jbd2: enable journal clients to enable v2 checksumming
[firefly-linux-kernel-4.4.55.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
42 #include <linux/log2.h>
43 #include <linux/vmalloc.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bitops.h>
46 #include <linux/ratelimit.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <asm/uaccess.h>
52 #include <asm/page.h>
53
54 EXPORT_SYMBOL(jbd2_journal_extend);
55 EXPORT_SYMBOL(jbd2_journal_stop);
56 EXPORT_SYMBOL(jbd2_journal_lock_updates);
57 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
58 EXPORT_SYMBOL(jbd2_journal_get_write_access);
59 EXPORT_SYMBOL(jbd2_journal_get_create_access);
60 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
61 EXPORT_SYMBOL(jbd2_journal_set_triggers);
62 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
63 EXPORT_SYMBOL(jbd2_journal_release_buffer);
64 EXPORT_SYMBOL(jbd2_journal_forget);
65 #if 0
66 EXPORT_SYMBOL(journal_sync_buffer);
67 #endif
68 EXPORT_SYMBOL(jbd2_journal_flush);
69 EXPORT_SYMBOL(jbd2_journal_revoke);
70
71 EXPORT_SYMBOL(jbd2_journal_init_dev);
72 EXPORT_SYMBOL(jbd2_journal_init_inode);
73 EXPORT_SYMBOL(jbd2_journal_check_used_features);
74 EXPORT_SYMBOL(jbd2_journal_check_available_features);
75 EXPORT_SYMBOL(jbd2_journal_set_features);
76 EXPORT_SYMBOL(jbd2_journal_load);
77 EXPORT_SYMBOL(jbd2_journal_destroy);
78 EXPORT_SYMBOL(jbd2_journal_abort);
79 EXPORT_SYMBOL(jbd2_journal_errno);
80 EXPORT_SYMBOL(jbd2_journal_ack_err);
81 EXPORT_SYMBOL(jbd2_journal_clear_err);
82 EXPORT_SYMBOL(jbd2_log_wait_commit);
83 EXPORT_SYMBOL(jbd2_log_start_commit);
84 EXPORT_SYMBOL(jbd2_journal_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
86 EXPORT_SYMBOL(jbd2_journal_wipe);
87 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
88 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
89 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
90 EXPORT_SYMBOL(jbd2_journal_force_commit);
91 EXPORT_SYMBOL(jbd2_journal_file_inode);
92 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
93 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
94 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
95 EXPORT_SYMBOL(jbd2_inode_cache);
96
97 static void __journal_abort_soft (journal_t *journal, int errno);
98 static int jbd2_journal_create_slab(size_t slab_size);
99
100 /* Checksumming functions */
101 int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
102 {
103         if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
104                 return 1;
105
106         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
107 }
108
109 /*
110  * Helper function used to manage commit timeouts
111  */
112
113 static void commit_timeout(unsigned long __data)
114 {
115         struct task_struct * p = (struct task_struct *) __data;
116
117         wake_up_process(p);
118 }
119
120 /*
121  * kjournald2: The main thread function used to manage a logging device
122  * journal.
123  *
124  * This kernel thread is responsible for two things:
125  *
126  * 1) COMMIT:  Every so often we need to commit the current state of the
127  *    filesystem to disk.  The journal thread is responsible for writing
128  *    all of the metadata buffers to disk.
129  *
130  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
131  *    of the data in that part of the log has been rewritten elsewhere on
132  *    the disk.  Flushing these old buffers to reclaim space in the log is
133  *    known as checkpointing, and this thread is responsible for that job.
134  */
135
136 static int kjournald2(void *arg)
137 {
138         journal_t *journal = arg;
139         transaction_t *transaction;
140
141         /*
142          * Set up an interval timer which can be used to trigger a commit wakeup
143          * after the commit interval expires
144          */
145         setup_timer(&journal->j_commit_timer, commit_timeout,
146                         (unsigned long)current);
147
148         set_freezable();
149
150         /* Record that the journal thread is running */
151         journal->j_task = current;
152         wake_up(&journal->j_wait_done_commit);
153
154         /*
155          * And now, wait forever for commit wakeup events.
156          */
157         write_lock(&journal->j_state_lock);
158
159 loop:
160         if (journal->j_flags & JBD2_UNMOUNT)
161                 goto end_loop;
162
163         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
164                 journal->j_commit_sequence, journal->j_commit_request);
165
166         if (journal->j_commit_sequence != journal->j_commit_request) {
167                 jbd_debug(1, "OK, requests differ\n");
168                 write_unlock(&journal->j_state_lock);
169                 del_timer_sync(&journal->j_commit_timer);
170                 jbd2_journal_commit_transaction(journal);
171                 write_lock(&journal->j_state_lock);
172                 goto loop;
173         }
174
175         wake_up(&journal->j_wait_done_commit);
176         if (freezing(current)) {
177                 /*
178                  * The simpler the better. Flushing journal isn't a
179                  * good idea, because that depends on threads that may
180                  * be already stopped.
181                  */
182                 jbd_debug(1, "Now suspending kjournald2\n");
183                 write_unlock(&journal->j_state_lock);
184                 try_to_freeze();
185                 write_lock(&journal->j_state_lock);
186         } else {
187                 /*
188                  * We assume on resume that commits are already there,
189                  * so we don't sleep
190                  */
191                 DEFINE_WAIT(wait);
192                 int should_sleep = 1;
193
194                 prepare_to_wait(&journal->j_wait_commit, &wait,
195                                 TASK_INTERRUPTIBLE);
196                 if (journal->j_commit_sequence != journal->j_commit_request)
197                         should_sleep = 0;
198                 transaction = journal->j_running_transaction;
199                 if (transaction && time_after_eq(jiffies,
200                                                 transaction->t_expires))
201                         should_sleep = 0;
202                 if (journal->j_flags & JBD2_UNMOUNT)
203                         should_sleep = 0;
204                 if (should_sleep) {
205                         write_unlock(&journal->j_state_lock);
206                         schedule();
207                         write_lock(&journal->j_state_lock);
208                 }
209                 finish_wait(&journal->j_wait_commit, &wait);
210         }
211
212         jbd_debug(1, "kjournald2 wakes\n");
213
214         /*
215          * Were we woken up by a commit wakeup event?
216          */
217         transaction = journal->j_running_transaction;
218         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
219                 journal->j_commit_request = transaction->t_tid;
220                 jbd_debug(1, "woke because of timeout\n");
221         }
222         goto loop;
223
224 end_loop:
225         write_unlock(&journal->j_state_lock);
226         del_timer_sync(&journal->j_commit_timer);
227         journal->j_task = NULL;
228         wake_up(&journal->j_wait_done_commit);
229         jbd_debug(1, "Journal thread exiting.\n");
230         return 0;
231 }
232
233 static int jbd2_journal_start_thread(journal_t *journal)
234 {
235         struct task_struct *t;
236
237         t = kthread_run(kjournald2, journal, "jbd2/%s",
238                         journal->j_devname);
239         if (IS_ERR(t))
240                 return PTR_ERR(t);
241
242         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
243         return 0;
244 }
245
246 static void journal_kill_thread(journal_t *journal)
247 {
248         write_lock(&journal->j_state_lock);
249         journal->j_flags |= JBD2_UNMOUNT;
250
251         while (journal->j_task) {
252                 wake_up(&journal->j_wait_commit);
253                 write_unlock(&journal->j_state_lock);
254                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
255                 write_lock(&journal->j_state_lock);
256         }
257         write_unlock(&journal->j_state_lock);
258 }
259
260 /*
261  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
262  *
263  * Writes a metadata buffer to a given disk block.  The actual IO is not
264  * performed but a new buffer_head is constructed which labels the data
265  * to be written with the correct destination disk block.
266  *
267  * Any magic-number escaping which needs to be done will cause a
268  * copy-out here.  If the buffer happens to start with the
269  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
270  * magic number is only written to the log for descripter blocks.  In
271  * this case, we copy the data and replace the first word with 0, and we
272  * return a result code which indicates that this buffer needs to be
273  * marked as an escaped buffer in the corresponding log descriptor
274  * block.  The missing word can then be restored when the block is read
275  * during recovery.
276  *
277  * If the source buffer has already been modified by a new transaction
278  * since we took the last commit snapshot, we use the frozen copy of
279  * that data for IO.  If we end up using the existing buffer_head's data
280  * for the write, then we *have* to lock the buffer to prevent anyone
281  * else from using and possibly modifying it while the IO is in
282  * progress.
283  *
284  * The function returns a pointer to the buffer_heads to be used for IO.
285  *
286  * We assume that the journal has already been locked in this function.
287  *
288  * Return value:
289  *  <0: Error
290  * >=0: Finished OK
291  *
292  * On success:
293  * Bit 0 set == escape performed on the data
294  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
295  */
296
297 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
298                                   struct journal_head  *jh_in,
299                                   struct journal_head **jh_out,
300                                   unsigned long long blocknr)
301 {
302         int need_copy_out = 0;
303         int done_copy_out = 0;
304         int do_escape = 0;
305         char *mapped_data;
306         struct buffer_head *new_bh;
307         struct journal_head *new_jh;
308         struct page *new_page;
309         unsigned int new_offset;
310         struct buffer_head *bh_in = jh2bh(jh_in);
311         journal_t *journal = transaction->t_journal;
312
313         /*
314          * The buffer really shouldn't be locked: only the current committing
315          * transaction is allowed to write it, so nobody else is allowed
316          * to do any IO.
317          *
318          * akpm: except if we're journalling data, and write() output is
319          * also part of a shared mapping, and another thread has
320          * decided to launch a writepage() against this buffer.
321          */
322         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
323
324 retry_alloc:
325         new_bh = alloc_buffer_head(GFP_NOFS);
326         if (!new_bh) {
327                 /*
328                  * Failure is not an option, but __GFP_NOFAIL is going
329                  * away; so we retry ourselves here.
