ACPI / dock: fix error return code in dock_add()
[firefly-linux-kernel-4.4.55.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31
32 #include <cluster/masklog.h>
33
34 #include "ocfs2.h"
35
36 #include "alloc.h"
37 #include "aops.h"
38 #include "dlmglue.h"
39 #include "extent_map.h"
40 #include "file.h"
41 #include "inode.h"
42 #include "journal.h"
43 #include "suballoc.h"
44 #include "super.h"
45 #include "symlink.h"
46 #include "refcounttree.h"
47 #include "ocfs2_trace.h"
48
49 #include "buffer_head_io.h"
50
51 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52                                    struct buffer_head *bh_result, int create)
53 {
54         int err = -EIO;
55         int status;
56         struct ocfs2_dinode *fe = NULL;
57         struct buffer_head *bh = NULL;
58         struct buffer_head *buffer_cache_bh = NULL;
59         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60         void *kaddr;
61
62         trace_ocfs2_symlink_get_block(
63                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
64                         (unsigned long long)iblock, bh_result, create);
65
66         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70                      (unsigned long long)iblock);
71                 goto bail;
72         }
73
74         status = ocfs2_read_inode_block(inode, &bh);
75         if (status < 0) {
76                 mlog_errno(status);
77                 goto bail;
78         }
79         fe = (struct ocfs2_dinode *) bh->b_data;
80
81         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82                                                     le32_to_cpu(fe->i_clusters))) {
83                 mlog(ML_ERROR, "block offset is outside the allocated size: "
84                      "%llu\n", (unsigned long long)iblock);
85                 goto bail;
86         }
87
88         /* We don't use the page cache to create symlink data, so if
89          * need be, copy it over from the buffer cache. */
90         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92                             iblock;
93                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94                 if (!buffer_cache_bh) {
95                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96                         goto bail;
97                 }
98
99                 /* we haven't locked out transactions, so a commit
100                  * could've happened. Since we've got a reference on
101                  * the bh, even if it commits while we're doing the
102                  * copy, the data is still good. */
103                 if (buffer_jbd(buffer_cache_bh)
104                     && ocfs2_inode_is_new(inode)) {
105                         kaddr = kmap_atomic(bh_result->b_page);
106                         if (!kaddr) {
107                                 mlog(ML_ERROR, "couldn't kmap!\n");
108                                 goto bail;
109                         }
110                         memcpy(kaddr + (bh_result->b_size * iblock),
111                                buffer_cache_bh->b_data,
112                                bh_result->b_size);
113                         kunmap_atomic(kaddr);
114                         set_buffer_uptodate(bh_result);
115                 }
116                 brelse(buffer_cache_bh);
117         }
118
119         map_bh(bh_result, inode->i_sb,
120                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122         err = 0;
123
124 bail:
125         brelse(bh);
126
127         return err;
128 }
129
130 int ocfs2_get_block(struct inode *inode, sector_t iblock,
131                     struct buffer_head *bh_result, int create)
132 {
133         int err = 0;
134         unsigned int ext_flags;
135         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136         u64 p_blkno, count, past_eof;
137         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138
139         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140                               (unsigned long long)iblock, bh_result, create);
141
142         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144                      inode, inode->i_ino);
145
146         if (S_ISLNK(inode->i_mode)) {
147                 /* this always does I/O for some reason. */
148                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149                 goto bail;
150         }
151
152         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
153                                           &ext_flags);
154         if (err) {
155                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
156                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157                      (unsigned long long)p_blkno);
158                 goto bail;
159         }
160
161         if (max_blocks < count)
162                 count = max_blocks;
163
164         /*
165          * ocfs2 never allocates in this function - the only time we
166          * need to use BH_New is when we're extending i_size on a file
167          * system which doesn't support holes, in which case BH_New
168          * allows __block_write_begin() to zero.
169          *
170          * If we see this on a sparse file system, then a truncate has
171          * raced us and removed the cluster. In this case, we clear
172          * the buffers dirty and uptodate bits and let the buffer code
173          * ignore it as a hole.
174          */
175         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176                 clear_buffer_dirty(bh_result);
177                 clear_buffer_uptodate(bh_result);
178                 goto bail;
179         }
180
181         /* Treat the unwritten extent as a hole for zeroing purposes. */
182         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
183                 map_bh(bh_result, inode->i_sb, p_blkno);
184
185         bh_result->b_size = count << inode->i_blkbits;
186
187         if (!ocfs2_sparse_alloc(osb)) {
188                 if (p_blkno == 0) {
189                         err = -EIO;
190                         mlog(ML_ERROR,
191                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192                              (unsigned long long)iblock,
193                              (unsigned long long)p_blkno,
194                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
195                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196                         dump_stack();
197                         goto bail;
198                 }
199         }
200
201         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
202
203         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204                                   (unsigned long long)past_eof);
205         if (create && (iblock >= past_eof))
206                 set_buffer_new(bh_result);
207
208 bail:
209         if (err < 0)
210                 err = -EIO;
211
212         return err;
213 }
214
215 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216                            struct buffer_head *di_bh)
217 {
218         void *kaddr;
219         loff_t size;
220         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
225                 return -EROFS;
226         }
227
228         size = i_size_read(inode);
229
230         if (size > PAGE_CACHE_SIZE ||
231             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
232                 ocfs2_error(inode->i_sb,
233                             "Inode %llu has with inline data has bad size: %Lu",
234                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
235                             (unsigned long long)size);
236                 return -EROFS;
237         }
238
239         kaddr = kmap_atomic(page);
240         if (size)
241                 memcpy(kaddr, di->id2.i_data.id_data, size);
242         /* Clear the remaining part of the page */
243         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244         flush_dcache_page(page);
245         kunmap_atomic(kaddr);
246
247         SetPageUptodate(page);
248
249         return 0;
250 }
251
252 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253 {
254         int ret;
255         struct buffer_head *di_bh = NULL;
256
257         BUG_ON(!PageLocked(page));
258         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259
260         ret = ocfs2_read_inode_block(inode, &di_bh);
261         if (ret) {
262                 mlog_errno(ret);
263                 goto out;
264         }
265
266         ret = ocfs2_read_inline_data(inode, page, di_bh);
267 out:
268         unlock_page(page);
269
270         brelse(di_bh);
271         return ret;
272 }
273
274 static int ocfs2_readpage(struct file *file, struct page *page)
275 {
276         struct inode *inode = page->mapping->host;
277         struct ocfs2_inode_info *oi = OCFS2_I(inode);
278         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279         int ret, unlock = 1;
280
281         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282                              (page ? page->index : 0));
283
284         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
285         if (ret != 0) {
286                 if (ret == AOP_TRUNCATED_PAGE)
287                         unlock = 0;
288                 mlog_errno(ret);
289                 goto out;
290         }
291
292         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
293                 /*
294                  * Unlock the page and cycle ip_alloc_sem so that we don't
295                  * busyloop waiting for ip_alloc_sem to unlock
296                  */
297                 ret = AOP_TRUNCATED_PAGE;
298                 unlock_page(page);
299                 unlock = 0;
300                 down_read(&oi->ip_alloc_sem);
301                 up_read(&oi->ip_alloc_sem);
302                 goto out_inode_unlock;
303         }
304
305         /*
306          * i_size might have just been updated as we grabed the meta lock.  We
307          * might now be discovering a truncate that hit on another node.
