UPSTREAM: KEYS: Fix keyring ref leak in join_session_keyring()
[firefly-linux-kernel-4.4.55.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
36
37 /*
38  * Attempt to steal a page from a pipe buffer. This should perhaps go into
39  * a vm helper function, it's already simplified quite a bit by the
40  * addition of remove_mapping(). If success is returned, the caller may
41  * attempt to reuse this page for another destination.
42  */
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44                                      struct pipe_buffer *buf)
45 {
46         struct page *page = buf->page;
47         struct address_space *mapping;
48
49         lock_page(page);
50
51         mapping = page_mapping(page);
52         if (mapping) {
53                 WARN_ON(!PageUptodate(page));
54
55                 /*
56                  * At least for ext2 with nobh option, we need to wait on
57                  * writeback completing on this page, since we'll remove it
58                  * from the pagecache.  Otherwise truncate wont wait on the
59                  * page, allowing the disk blocks to be reused by someone else
60                  * before we actually wrote our data to them. fs corruption
61                  * ensues.
62                  */
63                 wait_on_page_writeback(page);
64
65                 if (page_has_private(page) &&
66                     !try_to_release_page(page, GFP_KERNEL))
67                         goto out_unlock;
68
69                 /*
70                  * If we succeeded in removing the mapping, set LRU flag
71                  * and return good.
72                  */
73                 if (remove_mapping(mapping, page)) {
74                         buf->flags |= PIPE_BUF_FLAG_LRU;
75                         return 0;
76                 }
77         }
78
79         /*
80          * Raced with truncate or failed to remove page from current
81          * address space, unlock and return failure.
82          */
83 out_unlock:
84         unlock_page(page);
85         return 1;
86 }
87
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89                                         struct pipe_buffer *buf)
90 {
91         page_cache_release(buf->page);
92         buf->flags &= ~PIPE_BUF_FLAG_LRU;
93 }
94
95 /*
96  * Check whether the contents of buf is OK to access. Since the content
97  * is a page cache page, IO may be in flight.
98  */
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100                                        struct pipe_buffer *buf)
101 {
102         struct page *page = buf->page;
103         int err;
104
105         if (!PageUptodate(page)) {
106                 lock_page(page);
107
108                 /*
109                  * Page got truncated/unhashed. This will cause a 0-byte
110                  * splice, if this is the first page.
111                  */
112                 if (!page->mapping) {
113                         err = -ENODATA;
114                         goto error;
115                 }
116
117                 /*
118                  * Uh oh, read-error from disk.
119                  */
120                 if (!PageUptodate(page)) {
121                         err = -EIO;
122                         goto error;
123                 }
124
125                 /*
126                  * Page is ok afterall, we are done.
127                  */
128                 unlock_page(page);
129         }
130
131         return 0;
132 error:
133         unlock_page(page);
134         return err;
135 }
136
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138         .can_merge = 0,
139         .confirm = page_cache_pipe_buf_confirm,
140         .release = page_cache_pipe_buf_release,
141         .steal = page_cache_pipe_buf_steal,
142         .get = generic_pipe_buf_get,
143 };
144
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146                                     struct pipe_buffer *buf)
147 {
148         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149                 return 1;
150
151         buf->flags |= PIPE_BUF_FLAG_LRU;
152         return generic_pipe_buf_steal(pipe, buf);
153 }
154
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156         .can_merge = 0,
157         .confirm = generic_pipe_buf_confirm,
158         .release = page_cache_pipe_buf_release,
159         .steal = user_page_pipe_buf_steal,
160         .get = generic_pipe_buf_get,
161 };
162
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164 {
165         smp_mb();
166         if (waitqueue_active(&pipe->wait))
167                 wake_up_interruptible(&pipe->wait);
168         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169 }
170
171 /**
172  * splice_to_pipe - fill passed data into a pipe
173  * @pipe:       pipe to fill
174  * @spd:        data to fill
175  *
176  * Description:
177  *    @spd contains a map of pages and len/offset tuples, along with
178  *    the struct pipe_buf_operations associated with these pages. This
179  *    function will link that data to the pipe.
180  *
181  */
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183                        struct splice_pipe_desc *spd)
184 {
185         unsigned int spd_pages = spd->nr_pages;
186         int ret, do_wakeup, page_nr;
187
188         ret = 0;
189         do_wakeup = 0;
190         page_nr = 0;
191
192         pipe_lock(pipe);
193
194         for (;;) {
195                 if (!pipe->readers) {
196                         send_sig(SIGPIPE, current, 0);
197                         if (!ret)
198                                 ret = -EPIPE;
199                         break;
200                 }
201
202                 if (pipe->nrbufs < pipe->buffers) {
203                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204                         struct pipe_buffer *buf = pipe->bufs + newbuf;
205
206                         buf->page = spd->pages[page_nr];
207                         buf->offset = spd->partial[page_nr].offset;
208                         buf->len = spd->partial[page_nr].len;
209                         buf->private = spd->partial[page_nr].private;
210                         buf->ops = spd->ops;
211                         if (spd->flags & SPLICE_F_GIFT)
212                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
213
214                         pipe->nrbufs++;
215                         page_nr++;
216                         ret += buf->len;
217
218                         if (pipe->files)
219                                 do_wakeup = 1;
220
221                         if (!--spd->nr_pages)
222                                 break;
223                         if (pipe->nrbufs < pipe->buffers)
224                                 continue;
225
226                         break;
227                 }
228
229                 if (spd->flags & SPLICE_F_NONBLOCK) {
230                         if (!ret)
231                                 ret = -EAGAIN;
232                         break;
233                 }
234
235                 if (signal_pending(current)) {
236                         if (!ret)
237                                 ret = -ERESTARTSYS;
238                         break;
239                 }
240
241                 if (do_wakeup) {
242                         smp_mb();
243                         if (waitqueue_active(&pipe->wait))
244                                 wake_up_interruptible_sync(&pipe->wait);
245                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246                         do_wakeup = 0;
247                 }
248
249                 pipe->waiting_writers++;
250                 pipe_wait(pipe);
251                 pipe->waiting_writers--;
252         }
253
254         pipe_unlock(pipe);
255
256         if (do_wakeup)
257                 wakeup_pipe_readers(pipe);
258
259         while (page_nr < spd_pages)
260                 spd->spd_release(spd, page_nr++);
261
262         return ret;
263 }
264 EXPORT_SYMBOL_GPL(splice_to_pipe);
265
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268         page_cache_release(spd->pages[i]);
269 }
270
271 /*
272  * Check if we need to grow the arrays holding pages and partial page
273  * descriptions.
