4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * Some corrections by tytso.
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <asm/namei.h>
34 #include <asm/uaccess.h>
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
38 /* [Feb-1997 T. Schoebel-Theuer]
39 * Fundamental changes in the pathname lookup mechanisms (namei)
40 * were necessary because of omirr. The reason is that omirr needs
41 * to know the _real_ pathname, not the user-supplied one, in case
42 * of symlinks (and also when transname replacements occur).
44 * The new code replaces the old recursive symlink resolution with
45 * an iterative one (in case of non-nested symlink chains). It does
46 * this with calls to <fs>_follow_link().
47 * As a side effect, dir_namei(), _namei() and follow_link() are now
48 * replaced with a single function lookup_dentry() that can handle all
49 * the special cases of the former code.
51 * With the new dcache, the pathname is stored at each inode, at least as
52 * long as the refcount of the inode is positive. As a side effect, the
53 * size of the dcache depends on the inode cache and thus is dynamic.
55 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56 * resolution to correspond with current state of the code.
58 * Note that the symlink resolution is not *completely* iterative.
59 * There is still a significant amount of tail- and mid- recursion in
60 * the algorithm. Also, note that <fs>_readlink() is not used in
61 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62 * may return different results than <fs>_follow_link(). Many virtual
63 * filesystems (including /proc) exhibit this behavior.
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68 * and the name already exists in form of a symlink, try to create the new
69 * name indicated by the symlink. The old code always complained that the
70 * name already exists, due to not following the symlink even if its target
71 * is nonexistent. The new semantics affects also mknod() and link() when
72 * the name is a symlink pointing to a non-existant name.
74 * I don't know which semantics is the right one, since I have no access
75 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77 * "old" one. Personally, I think the new semantics is much more logical.
78 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79 * file does succeed in both HP-UX and SunOs, but not in Solaris
80 * and in the old Linux semantics.
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84 * semantics. See the comments in "open_namei" and "do_link" below.
86 * [10-Sep-98 Alan Modra] Another symlink change.
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90 * inside the path - always follow.
91 * in the last component in creation/removal/renaming - never follow.
92 * if LOOKUP_FOLLOW passed - follow.
93 * if the pathname has trailing slashes - follow.
94 * otherwise - don't follow.
95 * (applied in that order).
97 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99 * During the 2.4 we need to fix the userland stuff depending on it -
100 * hopefully we will be able to get rid of that wart in 2.5. So far only
101 * XEmacs seems to be relying on it...
104 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
106 * any extra contention...
109 static int fastcall link_path_walk(const char *name, struct nameidata *nd);
111 /* In order to reduce some races, while at the same time doing additional
112 * checking and hopefully speeding things up, we copy filenames to the
113 * kernel data space before using them..
115 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116 * PATH_MAX includes the nul terminator --RR.
118 static int do_getname(const char __user *filename, char *page)
121 unsigned long len = PATH_MAX;
123 if (!segment_eq(get_fs(), KERNEL_DS)) {
124 if ((unsigned long) filename >= TASK_SIZE)
126 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 len = TASK_SIZE - (unsigned long) filename;
130 retval = strncpy_from_user(page, filename, len);
134 return -ENAMETOOLONG;
140 char * getname(const char __user * filename)
144 result = ERR_PTR(-ENOMEM);
147 int retval = do_getname(filename, tmp);
152 result = ERR_PTR(retval);
155 audit_getname(result);
159 #ifdef CONFIG_AUDITSYSCALL
160 void putname(const char *name)
162 if (unlikely(!audit_dummy_context()))
167 EXPORT_SYMBOL(putname);
172 * generic_permission - check for access rights on a Posix-like filesystem
173 * @inode: inode to check access rights for
174 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175 * @check_acl: optional callback to check for Posix ACLs
177 * Used to check for read/write/execute permissions on a file.
178 * We use "fsuid" for this, letting us set arbitrary permissions
179 * for filesystem access without changing the "normal" uids which
180 * are used for other things..
182 int generic_permission(struct inode *inode, int mask,
183 int (*check_acl)(struct inode *inode, int mask))
185 umode_t mode = inode->i_mode;
187 if (current->fsuid == inode->i_uid)
190 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
191 int error = check_acl(inode, mask);
192 if (error == -EACCES)
193 goto check_capabilities;
194 else if (error != -EAGAIN)
198 if (in_group_p(inode->i_gid))
203 * If the DACs are ok we don't need any capability check.
205 if (((mode & mask & (MAY_READ|MAY_WRITE|MAY_EXEC)) == mask))
210 * Read/write DACs are always overridable.
211 * Executable DACs are overridable if at least one exec bit is set.
213 if (!(mask & MAY_EXEC) ||
214 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
215 if (capable(CAP_DAC_OVERRIDE))
219 * Searching includes executable on directories, else just read.
221 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
222 if (capable(CAP_DAC_READ_SEARCH))
228 int permission(struct inode *inode, int mask, struct nameidata *nd)
231 struct vfsmount *mnt = NULL;
236 if (mask & MAY_WRITE) {
237 umode_t mode = inode->i_mode;
240 * Nobody gets write access to a read-only fs.
242 if (IS_RDONLY(inode) &&
243 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
247 * Nobody gets write access to an immutable file.
249 if (IS_IMMUTABLE(inode))
253 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode)) {
255 * MAY_EXEC on regular files is denied if the fs is mounted
256 * with the "noexec" flag.
258 if (mnt && (mnt->mnt_flags & MNT_NOEXEC))
262 /* Ordinary permission routines do not understand MAY_APPEND. */
263 submask = mask & ~MAY_APPEND;
264 if (inode->i_op && inode->i_op->permission) {
265 retval = inode->i_op->permission(inode, submask, nd);
268 * Exec permission on a regular file is denied if none
269 * of the execute bits are set.
271 * This check should be done by the ->permission()
274 if ((mask & MAY_EXEC) && S_ISREG(inode->i_mode) &&
275 !(inode->i_mode & S_IXUGO))
279 retval = generic_permission(inode, submask, NULL);
284 return security_inode_permission(inode, mask, nd);
288 * vfs_permission - check for access rights to a given path
289 * @nd: lookup result that describes the path
290 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
292 * Used to check for read/write/execute permissions on a path.
293 * We use "fsuid" for this, letting us set arbitrary permissions
294 * for filesystem access without changing the "normal" uids which
295 * are used for other things.
297 int vfs_permission(struct nameidata *nd, int mask)
299 return permission(nd->dentry->d_inode, mask, nd);
303 * file_permission - check for additional access rights to a given file
304 * @file: file to check access rights for
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
307 * Used to check for read/write/execute permissions on an already opened
311 * Do not use this function in new code. All access checks should
312 * be done using vfs_permission().
314 int file_permission(struct file *file, int mask)
316 return permission(file->f_path.dentry->d_inode, mask, NULL);
320 * get_write_access() gets write permission for a file.
321 * put_write_access() releases this write permission.
322 * This is used for regular files.
323 * We cannot support write (and maybe mmap read-write shared) accesses and
324 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
325 * can have the following values:
326 * 0: no writers, no VM_DENYWRITE mappings
327 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
328 * > 0: (i_writecount) users are writing to the file.
330 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
331 * except for the cases where we don't hold i_writecount yet. Then we need to
332 * use {get,deny}_write_access() - these functions check the sign and refuse
333 * to do the change if sign is wrong. Exclusion between them is provided by
334 * the inode->i_lock spinlock.
