Merge remote-tracking branch 'lsk/v3.10/topic/of' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / fs / pstore / ram_core.c
1 /*
2  * Copyright (C) 2012 Google, Inc.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/list.h>
22 #include <linux/memblock.h>
23 #include <linux/rslib.h>
24 #include <linux/slab.h>
25 #include <linux/vmalloc.h>
26 #include <linux/pstore_ram.h>
27 #include <asm/page.h>
28
29 struct persistent_ram_buffer {
30         uint32_t    sig;
31         atomic_t    start;
32         atomic_t    size;
33         uint8_t     data[0];
34 };
35
36 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
37
38 static inline size_t buffer_size(struct persistent_ram_zone *prz)
39 {
40         return atomic_read(&prz->buffer->size);
41 }
42
43 static inline size_t buffer_start(struct persistent_ram_zone *prz)
44 {
45         return atomic_read(&prz->buffer->start);
46 }
47
48 /* increase and wrap the start pointer, returning the old value */
49 static inline size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
50 {
51         int old;
52         int new;
53
54         do {
55                 old = atomic_read(&prz->buffer->start);
56                 new = old + a;
57                 while (unlikely(new > prz->buffer_size))
58                         new -= prz->buffer_size;
59         } while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
60
61         return old;
62 }
63
64 /* increase the size counter until it hits the max size */
65 static inline void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
66 {
67         size_t old;
68         size_t new;
69
70         if (atomic_read(&prz->buffer->size) == prz->buffer_size)
71                 return;
72
73         do {
74                 old = atomic_read(&prz->buffer->size);
75                 new = old + a;
76                 if (new > prz->buffer_size)
77                         new = prz->buffer_size;
78         } while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
79 }
80
81 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
82         uint8_t *data, size_t len, uint8_t *ecc)
83 {
84         int i;
85         uint16_t par[prz->ecc_info.ecc_size];
86
87         /* Initialize the parity buffer */
88         memset(par, 0, sizeof(par));
89         encode_rs8(prz->rs_decoder, data, len, par, 0);
90         for (i = 0; i < prz->ecc_info.ecc_size; i++)
91                 ecc[i] = par[i];
92 }
93
94 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
95         void *data, size_t len, uint8_t *ecc)
96 {
97         int i;
98         uint16_t par[prz->ecc_info.ecc_size];
99
100         for (i = 0; i < prz->ecc_info.ecc_size; i++)
101                 par[i] = ecc[i];
102         return decode_rs8(prz->rs_decoder, data, par, len,
103                                 NULL, 0, NULL, 0, NULL);
104 }
105
106 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
107         unsigned int start, unsigned int count)
108 {
109         struct persistent_ram_buffer *buffer = prz->buffer;
110         uint8_t *buffer_end = buffer->data + prz->buffer_size;
111         uint8_t *block;
112         uint8_t *par;
113         int ecc_block_size = prz->ecc_info.block_size;
114         int ecc_size = prz->ecc_info.ecc_size;
115         int size = ecc_block_size;
116
117         if (!ecc_size)
118                 return;
119
120         block = buffer->data + (start & ~(ecc_block_size - 1));
121         par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
122
123         do {
124                 if (block + ecc_block_size > buffer_end)
125                         size = buffer_end - block;
126                 persistent_ram_encode_rs8(prz, block, size, par);
127                 block += ecc_block_size;
128                 par += ecc_size;
129         } while (block < buffer->data + start + count);
130 }
131
132 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
133 {
134         struct persistent_ram_buffer *buffer = prz->buffer;
135
136         if (!prz->ecc_info.ecc_size)
137                 return;
138
139         persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
140                                   prz->par_header);
141 }
142
143 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
144 {
145         struct persistent_ram_buffer *buffer = prz->buffer;
146         uint8_t *block;
147         uint8_t *par;
148
149         if (!prz->ecc_info.ecc_size)
150                 return;
151
152         block = buffer->data;
153         par = prz->par_buffer;
154         while (block < buffer->data + buffer_size(prz)) {
155                 int numerr;
156                 int size = prz->ecc_info.block_size;
157                 if (block + size > buffer->data + prz->buffer_size)
158                         size = buffer->data + prz->buffer_size - block;
159                 numerr = persistent_ram_decode_rs8(prz, block, size, par);
160                 if (numerr > 0) {
161                         pr_devel("persistent_ram: error in block %p, %d\n",
162                                block, numerr);
163                         prz->corrected_bytes += numerr;
164                 } else if (numerr < 0) {
165                         pr_devel("persistent_ram: uncorrectable error in block %p\n",
166                                 block);
167                         prz->bad_blocks++;
168                 }
169                 block += prz->ecc_info.block_size;
170                 par += prz->ecc_info.ecc_size;
171         }
172 }
