xfs: split metadata and log buffer completion to separate workqueues
[firefly-linux-kernel-4.4.55.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_error.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_log.h"
31 #include "xfs_log_priv.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_inode.h"
34 #include "xfs_trace.h"
35 #include "xfs_fsops.h"
36 #include "xfs_cksum.h"
37 #include "xfs_sysfs.h"
38
39 kmem_zone_t     *xfs_log_ticket_zone;
40
41 /* Local miscellaneous function prototypes */
42 STATIC int
43 xlog_commit_record(
44         struct xlog             *log,
45         struct xlog_ticket      *ticket,
46         struct xlog_in_core     **iclog,
47         xfs_lsn_t               *commitlsnp);
48
49 STATIC struct xlog *
50 xlog_alloc_log(
51         struct xfs_mount        *mp,
52         struct xfs_buftarg      *log_target,
53         xfs_daddr_t             blk_offset,
54         int                     num_bblks);
55 STATIC int
56 xlog_space_left(
57         struct xlog             *log,
58         atomic64_t              *head);
59 STATIC int
60 xlog_sync(
61         struct xlog             *log,
62         struct xlog_in_core     *iclog);
63 STATIC void
64 xlog_dealloc_log(
65         struct xlog             *log);
66
67 /* local state machine functions */
68 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
69 STATIC void
70 xlog_state_do_callback(
71         struct xlog             *log,
72         int                     aborted,
73         struct xlog_in_core     *iclog);
74 STATIC int
75 xlog_state_get_iclog_space(
76         struct xlog             *log,
77         int                     len,
78         struct xlog_in_core     **iclog,
79         struct xlog_ticket      *ticket,
80         int                     *continued_write,
81         int                     *logoffsetp);
82 STATIC int
83 xlog_state_release_iclog(
84         struct xlog             *log,
85         struct xlog_in_core     *iclog);
86 STATIC void
87 xlog_state_switch_iclogs(
88         struct xlog             *log,
89         struct xlog_in_core     *iclog,
90         int                     eventual_size);
91 STATIC void
92 xlog_state_want_sync(
93         struct xlog             *log,
94         struct xlog_in_core     *iclog);
95
96 STATIC void
97 xlog_grant_push_ail(
98         struct xlog             *log,
99         int                     need_bytes);
100 STATIC void
101 xlog_regrant_reserve_log_space(
102         struct xlog             *log,
103         struct xlog_ticket      *ticket);
104 STATIC void
105 xlog_ungrant_log_space(
106         struct xlog             *log,
107         struct xlog_ticket      *ticket);
108
109 #if defined(DEBUG)
110 STATIC void
111 xlog_verify_dest_ptr(
112         struct xlog             *log,
113         char                    *ptr);
114 STATIC void
115 xlog_verify_grant_tail(
116         struct xlog *log);
117 STATIC void
118 xlog_verify_iclog(
119         struct xlog             *log,
120         struct xlog_in_core     *iclog,
121         int                     count,
122         bool                    syncing);
123 STATIC void
124 xlog_verify_tail_lsn(
125         struct xlog             *log,
126         struct xlog_in_core     *iclog,
127         xfs_lsn_t               tail_lsn);
128 #else
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
133 #endif
134
135 STATIC int
136 xlog_iclogs_empty(
137         struct xlog             *log);
138
139 static void
140 xlog_grant_sub_space(
141         struct xlog             *log,
142         atomic64_t              *head,
143         int                     bytes)
144 {
145         int64_t head_val = atomic64_read(head);
146         int64_t new, old;
147
148         do {
149                 int     cycle, space;
150
151                 xlog_crack_grant_head_val(head_val, &cycle, &space);
152
153                 space -= bytes;
154                 if (space < 0) {
155                         space += log->l_logsize;
156                         cycle--;
157                 }
158
159                 old = head_val;
160                 new = xlog_assign_grant_head_val(cycle, space);
161                 head_val = atomic64_cmpxchg(head, old, new);
162         } while (head_val != old);
163 }
164
165 static void
166 xlog_grant_add_space(
167         struct xlog             *log,
168         atomic64_t              *head,
169         int                     bytes)
170 {
171         int64_t head_val = atomic64_read(head);
172         int64_t new, old;
173
174         do {
175                 int             tmp;
176                 int             cycle, space;
177
178                 xlog_crack_grant_head_val(head_val, &cycle, &space);
179
180                 tmp = log->l_logsize - space;
181                 if (tmp > bytes)
182                         space += bytes;
183                 else {
184                         space = bytes - tmp;
185                         cycle++;
186                 }
187
188                 old = head_val;
189                 new = xlog_assign_grant_head_val(cycle, space);
190                 head_val = atomic64_cmpxchg(head, old, new);
191         } while (head_val != old);
192 }
193
194 STATIC void
195 xlog_grant_head_init(
196         struct xlog_grant_head  *head)
197 {
198         xlog_assign_grant_head(&head->grant, 1, 0);
199         INIT_LIST_HEAD(&head->waiters);
200         spin_lock_init(&head->lock);
201 }
202
203 STATIC void
204 xlog_grant_head_wake_all(
205         struct xlog_grant_head  *head)
206 {
207         struct xlog_ticket      *tic;
208
209         spin_lock(&head->lock);
210         list_for_each_entry(tic, &head->waiters, t_queue)
211                 wake_up_process(tic->t_task);
212         spin_unlock(&head->lock);
213 }
214
215 static inline int
216 xlog_ticket_reservation(
217         struct xlog             *log,
218         struct xlog_grant_head  *head,
219         struct xlog_ticket      *tic)
220 {
221         if (head == &log->l_write_head) {
222                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
223                 return tic->t_unit_res;
224         } else {
225                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
226                         return tic->t_unit_res * tic->t_cnt;
227                 else
228                         return tic->t_unit_res;
229         }
230 }
231
232 STATIC bool
233 xlog_grant_head_wake(
234         struct xlog             *log,
235         struct xlog_grant_head  *head,
236         int                     *free_bytes)
237 {
238         struct xlog_ticket      *tic;
239         int                     need_bytes;
240
241         list_for_each_entry(tic, &head->waiters, t_queue) {
242                 need_bytes = xlog_ticket_reservation(log, head, tic);
243                 if (*free_bytes < need_bytes)
244                         return false;
245
246                 *free_bytes -= need_bytes;
247                 trace_xfs_log_grant_wake_up(log, tic);
248                 wake_up_process(tic->t_task);
249         }
250
251         return true;
252 }
253
254 STATIC int
255 xlog_grant_head_wait(
256         struct xlog             *log,
257         struct xlog_grant_head  *head,
258         struct xlog_ticket      *tic,
259         int                     need_bytes) __releases(&head->lock)
260                                             __acquires(&head->lock)
261 {
262         list_add_tail(&tic->t_queue, &head->waiters);
263
264         do {
265                 if (XLOG_FORCED_SHUTDOWN(log))
266                         goto shutdown;
267                 xlog_grant_push_ail(log, need_bytes);
268
269                 __set_current_state(TASK_UNINTERRUPTIBLE);
270                 spin_unlock(&head->lock);
271
272                 XFS_STATS_INC(xs_sleep_logspace);
273
274                 trace_xfs_log_grant_sleep(log, tic);
275                 schedule();
276                 trace_xfs_log_grant_wake(log, tic);
277
278                 spin_lock(&head->lock);
279                 if (XLOG_FORCED_SHUTDOWN(log))
280                         goto shutdown;
281         } while (xlog_space_left(log, &head->grant) < need_bytes);
282
283         list_del_init(&tic->t_queue);
284         return 0;
285 shutdown:
286         list_del_init(&tic->t_queue);
287         return -EIO;
288 }
289
290 /*
291  * Atomically get the log space required for a log ticket.
292  *
293  * Once a ticket gets put onto head->waiters, it will only return after the
294  * needed reservation is satisfied.
295  *
296  * This function is structured so that it has a lock free fast path. This is
297  * necessary because every new transaction reservation will come through this
298  * path. Hence any lock will be globally hot if we take it unconditionally on
299  * every pass.
300  *
301  * As tickets are only ever moved on and off head->waiters under head->lock, we
302  * only need to take that lock if we are going to add the ticket to the queue
303  * and sleep. We can avoid taking the lock if the ticket was never added to
304  * head->waiters because the t_queue list head will be empty and we hold the
305  * only reference to it so it can safely be checked unlocked.
306  */
307 STATIC int
308 xlog_grant_head_check(
309         struct xlog             *log,
310         struct xlog_grant_head  *head,
311         struct xlog_ticket      *tic,
312         int                     *need_bytes)
313 {
314         int                     free_bytes;
315         int                     error = 0;
316
317         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
318
319         /*
320          * If there are other waiters on the queue then give them a chance at
321          * logspace before us.  Wake up the first waiters, if we do not wake
322          * up all the waiters then go to sleep waiting for more free space,
323          * otherwise try to get some space for this transaction.
324          */
325         *need_bytes = xlog_ticket_reservation(log, head, tic);
326         free_bytes = xlog_space_left(log, &head->grant);
327         if (!list_empty_careful(&head->waiters)) {
328                 spin_lock(&head->lock);
329                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
330                     free_bytes < *need_bytes) {
331                         error = xlog_grant_head_wait(log, head, tic,
332                                                      *need_bytes);
333                 }
334                 spin_unlock(&head->lock);
335         } else if (free_bytes < *need_bytes) {
336                 spin_lock(&head->lock);
337                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
338                 spin_unlock(&head->lock);
339         }
340
341         return error;
342 }
343
344 static void
345 xlog_tic_reset_res(xlog_ticket_t *tic)
346 {
347         tic->t_res_num = 0;
348         tic->t_res_arr_sum = 0;
349         tic->t_res_num_ophdrs = 0;
350 }
351
352 static void
353 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
354 {
355         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
356                 /* add to overflow and start again */
357                 tic->t_res_o_flow += tic->t_res_arr_sum;
358                 tic->t_res_num = 0;
359                 tic->t_res_arr_sum = 0;
360         }
361
362         tic->t_res_arr[tic->t_res_num].r_len = len;
363         tic->t_res_arr[tic->t_res_num].r_type = type;
364         tic->t_res_arr_sum += len;
365         tic->t_res_num++;
366 }
367
368 /*
369  * Replenish the byte reservation required by moving the grant write head.
370  */
371 int
372 xfs_log_regrant(
373         struct xfs_mount        *mp,
374         struct xlog_ticket      *tic)
375 {
376         struct xlog             *log = mp->m_log;
377         int                     need_bytes;
378         int                     error = 0;
379
380         if (XLOG_FORCED_SHUTDOWN(log))
381                 return -EIO;
382
383         XFS_STATS_INC(xs_try_logspace);
384
385         /*
386          * This is a new transaction on the ticket, so we need to change the
387          * transaction ID so that the next transaction has a different TID in
388          * the log. Just add one to the existing tid so that we can see chains
389          * of rolling transactions in the log easily.
390          */
391         tic->t_tid++;
392
393         xlog_grant_push_ail(log, tic->t_unit_res);
394
395         tic->t_curr_res = tic->t_unit_res;
396         xlog_tic_reset_res(tic);
397
398         if (tic->t_cnt > 0)
399                 return 0;
400
401         trace_xfs_log_regrant(log, tic);
402
403         error = xlog_grant_head_check(log, &log->l_write_head, tic,
404                                       &need_bytes);
405         if (error)
406                 goto out_error;
407
408         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
409         trace_xfs_log_regrant_exit(log, tic);
410         xlog_verify_grant_tail(log);
411         return 0;
412
413 out_error:
414         /*
415          * If we are failing, make sure the ticket doesn't have any current
416          * reservations.  We don't want to add this back when the ticket/
417          * transaction gets cancelled.
418          */
419         tic->t_curr_res = 0;
420         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
421         return error;
422 }
423
424 /*
425  * Reserve log space and return a ticket corresponding the reservation.
426  *
427  * Each reservation is going to reserve extra space for a log record header.
428  * When writes happen to the on-disk log, we don't subtract the length of the
429  * log record header from any reservation.  By wasting space in each
430  * reservation, we prevent over allocation problems.
431  */
432 int
433 xfs_log_reserve(
434         struct xfs_mount        *mp,
435         int                     unit_bytes,
436         int                     cnt,
437         struct xlog_ticket      **ticp,
438         __uint8_t               client,
439         bool                    permanent,
440         uint                    t_type)
441 {
442         struct xlog             *log = mp->m_log;
443         struct xlog_ticket      *tic;
444         int                     need_bytes;
445         int                     error = 0;
446
447         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448
449         if (XLOG_FORCED_SHUTDOWN(log))
450                 return -EIO;
451
452         XFS_STATS_INC(xs_try_logspace);
453
454         ASSERT(*ticp == NULL);
455         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
456                                 KM_SLEEP | KM_MAYFAIL);
457         if (!tic)
458                 return -ENOMEM;
459
460         tic->t_trans_type = t_type;
461         *ticp = tic;
462
463         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
464                                             : tic->t_unit_res);
465
466         trace_xfs_log_reserve(log, tic);
467
468         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
469                                       &need_bytes);
470         if (error)
471                 goto out_error;
472
473         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
474         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
475         trace_xfs_log_reserve_exit(log, tic);
476         xlog_verify_grant_tail(log);
477         return 0;
478
479 out_error:
480         /*
481          * If we are failing, make sure the ticket doesn't have any current
482          * reservations.  We don't want to add this back when the ticket/
483          * transaction gets cancelled.
484          */
485         tic->t_curr_res = 0;
486         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
487         return error;
488 }
489
490
491 /*
492  * NOTES:
493  *
494  *      1. currblock field gets updated at startup and after in-core logs
495  *              marked as with WANT_SYNC.
496  */
497
498 /*
499  * This routine is called when a user of a log manager ticket is done with
500  * the reservation.  If the ticket was ever used, then a commit record for
501  * the associated transaction is written out as a log operation header with
502  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
503  * a given ticket.  If the ticket was one with a permanent reservation, then
504  * a few operations are done differently.  Permanent reservation tickets by
505  * default don't release the reservation.  They just commit the current
506  * transaction with the belief that the reservation is still needed.  A flag
507  * must be passed in before permanent reservations are actually released.
508  * When these type of tickets are not released, they need to be set into
509  * the inited state again.  By doing this, a start record will be written
510  * out when the next write occurs.
511  */
512 xfs_lsn_t
513 xfs_log_done(
514         struct xfs_mount        *mp,
515         struct xlog_ticket      *ticket,
516         struct xlog_in_core     **iclog,
517         uint                    flags)
518 {
519         struct xlog             *log = mp->m_log;
520         xfs_lsn_t               lsn = 0;
521
522         if (XLOG_FORCED_SHUTDOWN(log) ||
523             /*
524              * If nothing was ever written, don't write out commit record.
525              * If we get an error, just continue and give back the log ticket.
526              */
527             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
528              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
529                 lsn = (xfs_lsn_t) -1;
530                 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
531                         flags |= XFS_LOG_REL_PERM_RESERV;
532                 }
533         }
534
535
536         if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
537             (flags & XFS_LOG_REL_PERM_RESERV)) {
538                 trace_xfs_log_done_nonperm(log, ticket);
539
540                 /*
541                  * Release ticket if not permanent reservation or a specific
542                  * request has been made to release a permanent reservation.
543                  */
544                 xlog_ungrant_log_space(log, ticket);
545                 xfs_log_ticket_put(ticket);
546         } else {
547                 trace_xfs_log_done_perm(log, ticket);
548
549                 xlog_regrant_reserve_log_space(log, ticket);
550                 /* If this ticket was a permanent reservation and we aren't
551                  * trying to release it, reset the inited flags; so next time
552                  * we write, a start record will be written out.
