROWSUP
1968 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1969 #else
1970   #define expand_upwards(vma, address) (0)
1971 #endif
1972
1973 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1974 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1975 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1976                                              struct vm_area_struct **pprev);
1977
1978 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1979    NULL if none.  Assume start_addr < end_addr. */
1980 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1981 {
1982         struct vm_area_struct * vma = find_vma(mm,start_addr);
1983
1984         if (vma && end_addr <= vma->vm_start)
1985                 vma = NULL;
1986         return vma;
1987 }
1988
1989 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1990 {
1991         return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1992 }
1993
1994 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1995 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1996                                 unsigned long vm_start, unsigned long vm_end)
1997 {
1998         struct vm_area_struct *vma = find_vma(mm, vm_start);
1999
2000         if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2001                 vma = NULL;
2002
2003         return vma;
2004 }
2005
2006 #ifdef CONFIG_MMU
2007 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2008 void vma_set_page_prot(struct vm_area_struct *vma);
2009 #else
2010 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2011 {
2012         return __pgprot(0);
2013 }
2014 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2015 {
2016         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2017 }
2018 #endif
2019
2020 #ifdef CONFIG_NUMA_BALANCING
2021 unsigned long change_prot_numa(struct vm_area_struct *vma,
2022                         unsigned long start, unsigned long end);
2023 #endif
2024
2025 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2026 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2027                         unsigned long pfn, unsigned long size, pgprot_t);
2028 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2029 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2030                         unsigned long pfn);
2031 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2032                         unsigned long pfn);
2033 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2034
2035
2036 struct page *follow_page_mask(struct vm_area_struct *vma,
2037                               unsigned long address, unsigned int foll_flags,
2038                               unsigned int *page_mask);
2039
2040 static inline struct page *follow_page(struct vm_area_struct *vma,
2041                 unsigned long address, unsigned int foll_flags)
2042 {
2043         unsigned int unused_page_mask;
2044         return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2045 }
2046
2047 #define FOLL_WRITE      0x01    /* check pte is writable */
2048 #define FOLL_TOUCH      0x02    /* mark page accessed */
2049 #define FOLL_GET        0x04    /* do get_page on page */
2050 #define FOLL_DUMP       0x08    /* give error on hole if it would be zero */
2051 #define FOLL_FORCE      0x10    /* get_user_pages read/write w/o permission */
2052 #define FOLL_NOWAIT     0x20    /* if a disk transfer is needed, start the IO
2053                                  * and return without waiting upon it */
2054 #define FOLL_POPULATE   0x40    /* fault in page */
2055 #define FOLL_SPLIT      0x80    /* don't return transhuge pages, split them */
2056 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2057 #define FOLL_NUMA       0x200   /* force NUMA hinting page fault */
2058 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2059 #define FOLL_TRIED      0x800   /* a retry, previous pass started an IO */
2060
2061 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2062                         void *data);
2063 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2064                                unsigned long size, pte_fn_t fn, void *data);
2065
2066 #ifdef CONFIG_PROC_FS
2067 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2068 #else
2069 static inline void vm_stat_account(struct mm_struct *mm,
2070                         unsigned long flags, struct file *file, long pages)
2071 {
2072         mm->total_vm += pages;
2073 }
2074 #endif /* CONFIG_PROC_FS */
2075
2076 #ifdef CONFIG_DEBUG_PAGEALLOC
2077 extern bool _debug_pagealloc_enabled;
2078 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2079
2080 static inline bool debug_pagealloc_enabled(void)
2081 {
2082         return _debug_pagealloc_enabled;
2083 }
2084
2085 static inline void
2086 kernel_map_pages(struct page *page, int numpages, int enable)
2087 {
2088         if (!debug_pagealloc_enabled())
2089                 return;
2090
2091         __kernel_map_pages(page, numpages, enable);
2092 }
2093 #ifdef CONFIG_HIBERNATION
2094 extern bool kernel_page_present(struct page *page);
2095 #endif /* CONFIG_HIBERNATION */
2096 #else
2097 static inline void
2098 kernel_map_pages(struct page *page, int numpages, int enable) {}
2099 #ifdef CONFIG_HIBERNATION
2100 static inline bool kernel_page_present(struct page *page) { return true; }
2101 #endif /* CONFIG_HIBERNATION */
2102 #endif
2103
2104 #ifdef __HAVE_ARCH_GATE_AREA
2105 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2106 extern int in_gate_area_no_mm(unsigned long addr);
2107 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2108 #else
2109 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2110 {