308          * block_read_full_page->get_block freaks out if it is asked to read
309          * beyond the end of a file, so we check here.  Callers
310          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
311          * and notice that the page they just read isn't needed.
312          *
313          * XXX sys_readahead() seems to get that wrong?
314          */
315         if (start >= i_size_read(inode)) {
316                 zero_user(page, 0, PAGE_SIZE);
317                 SetPageUptodate(page);
318                 ret = 0;
319                 goto out_alloc;
320         }
321
322         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323                 ret = ocfs2_readpage_inline(inode, page);
324         else
325                 ret = block_read_full_page(page, ocfs2_get_block);
326         unlock = 0;
327
328 out_alloc:
329         up_read(&OCFS2_I(inode)->ip_alloc_sem);
330 out_inode_unlock:
331         ocfs2_inode_unlock(inode, 0);
332 out:
333         if (unlock)
334                 unlock_page(page);
335         return ret;
336 }
337
338 /*
339  * This is used only for read-ahead. Failures or difficult to handle
340  * situations are safe to ignore.
341  *
342  * Right now, we don't bother with BH_Boundary - in-inode extent lists
343  * are quite large (243 extents on 4k blocks), so most inodes don't
344  * grow out to a tree. If need be, detecting boundary extents could
345  * trivially be added in a future version of ocfs2_get_block().
346  */
347 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348                            struct list_head *pages, unsigned nr_pages)
349 {
350         int ret, err = -EIO;
351         struct inode *inode = mapping->host;
352         struct ocfs2_inode_info *oi = OCFS2_I(inode);
353         loff_t start;
354         struct page *last;
355
356         /*
357          * Use the nonblocking flag for the dlm code to avoid page
358          * lock inversion, but don't bother with retrying.
359          */
360         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361         if (ret)
362                 return err;
363
364         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365                 ocfs2_inode_unlock(inode, 0);
366                 return err;
367         }
368
369         /*
370          * Don't bother with inline-data. There isn't anything
371          * to read-ahead in that case anyway...
372          */
373         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374                 goto out_unlock;
375
376         /*
377          * Check whether a remote node truncated this file - we just
378          * drop out in that case as it's not worth handling here.
379          */
380         last = list_entry(pages->prev, struct page, lru);
381         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382         if (start >= i_size_read(inode))
383                 goto out_unlock;
384
385         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387 out_unlock:
388         up_read(&oi->ip_alloc_sem);
389         ocfs2_inode_unlock(inode, 0);
390
391         return err;
392 }
393
394 /* Note: Because we don't support holes, our allocation has
395  * already happened (allocation writes zeros to the file data)
396  * so we don't have to worry about ordered writes in
397  * ocfs2_writepage.
398  *
399  * ->writepage is called during the process of invalidating the page cache
400  * during blocked lock processing.  It can't block on any cluster locks
401  * to during block mapping.  It's relying on the fact that the block
402  * mapping can't have disappeared under the dirty pages that it is
403  * being asked to write back.
404  */
405 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406 {
407         trace_ocfs2_writepage(
408                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409                 page->index);
410
411         return block_write_full_page(page, ocfs2_get_block, wbc);
412 }
413
414 /* Taken from ext3. We don't necessarily need the full blown
415  * functionality yet, but IMHO it's better to cut and paste the whole
416  * thing so we can avoid introducing our own bugs (and easily pick up
417  * their fixes when they happen) --Mark */
418 int walk_page_buffers(  handle_t *handle,
419                         struct buffer_head *head,
420                         unsigned from,
421                         unsigned to,
422                         int *partial,
423                         int (*fn)(      handle_t *handle,
424                                         struct buffer_head *bh))
425 {
426         struct buffer_head *bh;
427         unsigned block_start, block_end;
428         unsigned blocksize = head->b_size;
429         int err, ret = 0;
430         struct buffer_head *next;
431
432         for (   bh = head, block_start = 0;
433                 ret == 0 && (bh != head || !block_start);
434                 block_start = block_end, bh = next)
435         {
436                 next = bh->b_this_page;
437                 block_end = block_start + blocksize;
438                 if (block_end <= from || block_start >= to) {
439                         if (partial && !buffer_uptodate(bh))
440                                 *partial = 1;
441                         continue;
442                 }
443                 err = (*fn)(handle, bh);
444                 if (!ret)
445                         ret = err;
446         }
447         return ret;
448 }
449
450 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 {
452         sector_t status;
453         u64 p_blkno = 0;
454         int err = 0;
455         struct inode *inode = mapping->host;
456
457         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458                          (unsigned long long)block);
459
460         /* We don't need to lock journal system files, since they aren't
461          * accessed concurrently from multiple nodes.
462          */
463         if (!INODE_JOURNAL(inode)) {
464                 err = ocfs2_inode_lock(inode, NULL, 0);
465                 if (err) {
466                         if (err != -ENOENT)
467                                 mlog_errno(err);
468                         goto bail;
469                 }
470                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471         }
472
473         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475                                                   NULL);
476
477         if (!INODE_JOURNAL(inode)) {
478                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479                 ocfs2_inode_unlock(inode, 0);
480         }
481
482         if (err) {
483                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484                      (unsigned long long)block);
485                 mlog_errno(err);
486                 goto bail;
487         }
488
489 bail:
490         status = err ? 0 : p_blkno;
491
492         return status;
493 }
494
495 /*
496  * TODO: Make this into a generic get_blocks function.
497  *
498  * From do_direct_io in direct-io.c:
499  *  "So what we do is to permit the ->get_blocks function to populate
500  *   bh.b_size with the size of IO which is permitted at this offset and
501  *   this i_blkbits."
502  *
503  * This function is called directly from get_more_blocks in direct-io.c.
504  *
505  * called like this: dio->get_blocks(dio->inode, fs_startblk,
506  *                                      fs_count, map_bh, dio->rw == WRITE);
507  *
508  * Note that we never bother to allocate blocks here, and thus ignore the
509  * create argument.
510  */
511 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
512                                      struct buffer_head *bh_result, int create)
513 {
514         int ret;
515         u64 p_blkno, inode_blocks, contig_blocks;
516         unsigned int ext_flags;
517         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
518         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
519
520         /* This function won't even be called if the request isn't all
521          * nicely aligned and of the right size, so there's no need
522          * for us to check any of that. */
523
524         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
525
526         /* This figures out the size of the next contiguous block, and
527          * our logical offset */
528         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
529                                           &contig_blocks, &ext_flags);
530         if (ret) {
531                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532                      (unsigned long long)iblock);
533                 ret = -EIO;
534                 goto bail;
535         }
536
537         /* We should already CoW the refcounted extent in case of create. */
538         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
540         /*
541          * get_more_blocks() expects us to describe a hole by clearing
542          * the mapped bit on bh_result().
543          *
544          * Consider an unwritten extent as a hole.
545          */
546         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
547                 map_bh(bh_result, inode->i_sb, p_blkno);
548         else
549                 clear_buffer_mapped(bh_result);
550
551         /* make sure we don't map more than max_blocks blocks here as
552            that's all the kernel will handle at this point. */
553         if (max_blocks < contig_blocks)
554                 contig_blocks = max_blocks;
555         bh_result->b_size = contig_blocks << blocksize_bits;
556 bail:
557         return ret;
558 }
559
560 /*
561  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
562  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
563  * to protect io on one node from truncation on another.