337 int get_write_access(struct inode * inode)
339 spin_lock(&inode->i_lock);
340 if (atomic_read(&inode->i_writecount) < 0) {
341 spin_unlock(&inode->i_lock);
344 atomic_inc(&inode->i_writecount);
345 spin_unlock(&inode->i_lock);
350 int deny_write_access(struct file * file)
352 struct inode *inode = file->f_path.dentry->d_inode;
354 spin_lock(&inode->i_lock);
355 if (atomic_read(&inode->i_writecount) > 0) {
356 spin_unlock(&inode->i_lock);
359 atomic_dec(&inode->i_writecount);
360 spin_unlock(&inode->i_lock);
365 void path_release(struct nameidata *nd)
372 * umount() mustn't call path_release()/mntput() as that would clear
375 void path_release_on_umount(struct nameidata *nd)
378 mntput_no_expire(nd->mnt);
382 * release_open_intent - free up open intent resources
383 * @nd: pointer to nameidata
385 void release_open_intent(struct nameidata *nd)
387 if (nd->intent.open.file->f_path.dentry == NULL)
388 put_filp(nd->intent.open.file);
390 fput(nd->intent.open.file);
393 static inline struct dentry *
394 do_revalidate(struct dentry *dentry, struct nameidata *nd)
396 int status = dentry->d_op->d_revalidate(dentry, nd);
397 if (unlikely(status <= 0)) {
399 * The dentry failed validation.
400 * If d_revalidate returned 0 attempt to invalidate
401 * the dentry otherwise d_revalidate is asking us
402 * to return a fail status.
405 if (!d_invalidate(dentry)) {
411 dentry = ERR_PTR(status);
418 * Internal lookup() using the new generic dcache.
421 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
423 struct dentry * dentry = __d_lookup(parent, name);
425 /* lockess __d_lookup may fail due to concurrent d_move()
426 * in some unrelated directory, so try with d_lookup
429 dentry = d_lookup(parent, name);
431 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
432 dentry = do_revalidate(dentry, nd);
438 * Short-cut version of permission(), for calling by
439 * path_walk(), when dcache lock is held. Combines parts
440 * of permission() and generic_permission(), and tests ONLY for
441 * MAY_EXEC permission.
443 * If appropriate, check DAC only. If not appropriate, or
444 * short-cut DAC fails, then call permission() to do more
445 * complete permission check.
447 static int exec_permission_lite(struct inode *inode,
448 struct nameidata *nd)
450 umode_t mode = inode->i_mode;
452 if (inode->i_op && inode->i_op->permission)
455 if (current->fsuid == inode->i_uid)
457 else if (in_group_p(inode->i_gid))
463 if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
466 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
469 if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
474 return security_inode_permission(inode, MAY_EXEC, nd);
478 * This is called when everything else fails, and we actually have
479 * to go to the low-level filesystem to find out what we should do..
481 * We get the directory semaphore, and after getting that we also
482 * make sure that nobody added the entry to the dcache in the meantime..
485 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
487 struct dentry * result;
488 struct inode *dir = parent->d_inode;
490 mutex_lock(&dir->i_mutex);
492 * First re-do the cached lookup just in case it was created
493 * while we waited for the directory semaphore..
495 * FIXME! This could use version numbering or similar to
496 * avoid unnecessary cache lookups.
498 * The "dcache_lock" is purely to protect the RCU list walker
499 * from concurrent renames at this point (we mustn't get false
500 * negatives from the RCU list walk here, unlike the optimistic
503 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
505 result = d_lookup(parent, name);
507 struct dentry * dentry = d_alloc(parent, name);
508 result = ERR_PTR(-ENOMEM);
510 result = dir->i_op->lookup(dir, dentry, nd);
516 mutex_unlock(&dir->i_mutex);
521 * Uhhuh! Nasty case: the cache was re-populated while
522 * we waited on the semaphore. Need to revalidate.
524 mutex_unlock(&dir->i_mutex);
525 if (result->d_op && result->d_op->d_revalidate) {
526 result = do_revalidate(result, nd);
528 result = ERR_PTR(-ENOENT);
533 static int __emul_lookup_dentry(const char *, struct nameidata *);
536 static __always_inline int
537 walk_init_root(const char *name, struct nameidata *nd)
539 struct fs_struct *fs = current->fs;
541 read_lock(&fs->lock);
542 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
543 nd->mnt = mntget(fs->altrootmnt);
544 nd->dentry = dget(fs->altroot);
545 read_unlock(&fs->lock);
546 if (__emul_lookup_dentry(name,nd))
548 read_lock(&fs->lock);
550 nd->mnt = mntget(fs->rootmnt);
551 nd->dentry = dget(fs->root);
552 read_unlock(&fs->lock);
556 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
565 if (!walk_init_root(link, nd))
566 /* weird __emul_prefix() stuff did it */
569 res = link_path_walk(link, nd);
571 if (nd->depth || res || nd->last_type!=LAST_NORM)
574 * If it is an iterative symlinks resolution in open_namei() we
575 * have to copy the last component. And all that crap because of
576 * bloody create() on broken symlinks. Furrfu...
579 if (unlikely(!name)) {
583 strcpy(name, nd->last.name);
584 nd->last.name = name;
588 return PTR_ERR(link);
591 static inline void dput_path(struct path *path, struct nameidata *nd)
594 if (path->mnt != nd->mnt)
598 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
601 if (nd->mnt != path->mnt)
604 nd->dentry = path->dentry;
607 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
611 struct dentry *dentry = path->dentry;
613 touch_atime(path->mnt, dentry);
614 nd_set_link(nd, NULL);
616 if (path->mnt != nd->mnt) {
617 path_to_nameidata(path, nd);
621 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
622 error = PTR_ERR(cookie);
623 if (!IS_ERR(cookie)) {
624 char *s = nd_get_link(nd);
627 error = __vfs_follow_link(nd, s);
628 if (dentry->d_inode->i_op->put_link)
629 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
638 * This limits recursive symlink follows to 8, while
639 * limiting consecutive symlinks to 40.
641 * Without that kind of total limit, nasty chains of consecutive
642 * symlinks can cause almost arbitrarily long lookups.
644 static inline int do_follow_link(struct path *path, struct nameidata *nd)
647 if (current->link_count >= MAX_NESTED_LINKS)
649 if (current->total_link_count >= 40)
651 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
653 err = security_inode_follow_link(path->dentry, nd);
656 current->link_count++;
657 current->total_link_count++;
659 err = __do_follow_link(path, nd);
660 current->link_count--;
669 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
671 struct vfsmount *parent;
672 struct dentry *mountpoint;
673 spin_lock(&vfsmount_lock);
674 parent=(*mnt)->mnt_parent;
675 if (parent == *mnt) {
676 spin_unlock(&vfsmount_lock);
680 mountpoint=dget((*mnt)->mnt_mountpoint);
681 spin_unlock(&vfsmount_lock);
683 *dentry = mountpoint;
689 /* no need for dcache_lock, as serialization is taken care in
692 static int __follow_mount(struct path *path)
695 while (d_mountpoint(path->dentry)) {
696 struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
703 path->dentry = dget(mounted->mnt_root);
709 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
711 while (d_mountpoint(*dentry)) {
712 struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
718 *dentry = dget(mounted->mnt_root);
722 /* no need for dcache_lock, as serialization is taken care in
725 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
727 struct vfsmount *mounted;
729 mounted = lookup_mnt(*mnt, *dentry);
734 *dentry = dget(mounted->mnt_root);
740 static __always_inline void follow_dotdot(struct nameidata *nd)
742 struct fs_struct *fs = current->fs;
745 struct vfsmount *parent;
746 struct dentry *old = nd->dentry;
748 read_lock(&fs->lock);
749 if (nd->dentry == fs->root &&
750 nd->mnt == fs->rootmnt) {
751 read_unlock(&fs->lock);
754 read_unlock(&fs->lock);
755 spin_lock(&dcache_lock);
756 if (nd->dentry != nd->mnt->mnt_root) {
757 nd->dentry = dget(nd->dentry->d_parent);
758 spin_unlock(&dcache_lock);
762 spin_unlock(&dcache_lock);
763 spin_lock(&vfsmount_lock);
764 parent = nd->mnt->mnt_parent;
765 if (parent == nd->mnt) {
766 spin_unlock(&vfsmount_lock);
770 nd->dentry = dget(nd->mnt->mnt_mountpoint);
771 spin_unlock(&vfsmount_lock);
776 follow_mount(&nd->mnt, &nd->dentry);
780 * It's more convoluted than I'd like it to be, but... it's still fairly
781 * small and for now I'd prefer to have fast path as straight as possible.
