regulator: lp8752: set dcdc mode as auto mode
[firefly-linux-kernel-4.4.55.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17
18 #include <asm/elf.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
21 #include "internal.h"
22
23 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 {
25         unsigned long data, text, lib, swap, ptes, pmds;
26         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27
28         /*
29          * Note: to minimize their overhead, mm maintains hiwater_vm and
30          * hiwater_rss only when about to *lower* total_vm or rss.  Any
31          * collector of these hiwater stats must therefore get total_vm
32          * and rss too, which will usually be the higher.  Barriers? not
33          * worth the effort, such snapshots can always be inconsistent.
34          */
35         hiwater_vm = total_vm = mm->total_vm;
36         if (hiwater_vm < mm->hiwater_vm)
37                 hiwater_vm = mm->hiwater_vm;
38         hiwater_rss = total_rss = get_mm_rss(mm);
39         if (hiwater_rss < mm->hiwater_rss)
40                 hiwater_rss = mm->hiwater_rss;
41
42         data = mm->total_vm - mm->shared_vm - mm->stack_vm;
43         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
44         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
45         swap = get_mm_counter(mm, MM_SWAPENTS);
46         ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
47         pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
48         seq_printf(m,
49                 "VmPeak:\t%8lu kB\n"
50                 "VmSize:\t%8lu kB\n"
51                 "VmLck:\t%8lu kB\n"
52                 "VmPin:\t%8lu kB\n"
53                 "VmHWM:\t%8lu kB\n"
54                 "VmRSS:\t%8lu kB\n"
55                 "VmData:\t%8lu kB\n"
56                 "VmStk:\t%8lu kB\n"
57                 "VmExe:\t%8lu kB\n"
58                 "VmLib:\t%8lu kB\n"
59                 "VmPTE:\t%8lu kB\n"
60                 "VmPMD:\t%8lu kB\n"
61                 "VmSwap:\t%8lu kB\n",
62                 hiwater_vm << (PAGE_SHIFT-10),
63                 total_vm << (PAGE_SHIFT-10),
64                 mm->locked_vm << (PAGE_SHIFT-10),
65                 mm->pinned_vm << (PAGE_SHIFT-10),
66                 hiwater_rss << (PAGE_SHIFT-10),
67                 total_rss << (PAGE_SHIFT-10),
68                 data << (PAGE_SHIFT-10),
69                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
70                 ptes >> 10,
71                 pmds >> 10,
72                 swap << (PAGE_SHIFT-10));
73         hugetlb_report_usage(m, mm);
74 }
75
76 unsigned long task_vsize(struct mm_struct *mm)
77 {
78         return PAGE_SIZE * mm->total_vm;
79 }
80
81 unsigned long task_statm(struct mm_struct *mm,
82                          unsigned long *shared, unsigned long *text,
83                          unsigned long *data, unsigned long *resident)
84 {
85         *shared = get_mm_counter(mm, MM_FILEPAGES);
86         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
87                                                                 >> PAGE_SHIFT;
88         *data = mm->total_vm - mm->shared_vm;
89         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
90         return mm->total_vm;
91 }
92
93 #ifdef CONFIG_NUMA
94 /*
95  * Save get_task_policy() for show_numa_map().
96  */
97 static void hold_task_mempolicy(struct proc_maps_private *priv)
98 {
99         struct task_struct *task = priv->task;
100
101         task_lock(task);
102         priv->task_mempolicy = get_task_policy(task);
103         mpol_get(priv->task_mempolicy);
104         task_unlock(task);
105 }
106 static void release_task_mempolicy(struct proc_maps_private *priv)
107 {
108         mpol_put(priv->task_mempolicy);
109 }
110 #else
111 static void hold_task_mempolicy(struct proc_maps_private *priv)
112 {
113 }
114 static void release_task_mempolicy(struct proc_maps_private *priv)
115 {
116 }
117 #endif
118
119 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
120 {
121         const char __user *name = vma_get_anon_name(vma);
122         struct mm_struct *mm = vma->vm_mm;
123
124         unsigned long page_start_vaddr;
125         unsigned long page_offset;
126         unsigned long num_pages;
127         unsigned long max_len = NAME_MAX;
128         int i;
129
130         page_start_vaddr = (unsigned long)name & PAGE_MASK;
131         page_offset = (unsigned long)name - page_start_vaddr;
132         num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
133
134         seq_puts(m, "[anon:");
135
136         for (i = 0; i < num_pages; i++) {
137                 int len;
138                 int write_len;
139                 const char *kaddr;
140                 long pages_pinned;
141                 struct page *page;
142
143                 pages_pinned = get_user_pages(current, mm, page_start_vaddr,
144                                 1, 0, 0, &page, NULL);
145                 if (pages_pinned < 1) {
146                         seq_puts(m, "<fault>]");
147                         return;
148                 }
149
150                 kaddr = (const char *)kmap(page);
151                 len = min(max_len, PAGE_SIZE - page_offset);
152                 write_len = strnlen(kaddr + page_offset, len);
153                 seq_write(m, kaddr + page_offset, write_len);
154                 kunmap(page);
155                 put_page(page);
156
157                 /* if strnlen hit a null terminator then we're done */
158                 if (write_len != len)
159                         break;
160
161                 max_len -= len;
162                 page_offset = 0;
163                 page_start_vaddr += PAGE_SIZE;
164         }
165
166         seq_putc(m, ']');
167 }
168
169 static void vma_stop(struct proc_maps_private *priv)
170 {
171         struct mm_struct *mm = priv->mm;
172
173         release_task_mempolicy(priv);
174         up_read(&mm->mmap_sem);
175         mmput(mm);
176 }
177
178 static struct vm_area_struct *
179 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
180 {
181         if (vma == priv->tail_vma)
182                 return NULL;
183         return vma->vm_next ?: priv->tail_vma;
184 }
185
186 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
187 {
188         if (m->count < m->size) /* vma is copied successfully */
189                 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
190 }
191
192 static void *m_start(struct seq_file *m, loff_t *ppos)
193 {
194         struct proc_maps_private *priv = m->private;
195         unsigned long last_addr = m->version;
196         struct mm_struct *mm;
197         struct vm_area_struct *vma;
198         unsigned int pos = *ppos;
199
200         /* See m_cache_vma(). Zero at the start or after lseek. */
201         if (last_addr == -1UL)
202                 return NULL;
203
204         priv->task = get_proc_task(priv->inode);
205         if (!priv->task)
206                 return ERR_PTR(-ESRCH);
207
208         mm = priv->mm;
209         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
210                 return NULL;
211
212         down_read(&mm->mmap_sem);
213         hold_task_mempolicy(priv);
214         priv->tail_vma = get_gate_vma(mm);
215
216         if (last_addr) {
217                 vma = find_vma(mm, last_addr);
218                 if (vma && (vma = m_next_vma(priv, vma)))
219                         return vma;
220         }
221
222         m->version = 0;
223         if (pos < mm->map_count) {
224                 for (vma = mm->mmap; pos; pos--) {
225                         m->version = vma->vm_start;
226                         vma = vma->vm_next;
227                 }
228                 return vma;
229         }
230
231         /* we do not bother to update m->version in this case */
232         if (pos == mm->map_count && priv->tail_vma)
233                 return priv->tail_vma;
