4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
29 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30 #define HASH_SIZE (1UL << HASH_SHIFT)
33 static DEFINE_IDA(mnt_id_ida);
34 static DEFINE_IDA(mnt_group_ida);
35 static DEFINE_SPINLOCK(mnt_id_lock);
36 static int mnt_id_start = 0;
37 static int mnt_group_start = 1;
39 static struct list_head *mount_hashtable __read_mostly;
40 static struct list_head *mountpoint_hashtable __read_mostly;
41 static struct kmem_cache *mnt_cache __read_mostly;
42 static struct rw_semaphore namespace_sem;
45 struct kobject *fs_kobj;
46 EXPORT_SYMBOL_GPL(fs_kobj);
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
56 DEFINE_BRLOCK(vfsmount_lock);
58 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
66 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
72 static int mnt_alloc_id(struct mount *mnt)
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
78 spin_lock(&mnt_id_lock);
79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
81 mnt_id_start = mnt->mnt_id + 1;
82 spin_unlock(&mnt_id_lock);
89 static void mnt_free_id(struct mount *mnt)
92 spin_lock(&mnt_id_lock);
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
96 spin_unlock(&mnt_id_lock);
100 * Allocate a new peer group ID
102 * mnt_group_ida is protected by namespace_sem
104 static int mnt_alloc_group_id(struct mount *mnt)
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
111 res = ida_get_new_above(&mnt_group_ida,
115 mnt_group_start = mnt->mnt_group_id + 1;
121 * Release a peer group ID
123 void mnt_release_group_id(struct mount *mnt)
125 int id = mnt->mnt_group_id;
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
129 mnt->mnt_group_id = 0;
133 * vfsmount lock must be held for read
135 static inline void mnt_add_count(struct mount *mnt, int n)
138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
147 * vfsmount lock must be held for write
149 unsigned int mnt_get_count(struct mount *mnt)
152 unsigned int count = 0;
155 for_each_possible_cpu(cpu) {
156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
161 return mnt->mnt_count;
165 static struct mount *alloc_vfsmnt(const char *name)
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
171 err = mnt_alloc_id(mnt);
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
184 goto out_free_devname;
186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
189 mnt->mnt_writers = 0;
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
200 #ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
208 kfree(mnt->mnt_devname);
213 kmem_cache_free(mnt_cache, mnt);
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
236 int __mnt_is_readonly(struct vfsmount *mnt)
238 if (mnt->mnt_flags & MNT_READONLY)
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
244 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
246 static inline void mnt_inc_writers(struct mount *mnt)
249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
255 static inline void mnt_dec_writers(struct mount *mnt)
258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
264 static unsigned int mnt_get_writers(struct mount *mnt)
267 unsigned int count = 0;
270 for_each_possible_cpu(cpu) {
271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
276 return mnt->mnt_writers;
280 static int mnt_is_readonly(struct vfsmount *mnt)
282 if (mnt->mnt_sb->s_readonly_remount)
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
286 return __mnt_is_readonly(mnt);
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
296 * __mnt_want_write - get write access to a mount without freeze protection
297 * @m: the mount on which to take a write
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
305 int __mnt_want_write(struct vfsmount *m)
307 struct mount *mnt = real_mount(m);
311 mnt_inc_writers(mnt);
313 * The store to mnt_inc_writers must be visible before we pass
314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
326 if (mnt_is_readonly(m)) {
327 mnt_dec_writers(mnt);
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
344 int mnt_want_write(struct vfsmount *m)
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
351 sb_end_write(m->mnt_sb);
354 EXPORT_SYMBOL_GPL(mnt_want_write);
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
368 int mnt_clone_write(struct vfsmount *mnt)
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
374 mnt_inc_writers(real_mount(mnt));
378 EXPORT_SYMBOL_GPL(mnt_clone_write);
381 * __mnt_want_write_file - get write access to a file's mount
382 * @file: the file who's mount on which to take a write
384 * This is like __mnt_want_write, but it takes a file and can
385 * do some optimisations if the file is open for write already
387 int __mnt_want_write_file(struct file *file)
389 struct inode *inode = file_inode(file);
391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
392 return __mnt_want_write(file->f_path.mnt);
394 return mnt_clone_write(file->f_path.mnt);
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
404 int mnt_want_write_file(struct file *file)
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
411 sb_end_write(file->f_path.mnt->mnt_sb);
414 EXPORT_SYMBOL_GPL(mnt_want_write_file);
417 * __mnt_drop_write - give up write access to a mount
418 * @mnt: the mount on which to give up write access
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
422 * __mnt_want_write() call above.
424 void __mnt_drop_write(struct vfsmount *mnt)
427 mnt_dec_writers(real_mount(mnt));
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
439 void mnt_drop_write(struct vfsmount *mnt)
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
444 EXPORT_SYMBOL_GPL(mnt_drop_write);
446 void __mnt_drop_write_file(struct file *file)
448 __mnt_drop_write(file->f_path.mnt);
451 void mnt_drop_write_file(struct file *file)
453 mnt_drop_write(file->f_path.mnt);
455 EXPORT_SYMBOL(mnt_drop_write_file);
457 static int mnt_make_readonly(struct mount *mnt)
461 br_write_lock(&vfsmount_lock);
462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
485 if (mnt_get_writers(mnt) > 0)
488 mnt->mnt.mnt_flags |= MNT_READONLY;
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
495 br_write_unlock(&vfsmount_lock);
499 static void __mnt_unmake_readonly(struct mount *mnt)
501 br_write_lock(&vfsmount_lock);
502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
503 br_write_unlock(&vfsmount_lock);
506 int sb_prepare_remount_readonly(struct super_block *sb)
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
515 br_write_lock(&vfsmount_lock);
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
520 if (mnt_get_writers(mnt) > 0) {
526 if (!err && atomic_long_read(&sb->s_remove_count))
530 sb->s_readonly_remount = 1;
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
537 br_write_unlock(&vfsmount_lock);
542 static void free_vfsmnt(struct mount *mnt)
544 kfree(mnt->mnt_devname);
547 free_percpu(mnt->mnt_pcp);
549 kmem_cache_free(mnt_cache, mnt);
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
555 * vfsmount_lock must be held for read or write.
557 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
562 struct mount *p, *found = NULL;
565 tmp = dir ? tmp->next : tmp->prev;
569 p = list_entry(tmp, struct mount, mnt_hash);
570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
579 * lookup_mnt - Return the first child mount mounted at path
581 * "First" means first mounted chronologically. If you create the
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
592 * lookup_mnt takes a reference to the found vfsmount.
