jbd: use kmem_cache_zalloc for allocating journal head
[firefly-linux-kernel-4.4.55.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits, 0);
93         atomic_set(&transaction->t_handle_count, 0);
94         INIT_LIST_HEAD(&transaction->t_inode_list);
95         INIT_LIST_HEAD(&transaction->t_private_list);
96
97         /* Set up the commit timer for the new transaction. */
98         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99         add_timer(&journal->j_commit_timer);
100
101         J_ASSERT(journal->j_running_transaction == NULL);
102         journal->j_running_transaction = transaction;
103         transaction->t_max_wait = 0;
104         transaction->t_start = jiffies;
105         transaction->t_requested = 0;
106
107         return transaction;
108 }
109
110 /*
111  * Handle management.
112  *
113  * A handle_t is an object which represents a single atomic update to a
114  * filesystem, and which tracks all of the modifications which form part
115  * of that one update.
116  */
117
118 /*
119  * Update transaction's maximum wait time, if debugging is enabled.
120  *
121  * In order for t_max_wait to be reliable, it must be protected by a
122  * lock.  But doing so will mean that start_this_handle() can not be
123  * run in parallel on SMP systems, which limits our scalability.  So
124  * unless debugging is enabled, we no longer update t_max_wait, which
125  * means that maximum wait time reported by the jbd2_run_stats
126  * tracepoint will always be zero.
127  */
128 static inline void update_t_max_wait(transaction_t *transaction,
129                                      unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132         if (jbd2_journal_enable_debug &&
133             time_after(transaction->t_start, ts)) {
134                 ts = jbd2_time_diff(ts, transaction->t_start);
135                 spin_lock(&transaction->t_handle_lock);
136                 if (ts > transaction->t_max_wait)
137                         transaction->t_max_wait = ts;
138                 spin_unlock(&transaction->t_handle_lock);
139         }
140 #endif
141 }
142
143 /*
144  * start_this_handle: Given a handle, deal with any locking or stalling
145  * needed to make sure that there is enough journal space for the handle
146  * to begin.  Attach the handle to a transaction and set up the
147  * transaction's buffer credits.
148  */
149
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151                              gfp_t gfp_mask)
152 {
153         transaction_t   *transaction, *new_transaction = NULL;
154         tid_t           tid;
155         int             needed, need_to_start;
156         int             nblocks = handle->h_buffer_credits;
157         unsigned long ts = jiffies;
158
159         if (nblocks > journal->j_max_transaction_buffers) {
160                 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161                        current->comm, nblocks,
162                        journal->j_max_transaction_buffers);
163                 return -ENOSPC;
164         }
165
166 alloc_transaction:
167         if (!journal->j_running_transaction) {
168                 new_transaction = kmem_cache_zalloc(transaction_cache,
169                                                     gfp_mask);
170                 if (!new_transaction) {
171                         /*
172                          * If __GFP_FS is not present, then we may be
173                          * being called from inside the fs writeback
174                          * layer, so we MUST NOT fail.  Since
175                          * __GFP_NOFAIL is going away, we will arrange
176                          * to retry the allocation ourselves.
177                          */
178                         if ((gfp_mask & __GFP_FS) == 0) {
179                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
180                                 goto alloc_transaction;
181                         }
182                         return -ENOMEM;
183                 }
184         }
185
186         jbd_debug(3, "New handle %p going live.\n", handle);
187
188         /*
189          * We need to hold j_state_lock until t_updates has been incremented,
190          * for proper journal barrier handling
191          */
192 repeat:
193         read_lock(&journal->j_state_lock);
194         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195         if (is_journal_aborted(journal) ||
196             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197                 read_unlock(&journal->j_state_lock);
198                 jbd2_journal_free_transaction(new_transaction);
199                 return -EROFS;
200         }
201
202         /* Wait on the journal's transaction barrier if necessary */
203         if (journal->j_barrier_count) {
204                 read_unlock(&journal->j_state_lock);
205                 wait_event(journal->j_wait_transaction_locked,
206                                 journal->j_barrier_count == 0);
207                 goto repeat;
208         }
209
210         if (!journal->j_running_transaction) {
211                 read_unlock(&journal->j_state_lock);
212                 if (!new_transaction)
213                         goto alloc_transaction;
214                 write_lock(&journal->j_state_lock);
215                 if (!journal->j_running_transaction &&
216                     !journal->j_barrier_count) {
217                         jbd2_get_transaction(journal, new_transaction);
218                         new_transaction = NULL;
219                 }
220                 write_unlock(&journal->j_state_lock);
221                 goto repeat;
222         }
223
224         transaction = journal->j_running_transaction;
225
226         /*
227          * If the current transaction is locked down for commit, wait for the
228          * lock to be released.
229          */
230         if (transaction->t_state == T_LOCKED) {
231                 DEFINE_WAIT(wait);
232
233                 prepare_to_wait(&journal->j_wait_transaction_locked,
234                                         &wait, TASK_UNINTERRUPTIBLE);
235                 read_unlock(&journal->j_state_lock);
236                 schedule();
237                 finish_wait(&journal->j_wait_transaction_locked, &wait);
238                 goto repeat;
239         }
240
241         /*
242          * If there is not enough space left in the log to write all potential
243          * buffers requested by this operation, we need to stall pending a log
244          * checkpoint to free some more log space.
245          */
246         needed = atomic_add_return(nblocks,
247                                    &transaction->t_outstanding_credits);
248
249         if (needed > journal->j_max_transaction_buffers) {
250                 /*
251                  * If the current transaction is already too large, then start
252                  * to commit it: we can then go back and attach this handle to
253                  * a new transaction.
254                  */
255                 DEFINE_WAIT(wait);
256
257                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
258                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
259                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260                                 TASK_UNINTERRUPTIBLE);
261                 tid = transaction->t_tid;
262                 need_to_start = !tid_geq(journal->j_commit_request, tid);
263                 read_unlock(&journal->j_state_lock);
264                 if (need_to_start)
265                         jbd2_log_start_commit(journal, tid);
266                 schedule();
267                 finish_wait(&journal->j_wait_transaction_locked, &wait);
268                 goto repeat;
269         }
270
271         /*
272          * The commit code assumes that it can get enough log space
273          * without forcing a checkpoint.  This is *critical* for
274          * correctness: a checkpoint of a buffer which is also
275          * associated with a committing transaction creates a deadlock,
276          * so commit simply cannot force through checkpoints.
277          *
278          * We must therefore ensure the necessary space in the journal
279          * *before* starting to dirty potentially checkpointed buffers
280          * in the new transaction.
281          *
282          * The worst part is, any transaction currently committing can
283          * reduce the free space arbitrarily.  Be careful to account for
284          * those buffers when checkpointing.
285          */
286
287         /*
288          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
289          * a _lot_ of headroom: 1/4 of the journal plus the size of
290          * the committing transaction.  Really, we only need to give it
291          * committing_transaction->t_outstanding_credits plus "enough" for
292          * the log control blocks.
293          * Also, this test is inconsistent with the matching one in
294          * jbd2_journal_extend().
295          */
296         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
297                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
298                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
299                 read_unlock(&journal->j_state_lock);
300                 write_lock(&journal->j_state_lock);
301                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
302                         __jbd2_log_wait_for_space(journal);
303                 write_unlock(&journal->j_state_lock);
304                 goto repeat;
305         }
306
307         /* OK, account for the buffers that this operation expects to
308          * use and add the handle to the running transaction. 
309          */
310         update_t_max_wait(transaction, ts);
311         handle->h_transaction = transaction;
312         handle->h_requested_credits = nblocks;
313         handle->h_start_jiffies = jiffies;
314         atomic_inc(&transaction->t_updates);
315         atomic_inc(&transaction->t_handle_count);
316         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
317                   handle, nblocks,
318                   atomic_read(&transaction->t_outstanding_credits),
319                   __jbd2_log_space_left(journal));
320         read_unlock(&journal->j_state_lock);
321
322         lock_map_acquire(&handle->h_lockdep_map);
323         jbd2_journal_free_transaction(new_transaction);
324         return 0;
325 }
326
327 static struct lock_class_key jbd2_handle_key;
328
329 /* Allocate a new handle.  This should probably be in a slab... */
330 static handle_t *new_handle(int nblocks)
331 {
332         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
333         if (!handle)
334                 return NULL;
335         memset(handle, 0, sizeof(*handle));
336         handle->h_buffer_credits = nblocks;
337         handle->h_ref = 1;
338
339         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
340                                                 &jbd2_handle_key, 0);
341
342         return handle;
343 }
344
345 /**
346  * handle_t *jbd2_journal_start() - Obtain a new handle.
347  * @journal: Journal to start transaction on.
348  * @nblocks: number of block buffer we might modify
349  *
350  * We make sure that the transaction can guarantee at least nblocks of
351  * modified buffers in the log.  We block until the log can guarantee
352  * that much space.
353  *
354  * This function is visible to journal users (like ext3fs), so is not
355  * called with the journal already locked.
356  *
357  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
358  * on failure.
359  */
360 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
361                               unsigned int type, unsigned int line_no)
362 {
363         handle_t *handle = journal_current_handle();
364         int err;
365
366         if (!journal)
367                 return ERR_PTR(-EROFS);
368
369         if (handle) {
370                 J_ASSERT(handle->h_transaction->t_journal == journal);
371                 handle->h_ref++;
372                 return handle;
373         }
374
375         handle = new_handle(nblocks);
376         if (!handle)
377                 return ERR_PTR(-ENOMEM);
378
379         current->journal_info = handle;
380
381         err = start_this_handle(journal, handle, gfp_mask);
382         if (err < 0) {
383                 jbd2_free_handle(handle);
384                 current->journal_info = NULL;
385                 return ERR_PTR(err);
386         }
387         handle->h_type = type;
388         handle->h_line_no = line_no;
389         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
390                                 handle->h_transaction->t_tid, type,
391                                 line_no, nblocks);
392         return handle;
393 }
394 EXPORT_SYMBOL(jbd2__journal_start);
395
396
397 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
398 {
399         return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
400 }
401 EXPORT_SYMBOL(jbd2_journal_start);
402
403
404 /**
405  * int jbd2_journal_extend() - extend buffer credits.
