NFSv4: Fix a dentry leak on alias use
[firefly-linux-kernel-4.4.55.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         unsigned long *older_than_this;
49         enum writeback_sync_modes sync_mode;
50         unsigned int tagged_writepages:1;
51         unsigned int for_kupdate:1;
52         unsigned int range_cyclic:1;
53         unsigned int for_background:1;
54         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
55         unsigned int auto_free:1;       /* free on completion */
56         enum wb_reason reason;          /* why was writeback initiated? */
57
58         struct list_head list;          /* pending work list */
59         struct wb_completion *done;     /* set if the caller waits */
60 };
61
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
70         struct wb_completion cmpl = {                                   \
71                 .cnt            = ATOMIC_INIT(1),                       \
72         }
73
74
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89         return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104         if (wb_has_dirty_io(wb)) {
105                 return false;
106         } else {
107                 set_bit(WB_has_dirty_io, &wb->state);
108                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109                 atomic_long_add(wb->avg_write_bandwidth,
110                                 &wb->bdi->tot_write_bandwidth);
111                 return true;
112         }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119                 clear_bit(WB_has_dirty_io, &wb->state);
120                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121                                         &wb->bdi->tot_write_bandwidth) < 0);
122         }
123 }
124
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136                                       struct bdi_writeback *wb,
137                                       struct list_head *head)
138 {
139         assert_spin_locked(&wb->list_lock);
140
141         list_move(&inode->i_io_list, head);
142
143         /* dirty_time doesn't count as dirty_io until expiration */
144         if (head != &wb->b_dirty_time)
145                 return wb_io_lists_populated(wb);
146
147         wb_io_lists_depopulated(wb);
148         return false;
149 }
150
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160                                      struct bdi_writeback *wb)
161 {
162         assert_spin_locked(&wb->list_lock);
163
164         list_del_init(&inode->i_io_list);
165         wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170         spin_lock_bh(&wb->work_lock);
171         if (test_bit(WB_registered, &wb->state))
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177                           struct wb_writeback_work *work)
178 {
179         trace_writeback_queue(wb, work);
180
181         spin_lock_bh(&wb->work_lock);
182         if (!test_bit(WB_registered, &wb->state))
183                 goto out_unlock;
184         if (work->done)
185                 atomic_inc(&work->done->cnt);
186         list_add_tail(&work->list, &wb->work_list);
187         mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189         spin_unlock_bh(&wb->work_lock);
190 }
191
192 /**
193  * wb_wait_for_completion - wait for completion of bdi_writeback_works
194  * @bdi: bdi work items were issued to
195  * @done: target wb_completion
196  *
197  * Wait for one or more work items issued to @bdi with their ->done field
198  * set to @done, which should have been defined with
199  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
200  * work items are completed.  Work items which are waited upon aren't freed
201  * automatically on completion.
202  */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204                                    struct wb_completion *done)
205 {
206         atomic_dec(&done->cnt);         /* put down the initial count */
207         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
217
218 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220                                         /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
222                                         /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224                                         /* one round can affect upto 5 slots */
225
226 void __inode_attach_wb(struct inode *inode, struct page *page)
227 {
228         struct backing_dev_info *bdi = inode_to_bdi(inode);
229         struct bdi_writeback *wb = NULL;
230
231         if (inode_cgwb_enabled(inode)) {
232                 struct cgroup_subsys_state *memcg_css;
233
234                 if (page) {
235                         memcg_css = mem_cgroup_css_from_page(page);
236                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237                 } else {
238                         /* must pin memcg_css, see wb_get_create() */
239                         memcg_css = task_get_css(current, memory_cgrp_id);
240                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241                         css_put(memcg_css);
242                 }
243         }
244
245         if (!wb)
246                 wb = &bdi->wb;
247
248         /*
249          * There may be multiple instances of this function racing to
250          * update the same inode.  Use cmpxchg() to tell the winner.
251          */
252         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253                 wb_put(wb);
254 }
255
256 /**
257  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258  * @inode: inode of interest with i_lock held
259  *
260  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
261  * held on entry and is released on return.  The returned wb is guaranteed
262  * to stay @inode's associated wb until its list_lock is released.
263  */
264 static struct bdi_writeback *
265 locked_inode_to_wb_and_lock_list(struct inode *inode)
266         __releases(&inode->i_lock)
267         __acquires(&wb->list_lock)
268 {
269         while (true) {
270                 struct bdi_writeback *wb = inode_to_wb(inode);
271
272                 /*
273                  * inode_to_wb() association is protected by both
274                  * @inode->i_lock and @wb->list_lock but list_lock nests
275                  * outside i_lock.  Drop i_lock and verify that the
276                  * association hasn't changed after acquiring list_lock.
277                  */
278                 wb_get(wb);
279                 spin_unlock(&inode->i_lock);
280                 spin_lock(&wb->list_lock);
281                 wb_put(wb);             /* not gonna deref it anymore */
282
283                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
284                 if (likely(wb == inode->i_wb))
285                         return wb;      /* @inode already has ref */
286
287                 spin_unlock(&wb->list_lock);
288                 cpu_relax();
289                 spin_lock(&inode->i_lock);
290         }
291 }
292
293 /**
294  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295  * @inode: inode of interest
296  *
297  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298  * on entry.
299  */
300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301         __acquires(&wb->list_lock)
302 {
303         spin_lock(&inode->i_lock);
304         return locked_inode_to_wb_and_lock_list(inode);
305 }
306
307 struct inode_switch_wbs_context {
308         struct inode            *inode;
309         struct bdi_writeback    *new_wb;
310
311         struct rcu_head         rcu_head;
312         struct work_struct      work;
313 };
314
315 static void inode_switch_wbs_work_fn(struct work_struct *work)
316 {
317         struct inode_switch_wbs_context *isw =
318                 container_of(work, struct inode_switch_wbs_context, work);
319         struct inode *inode = isw->inode;
320         struct super_block *sb = inode->i_sb;
321         struct address_space *mapping = inode->i_mapping;
322         struct bdi_writeback *old_wb = inode->i_wb;
323         struct bdi_writeback *new_wb = isw->new_wb;
324         struct radix_tree_iter iter;
325         bool switched = false;
326         void **slot;
327
328         /*
329          * By the time control reaches here, RCU grace period has passed
330          * since I_WB_SWITCH assertion and all wb stat update transactions
331          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
332          * synchronizing against mapping->tree_lock.
333          *
334          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
335          * gives us exclusion against all wb related operations on @inode
336          * including IO list manipulations and stat updates.
337          */
338         if (old_wb < new_wb) {
339                 spin_lock(&old_wb->list_lock);
340                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
341         } else {
342                 spin_lock(&new_wb->list_lock);
343                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
344         }
345         spin_lock(&inode->i_lock);
346         spin_lock_irq(&mapping->tree_lock);
347
348         /*
349          * Once I_FREEING is visible under i_lock, the eviction path owns
350          * the inode and we shouldn't modify ->i_io_list.
351          */
352         if (unlikely(inode->i_state & I_FREEING))
353                 goto skip_switch;
354
355         /*
356          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
357          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
358          * pages actually under underwriteback.
359          */
360         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
361                                    PAGECACHE_TAG_DIRTY) {
362                 struct page *page = radix_tree_deref_slot_protected(slot,
363                                                         &mapping->tree_lock);
364                 if (likely(page) && PageDirty(page)) {
365                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
366                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
367                 }
368         }
369
370         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
371                                    PAGECACHE_TAG_WRITEBACK) {
372                 struct page *page = radix_tree_deref_slot_protected(slot,
373                                                         &mapping->tree_lock);
374                 if (likely(page)) {
375                         WARN_ON_ONCE(!PageWriteback(page));
376                         __dec_wb_stat(old_wb, WB_WRITEBACK);
377                         __inc_wb_stat(new_wb, WB_WRITEBACK);
378                 }
379         }
380
381         wb_get(new_wb);
382
383         /*
384          * Transfer to @new_wb's IO list if necessary.  The specific list
385          * @inode was on is ignored and the inode is put on ->b_dirty which
386          * is always correct including from ->b_dirty_time.  The transfer
387          * preserves @inode->dirtied_when ordering.
388          */
389         if (!list_empty(&inode->i_io_list)) {
390                 struct inode *pos;
391
392                 inode_io_list_del_locked(inode, old_wb);
393                 inode->i_wb = new_wb;
394                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
395                         if (time_after_eq(inode->dirtied_when,
396                                           pos->dirtied_when))
397                                 break;
398                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
399         } else {
400                 inode->i_wb = new_wb;
401         }
402
403         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
404         inode->i_wb_frn_winner = 0;
405         inode->i_wb_frn_avg_time = 0;
406         inode->i_wb_frn_history = 0;
407         switched = true;
408 skip_switch:
409         /*
410          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
411          * ensures that the new wb is visible if they see !I_WB_SWITCH.
