writeback: Separate inode requeueing after writeback
[firefly-linux-kernel-4.4.55.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41         long nr_pages;
42         struct super_block *sb;
43         unsigned long *older_than_this;
44         enum writeback_sync_modes sync_mode;
45         unsigned int tagged_writepages:1;
46         unsigned int for_kupdate:1;
47         unsigned int range_cyclic:1;
48         unsigned int for_background:1;
49         enum wb_reason reason;          /* why was writeback initiated? */
50
51         struct list_head list;          /* pending work list */
52         struct completion *done;        /* set if the caller waits */
53 };
54
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69         return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74         struct super_block *sb = inode->i_sb;
75
76         if (strcmp(sb->s_type->name, "bdev") == 0)
77                 return inode->i_mapping->backing_dev_info;
78
79         return sb->s_bdi;
80 }
81
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84         return list_entry(head, struct inode, i_wb_list);
85 }
86
87 /*
88  * Include the creation of the trace points after defining the
89  * wb_writeback_work structure and inline functions so that the definition
90  * remains local to this file.
91  */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98         if (bdi->wb.task) {
99                 wake_up_process(bdi->wb.task);
100         } else {
101                 /*
102                  * The bdi thread isn't there, wake up the forker thread which
103                  * will create and run it.
104                  */
105                 wake_up_process(default_backing_dev_info.wb.task);
106         }
107 }
108
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110                            struct wb_writeback_work *work)
111 {
112         trace_writeback_queue(bdi, work);
113
114         spin_lock_bh(&bdi->wb_lock);
115         list_add_tail(&work->list, &bdi->work_list);
116         if (!bdi->wb.task)
117                 trace_writeback_nothread(bdi, work);
118         bdi_wakeup_flusher(bdi);
119         spin_unlock_bh(&bdi->wb_lock);
120 }
121
122 static void
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124                       bool range_cyclic, enum wb_reason reason)
125 {
126         struct wb_writeback_work *work;
127
128         /*
129          * This is WB_SYNC_NONE writeback, so if allocation fails just
130          * wakeup the thread for old dirty data writeback
131          */
132         work = kzalloc(sizeof(*work), GFP_ATOMIC);
133         if (!work) {
134                 if (bdi->wb.task) {
135                         trace_writeback_nowork(bdi);
136                         wake_up_process(bdi->wb.task);
137                 }
138                 return;
139         }
140
141         work->sync_mode = WB_SYNC_NONE;
142         work->nr_pages  = nr_pages;
143         work->range_cyclic = range_cyclic;
144         work->reason    = reason;
145
146         bdi_queue_work(bdi, work);
147 }
148
149 /**
150  * bdi_start_writeback - start writeback
151  * @bdi: the backing device to write from
152  * @nr_pages: the number of pages to write
153  * @reason: reason why some writeback work was initiated
154  *
155  * Description:
156  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
157  *   started when this function returns, we make no guarantees on
158  *   completion. Caller need not hold sb s_umount semaphore.
159  *
160  */
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162                         enum wb_reason reason)
163 {
164         __bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166
167 /**
168  * bdi_start_background_writeback - start background writeback
169  * @bdi: the backing device to write from
170  *
171  * Description:
172  *   This makes sure WB_SYNC_NONE background writeback happens. When
173  *   this function returns, it is only guaranteed that for given BDI
174  *   some IO is happening if we are over background dirty threshold.
175  *   Caller need not hold sb s_umount semaphore.
176  */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179         /*
180          * We just wake up the flusher thread. It will perform background
181          * writeback as soon as there is no other work to do.
182          */
183         trace_writeback_wake_background(bdi);
184         spin_lock_bh(&bdi->wb_lock);
185         bdi_wakeup_flusher(bdi);
186         spin_unlock_bh(&bdi->wb_lock);
187 }
188
189 /*
190  * Remove the inode from the writeback list it is on.
191  */
192 void inode_wb_list_del(struct inode *inode)
193 {
194         struct backing_dev_info *bdi = inode_to_bdi(inode);
195
196         spin_lock(&bdi->wb.list_lock);
197         list_del_init(&inode->i_wb_list);
198         spin_unlock(&bdi->wb.list_lock);
199 }
200
201 /*
202  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203  * furthest end of its superblock's dirty-inode list.
204  *
205  * Before stamping the inode's ->dirtied_when, we check to see whether it is
206  * already the most-recently-dirtied inode on the b_dirty list.  If that is
207  * the case then the inode must have been redirtied while it was being written
208  * out and we don't reset its dirtied_when.
209  */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212         assert_spin_locked(&wb->list_lock);
213         if (!list_empty(&wb->b_dirty)) {
214                 struct inode *tail;
215
216                 tail = wb_inode(wb->b_dirty.next);
217                 if (time_before(inode->dirtied_when, tail->dirtied_when))
218                         inode->dirtied_when = jiffies;
219         }
220         list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222
223 /*
224  * requeue inode for re-scanning after bdi->b_io list is exhausted.
225  */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228         assert_spin_locked(&wb->list_lock);
229         list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231
232 static void inode_sync_complete(struct inode *inode)
233 {
234         inode->i_state &= ~I_SYNC;
235         /* Waiters must see I_SYNC cleared before being woken up */
236         smp_mb();
237         wake_up_bit(&inode->i_state, __I_SYNC);
238 }
239
240 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
241 {
242         bool ret = time_after(inode->dirtied_when, t);
243 #ifndef CONFIG_64BIT
244         /*
245          * For inodes being constantly redirtied, dirtied_when can get stuck.