406  * @handle:  handle to 'extend'
407  * @nblocks: nr blocks to try to extend by.
408  *
409  * Some transactions, such as large extends and truncates, can be done
410  * atomically all at once or in several stages.  The operation requests
411  * a credit for a number of buffer modications in advance, but can
412  * extend its credit if it needs more.
413  *
414  * jbd2_journal_extend tries to give the running handle more buffer credits.
415  * It does not guarantee that allocation - this is a best-effort only.
416  * The calling process MUST be able to deal cleanly with a failure to
417  * extend here.
418  *
419  * Return 0 on success, non-zero on failure.
420  *
421  * return code < 0 implies an error
422  * return code > 0 implies normal transaction-full status.
423  */
424 int jbd2_journal_extend(handle_t *handle, int nblocks)
425 {
426         transaction_t *transaction = handle->h_transaction;
427         journal_t *journal = transaction->t_journal;
428         int result;
429         int wanted;
430
431         result = -EIO;
432         if (is_handle_aborted(handle))
433                 goto out;
434
435         result = 1;
436
437         read_lock(&journal->j_state_lock);
438
439         /* Don't extend a locked-down transaction! */
440         if (handle->h_transaction->t_state != T_RUNNING) {
441                 jbd_debug(3, "denied handle %p %d blocks: "
442                           "transaction not running\n", handle, nblocks);
443                 goto error_out;
444         }
445
446         spin_lock(&transaction->t_handle_lock);
447         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
448
449         if (wanted > journal->j_max_transaction_buffers) {
450                 jbd_debug(3, "denied handle %p %d blocks: "
451                           "transaction too large\n", handle, nblocks);
452                 goto unlock;
453         }
454
455         if (wanted > __jbd2_log_space_left(journal)) {
456                 jbd_debug(3, "denied handle %p %d blocks: "
457                           "insufficient log space\n", handle, nblocks);
458                 goto unlock;
459         }
460
461         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
462                                  handle->h_transaction->t_tid,
463                                  handle->h_type, handle->h_line_no,
464                                  handle->h_buffer_credits,
465                                  nblocks);
466
467         handle->h_buffer_credits += nblocks;
468         handle->h_requested_credits += nblocks;
469         atomic_add(nblocks, &transaction->t_outstanding_credits);
470         result = 0;
471
472         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
473 unlock:
474         spin_unlock(&transaction->t_handle_lock);
475 error_out:
476         read_unlock(&journal->j_state_lock);
477 out:
478         return result;
479 }
480
481
482 /**
483  * int jbd2_journal_restart() - restart a handle .
484  * @handle:  handle to restart
485  * @nblocks: nr credits requested
486  *
487  * Restart a handle for a multi-transaction filesystem
488  * operation.
489  *
490  * If the jbd2_journal_extend() call above fails to grant new buffer credits
491  * to a running handle, a call to jbd2_journal_restart will commit the
492  * handle's transaction so far and reattach the handle to a new
493  * transaction capabable of guaranteeing the requested number of
494  * credits.
495  */
496 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
497 {
498         transaction_t *transaction = handle->h_transaction;
499         journal_t *journal = transaction->t_journal;
500         tid_t           tid;
501         int             need_to_start, ret;
502
503         /* If we've had an abort of any type, don't even think about
504          * actually doing the restart! */
505         if (is_handle_aborted(handle))
506                 return 0;
507
508         /*
509          * First unlink the handle from its current transaction, and start the
510          * commit on that.
511          */
512         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
513         J_ASSERT(journal_current_handle() == handle);
514
515         read_lock(&journal->j_state_lock);
516         spin_lock(&transaction->t_handle_lock);
517         atomic_sub(handle->h_buffer_credits,
518                    &transaction->t_outstanding_credits);
519         if (atomic_dec_and_test(&transaction->t_updates))
520                 wake_up(&journal->j_wait_updates);
521         spin_unlock(&transaction->t_handle_lock);
522
523         jbd_debug(2, "restarting handle %p\n", handle);
524         tid = transaction->t_tid;
525         need_to_start = !tid_geq(journal->j_commit_request, tid);
526         read_unlock(&journal->j_state_lock);
527         if (need_to_start)
528                 jbd2_log_start_commit(journal, tid);
529
530         lock_map_release(&handle->h_lockdep_map);
531         handle->h_buffer_credits = nblocks;
532         ret = start_this_handle(journal, handle, gfp_mask);
533         return ret;
534 }
535 EXPORT_SYMBOL(jbd2__journal_restart);
536
537
538 int jbd2_journal_restart(handle_t *handle, int nblocks)
539 {
540         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
541 }
542 EXPORT_SYMBOL(jbd2_journal_restart);
543
544 /**
545  * void jbd2_journal_lock_updates () - establish a transaction barrier.
546  * @journal:  Journal to establish a barrier on.
547  *
548  * This locks out any further updates from being started, and blocks
549  * until all existing updates have completed, returning only once the
550  * journal is in a quiescent state with no updates running.
551  *
552  * The journal lock should not be held on entry.
553  */
554 void jbd2_journal_lock_updates(journal_t *journal)
555 {
556         DEFINE_WAIT(wait);
557
558         write_lock(&journal->j_state_lock);
559         ++journal->j_barrier_count;
560
561         /* Wait until there are no running updates */
562         while (1) {
563                 transaction_t *transaction = journal->j_running_transaction;
564
565                 if (!transaction)
566                         break;
567
568                 spin_lock(&transaction->t_handle_lock);
569                 prepare_to_wait(&journal->j_wait_updates, &wait,
570                                 TASK_UNINTERRUPTIBLE);
571                 if (!atomic_read(&transaction->t_updates)) {
572                         spin_unlock(&transaction->t_handle_lock);
573                         finish_wait(&journal->j_wait_updates, &wait);
574                         break;
575                 }
576                 spin_unlock(&transaction->t_handle_lock);
577                 write_unlock(&journal->j_state_lock);
578                 schedule();
579                 finish_wait(&journal->j_wait_updates, &wait);
580                 write_lock(&journal->j_state_lock);
581         }
582         write_unlock(&journal->j_state_lock);
583
584         /*
585          * We have now established a barrier against other normal updates, but
586          * we also need to barrier against other jbd2_journal_lock_updates() calls
587          * to make sure that we serialise special journal-locked operations
588          * too.
589          */
590         mutex_lock(&journal->j_barrier);
591 }
592
593 /**
594  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
595  * @journal:  Journal to release the barrier on.
596  *
597  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
598  *
599  * Should be called without the journal lock held.
600  */
601 void jbd2_journal_unlock_updates (journal_t *journal)
602 {
603         J_ASSERT(journal->j_barrier_count != 0);
604
605         mutex_unlock(&journal->j_barrier);
606         write_lock(&journal->j_state_lock);
607         --journal->j_barrier_count;
608         write_unlock(&journal->j_state_lock);
609         wake_up(&journal->j_wait_transaction_locked);
610 }
611
612 static void warn_dirty_buffer(struct buffer_head *bh)
613 {
614         char b[BDEVNAME_SIZE];
615
616         printk(KERN_WARNING
617                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
618                "There's a risk of filesystem corruption in case of system "
619                "crash.\n",
620                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
621 }
622
623 /*
624  * If the buffer is already part of the current transaction, then there
625  * is nothing we need to do.  If it is already part of a prior
626  * transaction which we are still committing to disk, then we need to
627  * make sure that we do not overwrite the old copy: we do copy-out to
628  * preserve the copy going to disk.  We also account the buffer against
629  * the handle's metadata buffer credits (unless the buffer is already
630  * part of the transaction, that is).
631  *
632  */
633 static int
634 do_get_write_access(handle_t *handle, struct journal_head *jh,
635                         int force_copy)
636 {
637         struct buffer_head *bh;
638         transaction_t *transaction;
639         journal_t *journal;
640         int error;
641         char *frozen_buffer = NULL;
642         int need_copy = 0;
643
644         if (is_handle_aborted(handle))
645                 return -EROFS;
646
647         transaction = handle->h_transaction;
648         journal = transaction->t_journal;
649
650         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
651
652         JBUFFER_TRACE(jh, "entry");
653 repeat:
654         bh = jh2bh(jh);
655
656         /* @@@ Need to check for errors here at some point. */
657
658         lock_buffer(bh);
659         jbd_lock_bh_state(bh);
660
661         /* We now hold the buffer lock so it is safe to query the buffer
662          * state.  Is the buffer dirty?
663          *
664          * If so, there are two possibilities.  The buffer may be
665          * non-journaled, and undergoing a quite legitimate writeback.
666          * Otherwise, it is journaled, and we don't expect dirty buffers
667          * in that state (the buffers should be marked JBD_Dirty
668          * instead.)  So either the IO is being done under our own
669          * control and this is a bug, or it's a third party IO such as
670          * dump(8) (which may leave the buffer scheduled for read ---
671          * ie. locked but not dirty) or tune2fs (which may actually have
672          * the buffer dirtied, ugh.)  */
673
674         if (buffer_dirty(bh)) {
675                 /*
676                  * First question: is this buffer already part of the current
677                  * transaction or the existing committing transaction?