412          */
413         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
414
415         spin_unlock_irq(&mapping->tree_lock);
416         spin_unlock(&inode->i_lock);
417         spin_unlock(&new_wb->list_lock);
418         spin_unlock(&old_wb->list_lock);
419
420         if (switched) {
421                 wb_wakeup(new_wb);
422                 wb_put(old_wb);
423         }
424         wb_put(new_wb);
425
426         iput(inode);
427         deactivate_super(sb);
428         kfree(isw);
429 }
430
431 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
432 {
433         struct inode_switch_wbs_context *isw = container_of(rcu_head,
434                                 struct inode_switch_wbs_context, rcu_head);
435
436         /* needs to grab bh-unsafe locks, bounce to work item */
437         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
438         schedule_work(&isw->work);
439 }
440
441 /**
442  * inode_switch_wbs - change the wb association of an inode
443  * @inode: target inode
444  * @new_wb_id: ID of the new wb
445  *
446  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
447  * switching is performed asynchronously and may fail silently.
448  */
449 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
450 {
451         struct backing_dev_info *bdi = inode_to_bdi(inode);
452         struct cgroup_subsys_state *memcg_css;
453         struct inode_switch_wbs_context *isw;
454
455         /* noop if seems to be already in progress */
456         if (inode->i_state & I_WB_SWITCH)
457                 return;
458
459         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
460         if (!isw)
461                 return;
462
463         /* find and pin the new wb */
464         rcu_read_lock();
465         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
466         if (memcg_css)
467                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
468         rcu_read_unlock();
469         if (!isw->new_wb)
470                 goto out_free;
471
472         /* while holding I_WB_SWITCH, no one else can update the association */
473         spin_lock(&inode->i_lock);
474
475         if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
476             inode_to_wb(inode) == isw->new_wb)
477                 goto out_unlock;
478
479         if (!atomic_inc_not_zero(&inode->i_sb->s_active))
480                 goto out_unlock;
481
482         inode->i_state |= I_WB_SWITCH;
483         spin_unlock(&inode->i_lock);
484
485         ihold(inode);
486         isw->inode = inode;
487
488         /*
489          * In addition to synchronizing among switchers, I_WB_SWITCH tells
490          * the RCU protected stat update paths to grab the mapping's
491          * tree_lock so that stat transfer can synchronize against them.
492          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493          */
494         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495         return;
496
497 out_unlock:
498         spin_unlock(&inode->i_lock);
499 out_free:
500         if (isw->new_wb)
501                 wb_put(isw->new_wb);
502         kfree(isw);
503 }
504
505 /**
506  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
507  * @wbc: writeback_control of interest
508  * @inode: target inode
509  *
510  * @inode is locked and about to be written back under the control of @wbc.
511  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
512  * writeback completion, wbc_detach_inode() should be called.  This is used
513  * to track the cgroup writeback context.
514  */
515 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
516                                  struct inode *inode)
517 {
518         if (!inode_cgwb_enabled(inode)) {
519                 spin_unlock(&inode->i_lock);
520                 return;
521         }
522
523         wbc->wb = inode_to_wb(inode);
524         wbc->inode = inode;
525
526         wbc->wb_id = wbc->wb->memcg_css->id;
527         wbc->wb_lcand_id = inode->i_wb_frn_winner;
528         wbc->wb_tcand_id = 0;
529         wbc->wb_bytes = 0;
530         wbc->wb_lcand_bytes = 0;
531         wbc->wb_tcand_bytes = 0;
532
533         wb_get(wbc->wb);
534         spin_unlock(&inode->i_lock);
535
536         /*
537          * A dying wb indicates that the memcg-blkcg mapping has changed
538          * and a new wb is already serving the memcg.  Switch immediately.
539          */
540         if (unlikely(wb_dying(wbc->wb)))
541                 inode_switch_wbs(inode, wbc->wb_id);
542 }
543
544 /**
545  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
546  * @wbc: writeback_control of the just finished writeback
547  *
548  * To be called after a writeback attempt of an inode finishes and undoes
549  * wbc_attach_and_unlock_inode().  Can be called under any context.
550  *
551  * As concurrent write sharing of an inode is expected to be very rare and
552  * memcg only tracks page ownership on first-use basis severely confining
553  * the usefulness of such sharing, cgroup writeback tracks ownership
554  * per-inode.  While the support for concurrent write sharing of an inode
555  * is deemed unnecessary, an inode being written to by different cgroups at
556  * different points in time is a lot more common, and, more importantly,
557  * charging only by first-use can too readily lead to grossly incorrect
558  * behaviors (single foreign page can lead to gigabytes of writeback to be
559  * incorrectly attributed).
560  *
561  * To resolve this issue, cgroup writeback detects the majority dirtier of
562  * an inode and transfers the ownership to it.  To avoid unnnecessary
563  * oscillation, the detection mechanism keeps track of history and gives
564  * out the switch verdict only if the foreign usage pattern is stable over
565  * a certain amount of time and/or writeback attempts.
566  *
567  * On each writeback attempt, @wbc tries to detect the majority writer
568  * using Boyer-Moore majority vote algorithm.  In addition to the byte
569  * count from the majority voting, it also counts the bytes written for the
570  * current wb and the last round's winner wb (max of last round's current
571  * wb, the winner from two rounds ago, and the last round's majority
572  * candidate).  Keeping track of the historical winner helps the algorithm
573  * to semi-reliably detect the most active writer even when it's not the
574  * absolute majority.
575  *
576  * Once the winner of the round is determined, whether the winner is
577  * foreign or not and how much IO time the round consumed is recorded in
578  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
579  * over a certain threshold, the switch verdict is given.
580  */
581 void wbc_detach_inode(struct writeback_control *wbc)
582 {
583         struct bdi_writeback *wb = wbc->wb;
584         struct inode *inode = wbc->inode;
585         unsigned long avg_time, max_bytes, max_time;
586         u16 history;
587         int max_id;
588
589         if (!wb)
590                 return;
591
592         history = inode->i_wb_frn_history;
593         avg_time = inode->i_wb_frn_avg_time;
594
595         /* pick the winner of this round */
596         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
597             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
598                 max_id = wbc->wb_id;
599                 max_bytes = wbc->wb_bytes;
600         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
601                 max_id = wbc->wb_lcand_id;
602                 max_bytes = wbc->wb_lcand_bytes;
603         } else {
604                 max_id = wbc->wb_tcand_id;
605                 max_bytes = wbc->wb_tcand_bytes;
606         }
607
608         /*
609          * Calculate the amount of IO time the winner consumed and fold it
610          * into the running average kept per inode.  If the consumed IO
611          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
612          * deciding whether to switch or not.  This is to prevent one-off
613          * small dirtiers from skewing the verdict.
614          */
615         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
616                                 wb->avg_write_bandwidth);
617         if (avg_time)
618                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
619                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
620         else
621                 avg_time = max_time;    /* immediate catch up on first run */
622
623         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
624                 int slots;
625
626                 /*
627                  * The switch verdict is reached if foreign wb's consume
628                  * more than a certain proportion of IO time in a
629                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
630                  * history mask where each bit represents one sixteenth of
631                  * the period.  Determine the number of slots to shift into
632                  * history from @max_time.
633                  */
634                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
635                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
636                 history <<= slots;
637                 if (wbc->wb_id != max_id)
638                         history |= (1U << slots) - 1;
639
640                 /*
641                  * Switch if the current wb isn't the consistent winner.
642                  * If there are multiple closely competing dirtiers, the
643                  * inode may switch across them repeatedly over time, which
644                  * is okay.  The main goal is avoiding keeping an inode on
645                  * the wrong wb for an extended period of time.
646                  */
647                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
648                         inode_switch_wbs(inode, max_id);
649         }
650
651         /*
652          * Multiple instances of this function may race to update the
653          * following fields but we don't mind occassional inaccuracies.
654          */
655         inode->i_wb_frn_winner = max_id;
656         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
657         inode->i_wb_frn_history = history;
658
659         wb_put(wbc->wb);
660         wbc->wb = NULL;
661 }
662
663 /**
664  * wbc_account_io - account IO issued during writeback
665  * @wbc: writeback_control of the writeback in progress
666  * @page: page being written out
667  * @bytes: number of bytes being written out
668  *
669  * @bytes from @page are about to written out during the writeback
670  * controlled by @wbc.  Keep the book for foreign inode detection.  See
671  * wbc_detach_inode().
672  */
673 void wbc_account_io(struct writeback_control *wbc, struct page *page,
674                     size_t bytes)
675 {
676         int id;
677
678         /*
679          * pageout() path doesn't attach @wbc to the inode being written
680          * out.  This is intentional as we don't want the function to block
681          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
682          * regular writeback instead of writing things out itself.