246          * It _appears_ to be in the future, but is actually in distant past.
247          * This test is necessary to prevent such wrapped-around relative times
248          * from permanently stopping the whole bdi writeback.
249          */
250         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
251 #endif
252         return ret;
253 }
254
255 /*
256  * Move expired (dirtied after work->older_than_this) dirty inodes from
257  * @delaying_queue to @dispatch_queue.
258  */
259 static int move_expired_inodes(struct list_head *delaying_queue,
260                                struct list_head *dispatch_queue,
261                                struct wb_writeback_work *work)
262 {
263         LIST_HEAD(tmp);
264         struct list_head *pos, *node;
265         struct super_block *sb = NULL;
266         struct inode *inode;
267         int do_sb_sort = 0;
268         int moved = 0;
269
270         while (!list_empty(delaying_queue)) {
271                 inode = wb_inode(delaying_queue->prev);
272                 if (work->older_than_this &&
273                     inode_dirtied_after(inode, *work->older_than_this))
274                         break;
275                 if (sb && sb != inode->i_sb)
276                         do_sb_sort = 1;
277                 sb = inode->i_sb;
278                 list_move(&inode->i_wb_list, &tmp);
279                 moved++;
280         }
281
282         /* just one sb in list, splice to dispatch_queue and we're done */
283         if (!do_sb_sort) {
284                 list_splice(&tmp, dispatch_queue);
285                 goto out;
286         }
287
288         /* Move inodes from one superblock together */
289         while (!list_empty(&tmp)) {
290                 sb = wb_inode(tmp.prev)->i_sb;
291                 list_for_each_prev_safe(pos, node, &tmp) {
292                         inode = wb_inode(pos);
293                         if (inode->i_sb == sb)
294                                 list_move(&inode->i_wb_list, dispatch_queue);
295                 }
296         }
297 out:
298         return moved;
299 }
300
301 /*
302  * Queue all expired dirty inodes for io, eldest first.
303  * Before
304  *         newly dirtied     b_dirty    b_io    b_more_io
305  *         =============>    gf         edc     BA
306  * After
307  *         newly dirtied     b_dirty    b_io    b_more_io
308  *         =============>    g          fBAedc
309  *                                           |
310  *                                           +--> dequeue for IO
311  */
312 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
313 {
314         int moved;
315         assert_spin_locked(&wb->list_lock);
316         list_splice_init(&wb->b_more_io, &wb->b_io);
317         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
318         trace_writeback_queue_io(wb, work, moved);
319 }
320
321 static int write_inode(struct inode *inode, struct writeback_control *wbc)
322 {
323         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
324                 return inode->i_sb->s_op->write_inode(inode, wbc);
325         return 0;
326 }
327
328 /*
329  * Wait for writeback on an inode to complete.
330  */
331 static void inode_wait_for_writeback(struct inode *inode,
332                                      struct bdi_writeback *wb)
333 {
334         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
335         wait_queue_head_t *wqh;
336
337         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
338         while (inode->i_state & I_SYNC) {
339                 spin_unlock(&inode->i_lock);
340                 spin_unlock(&wb->list_lock);
341                 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
342                 spin_lock(&wb->list_lock);
343                 spin_lock(&inode->i_lock);
344         }
345 }
346
347 /*
348  * Find proper writeback list for the inode depending on its current state and
349  * possibly also change of its state while we were doing writeback.  Here we
350  * handle things such as livelock prevention or fairness of writeback among
351  * inodes. This function can be called only by flusher thread - noone else
352  * processes all inodes in writeback lists and requeueing inodes behind flusher
353  * thread's back can have unexpected consequences.
354  */
355 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
356                           struct writeback_control *wbc)
357 {
358         if (inode->i_state & I_FREEING)
359                 return;
360
361         /*
362          * Sync livelock prevention. Each inode is tagged and synced in one
363          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
364          * the dirty time to prevent enqueue and sync it again.
365          */
366         if ((inode->i_state & I_DIRTY) &&
367             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
368                 inode->dirtied_when = jiffies;
369
370         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
371                 /*
372                  * We didn't write back all the pages.  nfs_writepages()
373                  * sometimes bales out without doing anything.
374                  */
375                 if (wbc->nr_to_write <= 0) {
376                         /* Slice used up. Queue for next turn. */
377                         requeue_io(inode, wb);
378                 } else {
379                         /*
380                          * Writeback blocked by something other than
381                          * congestion. Delay the inode for some time to
382                          * avoid spinning on the CPU (100% iowait)
383                          * retrying writeback of the dirty page/inode
384                          * that cannot be performed immediately.
385                          */
386                         redirty_tail(inode, wb);
387                 }
388         } else if (inode->i_state & I_DIRTY) {
389                 /*
390                  * Filesystems can dirty the inode during writeback operations,
391                  * such as delayed allocation during submission or metadata
392                  * updates after data IO completion.
393                  */
394                 redirty_tail(inode, wb);
395         } else {
396                 /* The inode is clean. Remove from writeback lists. */
397                 list_del_init(&inode->i_wb_list);
398         }
399 }
400
401 /*
402  * Write out an inode's dirty pages.  Called under wb->list_lock and
403  * inode->i_lock.  Either the caller has an active reference on the inode or
404  * the inode has I_WILL_FREE set.
405  *
406  * If `wait' is set, wait on the writeout.