564  */
565 static void ocfs2_dio_end_io(struct kiocb *iocb,
566                              loff_t offset,
567                              ssize_t bytes,
568                              void *private,
569                              int ret,
570                              bool is_async)
571 {
572         struct inode *inode = file_inode(iocb->ki_filp);
573         int level;
574         wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
575
576         /* this io's submitter should not have unlocked this before we could */
577         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
578
579         if (ocfs2_iocb_is_sem_locked(iocb))
580                 ocfs2_iocb_clear_sem_locked(iocb);
581
582         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583                 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585                 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586                     waitqueue_active(wq)) {
587                         wake_up_all(wq);
588                 }
589         }
590
591         ocfs2_iocb_clear_rw_locked(iocb);
592
593         level = ocfs2_iocb_rw_locked_level(iocb);
594         ocfs2_rw_unlock(inode, level);
595
596         inode_dio_done(inode);
597         if (is_async)
598                 aio_complete(iocb, ret, 0);
599 }
600
601 /*
602  * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603  * from ext3.  PageChecked() bits have been removed as OCFS2 does not
604  * do journalled data.
605  */
606 static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
607                                  unsigned int length)
608 {
609         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610
611         jbd2_journal_invalidatepage(journal, page, offset, length);
612 }
613
614 static int ocfs2_releasepage(struct page *page, gfp_t wait)
615 {
616         journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
617
618         if (!page_has_buffers(page))
619                 return 0;
620         return jbd2_journal_try_to_free_buffers(journal, page, wait);
621 }
622
623 static ssize_t ocfs2_direct_IO(int rw,
624                                struct kiocb *iocb,
625                                const struct iovec *iov,
626                                loff_t offset,
627                                unsigned long nr_segs)
628 {
629         struct file *file = iocb->ki_filp;
630         struct inode *inode = file_inode(file)->i_mapping->host;
631
632         /*
633          * Fallback to buffered I/O if we see an inode without
634          * extents.
635          */
636         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
637                 return 0;
638
639         /* Fallback to buffered I/O if we are appending. */
640         if (i_size_read(inode) <= offset)
641                 return 0;
642
643         return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
644                                     iov, offset, nr_segs,
645                                     ocfs2_direct_IO_get_blocks,
646                                     ocfs2_dio_end_io, NULL, 0);
647 }
648
649 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
650                                             u32 cpos,
651                                             unsigned int *start,
652                                             unsigned int *end)
653 {
654         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
655
656         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
657                 unsigned int cpp;
658
659                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
660
661                 cluster_start = cpos % cpp;
662                 cluster_start = cluster_start << osb->s_clustersize_bits;
663
664                 cluster_end = cluster_start + osb->s_clustersize;
665         }
666
667         BUG_ON(cluster_start > PAGE_SIZE);
668         BUG_ON(cluster_end > PAGE_SIZE);
669
670         if (start)
671                 *start = cluster_start;
672         if (end)
673                 *end = cluster_end;
674 }
675
676 /*
677  * 'from' and 'to' are the region in the page to avoid zeroing.
678  *
679  * If pagesize > clustersize, this function will avoid zeroing outside
680  * of the cluster boundary.
681  *
682  * from == to == 0 is code for "zero the entire cluster region"
683  */
684 static void ocfs2_clear_page_regions(struct page *page,
685                                      struct ocfs2_super *osb, u32 cpos,
686                                      unsigned from, unsigned to)
687 {
688         void *kaddr;
689         unsigned int cluster_start, cluster_end;
690
691         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
692
693         kaddr = kmap_atomic(page);
694
695         if (from || to) {
696                 if (from > cluster_start)
697                         memset(kaddr + cluster_start, 0, from - cluster_start);
698                 if (to < cluster_end)
699                         memset(kaddr + to, 0, cluster_end - to);
700         } else {
701                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
702         }
703
704         kunmap_atomic(kaddr);
705 }
706
707 /*
708  * Nonsparse file systems fully allocate before we get to the write
709  * code. This prevents ocfs2_write() from tagging the write as an
710  * allocating one, which means ocfs2_map_page_blocks() might try to
711  * read-in the blocks at the tail of our file. Avoid reading them by
712  * testing i_size against each block offset.
713  */
714 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
715                                  unsigned int block_start)
716 {
717         u64 offset = page_offset(page) + block_start;
718
719         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
720                 return 1;
721
722         if (i_size_read(inode) > offset)
723                 return 1;
724
725         return 0;
726 }
727
728 /*
729  * Some of this taken from __block_write_begin(). We already have our
730  * mapping by now though, and the entire write will be allocating or
731  * it won't, so not much need to use BH_New.
732  *
733  * This will also skip zeroing, which is handled externally.
734  */
735 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
736                           struct inode *inode, unsigned int from,
737                           unsigned int to, int new)
738 {
739         int ret = 0;
740         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
741         unsigned int block_end, block_start;
742         unsigned int bsize = 1 << inode->i_blkbits;
743
744         if (!page_has_buffers(page))
745                 create_empty_buffers(page, bsize, 0);
746
747         head = page_buffers(page);
748         for (bh = head, block_start = 0; bh != head || !block_start;
749              bh = bh->b_this_page, block_start += bsize) {
750                 block_end = block_start + bsize;
751
752                 clear_buffer_new(bh);
753
754                 /*
755                  * Ignore blocks outside of our i/o range -
756                  * they may belong to unallocated clusters.
757                  */
758                 if (block_start >= to || block_end <= from) {
759                         if (PageUptodate(page))
760                                 set_buffer_uptodate(bh);
761                         continue;
762                 }
763
764                 /*
765                  * For an allocating write with cluster size >= page
766                  * size, we always write the entire page.
767                  */
768                 if (new)
769                         set_buffer_new(bh);
770
771                 if (!buffer_mapped(bh)) {
772                         map_bh(bh, inode->i_sb, *p_blkno);
773                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
774                 }
775
776                 if (PageUptodate(page)) {
777                         if (!buffer_uptodate(bh))
778                                 set_buffer_uptodate(bh);
779                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
780                            !buffer_new(bh) &&
781                            ocfs2_should_read_blk(inode, page, block_start) &&
782                            (block_start < from || block_end > to)) {
783                         ll_rw_block(READ, 1, &bh);
784                         *wait_bh++=bh;
785                 }
786
787                 *p_blkno = *p_blkno + 1;
788         }
789
790         /*
791          * If we issued read requests - let them complete.
792          */
793         while(wait_bh > wait) {
794                 wait_on_buffer(*--wait_bh);
795                 if (!buffer_uptodate(*wait_bh))
796                         ret = -EIO;
797         }
798
799         if (ret == 0 || !new)
800                 return ret;
801
802         /*
803          * If we get -EIO above, zero out any newly allocated blocks
804          * to avoid exposing stale data.
805          */
806         bh = head;
807         block_start = 0;
808         do {
809                 block_end = block_start + bsize;
810                 if (block_end <= from)
811                         goto next_bh;
812                 if (block_start >= to)
813                         break;
814
815                 zero_user(page, block_start, bh->b_size);
816                 set_buffer_uptodate(bh);
817                 mark_buffer_dirty(bh);
818
819 next_bh:
820                 block_start = block_end;
821                 bh = bh->b_this_page;
822         } while (bh != head);
823
824         return ret;
825 }
826
827 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
828 #define OCFS2_MAX_CTXT_PAGES    1
829 #else
830 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
831 #endif
832
833 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
834
835 /*
836  * Describe the state of a single cluster to be written to.