683          */
684         if (!wbc->wb)
685                 return;
686
687         rcu_read_lock();
688         id = mem_cgroup_css_from_page(page)->id;
689         rcu_read_unlock();
690
691         if (id == wbc->wb_id) {
692                 wbc->wb_bytes += bytes;
693                 return;
694         }
695
696         if (id == wbc->wb_lcand_id)
697                 wbc->wb_lcand_bytes += bytes;
698
699         /* Boyer-Moore majority vote algorithm */
700         if (!wbc->wb_tcand_bytes)
701                 wbc->wb_tcand_id = id;
702         if (id == wbc->wb_tcand_id)
703                 wbc->wb_tcand_bytes += bytes;
704         else
705                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
706 }
707 EXPORT_SYMBOL_GPL(wbc_account_io);
708
709 /**
710  * inode_congested - test whether an inode is congested
711  * @inode: inode to test for congestion (may be NULL)
712  * @cong_bits: mask of WB_[a]sync_congested bits to test
713  *
714  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
715  * bits to test and the return value is the mask of set bits.
716  *
717  * If cgroup writeback is enabled for @inode, the congestion state is
718  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
719  * associated with @inode is congested; otherwise, the root wb's congestion
720  * state is used.
721  *
722  * @inode is allowed to be NULL as this function is often called on
723  * mapping->host which is NULL for the swapper space.
724  */
725 int inode_congested(struct inode *inode, int cong_bits)
726 {
727         /*
728          * Once set, ->i_wb never becomes NULL while the inode is alive.
729          * Start transaction iff ->i_wb is visible.
730          */
731         if (inode && inode_to_wb_is_valid(inode)) {
732                 struct bdi_writeback *wb;
733                 bool locked, congested;
734
735                 wb = unlocked_inode_to_wb_begin(inode, &locked);
736                 congested = wb_congested(wb, cong_bits);
737                 unlocked_inode_to_wb_end(inode, locked);
738                 return congested;
739         }
740
741         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
742 }
743 EXPORT_SYMBOL_GPL(inode_congested);
744
745 /**
746  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
747  * @wb: target bdi_writeback to split @nr_pages to
748  * @nr_pages: number of pages to write for the whole bdi
749  *
750  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
751  * relation to the total write bandwidth of all wb's w/ dirty inodes on
752  * @wb->bdi.
753  */
754 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
755 {
756         unsigned long this_bw = wb->avg_write_bandwidth;
757         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
758
759         if (nr_pages == LONG_MAX)
760                 return LONG_MAX;
761
762         /*
763          * This may be called on clean wb's and proportional distribution
764          * may not make sense, just use the original @nr_pages in those
765          * cases.  In general, we wanna err on the side of writing more.
766          */
767         if (!tot_bw || this_bw >= tot_bw)
768                 return nr_pages;
769         else
770                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
771 }
772
773 /**
774  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
775  * @bdi: target backing_dev_info
776  * @base_work: wb_writeback_work to issue
777  * @skip_if_busy: skip wb's which already have writeback in progress
778  *
779  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
780  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
781  * distributed to the busy wbs according to each wb's proportion in the
782  * total active write bandwidth of @bdi.
783  */
784 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
785                                   struct wb_writeback_work *base_work,
786                                   bool skip_if_busy)
787 {
788         struct bdi_writeback *last_wb = NULL;
789         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
790                                               struct bdi_writeback, bdi_node);
791
792         might_sleep();
793 restart:
794         rcu_read_lock();
795         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
796                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
797                 struct wb_writeback_work fallback_work;
798                 struct wb_writeback_work *work;
799                 long nr_pages;
800
801                 if (last_wb) {
802                         wb_put(last_wb);
803                         last_wb = NULL;
804                 }
805
806                 /* SYNC_ALL writes out I_DIRTY_TIME too */
807                 if (!wb_has_dirty_io(wb) &&
808                     (base_work->sync_mode == WB_SYNC_NONE ||
809                      list_empty(&wb->b_dirty_time)))
810                         continue;
811                 if (skip_if_busy && writeback_in_progress(wb))
812                         continue;
813
814                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
815
816                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
817                 if (work) {
818                         *work = *base_work;
819                         work->nr_pages = nr_pages;
820                         work->auto_free = 1;
821                         wb_queue_work(wb, work);
822                         continue;
823                 }
824
825                 /* alloc failed, execute synchronously using on-stack fallback */
826                 work = &fallback_work;
827                 *work = *base_work;
828                 work->nr_pages = nr_pages;
829                 work->auto_free = 0;
830                 work->done = &fallback_work_done;
831
832                 wb_queue_work(wb, work);
833
834                 /*
835                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
836                  * continuing iteration from @wb after dropping and
837                  * regrabbing rcu read lock.
838                  */
839                 wb_get(wb);
840                 last_wb = wb;
841
842                 rcu_read_unlock();
843                 wb_wait_for_completion(bdi, &fallback_work_done);
844                 goto restart;
845         }
846         rcu_read_unlock();
847
848         if (last_wb)
849                 wb_put(last_wb);
850 }
851
852 #else   /* CONFIG_CGROUP_WRITEBACK */
853
854 static struct bdi_writeback *
855 locked_inode_to_wb_and_lock_list(struct inode *inode)
856         __releases(&inode->i_lock)
857         __acquires(&wb->list_lock)
858 {
859         struct bdi_writeback *wb = inode_to_wb(inode);
860
861         spin_unlock(&inode->i_lock);
862         spin_lock(&wb->list_lock);
863         return wb;
864 }
865
866 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
867         __acquires(&wb->list_lock)
868 {
869         struct bdi_writeback *wb = inode_to_wb(inode);
870
871         spin_lock(&wb->list_lock);
872         return wb;
873 }
874
875 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
876 {
877         return nr_pages;
878 }
879
880 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
881                                   struct wb_writeback_work *base_work,
882                                   bool skip_if_busy)
883 {
884         might_sleep();
885
886         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
887                 base_work->auto_free = 0;
888                 wb_queue_work(&bdi->wb, base_work);
889         }
890 }
891
892 #endif  /* CONFIG_CGROUP_WRITEBACK */
893
894 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
895                         bool range_cyclic, enum wb_reason reason)
896 {
897         struct wb_writeback_work *work;
898
899         if (!wb_has_dirty_io(wb))
900                 return;
901
902         /*
903          * This is WB_SYNC_NONE writeback, so if allocation fails just
904          * wakeup the thread for old dirty data writeback
905          */
906         work = kzalloc(sizeof(*work), GFP_ATOMIC);
907         if (!work) {
908                 trace_writeback_nowork(wb);
909                 wb_wakeup(wb);
910                 return;
911         }
912
913         work->sync_mode = WB_SYNC_NONE;
914         work->nr_pages  = nr_pages;
915         work->range_cyclic = range_cyclic;
916         work->reason    = reason;
917         work->auto_free = 1;
918
919         wb_queue_work(wb, work);
920 }
921
922 /**
923  * wb_start_background_writeback - start background writeback
924  * @wb: bdi_writback to write from
925  *
926  * Description:
927  *   This makes sure WB_SYNC_NONE background writeback happens. When
928  *   this function returns, it is only guaranteed that for given wb
929  *   some IO is happening if we are over background dirty threshold.
930  *   Caller need not hold sb s_umount semaphore.
931  */
932 void wb_start_background_writeback(struct bdi_writeback *wb)
933 {
934         /*
935          * We just wake up the flusher thread. It will perform background
936          * writeback as soon as there is no other work to do.
937          */
938         trace_writeback_wake_background(wb);
939         wb_wakeup(wb);
940 }
941
942 /*
943  * Remove the inode from the writeback list it is on.
944  */
945 void inode_io_list_del(struct inode *inode)
946 {
947         struct bdi_writeback *wb;
948
949         wb = inode_to_wb_and_lock_list(inode);
950         inode_io_list_del_locked(inode, wb);
951         spin_unlock(&wb->list_lock);
952 }
953
954 /*
955  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
956  * furthest end of its superblock's dirty-inode list.
957  *
958  * Before stamping the inode's ->dirtied_when, we check to see whether it is
959  * already the most-recently-dirtied inode on the b_dirty list.  If that is
960  * the case then the inode must have been redirtied while it was being written
961  * out and we don't reset its dirtied_when.
962  */
963 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
964 {
965         if (!list_empty(&wb->b_dirty)) {
966                 struct inode *tail;
967
968                 tail = wb_inode(wb->b_dirty.next);
969                 if (time_before(inode->dirtied_when, tail->dirtied_when))
970                         inode->dirtied_when = jiffies;
971         }
972         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
973 }
974
975 /*
976  * requeue inode for re-scanning after bdi->b_io list is exhausted.
977  */
978 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
979 {
980         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
981 }
982
983 static void inode_sync_complete(struct inode *inode)
984 {
985         inode->i_state &= ~I_SYNC;
986         /* If inode is clean an unused, put it into LRU now... */
987         inode_add_lru(inode);
988         /* Waiters must see I_SYNC cleared before being woken up */
989         smp_mb();
990         wake_up_bit(&inode->i_state, __I_SYNC);
991 }
992
993 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
994 {
995         bool ret = time_after(inode->dirtied_when, t);
996 #ifndef CONFIG_64BIT
997         /*
998          * For inodes being constantly redirtied, dirtied_when can get stuck.
999          * It _appears_ to be in the future, but is actually in distant past.
1000          * This test is necessary to prevent such wrapped-around relative times
1001          * from permanently stopping the whole bdi writeback.