330                  */
331                 congestion_wait(BLK_RW_ASYNC, HZ/50);
332                 goto retry_alloc;
333         }
334
335         /* keep subsequent assertions sane */
336         new_bh->b_state = 0;
337         init_buffer(new_bh, NULL, NULL);
338         atomic_set(&new_bh->b_count, 1);
339         new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
340
341         /*
342          * If a new transaction has already done a buffer copy-out, then
343          * we use that version of the data for the commit.
344          */
345         jbd_lock_bh_state(bh_in);
346 repeat:
347         if (jh_in->b_frozen_data) {
348                 done_copy_out = 1;
349                 new_page = virt_to_page(jh_in->b_frozen_data);
350                 new_offset = offset_in_page(jh_in->b_frozen_data);
351         } else {
352                 new_page = jh2bh(jh_in)->b_page;
353                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
354         }
355
356         mapped_data = kmap_atomic(new_page);
357         /*
358          * Fire data frozen trigger if data already wasn't frozen.  Do this
359          * before checking for escaping, as the trigger may modify the magic
360          * offset.  If a copy-out happens afterwards, it will have the correct
361          * data in the buffer.
362          */
363         if (!done_copy_out)
364                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
365                                            jh_in->b_triggers);
366
367         /*
368          * Check for escaping
369          */
370         if (*((__be32 *)(mapped_data + new_offset)) ==
371                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
372                 need_copy_out = 1;
373                 do_escape = 1;
374         }
375         kunmap_atomic(mapped_data);
376
377         /*
378          * Do we need to do a data copy?
379          */
380         if (need_copy_out && !done_copy_out) {
381                 char *tmp;
382
383                 jbd_unlock_bh_state(bh_in);
384                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
385                 if (!tmp) {
386                         jbd2_journal_put_journal_head(new_jh);
387                         return -ENOMEM;
388                 }
389                 jbd_lock_bh_state(bh_in);
390                 if (jh_in->b_frozen_data) {
391                         jbd2_free(tmp, bh_in->b_size);
392                         goto repeat;
393                 }
394
395                 jh_in->b_frozen_data = tmp;
396                 mapped_data = kmap_atomic(new_page);
397                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
398                 kunmap_atomic(mapped_data);
399
400                 new_page = virt_to_page(tmp);
401                 new_offset = offset_in_page(tmp);
402                 done_copy_out = 1;
403
404                 /*
405                  * This isn't strictly necessary, as we're using frozen
406                  * data for the escaping, but it keeps consistency with
407                  * b_frozen_data usage.
408                  */
409                 jh_in->b_frozen_triggers = jh_in->b_triggers;
410         }
411
412         /*
413          * Did we need to do an escaping?  Now we've done all the
414          * copying, we can finally do so.
415          */
416         if (do_escape) {
417                 mapped_data = kmap_atomic(new_page);
418                 *((unsigned int *)(mapped_data + new_offset)) = 0;
419                 kunmap_atomic(mapped_data);
420         }
421
422         set_bh_page(new_bh, new_page, new_offset);
423         new_jh->b_transaction = NULL;
424         new_bh->b_size = jh2bh(jh_in)->b_size;
425         new_bh->b_bdev = transaction->t_journal->j_dev;
426         new_bh->b_blocknr = blocknr;
427         set_buffer_mapped(new_bh);
428         set_buffer_dirty(new_bh);
429
430         *jh_out = new_jh;
431
432         /*
433          * The to-be-written buffer needs to get moved to the io queue,
434          * and the original buffer whose contents we are shadowing or
435          * copying is moved to the transaction's shadow queue.
436          */
437         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
438         spin_lock(&journal->j_list_lock);
439         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
440         spin_unlock(&journal->j_list_lock);
441         jbd_unlock_bh_state(bh_in);
442
443         JBUFFER_TRACE(new_jh, "file as BJ_IO");
444         jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
445
446         return do_escape | (done_copy_out << 1);
447 }
448
449 /*
450  * Allocation code for the journal file.  Manage the space left in the
451  * journal, so that we can begin checkpointing when appropriate.
452  */
453
454 /*
455  * __jbd2_log_space_left: Return the number of free blocks left in the journal.
456  *
457  * Called with the journal already locked.
458  *
459  * Called under j_state_lock
460  */
461
462 int __jbd2_log_space_left(journal_t *journal)
463 {
464         int left = journal->j_free;
465
466         /* assert_spin_locked(&journal->j_state_lock); */
467
468         /*
469          * Be pessimistic here about the number of those free blocks which
470          * might be required for log descriptor control blocks.
471          */
472
473 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
474
475         left -= MIN_LOG_RESERVED_BLOCKS;
476
477         if (left <= 0)
478                 return 0;
479         left -= (left >> 3);
480         return left;
481 }
482
483 /*
484  * Called with j_state_lock locked for writing.
485  * Returns true if a transaction commit was started.
486  */
487 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
488 {
489         /*
490          * The only transaction we can possibly wait upon is the
491          * currently running transaction (if it exists).  Otherwise,
492          * the target tid must be an old one.
493          */
494         if (journal->j_running_transaction &&
495             journal->j_running_transaction->t_tid == target) {
496                 /*
497                  * We want a new commit: OK, mark the request and wakeup the
498                  * commit thread.  We do _not_ do the commit ourselves.
499                  */
500
501                 journal->j_commit_request = target;
502                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
503                           journal->j_commit_request,
504                           journal->j_commit_sequence);
505                 wake_up(&journal->j_wait_commit);
506                 return 1;
507         } else if (!tid_geq(journal->j_commit_request, target))
508                 /* This should never happen, but if it does, preserve
509                    the evidence before kjournald goes into a loop and
510                    increments j_commit_sequence beyond all recognition. */
511                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
512                           journal->j_commit_request,
513                           journal->j_commit_sequence,
514                           target, journal->j_running_transaction ? 
515                           journal->j_running_transaction->t_tid : 0);
516         return 0;
517 }
518
519 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
520 {
521         int ret;
522
523         write_lock(&journal->j_state_lock);
524         ret = __jbd2_log_start_commit(journal, tid);
525         write_unlock(&journal->j_state_lock);
526         return ret;
527 }
528
529 /*
530  * Force and wait upon a commit if the calling process is not within
531  * transaction.  This is used for forcing out undo-protected data which contains
532  * bitmaps, when the fs is running out of space.
533  *
534  * We can only force the running transaction if we don't have an active handle;
535  * otherwise, we will deadlock.
536  *
537  * Returns true if a transaction was started.
538  */
539 int jbd2_journal_force_commit_nested(journal_t *journal)
540 {
541         transaction_t *transaction = NULL;
542         tid_t tid;
543         int need_to_start = 0;
544
545         read_lock(&journal->j_state_lock);
546         if (journal->j_running_transaction && !current->journal_info) {
547                 transaction = journal->j_running_transaction;
548                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
549                         need_to_start = 1;
550         } else if (journal->j_committing_transaction)
551                 transaction = journal->j_committing_transaction;
552
553         if (!transaction) {
554                 read_unlock(&journal->j_state_lock);
555                 return 0;       /* Nothing to retry */
556         }
557
558         tid = transaction->t_tid;
559         read_unlock(&journal->j_state_lock);
560         if (need_to_start)
561                 jbd2_log_start_commit(journal, tid);
562         jbd2_log_wait_commit(journal, tid);
563         return 1;
564 }
565
566 /*
567  * Start a commit of the current running transaction (if any).  Returns true
568  * if a transaction is going to be committed (or is currently already
569  * committing), and fills its tid in at *ptid
570  */
571 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
572 {
573         int ret = 0;
574
575         write_lock(&journal->j_state_lock);
576         if (journal->j_running_transaction) {
577                 tid_t tid = journal->j_running_transaction->t_tid;
578
579                 __jbd2_log_start_commit(journal, tid);
580                 /* There's a running transaction and we've just made sure
581                  * it's commit has been scheduled. */
582                 if (ptid)
583                         *ptid = tid;
584                 ret = 1;
585         } else if (journal->j_committing_transaction) {
586                 /*
587                  * If ext3_write_super() recently started a commit, then we
588                  * have to wait for completion of that transaction
589                  */
590                 if (ptid)
591                         *ptid = journal->j_committing_transaction->t_tid;
592                 ret = 1;
593         }
594         write_unlock(&journal->j_state_lock);
595         return ret;
596 }
597
598 /*
599  * Return 1 if a given transaction has not yet sent barrier request
600  * connected with a transaction commit. If 0 is returned, transaction
601  * may or may not have sent the barrier. Used to avoid sending barrier
602  * twice in common cases.
603  */
604 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
605 {
606         int ret = 0;
607         transaction_t *commit_trans;
608
609         if (!(journal->j_flags & JBD2_BARRIER))
610                 return 0;
611         read_lock(&journal->j_state_lock);
612         /* Transaction already committed? */
613         if (tid_geq(journal->j_commit_sequence, tid))
614                 goto out;
615         commit_trans = journal->j_committing_transaction;
616         if (!commit_trans || commit_trans->t_tid != tid) {
617                 ret = 1;
618                 goto out;
619         }
620         /*
621          * Transaction is being committed and we already proceeded to
622          * submitting a flush to fs partition?
623          */
624         if (journal->j_fs_dev != journal->j_dev) {
625                 if (!commit_trans->t_need_data_flush ||
626                     commit_trans->t_state >= T_COMMIT_DFLUSH)
627                         goto out;
628         } else {
629                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
630                         goto out;
631         }
632         ret = 1;
633 out:
634         read_unlock(&journal->j_state_lock);
635         return ret;
636 }
637 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
638
639 /*
640  * Wait for a specified commit to complete.
641  * The caller may not hold the journal lock.