173
174 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
175                                    struct persistent_ram_ecc_info *ecc_info)
176 {
177         int numerr;
178         struct persistent_ram_buffer *buffer = prz->buffer;
179         int ecc_blocks;
180         size_t ecc_total;
181
182         if (!ecc_info || !ecc_info->ecc_size)
183                 return 0;
184
185         prz->ecc_info.block_size = ecc_info->block_size ?: 128;
186         prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
187         prz->ecc_info.symsize = ecc_info->symsize ?: 8;
188         prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
189
190         ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
191                                   prz->ecc_info.block_size +
192                                   prz->ecc_info.ecc_size);
193         ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
194         if (ecc_total >= prz->buffer_size) {
195                 pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
196                        __func__, prz->ecc_info.ecc_size,
197                        ecc_total, prz->buffer_size);
198                 return -EINVAL;
199         }
200
201         prz->buffer_size -= ecc_total;
202         prz->par_buffer = buffer->data + prz->buffer_size;
203         prz->par_header = prz->par_buffer +
204                           ecc_blocks * prz->ecc_info.ecc_size;
205
206         /*
207          * first consecutive root is 0
208          * primitive element to generate roots = 1
209          */
210         prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
211                                   0, 1, prz->ecc_info.ecc_size);
212         if (prz->rs_decoder == NULL) {
213                 pr_info("persistent_ram: init_rs failed\n");
214                 return -EINVAL;
215         }
216
217         prz->corrected_bytes = 0;
218         prz->bad_blocks = 0;
219
220         numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
221                                            prz->par_header);
222         if (numerr > 0) {
223                 pr_info("persistent_ram: error in header, %d\n", numerr);
224                 prz->corrected_bytes += numerr;
225         } else if (numerr < 0) {
226                 pr_info("persistent_ram: uncorrectable error in header\n");
227                 prz->bad_blocks++;
228         }
229
230         return 0;
231 }
232
233 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
234         char *str, size_t len)
235 {
236         ssize_t ret;
237
238         if (!prz->ecc_info.ecc_size)
239                 return 0;
240
241         if (prz->corrected_bytes || prz->bad_blocks)
242                 ret = snprintf(str, len, ""
243                         "\n%d Corrected bytes, %d unrecoverable blocks\n",
244                         prz->corrected_bytes, prz->bad_blocks);
245         else
246                 ret = snprintf(str, len, "\nNo errors detected\n");
247
248         return ret;
249 }
250
251 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
252         const void *s, unsigned int start, unsigned int count)
253 {
254         struct persistent_ram_buffer *buffer = prz->buffer;
255         memcpy(buffer->data + start, s, count);
256         persistent_ram_update_ecc(prz, start, count);
257 }
258
259 void persistent_ram_save_old(struct persistent_ram_zone *prz)
260 {
261         struct persistent_ram_buffer *buffer = prz->buffer;
262         size_t size = buffer_size(prz);
263         size_t start = buffer_start(prz);
264
265         if (!size)
266                 return;
267
268         if (!prz->old_log) {
269                 persistent_ram_ecc_old(prz);
270                 prz->old_log = kmalloc(size, GFP_KERNEL);
271         }
272         if (!prz->old_log) {
273                 pr_err("persistent_ram: failed to allocate buffer\n");
274                 return;
275         }
276
277         prz->old_log_size = size;
278         memcpy(prz->old_log, &buffer->data[start], size - start);
279         memcpy(prz->old_log + size - start, &buffer->data[0], start);
280 }
281
282 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
283         const void *s, unsigned int count)
284 {
285         int rem;
286         int c = count;
287         size_t start;
288
289         if (unlikely(c > prz->buffer_size)) {
290                 s += c - prz->buffer_size;
291                 c = prz->buffer_size;
292         }
293
294         buffer_size_add(prz, c);
295
296         start = buffer_start_add(prz, c);
297
298         rem = prz->buffer_size - start;
299         if (unlikely(rem < c)) {
300                 persistent_ram_update(prz, s, start, rem);
301                 s += rem;
302                 c -= rem;
303                 start = 0;
304         }
305         persistent_ram_update(prz, s, start, c);
306
307         persistent_ram_update_header_ecc(prz);
308
309         return count;
310 }
311
312 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
313 {
314         return prz->old_log_size;
315 }
316
317 void *persistent_ram_old(struct persistent_ram_zone *prz)
318 {
319         return prz->old_log;
320 }
321
322 void persistent_ram_free_old(struct persistent_ram_zone *prz)
323 {
324         kfree(prz->old_log);
325         prz->old_log = NULL;
326         prz->old_log_size = 0;
327 }
328
329 void persistent_ram_zap(struct persistent_ram_zone *prz)
330 {
331         atomic_set(&prz->buffer->start, 0);