594 struct vfsmount *lookup_mnt(struct path *path)
596 struct mount *child_mnt;
598 br_read_lock(&vfsmount_lock);
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
601 mnt_add_count(child_mnt, 1);
602 br_read_unlock(&vfsmount_lock);
603 return &child_mnt->mnt;
605 br_read_unlock(&vfsmount_lock);
610 static struct mountpoint *new_mountpoint(struct dentry *dentry)
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
615 list_for_each_entry(mp, chain, m_hash) {
616 if (mp->m_dentry == dentry) {
617 /* might be worth a WARN_ON() */
618 if (d_unlinked(dentry))
619 return ERR_PTR(-ENOENT);
625 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
627 return ERR_PTR(-ENOMEM);
629 spin_lock(&dentry->d_lock);
630 if (d_unlinked(dentry)) {
631 spin_unlock(&dentry->d_lock);
633 return ERR_PTR(-ENOENT);
635 dentry->d_flags |= DCACHE_MOUNTED;
636 spin_unlock(&dentry->d_lock);
637 mp->m_dentry = dentry;
639 list_add(&mp->m_hash, chain);
643 static void put_mountpoint(struct mountpoint *mp)
645 if (!--mp->m_count) {
646 struct dentry *dentry = mp->m_dentry;
647 spin_lock(&dentry->d_lock);
648 dentry->d_flags &= ~DCACHE_MOUNTED;
649 spin_unlock(&dentry->d_lock);
650 list_del(&mp->m_hash);
655 static inline int check_mnt(struct mount *mnt)
657 return mnt->mnt_ns == current->nsproxy->mnt_ns;
661 * vfsmount lock must be held for write
663 static void touch_mnt_namespace(struct mnt_namespace *ns)
667 wake_up_interruptible(&ns->poll);
672 * vfsmount lock must be held for write
674 static void __touch_mnt_namespace(struct mnt_namespace *ns)
676 if (ns && ns->event != event) {
678 wake_up_interruptible(&ns->poll);
683 * vfsmount lock must be held for write
685 static void detach_mnt(struct mount *mnt, struct path *old_path)
687 old_path->dentry = mnt->mnt_mountpoint;
688 old_path->mnt = &mnt->mnt_parent->mnt;
689 mnt->mnt_parent = mnt;
690 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
691 list_del_init(&mnt->mnt_child);
692 list_del_init(&mnt->mnt_hash);
693 put_mountpoint(mnt->mnt_mp);
698 * vfsmount lock must be held for write
700 void mnt_set_mountpoint(struct mount *mnt,
701 struct mountpoint *mp,
702 struct mount *child_mnt)
705 mnt_add_count(mnt, 1); /* essentially, that's mntget */
706 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
707 child_mnt->mnt_parent = mnt;
708 child_mnt->mnt_mp = mp;
712 * vfsmount lock must be held for write
714 static void attach_mnt(struct mount *mnt,
715 struct mount *parent,
716 struct mountpoint *mp)
718 mnt_set_mountpoint(parent, mp, mnt);
719 list_add_tail(&mnt->mnt_hash, mount_hashtable +
720 hash(&parent->mnt, mp->m_dentry));
721 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
725 * vfsmount lock must be held for write
727 static void commit_tree(struct mount *mnt)
729 struct mount *parent = mnt->mnt_parent;
732 struct mnt_namespace *n = parent->mnt_ns;
734 BUG_ON(parent == mnt);
736 list_add_tail(&head, &mnt->mnt_list);
737 list_for_each_entry(m, &head, mnt_list)
740 list_splice(&head, n->list.prev);
742 list_add_tail(&mnt->mnt_hash, mount_hashtable +
743 hash(&parent->mnt, mnt->mnt_mountpoint));
744 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
745 touch_mnt_namespace(n);
748 static struct mount *next_mnt(struct mount *p, struct mount *root)
750 struct list_head *next = p->mnt_mounts.next;
751 if (next == &p->mnt_mounts) {
755 next = p->mnt_child.next;
756 if (next != &p->mnt_parent->mnt_mounts)
761 return list_entry(next, struct mount, mnt_child);
764 static struct mount *skip_mnt_tree(struct mount *p)
766 struct list_head *prev = p->mnt_mounts.prev;
767 while (prev != &p->mnt_mounts) {
768 p = list_entry(prev, struct mount, mnt_child);
769 prev = p->mnt_mounts.prev;
775 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
781 return ERR_PTR(-ENODEV);
783 mnt = alloc_vfsmnt(name);
785 return ERR_PTR(-ENOMEM);
787 if (flags & MS_KERNMOUNT)
788 mnt->mnt.mnt_flags = MNT_INTERNAL;
790 root = mount_fs(type, flags, name, data);
793 return ERR_CAST(root);
796 mnt->mnt.mnt_root = root;
797 mnt->mnt.mnt_sb = root->d_sb;
798 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
799 mnt->mnt_parent = mnt;
800 br_write_lock(&vfsmount_lock);
801 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
802 br_write_unlock(&vfsmount_lock);
805 EXPORT_SYMBOL_GPL(vfs_kern_mount);
807 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
810 struct super_block *sb = old->mnt.mnt_sb;
814 mnt = alloc_vfsmnt(old->mnt_devname);
816 return ERR_PTR(-ENOMEM);
818 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
819 mnt->mnt_group_id = 0; /* not a peer of original */
821 mnt->mnt_group_id = old->mnt_group_id;
823 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
824 err = mnt_alloc_group_id(mnt);
829 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
830 /* Don't allow unprivileged users to change mount flags */
831 if (flag & CL_UNPRIVILEGED) {
832 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
834 if (mnt->mnt.mnt_flags & MNT_READONLY)
835 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
837 if (mnt->mnt.mnt_flags & MNT_NODEV)
838 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
840 if (mnt->mnt.mnt_flags & MNT_NOSUID)
841 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
843 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
844 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
847 atomic_inc(&sb->s_active);
848 mnt->mnt.mnt_sb = sb;
849 mnt->mnt.mnt_root = dget(root);
850 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
851 mnt->mnt_parent = mnt;
852 br_write_lock(&vfsmount_lock);
853 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
854 br_write_unlock(&vfsmount_lock);
856 if ((flag & CL_SLAVE) ||
857 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
858 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
859 mnt->mnt_master = old;
860 CLEAR_MNT_SHARED(mnt);
861 } else if (!(flag & CL_PRIVATE)) {
862 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
863 list_add(&mnt->mnt_share, &old->mnt_share);
864 if (IS_MNT_SLAVE(old))
865 list_add(&mnt->mnt_slave, &old->mnt_slave);
866 mnt->mnt_master = old->mnt_master;
868 if (flag & CL_MAKE_SHARED)
871 /* stick the duplicate mount on the same expiry list
872 * as the original if that was on one */
873 if (flag & CL_EXPIRE) {
874 if (!list_empty(&old->mnt_expire))
875 list_add(&mnt->mnt_expire, &old->mnt_expire);
885 static inline void mntfree(struct mount *mnt)
887 struct vfsmount *m = &mnt->mnt;
888 struct super_block *sb = m->mnt_sb;
891 * This probably indicates that somebody messed
892 * up a mnt_want/drop_write() pair. If this
893 * happens, the filesystem was probably unable
894 * to make r/w->r/o transitions.
897 * The locking used to deal with mnt_count decrement provides barriers,
898 * so mnt_get_writers() below is safe.