642  */
643 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
644 {
645         int err = 0;
646
647         read_lock(&journal->j_state_lock);
648 #ifdef CONFIG_JBD2_DEBUG
649         if (!tid_geq(journal->j_commit_request, tid)) {
650                 printk(KERN_EMERG
651                        "%s: error: j_commit_request=%d, tid=%d\n",
652                        __func__, journal->j_commit_request, tid);
653         }
654 #endif
655         while (tid_gt(tid, journal->j_commit_sequence)) {
656                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
657                                   tid, journal->j_commit_sequence);
658                 wake_up(&journal->j_wait_commit);
659                 read_unlock(&journal->j_state_lock);
660                 wait_event(journal->j_wait_done_commit,
661                                 !tid_gt(tid, journal->j_commit_sequence));
662                 read_lock(&journal->j_state_lock);
663         }
664         read_unlock(&journal->j_state_lock);
665
666         if (unlikely(is_journal_aborted(journal))) {
667                 printk(KERN_EMERG "journal commit I/O error\n");
668                 err = -EIO;
669         }
670         return err;
671 }
672
673 /*
674  * Log buffer allocation routines:
675  */
676
677 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
678 {
679         unsigned long blocknr;
680
681         write_lock(&journal->j_state_lock);
682         J_ASSERT(journal->j_free > 1);
683
684         blocknr = journal->j_head;
685         journal->j_head++;
686         journal->j_free--;
687         if (journal->j_head == journal->j_last)
688                 journal->j_head = journal->j_first;
689         write_unlock(&journal->j_state_lock);
690         return jbd2_journal_bmap(journal, blocknr, retp);
691 }
692
693 /*
694  * Conversion of logical to physical block numbers for the journal
695  *
696  * On external journals the journal blocks are identity-mapped, so
697  * this is a no-op.  If needed, we can use j_blk_offset - everything is
698  * ready.
699  */
700 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
701                  unsigned long long *retp)
702 {
703         int err = 0;
704         unsigned long long ret;
705
706         if (journal->j_inode) {
707                 ret = bmap(journal->j_inode, blocknr);
708                 if (ret)
709                         *retp = ret;
710                 else {
711                         printk(KERN_ALERT "%s: journal block not found "
712                                         "at offset %lu on %s\n",
713                                __func__, blocknr, journal->j_devname);
714                         err = -EIO;
715                         __journal_abort_soft(journal, err);
716                 }
717         } else {
718                 *retp = blocknr; /* +journal->j_blk_offset */
719         }
720         return err;
721 }
722
723 /*
724  * We play buffer_head aliasing tricks to write data/metadata blocks to
725  * the journal without copying their contents, but for journal
726  * descriptor blocks we do need to generate bona fide buffers.
727  *
728  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
729  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
730  * But we don't bother doing that, so there will be coherency problems with
731  * mmaps of blockdevs which hold live JBD-controlled filesystems.
732  */
733 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
734 {
735         struct buffer_head *bh;
736         unsigned long long blocknr;
737         int err;
738
739         err = jbd2_journal_next_log_block(journal, &blocknr);
740
741         if (err)
742                 return NULL;
743
744         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
745         if (!bh)
746                 return NULL;
747         lock_buffer(bh);
748         memset(bh->b_data, 0, journal->j_blocksize);
749         set_buffer_uptodate(bh);
750         unlock_buffer(bh);
751         BUFFER_TRACE(bh, "return this buffer");
752         return jbd2_journal_add_journal_head(bh);
753 }
754
755 /*
756  * Return tid of the oldest transaction in the journal and block in the journal
757  * where the transaction starts.
758  *
759  * If the journal is now empty, return which will be the next transaction ID
760  * we will write and where will that transaction start.
761  *
762  * The return value is 0 if journal tail cannot be pushed any further, 1 if
763  * it can.
764  */
765 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
766                               unsigned long *block)
767 {
768         transaction_t *transaction;
769         int ret;
770
771         read_lock(&journal->j_state_lock);
772         spin_lock(&journal->j_list_lock);
773         transaction = journal->j_checkpoint_transactions;
774         if (transaction) {
775                 *tid = transaction->t_tid;
776                 *block = transaction->t_log_start;
777         } else if ((transaction = journal->j_committing_transaction) != NULL) {
778                 *tid = transaction->t_tid;
779                 *block = transaction->t_log_start;
780         } else if ((transaction = journal->j_running_transaction) != NULL) {
781                 *tid = transaction->t_tid;
782                 *block = journal->j_head;
783         } else {
784                 *tid = journal->j_transaction_sequence;
785                 *block = journal->j_head;
786         }
787         ret = tid_gt(*tid, journal->j_tail_sequence);
788         spin_unlock(&journal->j_list_lock);
789         read_unlock(&journal->j_state_lock);
790
791         return ret;
792 }
793
794 /*
795  * Update information in journal structure and in on disk journal superblock
796  * about log tail. This function does not check whether information passed in
797  * really pushes log tail further. It's responsibility of the caller to make
798  * sure provided log tail information is valid (e.g. by holding
799  * j_checkpoint_mutex all the time between computing log tail and calling this
800  * function as is the case with jbd2_cleanup_journal_tail()).
801  *
802  * Requires j_checkpoint_mutex
803  */
804 void __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
805 {
806         unsigned long freed;
807
808         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
809
810         /*
811          * We cannot afford for write to remain in drive's caches since as
812          * soon as we update j_tail, next transaction can start reusing journal
813          * space and if we lose sb update during power failure we'd replay
814          * old transaction with possibly newly overwritten data.
815          */
816         jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
817         write_lock(&journal->j_state_lock);
818         freed = block - journal->j_tail;
819         if (block < journal->j_tail)
820                 freed += journal->j_last - journal->j_first;
821
822         trace_jbd2_update_log_tail(journal, tid, block, freed);
823         jbd_debug(1,
824                   "Cleaning journal tail from %d to %d (offset %lu), "
825                   "freeing %lu\n",
826                   journal->j_tail_sequence, tid, block, freed);
827
828         journal->j_free += freed;
829         journal->j_tail_sequence = tid;
830         journal->j_tail = block;
831         write_unlock(&journal->j_state_lock);
832 }
833
834 /*
835  * This is a variaon of __jbd2_update_log_tail which checks for validity of
836  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
837  * with other threads updating log tail.
838  */
839 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
840 {
841         mutex_lock(&journal->j_checkpoint_mutex);
842         if (tid_gt(tid, journal->j_tail_sequence))
843                 __jbd2_update_log_tail(journal, tid, block);
844         mutex_unlock(&journal->j_checkpoint_mutex);
845 }
846
847 struct jbd2_stats_proc_session {
848         journal_t *journal;
849         struct transaction_stats_s *stats;
850         int start;
851         int max;
852 };
853
854 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
855 {
856         return *pos ? NULL : SEQ_START_TOKEN;
857 }
858
859 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
860 {
861         return NULL;
862 }
863
864 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
865 {
866         struct jbd2_stats_proc_session *s = seq->private;
867
868         if (v != SEQ_START_TOKEN)
869                 return 0;
870         seq_printf(seq, "%lu transaction, each up to %u blocks\n",
871                         s->stats->ts_tid,
872                         s->journal->j_max_transaction_buffers);
873         if (s->stats->ts_tid == 0)
874                 return 0;
875         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
876             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
877         seq_printf(seq, "  %ums running transaction\n",
878             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
879         seq_printf(seq, "  %ums transaction was being locked\n",
880             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
881         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
882             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
883         seq_printf(seq, "  %ums logging transaction\n",
884             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
885         seq_printf(seq, "  %lluus average transaction commit time\n",
886                    div_u64(s->journal->j_average_commit_time, 1000));
887         seq_printf(seq, "  %lu handles per transaction\n",
888             s->stats->run.rs_handle_count / s->stats->ts_tid);
889         seq_printf(seq, "  %lu blocks per transaction\n",
890             s->stats->run.rs_blocks / s->stats->ts_tid);
891         seq_printf(seq, "  %lu logged blocks per transaction\n",
892             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
893         return 0;
894 }
895
896 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
897 {
898 }
899
900 static const struct seq_operations jbd2_seq_info_ops = {
901         .start  = jbd2_seq_info_start,
902         .next   = jbd2_seq_info_next,
903         .stop   = jbd2_seq_info_stop,
904         .show   = jbd2_seq_info_show,
905 };
906
907 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
908 {
909         journal_t *journal = PDE(inode)->data;
910         struct jbd2_stats_proc_session *s;
911         int rc, size;
912
913         s = kmalloc(sizeof(*s), GFP_KERNEL);
914         if (s == NULL)
915                 return -ENOMEM;
916         size = sizeof(struct transaction_stats_s);
917         s->stats = kmalloc(size, GFP_KERNEL);
918         if (s->stats == NULL) {
919                 kfree(s);
920                 return -ENOMEM;
921         }
922         spin_lock(&journal->j_history_lock);
923         memcpy(s->stats, &journal->j_stats, size);
924         s->journal = journal;
925         spin_unlock(&journal->j_history_lock);
926
927         rc = seq_open(file, &jbd2_seq_info_ops);
928         if (rc == 0) {
929                 struct seq_file *m = file->private_data;
930                 m->private = s;
931         } else {
932                 kfree(s->stats);
933                 kfree(s);
934         }
935         return rc;
936
937 }
938
939 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
940 {
941         struct seq_file *seq = file->private_data;
942         struct jbd2_stats_proc_session *s = seq->private;
943         kfree(s->stats);
944         kfree(s);
945         return seq_release(inode, file);
946 }
947
948 static const struct file_operations jbd2_seq_info_fops = {
949         .owner          = THIS_MODULE,
950         .open           = jbd2_seq_info_open,
951         .read           = seq_read,
952         .llseek         = seq_lseek,
953         .release        = jbd2_seq_info_release,
954 };
955
956 static struct proc_dir_entry *proc_jbd2_stats;
957
958 static void jbd2_stats_proc_init(journal_t *journal)
959 {
960         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
961         if (journal->j_proc_entry) {
962                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
963                                  &jbd2_seq_info_fops, journal);
964         }
965 }
966
967 static void jbd2_stats_proc_exit(journal_t *journal)
968 {
969         remove_proc_entry("info", journal->j_proc_entry);
970         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
971 }
972
973 /*
974  * Management for journal control blocks: functions to create and
975  * destroy journal_t structures, and to initialise and read existing
976  * journal blocks from disk.  */
977
978 /* First: create and setup a journal_t object in memory.  We initialise
979  * very few fields yet: that has to wait until we have created the
980  * journal structures from from scratch, or loaded them from disk. */
981
982 static journal_t * journal_init_common (void)
983 {
984         journal_t *journal;
985         int err;
986
987         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
988         if (!journal)
989                 return NULL;
990
991         init_waitqueue_head(&journal->j_wait_transaction_locked);
992         init_waitqueue_head(&journal->j_wait_logspace);
993         init_waitqueue_head(&journal->j_wait_done_commit);
994         init_waitqueue_head(&journal->j_wait_checkpoint);
995         init_waitqueue_head(&journal->j_wait_commit);
996         init_waitqueue_head(&journal->j_wait_updates);
997         mutex_init(&journal->j_barrier);
998         mutex_init(&journal->j_checkpoint_mutex);
999         spin_lock_init(&journal->j_revoke_lock);
1000         spin_lock_init(&journal->j_list_lock);
1001         rwlock_init(&journal->j_state_lock);
1002
1003         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1004         journal->j_min_batch_time = 0;
1005         journal->j_max_batch_time = 15000; /* 15ms */
1006
1007         /* The journal is marked for error until we succeed with recovery! */
1008         journal->j_flags = JBD2_ABORT;
1009
1010         /* Set up a default-sized revoke table for the new mount. */
1011         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1012         if (err) {
1013                 kfree(journal);
1014                 return NULL;
1015         }
1016
1017         spin_lock_init(&journal->j_history_lock);
1018
1019         return journal;
1020 }
1021
1022 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1023  *
1024  * Create a journal structure assigned some fixed set of disk blocks to
1025  * the journal.  We don't actually touch those disk blocks yet, but we
1026  * need to set up all of the mapping information to tell the journaling
1027  * system where the journal blocks are.