782 * It _is_ time-critical.
784 static int do_lookup(struct nameidata *nd, struct qstr *name,
787 struct vfsmount *mnt = nd->mnt;
788 struct dentry *dentry = __d_lookup(nd->dentry, name);
792 if (dentry->d_op && dentry->d_op->d_revalidate)
793 goto need_revalidate;
796 path->dentry = dentry;
797 __follow_mount(path);
801 dentry = real_lookup(nd->dentry, name, nd);
807 dentry = do_revalidate(dentry, nd);
815 return PTR_ERR(dentry);
820 * This is the basic name resolution function, turning a pathname into
821 * the final dentry. We expect 'base' to be positive and a directory.
823 * Returns 0 and nd will have valid dentry and mnt on success.
824 * Returns error and drops reference to input namei data on failure.
826 static fastcall int __link_path_walk(const char * name, struct nameidata *nd)
831 unsigned int lookup_flags = nd->flags;
838 inode = nd->dentry->d_inode;
840 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
842 /* At this point we know we have a real path component. */
848 nd->flags |= LOOKUP_CONTINUE;
849 err = exec_permission_lite(inode, nd);
851 err = vfs_permission(nd, MAY_EXEC);
856 c = *(const unsigned char *)name;
858 hash = init_name_hash();
861 hash = partial_name_hash(c, hash);
862 c = *(const unsigned char *)name;
863 } while (c && (c != '/'));
864 this.len = name - (const char *) this.name;
865 this.hash = end_name_hash(hash);
867 /* remove trailing slashes? */
870 while (*++name == '/');
872 goto last_with_slashes;
875 * "." and ".." are special - ".." especially so because it has
876 * to be able to know about the current root directory and
877 * parent relationships.
879 if (this.name[0] == '.') switch (this.len) {
883 if (this.name[1] != '.')
886 inode = nd->dentry->d_inode;
892 * See if the low-level filesystem might want
893 * to use its own hash..
895 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
896 err = nd->dentry->d_op->d_hash(nd->dentry, &this);
900 /* This does the actual lookups.. */
901 err = do_lookup(nd, &this, &next);
906 inode = next.dentry->d_inode;
913 if (inode->i_op->follow_link) {
914 err = do_follow_link(&next, nd);
918 inode = nd->dentry->d_inode;
925 path_to_nameidata(&next, nd);
927 if (!inode->i_op->lookup)
930 /* here ends the main loop */
933 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
935 /* Clear LOOKUP_CONTINUE iff it was previously unset */
936 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
937 if (lookup_flags & LOOKUP_PARENT)
939 if (this.name[0] == '.') switch (this.len) {
943 if (this.name[1] != '.')
946 inode = nd->dentry->d_inode;
951 if (nd->dentry->d_op && nd->dentry->d_op->d_hash) {
952 err = nd->dentry->d_op->d_hash(nd->dentry, &this);
956 err = do_lookup(nd, &this, &next);
959 inode = next.dentry->d_inode;
960 if ((lookup_flags & LOOKUP_FOLLOW)
961 && inode && inode->i_op && inode->i_op->follow_link) {
962 err = do_follow_link(&next, nd);
965 inode = nd->dentry->d_inode;
967 path_to_nameidata(&next, nd);
971 if (lookup_flags & LOOKUP_DIRECTORY) {
973 if (!inode->i_op || !inode->i_op->lookup)
979 nd->last_type = LAST_NORM;
980 if (this.name[0] != '.')
983 nd->last_type = LAST_DOT;
984 else if (this.len == 2 && this.name[1] == '.')
985 nd->last_type = LAST_DOTDOT;
990 * We bypassed the ordinary revalidation routines.
991 * We may need to check the cached dentry for staleness.
993 if (nd->dentry && nd->dentry->d_sb &&
994 (nd->dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
996 /* Note: we do not d_invalidate() */
997 if (!nd->dentry->d_op->d_revalidate(nd->dentry, nd))
1003 dput_path(&next, nd);
1012 * Wrapper to retry pathname resolution whenever the underlying
1013 * file system returns an ESTALE.
1015 * Retry the whole path once, forcing real lookup requests
1016 * instead of relying on the dcache.
1018 static int fastcall link_path_walk(const char *name, struct nameidata *nd)
1020 struct nameidata save = *nd;
1023 /* make sure the stuff we saved doesn't go away */
1027 result = __link_path_walk(name, nd);
1028 if (result == -ESTALE) {
1032 nd->flags |= LOOKUP_REVAL;
1033 result = __link_path_walk(name, nd);
1042 static int fastcall path_walk(const char * name, struct nameidata *nd)
1044 current->total_link_count = 0;
1045 return link_path_walk(name, nd);
1049 * SMP-safe: Returns 1 and nd will have valid dentry and mnt, if
1050 * everything is done. Returns 0 and drops input nd, if lookup failed;
1052 static int __emul_lookup_dentry(const char *name, struct nameidata *nd)
1054 if (path_walk(name, nd))
1055 return 0; /* something went wrong... */
1057 if (!nd->dentry->d_inode || S_ISDIR(nd->dentry->d_inode->i_mode)) {
1058 struct dentry *old_dentry = nd->dentry;
1059 struct vfsmount *old_mnt = nd->mnt;
1060 struct qstr last = nd->last;
1061 int last_type = nd->last_type;
1062 struct fs_struct *fs = current->fs;
1065 * NAME was not found in alternate root or it's a directory.