1002          */
1003         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1004 #endif
1005         return ret;
1006 }
1007
1008 #define EXPIRE_DIRTY_ATIME 0x0001
1009
1010 /*
1011  * Move expired (dirtied before work->older_than_this) dirty inodes from
1012  * @delaying_queue to @dispatch_queue.
1013  */
1014 static int move_expired_inodes(struct list_head *delaying_queue,
1015                                struct list_head *dispatch_queue,
1016                                int flags,
1017                                struct wb_writeback_work *work)
1018 {
1019         unsigned long *older_than_this = NULL;
1020         unsigned long expire_time;
1021         LIST_HEAD(tmp);
1022         struct list_head *pos, *node;
1023         struct super_block *sb = NULL;
1024         struct inode *inode;
1025         int do_sb_sort = 0;
1026         int moved = 0;
1027
1028         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1029                 older_than_this = work->older_than_this;
1030         else if (!work->for_sync) {
1031                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1032                 older_than_this = &expire_time;
1033         }
1034         while (!list_empty(delaying_queue)) {
1035                 inode = wb_inode(delaying_queue->prev);
1036                 if (older_than_this &&
1037                     inode_dirtied_after(inode, *older_than_this))
1038                         break;
1039                 list_move(&inode->i_io_list, &tmp);
1040                 moved++;
1041                 if (flags & EXPIRE_DIRTY_ATIME)
1042                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1043                 if (sb_is_blkdev_sb(inode->i_sb))
1044                         continue;
1045                 if (sb && sb != inode->i_sb)
1046                         do_sb_sort = 1;
1047                 sb = inode->i_sb;
1048         }
1049
1050         /* just one sb in list, splice to dispatch_queue and we're done */
1051         if (!do_sb_sort) {
1052                 list_splice(&tmp, dispatch_queue);
1053                 goto out;
1054         }
1055
1056         /* Move inodes from one superblock together */
1057         while (!list_empty(&tmp)) {
1058                 sb = wb_inode(tmp.prev)->i_sb;
1059                 list_for_each_prev_safe(pos, node, &tmp) {
1060                         inode = wb_inode(pos);
1061                         if (inode->i_sb == sb)
1062                                 list_move(&inode->i_io_list, dispatch_queue);
1063                 }
1064         }
1065 out:
1066         return moved;
1067 }
1068
1069 /*
1070  * Queue all expired dirty inodes for io, eldest first.
1071  * Before
1072  *         newly dirtied     b_dirty    b_io    b_more_io
1073  *         =============>    gf         edc     BA
1074  * After
1075  *         newly dirtied     b_dirty    b_io    b_more_io
1076  *         =============>    g          fBAedc
1077  *                                           |
1078  *                                           +--> dequeue for IO
1079  */
1080 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1081 {
1082         int moved;
1083
1084         assert_spin_locked(&wb->list_lock);
1085         list_splice_init(&wb->b_more_io, &wb->b_io);
1086         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1087         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1088                                      EXPIRE_DIRTY_ATIME, work);
1089         if (moved)
1090                 wb_io_lists_populated(wb);
1091         trace_writeback_queue_io(wb, work, moved);
1092 }
1093
1094 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1095 {
1096         int ret;
1097
1098         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1099                 trace_writeback_write_inode_start(inode, wbc);
1100                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1101                 trace_writeback_write_inode(inode, wbc);
1102                 return ret;
1103         }
1104         return 0;
1105 }
1106
1107 /*
1108  * Wait for writeback on an inode to complete. Called with i_lock held.
1109  * Caller must make sure inode cannot go away when we drop i_lock.
1110  */
1111 static void __inode_wait_for_writeback(struct inode *inode)
1112         __releases(inode->i_lock)
1113         __acquires(inode->i_lock)
1114 {
1115         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1116         wait_queue_head_t *wqh;
1117
1118         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1119         while (inode->i_state & I_SYNC) {
1120                 spin_unlock(&inode->i_lock);
1121                 __wait_on_bit(wqh, &wq, bit_wait,
1122                               TASK_UNINTERRUPTIBLE);
1123                 spin_lock(&inode->i_lock);
1124         }
1125 }
1126
1127 /*
1128  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1129  */
1130 void inode_wait_for_writeback(struct inode *inode)
1131 {
1132         spin_lock(&inode->i_lock);
1133         __inode_wait_for_writeback(inode);
1134         spin_unlock(&inode->i_lock);
1135 }
1136
1137 /*
1138  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1139  * held and drops it. It is aimed for callers not holding any inode reference
1140  * so once i_lock is dropped, inode can go away.
1141  */
1142 static void inode_sleep_on_writeback(struct inode *inode)
1143         __releases(inode->i_lock)
1144 {
1145         DEFINE_WAIT(wait);
1146         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1147         int sleep;
1148
1149         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1150         sleep = inode->i_state & I_SYNC;
1151         spin_unlock(&inode->i_lock);
1152         if (sleep)
1153                 schedule();
1154         finish_wait(wqh, &wait);
1155 }
1156
1157 /*
1158  * Find proper writeback list for the inode depending on its current state and
1159  * possibly also change of its state while we were doing writeback.  Here we
1160  * handle things such as livelock prevention or fairness of writeback among
1161  * inodes. This function can be called only by flusher thread - noone else
1162  * processes all inodes in writeback lists and requeueing inodes behind flusher
1163  * thread's back can have unexpected consequences.
1164  */
1165 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1166                           struct writeback_control *wbc)
1167 {
1168         if (inode->i_state & I_FREEING)
1169                 return;
1170
1171         /*
1172          * Sync livelock prevention. Each inode is tagged and synced in one
1173          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1174          * the dirty time to prevent enqueue and sync it again.
1175          */
1176         if ((inode->i_state & I_DIRTY) &&
1177             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1178                 inode->dirtied_when = jiffies;
1179
1180         if (wbc->pages_skipped) {
1181                 /*
1182                  * writeback is not making progress due to locked
1183                  * buffers. Skip this inode for now.
1184                  */
1185                 redirty_tail(inode, wb);
1186                 return;
1187         }
1188
1189         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1190                 /*
1191                  * We didn't write back all the pages.  nfs_writepages()
1192                  * sometimes bales out without doing anything.
1193                  */
1194                 if (wbc->nr_to_write <= 0) {
1195                         /* Slice used up. Queue for next turn. */
1196                         requeue_io(inode, wb);
1197                 } else {
1198                         /*
1199                          * Writeback blocked by something other than
1200                          * congestion. Delay the inode for some time to
1201                          * avoid spinning on the CPU (100% iowait)
1202                          * retrying writeback of the dirty page/inode
1203                          * that cannot be performed immediately.
1204                          */
1205                         redirty_tail(inode, wb);
1206                 }
1207         } else if (inode->i_state & I_DIRTY) {
1208                 /*
1209                  * Filesystems can dirty the inode during writeback operations,
1210                  * such as delayed allocation during submission or metadata
1211                  * updates after data IO completion.
1212                  */
1213                 redirty_tail(inode, wb);
1214         } else if (inode->i_state & I_DIRTY_TIME) {
1215                 inode->dirtied_when = jiffies;
1216                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1217         } else {
1218                 /* The inode is clean. Remove from writeback lists. */
1219                 inode_io_list_del_locked(inode, wb);
1220         }
1221 }
1222
1223 /*
1224  * Write out an inode and its dirty pages. Do not update the writeback list
1225  * linkage. That is left to the caller. The caller is also responsible for
1226  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1227  */
1228 static int
1229 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1230 {
1231         struct address_space *mapping = inode->i_mapping;
1232         long nr_to_write = wbc->nr_to_write;
1233         unsigned dirty;
1234         int ret;
1235
1236         WARN_ON(!(inode->i_state & I_SYNC));
1237
1238         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1239
1240         ret = do_writepages(mapping, wbc);
1241
1242         /*
1243          * Make sure to wait on the data before writing out the metadata.
1244          * This is important for filesystems that modify metadata on data
1245          * I/O completion. We don't do it for sync(2) writeback because it has a
1246          * separate, external IO completion path and ->sync_fs for guaranteeing
1247          * inode metadata is written back correctly.
1248          */
1249         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1250                 int err = filemap_fdatawait(mapping);
1251                 if (ret == 0)
1252                         ret = err;
1253         }
1254
1255         /*
1256          * Some filesystems may redirty the inode during the writeback
1257          * due to delalloc, clear dirty metadata flags right before
1258          * write_inode()
1259          */
1260         spin_lock(&inode->i_lock);
1261
1262         dirty = inode->i_state & I_DIRTY;
1263         if (inode->i_state & I_DIRTY_TIME) {
1264                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1265                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1266                     unlikely(time_after(jiffies,
1267                                         (inode->dirtied_time_when +
1268                                          dirtytime_expire_interval * HZ)))) {
1269                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1270                         trace_writeback_lazytime(inode);
1271                 }
1272         } else
1273                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1274         inode->i_state &= ~dirty;
1275
1276         /*
1277          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1278          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1279          * either they see the I_DIRTY bits cleared or we see the dirtied
1280          * inode.