1028  *
1029  */
1030
1031 /**
1032  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1033  *  @bdev: Block device on which to create the journal
1034  *  @fs_dev: Device which hold journalled filesystem for this journal.
1035  *  @start: Block nr Start of journal.
1036  *  @len:  Length of the journal in blocks.
1037  *  @blocksize: blocksize of journalling device
1038  *
1039  *  Returns: a newly created journal_t *
1040  *
1041  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1042  *  range of blocks on an arbitrary block device.
1043  *
1044  */
1045 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1046                         struct block_device *fs_dev,
1047                         unsigned long long start, int len, int blocksize)
1048 {
1049         journal_t *journal = journal_init_common();
1050         struct buffer_head *bh;
1051         char *p;
1052         int n;
1053
1054         if (!journal)
1055                 return NULL;
1056
1057         /* journal descriptor can store up to n blocks -bzzz */
1058         journal->j_blocksize = blocksize;
1059         journal->j_dev = bdev;
1060         journal->j_fs_dev = fs_dev;
1061         journal->j_blk_offset = start;
1062         journal->j_maxlen = len;
1063         bdevname(journal->j_dev, journal->j_devname);
1064         p = journal->j_devname;
1065         while ((p = strchr(p, '/')))
1066                 *p = '!';
1067         jbd2_stats_proc_init(journal);
1068         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1069         journal->j_wbufsize = n;
1070         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1071         if (!journal->j_wbuf) {
1072                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1073                         __func__);
1074                 goto out_err;
1075         }
1076
1077         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1078         if (!bh) {
1079                 printk(KERN_ERR
1080                        "%s: Cannot get buffer for journal superblock\n",
1081                        __func__);
1082                 goto out_err;
1083         }
1084         journal->j_sb_buffer = bh;
1085         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1086
1087         return journal;
1088 out_err:
1089         kfree(journal->j_wbuf);
1090         jbd2_stats_proc_exit(journal);
1091         kfree(journal);
1092         return NULL;
1093 }
1094
1095 /**
1096  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1097  *  @inode: An inode to create the journal in
1098  *
1099  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1100  * the journal.  The inode must exist already, must support bmap() and
1101  * must have all data blocks preallocated.
1102  */
1103 journal_t * jbd2_journal_init_inode (struct inode *inode)
1104 {
1105         struct buffer_head *bh;
1106         journal_t *journal = journal_init_common();
1107         char *p;
1108         int err;
1109         int n;
1110         unsigned long long blocknr;
1111
1112         if (!journal)
1113                 return NULL;
1114
1115         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1116         journal->j_inode = inode;
1117         bdevname(journal->j_dev, journal->j_devname);
1118         p = journal->j_devname;
1119         while ((p = strchr(p, '/')))
1120                 *p = '!';
1121         p = journal->j_devname + strlen(journal->j_devname);
1122         sprintf(p, "-%lu", journal->j_inode->i_ino);
1123         jbd_debug(1,
1124                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1125                   journal, inode->i_sb->s_id, inode->i_ino,
1126                   (long long) inode->i_size,
1127                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1128
1129         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1130         journal->j_blocksize = inode->i_sb->s_blocksize;
1131         jbd2_stats_proc_init(journal);
1132
1133         /* journal descriptor can store up to n blocks -bzzz */
1134         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1135         journal->j_wbufsize = n;
1136         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1137         if (!journal->j_wbuf) {
1138                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1139                         __func__);
1140                 goto out_err;
1141         }
1142
1143         err = jbd2_journal_bmap(journal, 0, &blocknr);
1144         /* If that failed, give up */
1145         if (err) {
1146                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1147                        __func__);
1148                 goto out_err;
1149         }
1150
1151         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1152         if (!bh) {
1153                 printk(KERN_ERR
1154                        "%s: Cannot get buffer for journal superblock\n",
1155                        __func__);
1156                 goto out_err;
1157         }
1158         journal->j_sb_buffer = bh;
1159         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1160
1161         return journal;
1162 out_err:
1163         kfree(journal->j_wbuf);
1164         jbd2_stats_proc_exit(journal);
1165         kfree(journal);
1166         return NULL;
1167 }
1168
1169 /*
1170  * If the journal init or create aborts, we need to mark the journal
1171  * superblock as being NULL to prevent the journal destroy from writing
1172  * back a bogus superblock.
1173  */
1174 static void journal_fail_superblock (journal_t *journal)
1175 {
1176         struct buffer_head *bh = journal->j_sb_buffer;
1177         brelse(bh);
1178         journal->j_sb_buffer = NULL;
1179 }
1180
1181 /*
1182  * Given a journal_t structure, initialise the various fields for
1183  * startup of a new journaling session.  We use this both when creating
1184  * a journal, and after recovering an old journal to reset it for
1185  * subsequent use.
1186  */
1187
1188 static int journal_reset(journal_t *journal)
1189 {
1190         journal_superblock_t *sb = journal->j_superblock;
1191         unsigned long long first, last;
1192
1193         first = be32_to_cpu(sb->s_first);
1194         last = be32_to_cpu(sb->s_maxlen);
1195         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1196                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1197                        first, last);
1198                 journal_fail_superblock(journal);
1199                 return -EINVAL;
1200         }
1201
1202         journal->j_first = first;
1203         journal->j_last = last;
1204
1205         journal->j_head = first;
1206         journal->j_tail = first;
1207         journal->j_free = last - first;
1208
1209         journal->j_tail_sequence = journal->j_transaction_sequence;
1210         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1211         journal->j_commit_request = journal->j_commit_sequence;
1212
1213         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1214
1215         /*
1216          * As a special case, if the on-disk copy is already marked as needing
1217          * no recovery (s_start == 0), then we can safely defer the superblock
1218          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1219          * attempting a write to a potential-readonly device.
1220          */
1221         if (sb->s_start == 0) {
1222                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1223                         "(start %ld, seq %d, errno %d)\n",
1224                         journal->j_tail, journal->j_tail_sequence,
1225                         journal->j_errno);
1226                 journal->j_flags |= JBD2_FLUSHED;
1227         } else {
1228                 /* Lock here to make assertions happy... */
1229                 mutex_lock(&journal->j_checkpoint_mutex);
1230                 /*
1231                  * Update log tail information. We use WRITE_FUA since new
1232                  * transaction will start reusing journal space and so we
1233                  * must make sure information about current log tail is on
1234                  * disk before that.
1235                  */
1236                 jbd2_journal_update_sb_log_tail(journal,
1237                                                 journal->j_tail_sequence,
1238                                                 journal->j_tail,
1239                                                 WRITE_FUA);
1240                 mutex_unlock(&journal->j_checkpoint_mutex);
1241         }
1242         return jbd2_journal_start_thread(journal);
1243 }
1244
1245 static void jbd2_write_superblock(journal_t *journal, int write_op)
1246 {
1247         struct buffer_head *bh = journal->j_sb_buffer;
1248         int ret;
1249
1250         trace_jbd2_write_superblock(journal, write_op);
1251         if (!(journal->j_flags & JBD2_BARRIER))
1252                 write_op &= ~(REQ_FUA | REQ_FLUSH);
1253         lock_buffer(bh);
1254         if (buffer_write_io_error(bh)) {
1255                 /*
1256                  * Oh, dear.  A previous attempt to write the journal
1257                  * superblock failed.  This could happen because the
1258                  * USB device was yanked out.  Or it could happen to
1259                  * be a transient write error and maybe the block will
1260                  * be remapped.  Nothing we can do but to retry the
1261                  * write and hope for the best.
1262                  */
1263                 printk(KERN_ERR "JBD2: previous I/O error detected "
1264                        "for journal superblock update for %s.\n",
1265                        journal->j_devname);
1266                 clear_buffer_write_io_error(bh);
1267                 set_buffer_uptodate(bh);
1268         }
1269         get_bh(bh);
1270         bh->b_end_io = end_buffer_write_sync;
1271         ret = submit_bh(write_op, bh);
1272         wait_on_buffer(bh);
1273         if (buffer_write_io_error(bh)) {
1274                 clear_buffer_write_io_error(bh);
1275                 set_buffer_uptodate(bh);
1276                 ret = -EIO;
1277         }
1278         if (ret) {
1279                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1280                        "journal superblock for %s.\n", ret,
1281                        journal->j_devname);
1282         }
1283 }
1284
1285 /**
1286  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1287  * @journal: The journal to update.