900 WARN_ON(mnt_get_writers(mnt));
901 fsnotify_vfsmount_delete(m);
904 deactivate_super(sb);
907 static void mntput_no_expire(struct mount *mnt)
911 br_read_lock(&vfsmount_lock);
912 if (likely(mnt->mnt_ns)) {
913 /* shouldn't be the last one */
914 mnt_add_count(mnt, -1);
915 br_read_unlock(&vfsmount_lock);
918 br_read_unlock(&vfsmount_lock);
920 br_write_lock(&vfsmount_lock);
921 mnt_add_count(mnt, -1);
922 if (mnt_get_count(mnt)) {
923 br_write_unlock(&vfsmount_lock);
927 mnt_add_count(mnt, -1);
928 if (likely(mnt_get_count(mnt)))
930 br_write_lock(&vfsmount_lock);
932 if (unlikely(mnt->mnt_pinned)) {
933 mnt_add_count(mnt, mnt->mnt_pinned + 1);
935 br_write_unlock(&vfsmount_lock);
936 acct_auto_close_mnt(&mnt->mnt);
940 list_del(&mnt->mnt_instance);
941 br_write_unlock(&vfsmount_lock);
945 void mntput(struct vfsmount *mnt)
948 struct mount *m = real_mount(mnt);
949 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
950 if (unlikely(m->mnt_expiry_mark))
951 m->mnt_expiry_mark = 0;
955 EXPORT_SYMBOL(mntput);
957 struct vfsmount *mntget(struct vfsmount *mnt)
960 mnt_add_count(real_mount(mnt), 1);
963 EXPORT_SYMBOL(mntget);
965 void mnt_pin(struct vfsmount *mnt)
967 br_write_lock(&vfsmount_lock);
968 real_mount(mnt)->mnt_pinned++;
969 br_write_unlock(&vfsmount_lock);
971 EXPORT_SYMBOL(mnt_pin);
973 void mnt_unpin(struct vfsmount *m)
975 struct mount *mnt = real_mount(m);
976 br_write_lock(&vfsmount_lock);
977 if (mnt->mnt_pinned) {
978 mnt_add_count(mnt, 1);
981 br_write_unlock(&vfsmount_lock);
983 EXPORT_SYMBOL(mnt_unpin);
985 static inline void mangle(struct seq_file *m, const char *s)
987 seq_escape(m, s, " \t\n\\");
991 * Simple .show_options callback for filesystems which don't want to
992 * implement more complex mount option showing.
994 * See also save_mount_options().
996 int generic_show_options(struct seq_file *m, struct dentry *root)
1001 options = rcu_dereference(root->d_sb->s_options);
1003 if (options != NULL && options[0]) {
1011 EXPORT_SYMBOL(generic_show_options);
1014 * If filesystem uses generic_show_options(), this function should be
1015 * called from the fill_super() callback.
1017 * The .remount_fs callback usually needs to be handled in a special
1018 * way, to make sure, that previous options are not overwritten if the
1021 * Also note, that if the filesystem's .remount_fs function doesn't
1022 * reset all options to their default value, but changes only newly
1023 * given options, then the displayed options will not reflect reality
1026 void save_mount_options(struct super_block *sb, char *options)
1028 BUG_ON(sb->s_options);
1029 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1031 EXPORT_SYMBOL(save_mount_options);
1033 void replace_mount_options(struct super_block *sb, char *options)
1035 char *old = sb->s_options;
1036 rcu_assign_pointer(sb->s_options, options);
1042 EXPORT_SYMBOL(replace_mount_options);
1044 #ifdef CONFIG_PROC_FS
1045 /* iterator; we want it to have access to namespace_sem, thus here... */
1046 static void *m_start(struct seq_file *m, loff_t *pos)
1048 struct proc_mounts *p = proc_mounts(m);
1050 down_read(&namespace_sem);
1051 return seq_list_start(&p->ns->list, *pos);
1054 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1056 struct proc_mounts *p = proc_mounts(m);
1058 return seq_list_next(v, &p->ns->list, pos);
1061 static void m_stop(struct seq_file *m, void *v)
1063 up_read(&namespace_sem);
1066 static int m_show(struct seq_file *m, void *v)
1068 struct proc_mounts *p = proc_mounts(m);
1069 struct mount *r = list_entry(v, struct mount, mnt_list);
1070 return p->show(m, &r->mnt);
1073 const struct seq_operations mounts_op = {
1079 #endif /* CONFIG_PROC_FS */
1082 * may_umount_tree - check if a mount tree is busy
1083 * @mnt: root of mount tree
1085 * This is called to check if a tree of mounts has any
1086 * open files, pwds, chroots or sub mounts that are
1089 int may_umount_tree(struct vfsmount *m)
1091 struct mount *mnt = real_mount(m);
1092 int actual_refs = 0;
1093 int minimum_refs = 0;
1097 /* write lock needed for mnt_get_count */
1098 br_write_lock(&vfsmount_lock);
1099 for (p = mnt; p; p = next_mnt(p, mnt)) {
1100 actual_refs += mnt_get_count(p);
1103 br_write_unlock(&vfsmount_lock);
1105 if (actual_refs > minimum_refs)
1111 EXPORT_SYMBOL(may_umount_tree);
1114 * may_umount - check if a mount point is busy
1115 * @mnt: root of mount
1117 * This is called to check if a mount point has any
1118 * open files, pwds, chroots or sub mounts. If the
1119 * mount has sub mounts this will return busy
1120 * regardless of whether the sub mounts are busy.
1122 * Doesn't take quota and stuff into account. IOW, in some cases it will
1123 * give false negatives. The main reason why it's here is that we need
1124 * a non-destructive way to look for easily umountable filesystems.
1126 int may_umount(struct vfsmount *mnt)
1129 down_read(&namespace_sem);
1130 br_write_lock(&vfsmount_lock);
1131 if (propagate_mount_busy(real_mount(mnt), 2))
1133 br_write_unlock(&vfsmount_lock);
1134 up_read(&namespace_sem);
1138 EXPORT_SYMBOL(may_umount);
1140 static LIST_HEAD(unmounted); /* protected by namespace_sem */
1142 static void namespace_unlock(void)
1147 if (likely(list_empty(&unmounted))) {
1148 up_write(&namespace_sem);
1152 list_splice_init(&unmounted, &head);
1153 up_write(&namespace_sem);
1155 while (!list_empty(&head)) {
1156 mnt = list_first_entry(&head, struct mount, mnt_hash);
1157 list_del_init(&mnt->mnt_hash);
1158 if (mnt_has_parent(mnt)) {
1159 struct dentry *dentry;
1162 br_write_lock(&vfsmount_lock);
1163 dentry = mnt->mnt_mountpoint;
1164 m = mnt->mnt_parent;
1165 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1166 mnt->mnt_parent = mnt;
1168 br_write_unlock(&vfsmount_lock);
1176 static inline void namespace_lock(void)
1178 down_write(&namespace_sem);
1182 * vfsmount lock must be held for write
1183 * namespace_sem must be held for write
1185 void umount_tree(struct mount *mnt, int propagate)
1187 LIST_HEAD(tmp_list);
1190 for (p = mnt; p; p = next_mnt(p, mnt))
1191 list_move(&p->mnt_hash, &tmp_list);
1194 propagate_umount(&tmp_list);
1196 list_for_each_entry(p, &tmp_list, mnt_hash) {
1197 list_del_init(&p->mnt_expire);
1198 list_del_init(&p->mnt_list);
1199 __touch_mnt_namespace(p->mnt_ns);
1201 list_del_init(&p->mnt_child);
1202 if (mnt_has_parent(p)) {
1203 p->mnt_parent->mnt_ghosts++;
1204 put_mountpoint(p->mnt_mp);
1207 change_mnt_propagation(p, MS_PRIVATE);
1209 list_splice(&tmp_list, &unmounted);
1212 static void shrink_submounts(struct mount *mnt);
1214 static int do_umount(struct mount *mnt, int flags)
1216 struct super_block *sb = mnt->mnt.mnt_sb;
1219 retval = security_sb_umount(&mnt->mnt, flags);
1224 * Allow userspace to request a mountpoint be expired rather than
1225 * unmounting unconditionally. Unmount only happens if:
1226 * (1) the mark is already set (the mark is cleared by mntput())
1227 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1229 if (flags & MNT_EXPIRE) {
1230 if (&mnt->mnt == current->fs->root.mnt ||
1231 flags & (MNT_FORCE | MNT_DETACH))
1235 * probably don't strictly need the lock here if we examined
1236 * all race cases, but it's a slowpath.