407  *
408  * The whole writeout design is quite complex and fragile.  We want to avoid
409  * starvation of particular inodes when others are being redirtied, prevent
410  * livelocks, etc.
411  */
412 static int
413 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
414                        struct writeback_control *wbc)
415 {
416         struct address_space *mapping = inode->i_mapping;
417         long nr_to_write = wbc->nr_to_write;
418         unsigned dirty;
419         int ret;
420
421         assert_spin_locked(&wb->list_lock);
422         assert_spin_locked(&inode->i_lock);
423
424         if (!atomic_read(&inode->i_count))
425                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
426         else
427                 WARN_ON(inode->i_state & I_WILL_FREE);
428
429         if (inode->i_state & I_SYNC) {
430                 if (wbc->sync_mode != WB_SYNC_ALL)
431                         return 0;
432                 /*
433                  * It's a data-integrity sync.  We must wait.
434                  */
435                 inode_wait_for_writeback(inode, wb);
436         }
437
438         BUG_ON(inode->i_state & I_SYNC);
439
440         /* Set I_SYNC, reset I_DIRTY_PAGES */
441         inode->i_state |= I_SYNC;
442         spin_unlock(&inode->i_lock);
443         spin_unlock(&wb->list_lock);
444
445         ret = do_writepages(mapping, wbc);
446
447         /*
448          * Make sure to wait on the data before writing out the metadata.
449          * This is important for filesystems that modify metadata on data
450          * I/O completion.
451          */
452         if (wbc->sync_mode == WB_SYNC_ALL) {
453                 int err = filemap_fdatawait(mapping);
454                 if (ret == 0)
455                         ret = err;
456         }
457
458         /*
459          * Some filesystems may redirty the inode during the writeback
460          * due to delalloc, clear dirty metadata flags right before
461          * write_inode()
462          */
463         spin_lock(&inode->i_lock);
464         /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
465         if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
466                 inode->i_state &= ~I_DIRTY_PAGES;
467         dirty = inode->i_state & I_DIRTY;
468         inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
469         spin_unlock(&inode->i_lock);
470         /* Don't write the inode if only I_DIRTY_PAGES was set */
471         if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
472                 int err = write_inode(inode, wbc);
473                 if (ret == 0)
474                         ret = err;
475         }
476
477         spin_lock(&wb->list_lock);
478         spin_lock(&inode->i_lock);
479         requeue_inode(inode, wb, wbc);
480         inode_sync_complete(inode);
481         trace_writeback_single_inode(inode, wbc, nr_to_write);
482         return ret;
483 }
484
485 static long writeback_chunk_size(struct backing_dev_info *bdi,
486                                  struct wb_writeback_work *work)
487 {
488         long pages;
489
490         /*
491          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
492          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
493          * here avoids calling into writeback_inodes_wb() more than once.
494          *
495          * The intended call sequence for WB_SYNC_ALL writeback is:
496          *
497          *      wb_writeback()
498          *          writeback_sb_inodes()       <== called only once
499          *              write_cache_pages()     <== called once for each inode
500          *                   (quickly) tag currently dirty pages
501          *                   (maybe slowly) sync all tagged pages
502          */
503         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
504                 pages = LONG_MAX;
505         else {
506                 pages = min(bdi->avg_write_bandwidth / 2,
507                             global_dirty_limit / DIRTY_SCOPE);
508                 pages = min(pages, work->nr_pages);
509                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
510                                    MIN_WRITEBACK_PAGES);
511         }
512
513         return pages;
514 }
515
516 /*
517  * Write a portion of b_io inodes which belong to @sb.
518  *
519  * If @only_this_sb is true, then find and write all such
520  * inodes. Otherwise write only ones which go sequentially
521  * in reverse order.
522  *
523  * Return the number of pages and/or inodes written.
524  */
525 static long writeback_sb_inodes(struct super_block *sb,
526                                 struct bdi_writeback *wb,
527                                 struct wb_writeback_work *work)
528 {
529         struct writeback_control wbc = {
530                 .sync_mode              = work->sync_mode,
531                 .tagged_writepages      = work->tagged_writepages,
532                 .for_kupdate            = work->for_kupdate,
533                 .for_background         = work->for_background,
534                 .range_cyclic           = work->range_cyclic,
535                 .range_start            = 0,
536                 .range_end              = LLONG_MAX,
537         };
538         unsigned long start_time = jiffies;
539         long write_chunk;
540         long wrote = 0;  /* count both pages and inodes */
541
542         while (!list_empty(&wb->b_io)) {
543                 struct inode *inode = wb_inode(wb->b_io.prev);
544
545                 if (inode->i_sb != sb) {
546                         if (work->sb) {
547                                 /*
548                                  * We only want to write back data for this
549                                  * superblock, move all inodes not belonging
550                                  * to it back onto the dirty list.
551                                  */
552                                 redirty_tail(inode, wb);
553                                 continue;
554                         }
555
556                         /*
557                          * The inode belongs to a different superblock.
558                          * Bounce back to the caller to unpin this and
559                          * pin the next superblock.
560                          */
561                         break;
562                 }
563
564                 /*
565                  * Don't bother with new inodes or inodes beeing freed, first
566                  * kind does not need peridic writeout yet, and for the latter
567                  * kind writeout is handled by the freer.
568                  */
569                 spin_lock(&inode->i_lock);
570                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
571                         spin_unlock(&inode->i_lock);
572                         redirty_tail(inode, wb);
573                         continue;
574                 }
575                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
576                         /*
577                          * If this inode is locked for writeback and we are not
578                          * doing writeback-for-data-integrity, move it to
579                          * b_more_io so that writeback can proceed with the
580                          * other inodes on s_io.
