f2fs: fix to recover data written by dio
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
30 {
31         struct f2fs_nm_info *nm_i = NM_I(sbi);
32         struct sysinfo val;
33         unsigned long mem_size = 0;
34         bool res = false;
35
36         si_meminfo(&val);
37         /* give 25%, 25%, 50% memory for each components respectively */
38         if (type == FREE_NIDS) {
39                 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
40                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
41         } else if (type == NAT_ENTRIES) {
42                 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
43                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
44         } else if (type == DIRTY_DENTS) {
45                 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
46                 res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
47         }
48         return res;
49 }
50
51 static void clear_node_page_dirty(struct page *page)
52 {
53         struct address_space *mapping = page->mapping;
54         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
55         unsigned int long flags;
56
57         if (PageDirty(page)) {
58                 spin_lock_irqsave(&mapping->tree_lock, flags);
59                 radix_tree_tag_clear(&mapping->page_tree,
60                                 page_index(page),
61                                 PAGECACHE_TAG_DIRTY);
62                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
63
64                 clear_page_dirty_for_io(page);
65                 dec_page_count(sbi, F2FS_DIRTY_NODES);
66         }
67         ClearPageUptodate(page);
68 }
69
70 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71 {
72         pgoff_t index = current_nat_addr(sbi, nid);
73         return get_meta_page(sbi, index);
74 }
75
76 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
77 {
78         struct page *src_page;
79         struct page *dst_page;
80         pgoff_t src_off;
81         pgoff_t dst_off;
82         void *src_addr;
83         void *dst_addr;
84         struct f2fs_nm_info *nm_i = NM_I(sbi);
85
86         src_off = current_nat_addr(sbi, nid);
87         dst_off = next_nat_addr(sbi, src_off);
88
89         /* get current nat block page with lock */
90         src_page = get_meta_page(sbi, src_off);
91
92         /* Dirty src_page means that it is already the new target NAT page. */
93         if (PageDirty(src_page))
94                 return src_page;
95
96         dst_page = grab_meta_page(sbi, dst_off);
97
98         src_addr = page_address(src_page);
99         dst_addr = page_address(dst_page);
100         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
101         set_page_dirty(dst_page);
102         f2fs_put_page(src_page, 1);
103
104         set_to_next_nat(nm_i, nid);
105
106         return dst_page;
107 }
108
109 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
110 {
111         return radix_tree_lookup(&nm_i->nat_root, n);
112 }
113
114 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
115                 nid_t start, unsigned int nr, struct nat_entry **ep)
116 {
117         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
118 }
119
120 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
121 {
122         list_del(&e->list);
123         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
124         nm_i->nat_cnt--;
125         kmem_cache_free(nat_entry_slab, e);
126 }
127
128 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
129 {
130         struct f2fs_nm_info *nm_i = NM_I(sbi);
131         struct nat_entry *e;
132         int is_cp = 1;
133
134         read_lock(&nm_i->nat_tree_lock);
135         e = __lookup_nat_cache(nm_i, nid);
136         if (e && !e->checkpointed)
137                 is_cp = 0;
138         read_unlock(&nm_i->nat_tree_lock);
139         return is_cp;
140 }
141
142 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
143 {
144         struct f2fs_nm_info *nm_i = NM_I(sbi);
145         struct nat_entry *e;
146         bool fsync_done = false;
147
148         read_lock(&nm_i->nat_tree_lock);
149         e = __lookup_nat_cache(nm_i, nid);
150         if (e)
151                 fsync_done = e->fsync_done;
152         read_unlock(&nm_i->nat_tree_lock);
153         return fsync_done;
154 }
155
156 void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
157 {
158         struct f2fs_nm_info *nm_i = NM_I(sbi);
159         struct nat_entry *e;
160
161         write_lock(&nm_i->nat_tree_lock);
162         e = __lookup_nat_cache(nm_i, nid);
163         if (e)
164                 e->fsync_done = false;
165         write_unlock(&nm_i->nat_tree_lock);
166 }
167
168 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
169 {
170         struct nat_entry *new;
171
172         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
173         if (!new)
174                 return NULL;
175         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
176                 kmem_cache_free(nat_entry_slab, new);
177                 return NULL;
178         }
179         memset(new, 0, sizeof(struct nat_entry));
180         nat_set_nid(new, nid);
181         new->checkpointed = true;
182         list_add_tail(&new->list, &nm_i->nat_entries);
183         nm_i->nat_cnt++;
184         return new;
185 }
186
187 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
188                                                 struct f2fs_nat_entry *ne)
189 {
190         struct nat_entry *e;
191 retry:
192         write_lock(&nm_i->nat_tree_lock);
193         e = __lookup_nat_cache(nm_i, nid);
194         if (!e) {
195                 e = grab_nat_entry(nm_i, nid);
196                 if (!e) {
197                         write_unlock(&nm_i->nat_tree_lock);
198                         goto retry;
199                 }
200                 node_info_from_raw_nat(&e->ni, ne);
201         }
202         write_unlock(&nm_i->nat_tree_lock);
203 }
204
205 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
206                         block_t new_blkaddr, bool fsync_done)
207 {
208         struct f2fs_nm_info *nm_i = NM_I(sbi);
209         struct nat_entry *e;
210 retry:
211         write_lock(&nm_i->nat_tree_lock);
212         e = __lookup_nat_cache(nm_i, ni->nid);
213         if (!e) {
214                 e = grab_nat_entry(nm_i, ni->nid);
215                 if (!e) {
216                         write_unlock(&nm_i->nat_tree_lock);
217                         goto retry;
218                 }
219                 e->ni = *ni;
220                 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
221         } else if (new_blkaddr == NEW_ADDR) {
222                 /*
223                  * when nid is reallocated,
224                  * previous nat entry can be remained in nat cache.
225                  * So, reinitialize it with new information.
226                  */
227                 e->ni = *ni;
228                 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
229         }
230
231         /* sanity check */
232         f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
233         f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
234                         new_blkaddr == NULL_ADDR);
235         f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
236                         new_blkaddr == NEW_ADDR);
237         f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
238                         nat_get_blkaddr(e) != NULL_ADDR &&
239                         new_blkaddr == NEW_ADDR);
240
241         /* increament version no as node is removed */
242         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
243                 unsigned char version = nat_get_version(e);
244                 nat_set_version(e, inc_node_version(version));
245         }
246
247         /* change address */
248         nat_set_blkaddr(e, new_blkaddr);
249         __set_nat_cache_dirty(nm_i, e);
250
251         /* update fsync_mark if its inode nat entry is still alive */
252         e = __lookup_nat_cache(nm_i, ni->ino);
253         if (e)
254                 e->fsync_done = fsync_done;
255         write_unlock(&nm_i->nat_tree_lock);
256 }
257
258 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
259 {
260         struct f2fs_nm_info *nm_i = NM_I(sbi);
261
262         if (available_free_memory(sbi, NAT_ENTRIES))
263                 return 0;
264
265         write_lock(&nm_i->nat_tree_lock);
266         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
267                 struct nat_entry *ne;
268                 ne = list_first_entry(&nm_i->nat_entries,
269                                         struct nat_entry, list);
270                 __del_from_nat_cache(nm_i, ne);
271                 nr_shrink--;
272         }
273         write_unlock(&nm_i->nat_tree_lock);
274         return nr_shrink;
275 }
276
277 /*
278  * This function returns always success
279  */
280 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
281 {
282         struct f2fs_nm_info *nm_i = NM_I(sbi);
283         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
284         struct f2fs_summary_block *sum = curseg->sum_blk;
285         nid_t start_nid = START_NID(nid);
286         struct f2fs_nat_block *nat_blk;
287         struct page *page = NULL;
288         struct f2fs_nat_entry ne;
289         struct nat_entry *e;
290         int i;
291
292         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
293         ni->nid = nid;
294
295         /* Check nat cache */
296         read_lock(&nm_i->nat_tree_lock);
297         e = __lookup_nat_cache(nm_i, nid);
298         if (e) {
299                 ni->ino = nat_get_ino(e);
300                 ni->blk_addr = nat_get_blkaddr(e);
301                 ni->version = nat_get_version(e);
302         }
303         read_unlock(&nm_i->nat_tree_lock);
304         if (e)
305                 return;
306
307         /* Check current segment summary */
308         mutex_lock(&curseg->curseg_mutex);
309         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
310         if (i >= 0) {
311                 ne = nat_in_journal(sum, i);
312                 node_info_from_raw_nat(ni, &ne);
313         }
314         mutex_unlock(&curseg->curseg_mutex);
315         if (i >= 0)
316                 goto cache;
317
318         /* Fill node_info from nat page */
319         page = get_current_nat_page(sbi, start_nid);
320         nat_blk = (struct f2fs_nat_block *)page_address(page);
321         ne = nat_blk->entries[nid - start_nid];
322         node_info_from_raw_nat(ni, &ne);
323         f2fs_put_page(page, 1);
324 cache:
325         /* cache nat entry */
326         cache_nat_entry(NM_I(sbi), nid, &ne);
327 }
328
329 /*
330  * The maximum depth is four.