678                  */
679                 if (jh->b_transaction) {
680                         J_ASSERT_JH(jh,
681                                 jh->b_transaction == transaction ||
682                                 jh->b_transaction ==
683                                         journal->j_committing_transaction);
684                         if (jh->b_next_transaction)
685                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
686                                                         transaction);
687                         warn_dirty_buffer(bh);
688                 }
689                 /*
690                  * In any case we need to clean the dirty flag and we must
691                  * do it under the buffer lock to be sure we don't race
692                  * with running write-out.
693                  */
694                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
695                 clear_buffer_dirty(bh);
696                 set_buffer_jbddirty(bh);
697         }
698
699         unlock_buffer(bh);
700
701         error = -EROFS;
702         if (is_handle_aborted(handle)) {
703                 jbd_unlock_bh_state(bh);
704                 goto out;
705         }
706         error = 0;
707
708         /*
709          * The buffer is already part of this transaction if b_transaction or
710          * b_next_transaction points to it
711          */
712         if (jh->b_transaction == transaction ||
713             jh->b_next_transaction == transaction)
714                 goto done;
715
716         /*
717          * this is the first time this transaction is touching this buffer,
718          * reset the modified flag
719          */
720        jh->b_modified = 0;
721
722         /*
723          * If there is already a copy-out version of this buffer, then we don't
724          * need to make another one
725          */
726         if (jh->b_frozen_data) {
727                 JBUFFER_TRACE(jh, "has frozen data");
728                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
729                 jh->b_next_transaction = transaction;
730                 goto done;
731         }
732
733         /* Is there data here we need to preserve? */
734
735         if (jh->b_transaction && jh->b_transaction != transaction) {
736                 JBUFFER_TRACE(jh, "owned by older transaction");
737                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
738                 J_ASSERT_JH(jh, jh->b_transaction ==
739                                         journal->j_committing_transaction);
740
741                 /* There is one case we have to be very careful about.
742                  * If the committing transaction is currently writing
743                  * this buffer out to disk and has NOT made a copy-out,
744                  * then we cannot modify the buffer contents at all
745                  * right now.  The essence of copy-out is that it is the
746                  * extra copy, not the primary copy, which gets
747                  * journaled.  If the primary copy is already going to
748                  * disk then we cannot do copy-out here. */
749
750                 if (jh->b_jlist == BJ_Shadow) {
751                         DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);
752                         wait_queue_head_t *wqh;
753
754                         wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);
755
756                         JBUFFER_TRACE(jh, "on shadow: sleep");
757                         jbd_unlock_bh_state(bh);
758                         /* commit wakes up all shadow buffers after IO */
759                         for ( ; ; ) {
760                                 prepare_to_wait(wqh, &wait.wait,
761                                                 TASK_UNINTERRUPTIBLE);
762                                 if (jh->b_jlist != BJ_Shadow)
763                                         break;
764                                 schedule();
765                         }
766                         finish_wait(wqh, &wait.wait);
767                         goto repeat;
768                 }
769
770                 /* Only do the copy if the currently-owning transaction
771                  * still needs it.  If it is on the Forget list, the
772                  * committing transaction is past that stage.  The
773                  * buffer had better remain locked during the kmalloc,
774                  * but that should be true --- we hold the journal lock
775                  * still and the buffer is already on the BUF_JOURNAL
776                  * list so won't be flushed.
777                  *
778                  * Subtle point, though: if this is a get_undo_access,
779                  * then we will be relying on the frozen_data to contain
780                  * the new value of the committed_data record after the
781                  * transaction, so we HAVE to force the frozen_data copy
782                  * in that case. */
783
784                 if (jh->b_jlist != BJ_Forget || force_copy) {
785                         JBUFFER_TRACE(jh, "generate frozen data");
786                         if (!frozen_buffer) {
787                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
788                                 jbd_unlock_bh_state(bh);
789                                 frozen_buffer =
790                                         jbd2_alloc(jh2bh(jh)->b_size,
791                                                          GFP_NOFS);
792                                 if (!frozen_buffer) {
793                                         printk(KERN_EMERG
794                                                "%s: OOM for frozen_buffer\n",
795                                                __func__);
796                                         JBUFFER_TRACE(jh, "oom!");
797                                         error = -ENOMEM;
798                                         jbd_lock_bh_state(bh);
799                                         goto done;
800                                 }
801                                 goto repeat;
802                         }
803                         jh->b_frozen_data = frozen_buffer;
804                         frozen_buffer = NULL;
805                         need_copy = 1;
806                 }
807                 jh->b_next_transaction = transaction;
808         }
809
810
811         /*
812          * Finally, if the buffer is not journaled right now, we need to make
813          * sure it doesn't get written to disk before the caller actually
814          * commits the new data
815          */
816         if (!jh->b_transaction) {
817                 JBUFFER_TRACE(jh, "no transaction");
818                 J_ASSERT_JH(jh, !jh->b_next_transaction);
819                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
820                 spin_lock(&journal->j_list_lock);
821                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
822                 spin_unlock(&journal->j_list_lock);
823         }
824
825 done:
826         if (need_copy) {
827                 struct page *page;
828                 int offset;
829                 char *source;
830
831                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
832                             "Possible IO failure.\n");
833                 page = jh2bh(jh)->b_page;
834                 offset = offset_in_page(jh2bh(jh)->b_data);
835                 source = kmap_atomic(page);
836                 /* Fire data frozen trigger just before we copy the data */
837                 jbd2_buffer_frozen_trigger(jh, source + offset,
838                                            jh->b_triggers);
839                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
840                 kunmap_atomic(source);
841
842                 /*
843                  * Now that the frozen data is saved off, we need to store
844                  * any matching triggers.
845                  */
846                 jh->b_frozen_triggers = jh->b_triggers;
847         }
848         jbd_unlock_bh_state(bh);
849
850         /*
851          * If we are about to journal a buffer, then any revoke pending on it is
852          * no longer valid
853          */
854         jbd2_journal_cancel_revoke(handle, jh);
855
856 out:
857         if (unlikely(frozen_buffer))    /* It's usually NULL */
858                 jbd2_free(frozen_buffer, bh->b_size);
859
860         JBUFFER_TRACE(jh, "exit");
861         return error;
862 }
863
864 /**
865  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
866  * @handle: transaction to add buffer modifications to
867  * @bh:     bh to be used for metadata writes
868  *
869  * Returns an error code or 0 on success.
870  *
871  * In full data journalling mode the buffer may be of type BJ_AsyncData,
872  * because we're write()ing a buffer which is also part of a shared mapping.
873  */
874
875 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
876 {
877         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
878         int rc;
879
880         /* We do not want to get caught playing with fields which the
881          * log thread also manipulates.  Make sure that the buffer
882          * completes any outstanding IO before proceeding. */
883         rc = do_get_write_access(handle, jh, 0);
884         jbd2_journal_put_journal_head(jh);
885         return rc;
886 }
887
888
889 /*
890  * When the user wants to journal a newly created buffer_head
891  * (ie. getblk() returned a new buffer and we are going to populate it
892  * manually rather than reading off disk), then we need to keep the
893  * buffer_head locked until it has been completely filled with new
894  * data.  In this case, we should be able to make the assertion that
895  * the bh is not already part of an existing transaction.
896  *
897  * The buffer should already be locked by the caller by this point.
898  * There is no lock ranking violation: it was a newly created,
899  * unlocked buffer beforehand. */
900
901 /**
902  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
903  * @handle: transaction to new buffer to
904  * @bh: new buffer.
905  *
906  * Call this if you create a new bh.
907  */
908 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
909 {
910         transaction_t *transaction = handle->h_transaction;
911         journal_t *journal = transaction->t_journal;
912         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
913         int err;
914
915         jbd_debug(5, "journal_head %p\n", jh);
916         err = -EROFS;
917         if (is_handle_aborted(handle))
918                 goto out;
919         err = 0;
920
921         JBUFFER_TRACE(jh, "entry");
922         /*
923          * The buffer may already belong to this transaction due to pre-zeroing
924          * in the filesystem's new_block code.  It may also be on the previous,
925          * committing transaction's lists, but it HAS to be in Forget state in
926          * that case: the transaction must have deleted the buffer for it to be
927          * reused here.
928          */
929         jbd_lock_bh_state(bh);
930         spin_lock(&journal->j_list_lock);
931         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
932                 jh->b_transaction == NULL ||
933                 (jh->b_transaction == journal->j_committing_transaction &&
934                           jh->b_jlist == BJ_Forget)));
935
936         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
937         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
938
939         if (jh->b_transaction == NULL) {
940                 /*
941                  * Previous jbd2_journal_forget() could have left the buffer
942                  * with jbddirty bit set because it was being committed. When
943                  * the commit finished, we've filed the buffer for
944                  * checkpointing and marked it dirty. Now we are reallocating
945                  * the buffer so the transaction freeing it must have
946                  * committed and so it's safe to clear the dirty bit.
947                  */
948                 clear_buffer_dirty(jh2bh(jh));
949                 /* first access by this transaction */
950                 jh->b_modified = 0;
951
952                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
953                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
954         } else if (jh->b_transaction == journal->j_committing_transaction) {
955                 /* first access by this transaction */
956                 jh->b_modified = 0;
957
958                 JBUFFER_TRACE(jh, "set next transaction");
959                 jh->b_next_transaction = transaction;
960         }
961         spin_unlock(&journal->j_list_lock);
962         jbd_unlock_bh_state(bh);
963
964         /*
965          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
966          * blocks which contain freed but then revoked metadata.  We need
967          * to cancel the revoke in case we end up freeing it yet again
968          * and the reallocating as data - this would cause a second revoke,
969          * which hits an assertion error.