581                          *
582                          * We'll have another go at writing back this inode
583                          * when we completed a full scan of b_io.
584                          */
585                         spin_unlock(&inode->i_lock);
586                         requeue_io(inode, wb);
587                         trace_writeback_sb_inodes_requeue(inode);
588                         continue;
589                 }
590                 __iget(inode);
591                 write_chunk = writeback_chunk_size(wb->bdi, work);
592                 wbc.nr_to_write = write_chunk;
593                 wbc.pages_skipped = 0;
594
595                 writeback_single_inode(inode, wb, &wbc);
596
597                 work->nr_pages -= write_chunk - wbc.nr_to_write;
598                 wrote += write_chunk - wbc.nr_to_write;
599                 if (!(inode->i_state & I_DIRTY))
600                         wrote++;
601                 if (wbc.pages_skipped) {
602                         /*
603                          * writeback is not making progress due to locked
604                          * buffers.  Skip this inode for now.
605                          */
606                         redirty_tail(inode, wb);
607                 }
608                 spin_unlock(&inode->i_lock);
609                 spin_unlock(&wb->list_lock);
610                 iput(inode);
611                 cond_resched();
612                 spin_lock(&wb->list_lock);
613                 /*
614                  * bail out to wb_writeback() often enough to check
615                  * background threshold and other termination conditions.
616                  */
617                 if (wrote) {
618                         if (time_is_before_jiffies(start_time + HZ / 10UL))
619                                 break;
620                         if (work->nr_pages <= 0)
621                                 break;
622                 }
623         }
624         return wrote;
625 }
626
627 static long __writeback_inodes_wb(struct bdi_writeback *wb,
628                                   struct wb_writeback_work *work)
629 {
630         unsigned long start_time = jiffies;
631         long wrote = 0;
632
633         while (!list_empty(&wb->b_io)) {
634                 struct inode *inode = wb_inode(wb->b_io.prev);
635                 struct super_block *sb = inode->i_sb;
636
637                 if (!grab_super_passive(sb)) {
638                         /*
639                          * grab_super_passive() may fail consistently due to
640                          * s_umount being grabbed by someone else. Don't use
641                          * requeue_io() to avoid busy retrying the inode/sb.
642                          */
643                         redirty_tail(inode, wb);
644                         continue;
645                 }
646                 wrote += writeback_sb_inodes(sb, wb, work);
647                 drop_super(sb);
648
649                 /* refer to the same tests at the end of writeback_sb_inodes */
650                 if (wrote) {
651                         if (time_is_before_jiffies(start_time + HZ / 10UL))
652                                 break;
653                         if (work->nr_pages <= 0)
654                                 break;
655                 }
656         }
657         /* Leave any unwritten inodes on b_io */
658         return wrote;
659 }
660
661 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
662                                 enum wb_reason reason)
663 {
664         struct wb_writeback_work work = {
665                 .nr_pages       = nr_pages,
666                 .sync_mode      = WB_SYNC_NONE,
667                 .range_cyclic   = 1,
668                 .reason         = reason,
669         };
670
671         spin_lock(&wb->list_lock);
672         if (list_empty(&wb->b_io))
673                 queue_io(wb, &work);
674         __writeback_inodes_wb(wb, &work);
675         spin_unlock(&wb->list_lock);
676
677         return nr_pages - work.nr_pages;
678 }
679
680 static bool over_bground_thresh(struct backing_dev_info *bdi)
681 {
682         unsigned long background_thresh, dirty_thresh;
683
684         global_dirty_limits(&background_thresh, &dirty_thresh);
685
686         if (global_page_state(NR_FILE_DIRTY) +
687             global_page_state(NR_UNSTABLE_NFS) > background_thresh)
688                 return true;
689
690         if (bdi_stat(bdi, BDI_RECLAIMABLE) >
691                                 bdi_dirty_limit(bdi, background_thresh))
692                 return true;
693
694         return false;
695 }
696
697 /*
698  * Called under wb->list_lock. If there are multiple wb per bdi,
699  * only the flusher working on the first wb should do it.
700  */
701 static void wb_update_bandwidth(struct bdi_writeback *wb,
702                                 unsigned long start_time)
703 {
704         __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
705 }
706
707 /*
708  * Explicit flushing or periodic writeback of "old" data.
709  *
710  * Define "old": the first time one of an inode's pages is dirtied, we mark the
711  * dirtying-time in the inode's address_space.  So this periodic writeback code
712  * just walks the superblock inode list, writing back any inodes which are
713  * older than a specific point in time.
714  *
715  * Try to run once per dirty_writeback_interval.  But if a writeback event
716  * takes longer than a dirty_writeback_interval interval, then leave a
717  * one-second gap.
718  *
719  * older_than_this takes precedence over nr_to_write.  So we'll only write back
720  * all dirty pages if they are all attached to "old" mappings.
721  */
722 static long wb_writeback(struct bdi_writeback *wb,
723                          struct wb_writeback_work *work)
724 {
725         unsigned long wb_start = jiffies;
726         long nr_pages = work->nr_pages;
727         unsigned long oldest_jif;
728         struct inode *inode;
729         long progress;
730
731         oldest_jif = jiffies;
732         work->older_than_this = &oldest_jif;
733
734         spin_lock(&wb->list_lock);
735         for (;;) {
736                 /*
737                  * Stop writeback when nr_pages has been consumed
738                  */
739                 if (work->nr_pages <= 0)
740                         break;
741
742                 /*
743                  * Background writeout and kupdate-style writeback may
744                  * run forever. Stop them if there is other work to do
745                  * so that e.g. sync can proceed. They'll be restarted
746                  * after the other works are all done.