1288  * @tail_tid: TID of the new transaction at the tail of the log
1289  * @tail_block: The first block of the transaction at the tail of the log
1290  * @write_op: With which operation should we write the journal sb
1291  *
1292  * Update a journal's superblock information about log tail and write it to
1293  * disk, waiting for the IO to complete.
1294  */
1295 void jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1296                                      unsigned long tail_block, int write_op)
1297 {
1298         journal_superblock_t *sb = journal->j_superblock;
1299
1300         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1301         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1302                   tail_block, tail_tid);
1303
1304         sb->s_sequence = cpu_to_be32(tail_tid);
1305         sb->s_start    = cpu_to_be32(tail_block);
1306
1307         jbd2_write_superblock(journal, write_op);
1308
1309         /* Log is no longer empty */
1310         write_lock(&journal->j_state_lock);
1311         WARN_ON(!sb->s_sequence);
1312         journal->j_flags &= ~JBD2_FLUSHED;
1313         write_unlock(&journal->j_state_lock);
1314 }
1315
1316 /**
1317  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1318  * @journal: The journal to update.
1319  *
1320  * Update a journal's dynamic superblock fields to show that journal is empty.
1321  * Write updated superblock to disk waiting for IO to complete.
1322  */
1323 static void jbd2_mark_journal_empty(journal_t *journal)
1324 {
1325         journal_superblock_t *sb = journal->j_superblock;
1326
1327         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1328         read_lock(&journal->j_state_lock);
1329         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1330                   journal->j_tail_sequence);
1331
1332         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1333         sb->s_start    = cpu_to_be32(0);
1334         read_unlock(&journal->j_state_lock);
1335
1336         jbd2_write_superblock(journal, WRITE_FUA);
1337
1338         /* Log is no longer empty */
1339         write_lock(&journal->j_state_lock);
1340         journal->j_flags |= JBD2_FLUSHED;
1341         write_unlock(&journal->j_state_lock);
1342 }
1343
1344
1345 /**
1346  * jbd2_journal_update_sb_errno() - Update error in the journal.
1347  * @journal: The journal to update.
1348  *
1349  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1350  * to complete.
1351  */
1352 static void jbd2_journal_update_sb_errno(journal_t *journal)
1353 {
1354         journal_superblock_t *sb = journal->j_superblock;
1355
1356         read_lock(&journal->j_state_lock);
1357         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1358                   journal->j_errno);
1359         sb->s_errno    = cpu_to_be32(journal->j_errno);
1360         read_unlock(&journal->j_state_lock);
1361
1362         jbd2_write_superblock(journal, WRITE_SYNC);
1363 }
1364
1365 /*
1366  * Read the superblock for a given journal, performing initial
1367  * validation of the format.
1368  */
1369 static int journal_get_superblock(journal_t *journal)
1370 {
1371         struct buffer_head *bh;
1372         journal_superblock_t *sb;
1373         int err = -EIO;
1374
1375         bh = journal->j_sb_buffer;
1376
1377         J_ASSERT(bh != NULL);
1378         if (!buffer_uptodate(bh)) {
1379                 ll_rw_block(READ, 1, &bh);
1380                 wait_on_buffer(bh);
1381                 if (!buffer_uptodate(bh)) {
1382                         printk(KERN_ERR
1383                                 "JBD2: IO error reading journal superblock\n");
1384                         goto out;
1385                 }
1386         }
1387
1388         if (buffer_verified(bh))
1389                 return 0;
1390
1391         sb = journal->j_superblock;
1392
1393         err = -EINVAL;
1394
1395         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1396             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1397                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1398                 goto out;
1399         }
1400
1401         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1402         case JBD2_SUPERBLOCK_V1:
1403                 journal->j_format_version = 1;
1404                 break;
1405         case JBD2_SUPERBLOCK_V2:
1406                 journal->j_format_version = 2;
1407                 break;
1408         default:
1409                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1410                 goto out;
1411         }
1412
1413         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1414                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1415         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1416                 printk(KERN_WARNING "JBD2: journal file too short\n");
1417                 goto out;
1418         }
1419
1420         if (be32_to_cpu(sb->s_first) == 0 ||
1421             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1422                 printk(KERN_WARNING
1423                         "JBD2: Invalid start block of journal: %u\n",
1424                         be32_to_cpu(sb->s_first));
1425                 goto out;
1426         }
1427
1428         if (JBD2_HAS_COMPAT_FEATURE(journal, JBD2_FEATURE_COMPAT_CHECKSUM) &&
1429             JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1430                 /* Can't have checksum v1 and v2 on at the same time! */
1431                 printk(KERN_ERR "JBD: Can't enable checksumming v1 and v2 "
1432                        "at the same time!\n");
1433                 goto out;
1434         }
1435
1436         if (!jbd2_verify_csum_type(journal, sb)) {
1437                 printk(KERN_ERR "JBD: Unknown checksum type\n");
1438                 goto out;
1439         }
1440
1441         set_buffer_verified(bh);
1442
1443         return 0;
1444
1445 out:
1446         journal_fail_superblock(journal);
1447         return err;
1448 }
1449
1450 /*
1451  * Load the on-disk journal superblock and read the key fields into the
1452  * journal_t.
1453  */
1454
1455 static int load_superblock(journal_t *journal)
1456 {
1457         int err;
1458         journal_superblock_t *sb;
1459
1460         err = journal_get_superblock(journal);
1461         if (err)
1462                 return err;
1463
1464         sb = journal->j_superblock;
1465
1466         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1467         journal->j_tail = be32_to_cpu(sb->s_start);
1468         journal->j_first = be32_to_cpu(sb->s_first);
1469         journal->j_last = be32_to_cpu(sb->s_maxlen);
1470         journal->j_errno = be32_to_cpu(sb->s_errno);
1471
1472         return 0;
1473 }
1474
1475
1476 /**
1477  * int jbd2_journal_load() - Read journal from disk.
1478  * @journal: Journal to act on.
1479  *
1480  * Given a journal_t structure which tells us which disk blocks contain
1481  * a journal, read the journal from disk to initialise the in-memory
1482  * structures.
1483  */
1484 int jbd2_journal_load(journal_t *journal)
1485 {
1486         int err;
1487         journal_superblock_t *sb;
1488
1489         err = load_superblock(journal);
1490         if (err)
1491                 return err;
1492
1493         sb = journal->j_superblock;
1494         /* If this is a V2 superblock, then we have to check the
1495          * features flags on it. */
1496
1497         if (journal->j_format_version >= 2) {
1498                 if ((sb->s_feature_ro_compat &
1499                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1500                     (sb->s_feature_incompat &
1501                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1502                         printk(KERN_WARNING
1503                                 "JBD2: Unrecognised features on journal\n");
1504                         return -EINVAL;
1505                 }
1506         }
1507
1508         /*
1509          * Create a slab for this blocksize
1510          */
1511         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1512         if (err)
1513                 return err;
1514
1515         /* Let the recovery code check whether it needs to recover any
1516          * data from the journal. */
1517         if (jbd2_journal_recover(journal))
1518                 goto recovery_error;
1519
1520         if (journal->j_failed_commit) {
1521                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1522                        "is corrupt.\n", journal->j_failed_commit,
1523                        journal->j_devname);
1524                 return -EIO;
1525         }
1526
1527         /* OK, we've finished with the dynamic journal bits:
1528          * reinitialise the dynamic contents of the superblock in memory
1529          * and reset them on disk. */
1530         if (journal_reset(journal))
1531                 goto recovery_error;
1532
1533         journal->j_flags &= ~JBD2_ABORT;
1534         journal->j_flags |= JBD2_LOADED;
1535         return 0;
1536
1537 recovery_error:
1538         printk(KERN_WARNING "JBD2: recovery failed\n");
1539         return -EIO;
1540 }
1541
1542 /**
1543  * void jbd2_journal_destroy() - Release a journal_t structure.
1544  * @journal: Journal to act on.
1545  *
1546  * Release a journal_t structure once it is no longer in use by the
1547  * journaled object.
1548  * Return <0 if we couldn't clean up the journal.
1549  */
1550 int jbd2_journal_destroy(journal_t *journal)
1551 {
1552         int err = 0;
1553
1554         /* Wait for the commit thread to wake up and die. */
1555         journal_kill_thread(journal);
1556
1557         /* Force a final log commit */
1558         if (journal->j_running_transaction)
1559                 jbd2_journal_commit_transaction(journal);
1560
1561         /* Force any old transactions to disk */
1562
1563         /* Totally anal locking here... */
1564         spin_lock(&journal->j_list_lock);
1565         while (journal->j_checkpoint_transactions != NULL) {
1566                 spin_unlock(&journal->j_list_lock);
1567                 mutex_lock(&journal->j_checkpoint_mutex);
1568                 jbd2_log_do_checkpoint(journal);
1569                 mutex_unlock(&journal->j_checkpoint_mutex);
1570                 spin_lock(&journal->j_list_lock);
1571         }
1572
1573         J_ASSERT(journal->j_running_transaction == NULL);
1574         J_ASSERT(journal->j_committing_transaction == NULL);
1575         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1576         spin_unlock(&journal->j_list_lock);
1577
1578         if (journal->j_sb_buffer) {
1579                 if (!is_journal_aborted(journal)) {
1580                         mutex_lock(&journal->j_checkpoint_mutex);
1581                         jbd2_mark_journal_empty(journal);
1582                         mutex_unlock(&journal->j_checkpoint_mutex);
1583                 } else
1584                         err = -EIO;
1585                 brelse(journal->j_sb_buffer);
1586         }
1587
1588         if (journal->j_proc_entry)
1589                 jbd2_stats_proc_exit(journal);
1590         if (journal->j_inode)
1591                 iput(journal->j_inode);
1592         if (journal->j_revoke)
1593                 jbd2_journal_destroy_revoke(journal);
1594         kfree(journal->j_wbuf);
1595         kfree(journal);
1596
1597         return err;
1598 }
1599
1600
1601 /**
1602  *int jbd2_journal_check_used_features () - Check if features specified are used.
