Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivi...
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / node.c
1 /*
2  * fs/f2fs/node.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28
29 static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
30 {
31         struct sysinfo val;
32         unsigned long mem_size = 0;
33
34         si_meminfo(&val);
35         if (type == FREE_NIDS)
36                 mem_size = nm_i->fcnt * sizeof(struct free_nid);
37         else if (type == NAT_ENTRIES)
38                 mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
39         mem_size >>= 12;
40
41         /* give 50:50 memory for free nids and nat caches respectively */
42         return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
43 }
44
45 static void clear_node_page_dirty(struct page *page)
46 {
47         struct address_space *mapping = page->mapping;
48         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
49         unsigned int long flags;
50
51         if (PageDirty(page)) {
52                 spin_lock_irqsave(&mapping->tree_lock, flags);
53                 radix_tree_tag_clear(&mapping->page_tree,
54                                 page_index(page),
55                                 PAGECACHE_TAG_DIRTY);
56                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
57
58                 clear_page_dirty_for_io(page);
59                 dec_page_count(sbi, F2FS_DIRTY_NODES);
60         }
61         ClearPageUptodate(page);
62 }
63
64 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
65 {
66         pgoff_t index = current_nat_addr(sbi, nid);
67         return get_meta_page(sbi, index);
68 }
69
70 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
71 {
72         struct page *src_page;
73         struct page *dst_page;
74         pgoff_t src_off;
75         pgoff_t dst_off;
76         void *src_addr;
77         void *dst_addr;
78         struct f2fs_nm_info *nm_i = NM_I(sbi);
79
80         src_off = current_nat_addr(sbi, nid);
81         dst_off = next_nat_addr(sbi, src_off);
82
83         /* get current nat block page with lock */
84         src_page = get_meta_page(sbi, src_off);
85
86         /* Dirty src_page means that it is already the new target NAT page. */
87         if (PageDirty(src_page))
88                 return src_page;
89
90         dst_page = grab_meta_page(sbi, dst_off);
91
92         src_addr = page_address(src_page);
93         dst_addr = page_address(dst_page);
94         memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
95         set_page_dirty(dst_page);
96         f2fs_put_page(src_page, 1);
97
98         set_to_next_nat(nm_i, nid);
99
100         return dst_page;
101 }
102
103 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
104 {
105         return radix_tree_lookup(&nm_i->nat_root, n);
106 }
107
108 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
109                 nid_t start, unsigned int nr, struct nat_entry **ep)
110 {
111         return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
112 }
113
114 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
115 {
116         list_del(&e->list);
117         radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
118         nm_i->nat_cnt--;
119         kmem_cache_free(nat_entry_slab, e);
120 }
121
122 int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
123 {
124         struct f2fs_nm_info *nm_i = NM_I(sbi);
125         struct nat_entry *e;
126         int is_cp = 1;
127
128         read_lock(&nm_i->nat_tree_lock);
129         e = __lookup_nat_cache(nm_i, nid);
130         if (e && !e->checkpointed)
131                 is_cp = 0;
132         read_unlock(&nm_i->nat_tree_lock);
133         return is_cp;
134 }
135
136 bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
137 {
138         struct f2fs_nm_info *nm_i = NM_I(sbi);
139         struct nat_entry *e;
140         bool fsync_done = false;
141
142         read_lock(&nm_i->nat_tree_lock);
143         e = __lookup_nat_cache(nm_i, nid);
144         if (e)
145                 fsync_done = e->fsync_done;
146         read_unlock(&nm_i->nat_tree_lock);
147         return fsync_done;
148 }
149
150 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
151 {
152         struct nat_entry *new;
153
154         new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
155         if (!new)
156                 return NULL;
157         if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
158                 kmem_cache_free(nat_entry_slab, new);
159                 return NULL;
160         }
161         memset(new, 0, sizeof(struct nat_entry));
162         nat_set_nid(new, nid);
163         new->checkpointed = true;
164         list_add_tail(&new->list, &nm_i->nat_entries);
165         nm_i->nat_cnt++;
166         return new;
167 }
168
169 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
170                                                 struct f2fs_nat_entry *ne)
171 {
172         struct nat_entry *e;
173 retry:
174         write_lock(&nm_i->nat_tree_lock);
175         e = __lookup_nat_cache(nm_i, nid);
176         if (!e) {
177                 e = grab_nat_entry(nm_i, nid);
178                 if (!e) {
179                         write_unlock(&nm_i->nat_tree_lock);
180                         goto retry;
181                 }
182                 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
183                 nat_set_ino(e, le32_to_cpu(ne->ino));
184                 nat_set_version(e, ne->version);
185         }
186         write_unlock(&nm_i->nat_tree_lock);
187 }
188
189 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
190                         block_t new_blkaddr, bool fsync_done)
191 {
192         struct f2fs_nm_info *nm_i = NM_I(sbi);
193         struct nat_entry *e;
194 retry:
195         write_lock(&nm_i->nat_tree_lock);
196         e = __lookup_nat_cache(nm_i, ni->nid);
197         if (!e) {
198                 e = grab_nat_entry(nm_i, ni->nid);
199                 if (!e) {
200                         write_unlock(&nm_i->nat_tree_lock);
201                         goto retry;
202                 }
203                 e->ni = *ni;
204                 f2fs_bug_on(ni->blk_addr == NEW_ADDR);
205         } else if (new_blkaddr == NEW_ADDR) {
206                 /*
207                  * when nid is reallocated,
208                  * previous nat entry can be remained in nat cache.
209                  * So, reinitialize it with new information.