274  */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278
279         spd->nr_pages_max = buffers;
280         if (buffers <= PIPE_DEF_BUFFERS)
281                 return 0;
282
283         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285
286         if (spd->pages && spd->partial)
287                 return 0;
288
289         kfree(spd->pages);
290         kfree(spd->partial);
291         return -ENOMEM;
292 }
293
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297                 return;
298
299         kfree(spd->pages);
300         kfree(spd->partial);
301 }
302
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305                            struct pipe_inode_info *pipe, size_t len,
306                            unsigned int flags)
307 {
308         struct address_space *mapping = in->f_mapping;
309         unsigned int loff, nr_pages, req_pages;
310         struct page *pages[PIPE_DEF_BUFFERS];
311         struct partial_page partial[PIPE_DEF_BUFFERS];
312         struct page *page;
313         pgoff_t index, end_index;
314         loff_t isize;
315         int error, page_nr;
316         struct splice_pipe_desc spd = {
317                 .pages = pages,
318                 .partial = partial,
319                 .nr_pages_max = PIPE_DEF_BUFFERS,
320                 .flags = flags,
321                 .ops = &page_cache_pipe_buf_ops,
322                 .spd_release = spd_release_page,
323         };
324
325         if (splice_grow_spd(pipe, &spd))
326                 return -ENOMEM;
327
328         index = *ppos >> PAGE_CACHE_SHIFT;
329         loff = *ppos & ~PAGE_CACHE_MASK;
330         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331         nr_pages = min(req_pages, spd.nr_pages_max);
332
333         /*
334          * Lookup the (hopefully) full range of pages we need.
335          */
336         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337         index += spd.nr_pages;
338
339         /*
340          * If find_get_pages_contig() returned fewer pages than we needed,
341          * readahead/allocate the rest and fill in the holes.
342          */
343         if (spd.nr_pages < nr_pages)
344                 page_cache_sync_readahead(mapping, &in->f_ra, in,
345                                 index, req_pages - spd.nr_pages);
346
347         error = 0;
348         while (spd.nr_pages < nr_pages) {
349                 /*
350                  * Page could be there, find_get_pages_contig() breaks on
351                  * the first hole.
352                  */
353                 page = find_get_page(mapping, index);
354                 if (!page) {
355                         /*
356                          * page didn't exist, allocate one.
357                          */
358                         page = page_cache_alloc_cold(mapping);
359                         if (!page)
360                                 break;
361
362                         error = add_to_page_cache_lru(page, mapping, index,
363                                    mapping_gfp_constraint(mapping, GFP_KERNEL));
364                         if (unlikely(error)) {
365                                 page_cache_release(page);
366                                 if (error == -EEXIST)
367                                         continue;
368                                 break;
369                         }
370                         /*
371                          * add_to_page_cache() locks the page, unlock it
372                          * to avoid convoluting the logic below even more.
373                          */
374                         unlock_page(page);
375                 }
376
377                 spd.pages[spd.nr_pages++] = page;
378                 index++;
379         }
380
381         /*
382          * Now loop over the map and see if we need to start IO on any
383          * pages, fill in the partial map, etc.
384          */
385         index = *ppos >> PAGE_CACHE_SHIFT;
386         nr_pages = spd.nr_pages;
387         spd.nr_pages = 0;
388         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389                 unsigned int this_len;
390
391                 if (!len)
392                         break;
393
394                 /*
395                  * this_len is the max we'll use from this page
396                  */
397                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398                 page = spd.pages[page_nr];
399
400                 if (PageReadahead(page))
401                         page_cache_async_readahead(mapping, &in->f_ra, in,
402                                         page, index, req_pages - page_nr);
403
404                 /*
405                  * If the page isn't uptodate, we may need to start io on it
406                  */
407                 if (!PageUptodate(page)) {
408                         lock_page(page);
409
410                         /*
411                          * Page was truncated, or invalidated by the
412                          * filesystem.  Redo the find/create, but this time the
413                          * page is kept locked, so there's no chance of another
414                          * race with truncate/invalidate.
415                          */
416                         if (!page->mapping) {
417                                 unlock_page(page);
418                                 page = find_or_create_page(mapping, index,
419                                                 mapping_gfp_mask(mapping));
420
421                                 if (!page) {
422                                         error = -ENOMEM;
423                                         break;
424                                 }
425                                 page_cache_release(spd.pages[page_nr]);
426                                 spd.pages[page_nr] = page;
427                         }
428                         /*
429                          * page was already under io and is now done, great
430                          */
431                         if (PageUptodate(page)) {
432                                 unlock_page(page);
433                                 goto fill_it;
434                         }
435
436                         /*
437                          * need to read in the page
438                          */
439                         error = mapping->a_ops->readpage(in, page);
440                         if (unlikely(error)) {
441                                 /*
442                                  * We really should re-lookup the page here,
443                                  * but it complicates things a lot. Instead
444                                  * lets just do what we already stored, and
445                                  * we'll get it the next time we are called.
446                                  */
447                                 if (error == AOP_TRUNCATED_PAGE)
448                                         error = 0;
449
450                                 break;
451                         }
452                 }
453 fill_it:
454                 /*
455                  * i_size must be checked after PageUptodate.
456                  */
457                 isize = i_size_read(mapping->host);
458                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459                 if (unlikely(!isize || index > end_index))
460                         break;
461
462                 /*
463                  * if this is the last page, see if we need to shrink
464                  * the length and stop
465                  */
466                 if (end_index == index) {
467                         unsigned int plen;
468
469                         /*
470                          * max good bytes in this page
471                          */
472                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473                         if (plen <= loff)
474                                 break;
475
476                         /*
477                          * force quit after adding this page
478                          */
479                         this_len = min(this_len, plen - loff);
480                         len = this_len;
481                 }
482
483                 spd.partial[page_nr].offset = loff;
484                 spd.partial[page_nr].len = this_len;
485                 len -= this_len;
486                 loff = 0;
487                 spd.nr_pages++;
488                 index++;
489         }
490
491         /*
492          * Release any pages at the end, if we quit early. 'page_nr' is how far
493          * we got, 'nr_pages' is how many pages are in the map.
494          */
495         while (page_nr < nr_pages)
496                 page_cache_release(spd.pages[page_nr++]);
497         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498
499         if (spd.nr_pages)
500                 error = splice_to_pipe(pipe, &spd);
501
502         splice_shrink_spd(&spd);
503         return error;
504 }
505
506 /**
507  * generic_file_splice_read - splice data from file to a pipe
508  * @in:         file to splice from
509  * @ppos:       position in @in
510  * @pipe:       pipe to splice to
511  * @len:        number of bytes to splice
512  * @flags:      splice modifier flags
513  *
514  * Description:
515  *    Will read pages from given file and fill them into a pipe. Can be
516  *    used as long as the address_space operations for the source implements
517  *    a readpage() hook.