553                  */
554                 ticket->t_flags |= XLOG_TIC_INITED;
555         }
556
557         return lsn;
558 }
559
560 /*
561  * Attaches a new iclog I/O completion callback routine during
562  * transaction commit.  If the log is in error state, a non-zero
563  * return code is handed back and the caller is responsible for
564  * executing the callback at an appropriate time.
565  */
566 int
567 xfs_log_notify(
568         struct xfs_mount        *mp,
569         struct xlog_in_core     *iclog,
570         xfs_log_callback_t      *cb)
571 {
572         int     abortflg;
573
574         spin_lock(&iclog->ic_callback_lock);
575         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
576         if (!abortflg) {
577                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
578                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
579                 cb->cb_next = NULL;
580                 *(iclog->ic_callback_tail) = cb;
581                 iclog->ic_callback_tail = &(cb->cb_next);
582         }
583         spin_unlock(&iclog->ic_callback_lock);
584         return abortflg;
585 }
586
587 int
588 xfs_log_release_iclog(
589         struct xfs_mount        *mp,
590         struct xlog_in_core     *iclog)
591 {
592         if (xlog_state_release_iclog(mp->m_log, iclog)) {
593                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
594                 return -EIO;
595         }
596
597         return 0;
598 }
599
600 /*
601  * Mount a log filesystem
602  *
603  * mp           - ubiquitous xfs mount point structure
604  * log_target   - buftarg of on-disk log device
605  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
606  * num_bblocks  - Number of BBSIZE blocks in on-disk log
607  *
608  * Return error or zero.
609  */
610 int
611 xfs_log_mount(
612         xfs_mount_t     *mp,
613         xfs_buftarg_t   *log_target,
614         xfs_daddr_t     blk_offset,
615         int             num_bblks)
616 {
617         int             error = 0;
618         int             min_logfsbs;
619
620         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
621                 xfs_notice(mp, "Mounting V%d Filesystem",
622                            XFS_SB_VERSION_NUM(&mp->m_sb));
623         } else {
624                 xfs_notice(mp,
625 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
626                            XFS_SB_VERSION_NUM(&mp->m_sb));
627                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
628         }
629
630         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
631         if (IS_ERR(mp->m_log)) {
632                 error = PTR_ERR(mp->m_log);
633                 goto out;
634         }
635
636         /*
637          * Validate the given log space and drop a critical message via syslog
638          * if the log size is too small that would lead to some unexpected
639          * situations in transaction log space reservation stage.
640          *
641          * Note: we can't just reject the mount if the validation fails.  This
642          * would mean that people would have to downgrade their kernel just to
643          * remedy the situation as there is no way to grow the log (short of
644          * black magic surgery with xfs_db).
645          *
646          * We can, however, reject mounts for CRC format filesystems, as the
647          * mkfs binary being used to make the filesystem should never create a
648          * filesystem with a log that is too small.
649          */
650         min_logfsbs = xfs_log_calc_minimum_size(mp);
651
652         if (mp->m_sb.sb_logblocks < min_logfsbs) {
653                 xfs_warn(mp,
654                 "Log size %d blocks too small, minimum size is %d blocks",
655                          mp->m_sb.sb_logblocks, min_logfsbs);
656                 error = -EINVAL;
657         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
658                 xfs_warn(mp,
659                 "Log size %d blocks too large, maximum size is %lld blocks",
660                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
661                 error = -EINVAL;
662         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
663                 xfs_warn(mp,
664                 "log size %lld bytes too large, maximum size is %lld bytes",
665                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
666                          XFS_MAX_LOG_BYTES);
667                 error = -EINVAL;
668         }
669         if (error) {
670                 if (xfs_sb_version_hascrc(&mp->m_sb)) {
671                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
672                         ASSERT(0);
673                         goto out_free_log;
674                 }
675                 xfs_crit(mp,
676 "Log size out of supported range. Continuing onwards, but if log hangs are\n"
677 "experienced then please report this message in the bug report.");
678         }
679
680         /*
681          * Initialize the AIL now we have a log.
682          */
683         error = xfs_trans_ail_init(mp);
684         if (error) {
685                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
686                 goto out_free_log;
687         }
688         mp->m_log->l_ailp = mp->m_ail;
689
690         /*
691          * skip log recovery on a norecovery mount.  pretend it all
692          * just worked.
693          */
694         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
695                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
696
697                 if (readonly)
698                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
699
700                 error = xlog_recover(mp->m_log);
701
702                 if (readonly)
703                         mp->m_flags |= XFS_MOUNT_RDONLY;
704                 if (error) {
705                         xfs_warn(mp, "log mount/recovery failed: error %d",
706                                 error);
707                         goto out_destroy_ail;
708                 }
709         }
710
711         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
712                                "log");
713         if (error)
714                 goto out_destroy_ail;
715
716         /* Normal transactions can now occur */
717         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
718
719         /*
720          * Now the log has been fully initialised and we know were our
721          * space grant counters are, we can initialise the permanent ticket
722          * needed for delayed logging to work.
723          */
724         xlog_cil_init_post_recovery(mp->m_log);
725
726         return 0;
727
728 out_destroy_ail:
729         xfs_trans_ail_destroy(mp);
730 out_free_log:
731         xlog_dealloc_log(mp->m_log);
732 out:
733         return error;
734 }
735
736 /*
737  * Finish the recovery of the file system.  This is separate from the
738  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
739  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
740  * here.
741  *
742  * If we finish recovery successfully, start the background log work. If we are
743  * not doing recovery, then we have a RO filesystem and we don't need to start
744  * it.
745  */
746 int
747 xfs_log_mount_finish(xfs_mount_t *mp)
748 {
749         int     error = 0;
750
751         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
752                 error = xlog_recover_finish(mp->m_log);
753                 if (!error)
754                         xfs_log_work_queue(mp);
755         } else {
756                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
757         }
758
759
760         return error;
761 }
762
763 /*
764  * Final log writes as part of unmount.
765  *
766  * Mark the filesystem clean as unmount happens.  Note that during relocation
767  * this routine needs to be executed as part of source-bag while the
768  * deallocation must not be done until source-end.
769  */
770
771 /*
772  * Unmount record used to have a string "Unmount filesystem--" in the
773  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
774  * We just write the magic number now since that particular field isn't
775  * currently architecture converted and "Unmount" is a bit foo.
776  * As far as I know, there weren't any dependencies on the old behaviour.
777  */
778
779 int
780 xfs_log_unmount_write(xfs_mount_t *mp)
781 {
782         struct xlog      *log = mp->m_log;
783         xlog_in_core_t   *iclog;
784 #ifdef DEBUG
785         xlog_in_core_t   *first_iclog;
786 #endif
787         xlog_ticket_t   *tic = NULL;
788         xfs_lsn_t        lsn;
789         int              error;
790
791         /*
792          * Don't write out unmount record on read-only mounts.
793          * Or, if we are doing a forced umount (typically because of IO errors).
794          */
795         if (mp->m_flags & XFS_MOUNT_RDONLY)
796                 return 0;
797
798         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
799         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
800
801 #ifdef DEBUG
802         first_iclog = iclog = log->l_iclog;
803         do {
804                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
805                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
806                         ASSERT(iclog->ic_offset == 0);
807                 }
808                 iclog = iclog->ic_next;
809         } while (iclog != first_iclog);
810 #endif
811         if (! (XLOG_FORCED_SHUTDOWN(log))) {
812                 error = xfs_log_reserve(mp, 600, 1, &tic,
813                                         XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
814                 if (!error) {
815                         /* the data section must be 32 bit size aligned */
816                         struct {
817                             __uint16_t magic;
818                             __uint16_t pad1;
819                             __uint32_t pad2; /* may as well make it 64 bits */
820                         } magic = {
821                                 .magic = XLOG_UNMOUNT_TYPE,
822                         };
823                         struct xfs_log_iovec reg = {
824                                 .i_addr = &magic,
825                                 .i_len = sizeof(magic),
826                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
827                         };
828                         struct xfs_log_vec vec = {
829                                 .lv_niovecs = 1,
830                                 .lv_iovecp = &reg,
831                         };
832
833                         /* remove inited flag, and account for space used */
834                         tic->t_flags = 0;
835                         tic->t_curr_res -= sizeof(magic);
836                         error = xlog_write(log, &vec, tic, &lsn,
837                                            NULL, XLOG_UNMOUNT_TRANS);
838                         /*
839                          * At this point, we're umounting anyway,
840                          * so there's no point in transitioning log state
841                          * to IOERROR. Just continue...
842                          */
843                 }
844
845                 if (error)
846                         xfs_alert(mp, "%s: unmount record failed", __func__);
847
848
849                 spin_lock(&log->l_icloglock);
850                 iclog = log->l_iclog;
851                 atomic_inc(&iclog->ic_refcnt);
852                 xlog_state_want_sync(log, iclog);
853                 spin_unlock(&log->l_icloglock);
854                 error = xlog_state_release_iclog(log, iclog);
855
856                 spin_lock(&log->l_icloglock);
857                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
858                       iclog->ic_state == XLOG_STATE_DIRTY)) {
859                         if (!XLOG_FORCED_SHUTDOWN(log)) {
860                                 xlog_wait(&iclog->ic_force_wait,
861                                                         &log->l_icloglock);
862                         } else {
863                                 spin_unlock(&log->l_icloglock);
864                         }
865                 } else {
866                         spin_unlock(&log->l_icloglock);
867                 }
868                 if (tic) {
869                         trace_xfs_log_umount_write(log, tic);
870                         xlog_ungrant_log_space(log, tic);
871                         xfs_log_ticket_put(tic);
872                 }
873         } else {
874                 /*
875                  * We're already in forced_shutdown mode, couldn't
876                  * even attempt to write out the unmount transaction.
877                  *
878                  * Go through the motions of sync'ing and releasing
879                  * the iclog, even though no I/O will actually happen,
880                  * we need to wait for other log I/Os that may already
881                  * be in progress.  Do this as a separate section of
882                  * code so we'll know if we ever get stuck here that
883                  * we're in this odd situation of trying to unmount
884                  * a file system that went into forced_shutdown as
885                  * the result of an unmount..
886                  */
887                 spin_lock(&log->l_icloglock);
888                 iclog = log->l_iclog;
889                 atomic_inc(&iclog->ic_refcnt);
890
891                 xlog_state_want_sync(log, iclog);
892                 spin_unlock(&log->l_icloglock);
893                 error =  xlog_state_release_iclog(log, iclog);
894
895                 spin_lock(&log->l_icloglock);
896
897                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
898                         || iclog->ic_state == XLOG_STATE_DIRTY
899                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
900
901                                 xlog_wait(&iclog->ic_force_wait,
902                                                         &log->l_icloglock);
903                 } else {
904                         spin_unlock(&log->l_icloglock);
905                 }
906         }
907
908         return error;
909 }       /* xfs_log_unmount_write */
910
911 /*
912  * Empty the log for unmount/freeze.
913  *
914  * To do this, we first need to shut down the background log work so it is not
915  * trying to cover the log as we clean up. We then need to unpin all objects in
916  * the log so we can then flush them out. Once they have completed their IO and
917  * run the callbacks removing themselves from the AIL, we can write the unmount
918  * record.
919  */
920 void
921 xfs_log_quiesce(
922         struct xfs_mount        *mp)
923 {
924         cancel_delayed_work_sync(&mp->m_log->l_work);
925         xfs_log_force(mp, XFS_LOG_SYNC);
926
927         /*
928          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
929          * will push it, xfs_wait_buftarg() will not wait for it. Further,
930          * xfs_buf_iowait() cannot be used because it was pushed with the
931          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
932          * the IO to complete.
933          */
934         xfs_ail_push_all_sync(mp->m_ail);
935         xfs_wait_buftarg(mp->m_ddev_targp);
936         xfs_buf_lock(mp->m_sb_bp);
937         xfs_buf_unlock(mp->m_sb_bp);
938
939         xfs_log_unmount_write(mp);
940 }
941
942 /*
943  * Shut down and release the AIL and Log.
944  *
945  * During unmount, we need to ensure we flush all the dirty metadata objects
946  * from the AIL so that the log is empty before we write the unmount record to
947  * the log. Once this is done, we can tear down the AIL and the log.
948  */
949 void
950 xfs_log_unmount(
951         struct xfs_mount        *mp)
952 {
953         xfs_log_quiesce(mp);
954
955         xfs_trans_ail_destroy(mp);
956
957         xfs_sysfs_del(&mp->m_log->l_kobj);
958
959         xlog_dealloc_log(mp->m_log);
960 }
961
962 void
963 xfs_log_item_init(
964         struct xfs_mount        *mp,
965         struct xfs_log_item     *item,
966         int                     type,
967         const struct xfs_item_ops *ops)
968 {
969         item->li_mountp = mp;
970         item->li_ailp = mp->m_ail;
971         item->li_type = type;
972         item->li_ops = ops;
973         item->li_lv = NULL;
974
975         INIT_LIST_HEAD(&item->li_ail);
976         INIT_LIST_HEAD(&item->li_cil);
977 }
978
979 /*
980  * Wake up processes waiting for log space after we have moved the log tail.
981  */
982 void
983 xfs_log_space_wake(
984         struct xfs_mount        *mp)
985 {
986         struct xlog             *log = mp->m_log;
987         int                     free_bytes;
988
989         if (XLOG_FORCED_SHUTDOWN(log))
990                 return;
991
992         if (!list_empty_careful(&log->l_write_head.waiters)) {
993                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
994
995                 spin_lock(&log->l_write_head.lock);
996                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
997                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
998                 spin_unlock(&log->l_write_head.lock);
999         }
1000
1001         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1002                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1003
1004                 spin_lock(&log->l_reserve_head.lock);
1005                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1006                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1007                 spin_unlock(&log->l_reserve_head.lock);
1008         }
1009 }
1010
1011 /*
1012  * Determine if we have a transaction that has gone to disk that needs to be
1013  * covered. To begin the transition to the idle state firstly the log needs to
1014  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1015  * we start attempting to cover the log.
1016  *
1017  * Only if we are then in a state where covering is needed, the caller is
1018  * informed that dummy transactions are required to move the log into the idle
1019  * state.
1020  *
1021  * If there are any items in the AIl or CIL, then we do not want to attempt to
1022  * cover the log as we may be in a situation where there isn't log space
1023  * available to run a dummy transaction and this can lead to deadlocks when the
1024  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1025  * there's no point in running a dummy transaction at this point because we
1026  * can't start trying to idle the log until both the CIL and AIL are empty.
1027  */
1028 int
1029 xfs_log_need_covered(xfs_mount_t *mp)
1030 {
1031         struct xlog     *log = mp->m_log;
1032         int             needed = 0;
1033
1034         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1035                 return 0;
1036
1037         if (!xlog_cil_empty(log))
1038                 return 0;
1039
1040         spin_lock(&log->l_icloglock);
1041         switch (log->l_covered_state) {
1042         case XLOG_STATE_COVER_DONE:
1043         case XLOG_STATE_COVER_DONE2:
1044         case XLOG_STATE_COVER_IDLE:
1045                 break;
1046         case XLOG_STATE_COVER_NEED:
1047         case XLOG_STATE_COVER_NEED2:
1048                 if (xfs_ail_min_lsn(log->l_ailp))
1049                         break;
1050                 if (!xlog_iclogs_empty(log))
1051                         break;
1052
1053                 needed = 1;
1054                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1055                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1056                 else
1057                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1058                 break;
1059         default:
1060                 needed = 1;
1061                 break;
1062         }
1063         spin_unlock(&log->l_icloglock);
1064         return needed;
1065 }
1066
1067 /*
1068  * We may be holding the log iclog lock upon entering this routine.