1238 br_write_lock(&vfsmount_lock);
1239 if (mnt_get_count(mnt) != 2) {
1240 br_write_unlock(&vfsmount_lock);
1243 br_write_unlock(&vfsmount_lock);
1245 if (!xchg(&mnt->mnt_expiry_mark, 1))
1250 * If we may have to abort operations to get out of this
1251 * mount, and they will themselves hold resources we must
1252 * allow the fs to do things. In the Unix tradition of
1253 * 'Gee thats tricky lets do it in userspace' the umount_begin
1254 * might fail to complete on the first run through as other tasks
1255 * must return, and the like. Thats for the mount program to worry
1256 * about for the moment.
1259 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1260 sb->s_op->umount_begin(sb);
1264 * No sense to grab the lock for this test, but test itself looks
1265 * somewhat bogus. Suggestions for better replacement?
1266 * Ho-hum... In principle, we might treat that as umount + switch
1267 * to rootfs. GC would eventually take care of the old vfsmount.
1268 * Actually it makes sense, especially if rootfs would contain a
1269 * /reboot - static binary that would close all descriptors and
1270 * call reboot(9). Then init(8) could umount root and exec /reboot.
1272 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1274 * Special case for "unmounting" root ...
1275 * we just try to remount it readonly.
1277 if (!capable(CAP_SYS_ADMIN))
1279 down_write(&sb->s_umount);
1280 if (!(sb->s_flags & MS_RDONLY))
1281 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1282 up_write(&sb->s_umount);
1287 br_write_lock(&vfsmount_lock);
1290 if (!(flags & MNT_DETACH))
1291 shrink_submounts(mnt);
1294 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1295 if (!list_empty(&mnt->mnt_list))
1296 umount_tree(mnt, 1);
1299 br_write_unlock(&vfsmount_lock);
1305 * Is the caller allowed to modify his namespace?
1307 static inline bool may_mount(void)
1309 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1313 * Now umount can handle mount points as well as block devices.
1314 * This is important for filesystems which use unnamed block devices.
1316 * We now support a flag for forced unmount like the other 'big iron'
1317 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1320 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1325 int lookup_flags = 0;
1327 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1333 if (!(flags & UMOUNT_NOFOLLOW))
1334 lookup_flags |= LOOKUP_FOLLOW;
1336 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1339 mnt = real_mount(path.mnt);
1341 if (path.dentry != path.mnt->mnt_root)
1343 if (!check_mnt(mnt))
1346 retval = do_umount(mnt, flags);
1348 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1350 mntput_no_expire(mnt);
1355 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1358 * The 2.0 compatible umount. No flags.
1360 SYSCALL_DEFINE1(oldumount, char __user *, name)
1362 return sys_umount(name, 0);
1367 static bool mnt_ns_loop(struct path *path)
1369 /* Could bind mounting the mount namespace inode cause a
1370 * mount namespace loop?
1372 struct inode *inode = path->dentry->d_inode;
1374 struct mnt_namespace *mnt_ns;
1376 if (!proc_ns_inode(inode))
1379 ei = get_proc_ns(inode);
1380 if (ei->ns_ops != &mntns_operations)
1384 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1387 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1390 struct mount *res, *p, *q, *r, *parent;
1392 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1393 return ERR_PTR(-EINVAL);
1395 res = q = clone_mnt(mnt, dentry, flag);
1399 q->mnt_mountpoint = mnt->mnt_mountpoint;
1402 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1404 if (!is_subdir(r->mnt_mountpoint, dentry))
1407 for (s = r; s; s = next_mnt(s, r)) {
1408 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1409 s = skip_mnt_tree(s);
1412 while (p != s->mnt_parent) {
1418 q = clone_mnt(p, p->mnt.mnt_root, flag);
1421 br_write_lock(&vfsmount_lock);
1422 list_add_tail(&q->mnt_list, &res->mnt_list);
1423 attach_mnt(q, parent, p->mnt_mp);
1424 br_write_unlock(&vfsmount_lock);
1430 br_write_lock(&vfsmount_lock);
1431 umount_tree(res, 0);
1432 br_write_unlock(&vfsmount_lock);
1437 /* Caller should check returned pointer for errors */
1439 struct vfsmount *collect_mounts(struct path *path)
1443 tree = copy_tree(real_mount(path->mnt), path->dentry,
1444 CL_COPY_ALL | CL_PRIVATE);
1447 return ERR_CAST(tree);
1451 void drop_collected_mounts(struct vfsmount *mnt)
1454 br_write_lock(&vfsmount_lock);
1455 umount_tree(real_mount(mnt), 0);
1456 br_write_unlock(&vfsmount_lock);
1460 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1461 struct vfsmount *root)
1464 int res = f(root, arg);
1467 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1468 res = f(&mnt->mnt, arg);
1475 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1479 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1480 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1481 mnt_release_group_id(p);
1485 static int invent_group_ids(struct mount *mnt, bool recurse)
1489 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1490 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1491 int err = mnt_alloc_group_id(p);
1493 cleanup_group_ids(mnt, p);
1503 * @source_mnt : mount tree to be attached
1504 * @nd : place the mount tree @source_mnt is attached
1505 * @parent_nd : if non-null, detach the source_mnt from its parent and
1506 * store the parent mount and mountpoint dentry.
1507 * (done when source_mnt is moved)
1509 * NOTE: in the table below explains the semantics when a source mount
1510 * of a given type is attached to a destination mount of a given type.
1511 * ---------------------------------------------------------------------------
1512 * | BIND MOUNT OPERATION |
1513 * |**************************************************************************
1514 * | source-->| shared | private | slave | unbindable |
1518 * |**************************************************************************
1519 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1521 * |non-shared| shared (+) | private | slave (*) | invalid |
1522 * ***************************************************************************
1523 * A bind operation clones the source mount and mounts the clone on the
1524 * destination mount.
1526 * (++) the cloned mount is propagated to all the mounts in the propagation
1527 * tree of the destination mount and the cloned mount is added to
1528 * the peer group of the source mount.
1529 * (+) the cloned mount is created under the destination mount and is marked
1530 * as shared. The cloned mount is added to the peer group of the source
1532 * (+++) the mount is propagated to all the mounts in the propagation tree
1533 * of the destination mount and the cloned mount is made slave
1534 * of the same master as that of the source mount. The cloned mount
1535 * is marked as 'shared and slave'.