210                  */
211                 e->ni = *ni;
212                 f2fs_bug_on(ni->blk_addr != NULL_ADDR);
213         }
214
215         /* sanity check */
216         f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
217         f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
218                         new_blkaddr == NULL_ADDR);
219         f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
220                         new_blkaddr == NEW_ADDR);
221         f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
222                         nat_get_blkaddr(e) != NULL_ADDR &&
223                         new_blkaddr == NEW_ADDR);
224
225         /* increament version no as node is removed */
226         if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
227                 unsigned char version = nat_get_version(e);
228                 nat_set_version(e, inc_node_version(version));
229         }
230
231         /* change address */
232         nat_set_blkaddr(e, new_blkaddr);
233         __set_nat_cache_dirty(nm_i, e);
234
235         /* update fsync_mark if its inode nat entry is still alive */
236         e = __lookup_nat_cache(nm_i, ni->ino);
237         if (e)
238                 e->fsync_done = fsync_done;
239         write_unlock(&nm_i->nat_tree_lock);
240 }
241
242 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
243 {
244         struct f2fs_nm_info *nm_i = NM_I(sbi);
245
246         if (available_free_memory(nm_i, NAT_ENTRIES))
247                 return 0;
248
249         write_lock(&nm_i->nat_tree_lock);
250         while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
251                 struct nat_entry *ne;
252                 ne = list_first_entry(&nm_i->nat_entries,
253                                         struct nat_entry, list);
254                 __del_from_nat_cache(nm_i, ne);
255                 nr_shrink--;
256         }
257         write_unlock(&nm_i->nat_tree_lock);
258         return nr_shrink;
259 }
260
261 /*
262  * This function returns always success
263  */
264 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
265 {
266         struct f2fs_nm_info *nm_i = NM_I(sbi);
267         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
268         struct f2fs_summary_block *sum = curseg->sum_blk;
269         nid_t start_nid = START_NID(nid);
270         struct f2fs_nat_block *nat_blk;
271         struct page *page = NULL;
272         struct f2fs_nat_entry ne;
273         struct nat_entry *e;
274         int i;
275
276         memset(&ne, 0, sizeof(struct f2fs_nat_entry));
277         ni->nid = nid;
278
279         /* Check nat cache */
280         read_lock(&nm_i->nat_tree_lock);
281         e = __lookup_nat_cache(nm_i, nid);
282         if (e) {
283                 ni->ino = nat_get_ino(e);
284                 ni->blk_addr = nat_get_blkaddr(e);
285                 ni->version = nat_get_version(e);
286         }
287         read_unlock(&nm_i->nat_tree_lock);
288         if (e)
289                 return;
290
291         /* Check current segment summary */
292         mutex_lock(&curseg->curseg_mutex);
293         i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
294         if (i >= 0) {
295                 ne = nat_in_journal(sum, i);
296                 node_info_from_raw_nat(ni, &ne);
297         }
298         mutex_unlock(&curseg->curseg_mutex);
299         if (i >= 0)
300                 goto cache;
301
302         /* Fill node_info from nat page */
303         page = get_current_nat_page(sbi, start_nid);
304         nat_blk = (struct f2fs_nat_block *)page_address(page);
305         ne = nat_blk->entries[nid - start_nid];
306         node_info_from_raw_nat(ni, &ne);
307         f2fs_put_page(page, 1);
308 cache:
309         /* cache nat entry */
310         cache_nat_entry(NM_I(sbi), nid, &ne);
311 }
312
313 /*
314  * The maximum depth is four.
315  * Offset[0] will have raw inode offset.
316  */
317 static int get_node_path(struct f2fs_inode_info *fi, long block,
318                                 int offset[4], unsigned int noffset[4])
319 {
320         const long direct_index = ADDRS_PER_INODE(fi);
321         const long direct_blks = ADDRS_PER_BLOCK;
322         const long dptrs_per_blk = NIDS_PER_BLOCK;
323         const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
324         const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
325         int n = 0;
326         int level = 0;
327
328         noffset[0] = 0;
329
330         if (block < direct_index) {
331                 offset[n] = block;
332                 goto got;
333         }
334         block -= direct_index;
335         if (block < direct_blks) {
336                 offset[n++] = NODE_DIR1_BLOCK;
337                 noffset[n] = 1;
338                 offset[n] = block;
339                 level = 1;
340                 goto got;
341         }
342         block -= direct_blks;
343         if (block < direct_blks) {
344                 offset[n++] = NODE_DIR2_BLOCK;
345                 noffset[n] = 2;
346                 offset[n] = block;
347                 level = 1;
348                 goto got;
349         }
350         block -= direct_blks;
351         if (block < indirect_blks) {
352                 offset[n++] = NODE_IND1_BLOCK;
353                 noffset[n] = 3;
354                 offset[n++] = block / direct_blks;
355                 noffset[n] = 4 + offset[n - 1];
356                 offset[n] = block % direct_blks;
357                 level = 2;
358                 goto got;
359         }
360         block -= indirect_blks;
361         if (block < indirect_blks) {
362                 offset[n++] = NODE_IND2_BLOCK;
363                 noffset[n] = 4 + dptrs_per_blk;
364                 offset[n++] = block / direct_blks;
365                 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
366                 offset[n] = block % direct_blks;
367                 level = 2;
368                 goto got;
369         }
370         block -= indirect_blks;
371         if (block < dindirect_blks) {
372                 offset[n++] = NODE_DIND_BLOCK;
373                 noffset[n] = 5 + (dptrs_per_blk * 2);
374                 offset[n++] = block / indirect_blks;
375                 noffset[n] = 6 + (dptrs_per_blk * 2) +
376                               offset[n - 1] * (dptrs_per_blk + 1);
377                 offset[n++] = (block / direct_blks) % dptrs_per_blk;
378                 noffset[n] = 7 + (dptrs_per_blk * 2) +
379                               offset[n - 2] * (dptrs_per_blk + 1) +
380                               offset[n - 1];
381                 offset[n] = block % direct_blks;
382                 level = 3;
383                 goto got;
384         } else {
385                 BUG();
386         }
387 got:
388         return level;
389 }
390
391 /*
392  * Caller should call f2fs_put_dnode(dn).
393  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
394  * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
395  * In the case of RDONLY_NODE, we don't need to care about mutex.