234
235         vma_stop(priv);
236         return NULL;
237 }
238
239 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
240 {
241         struct proc_maps_private *priv = m->private;
242         struct vm_area_struct *next;
243
244         (*pos)++;
245         next = m_next_vma(priv, v);
246         if (!next)
247                 vma_stop(priv);
248         return next;
249 }
250
251 static void m_stop(struct seq_file *m, void *v)
252 {
253         struct proc_maps_private *priv = m->private;
254
255         if (!IS_ERR_OR_NULL(v))
256                 vma_stop(priv);
257         if (priv->task) {
258                 put_task_struct(priv->task);
259                 priv->task = NULL;
260         }
261 }
262
263 static int proc_maps_open(struct inode *inode, struct file *file,
264                         const struct seq_operations *ops, int psize)
265 {
266         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
267
268         if (!priv)
269                 return -ENOMEM;
270
271         priv->inode = inode;
272         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
273         if (IS_ERR(priv->mm)) {
274                 int err = PTR_ERR(priv->mm);
275
276                 seq_release_private(inode, file);
277                 return err;
278         }
279
280         return 0;
281 }
282
283 static int proc_map_release(struct inode *inode, struct file *file)
284 {
285         struct seq_file *seq = file->private_data;
286         struct proc_maps_private *priv = seq->private;
287
288         if (priv->mm)
289                 mmdrop(priv->mm);
290
291         return seq_release_private(inode, file);
292 }
293
294 static int do_maps_open(struct inode *inode, struct file *file,
295                         const struct seq_operations *ops)
296 {
297         return proc_maps_open(inode, file, ops,
298                                 sizeof(struct proc_maps_private));
299 }
300
301 static pid_t pid_of_stack(struct proc_maps_private *priv,
302                                 struct vm_area_struct *vma, bool is_pid)
303 {
304         struct inode *inode = priv->inode;
305         struct task_struct *task;
306         pid_t ret = 0;
307
308         rcu_read_lock();
309         task = pid_task(proc_pid(inode), PIDTYPE_PID);
310         if (task) {
311                 task = task_of_stack(task, vma, is_pid);
312                 if (task)
313                         ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
314         }
315         rcu_read_unlock();
316
317         return ret;
318 }
319
320 static void
321 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
322 {
323         struct mm_struct *mm = vma->vm_mm;
324         struct file *file = vma->vm_file;
325         struct proc_maps_private *priv = m->private;
326         vm_flags_t flags = vma->vm_flags;
327         unsigned long ino = 0;
328         unsigned long long pgoff = 0;
329         unsigned long start, end;
330         dev_t dev = 0;
331         const char *name = NULL;
332
333         if (file) {
334                 struct inode *inode = file_inode(vma->vm_file);
335                 dev = inode->i_sb->s_dev;
336                 ino = inode->i_ino;
337                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
338         }
339
340         /* We don't show the stack guard page in /proc/maps */
341         start = vma->vm_start;
342         if (stack_guard_page_start(vma, start))
343                 start += PAGE_SIZE;
344         end = vma->vm_end;
345         if (stack_guard_page_end(vma, end))
346                 end -= PAGE_SIZE;
347
348         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
349         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
350                         start,
351                         end,
352                         flags & VM_READ ? 'r' : '-',
353                         flags & VM_WRITE ? 'w' : '-',
354                         flags & VM_EXEC ? 'x' : '-',
355                         flags & VM_MAYSHARE ? 's' : 'p',
356                         pgoff,
357                         MAJOR(dev), MINOR(dev), ino);
358
359         /*
360          * Print the dentry name for named mappings, and a
361          * special [heap] marker for the heap:
362          */
363         if (file) {
364                 seq_pad(m, ' ');
365                 seq_file_path(m, file, "\n");
366                 goto done;
367         }
368
369         if (vma->vm_ops && vma->vm_ops->name) {
370                 name = vma->vm_ops->name(vma);
371                 if (name)
372                         goto done;
373         }
374
375         name = arch_vma_name(vma);
376         if (!name) {
377                 pid_t tid;
378
379                 if (!mm) {
380                         name = "[vdso]";
381                         goto done;
382                 }
383
384                 if (vma->vm_start <= mm->brk &&
385                     vma->vm_end >= mm->start_brk) {
386                         name = "[heap]";
387                         goto done;
388                 }
389
390                 tid = pid_of_stack(priv, vma, is_pid);
391                 if (tid != 0) {
392                         /*
393                          * Thread stack in /proc/PID/task/TID/maps or
394                          * the main process stack.
395                          */
396                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
397                             vma->vm_end >= mm->start_stack)) {
398                                 name = "[stack]";
399                         } else {
400                                 /* Thread stack in /proc/PID/maps */
401                                 seq_pad(m, ' ');
402                                 seq_printf(m, "[stack:%d]", tid);
403                         }
404                         goto done;
405                 }
406
407                 if (vma_get_anon_name(vma)) {
408                         seq_pad(m, ' ');
409                         seq_print_vma_name(m, vma);
410                 }
411         }
412
413 done:
414         if (name) {
415                 seq_pad(m, ' ');
416                 seq_puts(m, name);
417         }
418         seq_putc(m, '\n');
419 }
420
421 static int show_map(struct seq_file *m, void *v, int is_pid)
422 {
423         show_map_vma(m, v, is_pid);
424         m_cache_vma(m, v);
425         return 0;
426 }
427
428 static int show_pid_map(struct seq_file *m, void *v)
429 {
430         return show_map(m, v, 1);
431 }
432
433 static int show_tid_map(struct seq_file *m, void *v)
434 {
435         return show_map(m, v, 0);
436 }
437
438 static const struct seq_operations proc_pid_maps_op = {
439         .start  = m_start,
440         .next   = m_next,
441         .stop   = m_stop,
442         .show   = show_pid_map
443 };
444
445 static const struct seq_operations proc_tid_maps_op = {
446         .start  = m_start,
447         .next   = m_next,
448         .stop   = m_stop,
449         .show   = show_tid_map
450 };
451
452 static int pid_maps_open(struct inode *inode, struct file *file)
453 {
454         return do_maps_open(inode, file, &proc_pid_maps_op);
455 }
456
457 static int tid_maps_open(struct inode *inode, struct file *file)
458 {
459         return do_maps_open(inode, file, &proc_tid_maps_op);
460 }
461
462 const struct file_operations proc_pid_maps_operations = {
463         .open           = pid_maps_open,
464         .read           = seq_read,
465         .llseek         = seq_lseek,
466         .release        = proc_map_release,
467 };
468
469 const struct file_operations proc_tid_maps_operations = {
470         .open           = tid_maps_open,
471         .read           = seq_read,
472         .llseek         = seq_lseek,
473         .release        = proc_map_release,
474 };
475
476 /*
477  * Proportional Set Size(PSS): my share of RSS.