1603  * @journal: Journal to check.
1604  * @compat: bitmask of compatible features
1605  * @ro: bitmask of features that force read-only mount
1606  * @incompat: bitmask of incompatible features
1607  *
1608  * Check whether the journal uses all of a given set of
1609  * features.  Return true (non-zero) if it does.
1610  **/
1611
1612 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1613                                  unsigned long ro, unsigned long incompat)
1614 {
1615         journal_superblock_t *sb;
1616
1617         if (!compat && !ro && !incompat)
1618                 return 1;
1619         /* Load journal superblock if it is not loaded yet. */
1620         if (journal->j_format_version == 0 &&
1621             journal_get_superblock(journal) != 0)
1622                 return 0;
1623         if (journal->j_format_version == 1)
1624                 return 0;
1625
1626         sb = journal->j_superblock;
1627
1628         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1629             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1630             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1631                 return 1;
1632
1633         return 0;
1634 }
1635
1636 /**
1637  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1638  * @journal: Journal to check.
1639  * @compat: bitmask of compatible features
1640  * @ro: bitmask of features that force read-only mount
1641  * @incompat: bitmask of incompatible features
1642  *
1643  * Check whether the journaling code supports the use of
1644  * all of a given set of features on this journal.  Return true
1645  * (non-zero) if it can. */
1646
1647 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1648                                       unsigned long ro, unsigned long incompat)
1649 {
1650         if (!compat && !ro && !incompat)
1651                 return 1;
1652
1653         /* We can support any known requested features iff the
1654          * superblock is in version 2.  Otherwise we fail to support any
1655          * extended sb features. */
1656
1657         if (journal->j_format_version != 2)
1658                 return 0;
1659
1660         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1661             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1662             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1663                 return 1;
1664
1665         return 0;
1666 }
1667
1668 /**
1669  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1670  * @journal: Journal to act on.
1671  * @compat: bitmask of compatible features
1672  * @ro: bitmask of features that force read-only mount
1673  * @incompat: bitmask of incompatible features
1674  *
1675  * Mark a given journal feature as present on the
1676  * superblock.  Returns true if the requested features could be set.
1677  *
1678  */
1679
1680 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1681                           unsigned long ro, unsigned long incompat)
1682 {
1683 #define INCOMPAT_FEATURE_ON(f) \
1684                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1685 #define COMPAT_FEATURE_ON(f) \
1686                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1687         journal_superblock_t *sb;
1688
1689         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1690                 return 1;
1691
1692         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1693                 return 0;
1694
1695         /* Asking for checksumming v2 and v1?  Only give them v2. */
1696         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2 &&
1697             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1698                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1699
1700         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1701                   compat, ro, incompat);
1702
1703         sb = journal->j_superblock;
1704
1705         /* If enabling v2 checksums, update superblock */
1706         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V2)) {
1707                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1708                 sb->s_feature_compat &=
1709                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1710         }
1711
1712         /* If enabling v1 checksums, downgrade superblock */
1713         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1714                 sb->s_feature_incompat &=
1715                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2);
1716
1717         sb->s_feature_compat    |= cpu_to_be32(compat);
1718         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1719         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1720
1721         return 1;
1722 #undef COMPAT_FEATURE_ON
1723 #undef INCOMPAT_FEATURE_ON
1724 }
1725
1726 /*
1727  * jbd2_journal_clear_features () - Clear a given journal feature in the
1728  *                                  superblock
1729  * @journal: Journal to act on.
1730  * @compat: bitmask of compatible features
1731  * @ro: bitmask of features that force read-only mount
1732  * @incompat: bitmask of incompatible features
1733  *
1734  * Clear a given journal feature as present on the
1735  * superblock.
1736  */
1737 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1738                                 unsigned long ro, unsigned long incompat)
1739 {
1740         journal_superblock_t *sb;
1741
1742         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1743                   compat, ro, incompat);
1744
1745         sb = journal->j_superblock;
1746
1747         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1748         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1749         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1750 }
1751 EXPORT_SYMBOL(jbd2_journal_clear_features);
1752
1753 /**
1754  * int jbd2_journal_flush () - Flush journal
1755  * @journal: Journal to act on.
1756  *
1757  * Flush all data for a given journal to disk and empty the journal.
1758  * Filesystems can use this when remounting readonly to ensure that
1759  * recovery does not need to happen on remount.
1760  */
1761
1762 int jbd2_journal_flush(journal_t *journal)
1763 {
1764         int err = 0;
1765         transaction_t *transaction = NULL;
1766
1767         write_lock(&journal->j_state_lock);
1768
1769         /* Force everything buffered to the log... */
1770         if (journal->j_running_transaction) {
1771                 transaction = journal->j_running_transaction;
1772                 __jbd2_log_start_commit(journal, transaction->t_tid);
1773         } else if (journal->j_committing_transaction)
1774                 transaction = journal->j_committing_transaction;
1775
1776         /* Wait for the log commit to complete... */
1777         if (transaction) {
1778                 tid_t tid = transaction->t_tid;
1779
1780                 write_unlock(&journal->j_state_lock);
1781                 jbd2_log_wait_commit(journal, tid);
1782         } else {
1783                 write_unlock(&journal->j_state_lock);
1784         }
1785
1786         /* ...and flush everything in the log out to disk. */
1787         spin_lock(&journal->j_list_lock);
1788         while (!err && journal->j_checkpoint_transactions != NULL) {
1789                 spin_unlock(&journal->j_list_lock);
1790                 mutex_lock(&journal->j_checkpoint_mutex);
1791                 err = jbd2_log_do_checkpoint(journal);
1792                 mutex_unlock(&journal->j_checkpoint_mutex);
1793                 spin_lock(&journal->j_list_lock);
1794         }
1795         spin_unlock(&journal->j_list_lock);
1796
1797         if (is_journal_aborted(journal))
1798                 return -EIO;
1799
1800         mutex_lock(&journal->j_checkpoint_mutex);
1801         jbd2_cleanup_journal_tail(journal);
1802
1803         /* Finally, mark the journal as really needing no recovery.
1804          * This sets s_start==0 in the underlying superblock, which is
1805          * the magic code for a fully-recovered superblock.  Any future
1806          * commits of data to the journal will restore the current
1807          * s_start value. */
1808         jbd2_mark_journal_empty(journal);
1809         mutex_unlock(&journal->j_checkpoint_mutex);
1810         write_lock(&journal->j_state_lock);
1811         J_ASSERT(!journal->j_running_transaction);
1812         J_ASSERT(!journal->j_committing_transaction);
1813         J_ASSERT(!journal->j_checkpoint_transactions);
1814         J_ASSERT(journal->j_head == journal->j_tail);
1815         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1816         write_unlock(&journal->j_state_lock);
1817         return 0;
1818 }
1819
1820 /**
1821  * int jbd2_journal_wipe() - Wipe journal contents
1822  * @journal: Journal to act on.
1823  * @write: flag (see below)
1824  *
1825  * Wipe out all of the contents of a journal, safely.  This will produce
1826  * a warning if the journal contains any valid recovery information.
1827  * Must be called between journal_init_*() and jbd2_journal_load().
1828  *
1829  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1830  * we merely suppress recovery.
1831  */
1832
1833 int jbd2_journal_wipe(journal_t *journal, int write)
1834 {
1835         int err = 0;
1836
1837         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1838
1839         err = load_superblock(journal);
1840         if (err)
1841                 return err;
1842
1843         if (!journal->j_tail)
1844                 goto no_recovery;
1845
1846         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
1847                 write ? "Clearing" : "Ignoring");
1848
1849         err = jbd2_journal_skip_recovery(journal);
1850         if (write) {
1851                 /* Lock to make assertions happy... */
1852                 mutex_lock(&journal->j_checkpoint_mutex);
1853                 jbd2_mark_journal_empty(journal);
1854                 mutex_unlock(&journal->j_checkpoint_mutex);
1855         }
1856
1857  no_recovery:
1858         return err;
1859 }
1860
1861 /*
1862  * Journal abort has very specific semantics, which we describe
1863  * for journal abort.
1864  *
1865  * Two internal functions, which provide abort to the jbd layer
1866  * itself are here.
1867  */
1868
1869 /*
1870  * Quick version for internal journal use (doesn't lock the journal).
1871  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1872  * and don't attempt to make any other journal updates.
1873  */
1874 void __jbd2_journal_abort_hard(journal_t *journal)
1875 {
1876         transaction_t *transaction;
1877
1878         if (journal->j_flags & JBD2_ABORT)
1879                 return;
1880
1881         printk(KERN_ERR "Aborting journal on device %s.\n",
1882                journal->j_devname);
1883
1884         write_lock(&journal->j_state_lock);
1885         journal->j_flags |= JBD2_ABORT;
1886         transaction = journal->j_running_transaction;
1887         if (transaction)
1888                 __jbd2_log_start_commit(journal, transaction->t_tid);
1889         write_unlock(&journal->j_state_lock);
1890 }
1891
1892 /* Soft abort: record the abort error status in the journal superblock,
1893  * but don't do any other IO. */
1894 static void __journal_abort_soft (journal_t *journal, int errno)
1895 {
1896         if (journal->j_flags & JBD2_ABORT)
1897                 return;
1898
1899         if (!journal->j_errno)
1900                 journal->j_errno = errno;
1901
1902         __jbd2_journal_abort_hard(journal);
1903
1904         if (errno)
1905                 jbd2_journal_update_sb_errno(journal);
1906 }
1907
1908 /**
1909  * void jbd2_journal_abort () - Shutdown the journal immediately.
1910  * @journal: the journal to shutdown.
1911  * @errno:   an error number to record in the journal indicating
1912  *           the reason for the shutdown.
1913  *
1914  * Perform a complete, immediate shutdown of the ENTIRE
1915  * journal (not of a single transaction).  This operation cannot be
1916  * undone without closing and reopening the journal.