331  * Offset[0] will have raw inode offset.
332  */
333 static int get_node_path(struct f2fs_inode_info *fi, long block,
334                                 int offset[4], unsigned int noffset[4])
335 {
336         const long direct_index = ADDRS_PER_INODE(fi);
337         const long direct_blks = ADDRS_PER_BLOCK;
338         const long dptrs_per_blk = NIDS_PER_BLOCK;
339         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
340         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
341         int n = 0;
342         int level = 0;
343
344         noffset[0] = 0;
345
346         if (block < direct_index) {
347                 offset[n] = block;
348                 goto got;
349         }
350         block -= direct_index;
351         if (block < direct_blks) {
352                 offset[n++] = NODE_DIR1_BLOCK;
353                 noffset[n] = 1;
354                 offset[n] = block;
355                 level = 1;
356                 goto got;
357         }
358         block -= direct_blks;
359         if (block < direct_blks) {
360                 offset[n++] = NODE_DIR2_BLOCK;
361                 noffset[n] = 2;
362                 offset[n] = block;
363                 level = 1;
364                 goto got;
365         }
366         block -= direct_blks;
367         if (block < indirect_blks) {
368                 offset[n++] = NODE_IND1_BLOCK;
369                 noffset[n] = 3;
370                 offset[n++] = block / direct_blks;
371                 noffset[n] = 4 + offset[n - 1];
372                 offset[n] = block % direct_blks;
373                 level = 2;
374                 goto got;
375         }
376         block -= indirect_blks;
377         if (block < indirect_blks) {
378                 offset[n++] = NODE_IND2_BLOCK;
379                 noffset[n] = 4 + dptrs_per_blk;
380                 offset[n++] = block / direct_blks;
381                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
382                 offset[n] = block % direct_blks;
383                 level = 2;
384                 goto got;
385         }
386         block -= indirect_blks;
387         if (block < dindirect_blks) {
388                 offset[n++] = NODE_DIND_BLOCK;
389                 noffset[n] = 5 + (dptrs_per_blk * 2);
390                 offset[n++] = block / indirect_blks;
391                 noffset[n] = 6 + (dptrs_per_blk * 2) +
392                               offset[n - 1] * (dptrs_per_blk + 1);
393                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
394                 noffset[n] = 7 + (dptrs_per_blk * 2) +
395                               offset[n - 2] * (dptrs_per_blk + 1) +
396                               offset[n - 1];
397                 offset[n] = block % direct_blks;
398                 level = 3;
399                 goto got;
400         } else {
401                 BUG();
402         }
403 got:
404         return level;
405 }
406
407 /*
408  * Caller should call f2fs_put_dnode(dn).
409  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
410  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
411  * In the case of RDONLY_NODE, we don't need to care about mutex.
412  */
413 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
414 {
415         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
416         struct page *npage[4];
417         struct page *parent;
418         int offset[4];
419         unsigned int noffset[4];
420         nid_t nids[4];
421         int level, i;
422         int err = 0;
423
424         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
425
426         nids[0] = dn->inode->i_ino;
427         npage[0] = dn->inode_page;
428
429         if (!npage[0]) {
430                 npage[0] = get_node_page(sbi, nids[0]);
431                 if (IS_ERR(npage[0]))
432                         return PTR_ERR(npage[0]);
433         }
434         parent = npage[0];
435         if (level != 0)
436                 nids[1] = get_nid(parent, offset[0], true);
437         dn->inode_page = npage[0];
438         dn->inode_page_locked = true;
439
440         /* get indirect or direct nodes */
441         for (i = 1; i <= level; i++) {
442                 bool done = false;
443
444                 if (!nids[i] && mode == ALLOC_NODE) {
445                         /* alloc new node */
446                         if (!alloc_nid(sbi, &(nids[i]))) {
447                                 err = -ENOSPC;
448                                 goto release_pages;
449                         }
450
451                         dn->nid = nids[i];
452                         npage[i] = new_node_page(dn, noffset[i], NULL);
453                         if (IS_ERR(npage[i])) {
454                                 alloc_nid_failed(sbi, nids[i]);
455                                 err = PTR_ERR(npage[i]);
456                                 goto release_pages;
457                         }
458
459                         set_nid(parent, offset[i - 1], nids[i], i == 1);
460                         alloc_nid_done(sbi, nids[i]);
461                         done = true;
462                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
463                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
464                         if (IS_ERR(npage[i])) {
465                                 err = PTR_ERR(npage[i]);
466                                 goto release_pages;
467                         }
468                         done = true;
469                 }
470                 if (i == 1) {
471                         dn->inode_page_locked = false;
472                         unlock_page(parent);
473                 } else {
474                         f2fs_put_page(parent, 1);
475                 }
476
477                 if (!done) {
478                         npage[i] = get_node_page(sbi, nids[i]);
479                         if (IS_ERR(npage[i])) {
480                                 err = PTR_ERR(npage[i]);
481                                 f2fs_put_page(npage[0], 0);
482                                 goto release_out;
483                         }
484                 }
485                 if (i < level) {
486                         parent = npage[i];
487                         nids[i + 1] = get_nid(parent, offset[i], false);
488                 }
489         }
490         dn->nid = nids[level];
491         dn->ofs_in_node = offset[level];
492         dn->node_page = npage[level];
493         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
494         return 0;
495
496 release_pages:
497         f2fs_put_page(parent, 1);
498         if (i > 1)
499                 f2fs_put_page(npage[0], 0);
500 release_out:
501         dn->inode_page = NULL;
502         dn->node_page = NULL;
503         return err;
504 }
505
506 static void truncate_node(struct dnode_of_data *dn)
507 {
508         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
509         struct node_info ni;
510
511         get_node_info(sbi, dn->nid, &ni);
512         if (dn->inode->i_blocks == 0) {
513                 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
514                 goto invalidate;
515         }
516         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
517
518         /* Deallocate node address */
519         invalidate_blocks(sbi, ni.blk_addr);
520         dec_valid_node_count(sbi, dn->inode);
521         set_node_addr(sbi, &ni, NULL_ADDR, false);
522
523         if (dn->nid == dn->inode->i_ino) {
524                 remove_orphan_inode(sbi, dn->nid);
525                 dec_valid_inode_count(sbi);
526         } else {
527                 sync_inode_page(dn);
528         }
529 invalidate:
530         clear_node_page_dirty(dn->node_page);
531         F2FS_SET_SB_DIRT(sbi);
532
533         f2fs_put_page(dn->node_page, 1);
534
535         invalidate_mapping_pages(NODE_MAPPING(sbi),
536                         dn->node_page->index, dn->node_page->index);
537
538         dn->node_page = NULL;
539         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
540 }
541
542 static int truncate_dnode(struct dnode_of_data *dn)
543 {
544         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
545         struct page *page;
546
547         if (dn->nid == 0)
548                 return 1;
549
550         /* get direct node */
551         page = get_node_page(sbi, dn->nid);
552         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
553                 return 1;
554         else if (IS_ERR(page))
555                 return PTR_ERR(page);
556
557         /* Make dnode_of_data for parameter */
558         dn->node_page = page;
559         dn->ofs_in_node = 0;
560         truncate_data_blocks(dn);
561         truncate_node(dn);
562         return 1;
563 }
564
565 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
566                                                 int ofs, int depth)
567 {
568         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
569         struct dnode_of_data rdn = *dn;
570         struct page *page;
571         struct f2fs_node *rn;
572         nid_t child_nid;