478  *
479  * PSS of a process is the count of pages it has in memory, where each
480  * page is divided by the number of processes sharing it.  So if a
481  * process has 1000 pages all to itself, and 1000 shared with one other
482  * process, its PSS will be 1500.
483  *
484  * To keep (accumulated) division errors low, we adopt a 64bit
485  * fixed-point pss counter to minimize division errors. So (pss >>
486  * PSS_SHIFT) would be the real byte count.
487  *
488  * A shift of 12 before division means (assuming 4K page size):
489  *      - 1M 3-user-pages add up to 8KB errors;
490  *      - supports mapcount up to 2^24, or 16M;
491  *      - supports PSS up to 2^52 bytes, or 4PB.
492  */
493 #define PSS_SHIFT 12
494
495 #ifdef CONFIG_PROC_PAGE_MONITOR
496 struct mem_size_stats {
497         unsigned long resident;
498         unsigned long shared_clean;
499         unsigned long shared_dirty;
500         unsigned long private_clean;
501         unsigned long private_dirty;
502         unsigned long referenced;
503         unsigned long anonymous;
504         unsigned long anonymous_thp;
505         unsigned long swap;
506         unsigned long shared_hugetlb;
507         unsigned long private_hugetlb;
508         u64 pss;
509         u64 swap_pss;
510 };
511
512 static void smaps_account(struct mem_size_stats *mss, struct page *page,
513                 unsigned long size, bool young, bool dirty)
514 {
515         int mapcount;
516
517         if (PageAnon(page))
518                 mss->anonymous += size;
519
520         mss->resident += size;
521         /* Accumulate the size in pages that have been accessed. */
522         if (young || page_is_young(page) || PageReferenced(page))
523                 mss->referenced += size;
524         mapcount = page_mapcount(page);
525         if (mapcount >= 2) {
526                 u64 pss_delta;
527
528                 if (dirty || PageDirty(page))
529                         mss->shared_dirty += size;
530                 else
531                         mss->shared_clean += size;
532                 pss_delta = (u64)size << PSS_SHIFT;
533                 do_div(pss_delta, mapcount);
534                 mss->pss += pss_delta;
535         } else {
536                 if (dirty || PageDirty(page))
537                         mss->private_dirty += size;
538                 else
539                         mss->private_clean += size;
540                 mss->pss += (u64)size << PSS_SHIFT;
541         }
542 }
543
544 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
545                 struct mm_walk *walk)
546 {
547         struct mem_size_stats *mss = walk->private;
548         struct vm_area_struct *vma = walk->vma;
549         struct page *page = NULL;
550
551         if (pte_present(*pte)) {
552                 page = vm_normal_page(vma, addr, *pte);
553         } else if (is_swap_pte(*pte)) {
554                 swp_entry_t swpent = pte_to_swp_entry(*pte);
555
556                 if (!non_swap_entry(swpent)) {
557                         int mapcount;
558
559                         mss->swap += PAGE_SIZE;
560                         mapcount = swp_swapcount(swpent);
561                         if (mapcount >= 2) {
562                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
563
564                                 do_div(pss_delta, mapcount);
565                                 mss->swap_pss += pss_delta;
566                         } else {
567                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
568                         }
569                 } else if (is_migration_entry(swpent))
570                         page = migration_entry_to_page(swpent);
571         }
572
573         if (!page)
574                 return;
575         smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
576 }
577
578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
579 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
580                 struct mm_walk *walk)
581 {
582         struct mem_size_stats *mss = walk->private;
583         struct vm_area_struct *vma = walk->vma;
584         struct page *page;
585
586         /* FOLL_DUMP will return -EFAULT on huge zero page */
587         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
588         if (IS_ERR_OR_NULL(page))
589                 return;
590         mss->anonymous_thp += HPAGE_PMD_SIZE;
591         smaps_account(mss, page, HPAGE_PMD_SIZE,
592                         pmd_young(*pmd), pmd_dirty(*pmd));
593 }
594 #else
595 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
596                 struct mm_walk *walk)
597 {
598 }
599 #endif
600
601 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
602                            struct mm_walk *walk)
603 {
604         struct vm_area_struct *vma = walk->vma;
605         pte_t *pte;
606         spinlock_t *ptl;
607
608         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
609                 smaps_pmd_entry(pmd, addr, walk);
610                 spin_unlock(ptl);
611                 return 0;
612         }
613
614         if (pmd_trans_unstable(pmd))
615                 return 0;
616         /*
617          * The mmap_sem held all the way back in m_start() is what
618          * keeps khugepaged out of here and from collapsing things
619          * in here.
620          */
621         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
622         for (; addr != end; pte++, addr += PAGE_SIZE)
623                 smaps_pte_entry(pte, addr, walk);
624         pte_unmap_unlock(pte - 1, ptl);
625         cond_resched();
626         return 0;
627 }
628
629 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
630 {
631         /*
632          * Don't forget to update Documentation/ on changes.
633          */
634         static const char mnemonics[BITS_PER_LONG][2] = {
635                 /*
636                  * In case if we meet a flag we don't know about.