1069  */
1070 xfs_lsn_t
1071 xlog_assign_tail_lsn_locked(
1072         struct xfs_mount        *mp)
1073 {
1074         struct xlog             *log = mp->m_log;
1075         struct xfs_log_item     *lip;
1076         xfs_lsn_t               tail_lsn;
1077
1078         assert_spin_locked(&mp->m_ail->xa_lock);
1079
1080         /*
1081          * To make sure we always have a valid LSN for the log tail we keep
1082          * track of the last LSN which was committed in log->l_last_sync_lsn,
1083          * and use that when the AIL was empty.
1084          */
1085         lip = xfs_ail_min(mp->m_ail);
1086         if (lip)
1087                 tail_lsn = lip->li_lsn;
1088         else
1089                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1090         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1091         atomic64_set(&log->l_tail_lsn, tail_lsn);
1092         return tail_lsn;
1093 }
1094
1095 xfs_lsn_t
1096 xlog_assign_tail_lsn(
1097         struct xfs_mount        *mp)
1098 {
1099         xfs_lsn_t               tail_lsn;
1100
1101         spin_lock(&mp->m_ail->xa_lock);
1102         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1103         spin_unlock(&mp->m_ail->xa_lock);
1104
1105         return tail_lsn;
1106 }
1107
1108 /*
1109  * Return the space in the log between the tail and the head.  The head
1110  * is passed in the cycle/bytes formal parms.  In the special case where
1111  * the reserve head has wrapped passed the tail, this calculation is no
1112  * longer valid.  In this case, just return 0 which means there is no space
1113  * in the log.  This works for all places where this function is called
1114  * with the reserve head.  Of course, if the write head were to ever
1115  * wrap the tail, we should blow up.  Rather than catch this case here,
1116  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1117  *
1118  * This code also handles the case where the reservation head is behind
1119  * the tail.  The details of this case are described below, but the end
1120  * result is that we return the size of the log as the amount of space left.
1121  */
1122 STATIC int
1123 xlog_space_left(
1124         struct xlog     *log,
1125         atomic64_t      *head)
1126 {
1127         int             free_bytes;
1128         int             tail_bytes;
1129         int             tail_cycle;
1130         int             head_cycle;
1131         int             head_bytes;
1132
1133         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1134         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1135         tail_bytes = BBTOB(tail_bytes);
1136         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1137                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1138         else if (tail_cycle + 1 < head_cycle)
1139                 return 0;
1140         else if (tail_cycle < head_cycle) {
1141                 ASSERT(tail_cycle == (head_cycle - 1));
1142                 free_bytes = tail_bytes - head_bytes;
1143         } else {
1144                 /*
1145                  * The reservation head is behind the tail.
1146                  * In this case we just want to return the size of the
1147                  * log as the amount of space left.
1148                  */
1149                 xfs_alert(log->l_mp,
1150                         "xlog_space_left: head behind tail\n"
1151                         "  tail_cycle = %d, tail_bytes = %d\n"
1152                         "  GH   cycle = %d, GH   bytes = %d",
1153                         tail_cycle, tail_bytes, head_cycle, head_bytes);
1154                 ASSERT(0);
1155                 free_bytes = log->l_logsize;
1156         }
1157         return free_bytes;
1158 }
1159
1160
1161 /*
1162  * Log function which is called when an io completes.
1163  *
1164  * The log manager needs its own routine, in order to control what
1165  * happens with the buffer after the write completes.
1166  */
1167 void
1168 xlog_iodone(xfs_buf_t *bp)
1169 {
1170         struct xlog_in_core     *iclog = bp->b_fspriv;
1171         struct xlog             *l = iclog->ic_log;
1172         int                     aborted = 0;
1173
1174         /*
1175          * Race to shutdown the filesystem if we see an error.
1176          */
1177         if (XFS_TEST_ERROR(bp->b_error, l->l_mp,
1178                         XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1179                 xfs_buf_ioerror_alert(bp, __func__);
1180                 xfs_buf_stale(bp);
1181                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1182                 /*
1183                  * This flag will be propagated to the trans-committed
1184                  * callback routines to let them know that the log-commit
1185                  * didn't succeed.
1186                  */
1187                 aborted = XFS_LI_ABORTED;
1188         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1189                 aborted = XFS_LI_ABORTED;
1190         }
1191
1192         /* log I/O is always issued ASYNC */
1193         ASSERT(XFS_BUF_ISASYNC(bp));
1194         xlog_state_done_syncing(iclog, aborted);
1195
1196         /*
1197          * drop the buffer lock now that we are done. Nothing references
1198          * the buffer after this, so an unmount waiting on this lock can now
1199          * tear it down safely. As such, it is unsafe to reference the buffer
1200          * (bp) after the unlock as we could race with it being freed.
1201          */
1202         xfs_buf_unlock(bp);
1203 }
1204
1205 /*
1206  * Return size of each in-core log record buffer.
1207  *
1208  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1209  *
1210  * If the filesystem blocksize is too large, we may need to choose a
1211  * larger size since the directory code currently logs entire blocks.
1212  */
1213
1214 STATIC void
1215 xlog_get_iclog_buffer_size(
1216         struct xfs_mount        *mp,
1217         struct xlog             *log)
1218 {
1219         int size;
1220         int xhdrs;
1221
1222         if (mp->m_logbufs <= 0)
1223                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1224         else
1225                 log->l_iclog_bufs = mp->m_logbufs;
1226
1227         /*
1228          * Buffer size passed in from mount system call.
1229          */
1230         if (mp->m_logbsize > 0) {
1231                 size = log->l_iclog_size = mp->m_logbsize;
1232                 log->l_iclog_size_log = 0;
1233                 while (size != 1) {
1234                         log->l_iclog_size_log++;
1235                         size >>= 1;
1236                 }
1237
1238                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1239                         /* # headers = size / 32k
1240                          * one header holds cycles from 32k of data
1241                          */
1242
1243                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1244                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1245                                 xhdrs++;
1246                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1247                         log->l_iclog_heads = xhdrs;
1248                 } else {
1249                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1250                         log->l_iclog_hsize = BBSIZE;
1251                         log->l_iclog_heads = 1;
1252                 }
1253                 goto done;
1254         }
1255
1256         /* All machines use 32kB buffers by default. */
1257         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1258         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1259
1260         /* the default log size is 16k or 32k which is one header sector */
1261         log->l_iclog_hsize = BBSIZE;
1262         log->l_iclog_heads = 1;
1263
1264 done:
1265         /* are we being asked to make the sizes selected above visible? */
1266         if (mp->m_logbufs == 0)
1267                 mp->m_logbufs = log->l_iclog_bufs;
1268         if (mp->m_logbsize == 0)
1269                 mp->m_logbsize = log->l_iclog_size;
1270 }       /* xlog_get_iclog_buffer_size */
1271
1272
1273 void
1274 xfs_log_work_queue(
1275         struct xfs_mount        *mp)
1276 {
1277         queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1278                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1279 }
1280
1281 /*
1282  * Every sync period we need to unpin all items in the AIL and push them to
1283  * disk. If there is nothing dirty, then we might need to cover the log to
1284  * indicate that the filesystem is idle.
1285  */
1286 void
1287 xfs_log_worker(
1288         struct work_struct      *work)
1289 {
1290         struct xlog             *log = container_of(to_delayed_work(work),
1291                                                 struct xlog, l_work);
1292         struct xfs_mount        *mp = log->l_mp;
1293
1294         /* dgc: errors ignored - not fatal and nowhere to report them */
1295         if (xfs_log_need_covered(mp))
1296                 xfs_fs_log_dummy(mp);
1297         else
1298                 xfs_log_force(mp, 0);
1299
1300         /* start pushing all the metadata that is currently dirty */
1301         xfs_ail_push_all(mp->m_ail);
1302
1303         /* queue us up again */
1304         xfs_log_work_queue(mp);
1305 }
1306
1307 /*
1308  * This routine initializes some of the log structure for a given mount point.
1309  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1310  * some other stuff may be filled in too.
1311  */
1312 STATIC struct xlog *
1313 xlog_alloc_log(
1314         struct xfs_mount        *mp,
1315         struct xfs_buftarg      *log_target,
1316         xfs_daddr_t             blk_offset,
1317         int                     num_bblks)
1318 {
1319         struct xlog             *log;
1320         xlog_rec_header_t       *head;
1321         xlog_in_core_t          **iclogp;
1322         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1323         xfs_buf_t               *bp;
1324         int                     i;
1325         int                     error = -ENOMEM;
1326         uint                    log2_size = 0;
1327
1328         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1329         if (!log) {
1330                 xfs_warn(mp, "Log allocation failed: No memory!");
1331                 goto out;
1332         }
1333
1334         log->l_mp          = mp;
1335         log->l_targ        = log_target;
1336         log->l_logsize     = BBTOB(num_bblks);
1337         log->l_logBBstart  = blk_offset;
1338         log->l_logBBsize   = num_bblks;
1339         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1340         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1341         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1342
1343         log->l_prev_block  = -1;
1344         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1345         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1346         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1347         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1348
1349         xlog_grant_head_init(&log->l_reserve_head);
1350         xlog_grant_head_init(&log->l_write_head);
1351
1352         error = -EFSCORRUPTED;
1353         if (xfs_sb_version_hassector(&mp->m_sb)) {
1354                 log2_size = mp->m_sb.sb_logsectlog;
1355                 if (log2_size < BBSHIFT) {
1356                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1357                                 log2_size, BBSHIFT);
1358                         goto out_free_log;
1359                 }
1360
1361                 log2_size -= BBSHIFT;
1362                 if (log2_size > mp->m_sectbb_log) {
1363                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1364                                 log2_size, mp->m_sectbb_log);
1365                         goto out_free_log;
1366                 }
1367
1368                 /* for larger sector sizes, must have v2 or external log */
1369                 if (log2_size && log->l_logBBstart > 0 &&
1370                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1371                         xfs_warn(mp,
1372                 "log sector size (0x%x) invalid for configuration.",
1373                                 log2_size);
1374                         goto out_free_log;
1375                 }
1376         }
1377         log->l_sectBBsize = 1 << log2_size;
1378
1379         xlog_get_iclog_buffer_size(mp, log);
1380
1381         /*
1382          * Use a NULL block for the extra log buffer used during splits so that
1383          * it will trigger errors if we ever try to do IO on it without first
1384          * having set it up properly.
1385          */
1386         error = -ENOMEM;
1387         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1388                            BTOBB(log->l_iclog_size), 0);
1389         if (!bp)
1390                 goto out_free_log;
1391
1392         /*
1393          * The iclogbuf buffer locks are held over IO but we are not going to do
1394          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1395          * when appropriately.
1396          */
1397         ASSERT(xfs_buf_islocked(bp));
1398         xfs_buf_unlock(bp);
1399
1400         bp->b_iodone = xlog_iodone;
1401         log->l_xbuf = bp;
1402
1403         spin_lock_init(&log->l_icloglock);
1404         init_waitqueue_head(&log->l_flush_wait);
1405
1406         iclogp = &log->l_iclog;
1407         /*
1408          * The amount of memory to allocate for the iclog structure is
1409          * rather funky due to the way the structure is defined.  It is
1410          * done this way so that we can use different sizes for machines
1411          * with different amounts of memory.  See the definition of
1412          * xlog_in_core_t in xfs_log_priv.h for details.
1413          */
1414         ASSERT(log->l_iclog_size >= 4096);
1415         for (i=0; i < log->l_iclog_bufs; i++) {
1416                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1417                 if (!*iclogp)
1418                         goto out_free_iclog;
1419
1420                 iclog = *iclogp;
1421                 iclog->ic_prev = prev_iclog;
1422                 prev_iclog = iclog;
1423
1424                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1425                                                 BTOBB(log->l_iclog_size), 0);
1426                 if (!bp)
1427                         goto out_free_iclog;
1428
1429                 ASSERT(xfs_buf_islocked(bp));
1430                 xfs_buf_unlock(bp);
1431
1432                 bp->b_iodone = xlog_iodone;
1433                 iclog->ic_bp = bp;
1434                 iclog->ic_data = bp->b_addr;
1435 #ifdef DEBUG
1436                 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1437 #endif
1438                 head = &iclog->ic_header;
1439                 memset(head, 0, sizeof(xlog_rec_header_t));
1440                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1441                 head->h_version = cpu_to_be32(
1442                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1443                 head->h_size = cpu_to_be32(log->l_iclog_size);
1444                 /* new fields */
1445                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1446                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1447
1448                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1449                 iclog->ic_state = XLOG_STATE_ACTIVE;
1450                 iclog->ic_log = log;
1451                 atomic_set(&iclog->ic_refcnt, 0);
1452                 spin_lock_init(&iclog->ic_callback_lock);
1453                 iclog->ic_callback_tail = &(iclog->ic_callback);
1454                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1455
1456                 init_waitqueue_head(&iclog->ic_force_wait);
1457                 init_waitqueue_head(&iclog->ic_write_wait);
1458
1459                 iclogp = &iclog->ic_next;
1460         }
1461         *iclogp = log->l_iclog;                 /* complete ring */
1462         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1463
1464         error = xlog_cil_init(log);
1465         if (error)
1466                 goto out_free_iclog;
1467         return log;
1468
1469 out_free_iclog:
1470         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1471                 prev_iclog = iclog->ic_next;
1472                 if (iclog->ic_bp)
1473                         xfs_buf_free(iclog->ic_bp);
1474                 kmem_free(iclog);
1475         }
1476         spinlock_destroy(&log->l_icloglock);
1477         xfs_buf_free(log->l_xbuf);
1478 out_free_log:
1479         kmem_free(log);
1480 out:
1481         return ERR_PTR(error);
1482 }       /* xlog_alloc_log */
1483
1484
1485 /*
1486  * Write out the commit record of a transaction associated with the given
1487  * ticket.  Return the lsn of the commit record.
1488  */
1489 STATIC int
1490 xlog_commit_record(
1491         struct xlog             *log,
1492         struct xlog_ticket      *ticket,
1493         struct xlog_in_core     **iclog,
1494         xfs_lsn_t               *commitlsnp)
1495 {
1496         struct xfs_mount *mp = log->l_mp;
1497         int     error;
1498         struct xfs_log_iovec reg = {
1499                 .i_addr = NULL,
1500                 .i_len = 0,
1501                 .i_type = XLOG_REG_TYPE_COMMIT,
1502         };
1503         struct xfs_log_vec vec = {
1504                 .lv_niovecs = 1,
1505                 .lv_iovecp = &reg,
1506         };
1507
1508         ASSERT_ALWAYS(iclog);
1509         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1510                                         XLOG_COMMIT_TRANS);
1511         if (error)
1512                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1513         return error;
1514 }
1515
1516 /*
1517  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1518  * log space.  This code pushes on the lsn which would supposedly free up
1519  * the 25% which we want to leave free.  We may need to adopt a policy which
1520  * pushes on an lsn which is further along in the log once we reach the high
1521  * water mark.  In this manner, we would be creating a low water mark.
1522  */
1523 STATIC void
1524 xlog_grant_push_ail(
1525         struct xlog     *log,
1526         int             need_bytes)
1527 {
1528         xfs_lsn_t       threshold_lsn = 0;
1529         xfs_lsn_t       last_sync_lsn;
1530         int             free_blocks;
1531         int             free_bytes;
1532         int             threshold_block;
1533         int             threshold_cycle;
1534         int             free_threshold;
1535
1536         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1537
1538         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1539         free_blocks = BTOBBT(free_bytes);
1540
1541         /*
1542          * Set the threshold for the minimum number of free blocks in the
1543          * log to the maximum of what the caller needs, one quarter of the
1544          * log, and 256 blocks.
1545          */
1546         free_threshold = BTOBB(need_bytes);
1547         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1548         free_threshold = MAX(free_threshold, 256);
1549         if (free_blocks >= free_threshold)
1550                 return;
1551
1552         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1553                                                 &threshold_block);
1554         threshold_block += free_threshold;
1555         if (threshold_block >= log->l_logBBsize) {
1556                 threshold_block -= log->l_logBBsize;
1557                 threshold_cycle += 1;
1558         }
1559         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1560                                         threshold_block);
1561         /*
1562          * Don't pass in an lsn greater than the lsn of the last
1563          * log record known to be on disk. Use a snapshot of the last sync lsn
1564          * so that it doesn't change between the compare and the set.