747                  */
748                 if ((work->for_background || work->for_kupdate) &&
749                     !list_empty(&wb->bdi->work_list))
750                         break;
751
752                 /*
753                  * For background writeout, stop when we are below the
754                  * background dirty threshold
755                  */
756                 if (work->for_background && !over_bground_thresh(wb->bdi))
757                         break;
758
759                 /*
760                  * Kupdate and background works are special and we want to
761                  * include all inodes that need writing. Livelock avoidance is
762                  * handled by these works yielding to any other work so we are
763                  * safe.
764                  */
765                 if (work->for_kupdate) {
766                         oldest_jif = jiffies -
767                                 msecs_to_jiffies(dirty_expire_interval * 10);
768                 } else if (work->for_background)
769                         oldest_jif = jiffies;
770
771                 trace_writeback_start(wb->bdi, work);
772                 if (list_empty(&wb->b_io))
773                         queue_io(wb, work);
774                 if (work->sb)
775                         progress = writeback_sb_inodes(work->sb, wb, work);
776                 else
777                         progress = __writeback_inodes_wb(wb, work);
778                 trace_writeback_written(wb->bdi, work);
779
780                 wb_update_bandwidth(wb, wb_start);
781
782                 /*
783                  * Did we write something? Try for more
784                  *
785                  * Dirty inodes are moved to b_io for writeback in batches.
786                  * The completion of the current batch does not necessarily
787                  * mean the overall work is done. So we keep looping as long
788                  * as made some progress on cleaning pages or inodes.
789                  */
790                 if (progress)
791                         continue;
792                 /*
793                  * No more inodes for IO, bail
794                  */
795                 if (list_empty(&wb->b_more_io))
796                         break;
797                 /*
798                  * Nothing written. Wait for some inode to
799                  * become available for writeback. Otherwise
800                  * we'll just busyloop.
801                  */
802                 if (!list_empty(&wb->b_more_io))  {
803                         trace_writeback_wait(wb->bdi, work);
804                         inode = wb_inode(wb->b_more_io.prev);
805                         spin_lock(&inode->i_lock);
806                         inode_wait_for_writeback(inode, wb);
807                         spin_unlock(&inode->i_lock);
808                 }
809         }
810         spin_unlock(&wb->list_lock);
811
812         return nr_pages - work->nr_pages;
813 }
814
815 /*
816  * Return the next wb_writeback_work struct that hasn't been processed yet.
817  */
818 static struct wb_writeback_work *
819 get_next_work_item(struct backing_dev_info *bdi)
820 {
821         struct wb_writeback_work *work = NULL;
822
823         spin_lock_bh(&bdi->wb_lock);
824         if (!list_empty(&bdi->work_list)) {
825                 work = list_entry(bdi->work_list.next,
826                                   struct wb_writeback_work, list);
827                 list_del_init(&work->list);
828         }
829         spin_unlock_bh(&bdi->wb_lock);
830         return work;
831 }
832
833 /*
834  * Add in the number of potentially dirty inodes, because each inode
835  * write can dirty pagecache in the underlying blockdev.
836  */
837 static unsigned long get_nr_dirty_pages(void)
838 {
839         return global_page_state(NR_FILE_DIRTY) +
840                 global_page_state(NR_UNSTABLE_NFS) +
841                 get_nr_dirty_inodes();
842 }
843
844 static long wb_check_background_flush(struct bdi_writeback *wb)
845 {
846         if (over_bground_thresh(wb->bdi)) {
847
848                 struct wb_writeback_work work = {
849                         .nr_pages       = LONG_MAX,
850                         .sync_mode      = WB_SYNC_NONE,
851                         .for_background = 1,
852                         .range_cyclic   = 1,
853                         .reason         = WB_REASON_BACKGROUND,
854                 };
855
856                 return wb_writeback(wb, &work);
857         }
858
859         return 0;
860 }
861
862 static long wb_check_old_data_flush(struct bdi_writeback *wb)
863 {
864         unsigned long expired;
865         long nr_pages;
866
867         /*
868          * When set to zero, disable periodic writeback
869          */
870         if (!dirty_writeback_interval)
871                 return 0;
872
873         expired = wb->last_old_flush +
874                         msecs_to_jiffies(dirty_writeback_interval * 10);
875         if (time_before(jiffies, expired))
876                 return 0;
877
878         wb->last_old_flush = jiffies;
879         nr_pages = get_nr_dirty_pages();
880
881         if (nr_pages) {
882                 struct wb_writeback_work work = {
883                         .nr_pages       = nr_pages,
884                         .sync_mode      = WB_SYNC_NONE,
885                         .for_kupdate    = 1,
886                         .range_cyclic   = 1,
887                         .reason         = WB_REASON_PERIODIC,
888                 };
889
890                 return wb_writeback(wb, &work);
891         }
892
893         return 0;
894 }
895
896 /*
897  * Retrieve work items and do the writeback they describe
898  */
899 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
900 {
901         struct backing_dev_info *bdi = wb->bdi;
902         struct wb_writeback_work *work;
903         long wrote = 0;
904
905         set_bit(BDI_writeback_running, &wb->bdi->state);
906         while ((work = get_next_work_item(bdi)) != NULL) {
907                 /*
908                  * Override sync mode, in case we must wait for completion
909                  * because this thread is exiting now.