637                  */
638                 [0 ... (BITS_PER_LONG-1)] = "??",
639
640                 [ilog2(VM_READ)]        = "rd",
641                 [ilog2(VM_WRITE)]       = "wr",
642                 [ilog2(VM_EXEC)]        = "ex",
643                 [ilog2(VM_SHARED)]      = "sh",
644                 [ilog2(VM_MAYREAD)]     = "mr",
645                 [ilog2(VM_MAYWRITE)]    = "mw",
646                 [ilog2(VM_MAYEXEC)]     = "me",
647                 [ilog2(VM_MAYSHARE)]    = "ms",
648                 [ilog2(VM_GROWSDOWN)]   = "gd",
649                 [ilog2(VM_PFNMAP)]      = "pf",
650                 [ilog2(VM_DENYWRITE)]   = "dw",
651 #ifdef CONFIG_X86_INTEL_MPX
652                 [ilog2(VM_MPX)]         = "mp",
653 #endif
654                 [ilog2(VM_LOCKED)]      = "lo",
655                 [ilog2(VM_IO)]          = "io",
656                 [ilog2(VM_SEQ_READ)]    = "sr",
657                 [ilog2(VM_RAND_READ)]   = "rr",
658                 [ilog2(VM_DONTCOPY)]    = "dc",
659                 [ilog2(VM_DONTEXPAND)]  = "de",
660                 [ilog2(VM_ACCOUNT)]     = "ac",
661                 [ilog2(VM_NORESERVE)]   = "nr",
662                 [ilog2(VM_HUGETLB)]     = "ht",
663                 [ilog2(VM_ARCH_1)]      = "ar",
664                 [ilog2(VM_DONTDUMP)]    = "dd",
665 #ifdef CONFIG_MEM_SOFT_DIRTY
666                 [ilog2(VM_SOFTDIRTY)]   = "sd",
667 #endif
668                 [ilog2(VM_MIXEDMAP)]    = "mm",
669                 [ilog2(VM_HUGEPAGE)]    = "hg",
670                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
671                 [ilog2(VM_MERGEABLE)]   = "mg",
672                 [ilog2(VM_UFFD_MISSING)]= "um",
673                 [ilog2(VM_UFFD_WP)]     = "uw",
674         };
675         size_t i;
676
677         seq_puts(m, "VmFlags: ");
678         for (i = 0; i < BITS_PER_LONG; i++) {
679                 if (vma->vm_flags & (1UL << i)) {
680                         seq_printf(m, "%c%c ",
681                                    mnemonics[i][0], mnemonics[i][1]);
682                 }
683         }
684         seq_putc(m, '\n');
685 }
686
687 #ifdef CONFIG_HUGETLB_PAGE
688 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
689                                  unsigned long addr, unsigned long end,
690                                  struct mm_walk *walk)
691 {
692         struct mem_size_stats *mss = walk->private;
693         struct vm_area_struct *vma = walk->vma;
694         struct page *page = NULL;
695
696         if (pte_present(*pte)) {
697                 page = vm_normal_page(vma, addr, *pte);
698         } else if (is_swap_pte(*pte)) {
699                 swp_entry_t swpent = pte_to_swp_entry(*pte);
700
701                 if (is_migration_entry(swpent))
702                         page = migration_entry_to_page(swpent);
703         }
704         if (page) {
705                 int mapcount = page_mapcount(page);
706
707                 if (mapcount >= 2)
708                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
709                 else
710                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
711         }
712         return 0;
713 }
714 #endif /* HUGETLB_PAGE */
715
716 static int show_smap(struct seq_file *m, void *v, int is_pid)
717 {
718         struct vm_area_struct *vma = v;
719         struct mem_size_stats mss;
720         struct mm_walk smaps_walk = {
721                 .pmd_entry = smaps_pte_range,
722 #ifdef CONFIG_HUGETLB_PAGE
723                 .hugetlb_entry = smaps_hugetlb_range,
724 #endif
725                 .mm = vma->vm_mm,
726                 .private = &mss,
727         };
728
729         memset(&mss, 0, sizeof mss);
730         /* mmap_sem is held in m_start */
731         walk_page_vma(vma, &smaps_walk);
732
733         show_map_vma(m, vma, is_pid);
734
735         if (vma_get_anon_name(vma)) {
736                 seq_puts(m, "Name:           ");
737                 seq_print_vma_name(m, vma);
738                 seq_putc(m, '\n');
739         }
740
741         seq_printf(m,
742                    "Size:           %8lu kB\n"
743                    "Rss:            %8lu kB\n"
744                    "Pss:            %8lu kB\n"
745                    "Shared_Clean:   %8lu kB\n"
746                    "Shared_Dirty:   %8lu kB\n"
747                    "Private_Clean:  %8lu kB\n"
748                    "Private_Dirty:  %8lu kB\n"
749                    "Referenced:     %8lu kB\n"
750                    "Anonymous:      %8lu kB\n"
751                    "AnonHugePages:  %8lu kB\n"
752                    "Shared_Hugetlb: %8lu kB\n"
753                    "Private_Hugetlb: %7lu kB\n"
754                    "Swap:           %8lu kB\n"
755                    "SwapPss:        %8lu kB\n"
756                    "KernelPageSize: %8lu kB\n"
757                    "MMUPageSize:    %8lu kB\n"
758                    "Locked:         %8lu kB\n",
759                    (vma->vm_end - vma->vm_start) >> 10,
760                    mss.resident >> 10,
761                    (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
762                    mss.shared_clean  >> 10,
763                    mss.shared_dirty  >> 10,
764                    mss.private_clean >> 10,
765                    mss.private_dirty >> 10,
766                    mss.referenced >> 10,
767                    mss.anonymous >> 10,
768                    mss.anonymous_thp >> 10,
769                    mss.shared_hugetlb >> 10,
770                    mss.private_hugetlb >> 10,
771                    mss.swap >> 10,
772                    (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
773                    vma_kernel_pagesize(vma) >> 10,
774                    vma_mmu_pagesize(vma) >> 10,
775                    (vma->vm_flags & VM_LOCKED) ?
776                         (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
777
778         show_smap_vma_flags(m, vma);
779         m_cache_vma(m, vma);
780         return 0;
781 }
782
783 static int show_pid_smap(struct seq_file *m, void *v)
784 {
785         return show_smap(m, v, 1);
786 }
787
788 static int show_tid_smap(struct seq_file *m, void *v)
789 {
790         return show_smap(m, v, 0);
791 }
792
793 static const struct seq_operations proc_pid_smaps_op = {
794         .start  = m_start,
795         .next   = m_next,
796         .stop   = m_stop,
797         .show   = show_pid_smap
798 };
799
800 static const struct seq_operations proc_tid_smaps_op = {
801         .start  = m_start,
802         .next   = m_next,
803         .stop   = m_stop,
804         .show   = show_tid_smap
805 };
806
807 static int pid_smaps_open(struct inode *inode, struct file *file)
808 {
809         return do_maps_open(inode, file, &proc_pid_smaps_op);
810 }
811
812 static int tid_smaps_open(struct inode *inode, struct file *file)
813 {
814         return do_maps_open(inode, file, &proc_tid_smaps_op);
815 }
816
817 const struct file_operations proc_pid_smaps_operations = {
818         .open           = pid_smaps_open,
819         .read           = seq_read,
820         .llseek         = seq_lseek,
821         .release        = proc_map_release,
822 };
823
824 const struct file_operations proc_tid_smaps_operations = {
825         .open           = tid_smaps_open,
826         .read           = seq_read,
827         .llseek         = seq_lseek,
828         .release        = proc_map_release,
829 };
830
831 enum clear_refs_types {
832         CLEAR_REFS_ALL = 1,
833         CLEAR_REFS_ANON,
834         CLEAR_REFS_MAPPED,
835         CLEAR_REFS_SOFT_DIRTY,
836         CLEAR_REFS_MM_HIWATER_RSS,
837         CLEAR_REFS_LAST,
838 };
839
840 struct clear_refs_private {
841         enum clear_refs_types type;
842 };
843
844 #ifdef CONFIG_MEM_SOFT_DIRTY
845 static inline void clear_soft_dirty(struct vm_area_struct *vma,
846                 unsigned long addr, pte_t *pte)
847 {
848         /*
849          * The soft-dirty tracker uses #PF-s to catch writes
850          * to pages, so write-protect the pte as well. See the
851          * Documentation/vm/soft-dirty.txt for full description
852          * of how soft-dirty works.