2111         return NULL;
2112 }
2113 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2114 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2115 {
2116         return 0;
2117 }
2118 #endif  /* __HAVE_ARCH_GATE_AREA */
2119
2120 #ifdef CONFIG_SYSCTL
2121 extern int sysctl_drop_caches;
2122 int drop_caches_sysctl_handler(struct ctl_table *, int,
2123                                         void __user *, size_t *, loff_t *);
2124 #endif
2125
2126 void drop_slab(void);
2127 void drop_slab_node(int nid);
2128
2129 #ifndef CONFIG_MMU
2130 #define randomize_va_space 0
2131 #else
2132 extern int randomize_va_space;
2133 #endif
2134
2135 const char * arch_vma_name(struct vm_area_struct *vma);
2136 void print_vma_addr(char *prefix, unsigned long rip);
2137
2138 void sparse_mem_maps_populate_node(struct page **map_map,
2139                                    unsigned long pnum_begin,
2140                                    unsigned long pnum_end,
2141                                    unsigned long map_count,
2142                                    int nodeid);
2143
2144 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2145 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2146 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2147 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2148 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2149 void *vmemmap_alloc_block(unsigned long size, int node);
2150 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2151 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2152 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2153                                int node);
2154 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2155 void vmemmap_populate_print_last(void);
2156 #ifdef CONFIG_MEMORY_HOTPLUG
2157 void vmemmap_free(unsigned long start, unsigned long end);
2158 #endif
2159 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2160                                   unsigned long size);
2161
2162 enum mf_flags {
2163         MF_COUNT_INCREASED = 1 << 0,
2164         MF_ACTION_REQUIRED = 1 << 1,
2165         MF_MUST_KILL = 1 << 2,
2166         MF_SOFT_OFFLINE = 1 << 3,
2167 };
2168 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2169 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2170 extern int unpoison_memory(unsigned long pfn);
2171 extern int get_hwpoison_page(struct page *page);
2172 extern void put_hwpoison_page(struct page *page);
2173 extern int sysctl_memory_failure_early_kill;
2174 extern int sysctl_memory_failure_recovery;
2175 extern void shake_page(struct page *p, int access);
2176 extern atomic_long_t num_poisoned_pages;
2177 extern int soft_offline_page(struct page *page, int flags);
2178
2179
2180 /*
2181  * Error handlers for various types of pages.
2182  */
2183 enum mf_result {
2184         MF_IGNORED,     /* Error: cannot be handled */
2185         MF_FAILED,      /* Error: handling failed */
2186         MF_DELAYED,     /* Will be handled later */
2187         MF_RECOVERED,   /* Successfully recovered */
2188 };
2189
2190 enum mf_action_page_type {
2191         MF_MSG_KERNEL,
2192         MF_MSG_KERNEL_HIGH_ORDER,
2193         MF_MSG_SLAB,
2194         MF_MSG_DIFFERENT_COMPOUND,
2195         MF_MSG_POISONED_HUGE,
2196         MF_MSG_HUGE,
2197         MF_MSG_FREE_HUGE,
2198         MF_MSG_UNMAP_FAILED,
2199         MF_MSG_DIRTY_SWAPCACHE,
2200         MF_MSG_CLEAN_SWAPCACHE,
2201         MF_MSG_DIRTY_MLOCKED_LRU,
2202         MF_MSG_CLEAN_MLOCKED_LRU,
2203         MF_MSG_DIRTY_UNEVICTABLE_LRU,
2204         MF_MSG_CLEAN_UNEVICTABLE_LRU,
2205         MF_MSG_DIRTY_LRU,
2206         MF_MSG_CLEAN_LRU,
2207         MF_MSG_TRUNCATED_LRU,
2208         MF_MSG_BUDDY,
2209         MF_MSG_BUDDY_2ND,
2210         MF_MSG_UNKNOWN,
2211 };
2212
2213 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2214 extern void clear_huge_page(struct page *page,
2215                             unsigned long addr,
2216                             unsigned int pages_per_huge_page);
2217 extern void copy_user_huge_page(struct page *dst, struct page *src,
2218                                 unsigned long addr, struct vm_area_struct *vma,
2219                                 unsigned int pages_per_huge_page);
2220 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2221
2222 extern struct page_ext_operations debug_guardpage_ops;
2223 extern struct page_ext_operations page_poisoning_ops;
2224
2225 #ifdef CONFIG_DEBUG_PAGEALLOC
2226 extern unsigned int _debug_guardpage_minorder;
2227 extern bool _debug_guardpage_enabled;
2228
2229 static inline unsigned int debug_guardpage_minorder(void)
2230 {
2231         return _debug_guardpage_minorder;
2232 }
2233
2234 static inline bool debug_guardpage_enabled(void)
2235 {
2236         return _debug_guardpage_enabled;
2237 }
2238
2239 static inline bool page_is_guard(struct page *page)
2240 {
2241         struct page_ext *page_ext;
2242
2243         if (!debug_guardpage_enabled())
2244                 return false;
2245
2246         page_ext = lookup_page_ext(page);
2247         return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2248 }
2249 #else
2250 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2251 static inline bool debug_guardpage_enabled(void) { return false; }
2252 static inline bool page_is_guard(struct page *page) { return false; }
2253 #endif /* CONFIG_DEBUG_PAGEALLOC */
2254
2255 #if MAX_NUMNODES > 1
2256 void __init setup_nr_node_ids(void);
2257 #else
2258 static inline void setup_nr_node_ids(void) {}
2259 #endif
2260
2261 #endif /* __KERNEL__ */
2262 #endif /* _LINUX_MM_H */