1066 * Try to find it in the normal root:
1068 nd->last_type = LAST_ROOT;
1069 read_lock(&fs->lock);
1070 nd->mnt = mntget(fs->rootmnt);
1071 nd->dentry = dget(fs->root);
1072 read_unlock(&fs->lock);
1073 if (path_walk(name, nd) == 0) {
1074 if (nd->dentry->d_inode) {
1081 nd->dentry = old_dentry;
1084 nd->last_type = last_type;
1089 void set_fs_altroot(void)
1091 char *emul = __emul_prefix();
1092 struct nameidata nd;
1093 struct vfsmount *mnt = NULL, *oldmnt;
1094 struct dentry *dentry = NULL, *olddentry;
1096 struct fs_struct *fs = current->fs;
1100 err = path_lookup(emul, LOOKUP_FOLLOW|LOOKUP_DIRECTORY|LOOKUP_NOALT, &nd);
1106 write_lock(&fs->lock);
1107 oldmnt = fs->altrootmnt;
1108 olddentry = fs->altroot;
1109 fs->altrootmnt = mnt;
1110 fs->altroot = dentry;
1111 write_unlock(&fs->lock);
1118 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1119 static int fastcall do_path_lookup(int dfd, const char *name,
1120 unsigned int flags, struct nameidata *nd)
1125 struct fs_struct *fs = current->fs;
1127 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1132 read_lock(&fs->lock);
1133 if (fs->altroot && !(nd->flags & LOOKUP_NOALT)) {
1134 nd->mnt = mntget(fs->altrootmnt);
1135 nd->dentry = dget(fs->altroot);
1136 read_unlock(&fs->lock);
1137 if (__emul_lookup_dentry(name,nd))
1138 goto out; /* found in altroot */
1139 read_lock(&fs->lock);
1141 nd->mnt = mntget(fs->rootmnt);
1142 nd->dentry = dget(fs->root);
1143 read_unlock(&fs->lock);
1144 } else if (dfd == AT_FDCWD) {
1145 read_lock(&fs->lock);
1146 nd->mnt = mntget(fs->pwdmnt);
1147 nd->dentry = dget(fs->pwd);
1148 read_unlock(&fs->lock);
1150 struct dentry *dentry;
1152 file = fget_light(dfd, &fput_needed);
1157 dentry = file->f_path.dentry;
1160 if (!S_ISDIR(dentry->d_inode->i_mode))
1163 retval = file_permission(file, MAY_EXEC);
1167 nd->mnt = mntget(file->f_path.mnt);
1168 nd->dentry = dget(dentry);
1170 fput_light(file, fput_needed);
1173 retval = path_walk(name, nd);
1175 if (unlikely(!retval && !audit_dummy_context() && nd->dentry &&
1176 nd->dentry->d_inode))
1177 audit_inode(name, nd->dentry->d_inode);
1182 fput_light(file, fput_needed);
1186 int fastcall path_lookup(const char *name, unsigned int flags,
1187 struct nameidata *nd)
1189 return do_path_lookup(AT_FDCWD, name, flags, nd);
1193 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1194 * @dentry: pointer to dentry of the base directory
1195 * @mnt: pointer to vfs mount of the base directory
1196 * @name: pointer to file name
1197 * @flags: lookup flags
1198 * @nd: pointer to nameidata
1200 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1201 const char *name, unsigned int flags,
1202 struct nameidata *nd)
1206 /* same as do_path_lookup */
1207 nd->last_type = LAST_ROOT;
1211 nd->mnt = mntget(mnt);
1212 nd->dentry = dget(dentry);
1214 retval = path_walk(name, nd);
1215 if (unlikely(!retval && !audit_dummy_context() && nd->dentry &&
1216 nd->dentry->d_inode))
1217 audit_inode(name, nd->dentry->d_inode);
1223 static int __path_lookup_intent_open(int dfd, const char *name,
1224 unsigned int lookup_flags, struct nameidata *nd,
1225 int open_flags, int create_mode)
1227 struct file *filp = get_empty_filp();
1232 nd->intent.open.file = filp;
1233 nd->intent.open.flags = open_flags;
1234 nd->intent.open.create_mode = create_mode;
1235 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1236 if (IS_ERR(nd->intent.open.file)) {
1238 err = PTR_ERR(nd->intent.open.file);
1241 } else if (err != 0)
1242 release_open_intent(nd);
1247 * path_lookup_open - lookup a file path with open intent
1248 * @dfd: the directory to use as base, or AT_FDCWD
1249 * @name: pointer to file name
1250 * @lookup_flags: lookup intent flags
1251 * @nd: pointer to nameidata
1252 * @open_flags: open intent flags
1254 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1255 struct nameidata *nd, int open_flags)
1257 return __path_lookup_intent_open(dfd, name, lookup_flags, nd,
1262 * path_lookup_create - lookup a file path with open + create intent
1263 * @dfd: the directory to use as base, or AT_FDCWD
1264 * @name: pointer to file name
1265 * @lookup_flags: lookup intent flags
1266 * @nd: pointer to nameidata
1267 * @open_flags: open intent flags
1268 * @create_mode: create intent flags
1270 static int path_lookup_create(int dfd, const char *name,
1271 unsigned int lookup_flags, struct nameidata *nd,
1272 int open_flags, int create_mode)
1274 return __path_lookup_intent_open(dfd, name, lookup_flags|LOOKUP_CREATE,
1275 nd, open_flags, create_mode);
1278 int __user_path_lookup_open(const char __user *name, unsigned int lookup_flags,
1279 struct nameidata *nd, int open_flags)
1281 char *tmp = getname(name);
1282 int err = PTR_ERR(tmp);
1285 err = __path_lookup_intent_open(AT_FDCWD, tmp, lookup_flags, nd, open_flags, 0);
1291 static struct dentry *__lookup_hash(struct qstr *name,
1292 struct dentry *base, struct nameidata *nd)
1294 struct dentry *dentry;
1295 struct inode *inode;
1298 inode = base->d_inode;
1301 * See if the low-level filesystem might want
1302 * to use its own hash..
1304 if (base->d_op && base->d_op->d_hash) {
1305 err = base->d_op->d_hash(base, name);
1306 dentry = ERR_PTR(err);
1311 dentry = cached_lookup(base, name, nd);
1313 struct dentry *new = d_alloc(base, name);
1314 dentry = ERR_PTR(-ENOMEM);
1317 dentry = inode->i_op->lookup(inode, new, nd);
1328 * Restricted form of lookup. Doesn't follow links, single-component only,
1329 * needs parent already locked. Doesn't follow mounts.
1332 static struct dentry *lookup_hash(struct nameidata *nd)
1336 err = permission(nd->dentry->d_inode, MAY_EXEC, nd);
1338 return ERR_PTR(err);
1339 return __lookup_hash(&nd->last, nd->dentry, nd);
1342 static int __lookup_one_len(const char *name, struct qstr *this,
1343 struct dentry *base, int len)
1353 hash = init_name_hash();
1355 c = *(const unsigned char *)name++;
1356 if (c == '/' || c == '\0')
1358 hash = partial_name_hash(c, hash);
1360 this->hash = end_name_hash(hash);
1365 * lookup_one_len: filesystem helper to lookup single pathname component
1366 * @name: pathname component to lookup
1367 * @base: base directory to lookup from
1368 * @len: maximum length @len should be interpreted to
1370 * Note that this routine is purely a helper for filesystem useage and should
1371 * not be called by generic code. Also note that by using this function to
1372 * nameidata argument is passed to the filesystem methods and a filesystem
1373 * using this helper needs to be prepared for that.
1375 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1380 err = __lookup_one_len(name, &this, base, len);
1382 return ERR_PTR(err);
1384 err = permission(base->d_inode, MAY_EXEC, NULL);
1386 return ERR_PTR(err);
1387 return __lookup_hash(&this, base, NULL);
1391 * lookup_one_noperm - bad hack for sysfs
1392 * @name: pathname component to lookup
1393 * @base: base directory to lookup from
1395 * This is a variant of lookup_one_len that doesn't perform any permission
1396 * checks. It's a horrible hack to work around the braindead sysfs
1397 * architecture and should not be used anywhere else.
1399 * DON'T USE THIS FUNCTION EVER, thanks.