1536 * (*) the cloned mount is made a slave of the same master as that of the
1539 * ---------------------------------------------------------------------------
1540 * | MOVE MOUNT OPERATION |
1541 * |**************************************************************************
1542 * | source-->| shared | private | slave | unbindable |
1546 * |**************************************************************************
1547 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1549 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1550 * ***************************************************************************
1552 * (+) the mount is moved to the destination. And is then propagated to
1553 * all the mounts in the propagation tree of the destination mount.
1554 * (+*) the mount is moved to the destination.
1555 * (+++) the mount is moved to the destination and is then propagated to
1556 * all the mounts belonging to the destination mount's propagation tree.
1557 * the mount is marked as 'shared and slave'.
1558 * (*) the mount continues to be a slave at the new location.
1560 * if the source mount is a tree, the operations explained above is
1561 * applied to each mount in the tree.
1562 * Must be called without spinlocks held, since this function can sleep
1565 static int attach_recursive_mnt(struct mount *source_mnt,
1566 struct mount *dest_mnt,
1567 struct mountpoint *dest_mp,
1568 struct path *parent_path)
1570 LIST_HEAD(tree_list);
1571 struct mount *child, *p;
1574 if (IS_MNT_SHARED(dest_mnt)) {
1575 err = invent_group_ids(source_mnt, true);
1579 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1581 goto out_cleanup_ids;
1583 br_write_lock(&vfsmount_lock);
1585 if (IS_MNT_SHARED(dest_mnt)) {
1586 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1590 detach_mnt(source_mnt, parent_path);
1591 attach_mnt(source_mnt, dest_mnt, dest_mp);
1592 touch_mnt_namespace(source_mnt->mnt_ns);
1594 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1595 commit_tree(source_mnt);
1598 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1599 list_del_init(&child->mnt_hash);
1602 br_write_unlock(&vfsmount_lock);
1607 if (IS_MNT_SHARED(dest_mnt))
1608 cleanup_group_ids(source_mnt, NULL);
1613 static struct mountpoint *lock_mount(struct path *path)
1615 struct vfsmount *mnt;
1616 struct dentry *dentry = path->dentry;
1618 mutex_lock(&dentry->d_inode->i_mutex);
1619 if (unlikely(cant_mount(dentry))) {
1620 mutex_unlock(&dentry->d_inode->i_mutex);
1621 return ERR_PTR(-ENOENT);
1624 mnt = lookup_mnt(path);
1626 struct mountpoint *mp = new_mountpoint(dentry);
1629 mutex_unlock(&dentry->d_inode->i_mutex);
1635 mutex_unlock(&path->dentry->d_inode->i_mutex);
1638 dentry = path->dentry = dget(mnt->mnt_root);
1642 static void unlock_mount(struct mountpoint *where)
1644 struct dentry *dentry = where->m_dentry;
1645 put_mountpoint(where);
1647 mutex_unlock(&dentry->d_inode->i_mutex);
1650 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1652 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1655 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1656 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1659 return attach_recursive_mnt(mnt, p, mp, NULL);
1663 * Sanity check the flags to change_mnt_propagation.
1666 static int flags_to_propagation_type(int flags)
1668 int type = flags & ~(MS_REC | MS_SILENT);
1670 /* Fail if any non-propagation flags are set */
1671 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1673 /* Only one propagation flag should be set */
1674 if (!is_power_of_2(type))
1680 * recursively change the type of the mountpoint.
1682 static int do_change_type(struct path *path, int flag)
1685 struct mount *mnt = real_mount(path->mnt);
1686 int recurse = flag & MS_REC;
1690 if (path->dentry != path->mnt->mnt_root)
1693 type = flags_to_propagation_type(flag);
1698 if (type == MS_SHARED) {
1699 err = invent_group_ids(mnt, recurse);
1704 br_write_lock(&vfsmount_lock);
1705 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1706 change_mnt_propagation(m, type);
1707 br_write_unlock(&vfsmount_lock);
1715 * do loopback mount.
1717 static int do_loopback(struct path *path, const char *old_name,
1720 struct path old_path;
1721 struct mount *mnt = NULL, *old, *parent;
1722 struct mountpoint *mp;
1724 if (!old_name || !*old_name)
1726 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1731 if (mnt_ns_loop(&old_path))
1734 mp = lock_mount(path);
1739 old = real_mount(old_path.mnt);
1740 parent = real_mount(path->mnt);
1743 if (IS_MNT_UNBINDABLE(old))
1746 if (!check_mnt(parent) || !check_mnt(old))
1750 mnt = copy_tree(old, old_path.dentry, 0);
1752 mnt = clone_mnt(old, old_path.dentry, 0);
1759 err = graft_tree(mnt, parent, mp);
1761 br_write_lock(&vfsmount_lock);
1762 umount_tree(mnt, 0);
1763 br_write_unlock(&vfsmount_lock);
1768 path_put(&old_path);
1772 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1775 int readonly_request = 0;
1777 if (ms_flags & MS_RDONLY)
1778 readonly_request = 1;
1779 if (readonly_request == __mnt_is_readonly(mnt))
1782 if (readonly_request)
1783 error = mnt_make_readonly(real_mount(mnt));
1785 __mnt_unmake_readonly(real_mount(mnt));
1790 * change filesystem flags. dir should be a physical root of filesystem.
1791 * If you've mounted a non-root directory somewhere and want to do remount
1792 * on it - tough luck.
1794 static int do_remount(struct path *path, int flags, int mnt_flags,
1798 struct super_block *sb = path->mnt->mnt_sb;
1799 struct mount *mnt = real_mount(path->mnt);
1801 if (!check_mnt(mnt))
1804 if (path->dentry != path->mnt->mnt_root)
1807 /* Don't allow changing of locked mnt flags.
1809 * No locks need to be held here while testing the various
1810 * MNT_LOCK flags because those flags can never be cleared
1811 * once they are set.
1813 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1814 !(mnt_flags & MNT_READONLY)) {
1817 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1818 !(mnt_flags & MNT_NODEV)) {
1821 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1822 !(mnt_flags & MNT_NOSUID)) {
1825 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1826 !(mnt_flags & MNT_NOEXEC)) {
1829 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1830 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1834 err = security_sb_remount(sb, data);
1838 down_write(&sb->s_umount);
1839 if (flags & MS_BIND)
1840 err = change_mount_flags(path->mnt, flags);
1841 else if (!capable(CAP_SYS_ADMIN))
1844 err = do_remount_sb(sb, flags, data, 0);
1846 br_write_lock(&vfsmount_lock);
1847 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
1848 mnt->mnt.mnt_flags = mnt_flags;
1849 br_write_unlock(&vfsmount_lock);
1851 up_write(&sb->s_umount);
1853 br_write_lock(&vfsmount_lock);
1854 touch_mnt_namespace(mnt->mnt_ns);
1855 br_write_unlock(&vfsmount_lock);
1860 static inline int tree_contains_unbindable(struct mount *mnt)
1863 for (p = mnt; p; p = next_mnt(p, mnt)) {
1864 if (IS_MNT_UNBINDABLE(p))
1870 static int do_move_mount(struct path *path, const char *old_name)
1872 struct path old_path, parent_path;
1875 struct mountpoint *mp;
1877 if (!old_name || !*old_name)
1879 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1883 mp = lock_mount(path);
1888 old = real_mount(old_path.mnt);
1889 p = real_mount(path->mnt);
1892 if (!check_mnt(p) || !check_mnt(old))
1896 if (old_path.dentry != old_path.mnt->mnt_root)
1899 if (!mnt_has_parent(old))
1902 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1903 S_ISDIR(old_path.dentry->d_inode->i_mode))
1906 * Don't move a mount residing in a shared parent.