853          */
854         pte_t ptent = *pte;
855
856         if (pte_present(ptent)) {
857                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
858                 ptent = pte_wrprotect(ptent);
859                 ptent = pte_clear_soft_dirty(ptent);
860                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
861         } else if (is_swap_pte(ptent)) {
862                 ptent = pte_swp_clear_soft_dirty(ptent);
863                 set_pte_at(vma->vm_mm, addr, pte, ptent);
864         }
865 }
866 #else
867 static inline void clear_soft_dirty(struct vm_area_struct *vma,
868                 unsigned long addr, pte_t *pte)
869 {
870 }
871 #endif
872
873 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
874 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
875                 unsigned long addr, pmd_t *pmdp)
876 {
877         pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
878
879         pmd = pmd_wrprotect(pmd);
880         pmd = pmd_clear_soft_dirty(pmd);
881
882         if (vma->vm_flags & VM_SOFTDIRTY)
883                 vma->vm_flags &= ~VM_SOFTDIRTY;
884
885         set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
886 }
887 #else
888 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
889                 unsigned long addr, pmd_t *pmdp)
890 {
891 }
892 #endif
893
894 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
895                                 unsigned long end, struct mm_walk *walk)
896 {
897         struct clear_refs_private *cp = walk->private;
898         struct vm_area_struct *vma = walk->vma;
899         pte_t *pte, ptent;
900         spinlock_t *ptl;
901         struct page *page;
902
903         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
904                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
905                         clear_soft_dirty_pmd(vma, addr, pmd);
906                         goto out;
907                 }
908
909                 page = pmd_page(*pmd);
910
911                 /* Clear accessed and referenced bits. */
912                 pmdp_test_and_clear_young(vma, addr, pmd);
913                 test_and_clear_page_young(page);
914                 ClearPageReferenced(page);
915 out:
916                 spin_unlock(ptl);
917                 return 0;
918         }
919
920         if (pmd_trans_unstable(pmd))
921                 return 0;
922
923         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
924         for (; addr != end; pte++, addr += PAGE_SIZE) {
925                 ptent = *pte;
926
927                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
928                         clear_soft_dirty(vma, addr, pte);
929                         continue;
930                 }
931
932                 if (!pte_present(ptent))
933                         continue;
934
935                 page = vm_normal_page(vma, addr, ptent);
936                 if (!page)
937                         continue;
938
939                 /* Clear accessed and referenced bits. */
940                 ptep_test_and_clear_young(vma, addr, pte);
941                 test_and_clear_page_young(page);
942                 ClearPageReferenced(page);
943         }
944         pte_unmap_unlock(pte - 1, ptl);
945         cond_resched();
946         return 0;
947 }
948
949 static int clear_refs_test_walk(unsigned long start, unsigned long end,
950                                 struct mm_walk *walk)
951 {
952         struct clear_refs_private *cp = walk->private;
953         struct vm_area_struct *vma = walk->vma;
954
955         if (vma->vm_flags & VM_PFNMAP)
956                 return 1;
957
958         /*
959          * Writing 1 to /proc/pid/clear_refs affects all pages.
960          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
961          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
962          * Writing 4 to /proc/pid/clear_refs affects all pages.
963          */
964         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
965                 return 1;
966         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
967                 return 1;
968         return 0;
969 }
970
971 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
972                                 size_t count, loff_t *ppos)
973 {
974         struct task_struct *task;
975         char buffer[PROC_NUMBUF];
976         struct mm_struct *mm;
977         struct vm_area_struct *vma;
978         enum clear_refs_types type;
979         int itype;
980         int rv;
981
982         memset(buffer, 0, sizeof(buffer));
983         if (count > sizeof(buffer) - 1)
984                 count = sizeof(buffer) - 1;
985         if (copy_from_user(buffer, buf, count))
986                 return -EFAULT;
987         rv = kstrtoint(strstrip(buffer), 10, &itype);
988         if (rv < 0)
989                 return rv;
990         type = (enum clear_refs_types)itype;
991         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
992                 return -EINVAL;
993
994         task = get_proc_task(file_inode(file));
995         if (!task)
996                 return -ESRCH;
997         mm = get_task_mm(task);
998         if (mm) {
999                 struct clear_refs_private cp = {
1000                         .type = type,
1001                 };
1002                 struct mm_walk clear_refs_walk = {
1003                         .pmd_entry = clear_refs_pte_range,
1004                         .test_walk = clear_refs_test_walk,
1005                         .mm = mm,
1006                         .private = &cp,
1007                 };
1008
1009                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1010                         /*
1011                          * Writing 5 to /proc/pid/clear_refs resets the peak
1012                          * resident set size to this mm's current rss value.