1401 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1406 err = __lookup_one_len(name, &this, base, strlen(name));
1408 return ERR_PTR(err);
1409 return __lookup_hash(&this, base, NULL);
1412 int fastcall __user_walk_fd(int dfd, const char __user *name, unsigned flags,
1413 struct nameidata *nd)
1415 char *tmp = getname(name);
1416 int err = PTR_ERR(tmp);
1419 err = do_path_lookup(dfd, tmp, flags, nd);
1425 int fastcall __user_walk(const char __user *name, unsigned flags, struct nameidata *nd)
1427 return __user_walk_fd(AT_FDCWD, name, flags, nd);
1431 * It's inline, so penalty for filesystems that don't use sticky bit is
1434 static inline int check_sticky(struct inode *dir, struct inode *inode)
1436 if (!(dir->i_mode & S_ISVTX))
1438 if (inode->i_uid == current->fsuid)
1440 if (dir->i_uid == current->fsuid)
1442 return !capable(CAP_FOWNER);
1446 * Check whether we can remove a link victim from directory dir, check
1447 * whether the type of victim is right.
1448 * 1. We can't do it if dir is read-only (done in permission())
1449 * 2. We should have write and exec permissions on dir
1450 * 3. We can't remove anything from append-only dir
1451 * 4. We can't do anything with immutable dir (done in permission())
1452 * 5. If the sticky bit on dir is set we should either
1453 * a. be owner of dir, or
1454 * b. be owner of victim, or
1455 * c. have CAP_FOWNER capability
1456 * 6. If the victim is append-only or immutable we can't do antyhing with
1457 * links pointing to it.
1458 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1459 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1460 * 9. We can't remove a root or mountpoint.
1461 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1462 * nfs_async_unlink().
1464 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1468 if (!victim->d_inode)
1471 BUG_ON(victim->d_parent->d_inode != dir);
1472 audit_inode_child(victim->d_name.name, victim->d_inode, dir);
1474 error = permission(dir,MAY_WRITE | MAY_EXEC, NULL);
1479 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1480 IS_IMMUTABLE(victim->d_inode))
1483 if (!S_ISDIR(victim->d_inode->i_mode))
1485 if (IS_ROOT(victim))
1487 } else if (S_ISDIR(victim->d_inode->i_mode))
1489 if (IS_DEADDIR(dir))
1491 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1496 /* Check whether we can create an object with dentry child in directory
1498 * 1. We can't do it if child already exists (open has special treatment for
1499 * this case, but since we are inlined it's OK)
1500 * 2. We can't do it if dir is read-only (done in permission())
1501 * 3. We should have write and exec permissions on dir
1502 * 4. We can't do it if dir is immutable (done in permission())
1504 static inline int may_create(struct inode *dir, struct dentry *child,
1505 struct nameidata *nd)
1509 if (IS_DEADDIR(dir))
1511 return permission(dir,MAY_WRITE | MAY_EXEC, nd);
1515 * O_DIRECTORY translates into forcing a directory lookup.
1517 static inline int lookup_flags(unsigned int f)
1519 unsigned long retval = LOOKUP_FOLLOW;
1522 retval &= ~LOOKUP_FOLLOW;
1524 if (f & O_DIRECTORY)
1525 retval |= LOOKUP_DIRECTORY;
1531 * p1 and p2 should be directories on the same fs.
1533 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1538 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1542 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1544 for (p = p1; p->d_parent != p; p = p->d_parent) {
1545 if (p->d_parent == p2) {
1546 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1547 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1552 for (p = p2; p->d_parent != p; p = p->d_parent) {
1553 if (p->d_parent == p1) {
1554 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1555 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1560 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1561 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1565 void unlock_rename(struct dentry *p1, struct dentry *p2)
1567 mutex_unlock(&p1->d_inode->i_mutex);
1569 mutex_unlock(&p2->d_inode->i_mutex);
1570 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1574 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1575 struct nameidata *nd)
1577 int error = may_create(dir, dentry, nd);
1582 if (!dir->i_op || !dir->i_op->create)
1583 return -EACCES; /* shouldn't it be ENOSYS? */
1586 error = security_inode_create(dir, dentry, mode);
1590 error = dir->i_op->create(dir, dentry, mode, nd);
1592 fsnotify_create(dir, dentry);
1596 int may_open(struct nameidata *nd, int acc_mode, int flag)
1598 struct dentry *dentry = nd->dentry;
1599 struct inode *inode = dentry->d_inode;
1605 if (S_ISLNK(inode->i_mode))
1608 if (S_ISDIR(inode->i_mode) && (flag & FMODE_WRITE))
1612 * FIFO's, sockets and device files are special: they don't
1613 * actually live on the filesystem itself, and as such you
1614 * can write to them even if the filesystem is read-only.
1616 if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1618 } else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1619 if (nd->mnt->mnt_flags & MNT_NODEV)
1623 } else if (IS_RDONLY(inode) && (flag & FMODE_WRITE))
1626 error = vfs_permission(nd, acc_mode);
1630 * An append-only file must be opened in append mode for writing.
1632 if (IS_APPEND(inode)) {
1633 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1639 /* O_NOATIME can only be set by the owner or superuser */
1640 if (flag & O_NOATIME)
1641 if (!is_owner_or_cap(inode))
1645 * Ensure there are no outstanding leases on the file.
1647 error = break_lease(inode, flag);
1651 if (flag & O_TRUNC) {
1652 error = get_write_access(inode);
1657 * Refuse to truncate files with mandatory locks held on them.
1659 error = locks_verify_locked(inode);
1663 error = do_truncate(dentry, 0, ATTR_MTIME|ATTR_CTIME, NULL);
1665 put_write_access(inode);
1669 if (flag & FMODE_WRITE)
1675 static int open_namei_create(struct nameidata *nd, struct path *path,
1679 struct dentry *dir = nd->dentry;
1681 if (!IS_POSIXACL(dir->d_inode))
1682 mode &= ~current->fs->umask;
1683 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1684 mutex_unlock(&dir->d_inode->i_mutex);
1686 nd->dentry = path->dentry;
1689 /* Don't check for write permission, don't truncate */
1690 return may_open(nd, 0, flag & ~O_TRUNC);
1696 * namei for open - this is in fact almost the whole open-routine.
1698 * Note that the low bits of "flag" aren't the same as in the open
1699 * system call - they are 00 - no permissions needed
1700 * 01 - read permission needed
1701 * 10 - write permission needed
1702 * 11 - read/write permissions needed
1703 * which is a lot more logical, and also allows the "no perm" needed
1704 * for symlinks (where the permissions are checked later).
1707 int open_namei(int dfd, const char *pathname, int flag,
1708 int mode, struct nameidata *nd)
1710 int acc_mode, error;
1715 acc_mode = ACC_MODE(flag);
1717 /* O_TRUNC implies we need access checks for write permissions */
1719 acc_mode |= MAY_WRITE;
1721 /* Allow the LSM permission hook to distinguish append
1722 access from general write access. */
1723 if (flag & O_APPEND)
1724 acc_mode |= MAY_APPEND;
1727 * The simplest case - just a plain lookup.
1729 if (!(flag & O_CREAT)) {
1730 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1738 * Create - we need to know the parent.
1740 error = path_lookup_create(dfd,pathname,LOOKUP_PARENT,nd,flag,mode);
1745 * We have the parent and last component. First of all, check
1746 * that we are not asked to creat(2) an obvious directory - that
1750 if (nd->last_type != LAST_NORM || nd->last.name[nd->last.len])
1754 nd->flags &= ~LOOKUP_PARENT;
1755 mutex_lock(&dir->d_inode->i_mutex);
1756 path.dentry = lookup_hash(nd);
1760 error = PTR_ERR(path.dentry);
1761 if (IS_ERR(path.dentry)) {
1762 mutex_unlock(&dir->d_inode->i_mutex);
1766 if (IS_ERR(nd->intent.open.file)) {
1767 mutex_unlock(&dir->d_inode->i_mutex);
1768 error = PTR_ERR(nd->intent.open.file);
1772 /* Negative dentry, just create the file */
1773 if (!path.dentry->d_inode) {
1774 error = open_namei_create(nd, &path, flag, mode);
1781 * It already exists.