573         unsigned int child_nofs;
574         int freed = 0;
575         int i, ret;
576
577         if (dn->nid == 0)
578                 return NIDS_PER_BLOCK + 1;
579
580         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
581
582         page = get_node_page(sbi, dn->nid);
583         if (IS_ERR(page)) {
584                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
585                 return PTR_ERR(page);
586         }
587
588         rn = F2FS_NODE(page);
589         if (depth < 3) {
590                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
591                         child_nid = le32_to_cpu(rn->in.nid[i]);
592                         if (child_nid == 0)
593                                 continue;
594                         rdn.nid = child_nid;
595                         ret = truncate_dnode(&rdn);
596                         if (ret < 0)
597                                 goto out_err;
598                         set_nid(page, i, 0, false);
599                 }
600         } else {
601                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
602                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
603                         child_nid = le32_to_cpu(rn->in.nid[i]);
604                         if (child_nid == 0) {
605                                 child_nofs += NIDS_PER_BLOCK + 1;
606                                 continue;
607                         }
608                         rdn.nid = child_nid;
609                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
610                         if (ret == (NIDS_PER_BLOCK + 1)) {
611                                 set_nid(page, i, 0, false);
612                                 child_nofs += ret;
613                         } else if (ret < 0 && ret != -ENOENT) {
614                                 goto out_err;
615                         }
616                 }
617                 freed = child_nofs;
618         }
619
620         if (!ofs) {
621                 /* remove current indirect node */
622                 dn->node_page = page;
623                 truncate_node(dn);
624                 freed++;
625         } else {
626                 f2fs_put_page(page, 1);
627         }
628         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
629         return freed;
630
631 out_err:
632         f2fs_put_page(page, 1);
633         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
634         return ret;
635 }
636
637 static int truncate_partial_nodes(struct dnode_of_data *dn,
638                         struct f2fs_inode *ri, int *offset, int depth)
639 {
640         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
641         struct page *pages[2];
642         nid_t nid[3];
643         nid_t child_nid;
644         int err = 0;
645         int i;
646         int idx = depth - 2;
647
648         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
649         if (!nid[0])
650                 return 0;
651
652         /* get indirect nodes in the path */
653         for (i = 0; i < idx + 1; i++) {
654                 /* refernece count'll be increased */
655                 pages[i] = get_node_page(sbi, nid[i]);
656                 if (IS_ERR(pages[i])) {
657                         err = PTR_ERR(pages[i]);
658                         idx = i - 1;
659                         goto fail;
660                 }
661                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
662         }
663
664         /* free direct nodes linked to a partial indirect node */
665         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
666                 child_nid = get_nid(pages[idx], i, false);
667                 if (!child_nid)
668                         continue;
669                 dn->nid = child_nid;
670                 err = truncate_dnode(dn);
671                 if (err < 0)
672                         goto fail;
673                 set_nid(pages[idx], i, 0, false);
674         }
675
676         if (offset[idx + 1] == 0) {
677                 dn->node_page = pages[idx];
678                 dn->nid = nid[idx];
679                 truncate_node(dn);
680         } else {
681                 f2fs_put_page(pages[idx], 1);
682         }
683         offset[idx]++;
684         offset[idx + 1] = 0;
685         idx--;
686 fail:
687         for (i = idx; i >= 0; i--)
688                 f2fs_put_page(pages[i], 1);
689
690         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
691
692         return err;
693 }
694
695 /*
696  * All the block addresses of data and nodes should be nullified.
697  */
698 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
699 {
700         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
701         int err = 0, cont = 1;
702         int level, offset[4], noffset[4];
703         unsigned int nofs = 0;
704         struct f2fs_inode *ri;
705         struct dnode_of_data dn;
706         struct page *page;
707
708         trace_f2fs_truncate_inode_blocks_enter(inode, from);
709
710         level = get_node_path(F2FS_I(inode), from, offset, noffset);
711 restart:
712         page = get_node_page(sbi, inode->i_ino);
713         if (IS_ERR(page)) {
714                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
715                 return PTR_ERR(page);
716         }
717
718         set_new_dnode(&dn, inode, page, NULL, 0);
719         unlock_page(page);
720
721         ri = F2FS_INODE(page);
722         switch (level) {
723         case 0:
724         case 1:
725                 nofs = noffset[1];
726                 break;
727         case 2:
728                 nofs = noffset[1];
729                 if (!offset[level - 1])
730                         goto skip_partial;
731                 err = truncate_partial_nodes(&dn, ri, offset, level);
732                 if (err < 0 && err != -ENOENT)
733                         goto fail;
734                 nofs += 1 + NIDS_PER_BLOCK;
735                 break;
736         case 3:
737                 nofs = 5 + 2 * NIDS_PER_BLOCK;
738                 if (!offset[level - 1])
739                         goto skip_partial;
740                 err = truncate_partial_nodes(&dn, ri, offset, level);
741                 if (err < 0 && err != -ENOENT)
742                         goto fail;
743                 break;
744         default:
745                 BUG();
746         }
747
748 skip_partial:
749         while (cont) {
750                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
751                 switch (offset[0]) {
752                 case NODE_DIR1_BLOCK:
753                 case NODE_DIR2_BLOCK:
754                         err = truncate_dnode(&dn);
755                         break;
756
757                 case NODE_IND1_BLOCK:
758                 case NODE_IND2_BLOCK:
759                         err = truncate_nodes(&dn, nofs, offset[1], 2);
760                         break;
761
762                 case NODE_DIND_BLOCK:
763                         err = truncate_nodes(&dn, nofs, offset[1], 3);
764                         cont = 0;
765                         break;
766
767                 default:
768                         BUG();
769                 }
770                 if (err < 0 && err != -ENOENT)
771                         goto fail;
772                 if (offset[1] == 0 &&
773                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
774                         lock_page(page);
775                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
776                                 f2fs_put_page(page, 1);
777                                 goto restart;
778                         }
779                         f2fs_wait_on_page_writeback(page, NODE);
780                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
781                         set_page_dirty(page);
782                         unlock_page(page);
783                 }
784                 offset[1] = 0;
785                 offset[0]++;
786                 nofs += err;
787         }
788 fail:
789         f2fs_put_page(page, 0);
790         trace_f2fs_truncate_inode_blocks_exit(inode, err);
791         return err > 0 ? 0 : err;
792 }
793
794 int truncate_xattr_node(struct inode *inode, struct page *page)
795 {
796         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
797         nid_t nid = F2FS_I(inode)->i_xattr_nid;
798         struct dnode_of_data dn;
799         struct page *npage;
800
801         if (!nid)
802                 return 0;
803
804         npage = get_node_page(sbi, nid);
805         if (IS_ERR(npage))
806                 return PTR_ERR(npage);
807
808         F2FS_I(inode)->i_xattr_nid = 0;
809
810         /* need to do checkpoint during fsync */
811         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
812
813         set_new_dnode(&dn, inode, page, npage, nid);
814
815         if (page)
816                 dn.inode_page_locked = true;
817         truncate_node(&dn);
818         return 0;
819 }
820
821 /*
822  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
823  * f2fs_unlock_op().