1013                          */
1014                         down_write(&mm->mmap_sem);
1015                         reset_mm_hiwater_rss(mm);
1016                         up_write(&mm->mmap_sem);
1017                         goto out_mm;
1018                 }
1019
1020                 down_read(&mm->mmap_sem);
1021                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1022                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1023                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1024                                         continue;
1025                                 up_read(&mm->mmap_sem);
1026                                 down_write(&mm->mmap_sem);
1027                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1028                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1029                                         vma_set_page_prot(vma);
1030                                 }
1031                                 downgrade_write(&mm->mmap_sem);
1032                                 break;
1033                         }
1034                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1035                 }
1036                 walk_page_range(0, ~0UL, &clear_refs_walk);
1037                 if (type == CLEAR_REFS_SOFT_DIRTY)
1038                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1039                 flush_tlb_mm(mm);
1040                 up_read(&mm->mmap_sem);
1041 out_mm:
1042                 mmput(mm);
1043         }
1044         put_task_struct(task);
1045
1046         return count;
1047 }
1048
1049 const struct file_operations proc_clear_refs_operations = {
1050         .write          = clear_refs_write,
1051         .llseek         = noop_llseek,
1052 };
1053
1054 typedef struct {
1055         u64 pme;
1056 } pagemap_entry_t;
1057
1058 struct pagemapread {
1059         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1060         pagemap_entry_t *buffer;
1061         bool show_pfn;
1062 };
1063
1064 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1065 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1066
1067 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1068 #define PM_PFRAME_BITS          55
1069 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1070 #define PM_SOFT_DIRTY           BIT_ULL(55)
1071 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1072 #define PM_FILE                 BIT_ULL(61)
1073 #define PM_SWAP                 BIT_ULL(62)
1074 #define PM_PRESENT              BIT_ULL(63)
1075
1076 #define PM_END_OF_BUFFER    1
1077
1078 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1079 {
1080         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1081 }
1082
1083 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1084                           struct pagemapread *pm)
1085 {
1086         pm->buffer[pm->pos++] = *pme;
1087         if (pm->pos >= pm->len)
1088                 return PM_END_OF_BUFFER;
1089         return 0;
1090 }
1091
1092 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1093                                 struct mm_walk *walk)
1094 {
1095         struct pagemapread *pm = walk->private;
1096         unsigned long addr = start;
1097         int err = 0;
1098
1099         while (addr < end) {
1100                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1101                 pagemap_entry_t pme = make_pme(0, 0);
1102                 /* End of address space hole, which we mark as non-present. */
1103                 unsigned long hole_end;
1104
1105                 if (vma)
1106                         hole_end = min(end, vma->vm_start);
1107                 else
1108                         hole_end = end;
1109
1110                 for (; addr < hole_end; addr += PAGE_SIZE) {
1111                         err = add_to_pagemap(addr, &pme, pm);
1112                         if (err)
1113                                 goto out;
1114                 }
1115
1116                 if (!vma)
1117                         break;
1118
1119                 /* Addresses in the VMA. */
1120                 if (vma->vm_flags & VM_SOFTDIRTY)
1121                         pme = make_pme(0, PM_SOFT_DIRTY);
1122                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1123                         err = add_to_pagemap(addr, &pme, pm);
1124                         if (err)
1125                                 goto out;
1126                 }
1127         }
1128 out:
1129         return err;
1130 }
1131
1132 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1133                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1134 {
1135         u64 frame = 0, flags = 0;
1136         struct page *page = NULL;
1137
1138         if (pte_present(pte)) {
1139                 if (pm->show_pfn)
1140                         frame = pte_pfn(pte);
1141                 flags |= PM_PRESENT;
1142                 page = vm_normal_page(vma, addr, pte);
1143                 if (pte_soft_dirty(pte))
1144                         flags |= PM_SOFT_DIRTY;
1145         } else if (is_swap_pte(pte)) {
1146                 swp_entry_t entry;
1147                 if (pte_swp_soft_dirty(pte))
1148                         flags |= PM_SOFT_DIRTY;
1149                 entry = pte_to_swp_entry(pte);
1150                 frame = swp_type(entry) |
1151                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1152                 flags |= PM_SWAP;
1153                 if (is_migration_entry(entry))
1154                         page = migration_entry_to_page(entry);
1155         }
1156
1157         if (page && !PageAnon(page))
1158                 flags |= PM_FILE;
1159         if (page && page_mapcount(page) == 1)
1160                 flags |= PM_MMAP_EXCLUSIVE;
1161         if (vma->vm_flags & VM_SOFTDIRTY)
1162                 flags |= PM_SOFT_DIRTY;
1163
1164         return make_pme(frame, flags);
1165 }
1166
1167 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1168                              struct mm_walk *walk)
1169 {
1170         struct vm_area_struct *vma = walk->vma;
1171         struct pagemapread *pm = walk->private;
1172         spinlock_t *ptl;
1173         pte_t *pte, *orig_pte;
1174         int err = 0;
1175
1176 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1177         if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
1178                 u64 flags = 0, frame = 0;
1179                 pmd_t pmd = *pmdp;
1180
1181                 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1182                         flags |= PM_SOFT_DIRTY;
1183
1184                 /*
1185                  * Currently pmd for thp is always present because thp
1186                  * can not be swapped-out, migrated, or HWPOISONed
1187                  * (split in such cases instead.)
1188                  * This if-check is just to prepare for future implementation.
1189                  */
1190                 if (pmd_present(pmd)) {
1191                         struct page *page = pmd_page(pmd);
1192
1193                         if (page_mapcount(page) == 1)
1194                                 flags |= PM_MMAP_EXCLUSIVE;
1195
1196                         flags |= PM_PRESENT;
1197                         if (pm->show_pfn)
1198                                 frame = pmd_pfn(pmd) +
1199                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1200                 }
1201
1202                 for (; addr != end; addr += PAGE_SIZE) {
1203                         pagemap_entry_t pme = make_pme(frame, flags);
1204
1205                         err = add_to_pagemap(addr, &pme, pm);
1206                         if (err)
1207                                 break;
1208                         if (pm->show_pfn && (flags & PM_PRESENT))
1209                                 frame++;
1210                 }
1211                 spin_unlock(ptl);
1212                 return err;
1213         }
1214
1215         if (pmd_trans_unstable(pmdp))
1216                 return 0;
1217 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1218
1219         /*
1220          * We can assume that @vma always points to a valid one and @end never
1221          * goes beyond vma->vm_end.
1222          */
1223         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1224         for (; addr < end; pte++, addr += PAGE_SIZE) {
1225                 pagemap_entry_t pme;
1226
1227                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1228                 err = add_to_pagemap(addr, &pme, pm);
1229                 if (err)
1230                         break;
1231         }
1232         pte_unmap_unlock(orig_pte, ptl);
1233
1234         cond_resched();
1235
1236         return err;
1237 }
1238
1239 #ifdef CONFIG_HUGETLB_PAGE
1240 /* This function walks within one hugetlb entry in the single call */
1241 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1242                                  unsigned long addr, unsigned long end,
1243                                  struct mm_walk *walk)
1244 {
1245         struct pagemapread *pm = walk->private;
1246         struct vm_area_struct *vma = walk->vma;
1247         u64 flags = 0, frame = 0;
1248         int err = 0;
1249         pte_t pte;
1250
1251         if (vma->vm_flags & VM_SOFTDIRTY)
1252                 flags |= PM_SOFT_DIRTY;
1253
1254         pte = huge_ptep_get(ptep);
1255         if (pte_present(pte)) {
1256                 struct page *page = pte_page(pte);
1257
1258                 if (!PageAnon(page))
1259                         flags |= PM_FILE;
1260
1261                 if (page_mapcount(page) == 1)
1262                         flags |= PM_MMAP_EXCLUSIVE;
1263
1264                 flags |= PM_PRESENT;
1265                 if (pm->show_pfn)
1266                         frame = pte_pfn(pte) +
1267                                 ((addr & ~hmask) >> PAGE_SHIFT);
1268         }
1269
1270         for (; addr != end; addr += PAGE_SIZE) {
1271                 pagemap_entry_t pme = make_pme(frame, flags);
1272
1273                 err = add_to_pagemap(addr, &pme, pm);
1274                 if (err)
1275                         return err;
1276                 if (pm->show_pfn && (flags & PM_PRESENT))
1277                         frame++;
1278         }
1279
1280         cond_resched();
1281
1282         return err;
1283 }
1284 #endif /* HUGETLB_PAGE */
1285
1286 /*
1287  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1288  *
1289  * For each page in the address space, this file contains one 64-bit entry
1290  * consisting of the following:
1291  *
1292  * Bits 0-54  page frame number (PFN) if present
1293  * Bits 0-4   swap type if swapped
1294  * Bits 5-54  swap offset if swapped
1295  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1296  * Bit  56    page exclusively mapped
1297  * Bits 57-60 zero
1298  * Bit  61    page is file-page or shared-anon
1299  * Bit  62    page swapped
1300  * Bit  63    page present
1301  *
1302  * If the page is not present but in swap, then the PFN contains an
1303  * encoding of the swap file number and the page's offset into the
1304  * swap. Unmapped pages return a null PFN. This allows determining
1305  * precisely which pages are mapped (or in swap) and comparing mapped
1306  * pages between processes.