1783 mutex_unlock(&dir->d_inode->i_mutex);
1784 audit_inode(pathname, path.dentry->d_inode);
1790 if (__follow_mount(&path)) {
1792 if (flag & O_NOFOLLOW)
1797 if (!path.dentry->d_inode)
1799 if (path.dentry->d_inode->i_op && path.dentry->d_inode->i_op->follow_link)
1802 path_to_nameidata(&path, nd);
1804 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1807 error = may_open(nd, acc_mode, flag);
1813 dput_path(&path, nd);
1815 if (!IS_ERR(nd->intent.open.file))
1816 release_open_intent(nd);
1822 if (flag & O_NOFOLLOW)
1825 * This is subtle. Instead of calling do_follow_link() we do the
1826 * thing by hands. The reason is that this way we have zero link_count
1827 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1828 * After that we have the parent and last component, i.e.
1829 * we are in the same situation as after the first path_walk().
1830 * Well, almost - if the last component is normal we get its copy
1831 * stored in nd->last.name and we will have to putname() it when we
1832 * are done. Procfs-like symlinks just set LAST_BIND.
1834 nd->flags |= LOOKUP_PARENT;
1835 error = security_inode_follow_link(path.dentry, nd);
1838 error = __do_follow_link(&path, nd);
1840 /* Does someone understand code flow here? Or it is only
1841 * me so stupid? Anathema to whoever designed this non-sense
1842 * with "intent.open".
1844 release_open_intent(nd);
1847 nd->flags &= ~LOOKUP_PARENT;
1848 if (nd->last_type == LAST_BIND)
1851 if (nd->last_type != LAST_NORM)
1853 if (nd->last.name[nd->last.len]) {
1854 __putname(nd->last.name);
1859 __putname(nd->last.name);
1863 mutex_lock(&dir->d_inode->i_mutex);
1864 path.dentry = lookup_hash(nd);
1866 __putname(nd->last.name);
1871 * lookup_create - lookup a dentry, creating it if it doesn't exist
1872 * @nd: nameidata info
1873 * @is_dir: directory flag
1875 * Simple function to lookup and return a dentry and create it
1876 * if it doesn't exist. Is SMP-safe.
1878 * Returns with nd->dentry->d_inode->i_mutex locked.
1880 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1882 struct dentry *dentry = ERR_PTR(-EEXIST);
1884 mutex_lock_nested(&nd->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1886 * Yucky last component or no last component at all?
1887 * (foo/., foo/.., /////)
1889 if (nd->last_type != LAST_NORM)
1891 nd->flags &= ~LOOKUP_PARENT;
1892 nd->flags |= LOOKUP_CREATE;
1893 nd->intent.open.flags = O_EXCL;
1896 * Do the final lookup.
1898 dentry = lookup_hash(nd);
1903 * Special case - lookup gave negative, but... we had foo/bar/
1904 * From the vfs_mknod() POV we just have a negative dentry -
1905 * all is fine. Let's be bastards - you had / on the end, you've
1906 * been asking for (non-existent) directory. -ENOENT for you.
1908 if (!is_dir && nd->last.name[nd->last.len] && !dentry->d_inode)
1913 dentry = ERR_PTR(-ENOENT);
1917 EXPORT_SYMBOL_GPL(lookup_create);
1919 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1921 int error = may_create(dir, dentry, NULL);
1926 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1929 if (!dir->i_op || !dir->i_op->mknod)
1932 error = security_inode_mknod(dir, dentry, mode, dev);
1937 error = dir->i_op->mknod(dir, dentry, mode, dev);
1939 fsnotify_create(dir, dentry);
1943 asmlinkage long sys_mknodat(int dfd, const char __user *filename, int mode,
1948 struct dentry * dentry;
1949 struct nameidata nd;
1953 tmp = getname(filename);
1955 return PTR_ERR(tmp);
1957 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
1960 dentry = lookup_create(&nd, 0);
1961 error = PTR_ERR(dentry);
1963 if (!IS_POSIXACL(nd.dentry->d_inode))
1964 mode &= ~current->fs->umask;
1965 if (!IS_ERR(dentry)) {
1966 switch (mode & S_IFMT) {
1967 case 0: case S_IFREG:
1968 error = vfs_create(nd.dentry->d_inode,dentry,mode,&nd);
1970 case S_IFCHR: case S_IFBLK:
1971 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,
1972 new_decode_dev(dev));
1974 case S_IFIFO: case S_IFSOCK:
1975 error = vfs_mknod(nd.dentry->d_inode,dentry,mode,0);
1985 mutex_unlock(&nd.dentry->d_inode->i_mutex);
1993 asmlinkage long sys_mknod(const char __user *filename, int mode, unsigned dev)
1995 return sys_mknodat(AT_FDCWD, filename, mode, dev);
1998 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2000 int error = may_create(dir, dentry, NULL);
2005 if (!dir->i_op || !dir->i_op->mkdir)
2008 mode &= (S_IRWXUGO|S_ISVTX);
2009 error = security_inode_mkdir(dir, dentry, mode);
2014 error = dir->i_op->mkdir(dir, dentry, mode);
2016 fsnotify_mkdir(dir, dentry);
2020 asmlinkage long sys_mkdirat(int dfd, const char __user *pathname, int mode)
2024 struct dentry *dentry;
2025 struct nameidata nd;
2027 tmp = getname(pathname);
2028 error = PTR_ERR(tmp);
2032 error = do_path_lookup(dfd, tmp, LOOKUP_PARENT, &nd);
2035 dentry = lookup_create(&nd, 1);
2036 error = PTR_ERR(dentry);
2040 if (!IS_POSIXACL(nd.dentry->d_inode))
2041 mode &= ~current->fs->umask;
2042 error = vfs_mkdir(nd.dentry->d_inode, dentry, mode);
2045 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2053 asmlinkage long sys_mkdir(const char __user *pathname, int mode)
2055 return sys_mkdirat(AT_FDCWD, pathname, mode);
2059 * We try to drop the dentry early: we should have
2060 * a usage count of 2 if we're the only user of this
2061 * dentry, and if that is true (possibly after pruning
2062 * the dcache), then we drop the dentry now.
2064 * A low-level filesystem can, if it choses, legally
2067 * if (!d_unhashed(dentry))
2070 * if it cannot handle the case of removing a directory
2071 * that is still in use by something else..