970          */
971         JBUFFER_TRACE(jh, "cancelling revoke");
972         jbd2_journal_cancel_revoke(handle, jh);
973 out:
974         jbd2_journal_put_journal_head(jh);
975         return err;
976 }
977
978 /**
979  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
980  *     non-rewindable consequences
981  * @handle: transaction
982  * @bh: buffer to undo
983  *
984  * Sometimes there is a need to distinguish between metadata which has
985  * been committed to disk and that which has not.  The ext3fs code uses
986  * this for freeing and allocating space, we have to make sure that we
987  * do not reuse freed space until the deallocation has been committed,
988  * since if we overwrote that space we would make the delete
989  * un-rewindable in case of a crash.
990  *
991  * To deal with that, jbd2_journal_get_undo_access requests write access to a
992  * buffer for parts of non-rewindable operations such as delete
993  * operations on the bitmaps.  The journaling code must keep a copy of
994  * the buffer's contents prior to the undo_access call until such time
995  * as we know that the buffer has definitely been committed to disk.
996  *
997  * We never need to know which transaction the committed data is part
998  * of, buffers touched here are guaranteed to be dirtied later and so
999  * will be committed to a new transaction in due course, at which point
1000  * we can discard the old committed data pointer.
1001  *
1002  * Returns error number or 0 on success.
1003  */
1004 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1005 {
1006         int err;
1007         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1008         char *committed_data = NULL;
1009
1010         JBUFFER_TRACE(jh, "entry");
1011
1012         /*
1013          * Do this first --- it can drop the journal lock, so we want to
1014          * make sure that obtaining the committed_data is done
1015          * atomically wrt. completion of any outstanding commits.
1016          */
1017         err = do_get_write_access(handle, jh, 1);
1018         if (err)
1019                 goto out;
1020
1021 repeat:
1022         if (!jh->b_committed_data) {
1023                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1024                 if (!committed_data) {
1025                         printk(KERN_EMERG "%s: No memory for committed data\n",
1026                                 __func__);
1027                         err = -ENOMEM;
1028                         goto out;
1029                 }
1030         }
1031
1032         jbd_lock_bh_state(bh);
1033         if (!jh->b_committed_data) {
1034                 /* Copy out the current buffer contents into the
1035                  * preserved, committed copy. */
1036                 JBUFFER_TRACE(jh, "generate b_committed data");
1037                 if (!committed_data) {
1038                         jbd_unlock_bh_state(bh);
1039                         goto repeat;
1040                 }
1041
1042                 jh->b_committed_data = committed_data;
1043                 committed_data = NULL;
1044                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1045         }
1046         jbd_unlock_bh_state(bh);
1047 out:
1048         jbd2_journal_put_journal_head(jh);
1049         if (unlikely(committed_data))
1050                 jbd2_free(committed_data, bh->b_size);
1051         return err;
1052 }
1053
1054 /**
1055  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1056  * @bh: buffer to trigger on
1057  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1058  *
1059  * Set any triggers on this journal_head.  This is always safe, because
1060  * triggers for a committing buffer will be saved off, and triggers for
1061  * a running transaction will match the buffer in that transaction.
1062  *
1063  * Call with NULL to clear the triggers.
1064  */
1065 void jbd2_journal_set_triggers(struct buffer_head *bh,
1066                                struct jbd2_buffer_trigger_type *type)
1067 {
1068         struct journal_head *jh = bh2jh(bh);
1069
1070         jh->b_triggers = type;
1071 }
1072
1073 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1074                                 struct jbd2_buffer_trigger_type *triggers)
1075 {
1076         struct buffer_head *bh = jh2bh(jh);
1077
1078         if (!triggers || !triggers->t_frozen)
1079                 return;
1080
1081         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1082 }
1083
1084 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1085                                struct jbd2_buffer_trigger_type *triggers)
1086 {
1087         if (!triggers || !triggers->t_abort)
1088                 return;
1089
1090         triggers->t_abort(triggers, jh2bh(jh));
1091 }
1092
1093
1094
1095 /**
1096  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1097  * @handle: transaction to add buffer to.
1098  * @bh: buffer to mark
1099  *
1100  * mark dirty metadata which needs to be journaled as part of the current
1101  * transaction.
1102  *
1103  * The buffer must have previously had jbd2_journal_get_write_access()
1104  * called so that it has a valid journal_head attached to the buffer
1105  * head.
1106  *
1107  * The buffer is placed on the transaction's metadata list and is marked
1108  * as belonging to the transaction.
1109  *
1110  * Returns error number or 0 on success.
1111  *
1112  * Special care needs to be taken if the buffer already belongs to the
1113  * current committing transaction (in which case we should have frozen
1114  * data present for that commit).  In that case, we don't relink the
1115  * buffer: that only gets done when the old transaction finally
1116  * completes its commit.
1117  */
1118 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1119 {
1120         transaction_t *transaction = handle->h_transaction;
1121         journal_t *journal = transaction->t_journal;
1122         struct journal_head *jh = bh2jh(bh);
1123         int ret = 0;
1124
1125         jbd_debug(5, "journal_head %p\n", jh);
1126         JBUFFER_TRACE(jh, "entry");
1127         if (is_handle_aborted(handle))
1128                 goto out;
1129         if (!buffer_jbd(bh)) {
1130                 ret = -EUCLEAN;
1131                 goto out;
1132         }
1133
1134         jbd_lock_bh_state(bh);
1135
1136         if (jh->b_modified == 0) {
1137                 /*
1138                  * This buffer's got modified and becoming part
1139                  * of the transaction. This needs to be done
1140                  * once a transaction -bzzz
1141                  */
1142                 jh->b_modified = 1;
1143                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1144                 handle->h_buffer_credits--;
1145         }
1146
1147         /*
1148          * fastpath, to avoid expensive locking.  If this buffer is already
1149          * on the running transaction's metadata list there is nothing to do.
1150          * Nobody can take it off again because there is a handle open.
1151          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1152          * result in this test being false, so we go in and take the locks.
1153          */
1154         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1155                 JBUFFER_TRACE(jh, "fastpath");
1156                 if (unlikely(jh->b_transaction !=
1157                              journal->j_running_transaction)) {
1158                         printk(KERN_EMERG "JBD: %s: "
1159                                "jh->b_transaction (%llu, %p, %u) != "
1160                                "journal->j_running_transaction (%p, %u)",
1161                                journal->j_devname,
1162                                (unsigned long long) bh->b_blocknr,
1163                                jh->b_transaction,
1164                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1165                                journal->j_running_transaction,
1166                                journal->j_running_transaction ?
1167                                journal->j_running_transaction->t_tid : 0);
1168                         ret = -EINVAL;
1169                 }
1170                 goto out_unlock_bh;
1171         }
1172
1173         set_buffer_jbddirty(bh);
1174
1175         /*
1176          * Metadata already on the current transaction list doesn't
1177          * need to be filed.  Metadata on another transaction's list must
1178          * be committing, and will be refiled once the commit completes:
1179          * leave it alone for now.
1180          */
1181         if (jh->b_transaction != transaction) {
1182                 JBUFFER_TRACE(jh, "already on other transaction");
1183                 if (unlikely(jh->b_transaction !=
1184                              journal->j_committing_transaction)) {
1185                         printk(KERN_EMERG "JBD: %s: "
1186                                "jh->b_transaction (%llu, %p, %u) != "
1187                                "journal->j_committing_transaction (%p, %u)",
1188                                journal->j_devname,
1189                                (unsigned long long) bh->b_blocknr,
1190                                jh->b_transaction,
1191                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1192                                journal->j_committing_transaction,
1193                                journal->j_committing_transaction ?
1194                                journal->j_committing_transaction->t_tid : 0);
1195                         ret = -EINVAL;
1196                 }
1197                 if (unlikely(jh->b_next_transaction != transaction)) {
1198                         printk(KERN_EMERG "JBD: %s: "
1199                                "jh->b_next_transaction (%llu, %p, %u) != "
1200                                "transaction (%p, %u)",
1201                                journal->j_devname,
1202                                (unsigned long long) bh->b_blocknr,
1203                                jh->b_next_transaction,
1204                                jh->b_next_transaction ?
1205                                jh->b_next_transaction->t_tid : 0,
1206                                transaction, transaction->t_tid);
1207                         ret = -EINVAL;
1208                 }
1209                 /* And this case is illegal: we can't reuse another
1210                  * transaction's data buffer, ever. */
1211                 goto out_unlock_bh;
1212         }
1213
1214         /* That test should have eliminated the following case: */
1215         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1216
1217         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1218         spin_lock(&journal->j_list_lock);
1219         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1220         spin_unlock(&journal->j_list_lock);
1221 out_unlock_bh:
1222         jbd_unlock_bh_state(bh);
1223 out:
1224         JBUFFER_TRACE(jh, "exit");
1225         WARN_ON(ret);   /* All errors are bugs, so dump the stack */
1226         return ret;
1227 }
1228
1229 /**
1230  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1231  * @handle: transaction handle
1232  * @bh:     bh to 'forget'
1233  *
1234  * We can only do the bforget if there are no commits pending against the
1235  * buffer.  If the buffer is dirty in the current running transaction we
1236  * can safely unlink it.
1237  *
1238  * bh may not be a journalled buffer at all - it may be a non-JBD
1239  * buffer which came off the hashtable.  Check for this.
1240  *
1241  * Decrements bh->b_count by one.
1242  *
1243  * Allow this call even if the handle has aborted --- it may be part of
1244  * the caller's cleanup after an abort.
1245  */
1246 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1247 {
1248         transaction_t *transaction = handle->h_transaction;
1249         journal_t *journal = transaction->t_journal;
1250         struct journal_head *jh;
1251         int drop_reserve = 0;
1252         int err = 0;
1253         int was_modified = 0;
1254
1255         BUFFER_TRACE(bh, "entry");
1256
1257         jbd_lock_bh_state(bh);
1258         spin_lock(&journal->j_list_lock);
1259
1260         if (!buffer_jbd(bh))
1261                 goto not_jbd;
1262         jh = bh2jh(bh);
1263
1264         /* Critical error: attempting to delete a bitmap buffer, maybe?