837  */
838 struct ocfs2_write_cluster_desc {
839         u32             c_cpos;
840         u32             c_phys;
841         /*
842          * Give this a unique field because c_phys eventually gets
843          * filled.
844          */
845         unsigned        c_new;
846         unsigned        c_unwritten;
847         unsigned        c_needs_zero;
848 };
849
850 struct ocfs2_write_ctxt {
851         /* Logical cluster position / len of write */
852         u32                             w_cpos;
853         u32                             w_clen;
854
855         /* First cluster allocated in a nonsparse extend */
856         u32                             w_first_new_cpos;
857
858         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
859
860         /*
861          * This is true if page_size > cluster_size.
862          *
863          * It triggers a set of special cases during write which might
864          * have to deal with allocating writes to partial pages.
865          */
866         unsigned int                    w_large_pages;
867
868         /*
869          * Pages involved in this write.
870          *
871          * w_target_page is the page being written to by the user.
872          *
873          * w_pages is an array of pages which always contains
874          * w_target_page, and in the case of an allocating write with
875          * page_size < cluster size, it will contain zero'd and mapped
876          * pages adjacent to w_target_page which need to be written
877          * out in so that future reads from that region will get
878          * zero's.
879          */
880         unsigned int                    w_num_pages;
881         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
882         struct page                     *w_target_page;
883
884         /*
885          * w_target_locked is used for page_mkwrite path indicating no unlocking
886          * against w_target_page in ocfs2_write_end_nolock.
887          */
888         unsigned int                    w_target_locked:1;
889
890         /*
891          * ocfs2_write_end() uses this to know what the real range to
892          * write in the target should be.
893          */
894         unsigned int                    w_target_from;
895         unsigned int                    w_target_to;
896
897         /*
898          * We could use journal_current_handle() but this is cleaner,
899          * IMHO -Mark
900          */
901         handle_t                        *w_handle;
902
903         struct buffer_head              *w_di_bh;
904
905         struct ocfs2_cached_dealloc_ctxt w_dealloc;
906 };
907
908 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
909 {
910         int i;
911
912         for(i = 0; i < num_pages; i++) {
913                 if (pages[i]) {
914                         unlock_page(pages[i]);
915                         mark_page_accessed(pages[i]);
916                         page_cache_release(pages[i]);
917                 }
918         }
919 }
920
921 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
922 {
923         int i;
924
925         /*
926          * w_target_locked is only set to true in the page_mkwrite() case.
927          * The intent is to allow us to lock the target page from write_begin()
928          * to write_end(). The caller must hold a ref on w_target_page.
929          */
930         if (wc->w_target_locked) {
931                 BUG_ON(!wc->w_target_page);
932                 for (i = 0; i < wc->w_num_pages; i++) {
933                         if (wc->w_target_page == wc->w_pages[i]) {
934                                 wc->w_pages[i] = NULL;
935                                 break;
936                         }
937                 }
938                 mark_page_accessed(wc->w_target_page);
939                 page_cache_release(wc->w_target_page);
940         }
941         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
942
943         brelse(wc->w_di_bh);
944         kfree(wc);
945 }
946
947 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
948                                   struct ocfs2_super *osb, loff_t pos,
949                                   unsigned len, struct buffer_head *di_bh)
950 {
951         u32 cend;
952         struct ocfs2_write_ctxt *wc;
953
954         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
955         if (!wc)
956                 return -ENOMEM;
957
958         wc->w_cpos = pos >> osb->s_clustersize_bits;
959         wc->w_first_new_cpos = UINT_MAX;
960         cend = (pos + len - 1) >> osb->s_clustersize_bits;
961         wc->w_clen = cend - wc->w_cpos + 1;
962         get_bh(di_bh);
963         wc->w_di_bh = di_bh;
964
965         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
966                 wc->w_large_pages = 1;
967         else
968                 wc->w_large_pages = 0;
969
970         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
971
972         *wcp = wc;
973
974         return 0;
975 }
976
977 /*
978  * If a page has any new buffers, zero them out here, and mark them uptodate
979  * and dirty so they'll be written out (in order to prevent uninitialised
980  * block data from leaking). And clear the new bit.
981  */
982 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
983 {
984         unsigned int block_start, block_end;
985         struct buffer_head *head, *bh;
986
987         BUG_ON(!PageLocked(page));
988         if (!page_has_buffers(page))
989                 return;
990
991         bh = head = page_buffers(page);
992         block_start = 0;
993         do {
994                 block_end = block_start + bh->b_size;
995
996                 if (buffer_new(bh)) {
997                         if (block_end > from && block_start < to) {
998                                 if (!PageUptodate(page)) {
999                                         unsigned start, end;
1000
1001                                         start = max(from, block_start);
1002                                         end = min(to, block_end);
1003
1004                                         zero_user_segment(page, start, end);
1005                                         set_buffer_uptodate(bh);
1006                                 }
1007
1008                                 clear_buffer_new(bh);
1009                                 mark_buffer_dirty(bh);
1010                         }
1011                 }
1012
1013                 block_start = block_end;
1014                 bh = bh->b_this_page;
1015         } while (bh != head);
1016 }
1017
1018 /*
1019  * Only called when we have a failure during allocating write to write
1020  * zero's to the newly allocated region.
1021  */
1022 static void ocfs2_write_failure(struct inode *inode,
1023                                 struct ocfs2_write_ctxt *wc,
1024                                 loff_t user_pos, unsigned user_len)
1025 {
1026         int i;
1027         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1028                 to = user_pos + user_len;
1029         struct page *tmppage;
1030
1031         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1032
1033         for(i = 0; i < wc->w_num_pages; i++) {
1034                 tmppage = wc->w_pages[i];
1035
1036                 if (page_has_buffers(tmppage)) {
1037                         if (ocfs2_should_order_data(inode))
1038                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1039
1040                         block_commit_write(tmppage, from, to);
1041                 }
1042         }
1043 }
1044
1045 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1046                                         struct ocfs2_write_ctxt *wc,
1047                                         struct page *page, u32 cpos,
1048                                         loff_t user_pos, unsigned user_len,
1049                                         int new)
1050 {
1051         int ret;
1052         unsigned int map_from = 0, map_to = 0;
1053         unsigned int cluster_start, cluster_end;
1054         unsigned int user_data_from = 0, user_data_to = 0;
1055
1056         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1057                                         &cluster_start, &cluster_end);
1058
1059         /* treat the write as new if the a hole/lseek spanned across
1060          * the page boundary.
1061          */
1062         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1063                         (page_offset(page) <= user_pos));
1064
1065         if (page == wc->w_target_page) {
1066                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1067                 map_to = map_from + user_len;
1068
1069                 if (new)
1070                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071                                                     cluster_start, cluster_end,
1072                                                     new);
1073                 else
1074                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1075                                                     map_from, map_to, new);
1076                 if (ret) {
1077                         mlog_errno(ret);
1078                         goto out;
1079                 }
1080
1081                 user_data_from = map_from;
1082                 user_data_to = map_to;
1083                 if (new) {
1084                         map_from = cluster_start;
1085                         map_to = cluster_end;
1086                 }
1087         } else {
1088                 /*
1089                  * If we haven't allocated the new page yet, we
1090                  * shouldn't be writing it out without copying user
1091                  * data. This is likely a math error from the caller.