1307  *
1308  * Efficient users of this interface will use /proc/pid/maps to
1309  * determine which areas of memory are actually mapped and llseek to
1310  * skip over unmapped regions.
1311  */
1312 static ssize_t pagemap_read(struct file *file, char __user *buf,
1313                             size_t count, loff_t *ppos)
1314 {
1315         struct mm_struct *mm = file->private_data;
1316         struct pagemapread pm;
1317         struct mm_walk pagemap_walk = {};
1318         unsigned long src;
1319         unsigned long svpfn;
1320         unsigned long start_vaddr;
1321         unsigned long end_vaddr;
1322         int ret = 0, copied = 0;
1323
1324         if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1325                 goto out;
1326
1327         ret = -EINVAL;
1328         /* file position must be aligned */
1329         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1330                 goto out_mm;
1331
1332         ret = 0;
1333         if (!count)
1334                 goto out_mm;
1335
1336         /* do not disclose physical addresses: attack vector */
1337         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1338
1339         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1340         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1341         ret = -ENOMEM;
1342         if (!pm.buffer)
1343                 goto out_mm;
1344
1345         pagemap_walk.pmd_entry = pagemap_pmd_range;
1346         pagemap_walk.pte_hole = pagemap_pte_hole;
1347 #ifdef CONFIG_HUGETLB_PAGE
1348         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1349 #endif
1350         pagemap_walk.mm = mm;
1351         pagemap_walk.private = &pm;
1352
1353         src = *ppos;
1354         svpfn = src / PM_ENTRY_BYTES;
1355         start_vaddr = svpfn << PAGE_SHIFT;
1356         end_vaddr = mm->task_size;
1357
1358         /* watch out for wraparound */
1359         if (svpfn > mm->task_size >> PAGE_SHIFT)
1360                 start_vaddr = end_vaddr;
1361
1362         /*
1363          * The odds are that this will stop walking way
1364          * before end_vaddr, because the length of the
1365          * user buffer is tracked in "pm", and the walk
1366          * will stop when we hit the end of the buffer.
1367          */
1368         ret = 0;
1369         while (count && (start_vaddr < end_vaddr)) {
1370                 int len;
1371                 unsigned long end;
1372
1373                 pm.pos = 0;
1374                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1375                 /* overflow ? */
1376                 if (end < start_vaddr || end > end_vaddr)
1377                         end = end_vaddr;
1378                 down_read(&mm->mmap_sem);
1379                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1380                 up_read(&mm->mmap_sem);
1381                 start_vaddr = end;
1382
1383                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1384                 if (copy_to_user(buf, pm.buffer, len)) {
1385                         ret = -EFAULT;
1386                         goto out_free;
1387                 }
1388                 copied += len;
1389                 buf += len;
1390                 count -= len;
1391         }
1392         *ppos += copied;
1393         if (!ret || ret == PM_END_OF_BUFFER)
1394                 ret = copied;
1395
1396 out_free:
1397         kfree(pm.buffer);
1398 out_mm:
1399         mmput(mm);
1400 out:
1401         return ret;
1402 }
1403
1404 static int pagemap_open(struct inode *inode, struct file *file)
1405 {
1406         struct mm_struct *mm;
1407
1408         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1409         if (IS_ERR(mm))
1410                 return PTR_ERR(mm);
1411         file->private_data = mm;
1412         return 0;
1413 }
1414
1415 static int pagemap_release(struct inode *inode, struct file *file)
1416 {
1417         struct mm_struct *mm = file->private_data;
1418
1419         if (mm)
1420                 mmdrop(mm);
1421         return 0;
1422 }
1423
1424 const struct file_operations proc_pagemap_operations = {
1425         .llseek         = mem_lseek, /* borrow this */
1426         .read           = pagemap_read,
1427         .open           = pagemap_open,
1428         .release        = pagemap_release,
1429 };
1430 #endif /* CONFIG_PROC_PAGE_MONITOR */
1431
1432 #ifdef CONFIG_NUMA
1433
1434 struct numa_maps {
1435         unsigned long pages;
1436         unsigned long anon;
1437         unsigned long active;
1438         unsigned long writeback;
1439         unsigned long mapcount_max;
1440         unsigned long dirty;
1441         unsigned long swapcache;
1442         unsigned long node[MAX_NUMNODES];
1443 };
1444
1445 struct numa_maps_private {
1446         struct proc_maps_private proc_maps;
1447         struct numa_maps md;
1448 };
1449
1450 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1451                         unsigned long nr_pages)
1452 {
1453         int count = page_mapcount(page);
1454
1455         md->pages += nr_pages;
1456         if (pte_dirty || PageDirty(page))
1457                 md->dirty += nr_pages;
1458
1459         if (PageSwapCache(page))
1460                 md->swapcache += nr_pages;
1461
1462         if (PageActive(page) || PageUnevictable(page))
1463                 md->active += nr_pages;
1464
1465         if (PageWriteback(page))
1466                 md->writeback += nr_pages;
1467
1468         if (PageAnon(page))
1469                 md->anon += nr_pages;
1470
1471         if (count > md->mapcount_max)
1472                 md->mapcount_max = count;
1473
1474         md->node[page_to_nid(page)] += nr_pages;
1475 }
1476
1477 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1478                 unsigned long addr)
1479 {
1480         struct page *page;
1481         int nid;
1482
1483         if (!pte_present(pte))
1484                 return NULL;
1485
1486         page = vm_normal_page(vma, addr, pte);
1487         if (!page)
1488                 return NULL;
1489
1490         if (PageReserved(page))
1491                 return NULL;
1492
1493         nid = page_to_nid(page);
1494         if (!node_isset(nid, node_states[N_MEMORY]))
1495                 return NULL;
1496
1497         return page;
1498 }
1499
1500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1501 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1502                                               struct vm_area_struct *vma,
1503                                               unsigned long addr)
1504 {
1505         struct page *page;
1506         int nid;
1507
1508         if (!pmd_present(pmd))
1509                 return NULL;
1510
1511         page = vm_normal_page_pmd(vma, addr, pmd);
1512         if (!page)
1513                 return NULL;
1514
1515         if (PageReserved(page))
1516                 return NULL;
1517
1518         nid = page_to_nid(page);
1519         if (!node_isset(nid, node_states[N_MEMORY]))
1520                 return NULL;
1521
1522         return page;
1523 }
1524 #endif
1525
1526 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1527                 unsigned long end, struct mm_walk *walk)
1528 {
1529         struct numa_maps *md = walk->private;
1530         struct vm_area_struct *vma = walk->vma;