910                  */
911                 if (force_wait)
912                         work->sync_mode = WB_SYNC_ALL;
913
914                 trace_writeback_exec(bdi, work);
915
916                 wrote += wb_writeback(wb, work);
917
918                 /*
919                  * Notify the caller of completion if this is a synchronous
920                  * work item, otherwise just free it.
921                  */
922                 if (work->done)
923                         complete(work->done);
924                 else
925                         kfree(work);
926         }
927
928         /*
929          * Check for periodic writeback, kupdated() style
930          */
931         wrote += wb_check_old_data_flush(wb);
932         wrote += wb_check_background_flush(wb);
933         clear_bit(BDI_writeback_running, &wb->bdi->state);
934
935         return wrote;
936 }
937
938 /*
939  * Handle writeback of dirty data for the device backed by this bdi. Also
940  * wakes up periodically and does kupdated style flushing.
941  */
942 int bdi_writeback_thread(void *data)
943 {
944         struct bdi_writeback *wb = data;
945         struct backing_dev_info *bdi = wb->bdi;
946         long pages_written;
947
948         current->flags |= PF_SWAPWRITE;
949         set_freezable();
950         wb->last_active = jiffies;
951
952         /*
953          * Our parent may run at a different priority, just set us to normal
954          */
955         set_user_nice(current, 0);
956
957         trace_writeback_thread_start(bdi);
958
959         while (!kthread_freezable_should_stop(NULL)) {
960                 /*
961                  * Remove own delayed wake-up timer, since we are already awake
962                  * and we'll take care of the preriodic write-back.
963                  */
964                 del_timer(&wb->wakeup_timer);
965
966                 pages_written = wb_do_writeback(wb, 0);
967
968                 trace_writeback_pages_written(pages_written);
969
970                 if (pages_written)
971                         wb->last_active = jiffies;
972
973                 set_current_state(TASK_INTERRUPTIBLE);
974                 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
975                         __set_current_state(TASK_RUNNING);
976                         continue;
977                 }
978
979                 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
980                         schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
981                 else {
982                         /*
983                          * We have nothing to do, so can go sleep without any
984                          * timeout and save power. When a work is queued or
985                          * something is made dirty - we will be woken up.
986                          */
987                         schedule();
988                 }
989         }
990
991         /* Flush any work that raced with us exiting */
992         if (!list_empty(&bdi->work_list))
993                 wb_do_writeback(wb, 1);
994
995         trace_writeback_thread_stop(bdi);
996         return 0;
997 }
998
999
1000 /*
1001  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1002  * the whole world.
1003  */
1004 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1005 {
1006         struct backing_dev_info *bdi;
1007
1008         if (!nr_pages) {
1009                 nr_pages = global_page_state(NR_FILE_DIRTY) +
1010                                 global_page_state(NR_UNSTABLE_NFS);
1011         }
1012
1013         rcu_read_lock();
1014         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1015                 if (!bdi_has_dirty_io(bdi))
1016                         continue;
1017                 __bdi_start_writeback(bdi, nr_pages, false, reason);
1018         }
1019         rcu_read_unlock();
1020 }
1021
1022 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1023 {
1024         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1025                 struct dentry *dentry;
1026                 const char *name = "?";
1027
1028                 dentry = d_find_alias(inode);
1029                 if (dentry) {
1030                         spin_lock(&dentry->d_lock);
1031                         name = (const char *) dentry->d_name.name;
1032                 }
1033                 printk(KERN_DEBUG
1034                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1035                        current->comm, task_pid_nr(current), inode->i_ino,
1036                        name, inode->i_sb->s_id);
1037                 if (dentry) {
1038                         spin_unlock(&dentry->d_lock);
1039                         dput(dentry);
1040                 }
1041         }
1042 }
1043
1044 /**
1045  *      __mark_inode_dirty -    internal function
1046  *      @inode: inode to mark
1047  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1048  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1049  *      mark_inode_dirty_sync.
1050  *
1051  * Put the inode on the super block's dirty list.
1052  *
1053  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1054  * dirty list only if it is hashed or if it refers to a blockdev.
1055  * If it was not hashed, it will never be added to the dirty list
1056  * even if it is later hashed, as it will have been marked dirty already.
1057  *
1058  * In short, make sure you hash any inodes _before_ you start marking
1059  * them dirty.
1060  *
1061  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1062  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1063  * the kernel-internal blockdev inode represents the dirtying time of the
1064  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1065  * page->mapping->host, so the page-dirtying time is recorded in the internal
1066  * blockdev inode.
1067  */
1068 void __mark_inode_dirty(struct inode *inode, int flags)
1069 {
1070         struct super_block *sb = inode->i_sb;
1071         struct backing_dev_info *bdi = NULL;
1072
1073         /*
1074          * Don't do this for I_DIRTY_PAGES - that doesn't actually
1075          * dirty the inode itself
1076          */
1077         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1078                 if (sb->s_op->dirty_inode)
1079                         sb->s_op->dirty_inode(inode, flags);
1080         }
1081
1082         /*
1083          * make sure that changes are seen by all cpus before we test i_state
1084          * -- mikulas
1085          */
1086         smp_mb();
1087
1088         /* avoid the locking if we can */
1089         if ((inode->i_state & flags) == flags)
1090                 return;
1091
1092         if (unlikely(block_dump))
1093                 block_dump___mark_inode_dirty(inode);
1094
1095         spin_lock(&inode->i_lock);
1096         if ((inode->i_state & flags) != flags) {
1097                 const int was_dirty = inode->i_state & I_DIRTY;
1098
1099                 inode->i_state |= flags;
1100
1101                 /*
1102                  * If the inode is being synced, just update its dirty state.