1565          */
1566         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1567         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1568                 threshold_lsn = last_sync_lsn;
1569
1570         /*
1571          * Get the transaction layer to kick the dirty buffers out to
1572          * disk asynchronously. No point in trying to do this if
1573          * the filesystem is shutting down.
1574          */
1575         if (!XLOG_FORCED_SHUTDOWN(log))
1576                 xfs_ail_push(log->l_ailp, threshold_lsn);
1577 }
1578
1579 /*
1580  * Stamp cycle number in every block
1581  */
1582 STATIC void
1583 xlog_pack_data(
1584         struct xlog             *log,
1585         struct xlog_in_core     *iclog,
1586         int                     roundoff)
1587 {
1588         int                     i, j, k;
1589         int                     size = iclog->ic_offset + roundoff;
1590         __be32                  cycle_lsn;
1591         xfs_caddr_t             dp;
1592
1593         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1594
1595         dp = iclog->ic_datap;
1596         for (i = 0; i < BTOBB(size); i++) {
1597                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1598                         break;
1599                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1600                 *(__be32 *)dp = cycle_lsn;
1601                 dp += BBSIZE;
1602         }
1603
1604         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1605                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1606
1607                 for ( ; i < BTOBB(size); i++) {
1608                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1609                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1610                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1611                         *(__be32 *)dp = cycle_lsn;
1612                         dp += BBSIZE;
1613                 }
1614
1615                 for (i = 1; i < log->l_iclog_heads; i++)
1616                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1617         }
1618 }
1619
1620 /*
1621  * Calculate the checksum for a log buffer.
1622  *
1623  * This is a little more complicated than it should be because the various
1624  * headers and the actual data are non-contiguous.
1625  */
1626 __le32
1627 xlog_cksum(
1628         struct xlog             *log,
1629         struct xlog_rec_header  *rhead,
1630         char                    *dp,
1631         int                     size)
1632 {
1633         __uint32_t              crc;
1634
1635         /* first generate the crc for the record header ... */
1636         crc = xfs_start_cksum((char *)rhead,
1637                               sizeof(struct xlog_rec_header),
1638                               offsetof(struct xlog_rec_header, h_crc));
1639
1640         /* ... then for additional cycle data for v2 logs ... */
1641         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1642                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1643                 int             i;
1644
1645                 for (i = 1; i < log->l_iclog_heads; i++) {
1646                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1647                                      sizeof(struct xlog_rec_ext_header));
1648                 }
1649         }
1650
1651         /* ... and finally for the payload */
1652         crc = crc32c(crc, dp, size);
1653
1654         return xfs_end_cksum(crc);
1655 }
1656
1657 /*
1658  * The bdstrat callback function for log bufs. This gives us a central
1659  * place to trap bufs in case we get hit by a log I/O error and need to
1660  * shutdown. Actually, in practice, even when we didn't get a log error,
1661  * we transition the iclogs to IOERROR state *after* flushing all existing
1662  * iclogs to disk. This is because we don't want anymore new transactions to be
1663  * started or completed afterwards.
1664  *
1665  * We lock the iclogbufs here so that we can serialise against IO completion
1666  * during unmount. We might be processing a shutdown triggered during unmount,
1667  * and that can occur asynchronously to the unmount thread, and hence we need to
1668  * ensure that completes before tearing down the iclogbufs. Hence we need to
1669  * hold the buffer lock across the log IO to acheive that.
1670  */
1671 STATIC int
1672 xlog_bdstrat(
1673         struct xfs_buf          *bp)
1674 {
1675         struct xlog_in_core     *iclog = bp->b_fspriv;
1676
1677         xfs_buf_lock(bp);
1678         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1679                 xfs_buf_ioerror(bp, -EIO);
1680                 xfs_buf_stale(bp);
1681                 xfs_buf_ioend(bp);
1682                 /*
1683                  * It would seem logical to return EIO here, but we rely on
1684                  * the log state machine to propagate I/O errors instead of
1685                  * doing it here. Similarly, IO completion will unlock the
1686                  * buffer, so we don't do it here.
1687                  */
1688                 return 0;
1689         }
1690
1691         xfs_buf_submit(bp);
1692         return 0;
1693 }
1694
1695 /*
1696  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1697  * fashion.  Previously, we should have moved the current iclog
1698  * ptr in the log to point to the next available iclog.  This allows further
1699  * write to continue while this code syncs out an iclog ready to go.
1700  * Before an in-core log can be written out, the data section must be scanned
1701  * to save away the 1st word of each BBSIZE block into the header.  We replace
1702  * it with the current cycle count.  Each BBSIZE block is tagged with the
1703  * cycle count because there in an implicit assumption that drives will
1704  * guarantee that entire 512 byte blocks get written at once.  In other words,
1705  * we can't have part of a 512 byte block written and part not written.  By
1706  * tagging each block, we will know which blocks are valid when recovering
1707  * after an unclean shutdown.
1708  *
1709  * This routine is single threaded on the iclog.  No other thread can be in
1710  * this routine with the same iclog.  Changing contents of iclog can there-
1711  * fore be done without grabbing the state machine lock.  Updating the global
1712  * log will require grabbing the lock though.
1713  *
1714  * The entire log manager uses a logical block numbering scheme.  Only
1715  * log_sync (and then only bwrite()) know about the fact that the log may
1716  * not start with block zero on a given device.  The log block start offset
1717  * is added immediately before calling bwrite().
1718  */
1719
1720 STATIC int
1721 xlog_sync(
1722         struct xlog             *log,
1723         struct xlog_in_core     *iclog)
1724 {
1725         xfs_buf_t       *bp;
1726         int             i;
1727         uint            count;          /* byte count of bwrite */
1728         uint            count_init;     /* initial count before roundup */
1729         int             roundoff;       /* roundoff to BB or stripe */
1730         int             split = 0;      /* split write into two regions */
1731         int             error;
1732         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1733         int             size;
1734
1735         XFS_STATS_INC(xs_log_writes);
1736         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1737
1738         /* Add for LR header */
1739         count_init = log->l_iclog_hsize + iclog->ic_offset;
1740
1741         /* Round out the log write size */
1742         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1743                 /* we have a v2 stripe unit to use */
1744                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1745         } else {
1746                 count = BBTOB(BTOBB(count_init));
1747         }
1748         roundoff = count - count_init;
1749         ASSERT(roundoff >= 0);
1750         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1751                 roundoff < log->l_mp->m_sb.sb_logsunit)
1752                 || 
1753                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1754                  roundoff < BBTOB(1)));
1755
1756         /* move grant heads by roundoff in sync */
1757         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1758         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1759
1760         /* put cycle number in every block */
1761         xlog_pack_data(log, iclog, roundoff); 
1762
1763         /* real byte length */
1764         size = iclog->ic_offset;
1765         if (v2)
1766                 size += roundoff;
1767         iclog->ic_header.h_len = cpu_to_be32(size);
1768
1769         bp = iclog->ic_bp;
1770         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1771
1772         XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1773
1774         /* Do we need to split this write into 2 parts? */
1775         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1776                 char            *dptr;
1777
1778                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1779                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1780                 iclog->ic_bwritecnt = 2;
1781
1782                 /*
1783                  * Bump the cycle numbers at the start of each block in the
1784                  * part of the iclog that ends up in the buffer that gets
1785                  * written to the start of the log.
1786                  *
1787                  * Watch out for the header magic number case, though.
1788                  */
1789                 dptr = (char *)&iclog->ic_header + count;
1790                 for (i = 0; i < split; i += BBSIZE) {
1791                         __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1792                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1793                                 cycle++;
1794                         *(__be32 *)dptr = cpu_to_be32(cycle);
1795
1796                         dptr += BBSIZE;
1797                 }
1798         } else {
1799                 iclog->ic_bwritecnt = 1;
1800         }
1801
1802         /* calculcate the checksum */
1803         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1804                                             iclog->ic_datap, size);
1805
1806         bp->b_io_length = BTOBB(count);
1807         bp->b_fspriv = iclog;
1808         XFS_BUF_ZEROFLAGS(bp);
1809         XFS_BUF_ASYNC(bp);
1810         bp->b_flags |= XBF_SYNCIO;
1811         /* use high priority completion wq */
1812         bp->b_ioend_wq = log->l_mp->m_log_workqueue;
1813
1814         if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1815                 bp->b_flags |= XBF_FUA;
1816
1817                 /*
1818                  * Flush the data device before flushing the log to make
1819                  * sure all meta data written back from the AIL actually made
1820                  * it to disk before stamping the new log tail LSN into the
1821                  * log buffer.  For an external log we need to issue the
1822                  * flush explicitly, and unfortunately synchronously here;
1823                  * for an internal log we can simply use the block layer
1824                  * state machine for preflushes.
1825                  */
1826                 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1827                         xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1828                 else
1829                         bp->b_flags |= XBF_FLUSH;
1830         }
1831
1832         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1833         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1834
1835         xlog_verify_iclog(log, iclog, count, true);
1836
1837         /* account for log which doesn't start at block #0 */
1838         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1839         /*
1840          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1841          * is shutting down.
1842          */
1843         XFS_BUF_WRITE(bp);
1844
1845         error = xlog_bdstrat(bp);
1846         if (error) {
1847                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1848                 return error;
1849         }
1850         if (split) {
1851                 bp = iclog->ic_log->l_xbuf;
1852                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1853                 xfs_buf_associate_memory(bp,
1854                                 (char *)&iclog->ic_header + count, split);
1855                 bp->b_fspriv = iclog;
1856                 XFS_BUF_ZEROFLAGS(bp);
1857                 XFS_BUF_ASYNC(bp);
1858                 bp->b_flags |= XBF_SYNCIO;
1859                 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1860                         bp->b_flags |= XBF_FUA;
1861                 /* use high priority completion wq */
1862                 bp->b_ioend_wq = log->l_mp->m_log_workqueue;
1863
1864                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1865                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1866
1867                 /* account for internal log which doesn't start at block #0 */
1868                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1869                 XFS_BUF_WRITE(bp);
1870                 error = xlog_bdstrat(bp);
1871                 if (error) {
1872                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1873                         return error;
1874                 }
1875         }
1876         return 0;
1877 }       /* xlog_sync */
1878
1879 /*
1880  * Deallocate a log structure
1881  */
1882 STATIC void
1883 xlog_dealloc_log(
1884         struct xlog     *log)
1885 {
1886         xlog_in_core_t  *iclog, *next_iclog;
1887         int             i;
1888
1889         xlog_cil_destroy(log);
1890
1891         /*
1892          * Cycle all the iclogbuf locks to make sure all log IO completion
1893          * is done before we tear down these buffers.
1894          */
1895         iclog = log->l_iclog;
1896         for (i = 0; i < log->l_iclog_bufs; i++) {
1897                 xfs_buf_lock(iclog->ic_bp);
1898                 xfs_buf_unlock(iclog->ic_bp);
1899                 iclog = iclog->ic_next;
1900         }
1901
1902         /*
1903          * Always need to ensure that the extra buffer does not point to memory
1904          * owned by another log buffer before we free it. Also, cycle the lock
1905          * first to ensure we've completed IO on it.
1906          */
1907         xfs_buf_lock(log->l_xbuf);
1908         xfs_buf_unlock(log->l_xbuf);
1909         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1910         xfs_buf_free(log->l_xbuf);
1911
1912         iclog = log->l_iclog;
1913         for (i = 0; i < log->l_iclog_bufs; i++) {
1914                 xfs_buf_free(iclog->ic_bp);
1915                 next_iclog = iclog->ic_next;
1916                 kmem_free(iclog);
1917                 iclog = next_iclog;
1918         }
1919         spinlock_destroy(&log->l_icloglock);
1920
1921         log->l_mp->m_log = NULL;
1922         kmem_free(log);
1923 }       /* xlog_dealloc_log */
1924
1925 /*
1926  * Update counters atomically now that memcpy is done.
1927  */
1928 /* ARGSUSED */
1929 static inline void
1930 xlog_state_finish_copy(
1931         struct xlog             *log,
1932         struct xlog_in_core     *iclog,
1933         int                     record_cnt,
1934         int                     copy_bytes)
1935 {
1936         spin_lock(&log->l_icloglock);
1937
1938         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1939         iclog->ic_offset += copy_bytes;
1940
1941         spin_unlock(&log->l_icloglock);
1942 }       /* xlog_state_finish_copy */
1943
1944
1945
1946
1947 /*
1948  * print out info relating to regions written which consume
1949  * the reservation
1950  */
1951 void
1952 xlog_print_tic_res(
1953         struct xfs_mount        *mp,
1954         struct xlog_ticket      *ticket)
1955 {
1956         uint i;
1957         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1958
1959         /* match with XLOG_REG_TYPE_* in xfs_log.h */
1960         static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1961             "bformat",
1962             "bchunk",
1963             "efi_format",
1964             "efd_format",
1965             "iformat",
1966             "icore",
1967             "iext",
1968             "ibroot",
1969             "ilocal",
1970             "iattr_ext",
1971             "iattr_broot",
1972             "iattr_local",
1973             "qformat",
1974             "dquot",
1975             "quotaoff",
1976             "LR header",
1977             "unmount",
1978             "commit",
1979             "trans header"
1980         };
1981         static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1982             "SETATTR_NOT_SIZE",
1983             "SETATTR_SIZE",
1984             "INACTIVE",
1985             "CREATE",
1986             "CREATE_TRUNC",
1987             "TRUNCATE_FILE",
1988             "REMOVE",
1989             "LINK",
1990             "RENAME",
1991             "MKDIR",
1992             "RMDIR",
1993             "SYMLINK",
1994             "SET_DMATTRS",
1995             "GROWFS",
1996             "STRAT_WRITE",
1997             "DIOSTRAT",
1998             "WRITE_SYNC",
1999             "WRITEID",
2000             "ADDAFORK",
2001             "ATTRINVAL",
2002             "ATRUNCATE",
2003             "ATTR_SET",
2004             "ATTR_RM",
2005             "ATTR_FLAG",
2006             "CLEAR_AGI_BUCKET",
2007             "QM_SBCHANGE",
2008             "DUMMY1",
2009             "DUMMY2",
2010             "QM_QUOTAOFF",
2011             "QM_DQALLOC",
2012             "QM_SETQLIM",
2013             "QM_DQCLUSTER",
2014             "QM_QINOCREATE",
2015             "QM_QUOTAOFF_END",
2016             "SB_UNIT",
2017             "FSYNC_TS",
2018             "GROWFSRT_ALLOC",
2019             "GROWFSRT_ZERO",
2020             "GROWFSRT_FREE",
2021             "SWAPEXT"
2022         };
2023
2024         xfs_warn(mp,
2025                 "xlog_write: reservation summary:\n"
2026                 "  trans type  = %s (%u)\n"
2027                 "  unit res    = %d bytes\n"
2028                 "  current res = %d bytes\n"
2029                 "  total reg   = %u bytes (o/flow = %u bytes)\n"
2030                 "  ophdrs      = %u (ophdr space = %u bytes)\n"
2031                 "  ophdr + reg = %u bytes\n"
2032                 "  num regions = %u\n",
2033                 ((ticket->t_trans_type <= 0 ||
2034                   ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
2035                   "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
2036                 ticket->t_trans_type,
2037                 ticket->t_unit_res,
2038                 ticket->t_curr_res,
2039                 ticket->t_res_arr_sum, ticket->t_res_o_flow,
2040                 ticket->t_res_num_ophdrs, ophdr_spc,
2041                 ticket->t_res_arr_sum +
2042                 ticket->t_res_o_flow + ophdr_spc,
2043                 ticket->t_res_num);
2044
2045         for (i = 0; i < ticket->t_res_num; i++) {
2046                 uint r_type = ticket->t_res_arr[i].r_type;
2047                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2048                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2049                             "bad-rtype" : res_type_str[r_type-1]),
2050                             ticket->t_res_arr[i].r_len);
2051         }
2052
2053         xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2054                 "xlog_write: reservation ran out. Need to up reservation");
2055         xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2056 }
2057
2058 /*
2059  * Calculate the potential space needed by the log vector.  Each region gets
2060  * its own xlog_op_header_t and may need to be double word aligned.