1092                  */
1093                 BUG_ON(!new);
1094
1095                 map_from = cluster_start;
1096                 map_to = cluster_end;
1097
1098                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1099                                             cluster_start, cluster_end, new);
1100                 if (ret) {
1101                         mlog_errno(ret);
1102                         goto out;
1103                 }
1104         }
1105
1106         /*
1107          * Parts of newly allocated pages need to be zero'd.
1108          *
1109          * Above, we have also rewritten 'to' and 'from' - as far as
1110          * the rest of the function is concerned, the entire cluster
1111          * range inside of a page needs to be written.
1112          *
1113          * We can skip this if the page is up to date - it's already
1114          * been zero'd from being read in as a hole.
1115          */
1116         if (new && !PageUptodate(page))
1117                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1118                                          cpos, user_data_from, user_data_to);
1119
1120         flush_dcache_page(page);
1121
1122 out:
1123         return ret;
1124 }
1125
1126 /*
1127  * This function will only grab one clusters worth of pages.
1128  */
1129 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1130                                       struct ocfs2_write_ctxt *wc,
1131                                       u32 cpos, loff_t user_pos,
1132                                       unsigned user_len, int new,
1133                                       struct page *mmap_page)
1134 {
1135         int ret = 0, i;
1136         unsigned long start, target_index, end_index, index;
1137         struct inode *inode = mapping->host;
1138         loff_t last_byte;
1139
1140         target_index = user_pos >> PAGE_CACHE_SHIFT;
1141
1142         /*
1143          * Figure out how many pages we'll be manipulating here. For
1144          * non allocating write, we just change the one
1145          * page. Otherwise, we'll need a whole clusters worth.  If we're
1146          * writing past i_size, we only need enough pages to cover the
1147          * last page of the write.
1148          */
1149         if (new) {
1150                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1151                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1152                 /*
1153                  * We need the index *past* the last page we could possibly
1154                  * touch.  This is the page past the end of the write or
1155                  * i_size, whichever is greater.
1156                  */
1157                 last_byte = max(user_pos + user_len, i_size_read(inode));
1158                 BUG_ON(last_byte < 1);
1159                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1160                 if ((start + wc->w_num_pages) > end_index)
1161                         wc->w_num_pages = end_index - start;
1162         } else {
1163                 wc->w_num_pages = 1;
1164                 start = target_index;
1165         }
1166
1167         for(i = 0; i < wc->w_num_pages; i++) {
1168                 index = start + i;
1169
1170                 if (index == target_index && mmap_page) {
1171                         /*
1172                          * ocfs2_pagemkwrite() is a little different
1173                          * and wants us to directly use the page
1174                          * passed in.
1175                          */
1176                         lock_page(mmap_page);
1177
1178                         /* Exit and let the caller retry */
1179                         if (mmap_page->mapping != mapping) {
1180                                 WARN_ON(mmap_page->mapping);
1181                                 unlock_page(mmap_page);
1182                                 ret = -EAGAIN;
1183                                 goto out;
1184                         }
1185
1186                         page_cache_get(mmap_page);
1187                         wc->w_pages[i] = mmap_page;
1188                         wc->w_target_locked = true;
1189                 } else {
1190                         wc->w_pages[i] = find_or_create_page(mapping, index,
1191                                                              GFP_NOFS);
1192                         if (!wc->w_pages[i]) {
1193                                 ret = -ENOMEM;
1194                                 mlog_errno(ret);
1195                                 goto out;
1196                         }
1197                 }
1198                 wait_for_stable_page(wc->w_pages[i]);
1199
1200                 if (index == target_index)
1201                         wc->w_target_page = wc->w_pages[i];
1202         }
1203 out:
1204         if (ret)
1205                 wc->w_target_locked = false;
1206         return ret;
1207 }
1208
1209 /*
1210  * Prepare a single cluster for write one cluster into the file.
1211  */
1212 static int ocfs2_write_cluster(struct address_space *mapping,
1213                                u32 phys, unsigned int unwritten,
1214                                unsigned int should_zero,
1215                                struct ocfs2_alloc_context *data_ac,
1216                                struct ocfs2_alloc_context *meta_ac,
1217                                struct ocfs2_write_ctxt *wc, u32 cpos,
1218                                loff_t user_pos, unsigned user_len)
1219 {
1220         int ret, i, new;
1221         u64 v_blkno, p_blkno;
1222         struct inode *inode = mapping->host;
1223         struct ocfs2_extent_tree et;
1224
1225         new = phys == 0 ? 1 : 0;
1226         if (new) {
1227                 u32 tmp_pos;
1228
1229                 /*
1230                  * This is safe to call with the page locks - it won't take
1231                  * any additional semaphores or cluster locks.
1232                  */
1233                 tmp_pos = cpos;
1234                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1235                                            &tmp_pos, 1, 0, wc->w_di_bh,
1236                                            wc->w_handle, data_ac,
1237                                            meta_ac, NULL);
1238                 /*
1239                  * This shouldn't happen because we must have already
1240                  * calculated the correct meta data allocation required. The
1241                  * internal tree allocation code should know how to increase
1242                  * transaction credits itself.
1243                  *
1244                  * If need be, we could handle -EAGAIN for a
1245                  * RESTART_TRANS here.
1246                  */
1247                 mlog_bug_on_msg(ret == -EAGAIN,
1248                                 "Inode %llu: EAGAIN return during allocation.\n",
1249                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1250                 if (ret < 0) {
1251                         mlog_errno(ret);
1252                         goto out;
1253                 }
1254         } else if (unwritten) {
1255                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1256                                               wc->w_di_bh);
1257                 ret = ocfs2_mark_extent_written(inode, &et,
1258                                                 wc->w_handle, cpos, 1, phys,
1259                                                 meta_ac, &wc->w_dealloc);
1260                 if (ret < 0) {
1261                         mlog_errno(ret);
1262                         goto out;
1263                 }
1264         }
1265
1266         if (should_zero)
1267                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1268         else
1269                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1270
1271         /*
1272          * The only reason this should fail is due to an inability to
1273          * find the extent added.
1274          */
1275         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1276                                           NULL);
1277         if (ret < 0) {
1278                 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1279                             "at logical block %llu",
1280                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1281                             (unsigned long long)v_blkno);
1282                 goto out;
1283         }
1284
1285         BUG_ON(p_blkno == 0);
1286
1287         for(i = 0; i < wc->w_num_pages; i++) {
1288                 int tmpret;
1289
1290                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1291                                                       wc->w_pages[i], cpos,
1292                                                       user_pos, user_len,
1293                                                       should_zero);
1294                 if (tmpret) {
1295                         mlog_errno(tmpret);
1296                         if (ret == 0)
1297                                 ret = tmpret;
1298                 }
1299         }
1300
1301         /*
1302          * We only have cleanup to do in case of allocating write.
1303          */
1304         if (ret && new)
1305                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1306
1307 out:
1308
1309         return ret;
1310 }
1311
1312 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1313                                        struct ocfs2_alloc_context *data_ac,
1314                                        struct ocfs2_alloc_context *meta_ac,
1315                                        struct ocfs2_write_ctxt *wc,
1316                                        loff_t pos, unsigned len)
1317 {
1318         int ret, i;
1319         loff_t cluster_off;
1320         unsigned int local_len = len;
1321         struct ocfs2_write_cluster_desc *desc;
1322         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1323
1324         for (i = 0; i < wc->w_clen; i++) {
1325                 desc = &wc->w_desc[i];
1326
1327                 /*
1328                  * We have to make sure that the total write passed in
1329                  * doesn't extend past a single cluster.