824  */
825 void remove_inode_page(struct inode *inode)
826 {
827         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
828         struct page *page;
829         nid_t ino = inode->i_ino;
830         struct dnode_of_data dn;
831
832         page = get_node_page(sbi, ino);
833         if (IS_ERR(page))
834                 return;
835
836         if (truncate_xattr_node(inode, page)) {
837                 f2fs_put_page(page, 1);
838                 return;
839         }
840         /* 0 is possible, after f2fs_new_inode() is failed */
841         f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
842         set_new_dnode(&dn, inode, page, page, ino);
843         truncate_node(&dn);
844 }
845
846 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
847 {
848         struct dnode_of_data dn;
849
850         /* allocate inode page for new inode */
851         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
852
853         /* caller should f2fs_put_page(page, 1); */
854         return new_node_page(&dn, 0, NULL);
855 }
856
857 struct page *new_node_page(struct dnode_of_data *dn,
858                                 unsigned int ofs, struct page *ipage)
859 {
860         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
861         struct node_info old_ni, new_ni;
862         struct page *page;
863         int err;
864
865         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
866                 return ERR_PTR(-EPERM);
867
868         page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
869         if (!page)
870                 return ERR_PTR(-ENOMEM);
871
872         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
873                 err = -ENOSPC;
874                 goto fail;
875         }
876
877         get_node_info(sbi, dn->nid, &old_ni);
878
879         /* Reinitialize old_ni with new node page */
880         f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
881         new_ni = old_ni;
882         new_ni.ino = dn->inode->i_ino;
883         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
884
885         f2fs_wait_on_page_writeback(page, NODE);
886         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
887         set_cold_node(dn->inode, page);
888         SetPageUptodate(page);
889         set_page_dirty(page);
890
891         if (f2fs_has_xattr_block(ofs))
892                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
893
894         dn->node_page = page;
895         if (ipage)
896                 update_inode(dn->inode, ipage);
897         else
898                 sync_inode_page(dn);
899         if (ofs == 0)
900                 inc_valid_inode_count(sbi);
901
902         return page;
903
904 fail:
905         clear_node_page_dirty(page);
906         f2fs_put_page(page, 1);
907         return ERR_PTR(err);
908 }
909
910 /*
911  * Caller should do after getting the following values.
912  * 0: f2fs_put_page(page, 0)
913  * LOCKED_PAGE: f2fs_put_page(page, 1)
914  * error: nothing
915  */
916 static int read_node_page(struct page *page, int rw)
917 {
918         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
919         struct node_info ni;
920
921         get_node_info(sbi, page->index, &ni);
922
923         if (unlikely(ni.blk_addr == NULL_ADDR)) {
924                 f2fs_put_page(page, 1);
925                 return -ENOENT;
926         }
927
928         if (PageUptodate(page))
929                 return LOCKED_PAGE;
930
931         return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
932 }
933
934 /*
935  * Readahead a node page
936  */
937 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
938 {
939         struct page *apage;
940         int err;
941
942         apage = find_get_page(NODE_MAPPING(sbi), nid);
943         if (apage && PageUptodate(apage)) {
944                 f2fs_put_page(apage, 0);
945                 return;
946         }
947         f2fs_put_page(apage, 0);
948
949         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
950         if (!apage)
951                 return;
952
953         err = read_node_page(apage, READA);
954         if (err == 0)
955                 f2fs_put_page(apage, 0);
956         else if (err == LOCKED_PAGE)
957                 f2fs_put_page(apage, 1);
958 }
959
960 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
961 {
962         struct page *page;
963         int err;
964 repeat:
965         page = grab_cache_page(NODE_MAPPING(sbi), nid);
966         if (!page)
967                 return ERR_PTR(-ENOMEM);
968
969         err = read_node_page(page, READ_SYNC);
970         if (err < 0)
971                 return ERR_PTR(err);
972         else if (err == LOCKED_PAGE)
973                 goto got_it;
974
975         lock_page(page);
976         if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
977                 f2fs_put_page(page, 1);
978                 return ERR_PTR(-EIO);
979         }
980         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
981                 f2fs_put_page(page, 1);
982                 goto repeat;
983         }
984 got_it:
985         mark_page_accessed(page);
986         return page;
987 }
988
989 /*
990  * Return a locked page for the desired node page.
991  * And, readahead MAX_RA_NODE number of node pages.
992  */
993 struct page *get_node_page_ra(struct page *parent, int start)
994 {
995         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
996         struct blk_plug plug;
997         struct page *page;
998         int err, i, end;
999         nid_t nid;
1000
1001         /* First, try getting the desired direct node. */
1002         nid = get_nid(parent, start, false);
1003         if (!nid)
1004                 return ERR_PTR(-ENOENT);
1005 repeat:
1006         page = grab_cache_page(NODE_MAPPING(sbi), nid);
1007         if (!page)
1008                 return ERR_PTR(-ENOMEM);
1009
1010         err = read_node_page(page, READ_SYNC);
1011         if (err < 0)
1012                 return ERR_PTR(err);
1013         else if (err == LOCKED_PAGE)
1014                 goto page_hit;
1015
1016         blk_start_plug(&plug);
1017
1018         /* Then, try readahead for siblings of the desired node */
1019         end = start + MAX_RA_NODE;
1020         end = min(end, NIDS_PER_BLOCK);
1021         for (i = start + 1; i < end; i++) {
1022                 nid = get_nid(parent, i, false);
1023                 if (!nid)
1024                         continue;
1025                 ra_node_page(sbi, nid);
1026         }
1027
1028         blk_finish_plug(&plug);
1029
1030         lock_page(page);
1031         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1032                 f2fs_put_page(page, 1);
1033                 goto repeat;
1034         }
1035 page_hit:
1036         if (unlikely(!PageUptodate(page))) {
1037                 f2fs_put_page(page, 1);
1038                 return ERR_PTR(-EIO);
1039         }
1040         mark_page_accessed(page);
1041         return page;
1042 }
1043
1044 void sync_inode_page(struct dnode_of_data *dn)
1045 {
1046         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1047                 update_inode(dn->inode, dn->node_page);
1048         } else if (dn->inode_page) {
1049                 if (!dn->inode_page_locked)
1050                         lock_page(dn->inode_page);
1051                 update_inode(dn->inode, dn->inode_page);
1052                 if (!dn->inode_page_locked)
1053                         unlock_page(dn->inode_page);
1054         } else {
1055                 update_inode_page(dn->inode);
1056         }
1057 }
1058
1059 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1060                                         struct writeback_control *wbc)
1061 {
1062         pgoff_t index, end;
1063         struct pagevec pvec;
1064         int step = ino ? 2 : 0;
1065         int nwritten = 0, wrote = 0;
1066
1067         pagevec_init(&pvec, 0);
1068
1069 next_step:
1070         index = 0;
1071         end = LONG_MAX;
1072
1073         while (index <= end) {
1074                 int i, nr_pages;
1075                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1076                                 PAGECACHE_TAG_DIRTY,
1077                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1078                 if (nr_pages == 0)
1079                         break;
1080
1081                 for (i = 0; i < nr_pages; i++) {
1082                         struct page *page = pvec.pages[i];
1083
1084                         /*
1085                          * flushing sequence with step:
1086                          * 0. indirect nodes
1087                          * 1. dentry dnodes
1088                          * 2. file dnodes
1089                          */
1090                         if (step == 0 && IS_DNODE(page))
1091                                 continue;
1092                         if (step == 1 && (!IS_DNODE(page) ||
1093                                                 is_cold_node(page)))
1094                                 continue;
1095                         if (step == 2 && (!IS_DNODE(page) ||
1096                                                 !is_cold_node(page)))
1097                                 continue;
1098
1099                         /*
1100                          * If an fsync mode,
1101                          * we should not skip writing node pages.