2061  */
2062 static int
2063 xlog_write_calc_vec_length(
2064         struct xlog_ticket      *ticket,
2065         struct xfs_log_vec      *log_vector)
2066 {
2067         struct xfs_log_vec      *lv;
2068         int                     headers = 0;
2069         int                     len = 0;
2070         int                     i;
2071
2072         /* acct for start rec of xact */
2073         if (ticket->t_flags & XLOG_TIC_INITED)
2074                 headers++;
2075
2076         for (lv = log_vector; lv; lv = lv->lv_next) {
2077                 /* we don't write ordered log vectors */
2078                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2079                         continue;
2080
2081                 headers += lv->lv_niovecs;
2082
2083                 for (i = 0; i < lv->lv_niovecs; i++) {
2084                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2085
2086                         len += vecp->i_len;
2087                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2088                 }
2089         }
2090
2091         ticket->t_res_num_ophdrs += headers;
2092         len += headers * sizeof(struct xlog_op_header);
2093
2094         return len;
2095 }
2096
2097 /*
2098  * If first write for transaction, insert start record  We can't be trying to
2099  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2100  */
2101 static int
2102 xlog_write_start_rec(
2103         struct xlog_op_header   *ophdr,
2104         struct xlog_ticket      *ticket)
2105 {
2106         if (!(ticket->t_flags & XLOG_TIC_INITED))
2107                 return 0;
2108
2109         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2110         ophdr->oh_clientid = ticket->t_clientid;
2111         ophdr->oh_len = 0;
2112         ophdr->oh_flags = XLOG_START_TRANS;
2113         ophdr->oh_res2 = 0;
2114
2115         ticket->t_flags &= ~XLOG_TIC_INITED;
2116
2117         return sizeof(struct xlog_op_header);
2118 }
2119
2120 static xlog_op_header_t *
2121 xlog_write_setup_ophdr(
2122         struct xlog             *log,
2123         struct xlog_op_header   *ophdr,
2124         struct xlog_ticket      *ticket,
2125         uint                    flags)
2126 {
2127         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2128         ophdr->oh_clientid = ticket->t_clientid;
2129         ophdr->oh_res2 = 0;
2130
2131         /* are we copying a commit or unmount record? */
2132         ophdr->oh_flags = flags;
2133
2134         /*
2135          * We've seen logs corrupted with bad transaction client ids.  This
2136          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2137          * and shut down the filesystem.
2138          */
2139         switch (ophdr->oh_clientid)  {
2140         case XFS_TRANSACTION:
2141         case XFS_VOLUME:
2142         case XFS_LOG:
2143                 break;
2144         default:
2145                 xfs_warn(log->l_mp,
2146                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2147                         ophdr->oh_clientid, ticket);
2148                 return NULL;
2149         }
2150
2151         return ophdr;
2152 }
2153
2154 /*
2155  * Set up the parameters of the region copy into the log. This has
2156  * to handle region write split across multiple log buffers - this
2157  * state is kept external to this function so that this code can
2158  * be written in an obvious, self documenting manner.
2159  */
2160 static int
2161 xlog_write_setup_copy(
2162         struct xlog_ticket      *ticket,
2163         struct xlog_op_header   *ophdr,
2164         int                     space_available,
2165         int                     space_required,
2166         int                     *copy_off,
2167         int                     *copy_len,
2168         int                     *last_was_partial_copy,
2169         int                     *bytes_consumed)
2170 {
2171         int                     still_to_copy;
2172
2173         still_to_copy = space_required - *bytes_consumed;
2174         *copy_off = *bytes_consumed;
2175
2176         if (still_to_copy <= space_available) {
2177                 /* write of region completes here */
2178                 *copy_len = still_to_copy;
2179                 ophdr->oh_len = cpu_to_be32(*copy_len);
2180                 if (*last_was_partial_copy)
2181                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2182                 *last_was_partial_copy = 0;
2183                 *bytes_consumed = 0;
2184                 return 0;
2185         }
2186
2187         /* partial write of region, needs extra log op header reservation */
2188         *copy_len = space_available;
2189         ophdr->oh_len = cpu_to_be32(*copy_len);
2190         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2191         if (*last_was_partial_copy)
2192                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2193         *bytes_consumed += *copy_len;
2194         (*last_was_partial_copy)++;
2195
2196         /* account for new log op header */
2197         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2198         ticket->t_res_num_ophdrs++;
2199
2200         return sizeof(struct xlog_op_header);
2201 }
2202
2203 static int
2204 xlog_write_copy_finish(
2205         struct xlog             *log,
2206         struct xlog_in_core     *iclog,
2207         uint                    flags,
2208         int                     *record_cnt,
2209         int                     *data_cnt,
2210         int                     *partial_copy,
2211         int                     *partial_copy_len,
2212         int                     log_offset,
2213         struct xlog_in_core     **commit_iclog)
2214 {
2215         if (*partial_copy) {
2216                 /*
2217                  * This iclog has already been marked WANT_SYNC by
2218                  * xlog_state_get_iclog_space.
2219                  */
2220                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2221                 *record_cnt = 0;
2222                 *data_cnt = 0;
2223                 return xlog_state_release_iclog(log, iclog);
2224         }
2225
2226         *partial_copy = 0;
2227         *partial_copy_len = 0;
2228
2229         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2230                 /* no more space in this iclog - push it. */
2231                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2232                 *record_cnt = 0;
2233                 *data_cnt = 0;
2234
2235                 spin_lock(&log->l_icloglock);
2236                 xlog_state_want_sync(log, iclog);
2237                 spin_unlock(&log->l_icloglock);
2238
2239                 if (!commit_iclog)
2240                         return xlog_state_release_iclog(log, iclog);
2241                 ASSERT(flags & XLOG_COMMIT_TRANS);
2242                 *commit_iclog = iclog;
2243         }
2244
2245         return 0;
2246 }
2247
2248 /*
2249  * Write some region out to in-core log
2250  *
2251  * This will be called when writing externally provided regions or when
2252  * writing out a commit record for a given transaction.
2253  *
2254  * General algorithm:
2255  *      1. Find total length of this write.  This may include adding to the
2256  *              lengths passed in.
2257  *      2. Check whether we violate the tickets reservation.
2258  *      3. While writing to this iclog
2259  *          A. Reserve as much space in this iclog as can get
2260  *          B. If this is first write, save away start lsn
2261  *          C. While writing this region:
2262  *              1. If first write of transaction, write start record
2263  *              2. Write log operation header (header per region)
2264  *              3. Find out if we can fit entire region into this iclog
2265  *              4. Potentially, verify destination memcpy ptr
2266  *              5. Memcpy (partial) region
2267  *              6. If partial copy, release iclog; otherwise, continue
2268  *                      copying more regions into current iclog
2269  *      4. Mark want sync bit (in simulation mode)
2270  *      5. Release iclog for potential flush to on-disk log.
2271  *
2272  * ERRORS:
2273  * 1.   Panic if reservation is overrun.  This should never happen since
2274  *      reservation amounts are generated internal to the filesystem.
2275  * NOTES:
2276  * 1. Tickets are single threaded data structures.
2277  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2278  *      syncing routine.  When a single log_write region needs to span
2279  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2280  *      on all log operation writes which don't contain the end of the
2281  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2282  *      operation which contains the end of the continued log_write region.
2283  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2284  *      we don't really know exactly how much space will be used.  As a result,
2285  *      we don't update ic_offset until the end when we know exactly how many
2286  *      bytes have been written out.
2287  */
2288 int
2289 xlog_write(
2290         struct xlog             *log,
2291         struct xfs_log_vec      *log_vector,
2292         struct xlog_ticket      *ticket,
2293         xfs_lsn_t               *start_lsn,
2294         struct xlog_in_core     **commit_iclog,
2295         uint                    flags)
2296 {
2297         struct xlog_in_core     *iclog = NULL;
2298         struct xfs_log_iovec    *vecp;
2299         struct xfs_log_vec      *lv;
2300         int                     len;
2301         int                     index;
2302         int                     partial_copy = 0;
2303         int                     partial_copy_len = 0;
2304         int                     contwr = 0;
2305         int                     record_cnt = 0;
2306         int                     data_cnt = 0;
2307         int                     error;
2308
2309         *start_lsn = 0;
2310
2311         len = xlog_write_calc_vec_length(ticket, log_vector);
2312
2313         /*
2314          * Region headers and bytes are already accounted for.
2315          * We only need to take into account start records and
2316          * split regions in this function.
2317          */
2318         if (ticket->t_flags & XLOG_TIC_INITED)
2319                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2320
2321         /*
2322          * Commit record headers need to be accounted for. These
2323          * come in as separate writes so are easy to detect.
2324          */
2325         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2326                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2327
2328         if (ticket->t_curr_res < 0)
2329                 xlog_print_tic_res(log->l_mp, ticket);
2330
2331         index = 0;
2332         lv = log_vector;
2333         vecp = lv->lv_iovecp;
2334         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2335                 void            *ptr;
2336                 int             log_offset;
2337
2338                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2339                                                    &contwr, &log_offset);
2340                 if (error)
2341                         return error;
2342
2343                 ASSERT(log_offset <= iclog->ic_size - 1);
2344                 ptr = iclog->ic_datap + log_offset;
2345
2346                 /* start_lsn is the first lsn written to. That's all we need. */
2347                 if (!*start_lsn)
2348                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2349
2350                 /*
2351                  * This loop writes out as many regions as can fit in the amount
2352                  * of space which was allocated by xlog_state_get_iclog_space().
2353                  */
2354                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2355                         struct xfs_log_iovec    *reg;
2356                         struct xlog_op_header   *ophdr;
2357                         int                     start_rec_copy;
2358                         int                     copy_len;
2359                         int                     copy_off;
2360                         bool                    ordered = false;
2361
2362                         /* ordered log vectors have no regions to write */
2363                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2364                                 ASSERT(lv->lv_niovecs == 0);
2365                                 ordered = true;
2366                                 goto next_lv;
2367                         }
2368
2369                         reg = &vecp[index];
2370                         ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2371                         ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2372
2373                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2374                         if (start_rec_copy) {
2375                                 record_cnt++;
2376                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2377                                                    start_rec_copy);
2378                         }
2379
2380                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2381                         if (!ophdr)
2382                                 return -EIO;
2383
2384                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2385                                            sizeof(struct xlog_op_header));
2386
2387                         len += xlog_write_setup_copy(ticket, ophdr,
2388                                                      iclog->ic_size-log_offset,
2389                                                      reg->i_len,
2390                                                      &copy_off, &copy_len,
2391                                                      &partial_copy,
2392                                                      &partial_copy_len);
2393                         xlog_verify_dest_ptr(log, ptr);
2394
2395                         /* copy region */
2396                         ASSERT(copy_len >= 0);
2397                         memcpy(ptr, reg->i_addr + copy_off, copy_len);
2398                         xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2399
2400                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2401                         record_cnt++;
2402                         data_cnt += contwr ? copy_len : 0;
2403
2404                         error = xlog_write_copy_finish(log, iclog, flags,
2405                                                        &record_cnt, &data_cnt,
2406                                                        &partial_copy,
2407                                                        &partial_copy_len,
2408                                                        log_offset,
2409                                                        commit_iclog);
2410                         if (error)
2411                                 return error;
2412
2413                         /*
2414                          * if we had a partial copy, we need to get more iclog
2415                          * space but we don't want to increment the region
2416                          * index because there is still more is this region to
2417                          * write.
2418                          *
2419                          * If we completed writing this region, and we flushed
2420                          * the iclog (indicated by resetting of the record
2421                          * count), then we also need to get more log space. If
2422                          * this was the last record, though, we are done and
2423                          * can just return.
2424                          */
2425                         if (partial_copy)
2426                                 break;
2427
2428                         if (++index == lv->lv_niovecs) {
2429 next_lv:
2430                                 lv = lv->lv_next;
2431                                 index = 0;
2432                                 if (lv)
2433                                         vecp = lv->lv_iovecp;
2434                         }
2435                         if (record_cnt == 0 && ordered == false) {
2436                                 if (!lv)
2437                                         return 0;
2438                                 break;
2439                         }
2440                 }
2441         }
2442
2443         ASSERT(len == 0);
2444
2445         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2446         if (!commit_iclog)
2447                 return xlog_state_release_iclog(log, iclog);
2448
2449         ASSERT(flags & XLOG_COMMIT_TRANS);
2450         *commit_iclog = iclog;
2451         return 0;
2452 }
2453
2454
2455 /*****************************************************************************
2456  *
2457  *              State Machine functions
2458  *
2459  *****************************************************************************
2460  */
2461
2462 /* Clean iclogs starting from the head.  This ordering must be
2463  * maintained, so an iclog doesn't become ACTIVE beyond one that
2464  * is SYNCING.  This is also required to maintain the notion that we use
2465  * a ordered wait queue to hold off would be writers to the log when every
2466  * iclog is trying to sync to disk.
2467  *
2468  * State Change: DIRTY -> ACTIVE
2469  */
2470 STATIC void
2471 xlog_state_clean_log(
2472         struct xlog *log)
2473 {
2474         xlog_in_core_t  *iclog;
2475         int changed = 0;
2476
2477         iclog = log->l_iclog;
2478         do {
2479                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2480                         iclog->ic_state = XLOG_STATE_ACTIVE;
2481                         iclog->ic_offset       = 0;
2482                         ASSERT(iclog->ic_callback == NULL);
2483                         /*
2484                          * If the number of ops in this iclog indicate it just
2485                          * contains the dummy transaction, we can
2486                          * change state into IDLE (the second time around).
2487                          * Otherwise we should change the state into
2488                          * NEED a dummy.
2489                          * We don't need to cover the dummy.
2490                          */
2491                         if (!changed &&
2492                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2493                                         XLOG_COVER_OPS)) {
2494                                 changed = 1;
2495                         } else {
2496                                 /*
2497                                  * We have two dirty iclogs so start over
2498                                  * This could also be num of ops indicates
2499                                  * this is not the dummy going out.
2500                                  */
2501                                 changed = 2;
2502                         }
2503                         iclog->ic_header.h_num_logops = 0;
2504                         memset(iclog->ic_header.h_cycle_data, 0,
2505                               sizeof(iclog->ic_header.h_cycle_data));
2506                         iclog->ic_header.h_lsn = 0;
2507                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2508                         /* do nothing */;
2509                 else
2510                         break;  /* stop cleaning */
2511                 iclog = iclog->ic_next;
2512         } while (iclog != log->l_iclog);
2513
2514         /* log is locked when we are called */
2515         /*
2516          * Change state for the dummy log recording.
2517          * We usually go to NEED. But we go to NEED2 if the changed indicates
2518          * we are done writing the dummy record.
2519          * If we are done with the second dummy recored (DONE2), then
2520          * we go to IDLE.