1281          *
1282          * I_DIRTY_PAGES is always cleared together above even if @mapping
1283          * still has dirty pages.  The flag is reinstated after smp_mb() if
1284          * necessary.  This guarantees that either __mark_inode_dirty()
1285          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1286          */
1287         smp_mb();
1288
1289         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1290                 inode->i_state |= I_DIRTY_PAGES;
1291
1292         spin_unlock(&inode->i_lock);
1293
1294         if (dirty & I_DIRTY_TIME)
1295                 mark_inode_dirty_sync(inode);
1296         /* Don't write the inode if only I_DIRTY_PAGES was set */
1297         if (dirty & ~I_DIRTY_PAGES) {
1298                 int err = write_inode(inode, wbc);
1299                 if (ret == 0)
1300                         ret = err;
1301         }
1302         trace_writeback_single_inode(inode, wbc, nr_to_write);
1303         return ret;
1304 }
1305
1306 /*
1307  * Write out an inode's dirty pages. Either the caller has an active reference
1308  * on the inode or the inode has I_WILL_FREE set.
1309  *
1310  * This function is designed to be called for writing back one inode which
1311  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1312  * and does more profound writeback list handling in writeback_sb_inodes().
1313  */
1314 static int
1315 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1316                        struct writeback_control *wbc)
1317 {
1318         int ret = 0;
1319
1320         spin_lock(&inode->i_lock);
1321         if (!atomic_read(&inode->i_count))
1322                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1323         else
1324                 WARN_ON(inode->i_state & I_WILL_FREE);
1325
1326         if (inode->i_state & I_SYNC) {
1327                 if (wbc->sync_mode != WB_SYNC_ALL)
1328                         goto out;
1329                 /*
1330                  * It's a data-integrity sync. We must wait. Since callers hold
1331                  * inode reference or inode has I_WILL_FREE set, it cannot go
1332                  * away under us.
1333                  */
1334                 __inode_wait_for_writeback(inode);
1335         }
1336         WARN_ON(inode->i_state & I_SYNC);
1337         /*
1338          * Skip inode if it is clean and we have no outstanding writeback in
1339          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1340          * function since flusher thread may be doing for example sync in
1341          * parallel and if we move the inode, it could get skipped. So here we
1342          * make sure inode is on some writeback list and leave it there unless
1343          * we have completely cleaned the inode.
1344          */
1345         if (!(inode->i_state & I_DIRTY_ALL) &&
1346             (wbc->sync_mode != WB_SYNC_ALL ||
1347              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1348                 goto out;
1349         inode->i_state |= I_SYNC;
1350         wbc_attach_and_unlock_inode(wbc, inode);
1351
1352         ret = __writeback_single_inode(inode, wbc);
1353
1354         wbc_detach_inode(wbc);
1355         spin_lock(&wb->list_lock);
1356         spin_lock(&inode->i_lock);
1357         /*
1358          * If inode is clean, remove it from writeback lists. Otherwise don't
1359          * touch it. See comment above for explanation.
1360          */
1361         if (!(inode->i_state & I_DIRTY_ALL))
1362                 inode_io_list_del_locked(inode, wb);
1363         spin_unlock(&wb->list_lock);
1364         inode_sync_complete(inode);
1365 out:
1366         spin_unlock(&inode->i_lock);
1367         return ret;
1368 }
1369
1370 static long writeback_chunk_size(struct bdi_writeback *wb,
1371                                  struct wb_writeback_work *work)
1372 {
1373         long pages;
1374
1375         /*
1376          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1377          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1378          * here avoids calling into writeback_inodes_wb() more than once.
1379          *
1380          * The intended call sequence for WB_SYNC_ALL writeback is:
1381          *
1382          *      wb_writeback()
1383          *          writeback_sb_inodes()       <== called only once
1384          *              write_cache_pages()     <== called once for each inode
1385          *                   (quickly) tag currently dirty pages
1386          *                   (maybe slowly) sync all tagged pages
1387          */
1388         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1389                 pages = LONG_MAX;
1390         else {
1391                 pages = min(wb->avg_write_bandwidth / 2,
1392                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1393                 pages = min(pages, work->nr_pages);
1394                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1395                                    MIN_WRITEBACK_PAGES);
1396         }
1397
1398         return pages;
1399 }
1400
1401 /*
1402  * Write a portion of b_io inodes which belong to @sb.
1403  *
1404  * Return the number of pages and/or inodes written.
1405  *
1406  * NOTE! This is called with wb->list_lock held, and will
1407  * unlock and relock that for each inode it ends up doing
1408  * IO for.
1409  */
1410 static long writeback_sb_inodes(struct super_block *sb,
1411                                 struct bdi_writeback *wb,
1412                                 struct wb_writeback_work *work)
1413 {
1414         struct writeback_control wbc = {
1415                 .sync_mode              = work->sync_mode,
1416                 .tagged_writepages      = work->tagged_writepages,
1417                 .for_kupdate            = work->for_kupdate,
1418                 .for_background         = work->for_background,
1419                 .for_sync               = work->for_sync,
1420                 .range_cyclic           = work->range_cyclic,
1421                 .range_start            = 0,
1422                 .range_end              = LLONG_MAX,
1423         };
1424         unsigned long start_time = jiffies;
1425         long write_chunk;
1426         long wrote = 0;  /* count both pages and inodes */
1427
1428         while (!list_empty(&wb->b_io)) {
1429                 struct inode *inode = wb_inode(wb->b_io.prev);
1430
1431                 if (inode->i_sb != sb) {
1432                         if (work->sb) {
1433                                 /*
1434                                  * We only want to write back data for this
1435                                  * superblock, move all inodes not belonging
1436                                  * to it back onto the dirty list.
1437                                  */
1438                                 redirty_tail(inode, wb);
1439                                 continue;
1440                         }
1441
1442                         /*
1443                          * The inode belongs to a different superblock.
1444                          * Bounce back to the caller to unpin this and
1445                          * pin the next superblock.
1446                          */
1447                         break;
1448                 }
1449
1450                 /*
1451                  * Don't bother with new inodes or inodes being freed, first
1452                  * kind does not need periodic writeout yet, and for the latter
1453                  * kind writeout is handled by the freer.
1454                  */
1455                 spin_lock(&inode->i_lock);
1456                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1457                         spin_unlock(&inode->i_lock);
1458                         redirty_tail(inode, wb);
1459                         continue;
1460                 }
1461                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1462                         /*
1463                          * If this inode is locked for writeback and we are not
1464                          * doing writeback-for-data-integrity, move it to
1465                          * b_more_io so that writeback can proceed with the
1466                          * other inodes on s_io.
1467                          *
1468                          * We'll have another go at writing back this inode
1469                          * when we completed a full scan of b_io.
1470                          */
1471                         spin_unlock(&inode->i_lock);
1472                         requeue_io(inode, wb);
1473                         trace_writeback_sb_inodes_requeue(inode);
1474                         continue;
1475                 }
1476                 spin_unlock(&wb->list_lock);
1477
1478                 /*
1479                  * We already requeued the inode if it had I_SYNC set and we
1480                  * are doing WB_SYNC_NONE writeback. So this catches only the
1481                  * WB_SYNC_ALL case.
1482                  */
1483                 if (inode->i_state & I_SYNC) {
1484                         /* Wait for I_SYNC. This function drops i_lock... */
1485                         inode_sleep_on_writeback(inode);
1486                         /* Inode may be gone, start again */
1487                         spin_lock(&wb->list_lock);
1488                         continue;
1489                 }
1490                 inode->i_state |= I_SYNC;
1491                 wbc_attach_and_unlock_inode(&wbc, inode);
1492
1493                 write_chunk = writeback_chunk_size(wb, work);
1494                 wbc.nr_to_write = write_chunk;
1495                 wbc.pages_skipped = 0;
1496
1497                 /*
1498                  * We use I_SYNC to pin the inode in memory. While it is set
1499                  * evict_inode() will wait so the inode cannot be freed.
1500                  */
1501                 __writeback_single_inode(inode, &wbc);
1502
1503                 wbc_detach_inode(&wbc);
1504                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1505                 wrote += write_chunk - wbc.nr_to_write;
1506
1507                 if (need_resched()) {
1508                         /*
1509                          * We're trying to balance between building up a nice
1510                          * long list of IOs to improve our merge rate, and
1511                          * getting those IOs out quickly for anyone throttling
1512                          * in balance_dirty_pages().  cond_resched() doesn't
1513                          * unplug, so get our IOs out the door before we
1514                          * give up the CPU.
1515                          */
1516                         blk_flush_plug(current);
1517                         cond_resched();
1518                 }
1519
1520
1521                 spin_lock(&wb->list_lock);
1522                 spin_lock(&inode->i_lock);
1523                 if (!(inode->i_state & I_DIRTY_ALL))
1524                         wrote++;
1525                 requeue_inode(inode, wb, &wbc);
1526                 inode_sync_complete(inode);
1527                 spin_unlock(&inode->i_lock);
1528
1529                 /*
1530                  * bail out to wb_writeback() often enough to check
1531                  * background threshold and other termination conditions.