396  */
397 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
398 {
399         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
400         struct page *npage[4];
401         struct page *parent;
402         int offset[4];
403         unsigned int noffset[4];
404         nid_t nids[4];
405         int level, i;
406         int err = 0;
407
408         level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
409
410         nids[0] = dn->inode->i_ino;
411         npage[0] = dn->inode_page;
412
413         if (!npage[0]) {
414                 npage[0] = get_node_page(sbi, nids[0]);
415                 if (IS_ERR(npage[0]))
416                         return PTR_ERR(npage[0]);
417         }
418         parent = npage[0];
419         if (level != 0)
420                 nids[1] = get_nid(parent, offset[0], true);
421         dn->inode_page = npage[0];
422         dn->inode_page_locked = true;
423
424         /* get indirect or direct nodes */
425         for (i = 1; i <= level; i++) {
426                 bool done = false;
427
428                 if (!nids[i] && mode == ALLOC_NODE) {
429                         /* alloc new node */
430                         if (!alloc_nid(sbi, &(nids[i]))) {
431                                 err = -ENOSPC;
432                                 goto release_pages;
433                         }
434
435                         dn->nid = nids[i];
436                         npage[i] = new_node_page(dn, noffset[i], NULL);
437                         if (IS_ERR(npage[i])) {
438                                 alloc_nid_failed(sbi, nids[i]);
439                                 err = PTR_ERR(npage[i]);
440                                 goto release_pages;
441                         }
442
443                         set_nid(parent, offset[i - 1], nids[i], i == 1);
444                         alloc_nid_done(sbi, nids[i]);
445                         done = true;
446                 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
447                         npage[i] = get_node_page_ra(parent, offset[i - 1]);
448                         if (IS_ERR(npage[i])) {
449                                 err = PTR_ERR(npage[i]);
450                                 goto release_pages;
451                         }
452                         done = true;
453                 }
454                 if (i == 1) {
455                         dn->inode_page_locked = false;
456                         unlock_page(parent);
457                 } else {
458                         f2fs_put_page(parent, 1);
459                 }
460
461                 if (!done) {
462                         npage[i] = get_node_page(sbi, nids[i]);
463                         if (IS_ERR(npage[i])) {
464                                 err = PTR_ERR(npage[i]);
465                                 f2fs_put_page(npage[0], 0);
466                                 goto release_out;
467                         }
468                 }
469                 if (i < level) {
470                         parent = npage[i];
471                         nids[i + 1] = get_nid(parent, offset[i], false);
472                 }
473         }
474         dn->nid = nids[level];
475         dn->ofs_in_node = offset[level];
476         dn->node_page = npage[level];
477         dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
478         return 0;
479
480 release_pages:
481         f2fs_put_page(parent, 1);
482         if (i > 1)
483                 f2fs_put_page(npage[0], 0);
484 release_out:
485         dn->inode_page = NULL;
486         dn->node_page = NULL;
487         return err;
488 }
489
490 static void truncate_node(struct dnode_of_data *dn)
491 {
492         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
493         struct node_info ni;
494
495         get_node_info(sbi, dn->nid, &ni);
496         if (dn->inode->i_blocks == 0) {
497                 f2fs_bug_on(ni.blk_addr != NULL_ADDR);
498                 goto invalidate;
499         }
500         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
501
502         /* Deallocate node address */
503         invalidate_blocks(sbi, ni.blk_addr);
504         dec_valid_node_count(sbi, dn->inode);
505         set_node_addr(sbi, &ni, NULL_ADDR, false);
506
507         if (dn->nid == dn->inode->i_ino) {
508                 remove_orphan_inode(sbi, dn->nid);
509                 dec_valid_inode_count(sbi);
510         } else {
511                 sync_inode_page(dn);
512         }
513 invalidate:
514         clear_node_page_dirty(dn->node_page);
515         F2FS_SET_SB_DIRT(sbi);
516
517         f2fs_put_page(dn->node_page, 1);
518
519         invalidate_mapping_pages(NODE_MAPPING(sbi),
520                         dn->node_page->index, dn->node_page->index);
521
522         dn->node_page = NULL;
523         trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
524 }
525
526 static int truncate_dnode(struct dnode_of_data *dn)
527 {
528         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
529         struct page *page;
530
531         if (dn->nid == 0)
532                 return 1;
533
534         /* get direct node */
535         page = get_node_page(sbi, dn->nid);
536         if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
537                 return 1;
538         else if (IS_ERR(page))
539                 return PTR_ERR(page);
540
541         /* Make dnode_of_data for parameter */
542         dn->node_page = page;
543         dn->ofs_in_node = 0;
544         truncate_data_blocks(dn);
545         truncate_node(dn);
546         return 1;
547 }
548
549 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
550                                                 int ofs, int depth)
551 {
552         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
553         struct dnode_of_data rdn = *dn;
554         struct page *page;
555         struct f2fs_node *rn;
556         nid_t child_nid;
557         unsigned int child_nofs;
558         int freed = 0;
559         int i, ret;
560
561         if (dn->nid == 0)
562                 return NIDS_PER_BLOCK + 1;
563
564         trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
565
566         page = get_node_page(sbi, dn->nid);
567         if (IS_ERR(page)) {
568                 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
569                 return PTR_ERR(page);
570         }
571
572         rn = F2FS_NODE(page);
573         if (depth < 3) {
574                 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
575                         child_nid = le32_to_cpu(rn->in.nid[i]);
576                         if (child_nid == 0)
577                                 continue;
578                         rdn.nid = child_nid;
579                         ret = truncate_dnode(&rdn);
580                         if (ret < 0)
581                                 goto out_err;
582                         set_nid(page, i, 0, false);
583                 }
584         } else {
585                 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
586                 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
587                         child_nid = le32_to_cpu(rn->in.nid[i]);
588                         if (child_nid == 0) {
589                                 child_nofs += NIDS_PER_BLOCK + 1;
590                                 continue;
591                         }
592                         rdn.nid = child_nid;
593                         ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