1265          * Don't do any jbd operations, and return an error. */
1266         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1267                          "inconsistent data on disk")) {
1268                 err = -EIO;
1269                 goto not_jbd;
1270         }
1271
1272         /* keep track of whether or not this transaction modified us */
1273         was_modified = jh->b_modified;
1274
1275         /*
1276          * The buffer's going from the transaction, we must drop
1277          * all references -bzzz
1278          */
1279         jh->b_modified = 0;
1280
1281         if (jh->b_transaction == handle->h_transaction) {
1282                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1283
1284                 /* If we are forgetting a buffer which is already part
1285                  * of this transaction, then we can just drop it from
1286                  * the transaction immediately. */
1287                 clear_buffer_dirty(bh);
1288                 clear_buffer_jbddirty(bh);
1289
1290                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1291
1292                 /*
1293                  * we only want to drop a reference if this transaction
1294                  * modified the buffer
1295                  */
1296                 if (was_modified)
1297                         drop_reserve = 1;
1298
1299                 /*
1300                  * We are no longer going to journal this buffer.
1301                  * However, the commit of this transaction is still
1302                  * important to the buffer: the delete that we are now
1303                  * processing might obsolete an old log entry, so by
1304                  * committing, we can satisfy the buffer's checkpoint.
1305                  *
1306                  * So, if we have a checkpoint on the buffer, we should
1307                  * now refile the buffer on our BJ_Forget list so that
1308                  * we know to remove the checkpoint after we commit.
1309                  */
1310
1311                 if (jh->b_cp_transaction) {
1312                         __jbd2_journal_temp_unlink_buffer(jh);
1313                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1314                 } else {
1315                         __jbd2_journal_unfile_buffer(jh);
1316                         if (!buffer_jbd(bh)) {
1317                                 spin_unlock(&journal->j_list_lock);
1318                                 jbd_unlock_bh_state(bh);
1319                                 __bforget(bh);
1320                                 goto drop;
1321                         }
1322                 }
1323         } else if (jh->b_transaction) {
1324                 J_ASSERT_JH(jh, (jh->b_transaction ==
1325                                  journal->j_committing_transaction));
1326                 /* However, if the buffer is still owned by a prior
1327                  * (committing) transaction, we can't drop it yet... */
1328                 JBUFFER_TRACE(jh, "belongs to older transaction");
1329                 /* ... but we CAN drop it from the new transaction if we
1330                  * have also modified it since the original commit. */
1331
1332                 if (jh->b_next_transaction) {
1333                         J_ASSERT(jh->b_next_transaction == transaction);
1334                         jh->b_next_transaction = NULL;
1335
1336                         /*
1337                          * only drop a reference if this transaction modified
1338                          * the buffer
1339                          */
1340                         if (was_modified)
1341                                 drop_reserve = 1;
1342                 }
1343         }
1344
1345 not_jbd:
1346         spin_unlock(&journal->j_list_lock);
1347         jbd_unlock_bh_state(bh);
1348         __brelse(bh);
1349 drop:
1350         if (drop_reserve) {
1351                 /* no need to reserve log space for this block -bzzz */
1352                 handle->h_buffer_credits++;
1353         }
1354         return err;
1355 }
1356
1357 /**
1358  * int jbd2_journal_stop() - complete a transaction
1359  * @handle: tranaction to complete.
1360  *
1361  * All done for a particular handle.
1362  *
1363  * There is not much action needed here.  We just return any remaining
1364  * buffer credits to the transaction and remove the handle.  The only
1365  * complication is that we need to start a commit operation if the
1366  * filesystem is marked for synchronous update.
1367  *
1368  * jbd2_journal_stop itself will not usually return an error, but it may
1369  * do so in unusual circumstances.  In particular, expect it to
1370  * return -EIO if a jbd2_journal_abort has been executed since the
1371  * transaction began.
1372  */
1373 int jbd2_journal_stop(handle_t *handle)
1374 {
1375         transaction_t *transaction = handle->h_transaction;
1376         journal_t *journal = transaction->t_journal;
1377         int err, wait_for_commit = 0;
1378         tid_t tid;
1379         pid_t pid;
1380
1381         J_ASSERT(journal_current_handle() == handle);
1382
1383         if (is_handle_aborted(handle))
1384                 err = -EIO;
1385         else {
1386                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1387                 err = 0;
1388         }
1389
1390         if (--handle->h_ref > 0) {
1391                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1392                           handle->h_ref);
1393                 return err;
1394         }
1395
1396         jbd_debug(4, "Handle %p going down\n", handle);
1397         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1398                                 handle->h_transaction->t_tid,
1399                                 handle->h_type, handle->h_line_no,
1400                                 jiffies - handle->h_start_jiffies,
1401                                 handle->h_sync, handle->h_requested_credits,
1402                                 (handle->h_requested_credits -
1403                                  handle->h_buffer_credits));
1404
1405         /*
1406          * Implement synchronous transaction batching.  If the handle
1407          * was synchronous, don't force a commit immediately.  Let's
1408          * yield and let another thread piggyback onto this
1409          * transaction.  Keep doing that while new threads continue to
1410          * arrive.  It doesn't cost much - we're about to run a commit
1411          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1412          * operations by 30x or more...
1413          *
1414          * We try and optimize the sleep time against what the
1415          * underlying disk can do, instead of having a static sleep
1416          * time.  This is useful for the case where our storage is so
1417          * fast that it is more optimal to go ahead and force a flush
1418          * and wait for the transaction to be committed than it is to
1419          * wait for an arbitrary amount of time for new writers to
1420          * join the transaction.  We achieve this by measuring how
1421          * long it takes to commit a transaction, and compare it with
1422          * how long this transaction has been running, and if run time
1423          * < commit time then we sleep for the delta and commit.  This
1424          * greatly helps super fast disks that would see slowdowns as
1425          * more threads started doing fsyncs.
1426          *
1427          * But don't do this if this process was the most recent one
1428          * to perform a synchronous write.  We do this to detect the
1429          * case where a single process is doing a stream of sync
1430          * writes.  No point in waiting for joiners in that case.
1431          */
1432         pid = current->pid;
1433         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1434                 u64 commit_time, trans_time;
1435
1436                 journal->j_last_sync_writer = pid;
1437
1438                 read_lock(&journal->j_state_lock);
1439                 commit_time = journal->j_average_commit_time;
1440                 read_unlock(&journal->j_state_lock);
1441
1442                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1443                                                    transaction->t_start_time));
1444
1445                 commit_time = max_t(u64, commit_time,
1446                                     1000*journal->j_min_batch_time);
1447                 commit_time = min_t(u64, commit_time,
1448                                     1000*journal->j_max_batch_time);
1449
1450                 if (trans_time < commit_time) {
1451                         ktime_t expires = ktime_add_ns(ktime_get(),
1452                                                        commit_time);
1453                         set_current_state(TASK_UNINTERRUPTIBLE);
1454                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1455                 }
1456         }
1457
1458         if (handle->h_sync)
1459                 transaction->t_synchronous_commit = 1;
1460         current->journal_info = NULL;
1461         atomic_sub(handle->h_buffer_credits,
1462                    &transaction->t_outstanding_credits);
1463
1464         /*
1465          * If the handle is marked SYNC, we need to set another commit
1466          * going!  We also want to force a commit if the current
1467          * transaction is occupying too much of the log, or if the
1468          * transaction is too old now.
1469          */
1470         if (handle->h_sync ||
1471             (atomic_read(&transaction->t_outstanding_credits) >
1472              journal->j_max_transaction_buffers) ||
1473             time_after_eq(jiffies, transaction->t_expires)) {
1474                 /* Do this even for aborted journals: an abort still
1475                  * completes the commit thread, it just doesn't write
1476                  * anything to disk. */
1477
1478                 jbd_debug(2, "transaction too old, requesting commit for "
1479                                         "handle %p\n", handle);
1480                 /* This is non-blocking */
1481                 jbd2_log_start_commit(journal, transaction->t_tid);
1482
1483                 /*
1484                  * Special case: JBD2_SYNC synchronous updates require us
1485                  * to wait for the commit to complete.
1486                  */
1487                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1488                         wait_for_commit = 1;
1489         }
1490
1491         /*
1492          * Once we drop t_updates, if it goes to zero the transaction
1493          * could start committing on us and eventually disappear.  So
1494          * once we do this, we must not dereference transaction
1495          * pointer again.
1496          */
1497         tid = transaction->t_tid;
1498         if (atomic_dec_and_test(&transaction->t_updates)) {
1499                 wake_up(&journal->j_wait_updates);
1500                 if (journal->j_barrier_count)
1501                         wake_up(&journal->j_wait_transaction_locked);
1502         }
1503
1504         if (wait_for_commit)
1505                 err = jbd2_log_wait_commit(journal, tid);
1506
1507         lock_map_release(&handle->h_lockdep_map);
1508
1509         jbd2_free_handle(handle);
1510         return err;
1511 }
1512
1513 /**
1514  * int jbd2_journal_force_commit() - force any uncommitted transactions
1515  * @journal: journal to force
1516  *
1517  * For synchronous operations: force any uncommitted transactions
1518  * to disk.  May seem kludgy, but it reuses all the handle batching
1519  * code in a very simple manner.