1532                  */
1533                 if (wrote) {
1534                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1535                                 break;
1536                         if (work->nr_pages <= 0)
1537                                 break;
1538                 }
1539         }
1540         return wrote;
1541 }
1542
1543 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1544                                   struct wb_writeback_work *work)
1545 {
1546         unsigned long start_time = jiffies;
1547         long wrote = 0;
1548
1549         while (!list_empty(&wb->b_io)) {
1550                 struct inode *inode = wb_inode(wb->b_io.prev);
1551                 struct super_block *sb = inode->i_sb;
1552
1553                 if (!trylock_super(sb)) {
1554                         /*
1555                          * trylock_super() may fail consistently due to
1556                          * s_umount being grabbed by someone else. Don't use
1557                          * requeue_io() to avoid busy retrying the inode/sb.
1558                          */
1559                         redirty_tail(inode, wb);
1560                         continue;
1561                 }
1562                 wrote += writeback_sb_inodes(sb, wb, work);
1563                 up_read(&sb->s_umount);
1564
1565                 /* refer to the same tests at the end of writeback_sb_inodes */
1566                 if (wrote) {
1567                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1568                                 break;
1569                         if (work->nr_pages <= 0)
1570                                 break;
1571                 }
1572         }
1573         /* Leave any unwritten inodes on b_io */
1574         return wrote;
1575 }
1576
1577 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1578                                 enum wb_reason reason)
1579 {
1580         struct wb_writeback_work work = {
1581                 .nr_pages       = nr_pages,
1582                 .sync_mode      = WB_SYNC_NONE,
1583                 .range_cyclic   = 1,
1584                 .reason         = reason,
1585         };
1586         struct blk_plug plug;
1587
1588         blk_start_plug(&plug);
1589         spin_lock(&wb->list_lock);
1590         if (list_empty(&wb->b_io))
1591                 queue_io(wb, &work);
1592         __writeback_inodes_wb(wb, &work);
1593         spin_unlock(&wb->list_lock);
1594         blk_finish_plug(&plug);
1595
1596         return nr_pages - work.nr_pages;
1597 }
1598
1599 /*
1600  * Explicit flushing or periodic writeback of "old" data.
1601  *
1602  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1603  * dirtying-time in the inode's address_space.  So this periodic writeback code
1604  * just walks the superblock inode list, writing back any inodes which are
1605  * older than a specific point in time.
1606  *
1607  * Try to run once per dirty_writeback_interval.  But if a writeback event
1608  * takes longer than a dirty_writeback_interval interval, then leave a
1609  * one-second gap.
1610  *
1611  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1612  * all dirty pages if they are all attached to "old" mappings.
1613  */
1614 static long wb_writeback(struct bdi_writeback *wb,
1615                          struct wb_writeback_work *work)
1616 {
1617         unsigned long wb_start = jiffies;
1618         long nr_pages = work->nr_pages;
1619         unsigned long oldest_jif;
1620         struct inode *inode;
1621         long progress;
1622         struct blk_plug plug;
1623
1624         oldest_jif = jiffies;
1625         work->older_than_this = &oldest_jif;
1626
1627         blk_start_plug(&plug);
1628         spin_lock(&wb->list_lock);
1629         for (;;) {
1630                 /*
1631                  * Stop writeback when nr_pages has been consumed
1632                  */
1633                 if (work->nr_pages <= 0)
1634                         break;
1635
1636                 /*
1637                  * Background writeout and kupdate-style writeback may
1638                  * run forever. Stop them if there is other work to do
1639                  * so that e.g. sync can proceed. They'll be restarted
1640                  * after the other works are all done.
1641                  */
1642                 if ((work->for_background || work->for_kupdate) &&
1643                     !list_empty(&wb->work_list))
1644                         break;
1645
1646                 /*
1647                  * For background writeout, stop when we are below the
1648                  * background dirty threshold
1649                  */
1650                 if (work->for_background && !wb_over_bg_thresh(wb))
1651                         break;
1652
1653                 /*
1654                  * Kupdate and background works are special and we want to
1655                  * include all inodes that need writing. Livelock avoidance is
1656                  * handled by these works yielding to any other work so we are
1657                  * safe.
1658                  */
1659                 if (work->for_kupdate) {
1660                         oldest_jif = jiffies -
1661                                 msecs_to_jiffies(dirty_expire_interval * 10);
1662                 } else if (work->for_background)
1663                         oldest_jif = jiffies;
1664
1665                 trace_writeback_start(wb, work);
1666                 if (list_empty(&wb->b_io))
1667                         queue_io(wb, work);
1668                 if (work->sb)
1669                         progress = writeback_sb_inodes(work->sb, wb, work);
1670                 else
1671                         progress = __writeback_inodes_wb(wb, work);
1672                 trace_writeback_written(wb, work);
1673
1674                 wb_update_bandwidth(wb, wb_start);
1675
1676                 /*
1677                  * Did we write something? Try for more
1678                  *
1679                  * Dirty inodes are moved to b_io for writeback in batches.
1680                  * The completion of the current batch does not necessarily
1681                  * mean the overall work is done. So we keep looping as long
1682                  * as made some progress on cleaning pages or inodes.
1683                  */
1684                 if (progress)
1685                         continue;
1686                 /*
1687                  * No more inodes for IO, bail
1688                  */
1689                 if (list_empty(&wb->b_more_io))
1690                         break;
1691                 /*
1692                  * Nothing written. Wait for some inode to
1693                  * become available for writeback. Otherwise
1694                  * we'll just busyloop.
1695                  */
1696                 if (!list_empty(&wb->b_more_io))  {
1697                         trace_writeback_wait(wb, work);
1698                         inode = wb_inode(wb->b_more_io.prev);
1699                         spin_lock(&inode->i_lock);
1700                         spin_unlock(&wb->list_lock);
1701                         /* This function drops i_lock... */
1702                         inode_sleep_on_writeback(inode);
1703                         spin_lock(&wb->list_lock);
1704                 }
1705         }
1706         spin_unlock(&wb->list_lock);
1707         blk_finish_plug(&plug);
1708
1709         return nr_pages - work->nr_pages;
1710 }
1711
1712 /*
1713  * Return the next wb_writeback_work struct that hasn't been processed yet.
1714  */
1715 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1716 {
1717         struct wb_writeback_work *work = NULL;
1718
1719         spin_lock_bh(&wb->work_lock);
1720         if (!list_empty(&wb->work_list)) {
1721                 work = list_entry(wb->work_list.next,
1722                                   struct wb_writeback_work, list);
1723                 list_del_init(&work->list);
1724         }
1725         spin_unlock_bh(&wb->work_lock);
1726         return work;
1727 }
1728
1729 /*
1730  * Add in the number of potentially dirty inodes, because each inode
1731  * write can dirty pagecache in the underlying blockdev.
1732  */
1733 static unsigned long get_nr_dirty_pages(void)
1734 {
1735         return global_page_state(NR_FILE_DIRTY) +
1736                 global_page_state(NR_UNSTABLE_NFS) +
1737                 get_nr_dirty_inodes();
1738 }
1739
1740 static long wb_check_background_flush(struct bdi_writeback *wb)
1741 {
1742         if (wb_over_bg_thresh(wb)) {
1743
1744                 struct wb_writeback_work work = {
1745                         .nr_pages       = LONG_MAX,
1746                         .sync_mode      = WB_SYNC_NONE,
1747                         .for_background = 1,
1748                         .range_cyclic   = 1,
1749                         .reason         = WB_REASON_BACKGROUND,
1750                 };
1751
1752                 return wb_writeback(wb, &work);
1753         }
1754
1755         return 0;
1756 }
1757
1758 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1759 {
1760         unsigned long expired;
1761         long nr_pages;
1762
1763         /*
1764          * When set to zero, disable periodic writeback
1765          */
1766         if (!dirty_writeback_interval)
1767                 return 0;
1768
1769         expired = wb->last_old_flush +
1770                         msecs_to_jiffies(dirty_writeback_interval * 10);
1771         if (time_before(jiffies, expired))
1772                 return 0;
1773
1774         wb->last_old_flush = jiffies;
1775         nr_pages = get_nr_dirty_pages();
1776
1777         if (nr_pages) {
1778                 struct wb_writeback_work work = {
1779                         .nr_pages       = nr_pages,
1780                         .sync_mode      = WB_SYNC_NONE,
1781                         .for_kupdate    = 1,
1782                         .range_cyclic   = 1,
1783                         .reason         = WB_REASON_PERIODIC,
1784                 };
1785
1786                 return wb_writeback(wb, &work);
1787         }
1788
1789         return 0;
1790 }
1791
1792 /*
1793  * Retrieve work items and do the writeback they describe
1794  */
1795 static long wb_do_writeback(struct bdi_writeback *wb)
1796 {
1797         struct wb_writeback_work *work;
1798         long wrote = 0;
1799
1800         set_bit(WB_writeback_running, &wb->state);
1801         while ((work = get_next_work_item(wb)) != NULL) {
1802                 struct wb_completion *done = work->done;
1803
1804                 trace_writeback_exec(wb, work);
1805
1806                 wrote += wb_writeback(wb, work);
1807
1808                 if (work->auto_free)
1809                         kfree(work);
1810                 if (done && atomic_dec_and_test(&done->cnt))
1811                         wake_up_all(&wb->bdi->wb_waitq);
1812         }
1813
1814         /*
1815          * Check for periodic writeback, kupdated() style
1816          */
1817         wrote += wb_check_old_data_flush(wb);
1818         wrote += wb_check_background_flush(wb);
1819         clear_bit(WB_writeback_running, &wb->state);
1820
1821         return wrote;
1822 }
1823
1824 /*
1825  * Handle writeback of dirty data for the device backed by this bdi. Also
1826  * reschedules periodically and does kupdated style flushing.