594                         if (ret == (NIDS_PER_BLOCK + 1)) {
595                                 set_nid(page, i, 0, false);
596                                 child_nofs += ret;
597                         } else if (ret < 0 && ret != -ENOENT) {
598                                 goto out_err;
599                         }
600                 }
601                 freed = child_nofs;
602         }
603
604         if (!ofs) {
605                 /* remove current indirect node */
606                 dn->node_page = page;
607                 truncate_node(dn);
608                 freed++;
609         } else {
610                 f2fs_put_page(page, 1);
611         }
612         trace_f2fs_truncate_nodes_exit(dn->inode, freed);
613         return freed;
614
615 out_err:
616         f2fs_put_page(page, 1);
617         trace_f2fs_truncate_nodes_exit(dn->inode, ret);
618         return ret;
619 }
620
621 static int truncate_partial_nodes(struct dnode_of_data *dn,
622                         struct f2fs_inode *ri, int *offset, int depth)
623 {
624         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
625         struct page *pages[2];
626         nid_t nid[3];
627         nid_t child_nid;
628         int err = 0;
629         int i;
630         int idx = depth - 2;
631
632         nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
633         if (!nid[0])
634                 return 0;
635
636         /* get indirect nodes in the path */
637         for (i = 0; i < idx + 1; i++) {
638                 /* refernece count'll be increased */
639                 pages[i] = get_node_page(sbi, nid[i]);
640                 if (IS_ERR(pages[i])) {
641                         err = PTR_ERR(pages[i]);
642                         idx = i - 1;
643                         goto fail;
644                 }
645                 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
646         }
647
648         /* free direct nodes linked to a partial indirect node */
649         for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
650                 child_nid = get_nid(pages[idx], i, false);
651                 if (!child_nid)
652                         continue;
653                 dn->nid = child_nid;
654                 err = truncate_dnode(dn);
655                 if (err < 0)
656                         goto fail;
657                 set_nid(pages[idx], i, 0, false);
658         }
659
660         if (offset[idx + 1] == 0) {
661                 dn->node_page = pages[idx];
662                 dn->nid = nid[idx];
663                 truncate_node(dn);
664         } else {
665                 f2fs_put_page(pages[idx], 1);
666         }
667         offset[idx]++;
668         offset[idx + 1] = 0;
669         idx--;
670 fail:
671         for (i = idx; i >= 0; i--)
672                 f2fs_put_page(pages[i], 1);
673
674         trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
675
676         return err;
677 }
678
679 /*
680  * All the block addresses of data and nodes should be nullified.
681  */
682 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
683 {
684         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
685         int err = 0, cont = 1;
686         int level, offset[4], noffset[4];
687         unsigned int nofs = 0;
688         struct f2fs_inode *ri;
689         struct dnode_of_data dn;
690         struct page *page;
691
692         trace_f2fs_truncate_inode_blocks_enter(inode, from);
693
694         level = get_node_path(F2FS_I(inode), from, offset, noffset);
695 restart:
696         page = get_node_page(sbi, inode->i_ino);
697         if (IS_ERR(page)) {
698                 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
699                 return PTR_ERR(page);
700         }
701
702         set_new_dnode(&dn, inode, page, NULL, 0);
703         unlock_page(page);
704
705         ri = F2FS_INODE(page);
706         switch (level) {
707         case 0:
708         case 1:
709                 nofs = noffset[1];
710                 break;
711         case 2:
712                 nofs = noffset[1];
713                 if (!offset[level - 1])
714                         goto skip_partial;
715                 err = truncate_partial_nodes(&dn, ri, offset, level);
716                 if (err < 0 && err != -ENOENT)
717                         goto fail;
718                 nofs += 1 + NIDS_PER_BLOCK;
719                 break;
720         case 3:
721                 nofs = 5 + 2 * NIDS_PER_BLOCK;
722                 if (!offset[level - 1])
723                         goto skip_partial;
724                 err = truncate_partial_nodes(&dn, ri, offset, level);
725                 if (err < 0 && err != -ENOENT)
726                         goto fail;
727                 break;
728         default:
729                 BUG();
730         }
731
732 skip_partial:
733         while (cont) {
734                 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
735                 switch (offset[0]) {
736                 case NODE_DIR1_BLOCK:
737                 case NODE_DIR2_BLOCK:
738                         err = truncate_dnode(&dn);
739                         break;
740
741                 case NODE_IND1_BLOCK:
742                 case NODE_IND2_BLOCK:
743                         err = truncate_nodes(&dn, nofs, offset[1], 2);
744                         break;
745
746                 case NODE_DIND_BLOCK:
747                         err = truncate_nodes(&dn, nofs, offset[1], 3);
748                         cont = 0;
749                         break;
750
751                 default:
752                         BUG();
753                 }
754                 if (err < 0 && err != -ENOENT)
755                         goto fail;
756                 if (offset[1] == 0 &&
757                                 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
758                         lock_page(page);
759                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
760                                 f2fs_put_page(page, 1);
761                                 goto restart;
762                         }
763                         f2fs_wait_on_page_writeback(page, NODE);
764                         ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
765                         set_page_dirty(page);
766                         unlock_page(page);
767                 }
768                 offset[1] = 0;
769                 offset[0]++;
770                 nofs += err;
771         }
772 fail:
773         f2fs_put_page(page, 0);
774         trace_f2fs_truncate_inode_blocks_exit(inode, err);
775         return err > 0 ? 0 : err;
776 }
777
778 int truncate_xattr_node(struct inode *inode, struct page *page)
779 {
780         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
781         nid_t nid = F2FS_I(inode)->i_xattr_nid;
782         struct dnode_of_data dn;
783         struct page *npage;
784
785         if (!nid)
786                 return 0;
787
788         npage = get_node_page(sbi, nid);
789         if (IS_ERR(npage))
790                 return PTR_ERR(npage);
791
792         F2FS_I(inode)->i_xattr_nid = 0;
793
794         /* need to do checkpoint during fsync */
795         F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
796
797         set_new_dnode(&dn, inode, page, npage, nid);
798
799         if (page)
800                 dn.inode_page_locked = true;
801         truncate_node(&dn);
802         return 0;
803 }
804
805 /*
806  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
807  * f2fs_unlock_op().