1102                          */
1103                         if (ino && ino_of_node(page) == ino)
1104                                 lock_page(page);
1105                         else if (!trylock_page(page))
1106                                 continue;
1107
1108                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1109 continue_unlock:
1110                                 unlock_page(page);
1111                                 continue;
1112                         }
1113                         if (ino && ino_of_node(page) != ino)
1114                                 goto continue_unlock;
1115
1116                         if (!PageDirty(page)) {
1117                                 /* someone wrote it for us */
1118                                 goto continue_unlock;
1119                         }
1120
1121                         if (!clear_page_dirty_for_io(page))
1122                                 goto continue_unlock;
1123
1124                         /* called by fsync() */
1125                         if (ino && IS_DNODE(page)) {
1126                                 int mark = !is_checkpointed_node(sbi, ino);
1127                                 set_fsync_mark(page, 1);
1128                                 if (IS_INODE(page))
1129                                         set_dentry_mark(page, mark);
1130                                 nwritten++;
1131                         } else {
1132                                 set_fsync_mark(page, 0);
1133                                 set_dentry_mark(page, 0);
1134                         }
1135                         NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1136                         wrote++;
1137
1138                         if (--wbc->nr_to_write == 0)
1139                                 break;
1140                 }
1141                 pagevec_release(&pvec);
1142                 cond_resched();
1143
1144                 if (wbc->nr_to_write == 0) {
1145                         step = 2;
1146                         break;
1147                 }
1148         }
1149
1150         if (step < 2) {
1151                 step++;
1152                 goto next_step;
1153         }
1154
1155         if (wrote)
1156                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1157         return nwritten;
1158 }
1159
1160 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1161 {
1162         pgoff_t index = 0, end = LONG_MAX;
1163         struct pagevec pvec;
1164         int ret2 = 0, ret = 0;
1165
1166         pagevec_init(&pvec, 0);
1167
1168         while (index <= end) {
1169                 int i, nr_pages;
1170                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1171                                 PAGECACHE_TAG_WRITEBACK,
1172                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1173                 if (nr_pages == 0)
1174                         break;
1175
1176                 for (i = 0; i < nr_pages; i++) {
1177                         struct page *page = pvec.pages[i];
1178
1179                         /* until radix tree lookup accepts end_index */
1180                         if (unlikely(page->index > end))
1181                                 continue;
1182
1183                         if (ino && ino_of_node(page) == ino) {
1184                                 f2fs_wait_on_page_writeback(page, NODE);
1185                                 if (TestClearPageError(page))
1186                                         ret = -EIO;
1187                         }
1188                 }
1189                 pagevec_release(&pvec);
1190                 cond_resched();
1191         }
1192
1193         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1194                 ret2 = -ENOSPC;
1195         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1196                 ret2 = -EIO;
1197         if (!ret)
1198                 ret = ret2;
1199         return ret;
1200 }
1201
1202 static int f2fs_write_node_page(struct page *page,
1203                                 struct writeback_control *wbc)
1204 {
1205         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1206         nid_t nid;
1207         block_t new_addr;
1208         struct node_info ni;
1209         struct f2fs_io_info fio = {
1210                 .type = NODE,
1211                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1212         };
1213
1214         trace_f2fs_writepage(page, NODE);
1215
1216         if (unlikely(sbi->por_doing))
1217                 goto redirty_out;
1218
1219         f2fs_wait_on_page_writeback(page, NODE);
1220
1221         /* get old block addr of this node page */
1222         nid = nid_of_node(page);
1223         f2fs_bug_on(page->index != nid);
1224
1225         get_node_info(sbi, nid, &ni);
1226
1227         /* This page is already truncated */
1228         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1229                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1230                 unlock_page(page);
1231                 return 0;
1232         }
1233
1234         if (wbc->for_reclaim)
1235                 goto redirty_out;
1236
1237         mutex_lock(&sbi->node_write);
1238         set_page_writeback(page);
1239         write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1240         set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1241         dec_page_count(sbi, F2FS_DIRTY_NODES);
1242         mutex_unlock(&sbi->node_write);
1243         unlock_page(page);
1244         return 0;
1245
1246 redirty_out:
1247         redirty_page_for_writepage(wbc, page);
1248         return AOP_WRITEPAGE_ACTIVATE;
1249 }
1250
1251 static int f2fs_write_node_pages(struct address_space *mapping,
1252                             struct writeback_control *wbc)
1253 {
1254         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1255         long diff;
1256
1257         trace_f2fs_writepages(mapping->host, wbc, NODE);
1258
1259         /* balancing f2fs's metadata in background */
1260         f2fs_balance_fs_bg(sbi);
1261
1262         /* collect a number of dirty node pages and write together */
1263         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1264                 goto skip_write;
1265
1266         diff = nr_pages_to_write(sbi, NODE, wbc);
1267         wbc->sync_mode = WB_SYNC_NONE;
1268         sync_node_pages(sbi, 0, wbc);
1269         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1270         return 0;
1271
1272 skip_write:
1273         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1274         return 0;
1275 }
1276
1277 static int f2fs_set_node_page_dirty(struct page *page)
1278 {
1279         struct address_space *mapping = page->mapping;
1280         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1281
1282         trace_f2fs_set_page_dirty(page, NODE);
1283
1284         SetPageUptodate(page);
1285         if (!PageDirty(page)) {
1286                 __set_page_dirty_nobuffers(page);
1287                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1288                 SetPagePrivate(page);
1289                 return 1;
1290         }
1291         return 0;
1292 }
1293
1294 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1295                                       unsigned int length)
1296 {
1297         struct inode *inode = page->mapping->host;
1298         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1299         if (PageDirty(page))
1300                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1301         ClearPagePrivate(page);
1302 }
1303
1304 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1305 {
1306         ClearPagePrivate(page);
1307         return 1;
1308 }