2521          */
2522         if (changed) {
2523                 switch (log->l_covered_state) {
2524                 case XLOG_STATE_COVER_IDLE:
2525                 case XLOG_STATE_COVER_NEED:
2526                 case XLOG_STATE_COVER_NEED2:
2527                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2528                         break;
2529
2530                 case XLOG_STATE_COVER_DONE:
2531                         if (changed == 1)
2532                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2533                         else
2534                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2535                         break;
2536
2537                 case XLOG_STATE_COVER_DONE2:
2538                         if (changed == 1)
2539                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2540                         else
2541                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2542                         break;
2543
2544                 default:
2545                         ASSERT(0);
2546                 }
2547         }
2548 }       /* xlog_state_clean_log */
2549
2550 STATIC xfs_lsn_t
2551 xlog_get_lowest_lsn(
2552         struct xlog     *log)
2553 {
2554         xlog_in_core_t  *lsn_log;
2555         xfs_lsn_t       lowest_lsn, lsn;
2556
2557         lsn_log = log->l_iclog;
2558         lowest_lsn = 0;
2559         do {
2560             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2561                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2562                 if ((lsn && !lowest_lsn) ||
2563                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2564                         lowest_lsn = lsn;
2565                 }
2566             }
2567             lsn_log = lsn_log->ic_next;
2568         } while (lsn_log != log->l_iclog);
2569         return lowest_lsn;
2570 }
2571
2572
2573 STATIC void
2574 xlog_state_do_callback(
2575         struct xlog             *log,
2576         int                     aborted,
2577         struct xlog_in_core     *ciclog)
2578 {
2579         xlog_in_core_t     *iclog;
2580         xlog_in_core_t     *first_iclog;        /* used to know when we've
2581                                                  * processed all iclogs once */
2582         xfs_log_callback_t *cb, *cb_next;
2583         int                flushcnt = 0;
2584         xfs_lsn_t          lowest_lsn;
2585         int                ioerrors;    /* counter: iclogs with errors */
2586         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2587         int                funcdidcallbacks; /* flag: function did callbacks */
2588         int                repeats;     /* for issuing console warnings if
2589                                          * looping too many times */
2590         int                wake = 0;
2591
2592         spin_lock(&log->l_icloglock);
2593         first_iclog = iclog = log->l_iclog;
2594         ioerrors = 0;
2595         funcdidcallbacks = 0;
2596         repeats = 0;
2597
2598         do {
2599                 /*
2600                  * Scan all iclogs starting with the one pointed to by the
2601                  * log.  Reset this starting point each time the log is
2602                  * unlocked (during callbacks).
2603                  *
2604                  * Keep looping through iclogs until one full pass is made
2605                  * without running any callbacks.
2606                  */
2607                 first_iclog = log->l_iclog;
2608                 iclog = log->l_iclog;
2609                 loopdidcallbacks = 0;
2610                 repeats++;
2611
2612                 do {
2613
2614                         /* skip all iclogs in the ACTIVE & DIRTY states */
2615                         if (iclog->ic_state &
2616                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2617                                 iclog = iclog->ic_next;
2618                                 continue;
2619                         }
2620
2621                         /*
2622                          * Between marking a filesystem SHUTDOWN and stopping
2623                          * the log, we do flush all iclogs to disk (if there
2624                          * wasn't a log I/O error). So, we do want things to
2625                          * go smoothly in case of just a SHUTDOWN  w/o a
2626                          * LOG_IO_ERROR.
2627                          */
2628                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2629                                 /*
2630                                  * Can only perform callbacks in order.  Since
2631                                  * this iclog is not in the DONE_SYNC/
2632                                  * DO_CALLBACK state, we skip the rest and
2633                                  * just try to clean up.  If we set our iclog
2634                                  * to DO_CALLBACK, we will not process it when
2635                                  * we retry since a previous iclog is in the
2636                                  * CALLBACK and the state cannot change since
2637                                  * we are holding the l_icloglock.
2638                                  */
2639                                 if (!(iclog->ic_state &
2640                                         (XLOG_STATE_DONE_SYNC |
2641                                                  XLOG_STATE_DO_CALLBACK))) {
2642                                         if (ciclog && (ciclog->ic_state ==
2643                                                         XLOG_STATE_DONE_SYNC)) {
2644                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2645                                         }
2646                                         break;
2647                                 }
2648                                 /*
2649                                  * We now have an iclog that is in either the
2650                                  * DO_CALLBACK or DONE_SYNC states. The other
2651                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2652                                  * caught by the above if and are going to
2653                                  * clean (i.e. we aren't doing their callbacks)
2654                                  * see the above if.
2655                                  */
2656
2657                                 /*
2658                                  * We will do one more check here to see if we
2659                                  * have chased our tail around.
2660                                  */
2661
2662                                 lowest_lsn = xlog_get_lowest_lsn(log);
2663                                 if (lowest_lsn &&
2664                                     XFS_LSN_CMP(lowest_lsn,
2665                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2666                                         iclog = iclog->ic_next;
2667                                         continue; /* Leave this iclog for
2668                                                    * another thread */
2669                                 }
2670
2671                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2672
2673
2674                                 /*
2675                                  * Completion of a iclog IO does not imply that
2676                                  * a transaction has completed, as transactions
2677                                  * can be large enough to span many iclogs. We
2678                                  * cannot change the tail of the log half way
2679                                  * through a transaction as this may be the only
2680                                  * transaction in the log and moving th etail to
2681                                  * point to the middle of it will prevent
2682                                  * recovery from finding the start of the
2683                                  * transaction. Hence we should only update the
2684                                  * last_sync_lsn if this iclog contains
2685                                  * transaction completion callbacks on it.
2686                                  *
2687                                  * We have to do this before we drop the
2688                                  * icloglock to ensure we are the only one that
2689                                  * can update it.
2690                                  */
2691                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2692                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2693                                 if (iclog->ic_callback)
2694                                         atomic64_set(&log->l_last_sync_lsn,
2695                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2696
2697                         } else
2698                                 ioerrors++;
2699
2700                         spin_unlock(&log->l_icloglock);
2701
2702                         /*
2703                          * Keep processing entries in the callback list until
2704                          * we come around and it is empty.  We need to
2705                          * atomically see that the list is empty and change the
2706                          * state to DIRTY so that we don't miss any more
2707                          * callbacks being added.
2708                          */
2709                         spin_lock(&iclog->ic_callback_lock);
2710                         cb = iclog->ic_callback;
2711                         while (cb) {
2712                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2713                                 iclog->ic_callback = NULL;
2714                                 spin_unlock(&iclog->ic_callback_lock);
2715
2716                                 /* perform callbacks in the order given */
2717                                 for (; cb; cb = cb_next) {
2718                                         cb_next = cb->cb_next;
2719                                         cb->cb_func(cb->cb_arg, aborted);
2720                                 }
2721                                 spin_lock(&iclog->ic_callback_lock);
2722                                 cb = iclog->ic_callback;
2723                         }
2724
2725                         loopdidcallbacks++;
2726                         funcdidcallbacks++;
2727
2728                         spin_lock(&log->l_icloglock);
2729                         ASSERT(iclog->ic_callback == NULL);
2730                         spin_unlock(&iclog->ic_callback_lock);
2731                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2732                                 iclog->ic_state = XLOG_STATE_DIRTY;
2733
2734                         /*
2735                          * Transition from DIRTY to ACTIVE if applicable.
2736                          * NOP if STATE_IOERROR.
2737                          */
2738                         xlog_state_clean_log(log);
2739
2740                         /* wake up threads waiting in xfs_log_force() */
2741                         wake_up_all(&iclog->ic_force_wait);
2742
2743                         iclog = iclog->ic_next;
2744                 } while (first_iclog != iclog);
2745
2746                 if (repeats > 5000) {
2747                         flushcnt += repeats;
2748                         repeats = 0;
2749                         xfs_warn(log->l_mp,
2750                                 "%s: possible infinite loop (%d iterations)",
2751                                 __func__, flushcnt);
2752                 }
2753         } while (!ioerrors && loopdidcallbacks);
2754
2755         /*
2756          * make one last gasp attempt to see if iclogs are being left in
2757          * limbo..
2758          */
2759 #ifdef DEBUG
2760         if (funcdidcallbacks) {
2761                 first_iclog = iclog = log->l_iclog;
2762                 do {
2763                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2764                         /*
2765                          * Terminate the loop if iclogs are found in states
2766                          * which will cause other threads to clean up iclogs.
2767                          *
2768                          * SYNCING - i/o completion will go through logs
2769                          * DONE_SYNC - interrupt thread should be waiting for
2770                          *              l_icloglock
2771                          * IOERROR - give up hope all ye who enter here
2772                          */
2773                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2774                             iclog->ic_state == XLOG_STATE_SYNCING ||
2775                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2776                             iclog->ic_state == XLOG_STATE_IOERROR )
2777                                 break;
2778                         iclog = iclog->ic_next;
2779                 } while (first_iclog != iclog);
2780         }
2781 #endif
2782
2783         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2784                 wake = 1;
2785         spin_unlock(&log->l_icloglock);
2786
2787         if (wake)
2788                 wake_up_all(&log->l_flush_wait);
2789 }
2790
2791
2792 /*
2793  * Finish transitioning this iclog to the dirty state.
2794  *
2795  * Make sure that we completely execute this routine only when this is
2796  * the last call to the iclog.  There is a good chance that iclog flushes,
2797  * when we reach the end of the physical log, get turned into 2 separate
2798  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2799  * routine.  By using the reference count bwritecnt, we guarantee that only
2800  * the second completion goes through.
2801  *
2802  * Callbacks could take time, so they are done outside the scope of the
2803  * global state machine log lock.
2804  */
2805 STATIC void
2806 xlog_state_done_syncing(
2807         xlog_in_core_t  *iclog,
2808         int             aborted)
2809 {
2810         struct xlog        *log = iclog->ic_log;
2811
2812         spin_lock(&log->l_icloglock);
2813
2814         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2815                iclog->ic_state == XLOG_STATE_IOERROR);
2816         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2817         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2818
2819
2820         /*
2821          * If we got an error, either on the first buffer, or in the case of
2822          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2823          * and none should ever be attempted to be written to disk
2824          * again.
2825          */
2826         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2827                 if (--iclog->ic_bwritecnt == 1) {
2828                         spin_unlock(&log->l_icloglock);
2829                         return;
2830                 }
2831                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2832         }
2833
2834         /*
2835          * Someone could be sleeping prior to writing out the next
2836          * iclog buffer, we wake them all, one will get to do the
2837          * I/O, the others get to wait for the result.
2838          */
2839         wake_up_all(&iclog->ic_write_wait);
2840         spin_unlock(&log->l_icloglock);
2841         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2842 }       /* xlog_state_done_syncing */
2843
2844
2845 /*
2846  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2847  * sleep.  We wait on the flush queue on the head iclog as that should be
2848  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2849  * we will wait here and all new writes will sleep until a sync completes.
2850  *
2851  * The in-core logs are used in a circular fashion. They are not used
2852  * out-of-order even when an iclog past the head is free.
2853  *
2854  * return:
2855  *      * log_offset where xlog_write() can start writing into the in-core
2856  *              log's data space.
2857  *      * in-core log pointer to which xlog_write() should write.
2858  *      * boolean indicating this is a continued write to an in-core log.
2859  *              If this is the last write, then the in-core log's offset field
2860  *              needs to be incremented, depending on the amount of data which
2861  *              is copied.
2862  */
2863 STATIC int
2864 xlog_state_get_iclog_space(
2865         struct xlog             *log,
2866         int                     len,
2867         struct xlog_in_core     **iclogp,
2868         struct xlog_ticket      *ticket,
2869         int                     *continued_write,
2870         int                     *logoffsetp)
2871 {
2872         int               log_offset;
2873         xlog_rec_header_t *head;
2874         xlog_in_core_t    *iclog;
2875         int               error;
2876
2877 restart:
2878         spin_lock(&log->l_icloglock);
2879         if (XLOG_FORCED_SHUTDOWN(log)) {
2880                 spin_unlock(&log->l_icloglock);
2881                 return -EIO;
2882         }
2883
2884         iclog = log->l_iclog;
2885         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2886                 XFS_STATS_INC(xs_log_noiclogs);
2887
2888                 /* Wait for log writes to have flushed */
2889                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2890                 goto restart;
2891         }
2892
2893         head = &iclog->ic_header;
2894
2895         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2896         log_offset = iclog->ic_offset;
2897
2898         /* On the 1st write to an iclog, figure out lsn.  This works
2899          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2900          * committing to.  If the offset is set, that's how many blocks
2901          * must be written.
2902          */
2903         if (log_offset == 0) {
2904                 ticket->t_curr_res -= log->l_iclog_hsize;
2905                 xlog_tic_add_region(ticket,
2906                                     log->l_iclog_hsize,
2907                                     XLOG_REG_TYPE_LRHEADER);
2908                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2909                 head->h_lsn = cpu_to_be64(
2910                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2911                 ASSERT(log->l_curr_block >= 0);
2912         }
2913
2914         /* If there is enough room to write everything, then do it.  Otherwise,
2915          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2916          * bit is on, so this will get flushed out.  Don't update ic_offset
2917          * until you know exactly how many bytes get copied.  Therefore, wait
2918          * until later to update ic_offset.
2919          *
2920          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2921          * can fit into remaining data section.
2922          */
2923         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2924                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2925
2926                 /*
2927                  * If I'm the only one writing to this iclog, sync it to disk.
2928                  * We need to do an atomic compare and decrement here to avoid
2929                  * racing with concurrent atomic_dec_and_lock() calls in
2930                  * xlog_state_release_iclog() when there is more than one
2931                  * reference to the iclog.
2932                  */
2933                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2934                         /* we are the only one */
2935                         spin_unlock(&log->l_icloglock);
2936                         error = xlog_state_release_iclog(log, iclog);
2937                         if (error)
2938                                 return error;
2939                 } else {
2940                         spin_unlock(&log->l_icloglock);
2941                 }
2942                 goto restart;
2943         }
2944
2945         /* Do we have enough room to write the full amount in the remainder
2946          * of this iclog?  Or must we continue a write on the next iclog and
2947          * mark this iclog as completely taken?  In the case where we switch
2948          * iclogs (to mark it taken), this particular iclog will release/sync
2949          * to disk in xlog_write().
2950          */
2951         if (len <= iclog->ic_size - iclog->ic_offset) {
2952                 *continued_write = 0;
2953                 iclog->ic_offset += len;
2954         } else {
2955                 *continued_write = 1;
2956                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2957         }
2958         *iclogp = iclog;
2959
2960         ASSERT(iclog->ic_offset <= iclog->ic_size);
2961         spin_unlock(&log->l_icloglock);
2962
2963         *logoffsetp = log_offset;
2964         return 0;
2965 }       /* xlog_state_get_iclog_space */
2966
2967 /* The first cnt-1 times through here we don't need to
2968  * move the grant write head because the permanent
2969  * reservation has reserved cnt times the unit amount.
2970  * Release part of current permanent unit reservation and
2971  * reset current reservation to be one units worth.  Also
2972  * move grant reservation head forward.
2973  */
2974 STATIC void
2975 xlog_regrant_reserve_log_space(
2976         struct xlog             *log,
2977         struct xlog_ticket      *ticket)
2978 {
2979         trace_xfs_log_regrant_reserve_enter(log, ticket);
2980
2981         if (ticket->t_cnt > 0)
2982                 ticket->t_cnt--;
2983
2984         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2985                                         ticket->t_curr_res);
2986         xlog_grant_sub_space(log, &log->l_write_head.grant,
2987                                         ticket->t_curr_res);
2988         ticket->t_curr_res = ticket->t_unit_res;
2989         xlog_tic_reset_res(ticket);
2990
2991         trace_xfs_log_regrant_reserve_sub(log, ticket);
2992
2993         /* just return if we still have some of the pre-reserved space */
2994         if (ticket->t_cnt > 0)
2995                 return;
2996
2997         xlog_grant_add_space(log, &log->l_reserve_head.grant,
2998                                         ticket->t_unit_res);
2999
3000         trace_xfs_log_regrant_reserve_exit(log, ticket);
3001
3002         ticket->t_curr_res = ticket->t_unit_res;
3003         xlog_tic_reset_res(ticket);
3004 }       /* xlog_regrant_reserve_log_space */
3005
3006
3007 /*
3008  * Give back the space left from a reservation.