808  */
809 void remove_inode_page(struct inode *inode)
810 {
811         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
812         struct page *page;
813         nid_t ino = inode->i_ino;
814         struct dnode_of_data dn;
815
816         page = get_node_page(sbi, ino);
817         if (IS_ERR(page))
818                 return;
819
820         if (truncate_xattr_node(inode, page)) {
821                 f2fs_put_page(page, 1);
822                 return;
823         }
824         /* 0 is possible, after f2fs_new_inode() is failed */
825         f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
826         set_new_dnode(&dn, inode, page, page, ino);
827         truncate_node(&dn);
828 }
829
830 struct page *new_inode_page(struct inode *inode, const struct qstr *name)
831 {
832         struct dnode_of_data dn;
833
834         /* allocate inode page for new inode */
835         set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
836
837         /* caller should f2fs_put_page(page, 1); */
838         return new_node_page(&dn, 0, NULL);
839 }
840
841 struct page *new_node_page(struct dnode_of_data *dn,
842                                 unsigned int ofs, struct page *ipage)
843 {
844         struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
845         struct node_info old_ni, new_ni;
846         struct page *page;
847         int err;
848
849         if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
850                 return ERR_PTR(-EPERM);
851
852         page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
853                                         dn->nid, AOP_FLAG_NOFS);
854         if (!page)
855                 return ERR_PTR(-ENOMEM);
856
857         if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
858                 err = -ENOSPC;
859                 goto fail;
860         }
861
862         get_node_info(sbi, dn->nid, &old_ni);
863
864         /* Reinitialize old_ni with new node page */
865         f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
866         new_ni = old_ni;
867         new_ni.ino = dn->inode->i_ino;
868         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
869
870         fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
871         set_cold_node(dn->inode, page);
872         SetPageUptodate(page);
873         set_page_dirty(page);
874
875         if (f2fs_has_xattr_block(ofs))
876                 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
877
878         dn->node_page = page;
879         if (ipage)
880                 update_inode(dn->inode, ipage);
881         else
882                 sync_inode_page(dn);
883         if (ofs == 0)
884                 inc_valid_inode_count(sbi);
885
886         return page;
887
888 fail:
889         clear_node_page_dirty(page);
890         f2fs_put_page(page, 1);
891         return ERR_PTR(err);
892 }
893
894 /*
895  * Caller should do after getting the following values.
896  * 0: f2fs_put_page(page, 0)
897  * LOCKED_PAGE: f2fs_put_page(page, 1)
898  * error: nothing
899  */
900 static int read_node_page(struct page *page, int rw)
901 {
902         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
903         struct node_info ni;
904
905         get_node_info(sbi, page->index, &ni);
906
907         if (unlikely(ni.blk_addr == NULL_ADDR)) {
908                 f2fs_put_page(page, 1);
909                 return -ENOENT;
910         }
911
912         if (PageUptodate(page))
913                 return LOCKED_PAGE;
914
915         return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
916 }
917
918 /*
919  * Readahead a node page
920  */
921 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
922 {
923         struct page *apage;
924         int err;
925
926         apage = find_get_page(NODE_MAPPING(sbi), nid);
927         if (apage && PageUptodate(apage)) {
928                 f2fs_put_page(apage, 0);
929                 return;
930         }
931         f2fs_put_page(apage, 0);
932
933         apage = grab_cache_page(NODE_MAPPING(sbi), nid);
934         if (!apage)
935                 return;
936
937         err = read_node_page(apage, READA);
938         if (err == 0)
939                 f2fs_put_page(apage, 0);
940         else if (err == LOCKED_PAGE)
941                 f2fs_put_page(apage, 1);
942 }
943
944 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
945 {
946         struct page *page;
947         int err;
948 repeat:
949         page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
950                                         nid, AOP_FLAG_NOFS);
951         if (!page)
952                 return ERR_PTR(-ENOMEM);
953
954         err = read_node_page(page, READ_SYNC);
955         if (err < 0)
956                 return ERR_PTR(err);
957         else if (err == LOCKED_PAGE)
958                 goto got_it;
959
960         lock_page(page);
961         if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
962                 f2fs_put_page(page, 1);
963                 return ERR_PTR(-EIO);
964         }
965         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
966                 f2fs_put_page(page, 1);
967                 goto repeat;
968         }
969 got_it:
970         mark_page_accessed(page);
971         return page;
972 }
973
974 /*
975  * Return a locked page for the desired node page.
976  * And, readahead MAX_RA_NODE number of node pages.
977  */
978 struct page *get_node_page_ra(struct page *parent, int start)
979 {
980         struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
981         struct blk_plug plug;
982         struct page *page;
983         int err, i, end;
984         nid_t nid;
985
986         /* First, try getting the desired direct node. */
987         nid = get_nid(parent, start, false);
988         if (!nid)
989                 return ERR_PTR(-ENOENT);
990 repeat:
991         page = grab_cache_page(NODE_MAPPING(sbi), nid);
992         if (!page)
993                 return ERR_PTR(-ENOMEM);
994
995         err = read_node_page(page, READ_SYNC);
996         if (err < 0)
997                 return ERR_PTR(err);
998         else if (err == LOCKED_PAGE)
999                 goto page_hit;
1000
1001         blk_start_plug(&plug);
1002
1003         /* Then, try readahead for siblings of the desired node */
1004         end = start + MAX_RA_NODE;
1005         end = min(end, NIDS_PER_BLOCK);
1006         for (i = start + 1; i < end; i++) {
1007                 nid = get_nid(parent, i, false);
1008                 if (!nid)
1009                         continue;
1010                 ra_node_page(sbi, nid);
1011         }
1012
1013         blk_finish_plug(&plug);
1014
1015         lock_page(page);
1016         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1017                 f2fs_put_page(page, 1);
1018                 goto repeat;
1019         }
1020 page_hit:
1021         if (unlikely(!PageUptodate(page))) {
1022                 f2fs_put_page(page, 1);
1023                 return ERR_PTR(-EIO);
1024         }
1025         mark_page_accessed(page);
1026         return page;
1027 }
1028
1029 void sync_inode_page(struct dnode_of_data *dn)
1030 {
1031         if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1032                 update_inode(dn->inode, dn->node_page);
1033         } else if (dn->inode_page) {
1034                 if (!dn->inode_page_locked)
1035                         lock_page(dn->inode_page);
1036                 update_inode(dn->inode, dn->inode_page);
1037                 if (!dn->inode_page_locked)
1038                         unlock_page(dn->inode_page);
1039         } else {
1040                 update_inode_page(dn->inode);
1041         }
1042 }
1043
1044 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1045                                         struct writeback_control *wbc)
1046 {
1047         pgoff_t index, end;
1048         struct pagevec pvec;
1049         int step = ino ? 2 : 0;
1050         int nwritten = 0, wrote = 0;
1051
1052         pagevec_init(&pvec, 0);
1053
1054 next_step:
1055         index = 0;
1056         end = LONG_MAX;
1057
1058         while (index <= end) {
1059                 int i, nr_pages;
1060                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1061                                 PAGECACHE_TAG_DIRTY,
1062                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1063                 if (nr_pages == 0)
1064                         break;
1065
1066                 for (i = 0; i < nr_pages; i++) {
1067                         struct page *page = pvec.pages[i];
1068
1069                         /*
1070                          * flushing sequence with step:
1071                          * 0. indirect nodes
1072                          * 1. dentry dnodes
1073                          * 2. file dnodes
1074                          */
1075                         if (step == 0 && IS_DNODE(page))
1076                                 continue;
1077                         if (step == 1 && (!IS_DNODE(page) ||
1078                                                 is_cold_node(page)))
1079                                 continue;
1080                         if (step == 2 && (!IS_DNODE(page) ||
1081                                                 !is_cold_node(page)))
1082                                 continue;
1083
1084                         /*
1085                          * If an fsync mode,
1086                          * we should not skip writing node pages.