518  *
519  */
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521                                  struct pipe_inode_info *pipe, size_t len,
522                                  unsigned int flags)
523 {
524         loff_t isize, left;
525         int ret;
526
527         if (IS_DAX(in->f_mapping->host))
528                 return default_file_splice_read(in, ppos, pipe, len, flags);
529
530         isize = i_size_read(in->f_mapping->host);
531         if (unlikely(*ppos >= isize))
532                 return 0;
533
534         left = isize - *ppos;
535         if (unlikely(left < len))
536                 len = left;
537
538         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
539         if (ret > 0) {
540                 *ppos += ret;
541                 file_accessed(in);
542         }
543
544         return ret;
545 }
546 EXPORT_SYMBOL(generic_file_splice_read);
547
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
549         .can_merge = 0,
550         .confirm = generic_pipe_buf_confirm,
551         .release = generic_pipe_buf_release,
552         .steal = generic_pipe_buf_steal,
553         .get = generic_pipe_buf_get,
554 };
555
556 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
557                                     struct pipe_buffer *buf)
558 {
559         return 1;
560 }
561
562 /* Pipe buffer operations for a socket and similar. */
563 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
564         .can_merge = 0,
565         .confirm = generic_pipe_buf_confirm,
566         .release = generic_pipe_buf_release,
567         .steal = generic_pipe_buf_nosteal,
568         .get = generic_pipe_buf_get,
569 };
570 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
571
572 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
573                             unsigned long vlen, loff_t offset)
574 {
575         mm_segment_t old_fs;
576         loff_t pos = offset;
577         ssize_t res;
578
579         old_fs = get_fs();
580         set_fs(get_ds());
581         /* The cast to a user pointer is valid due to the set_fs() */
582         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
583         set_fs(old_fs);
584
585         return res;
586 }
587
588 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
589                             loff_t pos)
590 {
591         mm_segment_t old_fs;
592         ssize_t res;
593
594         old_fs = get_fs();
595         set_fs(get_ds());
596         /* The cast to a user pointer is valid due to the set_fs() */
597         res = vfs_write(file, (__force const char __user *)buf, count, &pos);
598         set_fs(old_fs);
599
600         return res;
601 }
602 EXPORT_SYMBOL(kernel_write);
603
604 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
605                                  struct pipe_inode_info *pipe, size_t len,
606                                  unsigned int flags)
607 {
608         unsigned int nr_pages;
609         unsigned int nr_freed;
610         size_t offset;
611         struct page *pages[PIPE_DEF_BUFFERS];
612         struct partial_page partial[PIPE_DEF_BUFFERS];
613         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
614         ssize_t res;
615         size_t this_len;
616         int error;
617         int i;
618         struct splice_pipe_desc spd = {
619                 .pages = pages,
620                 .partial = partial,
621                 .nr_pages_max = PIPE_DEF_BUFFERS,
622                 .flags = flags,
623                 .ops = &default_pipe_buf_ops,
624                 .spd_release = spd_release_page,
625         };
626
627         if (splice_grow_spd(pipe, &spd))
628                 return -ENOMEM;
629
630         res = -ENOMEM;
631         vec = __vec;
632         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
633                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
634                 if (!vec)
635                         goto shrink_ret;
636         }
637
638         offset = *ppos & ~PAGE_CACHE_MASK;
639         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
640
641         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
642                 struct page *page;
643
644                 page = alloc_page(GFP_USER);
645                 error = -ENOMEM;
646                 if (!page)
647                         goto err;
648
649                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
650                 vec[i].iov_base = (void __user *) page_address(page);
651                 vec[i].iov_len = this_len;
652                 spd.pages[i] = page;
653                 spd.nr_pages++;
654                 len -= this_len;
655                 offset = 0;
656         }
657
658         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
659         if (res < 0) {
660                 error = res;
661                 goto err;
662         }
663
664         error = 0;
665         if (!res)
666                 goto err;
667
668         nr_freed = 0;
669         for (i = 0; i < spd.nr_pages; i++) {
670                 this_len = min_t(size_t, vec[i].iov_len, res);
671                 spd.partial[i].offset = 0;
672                 spd.partial[i].len = this_len;
673                 if (!this_len) {
674                         __free_page(spd.pages[i]);
675                         spd.pages[i] = NULL;
676                         nr_freed++;
677                 }
678                 res -= this_len;
679         }
680         spd.nr_pages -= nr_freed;
681
682         res = splice_to_pipe(pipe, &spd);
683         if (res > 0)
684                 *ppos += res;
685
686 shrink_ret:
687         if (vec != __vec)
688                 kfree(vec);
689         splice_shrink_spd(&spd);
690         return res;
691
692 err:
693         for (i = 0; i < spd.nr_pages; i++)
694                 __free_page(spd.pages[i]);
695
696         res = error;
697         goto shrink_ret;
698 }
699 EXPORT_SYMBOL(default_file_splice_read);
700
701 /*
702  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
703  * using sendpage(). Return the number of bytes sent.
704  */
705 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
706                             struct pipe_buffer *buf, struct splice_desc *sd)
707 {
708         struct file *file = sd->u.file;
709         loff_t pos = sd->pos;
710         int more;
711
712         if (!likely(file->f_op->sendpage))
713                 return -EINVAL;
714
715         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
716
717         if (sd->len < sd->total_len && pipe->nrbufs > 1)
718                 more |= MSG_SENDPAGE_NOTLAST;
719
720         return file->f_op->sendpage(file, buf->page, buf->offset,
721                                     sd->len, &pos, more);
722 }
723
724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
725 {
726         smp_mb();
727         if (waitqueue_active(&pipe->wait))
728                 wake_up_interruptible(&pipe->wait);
729         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 }
731
732 /**
733  * splice_from_pipe_feed - feed available data from a pipe to a file
734  * @pipe:       pipe to splice from
735  * @sd:         information to @actor
736  * @actor:      handler that splices the data
737  *
738  * Description:
739  *    This function loops over the pipe and calls @actor to do the
740  *    actual moving of a single struct pipe_buffer to the desired
741  *    destination.  It returns when there's no more buffers left in
742  *    the pipe or if the requested number of bytes (@sd->total_len)
743  *    have been copied.  It returns a positive number (one) if the
744  *    pipe needs to be filled with more data, zero if the required
745  *    number of bytes have been copied and -errno on error.
746  *
747  *    This, together with splice_from_pipe_{begin,end,next}, may be
748  *    used to implement the functionality of __splice_from_pipe() when
749  *    locking is required around copying the pipe buffers to the
750  *    destination.
751  */
752 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
753                           splice_actor *actor)
754 {
755         int ret;
756
757         while (pipe->nrbufs) {
758                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
759                 const struct pipe_buf_operations *ops = buf->ops;
760
761                 sd->len = buf->len;
762                 if (sd->len > sd->total_len)
763                         sd->len = sd->total_len;
764
765                 ret = buf->ops->confirm(pipe, buf);
766                 if (unlikely(ret)) {
767                         if (ret == -ENODATA)
768                                 ret = 0;
769                         return ret;
770                 }
771
772                 ret = actor(pipe, buf, sd);
773                 if (ret <= 0)
774                         return ret;
775
776                 buf->offset += ret;
777                 buf->len -= ret;
778
779                 sd->num_spliced += ret;
780                 sd->len -= ret;
781                 sd->pos += ret;
782                 sd->total_len -= ret;
783
784                 if (!buf->len) {
785                         buf->ops = NULL;
786                         ops->release(pipe, buf);
787                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
788                         pipe->nrbufs--;
789                         if (pipe->files)
790                                 sd->need_wakeup = true;
791                 }
792
793                 if (!sd->total_len)
794                         return 0;
795         }
796
797         return 1;
798 }
799
800 /**
801  * splice_from_pipe_next - wait for some data to splice from
802  * @pipe:       pipe to splice from
803  * @sd:         information about the splice operation
804  *
805  * Description:
806  *    This function will wait for some data and return a positive
807  *    value (one) if pipe buffers are available.  It will return zero
808  *    or -errno if no more data needs to be spliced.