1330                  */
1331                 local_len = len;
1332                 cluster_off = pos & (osb->s_clustersize - 1);
1333                 if ((cluster_off + local_len) > osb->s_clustersize)
1334                         local_len = osb->s_clustersize - cluster_off;
1335
1336                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1337                                           desc->c_unwritten,
1338                                           desc->c_needs_zero,
1339                                           data_ac, meta_ac,
1340                                           wc, desc->c_cpos, pos, local_len);
1341                 if (ret) {
1342                         mlog_errno(ret);
1343                         goto out;
1344                 }
1345
1346                 len -= local_len;
1347                 pos += local_len;
1348         }
1349
1350         ret = 0;
1351 out:
1352         return ret;
1353 }
1354
1355 /*
1356  * ocfs2_write_end() wants to know which parts of the target page it
1357  * should complete the write on. It's easiest to compute them ahead of
1358  * time when a more complete view of the write is available.
1359  */
1360 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1361                                         struct ocfs2_write_ctxt *wc,
1362                                         loff_t pos, unsigned len, int alloc)
1363 {
1364         struct ocfs2_write_cluster_desc *desc;
1365
1366         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1367         wc->w_target_to = wc->w_target_from + len;
1368
1369         if (alloc == 0)
1370                 return;
1371
1372         /*
1373          * Allocating write - we may have different boundaries based
1374          * on page size and cluster size.
1375          *
1376          * NOTE: We can no longer compute one value from the other as
1377          * the actual write length and user provided length may be
1378          * different.
1379          */
1380
1381         if (wc->w_large_pages) {
1382                 /*
1383                  * We only care about the 1st and last cluster within
1384                  * our range and whether they should be zero'd or not. Either
1385                  * value may be extended out to the start/end of a
1386                  * newly allocated cluster.
1387                  */
1388                 desc = &wc->w_desc[0];
1389                 if (desc->c_needs_zero)
1390                         ocfs2_figure_cluster_boundaries(osb,
1391                                                         desc->c_cpos,
1392                                                         &wc->w_target_from,
1393                                                         NULL);
1394
1395                 desc = &wc->w_desc[wc->w_clen - 1];
1396                 if (desc->c_needs_zero)
1397                         ocfs2_figure_cluster_boundaries(osb,
1398                                                         desc->c_cpos,
1399                                                         NULL,
1400                                                         &wc->w_target_to);
1401         } else {
1402                 wc->w_target_from = 0;
1403                 wc->w_target_to = PAGE_CACHE_SIZE;
1404         }
1405 }
1406
1407 /*
1408  * Populate each single-cluster write descriptor in the write context
1409  * with information about the i/o to be done.
1410  *
1411  * Returns the number of clusters that will have to be allocated, as
1412  * well as a worst case estimate of the number of extent records that
1413  * would have to be created during a write to an unwritten region.
1414  */
1415 static int ocfs2_populate_write_desc(struct inode *inode,
1416                                      struct ocfs2_write_ctxt *wc,
1417                                      unsigned int *clusters_to_alloc,
1418                                      unsigned int *extents_to_split)
1419 {
1420         int ret;
1421         struct ocfs2_write_cluster_desc *desc;
1422         unsigned int num_clusters = 0;
1423         unsigned int ext_flags = 0;
1424         u32 phys = 0;
1425         int i;
1426
1427         *clusters_to_alloc = 0;
1428         *extents_to_split = 0;
1429
1430         for (i = 0; i < wc->w_clen; i++) {
1431                 desc = &wc->w_desc[i];
1432                 desc->c_cpos = wc->w_cpos + i;
1433
1434                 if (num_clusters == 0) {
1435                         /*
1436                          * Need to look up the next extent record.
1437                          */
1438                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1439                                                  &num_clusters, &ext_flags);
1440                         if (ret) {
1441                                 mlog_errno(ret);
1442                                 goto out;
1443                         }
1444
1445                         /* We should already CoW the refcountd extent. */
1446                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1447
1448                         /*
1449                          * Assume worst case - that we're writing in
1450                          * the middle of the extent.
1451                          *
1452                          * We can assume that the write proceeds from
1453                          * left to right, in which case the extent
1454                          * insert code is smart enough to coalesce the
1455                          * next splits into the previous records created.
1456                          */
1457                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1458                                 *extents_to_split = *extents_to_split + 2;
1459                 } else if (phys) {
1460                         /*
1461                          * Only increment phys if it doesn't describe
1462                          * a hole.
1463                          */
1464                         phys++;
1465                 }
1466
1467                 /*
1468                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1469                  * file that got extended.  w_first_new_cpos tells us
1470                  * where the newly allocated clusters are so we can
1471                  * zero them.
1472                  */
1473                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1474                         BUG_ON(phys == 0);
1475                         desc->c_needs_zero = 1;
1476                 }
1477
1478                 desc->c_phys = phys;
1479                 if (phys == 0) {
1480                         desc->c_new = 1;
1481                         desc->c_needs_zero = 1;
1482                         *clusters_to_alloc = *clusters_to_alloc + 1;
1483                 }
1484
1485                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1486                         desc->c_unwritten = 1;
1487                         desc->c_needs_zero = 1;
1488                 }
1489
1490                 num_clusters--;
1491         }
1492
1493         ret = 0;
1494 out:
1495         return ret;
1496 }
1497
1498 static int ocfs2_write_begin_inline(struct address_space *mapping,
1499                                     struct inode *inode,
1500                                     struct ocfs2_write_ctxt *wc)
1501 {
1502         int ret;
1503         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504         struct page *page;
1505         handle_t *handle;
1506         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1507
1508         page = find_or_create_page(mapping, 0, GFP_NOFS);
1509         if (!page) {
1510                 ret = -ENOMEM;
1511                 mlog_errno(ret);
1512                 goto out;
1513         }
1514         /*
1515          * If we don't set w_num_pages then this page won't get unlocked
1516          * and freed on cleanup of the write context.
1517          */
1518         wc->w_pages[0] = wc->w_target_page = page;
1519         wc->w_num_pages = 1;
1520
1521         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1522         if (IS_ERR(handle)) {
1523                 ret = PTR_ERR(handle);
1524                 mlog_errno(ret);
1525                 goto out;
1526         }
1527
1528         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1529                                       OCFS2_JOURNAL_ACCESS_WRITE);
1530         if (ret) {
1531                 ocfs2_commit_trans(osb, handle);
1532
1533                 mlog_errno(ret);
1534                 goto out;
1535         }
1536
1537         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1538                 ocfs2_set_inode_data_inline(inode, di);
1539
1540         if (!PageUptodate(page)) {
1541                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1542                 if (ret) {
1543                         ocfs2_commit_trans(osb, handle);
1544
1545                         goto out;
1546                 }
1547         }
1548
1549         wc->w_handle = handle;
1550 out:
1551         return ret;
1552 }
1553
1554 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1555 {
1556         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1557
1558         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1559                 return 1;
1560         return 0;
1561 }
1562
1563 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1564                                           struct inode *inode, loff_t pos,
1565                                           unsigned len, struct page *mmap_page,
1566                                           struct ocfs2_write_ctxt *wc)
1567 {
1568         int ret, written = 0;
1569         loff_t end = pos + len;
1570         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1571         struct ocfs2_dinode *di = NULL;
1572
1573         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1574                                              len, (unsigned long long)pos,
1575                                              oi->ip_dyn_features);
1576
1577         /*
1578          * Handle inodes which already have inline data 1st.