1103                  * The unlocker will place the inode on the appropriate
1104                  * superblock list, based upon its state.
1105                  */
1106                 if (inode->i_state & I_SYNC)
1107                         goto out_unlock_inode;
1108
1109                 /*
1110                  * Only add valid (hashed) inodes to the superblock's
1111                  * dirty list.  Add blockdev inodes as well.
1112                  */
1113                 if (!S_ISBLK(inode->i_mode)) {
1114                         if (inode_unhashed(inode))
1115                                 goto out_unlock_inode;
1116                 }
1117                 if (inode->i_state & I_FREEING)
1118                         goto out_unlock_inode;
1119
1120                 /*
1121                  * If the inode was already on b_dirty/b_io/b_more_io, don't
1122                  * reposition it (that would break b_dirty time-ordering).
1123                  */
1124                 if (!was_dirty) {
1125                         bool wakeup_bdi = false;
1126                         bdi = inode_to_bdi(inode);
1127
1128                         if (bdi_cap_writeback_dirty(bdi)) {
1129                                 WARN(!test_bit(BDI_registered, &bdi->state),
1130                                      "bdi-%s not registered\n", bdi->name);
1131
1132                                 /*
1133                                  * If this is the first dirty inode for this
1134                                  * bdi, we have to wake-up the corresponding
1135                                  * bdi thread to make sure background
1136                                  * write-back happens later.
1137                                  */
1138                                 if (!wb_has_dirty_io(&bdi->wb))
1139                                         wakeup_bdi = true;
1140                         }
1141
1142                         spin_unlock(&inode->i_lock);
1143                         spin_lock(&bdi->wb.list_lock);
1144                         inode->dirtied_when = jiffies;
1145                         list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1146                         spin_unlock(&bdi->wb.list_lock);
1147
1148                         if (wakeup_bdi)
1149                                 bdi_wakeup_thread_delayed(bdi);
1150                         return;
1151                 }
1152         }
1153 out_unlock_inode:
1154         spin_unlock(&inode->i_lock);
1155
1156 }
1157 EXPORT_SYMBOL(__mark_inode_dirty);
1158
1159 static void wait_sb_inodes(struct super_block *sb)
1160 {
1161         struct inode *inode, *old_inode = NULL;
1162
1163         /*
1164          * We need to be protected against the filesystem going from
1165          * r/o to r/w or vice versa.
1166          */
1167         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1168
1169         spin_lock(&inode_sb_list_lock);
1170
1171         /*
1172          * Data integrity sync. Must wait for all pages under writeback,
1173          * because there may have been pages dirtied before our sync
1174          * call, but which had writeout started before we write it out.
1175          * In which case, the inode may not be on the dirty list, but
1176          * we still have to wait for that writeout.
1177          */
1178         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1179                 struct address_space *mapping = inode->i_mapping;
1180
1181                 spin_lock(&inode->i_lock);
1182                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1183                     (mapping->nrpages == 0)) {
1184                         spin_unlock(&inode->i_lock);
1185                         continue;
1186                 }
1187                 __iget(inode);
1188                 spin_unlock(&inode->i_lock);
1189                 spin_unlock(&inode_sb_list_lock);
1190
1191                 /*
1192                  * We hold a reference to 'inode' so it couldn't have been
1193                  * removed from s_inodes list while we dropped the
1194                  * inode_sb_list_lock.  We cannot iput the inode now as we can
1195                  * be holding the last reference and we cannot iput it under
1196                  * inode_sb_list_lock. So we keep the reference and iput it
1197                  * later.
1198                  */
1199                 iput(old_inode);
1200                 old_inode = inode;
1201
1202                 filemap_fdatawait(mapping);
1203
1204                 cond_resched();
1205
1206                 spin_lock(&inode_sb_list_lock);
1207         }
1208         spin_unlock(&inode_sb_list_lock);
1209         iput(old_inode);
1210 }
1211
1212 /**
1213  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1214  * @sb: the superblock
1215  * @nr: the number of pages to write
1216  * @reason: reason why some writeback work initiated
1217  *
1218  * Start writeback on some inodes on this super_block. No guarantees are made
1219  * on how many (if any) will be written, and this function does not wait
1220  * for IO completion of submitted IO.
1221  */
1222 void writeback_inodes_sb_nr(struct super_block *sb,
1223                             unsigned long nr,
1224                             enum wb_reason reason)
1225 {
1226         DECLARE_COMPLETION_ONSTACK(done);
1227         struct wb_writeback_work work = {
1228                 .sb                     = sb,
1229                 .sync_mode              = WB_SYNC_NONE,
1230                 .tagged_writepages      = 1,
1231                 .done                   = &done,
1232                 .nr_pages               = nr,
1233                 .reason                 = reason,
1234         };
1235
1236         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1237         bdi_queue_work(sb->s_bdi, &work);
1238         wait_for_completion(&done);
1239 }
1240 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1241
1242 /**
1243  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1244  * @sb: the superblock
1245  * @reason: reason why some writeback work was initiated
1246  *
1247  * Start writeback on some inodes on this super_block. No guarantees are made
1248  * on how many (if any) will be written, and this function does not wait
1249  * for IO completion of submitted IO.