3009  *
3010  * All the information we need to make a correct determination of space left
3011  * is present.  For non-permanent reservations, things are quite easy.  The
3012  * count should have been decremented to zero.  We only need to deal with the
3013  * space remaining in the current reservation part of the ticket.  If the
3014  * ticket contains a permanent reservation, there may be left over space which
3015  * needs to be released.  A count of N means that N-1 refills of the current
3016  * reservation can be done before we need to ask for more space.  The first
3017  * one goes to fill up the first current reservation.  Once we run out of
3018  * space, the count will stay at zero and the only space remaining will be
3019  * in the current reservation field.
3020  */
3021 STATIC void
3022 xlog_ungrant_log_space(
3023         struct xlog             *log,
3024         struct xlog_ticket      *ticket)
3025 {
3026         int     bytes;
3027
3028         if (ticket->t_cnt > 0)
3029                 ticket->t_cnt--;
3030
3031         trace_xfs_log_ungrant_enter(log, ticket);
3032         trace_xfs_log_ungrant_sub(log, ticket);
3033
3034         /*
3035          * If this is a permanent reservation ticket, we may be able to free
3036          * up more space based on the remaining count.
3037          */
3038         bytes = ticket->t_curr_res;
3039         if (ticket->t_cnt > 0) {
3040                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3041                 bytes += ticket->t_unit_res*ticket->t_cnt;
3042         }
3043
3044         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3045         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3046
3047         trace_xfs_log_ungrant_exit(log, ticket);
3048
3049         xfs_log_space_wake(log->l_mp);
3050 }
3051
3052 /*
3053  * Flush iclog to disk if this is the last reference to the given iclog and
3054  * the WANT_SYNC bit is set.
3055  *
3056  * When this function is entered, the iclog is not necessarily in the
3057  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3058  *
3059  *
3060  */
3061 STATIC int
3062 xlog_state_release_iclog(
3063         struct xlog             *log,
3064         struct xlog_in_core     *iclog)
3065 {
3066         int             sync = 0;       /* do we sync? */
3067
3068         if (iclog->ic_state & XLOG_STATE_IOERROR)
3069                 return -EIO;
3070
3071         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3072         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3073                 return 0;
3074
3075         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3076                 spin_unlock(&log->l_icloglock);
3077                 return -EIO;
3078         }
3079         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3080                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3081
3082         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3083                 /* update tail before writing to iclog */
3084                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3085                 sync++;
3086                 iclog->ic_state = XLOG_STATE_SYNCING;
3087                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3088                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3089                 /* cycle incremented when incrementing curr_block */
3090         }
3091         spin_unlock(&log->l_icloglock);
3092
3093         /*
3094          * We let the log lock go, so it's possible that we hit a log I/O
3095          * error or some other SHUTDOWN condition that marks the iclog
3096          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3097          * this iclog has consistent data, so we ignore IOERROR
3098          * flags after this point.
3099          */
3100         if (sync)
3101                 return xlog_sync(log, iclog);
3102         return 0;
3103 }       /* xlog_state_release_iclog */
3104
3105
3106 /*
3107  * This routine will mark the current iclog in the ring as WANT_SYNC
3108  * and move the current iclog pointer to the next iclog in the ring.
3109  * When this routine is called from xlog_state_get_iclog_space(), the
3110  * exact size of the iclog has not yet been determined.  All we know is
3111  * that every data block.  We have run out of space in this log record.
3112  */
3113 STATIC void
3114 xlog_state_switch_iclogs(
3115         struct xlog             *log,
3116         struct xlog_in_core     *iclog,
3117         int                     eventual_size)
3118 {
3119         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3120         if (!eventual_size)
3121                 eventual_size = iclog->ic_offset;
3122         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3123         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3124         log->l_prev_block = log->l_curr_block;
3125         log->l_prev_cycle = log->l_curr_cycle;
3126
3127         /* roll log?: ic_offset changed later */
3128         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3129
3130         /* Round up to next log-sunit */
3131         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3132             log->l_mp->m_sb.sb_logsunit > 1) {
3133                 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3134                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3135         }
3136
3137         if (log->l_curr_block >= log->l_logBBsize) {
3138                 log->l_curr_cycle++;
3139                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3140                         log->l_curr_cycle++;
3141                 log->l_curr_block -= log->l_logBBsize;
3142                 ASSERT(log->l_curr_block >= 0);
3143         }
3144         ASSERT(iclog == log->l_iclog);
3145         log->l_iclog = iclog->ic_next;
3146 }       /* xlog_state_switch_iclogs */
3147
3148 /*
3149  * Write out all data in the in-core log as of this exact moment in time.
3150  *
3151  * Data may be written to the in-core log during this call.  However,
3152  * we don't guarantee this data will be written out.  A change from past
3153  * implementation means this routine will *not* write out zero length LRs.
3154  *
3155  * Basically, we try and perform an intelligent scan of the in-core logs.
3156  * If we determine there is no flushable data, we just return.  There is no
3157  * flushable data if:
3158  *
3159  *      1. the current iclog is active and has no data; the previous iclog
3160  *              is in the active or dirty state.
3161  *      2. the current iclog is drity, and the previous iclog is in the
3162  *              active or dirty state.
3163  *
3164  * We may sleep if:
3165  *
3166  *      1. the current iclog is not in the active nor dirty state.
3167  *      2. the current iclog dirty, and the previous iclog is not in the
3168  *              active nor dirty state.
3169  *      3. the current iclog is active, and there is another thread writing
3170  *              to this particular iclog.
3171  *      4. a) the current iclog is active and has no other writers
3172  *         b) when we return from flushing out this iclog, it is still
3173  *              not in the active nor dirty state.
3174  */
3175 int
3176 _xfs_log_force(
3177         struct xfs_mount        *mp,
3178         uint                    flags,
3179         int                     *log_flushed)
3180 {
3181         struct xlog             *log = mp->m_log;
3182         struct xlog_in_core     *iclog;
3183         xfs_lsn_t               lsn;
3184
3185         XFS_STATS_INC(xs_log_force);
3186
3187         xlog_cil_force(log);
3188
3189         spin_lock(&log->l_icloglock);
3190
3191         iclog = log->l_iclog;
3192         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3193                 spin_unlock(&log->l_icloglock);
3194                 return -EIO;
3195         }
3196
3197         /* If the head iclog is not active nor dirty, we just attach
3198          * ourselves to the head and go to sleep.
3199          */
3200         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3201             iclog->ic_state == XLOG_STATE_DIRTY) {
3202                 /*
3203                  * If the head is dirty or (active and empty), then
3204                  * we need to look at the previous iclog.  If the previous
3205                  * iclog is active or dirty we are done.  There is nothing
3206                  * to sync out.  Otherwise, we attach ourselves to the
3207                  * previous iclog and go to sleep.
3208                  */
3209                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3210                     (atomic_read(&iclog->ic_refcnt) == 0
3211                      && iclog->ic_offset == 0)) {
3212                         iclog = iclog->ic_prev;
3213                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3214                             iclog->ic_state == XLOG_STATE_DIRTY)
3215                                 goto no_sleep;
3216                         else
3217                                 goto maybe_sleep;
3218                 } else {
3219                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3220                                 /* We are the only one with access to this
3221                                  * iclog.  Flush it out now.  There should
3222                                  * be a roundoff of zero to show that someone
3223                                  * has already taken care of the roundoff from
3224                                  * the previous sync.
3225                                  */
3226                                 atomic_inc(&iclog->ic_refcnt);
3227                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3228                                 xlog_state_switch_iclogs(log, iclog, 0);
3229                                 spin_unlock(&log->l_icloglock);
3230
3231                                 if (xlog_state_release_iclog(log, iclog))
3232                                         return -EIO;
3233
3234                                 if (log_flushed)
3235                                         *log_flushed = 1;
3236                                 spin_lock(&log->l_icloglock);
3237                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3238                                     iclog->ic_state != XLOG_STATE_DIRTY)
3239                                         goto maybe_sleep;
3240                                 else
3241                                         goto no_sleep;
3242                         } else {
3243                                 /* Someone else is writing to this iclog.
3244                                  * Use its call to flush out the data.  However,
3245                                  * the other thread may not force out this LR,
3246                                  * so we mark it WANT_SYNC.
3247                                  */
3248                                 xlog_state_switch_iclogs(log, iclog, 0);
3249                                 goto maybe_sleep;
3250                         }
3251                 }
3252         }
3253
3254         /* By the time we come around again, the iclog could've been filled
3255          * which would give it another lsn.  If we have a new lsn, just
3256          * return because the relevant data has been flushed.
3257          */
3258 maybe_sleep:
3259         if (flags & XFS_LOG_SYNC) {
3260                 /*
3261                  * We must check if we're shutting down here, before
3262                  * we wait, while we're holding the l_icloglock.
3263                  * Then we check again after waking up, in case our
3264                  * sleep was disturbed by a bad news.
3265                  */
3266                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3267                         spin_unlock(&log->l_icloglock);
3268                         return -EIO;
3269                 }
3270                 XFS_STATS_INC(xs_log_force_sleep);
3271                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3272                 /*
3273                  * No need to grab the log lock here since we're
3274                  * only deciding whether or not to return EIO
3275                  * and the memory read should be atomic.
3276                  */
3277                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3278                         return -EIO;
3279                 if (log_flushed)
3280                         *log_flushed = 1;
3281         } else {
3282
3283 no_sleep:
3284                 spin_unlock(&log->l_icloglock);
3285         }
3286         return 0;
3287 }
3288
3289 /*
3290  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3291  * about errors or whether the log was flushed or not. This is the normal
3292  * interface to use when trying to unpin items or move the log forward.
3293  */
3294 void
3295 xfs_log_force(
3296         xfs_mount_t     *mp,
3297         uint            flags)
3298 {
3299         int     error;
3300
3301         trace_xfs_log_force(mp, 0);
3302         error = _xfs_log_force(mp, flags, NULL);
3303         if (error)
3304                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3305 }
3306
3307 /*
3308  * Force the in-core log to disk for a specific LSN.
3309  *
3310  * Find in-core log with lsn.
3311  *      If it is in the DIRTY state, just return.
3312  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3313  *              state and go to sleep or return.
3314  *      If it is in any other state, go to sleep or return.
3315  *
3316  * Synchronous forces are implemented with a signal variable. All callers
3317  * to force a given lsn to disk will wait on a the sv attached to the
3318  * specific in-core log.  When given in-core log finally completes its
3319  * write to disk, that thread will wake up all threads waiting on the
3320  * sv.
3321  */
3322 int
3323 _xfs_log_force_lsn(
3324         struct xfs_mount        *mp,
3325         xfs_lsn_t               lsn,
3326         uint                    flags,
3327         int                     *log_flushed)
3328 {
3329         struct xlog             *log = mp->m_log;
3330         struct xlog_in_core     *iclog;
3331         int                     already_slept = 0;
3332
3333         ASSERT(lsn != 0);
3334
3335         XFS_STATS_INC(xs_log_force);
3336
3337         lsn = xlog_cil_force_lsn(log, lsn);
3338         if (lsn == NULLCOMMITLSN)
3339                 return 0;
3340
3341 try_again:
3342         spin_lock(&log->l_icloglock);
3343         iclog = log->l_iclog;
3344         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3345                 spin_unlock(&log->l_icloglock);
3346                 return -EIO;
3347         }
3348
3349         do {
3350                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3351                         iclog = iclog->ic_next;
3352                         continue;
3353                 }
3354
3355                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3356                         spin_unlock(&log->l_icloglock);
3357                         return 0;
3358                 }
3359
3360                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3361                         /*
3362                          * We sleep here if we haven't already slept (e.g.
3363                          * this is the first time we've looked at the correct
3364                          * iclog buf) and the buffer before us is going to
3365                          * be sync'ed. The reason for this is that if we
3366                          * are doing sync transactions here, by waiting for
3367                          * the previous I/O to complete, we can allow a few
3368                          * more transactions into this iclog before we close
3369                          * it down.
3370                          *
3371                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3372                          * up the refcnt so we can release the log (which
3373                          * drops the ref count).  The state switch keeps new
3374                          * transaction commits from using this buffer.  When
3375                          * the current commits finish writing into the buffer,
3376                          * the refcount will drop to zero and the buffer will
3377                          * go out then.
3378                          */
3379                         if (!already_slept &&
3380                             (iclog->ic_prev->ic_state &
3381                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3382                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3383
3384                                 XFS_STATS_INC(xs_log_force_sleep);
3385
3386                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3387                                                         &log->l_icloglock);
3388                                 if (log_flushed)
3389                                         *log_flushed = 1;
3390                                 already_slept = 1;
3391                                 goto try_again;
3392                         }
3393                         atomic_inc(&iclog->ic_refcnt);
3394                         xlog_state_switch_iclogs(log, iclog, 0);
3395                         spin_unlock(&log->l_icloglock);
3396                         if (xlog_state_release_iclog(log, iclog))
3397                                 return -EIO;
3398                         if (log_flushed)
3399                                 *log_flushed = 1;
3400                         spin_lock(&log->l_icloglock);
3401                 }
3402
3403                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3404                     !(iclog->ic_state &
3405                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3406                         /*
3407                          * Don't wait on completion if we know that we've
3408                          * gotten a log write error.
3409                          */
3410                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3411                                 spin_unlock(&log->l_icloglock);
3412                                 return -EIO;
3413                         }
3414                         XFS_STATS_INC(xs_log_force_sleep);
3415                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3416                         /*
3417                          * No need to grab the log lock here since we're
3418                          * only deciding whether or not to return EIO
3419                          * and the memory read should be atomic.
3420                          */
3421                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3422                                 return -EIO;
3423
3424                         if (log_flushed)
3425                                 *log_flushed = 1;
3426                 } else {                /* just return */
3427                         spin_unlock(&log->l_icloglock);
3428                 }
3429
3430                 return 0;
3431         } while (iclog != log->l_iclog);
3432
3433         spin_unlock(&log->l_icloglock);
3434         return 0;
3435 }
3436
3437 /*
3438  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3439  * about errors or whether the log was flushed or not. This is the normal
3440  * interface to use when trying to unpin items or move the log forward.
3441  */
3442 void
3443 xfs_log_force_lsn(
3444         xfs_mount_t     *mp,
3445         xfs_lsn_t       lsn,
3446         uint            flags)
3447 {
3448         int     error;
3449
3450         trace_xfs_log_force(mp, lsn);
3451         error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3452         if (error)
3453                 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3454 }
3455
3456 /*
3457  * Called when we want to mark the current iclog as being ready to sync to
3458  * disk.
3459  */
3460 STATIC void
3461 xlog_state_want_sync(
3462         struct xlog             *log,
3463         struct xlog_in_core     *iclog)
3464 {
3465         assert_spin_locked(&log->l_icloglock);
3466
3467         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3468                 xlog_state_switch_iclogs(log, iclog, 0);
3469         } else {
3470                 ASSERT(iclog->ic_state &
3471                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3472         }
3473 }
3474
3475
3476 /*****************************************************************************
3477  *
3478  *              TICKET functions
3479  *
3480  *****************************************************************************
3481  */
3482
3483 /*
3484  * Free a used ticket when its refcount falls to zero.
3485  */
3486 void
3487 xfs_log_ticket_put(
3488         xlog_ticket_t   *ticket)
3489 {
3490         ASSERT(atomic_read(&ticket->t_ref) > 0);
3491         if (atomic_dec_and_test(&ticket->t_ref))
3492                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3493 }
3494
3495 xlog_ticket_t *
3496 xfs_log_ticket_get(
3497         xlog_ticket_t   *ticket)
3498 {
3499         ASSERT(atomic_read(&ticket->t_ref) > 0);
3500         atomic_inc(&ticket->t_ref);
3501         return ticket;
3502 }
3503
3504 /*
3505  * Figure out the total log space unit (in bytes) that would be
3506  * required for a log ticket.