1917  *
1918  * The jbd2_journal_abort function is intended to support higher level error
1919  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1920  * mode.
1921  *
1922  * Journal abort has very specific semantics.  Any existing dirty,
1923  * unjournaled buffers in the main filesystem will still be written to
1924  * disk by bdflush, but the journaling mechanism will be suspended
1925  * immediately and no further transaction commits will be honoured.
1926  *
1927  * Any dirty, journaled buffers will be written back to disk without
1928  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1929  * filesystem, but we _do_ attempt to leave as much data as possible
1930  * behind for fsck to use for cleanup.
1931  *
1932  * Any attempt to get a new transaction handle on a journal which is in
1933  * ABORT state will just result in an -EROFS error return.  A
1934  * jbd2_journal_stop on an existing handle will return -EIO if we have
1935  * entered abort state during the update.
1936  *
1937  * Recursive transactions are not disturbed by journal abort until the
1938  * final jbd2_journal_stop, which will receive the -EIO error.
1939  *
1940  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1941  * which will be recorded (if possible) in the journal superblock.  This
1942  * allows a client to record failure conditions in the middle of a
1943  * transaction without having to complete the transaction to record the
1944  * failure to disk.  ext3_error, for example, now uses this
1945  * functionality.
1946  *
1947  * Errors which originate from within the journaling layer will NOT
1948  * supply an errno; a null errno implies that absolutely no further
1949  * writes are done to the journal (unless there are any already in
1950  * progress).
1951  *
1952  */
1953
1954 void jbd2_journal_abort(journal_t *journal, int errno)
1955 {
1956         __journal_abort_soft(journal, errno);
1957 }
1958
1959 /**
1960  * int jbd2_journal_errno () - returns the journal's error state.
1961  * @journal: journal to examine.
1962  *
1963  * This is the errno number set with jbd2_journal_abort(), the last
1964  * time the journal was mounted - if the journal was stopped
1965  * without calling abort this will be 0.
1966  *
1967  * If the journal has been aborted on this mount time -EROFS will
1968  * be returned.
1969  */
1970 int jbd2_journal_errno(journal_t *journal)
1971 {
1972         int err;
1973
1974         read_lock(&journal->j_state_lock);
1975         if (journal->j_flags & JBD2_ABORT)
1976                 err = -EROFS;
1977         else
1978                 err = journal->j_errno;
1979         read_unlock(&journal->j_state_lock);
1980         return err;
1981 }
1982
1983 /**
1984  * int jbd2_journal_clear_err () - clears the journal's error state
1985  * @journal: journal to act on.
1986  *
1987  * An error must be cleared or acked to take a FS out of readonly
1988  * mode.
1989  */
1990 int jbd2_journal_clear_err(journal_t *journal)
1991 {
1992         int err = 0;
1993
1994         write_lock(&journal->j_state_lock);
1995         if (journal->j_flags & JBD2_ABORT)
1996                 err = -EROFS;
1997         else
1998                 journal->j_errno = 0;
1999         write_unlock(&journal->j_state_lock);
2000         return err;
2001 }
2002
2003 /**
2004  * void jbd2_journal_ack_err() - Ack journal err.
2005  * @journal: journal to act on.
2006  *
2007  * An error must be cleared or acked to take a FS out of readonly
2008  * mode.
2009  */
2010 void jbd2_journal_ack_err(journal_t *journal)
2011 {
2012         write_lock(&journal->j_state_lock);
2013         if (journal->j_errno)
2014                 journal->j_flags |= JBD2_ACK_ERR;
2015         write_unlock(&journal->j_state_lock);
2016 }
2017
2018 int jbd2_journal_blocks_per_page(struct inode *inode)
2019 {
2020         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2021 }
2022
2023 /*
2024  * helper functions to deal with 32 or 64bit block numbers.
2025  */
2026 size_t journal_tag_bytes(journal_t *journal)
2027 {
2028         if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
2029                 return JBD2_TAG_SIZE64;
2030         else
2031                 return JBD2_TAG_SIZE32;
2032 }
2033
2034 /*
2035  * JBD memory management
2036  *
2037  * These functions are used to allocate block-sized chunks of memory
2038  * used for making copies of buffer_head data.  Very often it will be
2039  * page-sized chunks of data, but sometimes it will be in
2040  * sub-page-size chunks.  (For example, 16k pages on Power systems
2041  * with a 4k block file system.)  For blocks smaller than a page, we
2042  * use a SLAB allocator.  There are slab caches for each block size,
2043  * which are allocated at mount time, if necessary, and we only free
2044  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2045  * this reason we don't need to a mutex to protect access to
2046  * jbd2_slab[] allocating or releasing memory; only in
2047  * jbd2_journal_create_slab().
2048  */
2049 #define JBD2_MAX_SLABS 8
2050 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2051
2052 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2053         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2054         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2055 };
2056
2057
2058 static void jbd2_journal_destroy_slabs(void)
2059 {
2060         int i;
2061
2062         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2063                 if (jbd2_slab[i])
2064                         kmem_cache_destroy(jbd2_slab[i]);
2065                 jbd2_slab[i] = NULL;
2066         }
2067 }
2068
2069 static int jbd2_journal_create_slab(size_t size)
2070 {
2071         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2072         int i = order_base_2(size) - 10;
2073         size_t slab_size;
2074
2075         if (size == PAGE_SIZE)
2076                 return 0;
2077
2078         if (i >= JBD2_MAX_SLABS)
2079                 return -EINVAL;
2080
2081         if (unlikely(i < 0))
2082                 i = 0;
2083         mutex_lock(&jbd2_slab_create_mutex);
2084         if (jbd2_slab[i]) {
2085                 mutex_unlock(&jbd2_slab_create_mutex);
2086                 return 0;       /* Already created */
2087         }
2088
2089         slab_size = 1 << (i+10);
2090         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2091                                          slab_size, 0, NULL);
2092         mutex_unlock(&jbd2_slab_create_mutex);
2093         if (!jbd2_slab[i]) {
2094                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2095                 return -ENOMEM;
2096         }
2097         return 0;
2098 }
2099
2100 static struct kmem_cache *get_slab(size_t size)
2101 {
2102         int i = order_base_2(size) - 10;
2103
2104         BUG_ON(i >= JBD2_MAX_SLABS);
2105         if (unlikely(i < 0))
2106                 i = 0;
2107         BUG_ON(jbd2_slab[i] == NULL);
2108         return jbd2_slab[i];
2109 }
2110
2111 void *jbd2_alloc(size_t size, gfp_t flags)
2112 {
2113         void *ptr;
2114
2115         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2116
2117         flags |= __GFP_REPEAT;
2118         if (size == PAGE_SIZE)
2119                 ptr = (void *)__get_free_pages(flags, 0);
2120         else if (size > PAGE_SIZE) {
2121                 int order = get_order(size);
2122
2123                 if (order < 3)
2124                         ptr = (void *)__get_free_pages(flags, order);
2125                 else
2126                         ptr = vmalloc(size);
2127         } else
2128                 ptr = kmem_cache_alloc(get_slab(size), flags);
2129
2130         /* Check alignment; SLUB has gotten this wrong in the past,
2131          * and this can lead to user data corruption! */
2132         BUG_ON(((unsigned long) ptr) & (size-1));
2133
2134         return ptr;
2135 }
2136
2137 void jbd2_free(void *ptr, size_t size)
2138 {
2139         if (size == PAGE_SIZE) {
2140                 free_pages((unsigned long)ptr, 0);
2141                 return;
2142         }
2143         if (size > PAGE_SIZE) {
2144                 int order = get_order(size);
2145
2146                 if (order < 3)
2147                         free_pages((unsigned long)ptr, order);
2148                 else
2149                         vfree(ptr);
2150                 return;
2151         }
2152         kmem_cache_free(get_slab(size), ptr);
2153 };
2154
2155 /*
2156  * Journal_head storage management
2157  */
2158 static struct kmem_cache *jbd2_journal_head_cache;
2159 #ifdef CONFIG_JBD2_DEBUG
2160 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2161 #endif
2162
2163 static int jbd2_journal_init_journal_head_cache(void)
2164 {
2165         int retval;
2166
2167         J_ASSERT(jbd2_journal_head_cache == NULL);
2168         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2169                                 sizeof(struct journal_head),
2170                                 0,              /* offset */
2171                                 SLAB_TEMPORARY, /* flags */
2172                                 NULL);          /* ctor */
2173         retval = 0;
2174         if (!jbd2_journal_head_cache) {
2175                 retval = -ENOMEM;
2176                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2177         }
2178         return retval;
2179 }
2180
2181 static void jbd2_journal_destroy_journal_head_cache(void)
2182 {
2183         if (jbd2_journal_head_cache) {
2184                 kmem_cache_destroy(jbd2_journal_head_cache);
2185                 jbd2_journal_head_cache = NULL;
2186         }
2187 }
2188
2189 /*
2190  * journal_head splicing and dicing
2191  */
2192 static struct journal_head *journal_alloc_journal_head(void)
2193 {
2194         struct journal_head *ret;
2195
2196 #ifdef CONFIG_JBD2_DEBUG
2197         atomic_inc(&nr_journal_heads);
2198 #endif
2199         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2200         if (!ret) {
2201                 jbd_debug(1, "out of memory for journal_head\n");
2202                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2203                 while (!ret) {
2204                         yield();
2205                         ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
2206                 }
2207         }
2208         return ret;
2209 }
2210
2211 static void journal_free_journal_head(struct journal_head *jh)
2212 {
2213 #ifdef CONFIG_JBD2_DEBUG
2214         atomic_dec(&nr_journal_heads);
2215         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2216 #endif
2217         kmem_cache_free(jbd2_journal_head_cache, jh);
2218 }
2219
2220 /*
2221  * A journal_head is attached to a buffer_head whenever JBD has an
2222  * interest in the buffer.
2223  *
2224  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2225  * is set.  This bit is tested in core kernel code where we need to take
2226  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2227  * there.