809  */
810 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
811 {
812         /*
813          * Check for signal early to make process killable when there are
814          * always buffers available
815          */
816         if (signal_pending(current))
817                 return -ERESTARTSYS;
818
819         while (!pipe->nrbufs) {
820                 if (!pipe->writers)
821                         return 0;
822
823                 if (!pipe->waiting_writers && sd->num_spliced)
824                         return 0;
825
826                 if (sd->flags & SPLICE_F_NONBLOCK)
827                         return -EAGAIN;
828
829                 if (signal_pending(current))
830                         return -ERESTARTSYS;
831
832                 if (sd->need_wakeup) {
833                         wakeup_pipe_writers(pipe);
834                         sd->need_wakeup = false;
835                 }
836
837                 pipe_wait(pipe);
838         }
839
840         return 1;
841 }
842
843 /**
844  * splice_from_pipe_begin - start splicing from pipe
845  * @sd:         information about the splice operation
846  *
847  * Description:
848  *    This function should be called before a loop containing
849  *    splice_from_pipe_next() and splice_from_pipe_feed() to
850  *    initialize the necessary fields of @sd.
851  */
852 static void splice_from_pipe_begin(struct splice_desc *sd)
853 {
854         sd->num_spliced = 0;
855         sd->need_wakeup = false;
856 }
857
858 /**
859  * splice_from_pipe_end - finish splicing from pipe
860  * @pipe:       pipe to splice from
861  * @sd:         information about the splice operation
862  *
863  * Description:
864  *    This function will wake up pipe writers if necessary.  It should
865  *    be called after a loop containing splice_from_pipe_next() and
866  *    splice_from_pipe_feed().
867  */
868 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
869 {
870         if (sd->need_wakeup)
871                 wakeup_pipe_writers(pipe);
872 }
873
874 /**
875  * __splice_from_pipe - splice data from a pipe to given actor
876  * @pipe:       pipe to splice from
877  * @sd:         information to @actor
878  * @actor:      handler that splices the data
879  *
880  * Description:
881  *    This function does little more than loop over the pipe and call
882  *    @actor to do the actual moving of a single struct pipe_buffer to
883  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
884  *    pipe_to_user.
885  *
886  */
887 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
888                            splice_actor *actor)
889 {
890         int ret;
891
892         splice_from_pipe_begin(sd);
893         do {
894                 cond_resched();
895                 ret = splice_from_pipe_next(pipe, sd);
896                 if (ret > 0)
897                         ret = splice_from_pipe_feed(pipe, sd, actor);
898         } while (ret > 0);
899         splice_from_pipe_end(pipe, sd);
900
901         return sd->num_spliced ? sd->num_spliced : ret;
902 }
903 EXPORT_SYMBOL(__splice_from_pipe);
904
905 /**
906  * splice_from_pipe - splice data from a pipe to a file
907  * @pipe:       pipe to splice from
908  * @out:        file to splice to
909  * @ppos:       position in @out
910  * @len:        how many bytes to splice
911  * @flags:      splice modifier flags
912  * @actor:      handler that splices the data
913  *
914  * Description:
915  *    See __splice_from_pipe. This function locks the pipe inode,
916  *    otherwise it's identical to __splice_from_pipe().
917  *
918  */
919 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
920                          loff_t *ppos, size_t len, unsigned int flags,
921                          splice_actor *actor)
922 {
923         ssize_t ret;
924         struct splice_desc sd = {
925                 .total_len = len,
926                 .flags = flags,
927                 .pos = *ppos,
928                 .u.file = out,
929         };
930
931         pipe_lock(pipe);
932         ret = __splice_from_pipe(pipe, &sd, actor);
933         pipe_unlock(pipe);
934
935         return ret;
936 }
937
938 /**
939  * iter_file_splice_write - splice data from a pipe to a file
940  * @pipe:       pipe info
941  * @out:        file to write to
942  * @ppos:       position in @out
943  * @len:        number of bytes to splice
944  * @flags:      splice modifier flags
945  *
946  * Description:
947  *    Will either move or copy pages (determined by @flags options) from
948  *    the given pipe inode to the given file.
949  *    This one is ->write_iter-based.
950  *
951  */
952 ssize_t
953 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
954                           loff_t *ppos, size_t len, unsigned int flags)
955 {
956         struct splice_desc sd = {
957                 .total_len = len,
958                 .flags = flags,
959                 .pos = *ppos,
960                 .u.file = out,
961         };
962         int nbufs = pipe->buffers;
963         struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
964                                         GFP_KERNEL);
965         ssize_t ret;
966
967         if (unlikely(!array))
968                 return -ENOMEM;
969
970         pipe_lock(pipe);
971
972         splice_from_pipe_begin(&sd);
973         while (sd.total_len) {
974                 struct iov_iter from;
975                 size_t left;
976                 int n, idx;
977
978                 ret = splice_from_pipe_next(pipe, &sd);
979                 if (ret <= 0)
980                         break;
981
982                 if (unlikely(nbufs < pipe->buffers)) {
983                         kfree(array);
984                         nbufs = pipe->buffers;
985                         array = kcalloc(nbufs, sizeof(struct bio_vec),
986                                         GFP_KERNEL);
987                         if (!array) {
988                                 ret = -ENOMEM;
989                                 break;
990                         }
991                 }
992
993                 /* build the vector */
994                 left = sd.total_len;
995                 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
996                         struct pipe_buffer *buf = pipe->bufs + idx;
997                         size_t this_len = buf->len;
998
999                         if (this_len > left)
1000                                 this_len = left;
1001
1002                         if (idx == pipe->buffers - 1)
1003                                 idx = -1;
1004
1005                         ret = buf->ops->confirm(pipe, buf);
1006                         if (unlikely(ret)) {
1007                                 if (ret == -ENODATA)
1008                                         ret = 0;
1009                                 goto done;
1010                         }
1011
1012                         array[n].bv_page = buf->page;
1013                         array[n].bv_len = this_len;
1014                         array[n].bv_offset = buf->offset;
1015                         left -= this_len;
1016                 }
1017
1018                 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1019                               sd.total_len - left);
1020                 ret = vfs_iter_write(out, &from, &sd.pos);
1021                 if (ret <= 0)
1022                         break;
1023
1024                 sd.num_spliced += ret;
1025                 sd.total_len -= ret;
1026                 *ppos = sd.pos;
1027
1028                 /* dismiss the fully eaten buffers, adjust the partial one */
1029                 while (ret) {
1030                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1031                         if (ret >= buf->len) {
1032                                 const struct pipe_buf_operations *ops = buf->ops;
1033                                 ret -= buf->len;
1034                                 buf->len = 0;
1035                                 buf->ops = NULL;
1036                                 ops->release(pipe, buf);
1037                                 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1038                                 pipe->nrbufs--;
1039                                 if (pipe->files)
1040                                         sd.need_wakeup = true;
1041                         } else {
1042                                 buf->offset += ret;
1043                                 buf->len -= ret;
1044                                 ret = 0;
1045                         }
1046                 }
1047         }
1048 done:
1049         kfree(array);
1050         splice_from_pipe_end(pipe, &sd);
1051
1052         pipe_unlock(pipe);
1053
1054         if (sd.num_spliced)
1055                 ret = sd.num_spliced;
1056
1057         return ret;
1058 }
1059
1060 EXPORT_SYMBOL(iter_file_splice_write);
1061
1062 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1063                           struct splice_desc *sd)
1064 {
1065         int ret;
1066         void *data;
1067         loff_t tmp = sd->pos;
1068
1069         data = kmap(buf->page);
1070         ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1071         kunmap(buf->page);
1072
1073         return ret;
1074 }
1075
1076 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1077                                          struct file *out, loff_t *ppos,
1078                                          size_t len, unsigned int flags)
1079 {
1080         ssize_t ret;
1081
1082         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1083         if (ret > 0)
1084                 *ppos += ret;
1085
1086         return ret;
1087 }
1088
1089 /**
1090  * generic_splice_sendpage - splice data from a pipe to a socket
1091  * @pipe:       pipe to splice from
1092  * @out:        socket to write to
1093  * @ppos:       position in @out
1094  * @len:        number of bytes to splice
1095  * @flags:      splice modifier flags
1096  *
1097  * Description:
1098  *    Will send @len bytes from the pipe to a network socket. No data copying
1099  *    is involved.