1520  */
1521 int jbd2_journal_force_commit(journal_t *journal)
1522 {
1523         handle_t *handle;
1524         int ret;
1525
1526         handle = jbd2_journal_start(journal, 1);
1527         if (IS_ERR(handle)) {
1528                 ret = PTR_ERR(handle);
1529         } else {
1530                 handle->h_sync = 1;
1531                 ret = jbd2_journal_stop(handle);
1532         }
1533         return ret;
1534 }
1535
1536 /*
1537  *
1538  * List management code snippets: various functions for manipulating the
1539  * transaction buffer lists.
1540  *
1541  */
1542
1543 /*
1544  * Append a buffer to a transaction list, given the transaction's list head
1545  * pointer.
1546  *
1547  * j_list_lock is held.
1548  *
1549  * jbd_lock_bh_state(jh2bh(jh)) is held.
1550  */
1551
1552 static inline void
1553 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1554 {
1555         if (!*list) {
1556                 jh->b_tnext = jh->b_tprev = jh;
1557                 *list = jh;
1558         } else {
1559                 /* Insert at the tail of the list to preserve order */
1560                 struct journal_head *first = *list, *last = first->b_tprev;
1561                 jh->b_tprev = last;
1562                 jh->b_tnext = first;
1563                 last->b_tnext = first->b_tprev = jh;
1564         }
1565 }
1566
1567 /*
1568  * Remove a buffer from a transaction list, given the transaction's list
1569  * head pointer.
1570  *
1571  * Called with j_list_lock held, and the journal may not be locked.
1572  *
1573  * jbd_lock_bh_state(jh2bh(jh)) is held.
1574  */
1575
1576 static inline void
1577 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1578 {
1579         if (*list == jh) {
1580                 *list = jh->b_tnext;
1581                 if (*list == jh)
1582                         *list = NULL;
1583         }
1584         jh->b_tprev->b_tnext = jh->b_tnext;
1585         jh->b_tnext->b_tprev = jh->b_tprev;
1586 }
1587
1588 /*
1589  * Remove a buffer from the appropriate transaction list.
1590  *
1591  * Note that this function can *change* the value of
1592  * bh->b_transaction->t_buffers, t_forget, t_iobuf_list, t_shadow_list,
1593  * t_log_list or t_reserved_list.  If the caller is holding onto a copy of one
1594  * of these pointers, it could go bad.  Generally the caller needs to re-read
1595  * the pointer from the transaction_t.
1596  *
1597  * Called under j_list_lock.
1598  */
1599 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1600 {
1601         struct journal_head **list = NULL;
1602         transaction_t *transaction;
1603         struct buffer_head *bh = jh2bh(jh);
1604
1605         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1606         transaction = jh->b_transaction;
1607         if (transaction)
1608                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1609
1610         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1611         if (jh->b_jlist != BJ_None)
1612                 J_ASSERT_JH(jh, transaction != NULL);
1613
1614         switch (jh->b_jlist) {
1615         case BJ_None:
1616                 return;
1617         case BJ_Metadata:
1618                 transaction->t_nr_buffers--;
1619                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1620                 list = &transaction->t_buffers;
1621                 break;
1622         case BJ_Forget:
1623                 list = &transaction->t_forget;
1624                 break;
1625         case BJ_IO:
1626                 list = &transaction->t_iobuf_list;
1627                 break;
1628         case BJ_Shadow:
1629                 list = &transaction->t_shadow_list;
1630                 break;
1631         case BJ_LogCtl:
1632                 list = &transaction->t_log_list;
1633                 break;
1634         case BJ_Reserved:
1635                 list = &transaction->t_reserved_list;
1636                 break;
1637         }
1638
1639         __blist_del_buffer(list, jh);
1640         jh->b_jlist = BJ_None;
1641         if (test_clear_buffer_jbddirty(bh))
1642                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1643 }
1644
1645 /*
1646  * Remove buffer from all transactions.
1647  *
1648  * Called with bh_state lock and j_list_lock
1649  *
1650  * jh and bh may be already freed when this function returns.
1651  */
1652 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1653 {
1654         __jbd2_journal_temp_unlink_buffer(jh);
1655         jh->b_transaction = NULL;
1656         jbd2_journal_put_journal_head(jh);
1657 }
1658
1659 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1660 {
1661         struct buffer_head *bh = jh2bh(jh);
1662
1663         /* Get reference so that buffer cannot be freed before we unlock it */
1664         get_bh(bh);
1665         jbd_lock_bh_state(bh);
1666         spin_lock(&journal->j_list_lock);
1667         __jbd2_journal_unfile_buffer(jh);
1668         spin_unlock(&journal->j_list_lock);
1669         jbd_unlock_bh_state(bh);
1670         __brelse(bh);
1671 }
1672
1673 /*
1674  * Called from jbd2_journal_try_to_free_buffers().
1675  *
1676  * Called under jbd_lock_bh_state(bh)
1677  */
1678 static void
1679 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1680 {
1681         struct journal_head *jh;
1682
1683         jh = bh2jh(bh);
1684
1685         if (buffer_locked(bh) || buffer_dirty(bh))
1686                 goto out;
1687
1688         if (jh->b_next_transaction != NULL)
1689                 goto out;
1690
1691         spin_lock(&journal->j_list_lock);
1692         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1693                 /* written-back checkpointed metadata buffer */
1694                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1695                 __jbd2_journal_remove_checkpoint(jh);
1696         }
1697         spin_unlock(&journal->j_list_lock);
1698 out:
1699         return;
1700 }
1701
1702 /**
1703  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1704  * @journal: journal for operation
1705  * @page: to try and free
1706  * @gfp_mask: we use the mask to detect how hard should we try to release
1707  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1708  * release the buffers.
1709  *
1710  *
1711  * For all the buffers on this page,
1712  * if they are fully written out ordered data, move them onto BUF_CLEAN
1713  * so try_to_free_buffers() can reap them.
1714  *
1715  * This function returns non-zero if we wish try_to_free_buffers()
1716  * to be called. We do this if the page is releasable by try_to_free_buffers().
1717  * We also do it if the page has locked or dirty buffers and the caller wants
1718  * us to perform sync or async writeout.
1719  *
1720  * This complicates JBD locking somewhat.  We aren't protected by the
1721  * BKL here.  We wish to remove the buffer from its committing or
1722  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1723  *
1724  * This may *change* the value of transaction_t->t_datalist, so anyone
1725  * who looks at t_datalist needs to lock against this function.
1726  *
1727  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1728  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1729  * will come out of the lock with the buffer dirty, which makes it
1730  * ineligible for release here.
1731  *
1732  * Who else is affected by this?  hmm...  Really the only contender
1733  * is do_get_write_access() - it could be looking at the buffer while
1734  * journal_try_to_free_buffer() is changing its state.  But that
1735  * cannot happen because we never reallocate freed data as metadata
1736  * while the data is part of a transaction.  Yes?
1737  *
1738  * Return 0 on failure, 1 on success
1739  */
1740 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1741                                 struct page *page, gfp_t gfp_mask)
1742 {
1743         struct buffer_head *head;
1744         struct buffer_head *bh;
1745         int ret = 0;
1746
1747         J_ASSERT(PageLocked(page));
1748
1749         head = page_buffers(page);
1750         bh = head;
1751         do {
1752                 struct journal_head *jh;
1753
1754                 /*
1755                  * We take our own ref against the journal_head here to avoid
1756                  * having to add tons of locking around each instance of
1757                  * jbd2_journal_put_journal_head().
1758                  */
1759                 jh = jbd2_journal_grab_journal_head(bh);
1760                 if (!jh)
1761                         continue;
1762
1763                 jbd_lock_bh_state(bh);
1764                 __journal_try_to_free_buffer(journal, bh);
1765                 jbd2_journal_put_journal_head(jh);
1766                 jbd_unlock_bh_state(bh);
1767                 if (buffer_jbd(bh))
1768                         goto busy;
1769         } while ((bh = bh->b_this_page) != head);
1770
1771         ret = try_to_free_buffers(page);
1772
1773 busy:
1774         return ret;
1775 }
1776
1777 /*
1778  * This buffer is no longer needed.  If it is on an older transaction's
1779  * checkpoint list we need to record it on this transaction's forget list
1780  * to pin this buffer (and hence its checkpointing transaction) down until
1781  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1782  * release it.
1783  * Returns non-zero if JBD no longer has an interest in the buffer.
1784  *
1785  * Called under j_list_lock.
1786  *
1787  * Called under jbd_lock_bh_state(bh).
1788  */
1789 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1790 {
1791         int may_free = 1;
1792         struct buffer_head *bh = jh2bh(jh);
1793
1794         if (jh->b_cp_transaction) {
1795                 JBUFFER_TRACE(jh, "on running+cp transaction");
1796                 __jbd2_journal_temp_unlink_buffer(jh);
1797                 /*
1798                  * We don't want to write the buffer anymore, clear the
1799                  * bit so that we don't confuse checks in
1800                  * __journal_file_buffer
1801                  */
1802                 clear_buffer_dirty(bh);
1803                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1804                 may_free = 0;
1805         } else {
1806                 JBUFFER_TRACE(jh, "on running transaction");
1807                 __jbd2_journal_unfile_buffer(jh);
1808         }
1809         return may_free;
1810 }
1811
1812 /*
1813  * jbd2_journal_invalidatepage
1814  *
1815  * This code is tricky.  It has a number of cases to deal with.
1816  *
1817  * There are two invariants which this code relies on:
1818  *
1819  * i_size must be updated on disk before we start calling invalidatepage on the
1820  * data.
1821  *
1822  *  This is done in ext3 by defining an ext3_setattr method which
1823  *  updates i_size before truncate gets going.  By maintaining this
1824  *  invariant, we can be sure that it is safe to throw away any buffers
1825  *  attached to the current transaction: once the transaction commits,
1826  *  we know that the data will not be needed.