2228  *
2229  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2230  *
2231  * When a buffer has its BH_JBD bit set it is immune from being released by
2232  * core kernel code, mainly via ->b_count.
2233  *
2234  * A journal_head is detached from its buffer_head when the journal_head's
2235  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2236  * transaction (b_cp_transaction) hold their references to b_jcount.
2237  *
2238  * Various places in the kernel want to attach a journal_head to a buffer_head
2239  * _before_ attaching the journal_head to a transaction.  To protect the
2240  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2241  * journal_head's b_jcount refcount by one.  The caller must call
2242  * jbd2_journal_put_journal_head() to undo this.
2243  *
2244  * So the typical usage would be:
2245  *
2246  *      (Attach a journal_head if needed.  Increments b_jcount)
2247  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2248  *      ...
2249  *      (Get another reference for transaction)
2250  *      jbd2_journal_grab_journal_head(bh);
2251  *      jh->b_transaction = xxx;
2252  *      (Put original reference)
2253  *      jbd2_journal_put_journal_head(jh);
2254  */
2255
2256 /*
2257  * Give a buffer_head a journal_head.
2258  *
2259  * May sleep.
2260  */
2261 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2262 {
2263         struct journal_head *jh;
2264         struct journal_head *new_jh = NULL;
2265
2266 repeat:
2267         if (!buffer_jbd(bh)) {
2268                 new_jh = journal_alloc_journal_head();
2269                 memset(new_jh, 0, sizeof(*new_jh));
2270         }
2271
2272         jbd_lock_bh_journal_head(bh);
2273         if (buffer_jbd(bh)) {
2274                 jh = bh2jh(bh);
2275         } else {
2276                 J_ASSERT_BH(bh,
2277                         (atomic_read(&bh->b_count) > 0) ||
2278                         (bh->b_page && bh->b_page->mapping));
2279
2280                 if (!new_jh) {
2281                         jbd_unlock_bh_journal_head(bh);
2282                         goto repeat;
2283                 }
2284
2285                 jh = new_jh;
2286                 new_jh = NULL;          /* We consumed it */
2287                 set_buffer_jbd(bh);
2288                 bh->b_private = jh;
2289                 jh->b_bh = bh;
2290                 get_bh(bh);
2291                 BUFFER_TRACE(bh, "added journal_head");
2292         }
2293         jh->b_jcount++;
2294         jbd_unlock_bh_journal_head(bh);
2295         if (new_jh)
2296                 journal_free_journal_head(new_jh);
2297         return bh->b_private;
2298 }
2299
2300 /*
2301  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2302  * having a journal_head, return NULL
2303  */
2304 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2305 {
2306         struct journal_head *jh = NULL;
2307
2308         jbd_lock_bh_journal_head(bh);
2309         if (buffer_jbd(bh)) {
2310                 jh = bh2jh(bh);
2311                 jh->b_jcount++;
2312         }
2313         jbd_unlock_bh_journal_head(bh);
2314         return jh;
2315 }
2316
2317 static void __journal_remove_journal_head(struct buffer_head *bh)
2318 {
2319         struct journal_head *jh = bh2jh(bh);
2320
2321         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2322         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2323         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2324         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2325         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2326         J_ASSERT_BH(bh, buffer_jbd(bh));
2327         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2328         BUFFER_TRACE(bh, "remove journal_head");
2329         if (jh->b_frozen_data) {
2330                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2331                 jbd2_free(jh->b_frozen_data, bh->b_size);
2332         }
2333         if (jh->b_committed_data) {
2334                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2335                 jbd2_free(jh->b_committed_data, bh->b_size);
2336         }
2337         bh->b_private = NULL;
2338         jh->b_bh = NULL;        /* debug, really */
2339         clear_buffer_jbd(bh);
2340         journal_free_journal_head(jh);
2341 }
2342
2343 /*
2344  * Drop a reference on the passed journal_head.  If it fell to zero then
2345  * release the journal_head from the buffer_head.
2346  */
2347 void jbd2_journal_put_journal_head(struct journal_head *jh)
2348 {
2349         struct buffer_head *bh = jh2bh(jh);
2350
2351         jbd_lock_bh_journal_head(bh);
2352         J_ASSERT_JH(jh, jh->b_jcount > 0);
2353         --jh->b_jcount;
2354         if (!jh->b_jcount) {
2355                 __journal_remove_journal_head(bh);
2356                 jbd_unlock_bh_journal_head(bh);
2357                 __brelse(bh);
2358         } else
2359                 jbd_unlock_bh_journal_head(bh);
2360 }
2361
2362 /*
2363  * Initialize jbd inode head
2364  */
2365 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2366 {
2367         jinode->i_transaction = NULL;
2368         jinode->i_next_transaction = NULL;
2369         jinode->i_vfs_inode = inode;
2370         jinode->i_flags = 0;
2371         INIT_LIST_HEAD(&jinode->i_list);
2372 }
2373
2374 /*
2375  * Function to be called before we start removing inode from memory (i.e.,
2376  * clear_inode() is a fine place to be called from). It removes inode from
2377  * transaction's lists.
2378  */
2379 void jbd2_journal_release_jbd_inode(journal_t *journal,
2380                                     struct jbd2_inode *jinode)
2381 {
2382         if (!journal)
2383                 return;
2384 restart:
2385         spin_lock(&journal->j_list_lock);
2386         /* Is commit writing out inode - we have to wait */
2387         if (test_bit(__JI_COMMIT_RUNNING, &jinode->i_flags)) {
2388                 wait_queue_head_t *wq;
2389                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2390                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2391                 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2392                 spin_unlock(&journal->j_list_lock);
2393                 schedule();
2394                 finish_wait(wq, &wait.wait);
2395                 goto restart;
2396         }
2397
2398         if (jinode->i_transaction) {
2399                 list_del(&jinode->i_list);
2400                 jinode->i_transaction = NULL;
2401         }
2402         spin_unlock(&journal->j_list_lock);
2403 }
2404
2405 /*
2406  * debugfs tunables
2407  */
2408 #ifdef CONFIG_JBD2_DEBUG
2409 u8 jbd2_journal_enable_debug __read_mostly;
2410 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2411
2412 #define JBD2_DEBUG_NAME "jbd2-debug"
2413
2414 static struct dentry *jbd2_debugfs_dir;
2415 static struct dentry *jbd2_debug;
2416
2417 static void __init jbd2_create_debugfs_entry(void)
2418 {
2419         jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2420         if (jbd2_debugfs_dir)
2421                 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2422                                                S_IRUGO | S_IWUSR,
2423                                                jbd2_debugfs_dir,
2424                                                &jbd2_journal_enable_debug);
2425 }
2426
2427 static void __exit jbd2_remove_debugfs_entry(void)
2428 {
2429         debugfs_remove(jbd2_debug);
2430         debugfs_remove(jbd2_debugfs_dir);
2431 }
2432
2433 #else
2434
2435 static void __init jbd2_create_debugfs_entry(void)
2436 {
2437 }
2438
2439 static void __exit jbd2_remove_debugfs_entry(void)
2440 {
2441 }
2442
2443 #endif
2444
2445 #ifdef CONFIG_PROC_FS
2446
2447 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2448
2449 static void __init jbd2_create_jbd_stats_proc_entry(void)
2450 {
2451         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2452 }
2453
2454 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2455 {
2456         if (proc_jbd2_stats)
2457                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2458 }
2459
2460 #else
2461
2462 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2463 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2464
2465 #endif
2466
2467 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2468
2469 static int __init jbd2_journal_init_handle_cache(void)
2470 {
2471         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2472         if (jbd2_handle_cache == NULL) {
2473                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2474                 return -ENOMEM;
2475         }
2476         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2477         if (jbd2_inode_cache == NULL) {
2478                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2479                 kmem_cache_destroy(jbd2_handle_cache);
2480                 return -ENOMEM;
2481         }
2482         return 0;
2483 }
2484
2485 static void jbd2_journal_destroy_handle_cache(void)
2486 {
2487         if (jbd2_handle_cache)
2488                 kmem_cache_destroy(jbd2_handle_cache);
2489         if (jbd2_inode_cache)
2490                 kmem_cache_destroy(jbd2_inode_cache);
2491
2492 }
2493
2494 /*
2495  * Module startup and shutdown
2496  */
2497
2498 static int __init journal_init_caches(void)
2499 {
2500         int ret;
2501
2502         ret = jbd2_journal_init_revoke_caches();
2503         if (ret == 0)
2504                 ret = jbd2_journal_init_journal_head_cache();
2505         if (ret == 0)
2506                 ret = jbd2_journal_init_handle_cache();
2507         if (ret == 0)
2508                 ret = jbd2_journal_init_transaction_cache();
2509         return ret;
2510 }
2511
2512 static void jbd2_journal_destroy_caches(void)
2513 {
2514         jbd2_journal_destroy_revoke_caches();
2515         jbd2_journal_destroy_journal_head_cache();
2516         jbd2_journal_destroy_handle_cache();
2517         jbd2_journal_destroy_transaction_cache();
2518         jbd2_journal_destroy_slabs();
2519 }
2520
2521 static int __init journal_init(void)
2522 {
2523         int ret;
2524
2525         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2526
2527         ret = journal_init_caches();
2528         if (ret == 0) {
2529                 jbd2_create_debugfs_entry();
2530                 jbd2_create_jbd_stats_proc_entry();
2531         } else {
2532                 jbd2_journal_destroy_caches();
2533         }
2534         return ret;
2535 }
2536
2537 static void __exit journal_exit(void)
2538 {
2539 #ifdef CONFIG_JBD2_DEBUG
2540         int n = atomic_read(&nr_journal_heads);
2541         if (n)
2542                 printk(KERN_EMERG "JBD2: leaked %d journal_heads!\n", n);
2543 #endif
2544         jbd2_remove_debugfs_entry();
2545         jbd2_remove_jbd_stats_proc_entry();
2546         jbd2_journal_destroy_caches();
2547 }
2548
2549 MODULE_LICENSE("GPL");
2550 module_init(journal_init);
2551 module_exit(journal_exit);
2552