1100  *
1101  */
1102 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1103                                 loff_t *ppos, size_t len, unsigned int flags)
1104 {
1105         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1106 }
1107
1108 EXPORT_SYMBOL(generic_splice_sendpage);
1109
1110 /*
1111  * Attempt to initiate a splice from pipe to file.
1112  */
1113 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1114                            loff_t *ppos, size_t len, unsigned int flags)
1115 {
1116         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1117                                 loff_t *, size_t, unsigned int);
1118
1119         if (out->f_op->splice_write)
1120                 splice_write = out->f_op->splice_write;
1121         else
1122                 splice_write = default_file_splice_write;
1123
1124         return splice_write(pipe, out, ppos, len, flags);
1125 }
1126
1127 /*
1128  * Attempt to initiate a splice from a file to a pipe.
1129  */
1130 static long do_splice_to(struct file *in, loff_t *ppos,
1131                          struct pipe_inode_info *pipe, size_t len,
1132                          unsigned int flags)
1133 {
1134         ssize_t (*splice_read)(struct file *, loff_t *,
1135                                struct pipe_inode_info *, size_t, unsigned int);
1136         int ret;
1137
1138         if (unlikely(!(in->f_mode & FMODE_READ)))
1139                 return -EBADF;
1140
1141         ret = rw_verify_area(READ, in, ppos, len);
1142         if (unlikely(ret < 0))
1143                 return ret;
1144
1145         if (in->f_op->splice_read)
1146                 splice_read = in->f_op->splice_read;
1147         else
1148                 splice_read = default_file_splice_read;
1149
1150         return splice_read(in, ppos, pipe, len, flags);
1151 }
1152
1153 /**
1154  * splice_direct_to_actor - splices data directly between two non-pipes
1155  * @in:         file to splice from
1156  * @sd:         actor information on where to splice to
1157  * @actor:      handles the data splicing
1158  *
1159  * Description:
1160  *    This is a special case helper to splice directly between two
1161  *    points, without requiring an explicit pipe. Internally an allocated
1162  *    pipe is cached in the process, and reused during the lifetime of
1163  *    that process.
1164  *
1165  */
1166 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1167                                splice_direct_actor *actor)
1168 {
1169         struct pipe_inode_info *pipe;
1170         long ret, bytes;
1171         umode_t i_mode;
1172         size_t len;
1173         int i, flags, more;
1174
1175         /*
1176          * We require the input being a regular file, as we don't want to
1177          * randomly drop data for eg socket -> socket splicing. Use the
1178          * piped splicing for that!
1179          */
1180         i_mode = file_inode(in)->i_mode;
1181         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1182                 return -EINVAL;
1183
1184         /*
1185          * neither in nor out is a pipe, setup an internal pipe attached to
1186          * 'out' and transfer the wanted data from 'in' to 'out' through that
1187          */
1188         pipe = current->splice_pipe;
1189         if (unlikely(!pipe)) {
1190                 pipe = alloc_pipe_info();
1191                 if (!pipe)
1192                         return -ENOMEM;
1193
1194                 /*
1195                  * We don't have an immediate reader, but we'll read the stuff
1196                  * out of the pipe right after the splice_to_pipe(). So set
1197                  * PIPE_READERS appropriately.
1198                  */
1199                 pipe->readers = 1;
1200
1201                 current->splice_pipe = pipe;
1202         }
1203
1204         /*
1205          * Do the splice.
1206          */
1207         ret = 0;
1208         bytes = 0;
1209         len = sd->total_len;
1210         flags = sd->flags;
1211
1212         /*
1213          * Don't block on output, we have to drain the direct pipe.
1214          */
1215         sd->flags &= ~SPLICE_F_NONBLOCK;
1216         more = sd->flags & SPLICE_F_MORE;
1217
1218         while (len) {
1219                 size_t read_len;
1220                 loff_t pos = sd->pos, prev_pos = pos;
1221
1222                 ret = do_splice_to(in, &pos, pipe, len, flags);
1223                 if (unlikely(ret <= 0))
1224                         goto out_release;
1225
1226                 read_len = ret;
1227                 sd->total_len = read_len;
1228
1229                 /*
1230                  * If more data is pending, set SPLICE_F_MORE
1231                  * If this is the last data and SPLICE_F_MORE was not set
1232                  * initially, clears it.
1233                  */
1234                 if (read_len < len)
1235                         sd->flags |= SPLICE_F_MORE;
1236                 else if (!more)
1237                         sd->flags &= ~SPLICE_F_MORE;
1238                 /*
1239                  * NOTE: nonblocking mode only applies to the input. We
1240                  * must not do the output in nonblocking mode as then we
1241                  * could get stuck data in the internal pipe:
1242                  */
1243                 ret = actor(pipe, sd);
1244                 if (unlikely(ret <= 0)) {
1245                         sd->pos = prev_pos;
1246                         goto out_release;
1247                 }
1248
1249                 bytes += ret;
1250                 len -= ret;
1251                 sd->pos = pos;
1252
1253                 if (ret < read_len) {
1254                         sd->pos = prev_pos + ret;
1255                         goto out_release;
1256                 }
1257         }
1258
1259 done:
1260         pipe->nrbufs = pipe->curbuf = 0;
1261         file_accessed(in);
1262         return bytes;
1263
1264 out_release:
1265         /*
1266          * If we did an incomplete transfer we must release
1267          * the pipe buffers in question:
1268          */
1269         for (i = 0; i < pipe->buffers; i++) {
1270                 struct pipe_buffer *buf = pipe->bufs + i;
1271
1272                 if (buf->ops) {
1273                         buf->ops->release(pipe, buf);
1274                         buf->ops = NULL;
1275                 }
1276         }
1277
1278         if (!bytes)
1279                 bytes = ret;
1280
1281         goto done;
1282 }
1283 EXPORT_SYMBOL(splice_direct_to_actor);
1284
1285 static int direct_splice_actor(struct pipe_inode_info *pipe,
1286                                struct splice_desc *sd)
1287 {
1288         struct file *file = sd->u.file;
1289
1290         return do_splice_from(pipe, file, sd->opos, sd->total_len,
1291                               sd->flags);
1292 }
1293
1294 /**
1295  * do_splice_direct - splices data directly between two files
1296  * @in:         file to splice from
1297  * @ppos:       input file offset
1298  * @out:        file to splice to
1299  * @opos:       output file offset
1300  * @len:        number of bytes to splice
1301  * @flags:      splice modifier flags
1302  *
1303  * Description:
1304  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1305  *    doing it in the application would incur an extra system call
1306  *    (splice in + splice out, as compared to just sendfile()). So this helper
1307  *    can splice directly through a process-private pipe.