1827  *
1828  *  Note however that we can *not* throw away data belonging to the
1829  *  previous, committing transaction!
1830  *
1831  * Any disk blocks which *are* part of the previous, committing
1832  * transaction (and which therefore cannot be discarded immediately) are
1833  * not going to be reused in the new running transaction
1834  *
1835  *  The bitmap committed_data images guarantee this: any block which is
1836  *  allocated in one transaction and removed in the next will be marked
1837  *  as in-use in the committed_data bitmap, so cannot be reused until
1838  *  the next transaction to delete the block commits.  This means that
1839  *  leaving committing buffers dirty is quite safe: the disk blocks
1840  *  cannot be reallocated to a different file and so buffer aliasing is
1841  *  not possible.
1842  *
1843  *
1844  * The above applies mainly to ordered data mode.  In writeback mode we
1845  * don't make guarantees about the order in which data hits disk --- in
1846  * particular we don't guarantee that new dirty data is flushed before
1847  * transaction commit --- so it is always safe just to discard data
1848  * immediately in that mode.  --sct
1849  */
1850
1851 /*
1852  * The journal_unmap_buffer helper function returns zero if the buffer
1853  * concerned remains pinned as an anonymous buffer belonging to an older
1854  * transaction.
1855  *
1856  * We're outside-transaction here.  Either or both of j_running_transaction
1857  * and j_committing_transaction may be NULL.
1858  */
1859 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1860                                 int partial_page)
1861 {
1862         transaction_t *transaction;
1863         struct journal_head *jh;
1864         int may_free = 1;
1865
1866         BUFFER_TRACE(bh, "entry");
1867
1868         /*
1869          * It is safe to proceed here without the j_list_lock because the
1870          * buffers cannot be stolen by try_to_free_buffers as long as we are
1871          * holding the page lock. --sct
1872          */
1873
1874         if (!buffer_jbd(bh))
1875                 goto zap_buffer_unlocked;
1876
1877         /* OK, we have data buffer in journaled mode */
1878         write_lock(&journal->j_state_lock);
1879         jbd_lock_bh_state(bh);
1880         spin_lock(&journal->j_list_lock);
1881
1882         jh = jbd2_journal_grab_journal_head(bh);
1883         if (!jh)
1884                 goto zap_buffer_no_jh;
1885
1886         /*
1887          * We cannot remove the buffer from checkpoint lists until the
1888          * transaction adding inode to orphan list (let's call it T)
1889          * is committed.  Otherwise if the transaction changing the
1890          * buffer would be cleaned from the journal before T is
1891          * committed, a crash will cause that the correct contents of
1892          * the buffer will be lost.  On the other hand we have to
1893          * clear the buffer dirty bit at latest at the moment when the
1894          * transaction marking the buffer as freed in the filesystem
1895          * structures is committed because from that moment on the
1896          * block can be reallocated and used by a different page.
1897          * Since the block hasn't been freed yet but the inode has
1898          * already been added to orphan list, it is safe for us to add
1899          * the buffer to BJ_Forget list of the newest transaction.
1900          *
1901          * Also we have to clear buffer_mapped flag of a truncated buffer
1902          * because the buffer_head may be attached to the page straddling
1903          * i_size (can happen only when blocksize < pagesize) and thus the
1904          * buffer_head can be reused when the file is extended again. So we end
1905          * up keeping around invalidated buffers attached to transactions'
1906          * BJ_Forget list just to stop checkpointing code from cleaning up
1907          * the transaction this buffer was modified in.
1908          */
1909         transaction = jh->b_transaction;
1910         if (transaction == NULL) {
1911                 /* First case: not on any transaction.  If it
1912                  * has no checkpoint link, then we can zap it:
1913                  * it's a writeback-mode buffer so we don't care
1914                  * if it hits disk safely. */
1915                 if (!jh->b_cp_transaction) {
1916                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1917                         goto zap_buffer;
1918                 }
1919
1920                 if (!buffer_dirty(bh)) {
1921                         /* bdflush has written it.  We can drop it now */
1922                         goto zap_buffer;
1923                 }
1924
1925                 /* OK, it must be in the journal but still not
1926                  * written fully to disk: it's metadata or
1927                  * journaled data... */
1928
1929                 if (journal->j_running_transaction) {
1930                         /* ... and once the current transaction has
1931                          * committed, the buffer won't be needed any
1932                          * longer. */
1933                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1934                         may_free = __dispose_buffer(jh,
1935                                         journal->j_running_transaction);
1936                         goto zap_buffer;
1937                 } else {
1938                         /* There is no currently-running transaction. So the
1939                          * orphan record which we wrote for this file must have
1940                          * passed into commit.  We must attach this buffer to
1941                          * the committing transaction, if it exists. */
1942                         if (journal->j_committing_transaction) {
1943                                 JBUFFER_TRACE(jh, "give to committing trans");
1944                                 may_free = __dispose_buffer(jh,
1945                                         journal->j_committing_transaction);
1946                                 goto zap_buffer;
1947                         } else {
1948                                 /* The orphan record's transaction has
1949                                  * committed.  We can cleanse this buffer */
1950                                 clear_buffer_jbddirty(bh);
1951                                 goto zap_buffer;
1952                         }
1953                 }
1954         } else if (transaction == journal->j_committing_transaction) {
1955                 JBUFFER_TRACE(jh, "on committing transaction");
1956                 /*
1957                  * The buffer is committing, we simply cannot touch
1958                  * it. If the page is straddling i_size we have to wait
1959                  * for commit and try again.
1960                  */
1961                 if (partial_page) {
1962                         jbd2_journal_put_journal_head(jh);
1963                         spin_unlock(&journal->j_list_lock);
1964                         jbd_unlock_bh_state(bh);
1965                         write_unlock(&journal->j_state_lock);
1966                         return -EBUSY;
1967                 }
1968                 /*
1969                  * OK, buffer won't be reachable after truncate. We just set
1970                  * j_next_transaction to the running transaction (if there is
1971                  * one) and mark buffer as freed so that commit code knows it
1972                  * should clear dirty bits when it is done with the buffer.
1973                  */
1974                 set_buffer_freed(bh);
1975                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1976                         jh->b_next_transaction = journal->j_running_transaction;
1977                 jbd2_journal_put_journal_head(jh);
1978                 spin_unlock(&journal->j_list_lock);
1979                 jbd_unlock_bh_state(bh);
1980                 write_unlock(&journal->j_state_lock);
1981                 return 0;
1982         } else {
1983                 /* Good, the buffer belongs to the running transaction.
1984                  * We are writing our own transaction's data, not any
1985                  * previous one's, so it is safe to throw it away
1986                  * (remember that we expect the filesystem to have set
1987                  * i_size already for this truncate so recovery will not
1988                  * expose the disk blocks we are discarding here.) */
1989                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1990                 JBUFFER_TRACE(jh, "on running transaction");
1991                 may_free = __dispose_buffer(jh, transaction);
1992         }
1993
1994 zap_buffer:
1995         /*
1996          * This is tricky. Although the buffer is truncated, it may be reused
1997          * if blocksize < pagesize and it is attached to the page straddling
1998          * EOF. Since the buffer might have been added to BJ_Forget list of the
1999          * running transaction, journal_get_write_access() won't clear
2000          * b_modified and credit accounting gets confused. So clear b_modified
2001          * here.
2002          */
2003         jh->b_modified = 0;
2004         jbd2_journal_put_journal_head(jh);
2005 zap_buffer_no_jh:
2006         spin_unlock(&journal->j_list_lock);
2007         jbd_unlock_bh_state(bh);
2008         write_unlock(&journal->j_state_lock);
2009 zap_buffer_unlocked:
2010         clear_buffer_dirty(bh);
2011         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2012         clear_buffer_mapped(bh);
2013         clear_buffer_req(bh);
2014         clear_buffer_new(bh);
2015         clear_buffer_delay(bh);
2016         clear_buffer_unwritten(bh);
2017         bh->b_bdev = NULL;
2018         return may_free;
2019 }
2020
2021 /**
2022  * void jbd2_journal_invalidatepage()
2023  * @journal: journal to use for flush...
2024  * @page:    page to flush
2025  * @offset:  length of page to invalidate.
2026  *
2027  * Reap page buffers containing data after offset in page. Can return -EBUSY
2028  * if buffers are part of the committing transaction and the page is straddling
2029  * i_size. Caller then has to wait for current commit and try again.
2030  */
2031 int jbd2_journal_invalidatepage(journal_t *journal,
2032                                 struct page *page,
2033                                 unsigned long offset)
2034 {
2035         struct buffer_head *head, *bh, *next;
2036         unsigned int curr_off = 0;
2037         int may_free = 1;
2038         int ret = 0;
2039
2040         if (!PageLocked(page))
2041                 BUG();
2042         if (!page_has_buffers(page))
2043                 return 0;
2044
2045         /* We will potentially be playing with lists other than just the
2046          * data lists (especially for journaled data mode), so be
2047          * cautious in our locking. */
2048
2049         head = bh = page_buffers(page);
2050         do {
2051                 unsigned int next_off = curr_off + bh->b_size;
2052                 next = bh->b_this_page;
2053
2054                 if (offset <= curr_off) {
2055                         /* This block is wholly outside the truncation point */
2056                         lock_buffer(bh);
2057                         ret = journal_unmap_buffer(journal, bh, offset > 0);
2058                         unlock_buffer(bh);
2059                         if (ret < 0)
2060                                 return ret;
2061                         may_free &= ret;
2062                 }
2063                 curr_off = next_off;
2064                 bh = next;
2065
2066         } while (bh != head);
2067
2068         if (!offset) {
2069                 if (may_free && try_to_free_buffers(page))
2070                         J_ASSERT(!page_has_buffers(page));
2071         }
2072         return 0;
2073 }
2074
2075 /*
2076  * File a buffer on the given transaction list.