1579          */
1580         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1581                 if (mmap_page == NULL &&
1582                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1583                         goto do_inline_write;
1584
1585                 /*
1586                  * The write won't fit - we have to give this inode an
1587                  * inline extent list now.
1588                  */
1589                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1590                 if (ret)
1591                         mlog_errno(ret);
1592                 goto out;
1593         }
1594
1595         /*
1596          * Check whether the inode can accept inline data.
1597          */
1598         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1599                 return 0;
1600
1601         /*
1602          * Check whether the write can fit.
1603          */
1604         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1605         if (mmap_page ||
1606             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1607                 return 0;
1608
1609 do_inline_write:
1610         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1611         if (ret) {
1612                 mlog_errno(ret);
1613                 goto out;
1614         }
1615
1616         /*
1617          * This signals to the caller that the data can be written
1618          * inline.
1619          */
1620         written = 1;
1621 out:
1622         return written ? written : ret;
1623 }
1624
1625 /*
1626  * This function only does anything for file systems which can't
1627  * handle sparse files.
1628  *
1629  * What we want to do here is fill in any hole between the current end
1630  * of allocation and the end of our write. That way the rest of the
1631  * write path can treat it as an non-allocating write, which has no
1632  * special case code for sparse/nonsparse files.
1633  */
1634 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1635                                         struct buffer_head *di_bh,
1636                                         loff_t pos, unsigned len,
1637                                         struct ocfs2_write_ctxt *wc)
1638 {
1639         int ret;
1640         loff_t newsize = pos + len;
1641
1642         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1643
1644         if (newsize <= i_size_read(inode))
1645                 return 0;
1646
1647         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1648         if (ret)
1649                 mlog_errno(ret);
1650
1651         wc->w_first_new_cpos =
1652                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1653
1654         return ret;
1655 }
1656
1657 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1658                            loff_t pos)
1659 {
1660         int ret = 0;
1661
1662         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1663         if (pos > i_size_read(inode))
1664                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1665
1666         return ret;
1667 }
1668
1669 /*
1670  * Try to flush truncate logs if we can free enough clusters from it.
1671  * As for return value, "< 0" means error, "0" no space and "1" means
1672  * we have freed enough spaces and let the caller try to allocate again.
1673  */
1674 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1675                                           unsigned int needed)
1676 {
1677         tid_t target;
1678         int ret = 0;
1679         unsigned int truncated_clusters;
1680
1681         mutex_lock(&osb->osb_tl_inode->i_mutex);
1682         truncated_clusters = osb->truncated_clusters;
1683         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1684
1685         /*
1686          * Check whether we can succeed in allocating if we free
1687          * the truncate log.
1688          */
1689         if (truncated_clusters < needed)
1690                 goto out;
1691
1692         ret = ocfs2_flush_truncate_log(osb);
1693         if (ret) {
1694                 mlog_errno(ret);
1695                 goto out;
1696         }
1697
1698         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1699                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1700                 ret = 1;
1701         }
1702 out:
1703         return ret;
1704 }
1705
1706 int ocfs2_write_begin_nolock(struct file *filp,
1707                              struct address_space *mapping,
1708                              loff_t pos, unsigned len, unsigned flags,
1709                              struct page **pagep, void **fsdata,
1710                              struct buffer_head *di_bh, struct page *mmap_page)
1711 {
1712         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1713         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1714         struct ocfs2_write_ctxt *wc;
1715         struct inode *inode = mapping->host;
1716         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1717         struct ocfs2_dinode *di;
1718         struct ocfs2_alloc_context *data_ac = NULL;
1719         struct ocfs2_alloc_context *meta_ac = NULL;
1720         handle_t *handle;
1721         struct ocfs2_extent_tree et;
1722         int try_free = 1, ret1;
1723
1724 try_again:
1725         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1726         if (ret) {
1727                 mlog_errno(ret);
1728                 return ret;
1729         }
1730
1731         if (ocfs2_supports_inline_data(osb)) {
1732                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1733                                                      mmap_page, wc);
1734                 if (ret == 1) {
1735                         ret = 0;
1736                         goto success;
1737                 }
1738                 if (ret < 0) {
1739                         mlog_errno(ret);
1740                         goto out;
1741                 }
1742         }
1743
1744         if (ocfs2_sparse_alloc(osb))
1745                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1746         else
1747                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1748                                                    wc);
1749         if (ret) {
1750                 mlog_errno(ret);
1751                 goto out;
1752         }
1753
1754         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1755         if (ret < 0) {
1756                 mlog_errno(ret);
1757                 goto out;
1758         } else if (ret == 1) {
1759                 clusters_need = wc->w_clen;
1760                 ret = ocfs2_refcount_cow(inode, filp, di_bh,
1761                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1762                 if (ret) {
1763                         mlog_errno(ret);
1764                         goto out;
1765                 }
1766         }
1767
1768         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1769                                         &extents_to_split);
1770         if (ret) {
1771                 mlog_errno(ret);
1772                 goto out;
1773         }
1774         clusters_need += clusters_to_alloc;
1775
1776         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1777
1778         trace_ocfs2_write_begin_nolock(
1779                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1780                         (long long)i_size_read(inode),
1781                         le32_to_cpu(di->i_clusters),
1782                         pos, len, flags, mmap_page,
1783                         clusters_to_alloc, extents_to_split);
1784
1785         /*
1786          * We set w_target_from, w_target_to here so that
1787          * ocfs2_write_end() knows which range in the target page to
1788          * write out. An allocation requires that we write the entire
1789          * cluster range.
1790          */
1791         if (clusters_to_alloc || extents_to_split) {
1792                 /*
1793                  * XXX: We are stretching the limits of
1794                  * ocfs2_lock_allocators(). It greatly over-estimates
1795                  * the work to be done.
1796                  */
1797                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1798                                               wc->w_di_bh);
1799                 ret = ocfs2_lock_allocators(inode, &et,
1800                                             clusters_to_alloc, extents_to_split,
1801                                             &data_ac, &meta_ac);
1802                 if (ret) {
1803                         mlog_errno(ret);
1804                         goto out;
1805                 }
1806
1807                 if (data_ac)
1808                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1809
1810                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1811                                                     &di->id2.i_list,
1812                                                     clusters_to_alloc);
1813
1814         }
1815
1816         /*
1817          * We have to zero sparse allocated clusters, unwritten extent clusters,
1818          * and non-sparse clusters we just extended.  For non-sparse writes,
1819          * we know zeros will only be needed in the first and/or last cluster.
1820          */
1821         if (clusters_to_alloc || extents_to_split ||
1822             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1823                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
1824                 cluster_of_pages = 1;
1825         else
1826                 cluster_of_pages = 0;
1827
1828         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1829
1830         handle = ocfs2_start_trans(osb, credits);
1831         if (IS_ERR(handle)) {
1832                 ret = PTR_ERR(handle);
1833                 mlog_errno(ret);
1834                 goto out;
1835         }
1836
1837         wc->w_handle = handle;
1838
1839         if (clusters_to_alloc) {
1840                 ret = dquot_alloc_space_nodirty(inode,
1841                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1842                 if (ret)
1843                         goto out_commit;
1844         }
1845         /*
1846          * We don't want this to fail in ocfs2_write_end(), so do it
1847          * here.