1308  *
1309  */
1310 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1311                       loff_t *opos, size_t len, unsigned int flags)
1312 {
1313         struct splice_desc sd = {
1314                 .len            = len,
1315                 .total_len      = len,
1316                 .flags          = flags,
1317                 .pos            = *ppos,
1318                 .u.file         = out,
1319                 .opos           = opos,
1320         };
1321         long ret;
1322
1323         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1324                 return -EBADF;
1325
1326         if (unlikely(out->f_flags & O_APPEND))
1327                 return -EINVAL;
1328
1329         ret = rw_verify_area(WRITE, out, opos, len);
1330         if (unlikely(ret < 0))
1331                 return ret;
1332
1333         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1334         if (ret > 0)
1335                 *ppos = sd.pos;
1336
1337         return ret;
1338 }
1339 EXPORT_SYMBOL(do_splice_direct);
1340
1341 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1342                                struct pipe_inode_info *opipe,
1343                                size_t len, unsigned int flags);
1344
1345 /*
1346  * Determine where to splice to/from.
1347  */
1348 static long do_splice(struct file *in, loff_t __user *off_in,
1349                       struct file *out, loff_t __user *off_out,
1350                       size_t len, unsigned int flags)
1351 {
1352         struct pipe_inode_info *ipipe;
1353         struct pipe_inode_info *opipe;
1354         loff_t offset;
1355         long ret;
1356
1357         ipipe = get_pipe_info(in);
1358         opipe = get_pipe_info(out);
1359
1360         if (ipipe && opipe) {
1361                 if (off_in || off_out)
1362                         return -ESPIPE;
1363
1364                 if (!(in->f_mode & FMODE_READ))
1365                         return -EBADF;
1366
1367                 if (!(out->f_mode & FMODE_WRITE))
1368                         return -EBADF;
1369
1370                 /* Splicing to self would be fun, but... */
1371                 if (ipipe == opipe)
1372                         return -EINVAL;
1373
1374                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1375         }
1376
1377         if (ipipe) {
1378                 if (off_in)
1379                         return -ESPIPE;
1380                 if (off_out) {
1381                         if (!(out->f_mode & FMODE_PWRITE))
1382                                 return -EINVAL;
1383                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1384                                 return -EFAULT;
1385                 } else {
1386                         offset = out->f_pos;
1387                 }
1388
1389                 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1390                         return -EBADF;
1391
1392                 if (unlikely(out->f_flags & O_APPEND))
1393                         return -EINVAL;
1394
1395                 ret = rw_verify_area(WRITE, out, &offset, len);
1396                 if (unlikely(ret < 0))
1397                         return ret;
1398
1399                 file_start_write(out);
1400                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1401                 file_end_write(out);
1402
1403                 if (!off_out)
1404                         out->f_pos = offset;
1405                 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1406                         ret = -EFAULT;
1407
1408                 return ret;
1409         }
1410
1411         if (opipe) {
1412                 if (off_out)
1413                         return -ESPIPE;
1414                 if (off_in) {
1415                         if (!(in->f_mode & FMODE_PREAD))
1416                                 return -EINVAL;
1417                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1418                                 return -EFAULT;
1419                 } else {
1420                         offset = in->f_pos;
1421                 }
1422
1423                 ret = do_splice_to(in, &offset, opipe, len, flags);
1424
1425                 if (!off_in)
1426                         in->f_pos = offset;
1427                 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1428                         ret = -EFAULT;
1429
1430                 return ret;
1431         }
1432
1433         return -EINVAL;
1434 }
1435
1436 /*
1437  * Map an iov into an array of pages and offset/length tupples. With the
1438  * partial_page structure, we can map several non-contiguous ranges into
1439  * our ones pages[] map instead of splitting that operation into pieces.
1440  * Could easily be exported as a generic helper for other users, in which
1441  * case one would probably want to add a 'max_nr_pages' parameter as well.
1442  */
1443 static int get_iovec_page_array(const struct iovec __user *iov,
1444                                 unsigned int nr_vecs, struct page **pages,
1445                                 struct partial_page *partial, bool aligned,
1446                                 unsigned int pipe_buffers)
1447 {
1448         int buffers = 0, error = 0;
1449
1450         while (nr_vecs) {
1451                 unsigned long off, npages;
1452                 struct iovec entry;
1453                 void __user *base;
1454                 size_t len;
1455                 int i;
1456
1457                 error = -EFAULT;
1458                 if (copy_from_user(&entry, iov, sizeof(entry)))
1459                         break;
1460
1461                 base = entry.iov_base;
1462                 len = entry.iov_len;
1463
1464                 /*
1465                  * Sanity check this iovec. 0 read succeeds.
1466                  */
1467                 error = 0;
1468                 if (unlikely(!len))
1469                         break;
1470                 error = -EFAULT;
1471                 if (!access_ok(VERIFY_READ, base, len))
1472                         break;
1473
1474                 /*
1475                  * Get this base offset and number of pages, then map
1476                  * in the user pages.
1477                  */
1478                 off = (unsigned long) base & ~PAGE_MASK;
1479
1480                 /*
1481                  * If asked for alignment, the offset must be zero and the
1482                  * length a multiple of the PAGE_SIZE.
1483                  */
1484                 error = -EINVAL;
1485                 if (aligned && (off || len & ~PAGE_MASK))
1486                         break;
1487
1488                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1489                 if (npages > pipe_buffers - buffers)
1490                         npages = pipe_buffers - buffers;
1491
1492                 error = get_user_pages_fast((unsigned long)base, npages,
1493                                         0, &pages[buffers]);
1494
1495                 if (unlikely(error <= 0))
1496                         break;
1497
1498                 /*
1499                  * Fill this contiguous range into the partial page map.
1500                  */
1501                 for (i = 0; i < error; i++) {
1502                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1503
1504                         partial[buffers].offset = off;
1505                         partial[buffers].len = plen;
1506
1507                         off = 0;
1508                         len -= plen;
1509                         buffers++;
1510                 }
1511
1512                 /*
1513                  * We didn't complete this iov, stop here since it probably
1514                  * means we have to move some of this into a pipe to
1515                  * be able to continue.
1516                  */
1517                 if (len)
1518                         break;
1519
1520                 /*
1521                  * Don't continue if we mapped fewer pages than we asked for,
1522                  * or if we mapped the max number of pages that we have
1523                  * room for.
1524                  */
1525                 if (error < npages || buffers == pipe_buffers)
1526                         break;
1527
1528                 nr_vecs--;
1529                 iov++;
1530         }
1531
1532         if (buffers)
1533                 return buffers;
1534
1535         return error;
1536 }
1537
1538 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1539                         struct splice_desc *sd)
1540 {
1541         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1542         return n == sd->len ? n : -EFAULT;
1543 }
1544
1545 /*
1546  * For lack of a better implementation, implement vmsplice() to userspace
1547  * as a simple copy of the pipes pages to the user iov.