2077  */
2078 void __jbd2_journal_file_buffer(struct journal_head *jh,
2079                         transaction_t *transaction, int jlist)
2080 {
2081         struct journal_head **list = NULL;
2082         int was_dirty = 0;
2083         struct buffer_head *bh = jh2bh(jh);
2084
2085         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2086         assert_spin_locked(&transaction->t_journal->j_list_lock);
2087
2088         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2089         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2090                                 jh->b_transaction == NULL);
2091
2092         if (jh->b_transaction && jh->b_jlist == jlist)
2093                 return;
2094
2095         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2096             jlist == BJ_Shadow || jlist == BJ_Forget) {
2097                 /*
2098                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2099                  * instead of buffer_dirty. We should not see a dirty bit set
2100                  * here because we clear it in do_get_write_access but e.g.
2101                  * tune2fs can modify the sb and set the dirty bit at any time
2102                  * so we try to gracefully handle that.
2103                  */
2104                 if (buffer_dirty(bh))
2105                         warn_dirty_buffer(bh);
2106                 if (test_clear_buffer_dirty(bh) ||
2107                     test_clear_buffer_jbddirty(bh))
2108                         was_dirty = 1;
2109         }
2110
2111         if (jh->b_transaction)
2112                 __jbd2_journal_temp_unlink_buffer(jh);
2113         else
2114                 jbd2_journal_grab_journal_head(bh);
2115         jh->b_transaction = transaction;
2116
2117         switch (jlist) {
2118         case BJ_None:
2119                 J_ASSERT_JH(jh, !jh->b_committed_data);
2120                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2121                 return;
2122         case BJ_Metadata:
2123                 transaction->t_nr_buffers++;
2124                 list = &transaction->t_buffers;
2125                 break;
2126         case BJ_Forget:
2127                 list = &transaction->t_forget;
2128                 break;
2129         case BJ_IO:
2130                 list = &transaction->t_iobuf_list;
2131                 break;
2132         case BJ_Shadow:
2133                 list = &transaction->t_shadow_list;
2134                 break;
2135         case BJ_LogCtl:
2136                 list = &transaction->t_log_list;
2137                 break;
2138         case BJ_Reserved:
2139                 list = &transaction->t_reserved_list;
2140                 break;
2141         }
2142
2143         __blist_add_buffer(list, jh);
2144         jh->b_jlist = jlist;
2145
2146         if (was_dirty)
2147                 set_buffer_jbddirty(bh);
2148 }
2149
2150 void jbd2_journal_file_buffer(struct journal_head *jh,
2151                                 transaction_t *transaction, int jlist)
2152 {
2153         jbd_lock_bh_state(jh2bh(jh));
2154         spin_lock(&transaction->t_journal->j_list_lock);
2155         __jbd2_journal_file_buffer(jh, transaction, jlist);
2156         spin_unlock(&transaction->t_journal->j_list_lock);
2157         jbd_unlock_bh_state(jh2bh(jh));
2158 }
2159
2160 /*
2161  * Remove a buffer from its current buffer list in preparation for
2162  * dropping it from its current transaction entirely.  If the buffer has
2163  * already started to be used by a subsequent transaction, refile the
2164  * buffer on that transaction's metadata list.
2165  *
2166  * Called under j_list_lock
2167  * Called under jbd_lock_bh_state(jh2bh(jh))
2168  *
2169  * jh and bh may be already free when this function returns
2170  */
2171 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2172 {
2173         int was_dirty, jlist;
2174         struct buffer_head *bh = jh2bh(jh);
2175
2176         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2177         if (jh->b_transaction)
2178                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2179
2180         /* If the buffer is now unused, just drop it. */
2181         if (jh->b_next_transaction == NULL) {
2182                 __jbd2_journal_unfile_buffer(jh);
2183                 return;
2184         }
2185
2186         /*
2187          * It has been modified by a later transaction: add it to the new
2188          * transaction's metadata list.
2189          */
2190
2191         was_dirty = test_clear_buffer_jbddirty(bh);
2192         __jbd2_journal_temp_unlink_buffer(jh);
2193         /*
2194          * We set b_transaction here because b_next_transaction will inherit
2195          * our jh reference and thus __jbd2_journal_file_buffer() must not
2196          * take a new one.
2197          */
2198         jh->b_transaction = jh->b_next_transaction;
2199         jh->b_next_transaction = NULL;
2200         if (buffer_freed(bh))
2201                 jlist = BJ_Forget;
2202         else if (jh->b_modified)
2203                 jlist = BJ_Metadata;
2204         else
2205                 jlist = BJ_Reserved;
2206         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2207         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2208
2209         if (was_dirty)
2210                 set_buffer_jbddirty(bh);
2211 }
2212
2213 /*
2214  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2215  * bh reference so that we can safely unlock bh.
2216  *
2217  * The jh and bh may be freed by this call.
2218  */
2219 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2220 {
2221         struct buffer_head *bh = jh2bh(jh);
2222
2223         /* Get reference so that buffer cannot be freed before we unlock it */
2224         get_bh(bh);
2225         jbd_lock_bh_state(bh);
2226         spin_lock(&journal->j_list_lock);
2227         __jbd2_journal_refile_buffer(jh);
2228         jbd_unlock_bh_state(bh);
2229         spin_unlock(&journal->j_list_lock);
2230         __brelse(bh);
2231 }
2232
2233 /*
2234  * File inode in the inode list of the handle's transaction
2235  */
2236 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2237 {
2238         transaction_t *transaction = handle->h_transaction;
2239         journal_t *journal = transaction->t_journal;
2240
2241         if (is_handle_aborted(handle))
2242                 return -EIO;
2243
2244         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2245                         transaction->t_tid);
2246
2247         /*
2248          * First check whether inode isn't already on the transaction's
2249          * lists without taking the lock. Note that this check is safe
2250          * without the lock as we cannot race with somebody removing inode
2251          * from the transaction. The reason is that we remove inode from the
2252          * transaction only in journal_release_jbd_inode() and when we commit
2253          * the transaction. We are guarded from the first case by holding
2254          * a reference to the inode. We are safe against the second case
2255          * because if jinode->i_transaction == transaction, commit code
2256          * cannot touch the transaction because we hold reference to it,
2257          * and if jinode->i_next_transaction == transaction, commit code
2258          * will only file the inode where we want it.
2259          */
2260         if (jinode->i_transaction == transaction ||
2261             jinode->i_next_transaction == transaction)
2262                 return 0;
2263
2264         spin_lock(&journal->j_list_lock);
2265
2266         if (jinode->i_transaction == transaction ||
2267             jinode->i_next_transaction == transaction)
2268                 goto done;
2269
2270         /*
2271          * We only ever set this variable to 1 so the test is safe. Since
2272          * t_need_data_flush is likely to be set, we do the test to save some
2273          * cacheline bouncing
2274          */
2275         if (!transaction->t_need_data_flush)
2276                 transaction->t_need_data_flush = 1;
2277         /* On some different transaction's list - should be
2278          * the committing one */
2279         if (jinode->i_transaction) {
2280                 J_ASSERT(jinode->i_next_transaction == NULL);
2281                 J_ASSERT(jinode->i_transaction ==
2282                                         journal->j_committing_transaction);
2283                 jinode->i_next_transaction = transaction;
2284                 goto done;
2285         }
2286         /* Not on any transaction list... */
2287         J_ASSERT(!jinode->i_next_transaction);
2288         jinode->i_transaction = transaction;
2289         list_add(&jinode->i_list, &transaction->t_inode_list);
2290 done:
2291         spin_unlock(&journal->j_list_lock);
2292
2293         return 0;
2294 }
2295
2296 /*
2297  * File truncate and transaction commit interact with each other in a
2298  * non-trivial way.  If a transaction writing data block A is
2299  * committing, we cannot discard the data by truncate until we have
2300  * written them.  Otherwise if we crashed after the transaction with
2301  * write has committed but before the transaction with truncate has
2302  * committed, we could see stale data in block A.  This function is a
2303  * helper to solve this problem.  It starts writeout of the truncated
2304  * part in case it is in the committing transaction.
2305  *
2306  * Filesystem code must call this function when inode is journaled in
2307  * ordered mode before truncation happens and after the inode has been
2308  * placed on orphan list with the new inode size. The second condition
2309  * avoids the race that someone writes new data and we start
2310  * committing the transaction after this function has been called but
2311  * before a transaction for truncate is started (and furthermore it
2312  * allows us to optimize the case where the addition to orphan list
2313  * happens in the same transaction as write --- we don't have to write
2314  * any data in such case).
2315  */
2316 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2317                                         struct jbd2_inode *jinode,
2318                                         loff_t new_size)
2319 {
2320         transaction_t *inode_trans, *commit_trans;
2321         int ret = 0;
2322
2323         /* This is a quick check to avoid locking if not necessary */
2324         if (!jinode->i_transaction)
2325                 goto out;
2326         /* Locks are here just to force reading of recent values, it is
2327          * enough that the transaction was not committing before we started
2328          * a transaction adding the inode to orphan list */
2329         read_lock(&journal->j_state_lock);
2330         commit_trans = journal->j_committing_transaction;
2331         read_unlock(&journal->j_state_lock);
2332         spin_lock(&journal->j_list_lock);
2333         inode_trans = jinode->i_transaction;
2334         spin_unlock(&journal->j_list_lock);
2335         if (inode_trans == commit_trans) {
2336                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2337                         new_size, LLONG_MAX);
2338                 if (ret)
2339                         jbd2_journal_abort(journal, ret);
2340         }
2341 out:
2342         return ret;
2343 }