1908 if (IS_MNT_SHARED(old->mnt_parent))
1911 * Don't move a mount tree containing unbindable mounts to a destination
1912 * mount which is shared.
1914 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1917 for (; mnt_has_parent(p); p = p->mnt_parent)
1921 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
1925 /* if the mount is moved, it should no longer be expire
1927 list_del_init(&old->mnt_expire);
1932 path_put(&parent_path);
1933 path_put(&old_path);
1937 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1940 const char *subtype = strchr(fstype, '.');
1949 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1951 if (!mnt->mnt_sb->s_subtype)
1957 return ERR_PTR(err);
1961 * add a mount into a namespace's mount tree
1963 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1965 struct mountpoint *mp;
1966 struct mount *parent;
1969 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1971 mp = lock_mount(path);
1975 parent = real_mount(path->mnt);
1977 if (unlikely(!check_mnt(parent))) {
1978 /* that's acceptable only for automounts done in private ns */
1979 if (!(mnt_flags & MNT_SHRINKABLE))
1981 /* ... and for those we'd better have mountpoint still alive */
1982 if (!parent->mnt_ns)
1986 /* Refuse the same filesystem on the same mount point */
1988 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1989 path->mnt->mnt_root == path->dentry)
1993 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1996 newmnt->mnt.mnt_flags = mnt_flags;
1997 err = graft_tree(newmnt, parent, mp);
2005 * create a new mount for userspace and request it to be added into the
2008 static int do_new_mount(struct path *path, const char *fstype, int flags,
2009 int mnt_flags, const char *name, void *data)
2011 struct file_system_type *type;
2012 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2013 struct vfsmount *mnt;
2019 type = get_fs_type(fstype);
2023 if (user_ns != &init_user_ns) {
2024 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2025 put_filesystem(type);
2028 /* Only in special cases allow devices from mounts
2029 * created outside the initial user namespace.
2031 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2033 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2037 mnt = vfs_kern_mount(type, flags, name, data);
2038 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2039 !mnt->mnt_sb->s_subtype)
2040 mnt = fs_set_subtype(mnt, fstype);
2042 put_filesystem(type);
2044 return PTR_ERR(mnt);
2046 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2052 int finish_automount(struct vfsmount *m, struct path *path)
2054 struct mount *mnt = real_mount(m);
2056 /* The new mount record should have at least 2 refs to prevent it being
2057 * expired before we get a chance to add it
2059 BUG_ON(mnt_get_count(mnt) < 2);
2061 if (m->mnt_sb == path->mnt->mnt_sb &&
2062 m->mnt_root == path->dentry) {
2067 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2071 /* remove m from any expiration list it may be on */
2072 if (!list_empty(&mnt->mnt_expire)) {
2074 br_write_lock(&vfsmount_lock);
2075 list_del_init(&mnt->mnt_expire);
2076 br_write_unlock(&vfsmount_lock);
2085 * mnt_set_expiry - Put a mount on an expiration list
2086 * @mnt: The mount to list.
2087 * @expiry_list: The list to add the mount to.
2089 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2092 br_write_lock(&vfsmount_lock);
2094 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2096 br_write_unlock(&vfsmount_lock);
2099 EXPORT_SYMBOL(mnt_set_expiry);
2102 * process a list of expirable mountpoints with the intent of discarding any
2103 * mountpoints that aren't in use and haven't been touched since last we came
2106 void mark_mounts_for_expiry(struct list_head *mounts)
2108 struct mount *mnt, *next;
2109 LIST_HEAD(graveyard);
2111 if (list_empty(mounts))
2115 br_write_lock(&vfsmount_lock);
2117 /* extract from the expiration list every vfsmount that matches the
2118 * following criteria:
2119 * - only referenced by its parent vfsmount
2120 * - still marked for expiry (marked on the last call here; marks are
2121 * cleared by mntput())
2123 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2124 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2125 propagate_mount_busy(mnt, 1))
2127 list_move(&mnt->mnt_expire, &graveyard);
2129 while (!list_empty(&graveyard)) {
2130 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2131 touch_mnt_namespace(mnt->mnt_ns);
2132 umount_tree(mnt, 1);
2134 br_write_unlock(&vfsmount_lock);
2138 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2141 * Ripoff of 'select_parent()'
2143 * search the list of submounts for a given mountpoint, and move any
2144 * shrinkable submounts to the 'graveyard' list.
2146 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2148 struct mount *this_parent = parent;
2149 struct list_head *next;
2153 next = this_parent->mnt_mounts.next;
2155 while (next != &this_parent->mnt_mounts) {
2156 struct list_head *tmp = next;
2157 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2160 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2163 * Descend a level if the d_mounts list is non-empty.
2165 if (!list_empty(&mnt->mnt_mounts)) {
2170 if (!propagate_mount_busy(mnt, 1)) {
2171 list_move_tail(&mnt->mnt_expire, graveyard);
2176 * All done at this level ... ascend and resume the search
2178 if (this_parent != parent) {
2179 next = this_parent->mnt_child.next;
2180 this_parent = this_parent->mnt_parent;
2187 * process a list of expirable mountpoints with the intent of discarding any
2188 * submounts of a specific parent mountpoint
2190 * vfsmount_lock must be held for write
2192 static void shrink_submounts(struct mount *mnt)
2194 LIST_HEAD(graveyard);
2197 /* extract submounts of 'mountpoint' from the expiration list */
2198 while (select_submounts(mnt, &graveyard)) {
2199 while (!list_empty(&graveyard)) {
2200 m = list_first_entry(&graveyard, struct mount,
2202 touch_mnt_namespace(m->mnt_ns);
2209 * Some copy_from_user() implementations do not return the exact number of
2210 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2211 * Note that this function differs from copy_from_user() in that it will oops
2212 * on bad values of `to', rather than returning a short copy.
2214 static long exact_copy_from_user(void *to, const void __user * from,
2218 const char __user *f = from;
2221 if (!access_ok(VERIFY_READ, from, n))
2225 if (__get_user(c, f)) {
2236 int copy_mount_options(const void __user * data, unsigned long *where)
2246 if (!(page = __get_free_page(GFP_KERNEL)))
2249 /* We only care that *some* data at the address the user
2250 * gave us is valid. Just in case, we'll zero
2251 * the remainder of the page.
2253 /* copy_from_user cannot cross TASK_SIZE ! */
2254 size = TASK_SIZE - (unsigned long)data;
2255 if (size > PAGE_SIZE)
2258 i = size - exact_copy_from_user((void *)page, data, size);
2264 memset((char *)page + i, 0, PAGE_SIZE - i);
2269 int copy_mount_string(const void __user *data, char **where)
2278 tmp = strndup_user(data, PAGE_SIZE);
2280 return PTR_ERR(tmp);
2287 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2288 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2290 * data is a (void *) that can point to any structure up to
2291 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2292 * information (or be NULL).