1309
1310 /*
1311  * Structure of the f2fs node operations
1312  */
1313 const struct address_space_operations f2fs_node_aops = {
1314         .writepage      = f2fs_write_node_page,
1315         .writepages     = f2fs_write_node_pages,
1316         .set_page_dirty = f2fs_set_node_page_dirty,
1317         .invalidatepage = f2fs_invalidate_node_page,
1318         .releasepage    = f2fs_release_node_page,
1319 };
1320
1321 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1322                                                 nid_t n)
1323 {
1324         return radix_tree_lookup(&nm_i->free_nid_root, n);
1325 }
1326
1327 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1328                                                 struct free_nid *i)
1329 {
1330         list_del(&i->list);
1331         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1332 }
1333
1334 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1335 {
1336         struct f2fs_nm_info *nm_i = NM_I(sbi);
1337         struct free_nid *i;
1338         struct nat_entry *ne;
1339         bool allocated = false;
1340
1341         if (!available_free_memory(sbi, FREE_NIDS))
1342                 return -1;
1343
1344         /* 0 nid should not be used */
1345         if (unlikely(nid == 0))
1346                 return 0;
1347
1348         if (build) {
1349                 /* do not add allocated nids */
1350                 read_lock(&nm_i->nat_tree_lock);
1351                 ne = __lookup_nat_cache(nm_i, nid);
1352                 if (ne &&
1353                         (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1354                         allocated = true;
1355                 read_unlock(&nm_i->nat_tree_lock);
1356                 if (allocated)
1357                         return 0;
1358         }
1359
1360         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1361         i->nid = nid;
1362         i->state = NID_NEW;
1363
1364         spin_lock(&nm_i->free_nid_list_lock);
1365         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1366                 spin_unlock(&nm_i->free_nid_list_lock);
1367                 kmem_cache_free(free_nid_slab, i);
1368                 return 0;
1369         }
1370         list_add_tail(&i->list, &nm_i->free_nid_list);
1371         nm_i->fcnt++;
1372         spin_unlock(&nm_i->free_nid_list_lock);
1373         return 1;
1374 }
1375
1376 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1377 {
1378         struct free_nid *i;
1379         bool need_free = false;
1380
1381         spin_lock(&nm_i->free_nid_list_lock);
1382         i = __lookup_free_nid_list(nm_i, nid);
1383         if (i && i->state == NID_NEW) {
1384                 __del_from_free_nid_list(nm_i, i);
1385                 nm_i->fcnt--;
1386                 need_free = true;
1387         }
1388         spin_unlock(&nm_i->free_nid_list_lock);
1389
1390         if (need_free)
1391                 kmem_cache_free(free_nid_slab, i);
1392 }
1393
1394 static void scan_nat_page(struct f2fs_sb_info *sbi,
1395                         struct page *nat_page, nid_t start_nid)
1396 {
1397         struct f2fs_nm_info *nm_i = NM_I(sbi);
1398         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1399         block_t blk_addr;
1400         int i;
1401
1402         i = start_nid % NAT_ENTRY_PER_BLOCK;
1403
1404         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1405
1406                 if (unlikely(start_nid >= nm_i->max_nid))
1407                         break;
1408
1409                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1410                 f2fs_bug_on(blk_addr == NEW_ADDR);
1411                 if (blk_addr == NULL_ADDR) {
1412                         if (add_free_nid(sbi, start_nid, true) < 0)
1413                                 break;
1414                 }
1415         }
1416 }
1417
1418 static void build_free_nids(struct f2fs_sb_info *sbi)
1419 {
1420         struct f2fs_nm_info *nm_i = NM_I(sbi);
1421         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1422         struct f2fs_summary_block *sum = curseg->sum_blk;
1423         int i = 0;
1424         nid_t nid = nm_i->next_scan_nid;
1425
1426         /* Enough entries */
1427         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1428                 return;
1429
1430         /* readahead nat pages to be scanned */
1431         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1432
1433         while (1) {
1434                 struct page *page = get_current_nat_page(sbi, nid);
1435
1436                 scan_nat_page(sbi, page, nid);
1437                 f2fs_put_page(page, 1);
1438
1439                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1440                 if (unlikely(nid >= nm_i->max_nid))
1441                         nid = 0;
1442
1443                 if (i++ == FREE_NID_PAGES)
1444                         break;
1445         }
1446
1447         /* go to the next free nat pages to find free nids abundantly */
1448         nm_i->next_scan_nid = nid;
1449
1450         /* find free nids from current sum_pages */
1451         mutex_lock(&curseg->curseg_mutex);
1452         for (i = 0; i < nats_in_cursum(sum); i++) {
1453                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1454                 nid = le32_to_cpu(nid_in_journal(sum, i));
1455                 if (addr == NULL_ADDR)
1456                         add_free_nid(sbi, nid, true);
1457                 else
1458                         remove_free_nid(nm_i, nid);
1459         }
1460         mutex_unlock(&curseg->curseg_mutex);
1461 }
1462
1463 /*
1464  * If this function returns success, caller can obtain a new nid
1465  * from second parameter of this function.
1466  * The returned nid could be used ino as well as nid when inode is created.
1467  */
1468 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1469 {
1470         struct f2fs_nm_info *nm_i = NM_I(sbi);
1471         struct free_nid *i = NULL;
1472 retry:
1473         if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1474                 return false;
1475
1476         spin_lock(&nm_i->free_nid_list_lock);
1477
1478         /* We should not use stale free nids created by build_free_nids */
1479         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1480                 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1481                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1482                         if (i->state == NID_NEW)
1483                                 break;
1484
1485                 f2fs_bug_on(i->state != NID_NEW);
1486                 *nid = i->nid;
1487                 i->state = NID_ALLOC;
1488                 nm_i->fcnt--;
1489                 spin_unlock(&nm_i->free_nid_list_lock);
1490                 return true;
1491         }
1492         spin_unlock(&nm_i->free_nid_list_lock);
1493
1494         /* Let's scan nat pages and its caches to get free nids */
1495         mutex_lock(&nm_i->build_lock);
1496         build_free_nids(sbi);
1497         mutex_unlock(&nm_i->build_lock);
1498         goto retry;
1499 }
1500
1501 /*
1502  * alloc_nid() should be called prior to this function.
1503  */
1504 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1505 {
1506         struct f2fs_nm_info *nm_i = NM_I(sbi);
1507         struct free_nid *i;
1508
1509         spin_lock(&nm_i->free_nid_list_lock);
1510         i = __lookup_free_nid_list(nm_i, nid);
1511         f2fs_bug_on(!i || i->state != NID_ALLOC);
1512         __del_from_free_nid_list(nm_i, i);
1513         spin_unlock(&nm_i->free_nid_list_lock);
1514
1515         kmem_cache_free(free_nid_slab, i);
1516 }
1517
1518 /*
1519  * alloc_nid() should be called prior to this function.