1087                          */
1088                         if (ino && ino_of_node(page) == ino)
1089                                 lock_page(page);
1090                         else if (!trylock_page(page))
1091                                 continue;
1092
1093                         if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1094 continue_unlock:
1095                                 unlock_page(page);
1096                                 continue;
1097                         }
1098                         if (ino && ino_of_node(page) != ino)
1099                                 goto continue_unlock;
1100
1101                         if (!PageDirty(page)) {
1102                                 /* someone wrote it for us */
1103                                 goto continue_unlock;
1104                         }
1105
1106                         if (!clear_page_dirty_for_io(page))
1107                                 goto continue_unlock;
1108
1109                         /* called by fsync() */
1110                         if (ino && IS_DNODE(page)) {
1111                                 int mark = !is_checkpointed_node(sbi, ino);
1112                                 set_fsync_mark(page, 1);
1113                                 if (IS_INODE(page))
1114                                         set_dentry_mark(page, mark);
1115                                 nwritten++;
1116                         } else {
1117                                 set_fsync_mark(page, 0);
1118                                 set_dentry_mark(page, 0);
1119                         }
1120                         NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1121                         wrote++;
1122
1123                         if (--wbc->nr_to_write == 0)
1124                                 break;
1125                 }
1126                 pagevec_release(&pvec);
1127                 cond_resched();
1128
1129                 if (wbc->nr_to_write == 0) {
1130                         step = 2;
1131                         break;
1132                 }
1133         }
1134
1135         if (step < 2) {
1136                 step++;
1137                 goto next_step;
1138         }
1139
1140         if (wrote)
1141                 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1142         return nwritten;
1143 }
1144
1145 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1146 {
1147         pgoff_t index = 0, end = LONG_MAX;
1148         struct pagevec pvec;
1149         int ret2 = 0, ret = 0;
1150
1151         pagevec_init(&pvec, 0);
1152
1153         while (index <= end) {
1154                 int i, nr_pages;
1155                 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1156                                 PAGECACHE_TAG_WRITEBACK,
1157                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1158                 if (nr_pages == 0)
1159                         break;
1160
1161                 for (i = 0; i < nr_pages; i++) {
1162                         struct page *page = pvec.pages[i];
1163
1164                         /* until radix tree lookup accepts end_index */
1165                         if (unlikely(page->index > end))
1166                                 continue;
1167
1168                         if (ino && ino_of_node(page) == ino) {
1169                                 f2fs_wait_on_page_writeback(page, NODE);
1170                                 if (TestClearPageError(page))
1171                                         ret = -EIO;
1172                         }
1173                 }
1174                 pagevec_release(&pvec);
1175                 cond_resched();
1176         }
1177
1178         if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1179                 ret2 = -ENOSPC;
1180         if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1181                 ret2 = -EIO;
1182         if (!ret)
1183                 ret = ret2;
1184         return ret;
1185 }
1186
1187 static int f2fs_write_node_page(struct page *page,
1188                                 struct writeback_control *wbc)
1189 {
1190         struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1191         nid_t nid;
1192         block_t new_addr;
1193         struct node_info ni;
1194         struct f2fs_io_info fio = {
1195                 .type = NODE,
1196                 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1197         };
1198
1199         if (unlikely(sbi->por_doing))
1200                 goto redirty_out;
1201
1202         f2fs_wait_on_page_writeback(page, NODE);
1203
1204         /* get old block addr of this node page */
1205         nid = nid_of_node(page);
1206         f2fs_bug_on(page->index != nid);
1207
1208         get_node_info(sbi, nid, &ni);
1209
1210         /* This page is already truncated */
1211         if (unlikely(ni.blk_addr == NULL_ADDR)) {
1212                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1213                 unlock_page(page);
1214                 return 0;
1215         }
1216
1217         if (wbc->for_reclaim)
1218                 goto redirty_out;
1219
1220         mutex_lock(&sbi->node_write);
1221         set_page_writeback(page);
1222         write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1223         set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1224         dec_page_count(sbi, F2FS_DIRTY_NODES);
1225         mutex_unlock(&sbi->node_write);
1226         unlock_page(page);
1227         return 0;
1228
1229 redirty_out:
1230         dec_page_count(sbi, F2FS_DIRTY_NODES);
1231         wbc->pages_skipped++;
1232         account_page_redirty(page);
1233         set_page_dirty(page);
1234         return AOP_WRITEPAGE_ACTIVATE;
1235 }
1236
1237 static int f2fs_write_node_pages(struct address_space *mapping,
1238                             struct writeback_control *wbc)
1239 {
1240         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1241         long diff;
1242
1243         /* balancing f2fs's metadata in background */
1244         f2fs_balance_fs_bg(sbi);
1245
1246         /* collect a number of dirty node pages and write together */
1247         if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1248                 goto skip_write;
1249
1250         diff = nr_pages_to_write(sbi, NODE, wbc);
1251         wbc->sync_mode = WB_SYNC_NONE;
1252         sync_node_pages(sbi, 0, wbc);
1253         wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1254         return 0;
1255
1256 skip_write:
1257         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1258         return 0;
1259 }
1260
1261 static int f2fs_set_node_page_dirty(struct page *page)