2294 * Pre-0.97 versions of mount() didn't have a flags word.
2295 * When the flags word was introduced its top half was required
2296 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2297 * Therefore, if this magic number is present, it carries no information
2298 * and must be discarded.
2300 long do_mount(const char *dev_name, const char *dir_name,
2301 const char *type_page, unsigned long flags, void *data_page)
2308 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2309 flags &= ~MS_MGC_MSK;
2311 /* Basic sanity checks */
2313 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2317 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2319 /* ... and get the mountpoint */
2320 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2324 retval = security_sb_mount(dev_name, &path,
2325 type_page, flags, data_page);
2326 if (!retval && !may_mount())
2331 /* Default to relatime unless overriden */
2332 if (!(flags & MS_NOATIME))
2333 mnt_flags |= MNT_RELATIME;
2335 /* Separate the per-mountpoint flags */
2336 if (flags & MS_NOSUID)
2337 mnt_flags |= MNT_NOSUID;
2338 if (flags & MS_NODEV)
2339 mnt_flags |= MNT_NODEV;
2340 if (flags & MS_NOEXEC)
2341 mnt_flags |= MNT_NOEXEC;
2342 if (flags & MS_NOATIME)
2343 mnt_flags |= MNT_NOATIME;
2344 if (flags & MS_NODIRATIME)
2345 mnt_flags |= MNT_NODIRATIME;
2346 if (flags & MS_STRICTATIME)
2347 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2348 if (flags & MS_RDONLY)
2349 mnt_flags |= MNT_READONLY;
2351 /* The default atime for remount is preservation */
2352 if ((flags & MS_REMOUNT) &&
2353 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2354 MS_STRICTATIME)) == 0)) {
2355 mnt_flags &= ~MNT_ATIME_MASK;
2356 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2359 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2360 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2363 if (flags & MS_REMOUNT)
2364 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2366 else if (flags & MS_BIND)
2367 retval = do_loopback(&path, dev_name, flags & MS_REC);
2368 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2369 retval = do_change_type(&path, flags);
2370 else if (flags & MS_MOVE)
2371 retval = do_move_mount(&path, dev_name);
2373 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2374 dev_name, data_page);
2380 static void free_mnt_ns(struct mnt_namespace *ns)
2382 proc_free_inum(ns->proc_inum);
2383 put_user_ns(ns->user_ns);
2388 * Assign a sequence number so we can detect when we attempt to bind
2389 * mount a reference to an older mount namespace into the current
2390 * mount namespace, preventing reference counting loops. A 64bit
2391 * number incrementing at 10Ghz will take 12,427 years to wrap which
2392 * is effectively never, so we can ignore the possibility.
2394 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2396 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2398 struct mnt_namespace *new_ns;
2401 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2403 return ERR_PTR(-ENOMEM);
2404 ret = proc_alloc_inum(&new_ns->proc_inum);
2407 return ERR_PTR(ret);
2409 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2410 atomic_set(&new_ns->count, 1);
2411 new_ns->root = NULL;
2412 INIT_LIST_HEAD(&new_ns->list);
2413 init_waitqueue_head(&new_ns->poll);
2415 new_ns->user_ns = get_user_ns(user_ns);
2420 * Allocate a new namespace structure and populate it with contents
2421 * copied from the namespace of the passed in task structure.
2423 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2424 struct user_namespace *user_ns, struct fs_struct *fs)
2426 struct mnt_namespace *new_ns;
2427 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2428 struct mount *p, *q;
2429 struct mount *old = mnt_ns->root;
2433 new_ns = alloc_mnt_ns(user_ns);
2438 /* First pass: copy the tree topology */
2439 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2440 if (user_ns != mnt_ns->user_ns)
2441 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2442 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2445 free_mnt_ns(new_ns);
2446 return ERR_CAST(new);
2449 br_write_lock(&vfsmount_lock);
2450 list_add_tail(&new_ns->list, &new->mnt_list);
2451 br_write_unlock(&vfsmount_lock);
2454 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2455 * as belonging to new namespace. We have already acquired a private
2456 * fs_struct, so tsk->fs->lock is not needed.
2463 if (&p->mnt == fs->root.mnt) {
2464 fs->root.mnt = mntget(&q->mnt);
2467 if (&p->mnt == fs->pwd.mnt) {
2468 fs->pwd.mnt = mntget(&q->mnt);
2472 p = next_mnt(p, old);
2473 q = next_mnt(q, new);
2485 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2486 struct user_namespace *user_ns, struct fs_struct *new_fs)
2488 struct mnt_namespace *new_ns;
2493 if (!(flags & CLONE_NEWNS))
2496 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2503 * create_mnt_ns - creates a private namespace and adds a root filesystem
2504 * @mnt: pointer to the new root filesystem mountpoint
2506 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2508 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2509 if (!IS_ERR(new_ns)) {
2510 struct mount *mnt = real_mount(m);
2511 mnt->mnt_ns = new_ns;
2513 list_add(&mnt->mnt_list, &new_ns->list);
2520 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2522 struct mnt_namespace *ns;
2523 struct super_block *s;
2527 ns = create_mnt_ns(mnt);
2529 return ERR_CAST(ns);
2531 err = vfs_path_lookup(mnt->mnt_root, mnt,
2532 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2537 return ERR_PTR(err);
2539 /* trade a vfsmount reference for active sb one */
2540 s = path.mnt->mnt_sb;
2541 atomic_inc(&s->s_active);
2543 /* lock the sucker */
2544 down_write(&s->s_umount);
2545 /* ... and return the root of (sub)tree on it */
2548 EXPORT_SYMBOL(mount_subtree);
2550 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2551 char __user *, type, unsigned long, flags, void __user *, data)
2555 struct filename *kernel_dir;
2557 unsigned long data_page;
2559 ret = copy_mount_string(type, &kernel_type);
2563 kernel_dir = getname(dir_name);
2564 if (IS_ERR(kernel_dir)) {
2565 ret = PTR_ERR(kernel_dir);
2569 ret = copy_mount_string(dev_name, &kernel_dev);
2573 ret = copy_mount_options(data, &data_page);
2577 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2578 (void *) data_page);
2580 free_page(data_page);
2584 putname(kernel_dir);
2592 * Return true if path is reachable from root
2594 * namespace_sem or vfsmount_lock is held
2596 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2597 const struct path *root)
2599 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2600 dentry = mnt->mnt_mountpoint;
2601 mnt = mnt->mnt_parent;
2603 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2606 int path_is_under(struct path *path1, struct path *path2)
2609 br_read_lock(&vfsmount_lock);
2610 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2611 br_read_unlock(&vfsmount_lock);
2614 EXPORT_SYMBOL(path_is_under);
2617 * pivot_root Semantics:
2618 * Moves the root file system of the current process to the directory put_old,
2619 * makes new_root as the new root file system of the current process, and sets
2620 * root/cwd of all processes which had them on the current root to new_root.