1848          */
1849         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1850                                       OCFS2_JOURNAL_ACCESS_WRITE);
1851         if (ret) {
1852                 mlog_errno(ret);
1853                 goto out_quota;
1854         }
1855
1856         /*
1857          * Fill our page array first. That way we've grabbed enough so
1858          * that we can zero and flush if we error after adding the
1859          * extent.
1860          */
1861         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1862                                          cluster_of_pages, mmap_page);
1863         if (ret && ret != -EAGAIN) {
1864                 mlog_errno(ret);
1865                 goto out_quota;
1866         }
1867
1868         /*
1869          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1870          * the target page. In this case, we exit with no error and no target
1871          * page. This will trigger the caller, page_mkwrite(), to re-try
1872          * the operation.
1873          */
1874         if (ret == -EAGAIN) {
1875                 BUG_ON(wc->w_target_page);
1876                 ret = 0;
1877                 goto out_quota;
1878         }
1879
1880         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1881                                           len);
1882         if (ret) {
1883                 mlog_errno(ret);
1884                 goto out_quota;
1885         }
1886
1887         if (data_ac)
1888                 ocfs2_free_alloc_context(data_ac);
1889         if (meta_ac)
1890                 ocfs2_free_alloc_context(meta_ac);
1891
1892 success:
1893         *pagep = wc->w_target_page;
1894         *fsdata = wc;
1895         return 0;
1896 out_quota:
1897         if (clusters_to_alloc)
1898                 dquot_free_space(inode,
1899                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1900 out_commit:
1901         ocfs2_commit_trans(osb, handle);
1902
1903 out:
1904         ocfs2_free_write_ctxt(wc);
1905
1906         if (data_ac)
1907                 ocfs2_free_alloc_context(data_ac);
1908         if (meta_ac)
1909                 ocfs2_free_alloc_context(meta_ac);
1910
1911         if (ret == -ENOSPC && try_free) {
1912                 /*
1913                  * Try to free some truncate log so that we can have enough
1914                  * clusters to allocate.
1915                  */
1916                 try_free = 0;
1917
1918                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1919                 if (ret1 == 1)
1920                         goto try_again;
1921
1922                 if (ret1 < 0)
1923                         mlog_errno(ret1);
1924         }
1925
1926         return ret;
1927 }
1928
1929 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1930                              loff_t pos, unsigned len, unsigned flags,
1931                              struct page **pagep, void **fsdata)
1932 {
1933         int ret;
1934         struct buffer_head *di_bh = NULL;
1935         struct inode *inode = mapping->host;
1936
1937         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1938         if (ret) {
1939                 mlog_errno(ret);
1940                 return ret;
1941         }
1942
1943         /*
1944          * Take alloc sem here to prevent concurrent lookups. That way
1945          * the mapping, zeroing and tree manipulation within
1946          * ocfs2_write() will be safe against ->readpage(). This
1947          * should also serve to lock out allocation from a shared
1948          * writeable region.
1949          */
1950         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1951
1952         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
1953                                        fsdata, di_bh, NULL);
1954         if (ret) {
1955                 mlog_errno(ret);
1956                 goto out_fail;
1957         }
1958
1959         brelse(di_bh);
1960
1961         return 0;
1962
1963 out_fail:
1964         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1965
1966         brelse(di_bh);
1967         ocfs2_inode_unlock(inode, 1);
1968
1969         return ret;
1970 }
1971
1972 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1973                                    unsigned len, unsigned *copied,
1974                                    struct ocfs2_dinode *di,
1975                                    struct ocfs2_write_ctxt *wc)
1976 {
1977         void *kaddr;
1978
1979         if (unlikely(*copied < len)) {
1980                 if (!PageUptodate(wc->w_target_page)) {
1981                         *copied = 0;
1982                         return;
1983                 }
1984         }
1985
1986         kaddr = kmap_atomic(wc->w_target_page);
1987         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1988         kunmap_atomic(kaddr);
1989
1990         trace_ocfs2_write_end_inline(
1991              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1992              (unsigned long long)pos, *copied,
1993              le16_to_cpu(di->id2.i_data.id_count),
1994              le16_to_cpu(di->i_dyn_features));
1995 }
1996
1997 int ocfs2_write_end_nolock(struct address_space *mapping,
1998                            loff_t pos, unsigned len, unsigned copied,
1999                            struct page *page, void *fsdata)
2000 {
2001         int i;
2002         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2003         struct inode *inode = mapping->host;
2004         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2005         struct ocfs2_write_ctxt *wc = fsdata;
2006         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2007         handle_t *handle = wc->w_handle;
2008         struct page *tmppage;
2009
2010         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2011                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2012                 goto out_write_size;
2013         }
2014
2015         if (unlikely(copied < len)) {
2016                 if (!PageUptodate(wc->w_target_page))
2017                         copied = 0;
2018
2019                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2020                                        start+len);
2021         }
2022         flush_dcache_page(wc->w_target_page);
2023
2024         for(i = 0; i < wc->w_num_pages; i++) {
2025                 tmppage = wc->w_pages[i];
2026
2027                 if (tmppage == wc->w_target_page) {
2028                         from = wc->w_target_from;
2029                         to = wc->w_target_to;
2030
2031                         BUG_ON(from > PAGE_CACHE_SIZE ||
2032                                to > PAGE_CACHE_SIZE ||
2033                                to < from);
2034                 } else {
2035                         /*
2036                          * Pages adjacent to the target (if any) imply
2037                          * a hole-filling write in which case we want
2038                          * to flush their entire range.
2039                          */
2040                         from = 0;
2041                         to = PAGE_CACHE_SIZE;
2042                 }
2043
2044                 if (page_has_buffers(tmppage)) {
2045                         if (ocfs2_should_order_data(inode))
2046                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2047                         block_commit_write(tmppage, from, to);
2048                 }
2049         }
2050
2051 out_write_size:
2052         pos += copied;
2053         if (pos > inode->i_size) {
2054                 i_size_write(inode, pos);
2055                 mark_inode_dirty(inode);
2056         }
2057         inode->i_blocks = ocfs2_inode_sector_count(inode);
2058         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2059         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2060         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2061         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2062         ocfs2_journal_dirty(handle, wc->w_di_bh);
2063
2064         ocfs2_commit_trans(osb, handle);
2065
2066         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2067
2068         ocfs2_free_write_ctxt(wc);
2069
2070         return copied;
2071 }
2072
2073 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2074                            loff_t pos, unsigned len, unsigned copied,
2075                            struct page *page, void *fsdata)
2076 {
2077         int ret;
2078         struct inode *inode = mapping->host;
2079
2080         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2081
2082         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2083         ocfs2_inode_unlock(inode, 1);
2084
2085         return ret;
2086 }
2087
2088 const struct address_space_operations ocfs2_aops = {
2089         .readpage               = ocfs2_readpage,
2090         .readpages              = ocfs2_readpages,
2091         .writepage              = ocfs2_writepage,
2092         .write_begin            = ocfs2_write_begin,
2093         .write_end              = ocfs2_write_end,
2094         .bmap                   = ocfs2_bmap,
2095         .direct_IO              = ocfs2_direct_IO,
2096         .invalidatepage         = ocfs2_invalidatepage,
2097         .releasepage            = ocfs2_releasepage,
2098         .migratepage            = buffer_migrate_page,
2099         .is_partially_uptodate  = block_is_partially_uptodate,
2100         .error_remove_page      = generic_error_remove_page,
2101 };