1520  */
1521 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1522 {
1523         struct f2fs_nm_info *nm_i = NM_I(sbi);
1524         struct free_nid *i;
1525         bool need_free = false;
1526
1527         if (!nid)
1528                 return;
1529
1530         spin_lock(&nm_i->free_nid_list_lock);
1531         i = __lookup_free_nid_list(nm_i, nid);
1532         f2fs_bug_on(!i || i->state != NID_ALLOC);
1533         if (!available_free_memory(sbi, FREE_NIDS)) {
1534                 __del_from_free_nid_list(nm_i, i);
1535                 need_free = true;
1536         } else {
1537                 i->state = NID_NEW;
1538                 nm_i->fcnt++;
1539         }
1540         spin_unlock(&nm_i->free_nid_list_lock);
1541
1542         if (need_free)
1543                 kmem_cache_free(free_nid_slab, i);
1544 }
1545
1546 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1547                 struct f2fs_summary *sum, struct node_info *ni,
1548                 block_t new_blkaddr)
1549 {
1550         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1551         set_node_addr(sbi, ni, new_blkaddr, false);
1552         clear_node_page_dirty(page);
1553 }
1554
1555 static void recover_inline_xattr(struct inode *inode, struct page *page)
1556 {
1557         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1558         void *src_addr, *dst_addr;
1559         size_t inline_size;
1560         struct page *ipage;
1561         struct f2fs_inode *ri;
1562
1563         if (!f2fs_has_inline_xattr(inode))
1564                 return;
1565
1566         if (!IS_INODE(page))
1567                 return;
1568
1569         ri = F2FS_INODE(page);
1570         if (!(ri->i_inline & F2FS_INLINE_XATTR))
1571                 return;
1572
1573         ipage = get_node_page(sbi, inode->i_ino);
1574         f2fs_bug_on(IS_ERR(ipage));
1575
1576         dst_addr = inline_xattr_addr(ipage);
1577         src_addr = inline_xattr_addr(page);
1578         inline_size = inline_xattr_size(inode);
1579
1580         f2fs_wait_on_page_writeback(ipage, NODE);
1581         memcpy(dst_addr, src_addr, inline_size);
1582
1583         update_inode(inode, ipage);
1584         f2fs_put_page(ipage, 1);
1585 }
1586
1587 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1588 {
1589         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1590         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1591         nid_t new_xnid = nid_of_node(page);
1592         struct node_info ni;
1593
1594         recover_inline_xattr(inode, page);
1595
1596         if (!f2fs_has_xattr_block(ofs_of_node(page)))
1597                 return false;
1598
1599         /* 1: invalidate the previous xattr nid */
1600         if (!prev_xnid)
1601                 goto recover_xnid;
1602
1603         /* Deallocate node address */
1604         get_node_info(sbi, prev_xnid, &ni);
1605         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1606         invalidate_blocks(sbi, ni.blk_addr);
1607         dec_valid_node_count(sbi, inode);
1608         set_node_addr(sbi, &ni, NULL_ADDR, false);
1609
1610 recover_xnid:
1611         /* 2: allocate new xattr nid */
1612         if (unlikely(!inc_valid_node_count(sbi, inode)))
1613                 f2fs_bug_on(1);
1614
1615         remove_free_nid(NM_I(sbi), new_xnid);
1616         get_node_info(sbi, new_xnid, &ni);
1617         ni.ino = inode->i_ino;
1618         set_node_addr(sbi, &ni, NEW_ADDR, false);
1619         F2FS_I(inode)->i_xattr_nid = new_xnid;
1620
1621         /* 3: update xattr blkaddr */
1622         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1623         set_node_addr(sbi, &ni, blkaddr, false);
1624
1625         update_inode_page(inode);
1626         return true;
1627 }
1628
1629 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1630 {
1631         struct f2fs_inode *src, *dst;
1632         nid_t ino = ino_of_node(page);
1633         struct node_info old_ni, new_ni;
1634         struct page *ipage;
1635
1636         get_node_info(sbi, ino, &old_ni);
1637
1638         if (unlikely(old_ni.blk_addr != NULL_ADDR))
1639                 return -EINVAL;
1640
1641         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1642         if (!ipage)
1643                 return -ENOMEM;
1644
1645         /* Should not use this inode  from free nid list */
1646         remove_free_nid(NM_I(sbi), ino);
1647
1648         SetPageUptodate(ipage);
1649         fill_node_footer(ipage, ino, ino, 0, true);
1650
1651         src = F2FS_INODE(page);
1652         dst = F2FS_INODE(ipage);
1653
1654         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1655         dst->i_size = 0;
1656         dst->i_blocks = cpu_to_le64(1);
1657         dst->i_links = cpu_to_le32(1);
1658         dst->i_xattr_nid = 0;
1659
1660         new_ni = old_ni;
1661         new_ni.ino = ino;
1662
1663         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1664                 WARN_ON(1);
1665         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1666         inc_valid_inode_count(sbi);
1667         f2fs_put_page(ipage, 1);
1668         return 0;
1669 }
1670
1671 /*
1672  * ra_sum_pages() merge contiguous pages into one bio and submit.
1673  * these pre-readed pages are alloced in bd_inode's mapping tree.
1674  */
1675 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1676                                 int start, int nrpages)
1677 {
1678         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1679         struct address_space *mapping = inode->i_mapping;
1680         int i, page_idx = start;
1681         struct f2fs_io_info fio = {
1682                 .type = META,
1683                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1684         };
1685
1686         for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1687                 /* alloc page in bd_inode for reading node summary info */
1688                 pages[i] = grab_cache_page(mapping, page_idx);
1689                 if (!pages[i])
1690                         break;
1691                 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1692         }
1693
1694         f2fs_submit_merged_bio(sbi, META, READ);
1695         return i;
1696 }
1697
1698 int restore_node_summary(struct f2fs_sb_info *sbi,
1699                         unsigned int segno, struct f2fs_summary_block *sum)
1700 {
1701         struct f2fs_node *rn;
1702         struct f2fs_summary *sum_entry;
1703         struct inode *inode = sbi->sb->s_bdev->bd_inode;
1704         block_t addr;
1705         int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1706         struct page *pages[bio_blocks];
1707         int i, idx, last_offset, nrpages, err = 0;
1708
1709         /* scan the node segment */
1710         last_offset = sbi->blocks_per_seg;
1711         addr = START_BLOCK(sbi, segno);
1712         sum_entry = &sum->entries[0];
1713
1714         for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1715                 nrpages = min(last_offset - i, bio_blocks);
1716
1717                 /* read ahead node pages */
1718                 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1719                 if (!nrpages)
1720                         return -ENOMEM;
1721
1722                 for (idx = 0; idx < nrpages; idx++) {
1723                         if (err)
1724                                 goto skip;
1725
1726                         lock_page(pages[idx]);
1727                         if (unlikely(!PageUptodate(pages[idx]))) {
1728                                 err = -EIO;
1729                         } else {
1730                                 rn = F2FS_NODE(pages[idx]);
1731                                 sum_entry->nid = rn->footer.nid;
1732                                 sum_entry->version = 0;
1733                                 sum_entry->ofs_in_node = 0;
1734                                 sum_entry++;
1735                         }
1736                         unlock_page(pages[idx]);
1737 skip:
1738                         page_cache_release(pages[idx]);
1739                 }
1740
1741                 invalidate_mapping_pages(inode->i_mapping, addr,
1742                                                         addr + nrpages);
1743         }
1744         return err;
1745 }
1746
1747 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1748 {
1749         struct f2fs_nm_info *nm_i = NM_I(sbi);
1750         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1751         struct f2fs_summary_block *sum = curseg->sum_blk;
1752         int i;
1753
1754         mutex_lock(&curseg->curseg_mutex);
1755
1756         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1757                 mutex_unlock(&curseg->curseg_mutex);
1758                 return false;
1759         }
1760
1761         for (i = 0; i < nats_in_cursum(sum); i++) {
1762                 struct nat_entry *ne;
1763                 struct f2fs_nat_entry raw_ne;
1764                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1765
1766                 raw_ne = nat_in_journal(sum, i);
1767 retry:
1768                 write_lock(&nm_i->nat_tree_lock);
1769                 ne = __lookup_nat_cache(nm_i, nid);
1770                 if (ne) {
1771                         __set_nat_cache_dirty(nm_i, ne);
1772                         write_unlock(&nm_i->nat_tree_lock);
1773                         continue;
1774                 }
1775                 ne = grab_nat_entry(nm_i, nid);
1776                 if (!ne) {
1777                         write_unlock(&nm_i->nat_tree_lock);
1778                         goto retry;
1779                 }
1780                 node_info_from_raw_nat(&ne->ni, &raw_ne);
1781                 __set_nat_cache_dirty(nm_i, ne);
1782                 write_unlock(&nm_i->nat_tree_lock);
1783         }
1784         update_nats_in_cursum(sum, -i);
1785         mutex_unlock(&curseg->curseg_mutex);
1786         return true;
1787 }
1788
1789 /*
1790  * This function is called during the checkpointing process.