1827  */
1828 void wb_workfn(struct work_struct *work)
1829 {
1830         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1831                                                 struct bdi_writeback, dwork);
1832         long pages_written;
1833
1834         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1835         current->flags |= PF_SWAPWRITE;
1836
1837         if (likely(!current_is_workqueue_rescuer() ||
1838                    !test_bit(WB_registered, &wb->state))) {
1839                 /*
1840                  * The normal path.  Keep writing back @wb until its
1841                  * work_list is empty.  Note that this path is also taken
1842                  * if @wb is shutting down even when we're running off the
1843                  * rescuer as work_list needs to be drained.
1844                  */
1845                 do {
1846                         pages_written = wb_do_writeback(wb);
1847                         trace_writeback_pages_written(pages_written);
1848                 } while (!list_empty(&wb->work_list));
1849         } else {
1850                 /*
1851                  * bdi_wq can't get enough workers and we're running off
1852                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1853                  * enough for efficient IO.
1854                  */
1855                 pages_written = writeback_inodes_wb(wb, 1024,
1856                                                     WB_REASON_FORKER_THREAD);
1857                 trace_writeback_pages_written(pages_written);
1858         }
1859
1860         if (!list_empty(&wb->work_list))
1861                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1862         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1863                 wb_wakeup_delayed(wb);
1864
1865         current->flags &= ~PF_SWAPWRITE;
1866 }
1867
1868 /*
1869  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1870  * the whole world.
1871  */
1872 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1873 {
1874         struct backing_dev_info *bdi;
1875
1876         if (!nr_pages)
1877                 nr_pages = get_nr_dirty_pages();
1878
1879         rcu_read_lock();
1880         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1881                 struct bdi_writeback *wb;
1882
1883                 if (!bdi_has_dirty_io(bdi))
1884                         continue;
1885
1886                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1887                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1888                                            false, reason);
1889         }
1890         rcu_read_unlock();
1891 }
1892
1893 /*
1894  * Wake up bdi's periodically to make sure dirtytime inodes gets
1895  * written back periodically.  We deliberately do *not* check the
1896  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1897  * kernel to be constantly waking up once there are any dirtytime
1898  * inodes on the system.  So instead we define a separate delayed work
1899  * function which gets called much more rarely.  (By default, only
1900  * once every 12 hours.)
1901  *
1902  * If there is any other write activity going on in the file system,
1903  * this function won't be necessary.  But if the only thing that has
1904  * happened on the file system is a dirtytime inode caused by an atime
1905  * update, we need this infrastructure below to make sure that inode
1906  * eventually gets pushed out to disk.
1907  */
1908 static void wakeup_dirtytime_writeback(struct work_struct *w);
1909 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1910
1911 static void wakeup_dirtytime_writeback(struct work_struct *w)
1912 {
1913         struct backing_dev_info *bdi;
1914
1915         rcu_read_lock();
1916         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1917                 struct bdi_writeback *wb;
1918
1919                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1920                         if (!list_empty(&wb->b_dirty_time))
1921                                 wb_wakeup(wb);
1922         }
1923         rcu_read_unlock();
1924         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1925 }
1926
1927 static int __init start_dirtytime_writeback(void)
1928 {
1929         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1930         return 0;
1931 }
1932 __initcall(start_dirtytime_writeback);
1933
1934 int dirtytime_interval_handler(struct ctl_table *table, int write,
1935                                void __user *buffer, size_t *lenp, loff_t *ppos)
1936 {
1937         int ret;
1938
1939         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1940         if (ret == 0 && write)
1941                 mod_delayed_work(system_wq, &dirtytime_work, 0);
1942         return ret;
1943 }
1944
1945 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1946 {
1947         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1948                 struct dentry *dentry;
1949                 const char *name = "?";
1950
1951                 dentry = d_find_alias(inode);
1952                 if (dentry) {
1953                         spin_lock(&dentry->d_lock);
1954                         name = (const char *) dentry->d_name.name;
1955                 }
1956                 printk(KERN_DEBUG
1957                        "%s(%d): dirtied inode %lu (%s) on %s\n",
1958                        current->comm, task_pid_nr(current), inode->i_ino,
1959                        name, inode->i_sb->s_id);
1960                 if (dentry) {
1961                         spin_unlock(&dentry->d_lock);
1962                         dput(dentry);
1963                 }
1964         }
1965 }
1966
1967 /**
1968  *      __mark_inode_dirty -    internal function
1969  *      @inode: inode to mark
1970  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1971  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1972  *      mark_inode_dirty_sync.
1973  *
1974  * Put the inode on the super block's dirty list.
1975  *
1976  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1977  * dirty list only if it is hashed or if it refers to a blockdev.
1978  * If it was not hashed, it will never be added to the dirty list
1979  * even if it is later hashed, as it will have been marked dirty already.
1980  *
1981  * In short, make sure you hash any inodes _before_ you start marking
1982  * them dirty.
1983  *
1984  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1985  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1986  * the kernel-internal blockdev inode represents the dirtying time of the
1987  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1988  * page->mapping->host, so the page-dirtying time is recorded in the internal
1989  * blockdev inode.
1990  */
1991 void __mark_inode_dirty(struct inode *inode, int flags)
1992 {
1993 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1994         struct super_block *sb = inode->i_sb;
1995         int dirtytime;
1996
1997         trace_writeback_mark_inode_dirty(inode, flags);
1998
1999         /*
2000          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2001          * dirty the inode itself
2002          */
2003         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2004                 trace_writeback_dirty_inode_start(inode, flags);
2005
2006                 if (sb->s_op->dirty_inode)
2007                         sb->s_op->dirty_inode(inode, flags);
2008
2009                 trace_writeback_dirty_inode(inode, flags);
2010         }
2011         if (flags & I_DIRTY_INODE)
2012                 flags &= ~I_DIRTY_TIME;
2013         dirtytime = flags & I_DIRTY_TIME;
2014
2015         /*
2016          * Paired with smp_mb() in __writeback_single_inode() for the
2017          * following lockless i_state test.  See there for details.
2018          */
2019         smp_mb();
2020
2021         if (((inode->i_state & flags) == flags) ||
2022             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2023                 return;
2024
2025         if (unlikely(block_dump))
2026                 block_dump___mark_inode_dirty(inode);
2027
2028         spin_lock(&inode->i_lock);
2029         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2030                 goto out_unlock_inode;
2031         if ((inode->i_state & flags) != flags) {
2032                 const int was_dirty = inode->i_state & I_DIRTY;
2033
2034                 inode_attach_wb(inode, NULL);
2035
2036                 if (flags & I_DIRTY_INODE)
2037                         inode->i_state &= ~I_DIRTY_TIME;
2038                 inode->i_state |= flags;
2039
2040                 /*
2041                  * If the inode is being synced, just update its dirty state.
2042                  * The unlocker will place the inode on the appropriate
2043                  * superblock list, based upon its state.
2044                  */
2045                 if (inode->i_state & I_SYNC)
2046                         goto out_unlock_inode;
2047
2048                 /*
2049                  * Only add valid (hashed) inodes to the superblock's
2050                  * dirty list.  Add blockdev inodes as well.
2051                  */
2052                 if (!S_ISBLK(inode->i_mode)) {
2053                         if (inode_unhashed(inode))
2054                                 goto out_unlock_inode;
2055                 }
2056                 if (inode->i_state & I_FREEING)
2057                         goto out_unlock_inode;
2058
2059                 /*
2060                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2061                  * reposition it (that would break b_dirty time-ordering).
2062                  */
2063                 if (!was_dirty) {
2064                         struct bdi_writeback *wb;
2065                         struct list_head *dirty_list;
2066                         bool wakeup_bdi = false;
2067
2068                         wb = locked_inode_to_wb_and_lock_list(inode);
2069
2070                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2071                              !test_bit(WB_registered, &wb->state),
2072                              "bdi-%s not registered\n", wb->bdi->name);
2073
2074                         inode->dirtied_when = jiffies;
2075                         if (dirtytime)
2076                                 inode->dirtied_time_when = jiffies;
2077
2078                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2079                                 dirty_list = &wb->b_dirty;
2080                         else
2081                                 dirty_list = &wb->b_dirty_time;
2082
2083                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2084                                                                dirty_list);
2085
2086                         spin_unlock(&wb->list_lock);
2087                         trace_writeback_dirty_inode_enqueue(inode);
2088
2089                         /*
2090                          * If this is the first dirty inode for this bdi,
2091                          * we have to wake-up the corresponding bdi thread
2092                          * to make sure background write-back happens
2093                          * later.