2073 void dentry_unhash(struct dentry *dentry)
2076 shrink_dcache_parent(dentry);
2077 spin_lock(&dcache_lock);
2078 spin_lock(&dentry->d_lock);
2079 if (atomic_read(&dentry->d_count) == 2)
2081 spin_unlock(&dentry->d_lock);
2082 spin_unlock(&dcache_lock);
2085 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2087 int error = may_delete(dir, dentry, 1);
2092 if (!dir->i_op || !dir->i_op->rmdir)
2097 mutex_lock(&dentry->d_inode->i_mutex);
2098 dentry_unhash(dentry);
2099 if (d_mountpoint(dentry))
2102 error = security_inode_rmdir(dir, dentry);
2104 error = dir->i_op->rmdir(dir, dentry);
2106 dentry->d_inode->i_flags |= S_DEAD;
2109 mutex_unlock(&dentry->d_inode->i_mutex);
2118 static long do_rmdir(int dfd, const char __user *pathname)
2122 struct dentry *dentry;
2123 struct nameidata nd;
2125 name = getname(pathname);
2127 return PTR_ERR(name);
2129 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2133 switch(nd.last_type) {
2144 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2145 dentry = lookup_hash(&nd);
2146 error = PTR_ERR(dentry);
2149 error = vfs_rmdir(nd.dentry->d_inode, dentry);
2152 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2160 asmlinkage long sys_rmdir(const char __user *pathname)
2162 return do_rmdir(AT_FDCWD, pathname);
2165 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2167 int error = may_delete(dir, dentry, 0);
2172 if (!dir->i_op || !dir->i_op->unlink)
2177 mutex_lock(&dentry->d_inode->i_mutex);
2178 if (d_mountpoint(dentry))
2181 error = security_inode_unlink(dir, dentry);
2183 error = dir->i_op->unlink(dir, dentry);
2185 mutex_unlock(&dentry->d_inode->i_mutex);
2187 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2188 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2196 * Make sure that the actual truncation of the file will occur outside its
2197 * directory's i_mutex. Truncate can take a long time if there is a lot of
2198 * writeout happening, and we don't want to prevent access to the directory
2199 * while waiting on the I/O.
2201 static long do_unlinkat(int dfd, const char __user *pathname)
2205 struct dentry *dentry;
2206 struct nameidata nd;
2207 struct inode *inode = NULL;
2209 name = getname(pathname);
2211 return PTR_ERR(name);
2213 error = do_path_lookup(dfd, name, LOOKUP_PARENT, &nd);
2217 if (nd.last_type != LAST_NORM)
2219 mutex_lock_nested(&nd.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2220 dentry = lookup_hash(&nd);
2221 error = PTR_ERR(dentry);
2222 if (!IS_ERR(dentry)) {
2223 /* Why not before? Because we want correct error value */
2224 if (nd.last.name[nd.last.len])
2226 inode = dentry->d_inode;
2228 atomic_inc(&inode->i_count);
2229 error = vfs_unlink(nd.dentry->d_inode, dentry);
2233 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2235 iput(inode); /* truncate the inode here */
2243 error = !dentry->d_inode ? -ENOENT :
2244 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2248 asmlinkage long sys_unlinkat(int dfd, const char __user *pathname, int flag)
2250 if ((flag & ~AT_REMOVEDIR) != 0)
2253 if (flag & AT_REMOVEDIR)
2254 return do_rmdir(dfd, pathname);
2256 return do_unlinkat(dfd, pathname);
2259 asmlinkage long sys_unlink(const char __user *pathname)
2261 return do_unlinkat(AT_FDCWD, pathname);
2264 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname, int mode)
2266 int error = may_create(dir, dentry, NULL);
2271 if (!dir->i_op || !dir->i_op->symlink)
2274 error = security_inode_symlink(dir, dentry, oldname);
2279 error = dir->i_op->symlink(dir, dentry, oldname);
2281 fsnotify_create(dir, dentry);
2285 asmlinkage long sys_symlinkat(const char __user *oldname,
2286 int newdfd, const char __user *newname)
2291 struct dentry *dentry;
2292 struct nameidata nd;
2294 from = getname(oldname);
2296 return PTR_ERR(from);
2297 to = getname(newname);
2298 error = PTR_ERR(to);
2302 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2305 dentry = lookup_create(&nd, 0);
2306 error = PTR_ERR(dentry);
2310 error = vfs_symlink(nd.dentry->d_inode, dentry, from, S_IALLUGO);
2313 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2322 asmlinkage long sys_symlink(const char __user *oldname, const char __user *newname)
2324 return sys_symlinkat(oldname, AT_FDCWD, newname);
2327 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2329 struct inode *inode = old_dentry->d_inode;
2335 error = may_create(dir, new_dentry, NULL);
2339 if (dir->i_sb != inode->i_sb)
2343 * A link to an append-only or immutable file cannot be created.
2345 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2347 if (!dir->i_op || !dir->i_op->link)
2349 if (S_ISDIR(old_dentry->d_inode->i_mode))
2352 error = security_inode_link(old_dentry, dir, new_dentry);
2356 mutex_lock(&old_dentry->d_inode->i_mutex);
2358 error = dir->i_op->link(old_dentry, dir, new_dentry);
2359 mutex_unlock(&old_dentry->d_inode->i_mutex);
2361 fsnotify_create(dir, new_dentry);
2366 * Hardlinks are often used in delicate situations. We avoid
2367 * security-related surprises by not following symlinks on the
2370 * We don't follow them on the oldname either to be compatible
2371 * with linux 2.0, and to avoid hard-linking to directories
2372 * and other special files. --ADM
2374 asmlinkage long sys_linkat(int olddfd, const char __user *oldname,
2375 int newdfd, const char __user *newname,
2378 struct dentry *new_dentry;
2379 struct nameidata nd, old_nd;
2383 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2386 to = getname(newname);
2390 error = __user_walk_fd(olddfd, oldname,
2391 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2395 error = do_path_lookup(newdfd, to, LOOKUP_PARENT, &nd);
2399 if (old_nd.mnt != nd.mnt)
2401 new_dentry = lookup_create(&nd, 0);
2402 error = PTR_ERR(new_dentry);
2403 if (IS_ERR(new_dentry))
2405 error = vfs_link(old_nd.dentry, nd.dentry->d_inode, new_dentry);
2408 mutex_unlock(&nd.dentry->d_inode->i_mutex);
2412 path_release(&old_nd);
2419 asmlinkage long sys_link(const char __user *oldname, const char __user *newname)
2421 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2425 * The worst of all namespace operations - renaming directory. "Perverted"
2426 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2428 * a) we can get into loop creation. Check is done in is_subdir().
2429 * b) race potential - two innocent renames can create a loop together.
2430 * That's where 4.4 screws up. Current fix: serialization on
2431 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2433 * c) we have to lock _three_ objects - parents and victim (if it exists).
2434 * And that - after we got ->i_mutex on parents (until then we don't know
2435 * whether the target exists). Solution: try to be smart with locking
2436 * order for inodes. We rely on the fact that tree topology may change
2437 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2438 * move will be locked. Thus we can rank directories by the tree
2439 * (ancestors first) and rank all non-directories after them.
2440 * That works since everybody except rename does "lock parent, lookup,
2441 * lock child" and rename is under ->s_vfs_rename_mutex.
2442 * HOWEVER, it relies on the assumption that any object with ->lookup()
2443 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2444 * we'd better make sure that there's no link(2) for them.
2445 * d) some filesystems don't support opened-but-unlinked directories,
2446 * either because of layout or because they are not ready to deal with
2447 * all cases correctly. The latter will be fixed (taking this sort of
2448 * stuff into VFS), but the former is not going away. Solution: the same
2449 * trick as in rmdir().
2450 * e) conversion from fhandle to dentry may come in the wrong moment - when
2451 * we are removing the target. Solution: we will have to grab ->i_mutex
2452 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2453 * ->i_mutex on parents, which works but leads to some truely excessive
2456 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2457 struct inode *new_dir, struct dentry *new_dentry)
2460 struct inode *target;
2463 * If we are going to change the parent - check write permissions,
2464 * we'll need to flip '..'.