2623 * The new_root and put_old must be directories, and must not be on the
2624 * same file system as the current process root. The put_old must be
2625 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2626 * pointed to by put_old must yield the same directory as new_root. No other
2627 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2629 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2630 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2631 * in this situation.
2634 * - we don't move root/cwd if they are not at the root (reason: if something
2635 * cared enough to change them, it's probably wrong to force them elsewhere)
2636 * - it's okay to pick a root that isn't the root of a file system, e.g.
2637 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2638 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2641 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2642 const char __user *, put_old)
2644 struct path new, old, parent_path, root_parent, root;
2645 struct mount *new_mnt, *root_mnt, *old_mnt;
2646 struct mountpoint *old_mp, *root_mp;
2652 error = user_path_dir(new_root, &new);
2656 error = user_path_dir(put_old, &old);
2660 error = security_sb_pivotroot(&old, &new);
2664 get_fs_root(current->fs, &root);
2665 old_mp = lock_mount(&old);
2666 error = PTR_ERR(old_mp);
2671 new_mnt = real_mount(new.mnt);
2672 root_mnt = real_mount(root.mnt);
2673 old_mnt = real_mount(old.mnt);
2674 if (IS_MNT_SHARED(old_mnt) ||
2675 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2676 IS_MNT_SHARED(root_mnt->mnt_parent))
2678 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2681 if (d_unlinked(new.dentry))
2684 if (new_mnt == root_mnt || old_mnt == root_mnt)
2685 goto out4; /* loop, on the same file system */
2687 if (root.mnt->mnt_root != root.dentry)
2688 goto out4; /* not a mountpoint */
2689 if (!mnt_has_parent(root_mnt))
2690 goto out4; /* not attached */
2691 root_mp = root_mnt->mnt_mp;
2692 if (new.mnt->mnt_root != new.dentry)
2693 goto out4; /* not a mountpoint */
2694 if (!mnt_has_parent(new_mnt))
2695 goto out4; /* not attached */
2696 /* make sure we can reach put_old from new_root */
2697 if (!is_path_reachable(old_mnt, old.dentry, &new))
2699 /* make certain new is below the root */
2700 if (!is_path_reachable(new_mnt, new.dentry, &root))
2702 root_mp->m_count++; /* pin it so it won't go away */
2703 br_write_lock(&vfsmount_lock);
2704 detach_mnt(new_mnt, &parent_path);
2705 detach_mnt(root_mnt, &root_parent);
2706 /* mount old root on put_old */
2707 attach_mnt(root_mnt, old_mnt, old_mp);
2708 /* mount new_root on / */
2709 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2710 touch_mnt_namespace(current->nsproxy->mnt_ns);
2711 br_write_unlock(&vfsmount_lock);
2712 chroot_fs_refs(&root, &new);
2713 put_mountpoint(root_mp);
2716 unlock_mount(old_mp);
2718 path_put(&root_parent);
2719 path_put(&parent_path);
2731 static void __init init_mount_tree(void)
2733 struct vfsmount *mnt;
2734 struct mnt_namespace *ns;
2736 struct file_system_type *type;
2738 type = get_fs_type("rootfs");
2740 panic("Can't find rootfs type");
2741 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2742 put_filesystem(type);
2744 panic("Can't create rootfs");
2746 ns = create_mnt_ns(mnt);
2748 panic("Can't allocate initial namespace");
2750 init_task.nsproxy->mnt_ns = ns;
2754 root.dentry = mnt->mnt_root;
2756 set_fs_pwd(current->fs, &root);
2757 set_fs_root(current->fs, &root);
2760 void __init mnt_init(void)
2765 init_rwsem(&namespace_sem);
2767 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2768 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2770 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2771 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2773 if (!mount_hashtable || !mountpoint_hashtable)
2774 panic("Failed to allocate mount hash table\n");
2776 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2778 for (u = 0; u < HASH_SIZE; u++)
2779 INIT_LIST_HEAD(&mount_hashtable[u]);
2780 for (u = 0; u < HASH_SIZE; u++)
2781 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
2783 br_lock_init(&vfsmount_lock);
2787 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2789 fs_kobj = kobject_create_and_add("fs", NULL);
2791 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2796 void put_mnt_ns(struct mnt_namespace *ns)
2798 if (!atomic_dec_and_test(&ns->count))
2801 br_write_lock(&vfsmount_lock);
2802 umount_tree(ns->root, 0);
2803 br_write_unlock(&vfsmount_lock);
2808 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2810 struct vfsmount *mnt;
2811 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2814 * it is a longterm mount, don't release mnt until
2815 * we unmount before file sys is unregistered
2817 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2821 EXPORT_SYMBOL_GPL(kern_mount_data);
2823 void kern_unmount(struct vfsmount *mnt)
2825 /* release long term mount so mount point can be released */
2826 if (!IS_ERR_OR_NULL(mnt)) {
2827 br_write_lock(&vfsmount_lock);
2828 real_mount(mnt)->mnt_ns = NULL;
2829 br_write_unlock(&vfsmount_lock);
2833 EXPORT_SYMBOL(kern_unmount);
2835 bool our_mnt(struct vfsmount *mnt)
2837 return check_mnt(real_mount(mnt));
2840 bool current_chrooted(void)
2842 /* Does the current process have a non-standard root */
2843 struct path ns_root;
2844 struct path fs_root;
2847 /* Find the namespace root */
2848 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
2849 ns_root.dentry = ns_root.mnt->mnt_root;
2851 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2854 get_fs_root(current->fs, &fs_root);
2856 chrooted = !path_equal(&fs_root, &ns_root);
2864 void update_mnt_policy(struct user_namespace *userns)
2866 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2869 down_read(&namespace_sem);
2870 list_for_each_entry(mnt, &ns->list, mnt_list) {
2871 switch (mnt->mnt.mnt_sb->s_magic) {
2873 userns->may_mount_sysfs = true;
2875 case PROC_SUPER_MAGIC:
2876 userns->may_mount_proc = true;
2879 if (userns->may_mount_sysfs && userns->may_mount_proc)
2882 up_read(&namespace_sem);
2885 static void *mntns_get(struct task_struct *task)
2887 struct mnt_namespace *ns = NULL;
2888 struct nsproxy *nsproxy;
2891 nsproxy = task_nsproxy(task);
2893 ns = nsproxy->mnt_ns;
2901 static void mntns_put(void *ns)
2906 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2908 struct fs_struct *fs = current->fs;
2909 struct mnt_namespace *mnt_ns = ns;
2912 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
2913 !nsown_capable(CAP_SYS_CHROOT) ||
2914 !nsown_capable(CAP_SYS_ADMIN))
2921 put_mnt_ns(nsproxy->mnt_ns);
2922 nsproxy->mnt_ns = mnt_ns;
2925 root.mnt = &mnt_ns->root->mnt;
2926 root.dentry = mnt_ns->root->mnt.mnt_root;
2928 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2931 /* Update the pwd and root */
2932 set_fs_pwd(fs, &root);
2933 set_fs_root(fs, &root);
2939 static unsigned int mntns_inum(void *ns)
2941 struct mnt_namespace *mnt_ns = ns;
2942 return mnt_ns->proc_inum;
2945 const struct proc_ns_operations mntns_operations = {
2947 .type = CLONE_NEWNS,
2950 .install = mntns_install,