1262 {
1263         struct address_space *mapping = page->mapping;
1264         struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1265
1266         trace_f2fs_set_page_dirty(page, NODE);
1267
1268         SetPageUptodate(page);
1269         if (!PageDirty(page)) {
1270                 __set_page_dirty_nobuffers(page);
1271                 inc_page_count(sbi, F2FS_DIRTY_NODES);
1272                 SetPagePrivate(page);
1273                 return 1;
1274         }
1275         return 0;
1276 }
1277
1278 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1279                                       unsigned int length)
1280 {
1281         struct inode *inode = page->mapping->host;
1282         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1283         if (PageDirty(page))
1284                 dec_page_count(sbi, F2FS_DIRTY_NODES);
1285         ClearPagePrivate(page);
1286 }
1287
1288 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1289 {
1290         ClearPagePrivate(page);
1291         return 1;
1292 }
1293
1294 /*
1295  * Structure of the f2fs node operations
1296  */
1297 const struct address_space_operations f2fs_node_aops = {
1298         .writepage      = f2fs_write_node_page,
1299         .writepages     = f2fs_write_node_pages,
1300         .set_page_dirty = f2fs_set_node_page_dirty,
1301         .invalidatepage = f2fs_invalidate_node_page,
1302         .releasepage    = f2fs_release_node_page,
1303 };
1304
1305 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1306                                                 nid_t n)
1307 {
1308         return radix_tree_lookup(&nm_i->free_nid_root, n);
1309 }
1310
1311 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1312                                                 struct free_nid *i)
1313 {
1314         list_del(&i->list);
1315         radix_tree_delete(&nm_i->free_nid_root, i->nid);
1316 }
1317
1318 static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
1319 {
1320         struct free_nid *i;
1321         struct nat_entry *ne;
1322         bool allocated = false;
1323
1324         if (!available_free_memory(nm_i, FREE_NIDS))
1325                 return -1;
1326
1327         /* 0 nid should not be used */
1328         if (unlikely(nid == 0))
1329                 return 0;
1330
1331         if (build) {
1332                 /* do not add allocated nids */
1333                 read_lock(&nm_i->nat_tree_lock);
1334                 ne = __lookup_nat_cache(nm_i, nid);
1335                 if (ne &&
1336                         (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1337                         allocated = true;
1338                 read_unlock(&nm_i->nat_tree_lock);
1339                 if (allocated)
1340                         return 0;
1341         }
1342
1343         i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1344         i->nid = nid;
1345         i->state = NID_NEW;
1346
1347         spin_lock(&nm_i->free_nid_list_lock);
1348         if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1349                 spin_unlock(&nm_i->free_nid_list_lock);
1350                 kmem_cache_free(free_nid_slab, i);
1351                 return 0;
1352         }
1353         list_add_tail(&i->list, &nm_i->free_nid_list);
1354         nm_i->fcnt++;
1355         spin_unlock(&nm_i->free_nid_list_lock);
1356         return 1;
1357 }
1358
1359 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1360 {
1361         struct free_nid *i;
1362         bool need_free = false;
1363
1364         spin_lock(&nm_i->free_nid_list_lock);
1365         i = __lookup_free_nid_list(nm_i, nid);
1366         if (i && i->state == NID_NEW) {
1367                 __del_from_free_nid_list(nm_i, i);
1368                 nm_i->fcnt--;
1369                 need_free = true;
1370         }
1371         spin_unlock(&nm_i->free_nid_list_lock);
1372
1373         if (need_free)
1374                 kmem_cache_free(free_nid_slab, i);
1375 }
1376
1377 static void scan_nat_page(struct f2fs_nm_info *nm_i,
1378                         struct page *nat_page, nid_t start_nid)
1379 {
1380         struct f2fs_nat_block *nat_blk = page_address(nat_page);
1381         block_t blk_addr;
1382         int i;
1383
1384         i = start_nid % NAT_ENTRY_PER_BLOCK;
1385
1386         for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1387
1388                 if (unlikely(start_nid >= nm_i->max_nid))
1389                         break;
1390
1391                 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1392                 f2fs_bug_on(blk_addr == NEW_ADDR);
1393                 if (blk_addr == NULL_ADDR) {
1394                         if (add_free_nid(nm_i, start_nid, true) < 0)
1395                                 break;
1396                 }
1397         }
1398 }
1399
1400 static void build_free_nids(struct f2fs_sb_info *sbi)
1401 {
1402         struct f2fs_nm_info *nm_i = NM_I(sbi);
1403         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1404         struct f2fs_summary_block *sum = curseg->sum_blk;
1405         int i = 0;
1406         nid_t nid = nm_i->next_scan_nid;
1407
1408         /* Enough entries */
1409         if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1410                 return;
1411
1412         /* readahead nat pages to be scanned */
1413         ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1414
1415         while (1) {
1416                 struct page *page = get_current_nat_page(sbi, nid);
1417
1418                 scan_nat_page(nm_i, page, nid);
1419                 f2fs_put_page(page, 1);
1420
1421                 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1422                 if (unlikely(nid >= nm_i->max_nid))
1423                         nid = 0;
1424
1425                 if (i++ == FREE_NID_PAGES)
1426                         break;
1427         }
1428
1429         /* go to the next free nat pages to find free nids abundantly */
1430         nm_i->next_scan_nid = nid;
1431
1432         /* find free nids from current sum_pages */
1433         mutex_lock(&curseg->curseg_mutex);
1434         for (i = 0; i < nats_in_cursum(sum); i++) {
1435                 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1436                 nid = le32_to_cpu(nid_in_journal(sum, i));
1437                 if (addr == NULL_ADDR)
1438                         add_free_nid(nm_i, nid, true);
1439                 else
1440                         remove_free_nid(nm_i, nid);
1441         }
1442         mutex_unlock(&curseg->curseg_mutex);
1443 }
1444
1445 /*
1446  * If this function returns success, caller can obtain a new nid
1447  * from second parameter of this function.