3507  */
3508 int
3509 xfs_log_calc_unit_res(
3510         struct xfs_mount        *mp,
3511         int                     unit_bytes)
3512 {
3513         struct xlog             *log = mp->m_log;
3514         int                     iclog_space;
3515         uint                    num_headers;
3516
3517         /*
3518          * Permanent reservations have up to 'cnt'-1 active log operations
3519          * in the log.  A unit in this case is the amount of space for one
3520          * of these log operations.  Normal reservations have a cnt of 1
3521          * and their unit amount is the total amount of space required.
3522          *
3523          * The following lines of code account for non-transaction data
3524          * which occupy space in the on-disk log.
3525          *
3526          * Normal form of a transaction is:
3527          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3528          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3529          *
3530          * We need to account for all the leadup data and trailer data
3531          * around the transaction data.
3532          * And then we need to account for the worst case in terms of using
3533          * more space.
3534          * The worst case will happen if:
3535          * - the placement of the transaction happens to be such that the
3536          *   roundoff is at its maximum
3537          * - the transaction data is synced before the commit record is synced
3538          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3539          *   Therefore the commit record is in its own Log Record.
3540          *   This can happen as the commit record is called with its
3541          *   own region to xlog_write().
3542          *   This then means that in the worst case, roundoff can happen for
3543          *   the commit-rec as well.
3544          *   The commit-rec is smaller than padding in this scenario and so it is
3545          *   not added separately.
3546          */
3547
3548         /* for trans header */
3549         unit_bytes += sizeof(xlog_op_header_t);
3550         unit_bytes += sizeof(xfs_trans_header_t);
3551
3552         /* for start-rec */
3553         unit_bytes += sizeof(xlog_op_header_t);
3554
3555         /*
3556          * for LR headers - the space for data in an iclog is the size minus
3557          * the space used for the headers. If we use the iclog size, then we
3558          * undercalculate the number of headers required.
3559          *
3560          * Furthermore - the addition of op headers for split-recs might
3561          * increase the space required enough to require more log and op
3562          * headers, so take that into account too.
3563          *
3564          * IMPORTANT: This reservation makes the assumption that if this
3565          * transaction is the first in an iclog and hence has the LR headers
3566          * accounted to it, then the remaining space in the iclog is
3567          * exclusively for this transaction.  i.e. if the transaction is larger
3568          * than the iclog, it will be the only thing in that iclog.
3569          * Fundamentally, this means we must pass the entire log vector to
3570          * xlog_write to guarantee this.
3571          */
3572         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3573         num_headers = howmany(unit_bytes, iclog_space);
3574
3575         /* for split-recs - ophdrs added when data split over LRs */
3576         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3577
3578         /* add extra header reservations if we overrun */
3579         while (!num_headers ||
3580                howmany(unit_bytes, iclog_space) > num_headers) {
3581                 unit_bytes += sizeof(xlog_op_header_t);
3582                 num_headers++;
3583         }
3584         unit_bytes += log->l_iclog_hsize * num_headers;
3585
3586         /* for commit-rec LR header - note: padding will subsume the ophdr */
3587         unit_bytes += log->l_iclog_hsize;
3588
3589         /* for roundoff padding for transaction data and one for commit record */
3590         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3591                 /* log su roundoff */
3592                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3593         } else {
3594                 /* BB roundoff */
3595                 unit_bytes += 2 * BBSIZE;
3596         }
3597
3598         return unit_bytes;
3599 }
3600
3601 /*
3602  * Allocate and initialise a new log ticket.
3603  */
3604 struct xlog_ticket *
3605 xlog_ticket_alloc(
3606         struct xlog             *log,
3607         int                     unit_bytes,
3608         int                     cnt,
3609         char                    client,
3610         bool                    permanent,
3611         xfs_km_flags_t          alloc_flags)
3612 {
3613         struct xlog_ticket      *tic;
3614         int                     unit_res;
3615
3616         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3617         if (!tic)
3618                 return NULL;
3619
3620         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3621
3622         atomic_set(&tic->t_ref, 1);
3623         tic->t_task             = current;
3624         INIT_LIST_HEAD(&tic->t_queue);
3625         tic->t_unit_res         = unit_res;
3626         tic->t_curr_res         = unit_res;
3627         tic->t_cnt              = cnt;
3628         tic->t_ocnt             = cnt;
3629         tic->t_tid              = prandom_u32();
3630         tic->t_clientid         = client;
3631         tic->t_flags            = XLOG_TIC_INITED;
3632         tic->t_trans_type       = 0;
3633         if (permanent)
3634                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3635
3636         xlog_tic_reset_res(tic);
3637
3638         return tic;
3639 }
3640
3641
3642 /******************************************************************************
3643  *
3644  *              Log debug routines
3645  *
3646  ******************************************************************************
3647  */
3648 #if defined(DEBUG)
3649 /*
3650  * Make sure that the destination ptr is within the valid data region of
3651  * one of the iclogs.  This uses backup pointers stored in a different
3652  * part of the log in case we trash the log structure.
3653  */
3654 void
3655 xlog_verify_dest_ptr(
3656         struct xlog     *log,
3657         char            *ptr)
3658 {
3659         int i;
3660         int good_ptr = 0;
3661
3662         for (i = 0; i < log->l_iclog_bufs; i++) {
3663                 if (ptr >= log->l_iclog_bak[i] &&
3664                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3665                         good_ptr++;
3666         }
3667
3668         if (!good_ptr)
3669                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3670 }
3671
3672 /*
3673  * Check to make sure the grant write head didn't just over lap the tail.  If
3674  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3675  * the cycles differ by exactly one and check the byte count.
3676  *
3677  * This check is run unlocked, so can give false positives. Rather than assert
3678  * on failures, use a warn-once flag and a panic tag to allow the admin to
3679  * determine if they want to panic the machine when such an error occurs. For
3680  * debug kernels this will have the same effect as using an assert but, unlinke
3681  * an assert, it can be turned off at runtime.
3682  */
3683 STATIC void
3684 xlog_verify_grant_tail(
3685         struct xlog     *log)
3686 {
3687         int             tail_cycle, tail_blocks;
3688         int             cycle, space;
3689
3690         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3691         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3692         if (tail_cycle != cycle) {
3693                 if (cycle - 1 != tail_cycle &&
3694                     !(log->l_flags & XLOG_TAIL_WARN)) {
3695                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3696                                 "%s: cycle - 1 != tail_cycle", __func__);
3697                         log->l_flags |= XLOG_TAIL_WARN;
3698                 }
3699
3700                 if (space > BBTOB(tail_blocks) &&
3701                     !(log->l_flags & XLOG_TAIL_WARN)) {
3702                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3703                                 "%s: space > BBTOB(tail_blocks)", __func__);
3704                         log->l_flags |= XLOG_TAIL_WARN;
3705                 }
3706         }
3707 }
3708
3709 /* check if it will fit */
3710 STATIC void
3711 xlog_verify_tail_lsn(
3712         struct xlog             *log,
3713         struct xlog_in_core     *iclog,
3714         xfs_lsn_t               tail_lsn)
3715 {
3716     int blocks;
3717
3718     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3719         blocks =
3720             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3721         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3722                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3723     } else {
3724         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3725
3726         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3727                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3728
3729         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3730         if (blocks < BTOBB(iclog->ic_offset) + 1)
3731                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3732     }
3733 }       /* xlog_verify_tail_lsn */
3734
3735 /*
3736  * Perform a number of checks on the iclog before writing to disk.
3737  *
3738  * 1. Make sure the iclogs are still circular
3739  * 2. Make sure we have a good magic number
3740  * 3. Make sure we don't have magic numbers in the data
3741  * 4. Check fields of each log operation header for:
3742  *      A. Valid client identifier
3743  *      B. tid ptr value falls in valid ptr space (user space code)
3744  *      C. Length in log record header is correct according to the
3745  *              individual operation headers within record.
3746  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3747  *      log, check the preceding blocks of the physical log to make sure all
3748  *      the cycle numbers agree with the current cycle number.
3749  */
3750 STATIC void
3751 xlog_verify_iclog(
3752         struct xlog             *log,
3753         struct xlog_in_core     *iclog,
3754         int                     count,
3755         bool                    syncing)
3756 {
3757         xlog_op_header_t        *ophead;
3758         xlog_in_core_t          *icptr;
3759         xlog_in_core_2_t        *xhdr;
3760         xfs_caddr_t             ptr;
3761         xfs_caddr_t             base_ptr;
3762         __psint_t               field_offset;
3763         __uint8_t               clientid;
3764         int                     len, i, j, k, op_len;
3765         int                     idx;
3766
3767         /* check validity of iclog pointers */
3768         spin_lock(&log->l_icloglock);
3769         icptr = log->l_iclog;
3770         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3771                 ASSERT(icptr);
3772
3773         if (icptr != log->l_iclog)
3774                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3775         spin_unlock(&log->l_icloglock);
3776
3777         /* check log magic numbers */
3778         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3779                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3780
3781         ptr = (xfs_caddr_t) &iclog->ic_header;
3782         for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3783              ptr += BBSIZE) {
3784                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3785                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3786                                 __func__);
3787         }
3788
3789         /* check fields */
3790         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3791         ptr = iclog->ic_datap;
3792         base_ptr = ptr;
3793         ophead = (xlog_op_header_t *)ptr;
3794         xhdr = iclog->ic_data;
3795         for (i = 0; i < len; i++) {
3796                 ophead = (xlog_op_header_t *)ptr;
3797
3798                 /* clientid is only 1 byte */
3799                 field_offset = (__psint_t)
3800                                ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3801                 if (!syncing || (field_offset & 0x1ff)) {
3802                         clientid = ophead->oh_clientid;
3803                 } else {
3804                         idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3805                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3806                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3807                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3808                                 clientid = xlog_get_client_id(
3809                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3810                         } else {
3811                                 clientid = xlog_get_client_id(
3812                                         iclog->ic_header.h_cycle_data[idx]);
3813                         }
3814                 }
3815                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3816                         xfs_warn(log->l_mp,
3817                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3818                                 __func__, clientid, ophead,
3819                                 (unsigned long)field_offset);
3820
3821                 /* check length */
3822                 field_offset = (__psint_t)
3823                                ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3824                 if (!syncing || (field_offset & 0x1ff)) {
3825                         op_len = be32_to_cpu(ophead->oh_len);
3826                 } else {
3827                         idx = BTOBBT((__psint_t)&ophead->oh_len -
3828                                     (__psint_t)iclog->ic_datap);
3829                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3830                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3831                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3832                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3833                         } else {
3834                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3835                         }
3836                 }
3837                 ptr += sizeof(xlog_op_header_t) + op_len;
3838         }
3839 }       /* xlog_verify_iclog */
3840 #endif
3841
3842 /*
3843  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3844  */
3845 STATIC int
3846 xlog_state_ioerror(
3847         struct xlog     *log)
3848 {
3849         xlog_in_core_t  *iclog, *ic;
3850
3851         iclog = log->l_iclog;
3852         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3853                 /*
3854                  * Mark all the incore logs IOERROR.
3855                  * From now on, no log flushes will result.
3856                  */
3857                 ic = iclog;
3858                 do {
3859                         ic->ic_state = XLOG_STATE_IOERROR;
3860                         ic = ic->ic_next;
3861                 } while (ic != iclog);
3862                 return 0;
3863         }
3864         /*
3865          * Return non-zero, if state transition has already happened.
3866          */
3867         return 1;
3868 }
3869
3870 /*
3871  * This is called from xfs_force_shutdown, when we're forcibly
3872  * shutting down the filesystem, typically because of an IO error.
3873  * Our main objectives here are to make sure that:
3874  *      a. if !logerror, flush the logs to disk. Anything modified
3875  *         after this is ignored.
3876  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3877  *         parties to find out, 'atomically'.
3878  *      c. those who're sleeping on log reservations, pinned objects and
3879  *          other resources get woken up, and be told the bad news.
3880  *      d. nothing new gets queued up after (b) and (c) are done.
3881  *
3882  * Note: for the !logerror case we need to flush the regions held in memory out
3883  * to disk first. This needs to be done before the log is marked as shutdown,
3884  * otherwise the iclog writes will fail.
3885  */
3886 int
3887 xfs_log_force_umount(
3888         struct xfs_mount        *mp,
3889         int                     logerror)
3890 {
3891         struct xlog     *log;
3892         int             retval;
3893
3894         log = mp->m_log;
3895
3896         /*
3897          * If this happens during log recovery, don't worry about
3898          * locking; the log isn't open for business yet.
3899          */
3900         if (!log ||
3901             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3902                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3903                 if (mp->m_sb_bp)
3904                         XFS_BUF_DONE(mp->m_sb_bp);
3905                 return 0;
3906         }
3907
3908         /*
3909          * Somebody could've already done the hard work for us.
3910          * No need to get locks for this.
3911          */
3912         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3913                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3914                 return 1;
3915         }
3916
3917         /*
3918          * Flush all the completed transactions to disk before marking the log
3919          * being shut down. We need to do it in this order to ensure that
3920          * completed operations are safely on disk before we shut down, and that
3921          * we don't have to issue any buffer IO after the shutdown flags are set
3922          * to guarantee this.
3923          */
3924         if (!logerror)
3925                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3926
3927         /*
3928          * mark the filesystem and the as in a shutdown state and wake
3929          * everybody up to tell them the bad news.
3930          */
3931         spin_lock(&log->l_icloglock);
3932         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3933         if (mp->m_sb_bp)
3934                 XFS_BUF_DONE(mp->m_sb_bp);
3935
3936         /*
3937          * Mark the log and the iclogs with IO error flags to prevent any
3938          * further log IO from being issued or completed.
3939          */
3940         log->l_flags |= XLOG_IO_ERROR;
3941         retval = xlog_state_ioerror(log);
3942         spin_unlock(&log->l_icloglock);
3943
3944         /*
3945          * We don't want anybody waiting for log reservations after this. That
3946          * means we have to wake up everybody queued up on reserveq as well as
3947          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3948          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3949          * action is protected by the grant locks.
3950          */
3951         xlog_grant_head_wake_all(&log->l_reserve_head);
3952         xlog_grant_head_wake_all(&log->l_write_head);
3953
3954         /*
3955          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3956          * as if the log writes were completed. The abort handling in the log
3957          * item committed callback functions will do this again under lock to
3958          * avoid races.
3959          */
3960         wake_up_all(&log->l_cilp->xc_commit_wait);
3961         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3962
3963 #ifdef XFSERRORDEBUG
3964         {
3965                 xlog_in_core_t  *iclog;
3966
3967                 spin_lock(&log->l_icloglock);
3968                 iclog = log->l_iclog;
3969                 do {
3970                         ASSERT(iclog->ic_callback == 0);
3971                         iclog = iclog->ic_next;
3972                 } while (iclog != log->l_iclog);
3973                 spin_unlock(&log->l_icloglock);
3974         }
3975 #endif
3976         /* return non-zero if log IOERROR transition had already happened */
3977         return retval;
3978 }
3979
3980 STATIC int
3981 xlog_iclogs_empty(
3982         struct xlog     *log)
3983 {
3984         xlog_in_core_t  *iclog;
3985
3986         iclog = log->l_iclog;
3987         do {
3988                 /* endianness does not matter here, zero is zero in
3989                  * any language.
3990                  */
3991                 if (iclog->ic_header.h_num_logops)
3992                         return 0;
3993                 iclog = iclog->ic_next;
3994         } while (iclog != log->l_iclog);
3995         return 1;
3996 }
3997