1548  */
1549 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1550                              unsigned long nr_segs, unsigned int flags)
1551 {
1552         struct pipe_inode_info *pipe;
1553         struct splice_desc sd;
1554         long ret;
1555         struct iovec iovstack[UIO_FASTIOV];
1556         struct iovec *iov = iovstack;
1557         struct iov_iter iter;
1558
1559         pipe = get_pipe_info(file);
1560         if (!pipe)
1561                 return -EBADF;
1562
1563         ret = import_iovec(READ, uiov, nr_segs,
1564                            ARRAY_SIZE(iovstack), &iov, &iter);
1565         if (ret < 0)
1566                 return ret;
1567
1568         sd.total_len = iov_iter_count(&iter);
1569         sd.len = 0;
1570         sd.flags = flags;
1571         sd.u.data = &iter;
1572         sd.pos = 0;
1573
1574         if (sd.total_len) {
1575                 pipe_lock(pipe);
1576                 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1577                 pipe_unlock(pipe);
1578         }
1579
1580         kfree(iov);
1581         return ret;
1582 }
1583
1584 /*
1585  * vmsplice splices a user address range into a pipe. It can be thought of
1586  * as splice-from-memory, where the regular splice is splice-from-file (or
1587  * to file). In both cases the output is a pipe, naturally.
1588  */
1589 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1590                              unsigned long nr_segs, unsigned int flags)
1591 {
1592         struct pipe_inode_info *pipe;
1593         struct page *pages[PIPE_DEF_BUFFERS];
1594         struct partial_page partial[PIPE_DEF_BUFFERS];
1595         struct splice_pipe_desc spd = {
1596                 .pages = pages,
1597                 .partial = partial,
1598                 .nr_pages_max = PIPE_DEF_BUFFERS,
1599                 .flags = flags,
1600                 .ops = &user_page_pipe_buf_ops,
1601                 .spd_release = spd_release_page,
1602         };
1603         long ret;
1604
1605         pipe = get_pipe_info(file);
1606         if (!pipe)
1607                 return -EBADF;
1608
1609         if (splice_grow_spd(pipe, &spd))
1610                 return -ENOMEM;
1611
1612         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1613                                             spd.partial, false,
1614                                             spd.nr_pages_max);
1615         if (spd.nr_pages <= 0)
1616                 ret = spd.nr_pages;
1617         else
1618                 ret = splice_to_pipe(pipe, &spd);
1619
1620         splice_shrink_spd(&spd);
1621         return ret;
1622 }
1623
1624 /*
1625  * Note that vmsplice only really supports true splicing _from_ user memory
1626  * to a pipe, not the other way around. Splicing from user memory is a simple
1627  * operation that can be supported without any funky alignment restrictions
1628  * or nasty vm tricks. We simply map in the user memory and fill them into
1629  * a pipe. The reverse isn't quite as easy, though. There are two possible
1630  * solutions for that:
1631  *
1632  *      - memcpy() the data internally, at which point we might as well just
1633  *        do a regular read() on the buffer anyway.
1634  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1635  *        has restriction limitations on both ends of the pipe).
1636  *
1637  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1638  *
1639  */
1640 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1641                 unsigned long, nr_segs, unsigned int, flags)
1642 {
1643         struct fd f;
1644         long error;
1645
1646         if (unlikely(nr_segs > UIO_MAXIOV))
1647                 return -EINVAL;
1648         else if (unlikely(!nr_segs))
1649                 return 0;
1650
1651         error = -EBADF;
1652         f = fdget(fd);
1653         if (f.file) {
1654                 if (f.file->f_mode & FMODE_WRITE)
1655                         error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1656                 else if (f.file->f_mode & FMODE_READ)
1657                         error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1658
1659                 fdput(f);
1660         }
1661
1662         return error;
1663 }
1664
1665 #ifdef CONFIG_COMPAT
1666 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1667                     unsigned int, nr_segs, unsigned int, flags)
1668 {
1669         unsigned i;
1670         struct iovec __user *iov;
1671         if (nr_segs > UIO_MAXIOV)
1672                 return -EINVAL;
1673         iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1674         for (i = 0; i < nr_segs; i++) {
1675                 struct compat_iovec v;
1676                 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1677                     get_user(v.iov_len, &iov32[i].iov_len) ||
1678                     put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1679                     put_user(v.iov_len, &iov[i].iov_len))
1680                         return -EFAULT;
1681         }
1682         return sys_vmsplice(fd, iov, nr_segs, flags);
1683 }
1684 #endif
1685
1686 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1687                 int, fd_out, loff_t __user *, off_out,
1688                 size_t, len, unsigned int, flags)
1689 {
1690         struct fd in, out;
1691         long error;
1692
1693         if (unlikely(!len))
1694                 return 0;
1695
1696         error = -EBADF;
1697         in = fdget(fd_in);
1698         if (in.file) {
1699                 if (in.file->f_mode & FMODE_READ) {
1700                         out = fdget(fd_out);
1701                         if (out.file) {
1702                                 if (out.file->f_mode & FMODE_WRITE)
1703                                         error = do_splice(in.file, off_in,
1704                                                           out.file, off_out,
1705                                                           len, flags);
1706                                 fdput(out);
1707                         }
1708                 }
1709                 fdput(in);
1710         }
1711         return error;
1712 }
1713
1714 /*
1715  * Make sure there's data to read. Wait for input if we can, otherwise
1716  * return an appropriate error.
1717  */
1718 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719 {
1720         int ret;
1721
1722         /*
1723          * Check ->nrbufs without the inode lock first. This function
1724          * is speculative anyways, so missing one is ok.
1725          */
1726         if (pipe->nrbufs)
1727                 return 0;
1728
1729         ret = 0;
1730         pipe_lock(pipe);
1731
1732         while (!pipe->nrbufs) {
1733                 if (signal_pending(current)) {
1734                         ret = -ERESTARTSYS;
1735                         break;
1736                 }
1737                 if (!pipe->writers)
1738                         break;
1739                 if (!pipe->waiting_writers) {
1740                         if (flags & SPLICE_F_NONBLOCK) {
1741                                 ret = -EAGAIN;
1742                                 break;
1743                         }
1744                 }
1745                 pipe_wait(pipe);
1746         }
1747
1748         pipe_unlock(pipe);
1749         return ret;
1750 }
1751
1752 /*
1753  * Make sure there's writeable room. Wait for room if we can, otherwise
1754  * return an appropriate error.
1755  */
1756 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757 {
1758         int ret;
1759
1760         /*
1761          * Check ->nrbufs without the inode lock first. This function
1762          * is speculative anyways, so missing one is ok.
1763          */
1764         if (pipe->nrbufs < pipe->buffers)
1765                 return 0;
1766
1767         ret = 0;
1768         pipe_lock(pipe);
1769
1770         while (pipe->nrbufs >= pipe->buffers) {
1771                 if (!pipe->readers) {
1772                         send_sig(SIGPIPE, current, 0);
1773                         ret = -EPIPE;
1774                         break;
1775                 }
1776                 if (flags & SPLICE_F_NONBLOCK) {
1777                         ret = -EAGAIN;
1778                         break;
1779                 }
1780                 if (signal_pending(current)) {
1781                         ret = -ERESTARTSYS;
1782                         break;
1783                 }
1784                 pipe->waiting_writers++;
1785                 pipe_wait(pipe);
1786                 pipe->waiting_writers--;
1787         }
1788
1789         pipe_unlock(pipe);
1790         return ret;
1791 }
1792
1793 /*
1794  * Splice contents of ipipe to opipe.