2094                          */
2095                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2096                                 wb_wakeup_delayed(wb);
2097                         return;
2098                 }
2099         }
2100 out_unlock_inode:
2101         spin_unlock(&inode->i_lock);
2102
2103 #undef I_DIRTY_INODE
2104 }
2105 EXPORT_SYMBOL(__mark_inode_dirty);
2106
2107 /*
2108  * The @s_sync_lock is used to serialise concurrent sync operations
2109  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2110  * Concurrent callers will block on the s_sync_lock rather than doing contending
2111  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2112  * has been issued up to the time this function is enter is guaranteed to be
2113  * completed by the time we have gained the lock and waited for all IO that is
2114  * in progress regardless of the order callers are granted the lock.
2115  */
2116 static void wait_sb_inodes(struct super_block *sb)
2117 {
2118         struct inode *inode, *old_inode = NULL;
2119
2120         /*
2121          * We need to be protected against the filesystem going from
2122          * r/o to r/w or vice versa.
2123          */
2124         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2125
2126         mutex_lock(&sb->s_sync_lock);
2127         spin_lock(&sb->s_inode_list_lock);
2128
2129         /*
2130          * Data integrity sync. Must wait for all pages under writeback,
2131          * because there may have been pages dirtied before our sync
2132          * call, but which had writeout started before we write it out.
2133          * In which case, the inode may not be on the dirty list, but
2134          * we still have to wait for that writeout.
2135          */
2136         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2137                 struct address_space *mapping = inode->i_mapping;
2138
2139                 spin_lock(&inode->i_lock);
2140                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2141                     (mapping->nrpages == 0)) {
2142                         spin_unlock(&inode->i_lock);
2143                         continue;
2144                 }
2145                 __iget(inode);
2146                 spin_unlock(&inode->i_lock);
2147                 spin_unlock(&sb->s_inode_list_lock);
2148
2149                 /*
2150                  * We hold a reference to 'inode' so it couldn't have been
2151                  * removed from s_inodes list while we dropped the
2152                  * s_inode_list_lock.  We cannot iput the inode now as we can
2153                  * be holding the last reference and we cannot iput it under
2154                  * s_inode_list_lock. So we keep the reference and iput it
2155                  * later.
2156                  */
2157                 iput(old_inode);
2158                 old_inode = inode;
2159
2160                 /*
2161                  * We keep the error status of individual mapping so that
2162                  * applications can catch the writeback error using fsync(2).
2163                  * See filemap_fdatawait_keep_errors() for details.
2164                  */
2165                 filemap_fdatawait_keep_errors(mapping);
2166
2167                 cond_resched();
2168
2169                 spin_lock(&sb->s_inode_list_lock);
2170         }
2171         spin_unlock(&sb->s_inode_list_lock);
2172         iput(old_inode);
2173         mutex_unlock(&sb->s_sync_lock);
2174 }
2175
2176 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2177                                      enum wb_reason reason, bool skip_if_busy)
2178 {
2179         DEFINE_WB_COMPLETION_ONSTACK(done);
2180         struct wb_writeback_work work = {
2181                 .sb                     = sb,
2182                 .sync_mode              = WB_SYNC_NONE,
2183                 .tagged_writepages      = 1,
2184                 .done                   = &done,
2185                 .nr_pages               = nr,
2186                 .reason                 = reason,
2187         };
2188         struct backing_dev_info *bdi = sb->s_bdi;
2189
2190         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2191                 return;
2192         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2193
2194         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2195         wb_wait_for_completion(bdi, &done);
2196 }
2197
2198 /**
2199  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2200  * @sb: the superblock
2201  * @nr: the number of pages to write
2202  * @reason: reason why some writeback work initiated
2203  *
2204  * Start writeback on some inodes on this super_block. No guarantees are made
2205  * on how many (if any) will be written, and this function does not wait
2206  * for IO completion of submitted IO.
2207  */
2208 void writeback_inodes_sb_nr(struct super_block *sb,
2209                             unsigned long nr,
2210                             enum wb_reason reason)
2211 {
2212         __writeback_inodes_sb_nr(sb, nr, reason, false);
2213 }
2214 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2215
2216 /**
2217  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2218  * @sb: the superblock
2219  * @reason: reason why some writeback work was initiated
2220  *
2221  * Start writeback on some inodes on this super_block. No guarantees are made
2222  * on how many (if any) will be written, and this function does not wait
2223  * for IO completion of submitted IO.
2224  */
2225 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2226 {
2227         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2228 }
2229 EXPORT_SYMBOL(writeback_inodes_sb);
2230
2231 /**
2232  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2233  * @sb: the superblock
2234  * @nr: the number of pages to write
2235  * @reason: the reason of writeback
2236  *
2237  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2238  * Returns 1 if writeback was started, 0 if not.
2239  */
2240 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2241                                    enum wb_reason reason)
2242 {
2243         if (!down_read_trylock(&sb->s_umount))
2244                 return false;
2245
2246         __writeback_inodes_sb_nr(sb, nr, reason, true);
2247         up_read(&sb->s_umount);
2248         return true;
2249 }
2250 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2251
2252 /**
2253  * try_to_writeback_inodes_sb - try to start writeback if none underway
2254  * @sb: the superblock
2255  * @reason: reason why some writeback work was initiated
2256  *
2257  * Implement by try_to_writeback_inodes_sb_nr()
2258  * Returns 1 if writeback was started, 0 if not.
2259  */
2260 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2261 {
2262         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2263 }
2264 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2265
2266 /**
2267  * sync_inodes_sb       -       sync sb inode pages
2268  * @sb: the superblock
2269  *
2270  * This function writes and waits on any dirty inode belonging to this
2271  * super_block.
2272  */
2273 void sync_inodes_sb(struct super_block *sb)
2274 {
2275         DEFINE_WB_COMPLETION_ONSTACK(done);
2276         struct wb_writeback_work work = {
2277                 .sb             = sb,
2278                 .sync_mode      = WB_SYNC_ALL,
2279                 .nr_pages       = LONG_MAX,
2280                 .range_cyclic   = 0,
2281                 .done           = &done,
2282                 .reason         = WB_REASON_SYNC,
2283                 .for_sync       = 1,
2284         };
2285         struct backing_dev_info *bdi = sb->s_bdi;
2286
2287         /*
2288          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2289          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2290          * bdi_has_dirty() need to be written out too.
2291          */
2292         if (bdi == &noop_backing_dev_info)
2293                 return;
2294         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2295
2296         bdi_split_work_to_wbs(bdi, &work, false);
2297         wb_wait_for_completion(bdi, &done);
2298
2299         wait_sb_inodes(sb);
2300 }
2301 EXPORT_SYMBOL(sync_inodes_sb);
2302
2303 /**
2304  * write_inode_now      -       write an inode to disk
2305  * @inode: inode to write to disk
2306  * @sync: whether the write should be synchronous or not
2307  *
2308  * This function commits an inode to disk immediately if it is dirty. This is
2309  * primarily needed by knfsd.
2310  *
2311  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2312  */
2313 int write_inode_now(struct inode *inode, int sync)
2314 {
2315         struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2316         struct writeback_control wbc = {
2317                 .nr_to_write = LONG_MAX,
2318                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2319                 .range_start = 0,
2320                 .range_end = LLONG_MAX,
2321         };
2322
2323         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2324                 wbc.nr_to_write = 0;
2325
2326         might_sleep();
2327         return writeback_single_inode(inode, wb, &wbc);
2328 }
2329 EXPORT_SYMBOL(write_inode_now);
2330
2331 /**
2332  * sync_inode - write an inode and its pages to disk.
2333  * @inode: the inode to sync
2334  * @wbc: controls the writeback mode
2335  *
2336  * sync_inode() will write an inode and its pages to disk.  It will also
2337  * correctly update the inode on its superblock's dirty inode lists and will
2338  * update inode->i_state.
2339  *
2340  * The caller must have a ref on the inode.
2341  */
2342 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2343 {
2344         return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2345 }
2346 EXPORT_SYMBOL(sync_inode);
2347
2348 /**
2349  * sync_inode_metadata - write an inode to disk
2350  * @inode: the inode to sync
2351  * @wait: wait for I/O to complete.
2352  *
2353  * Write an inode to disk and adjust its dirty state after completion.
2354  *
2355  * Note: only writes the actual inode, no associated data or other metadata.
2356  */
2357 int sync_inode_metadata(struct inode *inode, int wait)
2358 {
2359         struct writeback_control wbc = {
2360                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2361                 .nr_to_write = 0, /* metadata-only */
2362         };
2363
2364         return sync_inode(inode, &wbc);
2365 }
2366 EXPORT_SYMBOL(sync_inode_metadata);