1791  */
1792 void flush_nat_entries(struct f2fs_sb_info *sbi)
1793 {
1794         struct f2fs_nm_info *nm_i = NM_I(sbi);
1795         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1796         struct f2fs_summary_block *sum = curseg->sum_blk;
1797         struct nat_entry *ne, *cur;
1798         struct page *page = NULL;
1799         struct f2fs_nat_block *nat_blk = NULL;
1800         nid_t start_nid = 0, end_nid = 0;
1801         bool flushed;
1802
1803         flushed = flush_nats_in_journal(sbi);
1804
1805         if (!flushed)
1806                 mutex_lock(&curseg->curseg_mutex);
1807
1808         /* 1) flush dirty nat caches */
1809         list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1810                 nid_t nid;
1811                 struct f2fs_nat_entry raw_ne;
1812                 int offset = -1;
1813
1814                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1815                         continue;
1816
1817                 nid = nat_get_nid(ne);
1818
1819                 if (flushed)
1820                         goto to_nat_page;
1821
1822                 /* if there is room for nat enries in curseg->sumpage */
1823                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1824                 if (offset >= 0) {
1825                         raw_ne = nat_in_journal(sum, offset);
1826                         goto flush_now;
1827                 }
1828 to_nat_page:
1829                 if (!page || (start_nid > nid || nid > end_nid)) {
1830                         if (page) {
1831                                 f2fs_put_page(page, 1);
1832                                 page = NULL;
1833                         }
1834                         start_nid = START_NID(nid);
1835                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1836
1837                         /*
1838                          * get nat block with dirty flag, increased reference
1839                          * count, mapped and lock
1840                          */
1841                         page = get_next_nat_page(sbi, start_nid);
1842                         nat_blk = page_address(page);
1843                 }
1844
1845                 f2fs_bug_on(!nat_blk);
1846                 raw_ne = nat_blk->entries[nid - start_nid];
1847 flush_now:
1848                 raw_nat_from_node_info(&raw_ne, &ne->ni);
1849
1850                 if (offset < 0) {
1851                         nat_blk->entries[nid - start_nid] = raw_ne;
1852                 } else {
1853                         nat_in_journal(sum, offset) = raw_ne;
1854                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1855                 }
1856
1857                 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1858                                 add_free_nid(sbi, nid, false) <= 0) {
1859                         write_lock(&nm_i->nat_tree_lock);
1860                         __del_from_nat_cache(nm_i, ne);
1861                         write_unlock(&nm_i->nat_tree_lock);
1862                 } else {
1863                         write_lock(&nm_i->nat_tree_lock);
1864                         __clear_nat_cache_dirty(nm_i, ne);
1865                         write_unlock(&nm_i->nat_tree_lock);
1866                 }
1867         }
1868         if (!flushed)
1869                 mutex_unlock(&curseg->curseg_mutex);
1870         f2fs_put_page(page, 1);
1871 }
1872
1873 static int init_node_manager(struct f2fs_sb_info *sbi)
1874 {
1875         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1876         struct f2fs_nm_info *nm_i = NM_I(sbi);
1877         unsigned char *version_bitmap;
1878         unsigned int nat_segs, nat_blocks;
1879
1880         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1881
1882         /* segment_count_nat includes pair segment so divide to 2. */
1883         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1884         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1885
1886         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1887
1888         /* not used nids: 0, node, meta, (and root counted as valid node) */
1889         nm_i->available_nids = nm_i->max_nid - 3;
1890         nm_i->fcnt = 0;
1891         nm_i->nat_cnt = 0;
1892         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1893
1894         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1895         INIT_LIST_HEAD(&nm_i->free_nid_list);
1896         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1897         INIT_LIST_HEAD(&nm_i->nat_entries);
1898         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1899
1900         mutex_init(&nm_i->build_lock);
1901         spin_lock_init(&nm_i->free_nid_list_lock);
1902         rwlock_init(&nm_i->nat_tree_lock);
1903
1904         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1905         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1906         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1907         if (!version_bitmap)
1908                 return -EFAULT;
1909
1910         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1911                                         GFP_KERNEL);
1912         if (!nm_i->nat_bitmap)
1913                 return -ENOMEM;
1914         return 0;
1915 }
1916
1917 int build_node_manager(struct f2fs_sb_info *sbi)
1918 {
1919         int err;
1920
1921         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1922         if (!sbi->nm_info)
1923                 return -ENOMEM;
1924
1925         err = init_node_manager(sbi);
1926         if (err)
1927                 return err;
1928
1929         build_free_nids(sbi);
1930         return 0;
1931 }
1932
1933 void destroy_node_manager(struct f2fs_sb_info *sbi)
1934 {
1935         struct f2fs_nm_info *nm_i = NM_I(sbi);
1936         struct free_nid *i, *next_i;
1937         struct nat_entry *natvec[NATVEC_SIZE];
1938         nid_t nid = 0;
1939         unsigned int found;
1940
1941         if (!nm_i)
1942                 return;
1943
1944         /* destroy free nid list */
1945         spin_lock(&nm_i->free_nid_list_lock);
1946         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1947                 f2fs_bug_on(i->state == NID_ALLOC);
1948                 __del_from_free_nid_list(nm_i, i);
1949                 nm_i->fcnt--;
1950                 spin_unlock(&nm_i->free_nid_list_lock);
1951                 kmem_cache_free(free_nid_slab, i);
1952                 spin_lock(&nm_i->free_nid_list_lock);
1953         }
1954         f2fs_bug_on(nm_i->fcnt);
1955         spin_unlock(&nm_i->free_nid_list_lock);
1956
1957         /* destroy nat cache */
1958         write_lock(&nm_i->nat_tree_lock);
1959         while ((found = __gang_lookup_nat_cache(nm_i,
1960                                         nid, NATVEC_SIZE, natvec))) {
1961                 unsigned idx;
1962                 nid = nat_get_nid(natvec[found - 1]) + 1;
1963                 for (idx = 0; idx < found; idx++)
1964                         __del_from_nat_cache(nm_i, natvec[idx]);
1965         }
1966         f2fs_bug_on(nm_i->nat_cnt);
1967         write_unlock(&nm_i->nat_tree_lock);
1968
1969         kfree(nm_i->nat_bitmap);
1970         sbi->nm_info = NULL;
1971         kfree(nm_i);
1972 }
1973
1974 int __init create_node_manager_caches(void)
1975 {
1976         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1977                         sizeof(struct nat_entry));
1978         if (!nat_entry_slab)
1979                 return -ENOMEM;
1980
1981         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1982                         sizeof(struct free_nid));
1983         if (!free_nid_slab) {
1984                 kmem_cache_destroy(nat_entry_slab);
1985                 return -ENOMEM;
1986         }
1987         return 0;
1988 }
1989
1990 void destroy_node_manager_caches(void)
1991 {
1992         kmem_cache_destroy(free_nid_slab);
1993         kmem_cache_destroy(nat_entry_slab);
1994 }