1250  */
1251 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1252 {
1253         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1254 }
1255 EXPORT_SYMBOL(writeback_inodes_sb);
1256
1257 /**
1258  * writeback_inodes_sb_if_idle  -       start writeback if none underway
1259  * @sb: the superblock
1260  * @reason: reason why some writeback work was initiated
1261  *
1262  * Invoke writeback_inodes_sb if no writeback is currently underway.
1263  * Returns 1 if writeback was started, 0 if not.
1264  */
1265 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1266 {
1267         if (!writeback_in_progress(sb->s_bdi)) {
1268                 down_read(&sb->s_umount);
1269                 writeback_inodes_sb(sb, reason);
1270                 up_read(&sb->s_umount);
1271                 return 1;
1272         } else
1273                 return 0;
1274 }
1275 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1276
1277 /**
1278  * writeback_inodes_sb_nr_if_idle       -       start writeback if none underway
1279  * @sb: the superblock
1280  * @nr: the number of pages to write
1281  * @reason: reason why some writeback work was initiated
1282  *
1283  * Invoke writeback_inodes_sb if no writeback is currently underway.
1284  * Returns 1 if writeback was started, 0 if not.
1285  */
1286 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1287                                    unsigned long nr,
1288                                    enum wb_reason reason)
1289 {
1290         if (!writeback_in_progress(sb->s_bdi)) {
1291                 down_read(&sb->s_umount);
1292                 writeback_inodes_sb_nr(sb, nr, reason);
1293                 up_read(&sb->s_umount);
1294                 return 1;
1295         } else
1296                 return 0;
1297 }
1298 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1299
1300 /**
1301  * sync_inodes_sb       -       sync sb inode pages
1302  * @sb: the superblock
1303  *
1304  * This function writes and waits on any dirty inode belonging to this
1305  * super_block.
1306  */
1307 void sync_inodes_sb(struct super_block *sb)
1308 {
1309         DECLARE_COMPLETION_ONSTACK(done);
1310         struct wb_writeback_work work = {
1311                 .sb             = sb,
1312                 .sync_mode      = WB_SYNC_ALL,
1313                 .nr_pages       = LONG_MAX,
1314                 .range_cyclic   = 0,
1315                 .done           = &done,
1316                 .reason         = WB_REASON_SYNC,
1317         };
1318
1319         WARN_ON(!rwsem_is_locked(&sb->s_umount));
1320
1321         bdi_queue_work(sb->s_bdi, &work);
1322         wait_for_completion(&done);
1323
1324         wait_sb_inodes(sb);
1325 }
1326 EXPORT_SYMBOL(sync_inodes_sb);
1327
1328 /**
1329  * write_inode_now      -       write an inode to disk
1330  * @inode: inode to write to disk
1331  * @sync: whether the write should be synchronous or not
1332  *
1333  * This function commits an inode to disk immediately if it is dirty. This is
1334  * primarily needed by knfsd.
1335  *
1336  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1337  */
1338 int write_inode_now(struct inode *inode, int sync)
1339 {
1340         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1341         int ret;
1342         struct writeback_control wbc = {
1343                 .nr_to_write = LONG_MAX,
1344                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1345                 .range_start = 0,
1346                 .range_end = LLONG_MAX,
1347         };
1348
1349         if (!mapping_cap_writeback_dirty(inode->i_mapping))
1350                 wbc.nr_to_write = 0;
1351
1352         might_sleep();
1353         spin_lock(&wb->list_lock);
1354         spin_lock(&inode->i_lock);
1355         ret = writeback_single_inode(inode, wb, &wbc);
1356         spin_unlock(&inode->i_lock);
1357         spin_unlock(&wb->list_lock);
1358         return ret;
1359 }
1360 EXPORT_SYMBOL(write_inode_now);
1361
1362 /**
1363  * sync_inode - write an inode and its pages to disk.
1364  * @inode: the inode to sync
1365  * @wbc: controls the writeback mode
1366  *
1367  * sync_inode() will write an inode and its pages to disk.  It will also
1368  * correctly update the inode on its superblock's dirty inode lists and will
1369  * update inode->i_state.
1370  *
1371  * The caller must have a ref on the inode.
1372  */
1373 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1374 {
1375         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1376         int ret;
1377
1378         spin_lock(&wb->list_lock);
1379         spin_lock(&inode->i_lock);
1380         ret = writeback_single_inode(inode, wb, wbc);
1381         spin_unlock(&inode->i_lock);
1382         spin_unlock(&wb->list_lock);
1383         return ret;
1384 }
1385 EXPORT_SYMBOL(sync_inode);
1386
1387 /**
1388  * sync_inode_metadata - write an inode to disk
1389  * @inode: the inode to sync
1390  * @wait: wait for I/O to complete.
1391  *
1392  * Write an inode to disk and adjust its dirty state after completion.
1393  *
1394  * Note: only writes the actual inode, no associated data or other metadata.
1395  */
1396 int sync_inode_metadata(struct inode *inode, int wait)
1397 {
1398         struct writeback_control wbc = {
1399                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1400                 .nr_to_write = 0, /* metadata-only */
1401         };
1402
1403         return sync_inode(inode, &wbc);
1404 }
1405 EXPORT_SYMBOL(sync_inode_metadata);