1795  */
1796 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1797                                struct pipe_inode_info *opipe,
1798                                size_t len, unsigned int flags)
1799 {
1800         struct pipe_buffer *ibuf, *obuf;
1801         int ret = 0, nbuf;
1802         bool input_wakeup = false;
1803
1804
1805 retry:
1806         ret = ipipe_prep(ipipe, flags);
1807         if (ret)
1808                 return ret;
1809
1810         ret = opipe_prep(opipe, flags);
1811         if (ret)
1812                 return ret;
1813
1814         /*
1815          * Potential ABBA deadlock, work around it by ordering lock
1816          * grabbing by pipe info address. Otherwise two different processes
1817          * could deadlock (one doing tee from A -> B, the other from B -> A).
1818          */
1819         pipe_double_lock(ipipe, opipe);
1820
1821         do {
1822                 if (!opipe->readers) {
1823                         send_sig(SIGPIPE, current, 0);
1824                         if (!ret)
1825                                 ret = -EPIPE;
1826                         break;
1827                 }
1828
1829                 if (!ipipe->nrbufs && !ipipe->writers)
1830                         break;
1831
1832                 /*
1833                  * Cannot make any progress, because either the input
1834                  * pipe is empty or the output pipe is full.
1835                  */
1836                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1837                         /* Already processed some buffers, break */
1838                         if (ret)
1839                                 break;
1840
1841                         if (flags & SPLICE_F_NONBLOCK) {
1842                                 ret = -EAGAIN;
1843                                 break;
1844                         }
1845
1846                         /*
1847                          * We raced with another reader/writer and haven't
1848                          * managed to process any buffers.  A zero return
1849                          * value means EOF, so retry instead.
1850                          */
1851                         pipe_unlock(ipipe);
1852                         pipe_unlock(opipe);
1853                         goto retry;
1854                 }
1855
1856                 ibuf = ipipe->bufs + ipipe->curbuf;
1857                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1858                 obuf = opipe->bufs + nbuf;
1859
1860                 if (len >= ibuf->len) {
1861                         /*
1862                          * Simply move the whole buffer from ipipe to opipe
1863                          */
1864                         *obuf = *ibuf;
1865                         ibuf->ops = NULL;
1866                         opipe->nrbufs++;
1867                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1868                         ipipe->nrbufs--;
1869                         input_wakeup = true;
1870                 } else {
1871                         /*
1872                          * Get a reference to this pipe buffer,
1873                          * so we can copy the contents over.
1874                          */
1875                         ibuf->ops->get(ipipe, ibuf);
1876                         *obuf = *ibuf;
1877
1878                         /*
1879                          * Don't inherit the gift flag, we need to
1880                          * prevent multiple steals of this page.
1881                          */
1882                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883
1884                         obuf->len = len;
1885                         opipe->nrbufs++;
1886                         ibuf->offset += obuf->len;
1887                         ibuf->len -= obuf->len;
1888                 }
1889                 ret += obuf->len;
1890                 len -= obuf->len;
1891         } while (len);
1892
1893         pipe_unlock(ipipe);
1894         pipe_unlock(opipe);
1895
1896         /*
1897          * If we put data in the output pipe, wakeup any potential readers.
1898          */
1899         if (ret > 0)
1900                 wakeup_pipe_readers(opipe);
1901
1902         if (input_wakeup)
1903                 wakeup_pipe_writers(ipipe);
1904
1905         return ret;
1906 }
1907
1908 /*
1909  * Link contents of ipipe to opipe.
1910  */
1911 static int link_pipe(struct pipe_inode_info *ipipe,
1912                      struct pipe_inode_info *opipe,
1913                      size_t len, unsigned int flags)
1914 {
1915         struct pipe_buffer *ibuf, *obuf;
1916         int ret = 0, i = 0, nbuf;
1917
1918         /*
1919          * Potential ABBA deadlock, work around it by ordering lock
1920          * grabbing by pipe info address. Otherwise two different processes
1921          * could deadlock (one doing tee from A -> B, the other from B -> A).
1922          */
1923         pipe_double_lock(ipipe, opipe);
1924
1925         do {
1926                 if (!opipe->readers) {
1927                         send_sig(SIGPIPE, current, 0);
1928                         if (!ret)
1929                                 ret = -EPIPE;
1930                         break;
1931                 }
1932
1933                 /*
1934                  * If we have iterated all input buffers or ran out of
1935                  * output room, break.
1936                  */
1937                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1938                         break;
1939
1940                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1941                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1942
1943                 /*
1944                  * Get a reference to this pipe buffer,
1945                  * so we can copy the contents over.
1946                  */
1947                 ibuf->ops->get(ipipe, ibuf);
1948
1949                 obuf = opipe->bufs + nbuf;
1950                 *obuf = *ibuf;
1951
1952                 /*
1953                  * Don't inherit the gift flag, we need to
1954                  * prevent multiple steals of this page.
1955                  */
1956                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957
1958                 if (obuf->len > len)
1959                         obuf->len = len;
1960
1961                 opipe->nrbufs++;
1962                 ret += obuf->len;
1963                 len -= obuf->len;
1964                 i++;
1965         } while (len);
1966
1967         /*
1968          * return EAGAIN if we have the potential of some data in the
1969          * future, otherwise just return 0
1970          */
1971         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1972                 ret = -EAGAIN;
1973
1974         pipe_unlock(ipipe);
1975         pipe_unlock(opipe);
1976
1977         /*
1978          * If we put data in the output pipe, wakeup any potential readers.
1979          */
1980         if (ret > 0)
1981                 wakeup_pipe_readers(opipe);
1982
1983         return ret;
1984 }
1985
1986 /*
1987  * This is a tee(1) implementation that works on pipes. It doesn't copy
1988  * any data, it simply references the 'in' pages on the 'out' pipe.
1989  * The 'flags' used are the SPLICE_F_* variants, currently the only
1990  * applicable one is SPLICE_F_NONBLOCK.
1991  */
1992 static long do_tee(struct file *in, struct file *out, size_t len,
1993                    unsigned int flags)
1994 {
1995         struct pipe_inode_info *ipipe = get_pipe_info(in);
1996         struct pipe_inode_info *opipe = get_pipe_info(out);
1997         int ret = -EINVAL;
1998
1999         /*
2000          * Duplicate the contents of ipipe to opipe without actually
2001          * copying the data.
2002          */
2003         if (ipipe && opipe && ipipe != opipe) {
2004                 /*
2005                  * Keep going, unless we encounter an error. The ipipe/opipe
2006                  * ordering doesn't really matter.
2007                  */
2008                 ret = ipipe_prep(ipipe, flags);
2009                 if (!ret) {
2010                         ret = opipe_prep(opipe, flags);
2011                         if (!ret)
2012                                 ret = link_pipe(ipipe, opipe, len, flags);
2013                 }
2014         }
2015
2016         return ret;
2017 }
2018
2019 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020 {
2021         struct fd in;
2022         int error;
2023
2024         if (unlikely(!len))
2025                 return 0;
2026
2027         error = -EBADF;
2028         in = fdget(fdin);
2029         if (in.file) {
2030                 if (in.file->f_mode & FMODE_READ) {
2031                         struct fd out = fdget(fdout);
2032                         if (out.file) {
2033                                 if (out.file->f_mode & FMODE_WRITE)
2034                                         error = do_tee(in.file, out.file,
2035                                                         len, flags);
2036                                 fdput(out);
2037                         }
2038                 }
2039                 fdput(in);
2040         }
2041
2042         return error;
2043 }