332         atomic_set(&prz->buffer->size, 0);
333         persistent_ram_update_header_ecc(prz);
334 }
335
336 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
337                 unsigned int memtype)
338 {
339         struct page **pages;
340         phys_addr_t page_start;
341         unsigned int page_count;
342         pgprot_t prot;
343         unsigned int i;
344         void *vaddr;
345
346         page_start = start - offset_in_page(start);
347         page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
348
349         if (memtype)
350                 prot = pgprot_noncached(PAGE_KERNEL);
351         else
352                 prot = pgprot_writecombine(PAGE_KERNEL);
353
354         pages = kmalloc(sizeof(struct page *) * page_count, GFP_KERNEL);
355         if (!pages) {
356                 pr_err("%s: Failed to allocate array for %u pages\n", __func__,
357                         page_count);
358                 return NULL;
359         }
360
361         for (i = 0; i < page_count; i++) {
362                 phys_addr_t addr = page_start + i * PAGE_SIZE;
363                 pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
364         }
365         vaddr = vmap(pages, page_count, VM_MAP, prot);
366         kfree(pages);
367
368         return vaddr;
369 }
370
371 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
372                 unsigned int memtype)
373 {
374         void *va;
375
376         if (!request_mem_region(start, size, "persistent_ram")) {
377                 pr_err("request mem region (0x%llx@0x%llx) failed\n",
378                         (unsigned long long)size, (unsigned long long)start);
379                 return NULL;
380         }
381
382         if (memtype)
383                 va = ioremap(start, size);
384         else
385                 va = ioremap_wc(start, size);
386
387         return va;
388 }
389
390 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
391                 struct persistent_ram_zone *prz, int memtype)
392 {
393         prz->paddr = start;
394         prz->size = size;
395
396         if (pfn_valid(start >> PAGE_SHIFT))
397                 prz->vaddr = persistent_ram_vmap(start, size, memtype);
398         else
399                 prz->vaddr = persistent_ram_iomap(start, size, memtype);
400
401         if (!prz->vaddr) {
402                 pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
403                         (unsigned long long)size, (unsigned long long)start);
404                 return -ENOMEM;
405         }
406
407         prz->buffer = prz->vaddr + offset_in_page(start);
408         prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
409
410         return 0;
411 }
412
413 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
414                                     struct persistent_ram_ecc_info *ecc_info)
415 {
416         int ret;
417
418         ret = persistent_ram_init_ecc(prz, ecc_info);
419         if (ret)
420                 return ret;
421
422         sig ^= PERSISTENT_RAM_SIG;
423
424         if (prz->buffer->sig == sig) {
425                 if (buffer_size(prz) > prz->buffer_size ||
426                     buffer_start(prz) > buffer_size(prz))
427                         pr_info("persistent_ram: found existing invalid buffer,"
428                                 " size %zu, start %zu\n",
429                                buffer_size(prz), buffer_start(prz));
430                 else {
431                         pr_debug("persistent_ram: found existing buffer,"
432                                 " size %zu, start %zu\n",
433                                buffer_size(prz), buffer_start(prz));
434                         persistent_ram_save_old(prz);
435                         return 0;
436                 }
437         } else {
438                 pr_debug("persistent_ram: no valid data in buffer"
439                         " (sig = 0x%08x)\n", prz->buffer->sig);
440         }
441
442         prz->buffer->sig = sig;
443         persistent_ram_zap(prz);
444
445         return 0;
446 }
447
448 void persistent_ram_free(struct persistent_ram_zone *prz)
449 {
450         if (!prz)
451                 return;
452
453         if (prz->vaddr) {
454                 if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
455                         vunmap(prz->vaddr);
456                 } else {
457                         iounmap(prz->vaddr);
458                         release_mem_region(prz->paddr, prz->size);
459                 }
460                 prz->vaddr = NULL;
461         }
462         persistent_ram_free_old(prz);
463         kfree(prz);
464 }
465
466 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
467                         u32 sig, struct persistent_ram_ecc_info *ecc_info,
468                         unsigned int memtype)
469 {
470         struct persistent_ram_zone *prz;
471         int ret = -ENOMEM;
472
473         prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
474         if (!prz) {
475                 pr_err("persistent_ram: failed to allocate persistent ram zone\n");
476                 goto err;
477         }
478
479         ret = persistent_ram_buffer_map(start, size, prz, memtype);
480         if (ret)
481                 goto err;
482
483         ret = persistent_ram_post_init(prz, sig, ecc_info);
484         if (ret)
485                 goto err;
486
487         return prz;
488 err:
489         persistent_ram_free(prz);
490         return ERR_PTR(ret);
491 }