2466 if (new_dir != old_dir) {
2467 error = permission(old_dentry->d_inode, MAY_WRITE, NULL);
2472 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2476 target = new_dentry->d_inode;
2478 mutex_lock(&target->i_mutex);
2479 dentry_unhash(new_dentry);
2481 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2484 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2487 target->i_flags |= S_DEAD;
2488 mutex_unlock(&target->i_mutex);
2489 if (d_unhashed(new_dentry))
2490 d_rehash(new_dentry);
2494 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2495 d_move(old_dentry,new_dentry);
2499 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2500 struct inode *new_dir, struct dentry *new_dentry)
2502 struct inode *target;
2505 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2510 target = new_dentry->d_inode;
2512 mutex_lock(&target->i_mutex);
2513 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2516 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2518 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2519 d_move(old_dentry, new_dentry);
2522 mutex_unlock(&target->i_mutex);
2527 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2528 struct inode *new_dir, struct dentry *new_dentry)
2531 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2532 const char *old_name;
2534 if (old_dentry->d_inode == new_dentry->d_inode)
2537 error = may_delete(old_dir, old_dentry, is_dir);
2541 if (!new_dentry->d_inode)
2542 error = may_create(new_dir, new_dentry, NULL);
2544 error = may_delete(new_dir, new_dentry, is_dir);
2548 if (!old_dir->i_op || !old_dir->i_op->rename)
2551 DQUOT_INIT(old_dir);
2552 DQUOT_INIT(new_dir);
2554 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2557 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2559 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2561 const char *new_name = old_dentry->d_name.name;
2562 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2563 new_dentry->d_inode, old_dentry->d_inode);
2565 fsnotify_oldname_free(old_name);
2570 static int do_rename(int olddfd, const char *oldname,
2571 int newdfd, const char *newname)
2574 struct dentry * old_dir, * new_dir;
2575 struct dentry * old_dentry, *new_dentry;
2576 struct dentry * trap;
2577 struct nameidata oldnd, newnd;
2579 error = do_path_lookup(olddfd, oldname, LOOKUP_PARENT, &oldnd);
2583 error = do_path_lookup(newdfd, newname, LOOKUP_PARENT, &newnd);
2588 if (oldnd.mnt != newnd.mnt)
2591 old_dir = oldnd.dentry;
2593 if (oldnd.last_type != LAST_NORM)
2596 new_dir = newnd.dentry;
2597 if (newnd.last_type != LAST_NORM)
2600 trap = lock_rename(new_dir, old_dir);
2602 old_dentry = lookup_hash(&oldnd);
2603 error = PTR_ERR(old_dentry);
2604 if (IS_ERR(old_dentry))
2606 /* source must exist */
2608 if (!old_dentry->d_inode)
2610 /* unless the source is a directory trailing slashes give -ENOTDIR */
2611 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2613 if (oldnd.last.name[oldnd.last.len])
2615 if (newnd.last.name[newnd.last.len])
2618 /* source should not be ancestor of target */
2620 if (old_dentry == trap)
2622 new_dentry = lookup_hash(&newnd);
2623 error = PTR_ERR(new_dentry);
2624 if (IS_ERR(new_dentry))
2626 /* target should not be an ancestor of source */
2628 if (new_dentry == trap)
2631 error = vfs_rename(old_dir->d_inode, old_dentry,
2632 new_dir->d_inode, new_dentry);
2638 unlock_rename(new_dir, old_dir);
2640 path_release(&newnd);
2642 path_release(&oldnd);
2647 asmlinkage long sys_renameat(int olddfd, const char __user *oldname,
2648 int newdfd, const char __user *newname)
2654 from = getname(oldname);
2656 return PTR_ERR(from);
2657 to = getname(newname);
2658 error = PTR_ERR(to);
2660 error = do_rename(olddfd, from, newdfd, to);
2667 asmlinkage long sys_rename(const char __user *oldname, const char __user *newname)
2669 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2672 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2676 len = PTR_ERR(link);
2681 if (len > (unsigned) buflen)
2683 if (copy_to_user(buffer, link, len))
2690 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2691 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2692 * using) it for any given inode is up to filesystem.
2694 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2696 struct nameidata nd;
2700 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2701 if (!IS_ERR(cookie)) {
2702 int res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2703 if (dentry->d_inode->i_op->put_link)
2704 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2705 cookie = ERR_PTR(res);
2707 return PTR_ERR(cookie);
2710 int vfs_follow_link(struct nameidata *nd, const char *link)
2712 return __vfs_follow_link(nd, link);
2715 /* get the link contents into pagecache */
2716 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2719 struct address_space *mapping = dentry->d_inode->i_mapping;
2720 page = read_mapping_page(mapping, 0, NULL);
2727 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2729 struct page *page = NULL;
2730 char *s = page_getlink(dentry, &page);
2731 int res = vfs_readlink(dentry,buffer,buflen,s);
2734 page_cache_release(page);
2739 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2741 struct page *page = NULL;
2742 nd_set_link(nd, page_getlink(dentry, &page));
2746 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2748 struct page *page = cookie;
2752 page_cache_release(page);
2756 int __page_symlink(struct inode *inode, const char *symname, int len,
2759 struct address_space *mapping = inode->i_mapping;
2766 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2767 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2771 kaddr = kmap_atomic(page, KM_USER0);
2772 memcpy(kaddr, symname, len-1);
2773 kunmap_atomic(kaddr, KM_USER0);
2775 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2782 mark_inode_dirty(inode);
2788 int page_symlink(struct inode *inode, const char *symname, int len)
2790 return __page_symlink(inode, symname, len,
2791 mapping_gfp_mask(inode->i_mapping));
2794 const struct inode_operations page_symlink_inode_operations = {
2795 .readlink = generic_readlink,
2796 .follow_link = page_follow_link_light,
2797 .put_link = page_put_link,
2800 EXPORT_SYMBOL(__user_walk);
2801 EXPORT_SYMBOL(__user_walk_fd);
2802 EXPORT_SYMBOL(follow_down);
2803 EXPORT_SYMBOL(follow_up);
2804 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2805 EXPORT_SYMBOL(getname);
2806 EXPORT_SYMBOL(lock_rename);
2807 EXPORT_SYMBOL(lookup_one_len);
2808 EXPORT_SYMBOL(page_follow_link_light);
2809 EXPORT_SYMBOL(page_put_link);
2810 EXPORT_SYMBOL(page_readlink);
2811 EXPORT_SYMBOL(__page_symlink);
2812 EXPORT_SYMBOL(page_symlink);
2813 EXPORT_SYMBOL(page_symlink_inode_operations);
2814 EXPORT_SYMBOL(path_lookup);
2815 EXPORT_SYMBOL(vfs_path_lookup);
2816 EXPORT_SYMBOL(path_release);
2817 EXPORT_SYMBOL(permission);
2818 EXPORT_SYMBOL(vfs_permission);
2819 EXPORT_SYMBOL(file_permission);
2820 EXPORT_SYMBOL(unlock_rename);
2821 EXPORT_SYMBOL(vfs_create);
2822 EXPORT_SYMBOL(vfs_follow_link);
2823 EXPORT_SYMBOL(vfs_link);
2824 EXPORT_SYMBOL(vfs_mkdir);
2825 EXPORT_SYMBOL(vfs_mknod);
2826 EXPORT_SYMBOL(generic_permission);
2827 EXPORT_SYMBOL(vfs_readlink);
2828 EXPORT_SYMBOL(vfs_rename);
2829 EXPORT_SYMBOL(vfs_rmdir);
2830 EXPORT_SYMBOL(vfs_symlink);
2831 EXPORT_SYMBOL(vfs_unlink);
2832 EXPORT_SYMBOL(dentry_unhash);
2833 EXPORT_SYMBOL(generic_readlink);