1531         spinlock_t *ptl;
1532         pte_t *orig_pte;
1533         pte_t *pte;
1534
1535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1536         if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1537                 struct page *page;
1538
1539                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1540                 if (page)
1541                         gather_stats(page, md, pmd_dirty(*pmd),
1542                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1543                 spin_unlock(ptl);
1544                 return 0;
1545         }
1546
1547         if (pmd_trans_unstable(pmd))
1548                 return 0;
1549 #endif
1550         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1551         do {
1552                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1553                 if (!page)
1554                         continue;
1555                 gather_stats(page, md, pte_dirty(*pte), 1);
1556
1557         } while (pte++, addr += PAGE_SIZE, addr != end);
1558         pte_unmap_unlock(orig_pte, ptl);
1559         return 0;
1560 }
1561 #ifdef CONFIG_HUGETLB_PAGE
1562 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1563                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1564 {
1565         pte_t huge_pte = huge_ptep_get(pte);
1566         struct numa_maps *md;
1567         struct page *page;
1568
1569         if (!pte_present(huge_pte))
1570                 return 0;
1571
1572         page = pte_page(huge_pte);
1573         if (!page)
1574                 return 0;
1575
1576         md = walk->private;
1577         gather_stats(page, md, pte_dirty(huge_pte), 1);
1578         return 0;
1579 }
1580
1581 #else
1582 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1583                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1584 {
1585         return 0;
1586 }
1587 #endif
1588
1589 /*
1590  * Display pages allocated per node and memory policy via /proc.
1591  */
1592 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1593 {
1594         struct numa_maps_private *numa_priv = m->private;
1595         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1596         struct vm_area_struct *vma = v;
1597         struct numa_maps *md = &numa_priv->md;
1598         struct file *file = vma->vm_file;
1599         struct mm_struct *mm = vma->vm_mm;
1600         struct mm_walk walk = {
1601                 .hugetlb_entry = gather_hugetlb_stats,
1602                 .pmd_entry = gather_pte_stats,
1603                 .private = md,
1604                 .mm = mm,
1605         };
1606         struct mempolicy *pol;
1607         char buffer[64];
1608         int nid;
1609
1610         if (!mm)
1611                 return 0;
1612
1613         /* Ensure we start with an empty set of numa_maps statistics. */
1614         memset(md, 0, sizeof(*md));
1615
1616         pol = __get_vma_policy(vma, vma->vm_start);
1617         if (pol) {
1618                 mpol_to_str(buffer, sizeof(buffer), pol);
1619                 mpol_cond_put(pol);
1620         } else {
1621                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1622         }
1623
1624         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1625
1626         if (file) {
1627                 seq_puts(m, " file=");
1628                 seq_file_path(m, file, "\n\t= ");
1629         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1630                 seq_puts(m, " heap");
1631         } else {
1632                 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1633                 if (tid != 0) {
1634                         /*
1635                          * Thread stack in /proc/PID/task/TID/maps or
1636                          * the main process stack.
1637                          */
1638                         if (!is_pid || (vma->vm_start <= mm->start_stack &&
1639                             vma->vm_end >= mm->start_stack))
1640                                 seq_puts(m, " stack");
1641                         else
1642                                 seq_printf(m, " stack:%d", tid);
1643                 }
1644         }
1645
1646         if (is_vm_hugetlb_page(vma))
1647                 seq_puts(m, " huge");
1648
1649         /* mmap_sem is held by m_start */
1650         walk_page_vma(vma, &walk);
1651
1652         if (!md->pages)
1653                 goto out;
1654
1655         if (md->anon)
1656                 seq_printf(m, " anon=%lu", md->anon);
1657
1658         if (md->dirty)
1659                 seq_printf(m, " dirty=%lu", md->dirty);
1660
1661         if (md->pages != md->anon && md->pages != md->dirty)
1662                 seq_printf(m, " mapped=%lu", md->pages);
1663
1664         if (md->mapcount_max > 1)
1665                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1666
1667         if (md->swapcache)
1668                 seq_printf(m, " swapcache=%lu", md->swapcache);
1669
1670         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1671                 seq_printf(m, " active=%lu", md->active);
1672
1673         if (md->writeback)
1674                 seq_printf(m, " writeback=%lu", md->writeback);
1675
1676         for_each_node_state(nid, N_MEMORY)
1677                 if (md->node[nid])
1678                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1679
1680         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1681 out:
1682         seq_putc(m, '\n');
1683         m_cache_vma(m, vma);
1684         return 0;
1685 }
1686
1687 static int show_pid_numa_map(struct seq_file *m, void *v)
1688 {
1689         return show_numa_map(m, v, 1);
1690 }
1691
1692 static int show_tid_numa_map(struct seq_file *m, void *v)
1693 {
1694         return show_numa_map(m, v, 0);
1695 }
1696
1697 static const struct seq_operations proc_pid_numa_maps_op = {
1698         .start  = m_start,
1699         .next   = m_next,
1700         .stop   = m_stop,
1701         .show   = show_pid_numa_map,
1702 };
1703
1704 static const struct seq_operations proc_tid_numa_maps_op = {
1705         .start  = m_start,
1706         .next   = m_next,
1707         .stop   = m_stop,
1708         .show   = show_tid_numa_map,
1709 };
1710
1711 static int numa_maps_open(struct inode *inode, struct file *file,
1712                           const struct seq_operations *ops)
1713 {
1714         return proc_maps_open(inode, file, ops,
1715                                 sizeof(struct numa_maps_private));
1716 }
1717
1718 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1719 {
1720         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1721 }
1722
1723 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1724 {
1725         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1726 }
1727
1728 const struct file_operations proc_pid_numa_maps_operations = {
1729         .open           = pid_numa_maps_open,
1730         .read           = seq_read,
1731         .llseek         = seq_lseek,
1732         .release        = proc_map_release,
1733 };
1734
1735 const struct file_operations proc_tid_numa_maps_operations = {
1736         .open           = tid_numa_maps_open,
1737         .read           = seq_read,
1738         .llseek         = seq_lseek,
1739         .release        = proc_map_release,
1740 };
1741 #endif /* CONFIG_NUMA */