1448  * The returned nid could be used ino as well as nid when inode is created.
1449  */
1450 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1451 {
1452         struct f2fs_nm_info *nm_i = NM_I(sbi);
1453         struct free_nid *i = NULL;
1454 retry:
1455         if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
1456                 return false;
1457
1458         spin_lock(&nm_i->free_nid_list_lock);
1459
1460         /* We should not use stale free nids created by build_free_nids */
1461         if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1462                 f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1463                 list_for_each_entry(i, &nm_i->free_nid_list, list)
1464                         if (i->state == NID_NEW)
1465                                 break;
1466
1467                 f2fs_bug_on(i->state != NID_NEW);
1468                 *nid = i->nid;
1469                 i->state = NID_ALLOC;
1470                 nm_i->fcnt--;
1471                 spin_unlock(&nm_i->free_nid_list_lock);
1472                 return true;
1473         }
1474         spin_unlock(&nm_i->free_nid_list_lock);
1475
1476         /* Let's scan nat pages and its caches to get free nids */
1477         mutex_lock(&nm_i->build_lock);
1478         build_free_nids(sbi);
1479         mutex_unlock(&nm_i->build_lock);
1480         goto retry;
1481 }
1482
1483 /*
1484  * alloc_nid() should be called prior to this function.
1485  */
1486 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1487 {
1488         struct f2fs_nm_info *nm_i = NM_I(sbi);
1489         struct free_nid *i;
1490
1491         spin_lock(&nm_i->free_nid_list_lock);
1492         i = __lookup_free_nid_list(nm_i, nid);
1493         f2fs_bug_on(!i || i->state != NID_ALLOC);
1494         __del_from_free_nid_list(nm_i, i);
1495         spin_unlock(&nm_i->free_nid_list_lock);
1496
1497         kmem_cache_free(free_nid_slab, i);
1498 }
1499
1500 /*
1501  * alloc_nid() should be called prior to this function.
1502  */
1503 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1504 {
1505         struct f2fs_nm_info *nm_i = NM_I(sbi);
1506         struct free_nid *i;
1507         bool need_free = false;
1508
1509         if (!nid)
1510                 return;
1511
1512         spin_lock(&nm_i->free_nid_list_lock);
1513         i = __lookup_free_nid_list(nm_i, nid);
1514         f2fs_bug_on(!i || i->state != NID_ALLOC);
1515         if (!available_free_memory(nm_i, FREE_NIDS)) {
1516                 __del_from_free_nid_list(nm_i, i);
1517                 need_free = true;
1518         } else {
1519                 i->state = NID_NEW;
1520                 nm_i->fcnt++;
1521         }
1522         spin_unlock(&nm_i->free_nid_list_lock);
1523
1524         if (need_free)
1525                 kmem_cache_free(free_nid_slab, i);
1526 }
1527
1528 void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1529                 struct f2fs_summary *sum, struct node_info *ni,
1530                 block_t new_blkaddr)
1531 {
1532         rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1533         set_node_addr(sbi, ni, new_blkaddr, false);
1534         clear_node_page_dirty(page);
1535 }
1536
1537 void recover_inline_xattr(struct inode *inode, struct page *page)
1538 {
1539         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1540         void *src_addr, *dst_addr;
1541         size_t inline_size;
1542         struct page *ipage;
1543         struct f2fs_inode *ri;
1544
1545         if (!f2fs_has_inline_xattr(inode))
1546                 return;
1547
1548         if (!IS_INODE(page))
1549                 return;
1550
1551         ri = F2FS_INODE(page);
1552         if (!(ri->i_inline & F2FS_INLINE_XATTR))
1553                 return;
1554
1555         ipage = get_node_page(sbi, inode->i_ino);
1556         f2fs_bug_on(IS_ERR(ipage));
1557
1558         dst_addr = inline_xattr_addr(ipage);
1559         src_addr = inline_xattr_addr(page);
1560         inline_size = inline_xattr_size(inode);
1561
1562         memcpy(dst_addr, src_addr, inline_size);
1563
1564         update_inode(inode, ipage);
1565         f2fs_put_page(ipage, 1);
1566 }
1567
1568 bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1569 {
1570         struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1571         nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1572         nid_t new_xnid = nid_of_node(page);
1573         struct node_info ni;
1574
1575         recover_inline_xattr(inode, page);
1576
1577         if (!f2fs_has_xattr_block(ofs_of_node(page)))
1578                 return false;
1579
1580         /* 1: invalidate the previous xattr nid */
1581         if (!prev_xnid)
1582                 goto recover_xnid;
1583
1584         /* Deallocate node address */
1585         get_node_info(sbi, prev_xnid, &ni);
1586         f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1587         invalidate_blocks(sbi, ni.blk_addr);
1588         dec_valid_node_count(sbi, inode);
1589         set_node_addr(sbi, &ni, NULL_ADDR, false);
1590
1591 recover_xnid:
1592         /* 2: allocate new xattr nid */
1593         if (unlikely(!inc_valid_node_count(sbi, inode)))
1594                 f2fs_bug_on(1);
1595
1596         remove_free_nid(NM_I(sbi), new_xnid);
1597         get_node_info(sbi, new_xnid, &ni);
1598         ni.ino = inode->i_ino;
1599         set_node_addr(sbi, &ni, NEW_ADDR, false);
1600         F2FS_I(inode)->i_xattr_nid = new_xnid;
1601
1602         /* 3: update xattr blkaddr */
1603         refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1604         set_node_addr(sbi, &ni, blkaddr, false);
1605
1606         update_inode_page(inode);
1607         return true;
1608 }
1609
1610 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1611 {
1612         struct f2fs_inode *src, *dst;
1613         nid_t ino = ino_of_node(page);
1614         struct node_info old_ni, new_ni;
1615         struct page *ipage;
1616
1617         ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1618         if (!ipage)
1619                 return -ENOMEM;
1620
1621         /* Should not use this inode  from free nid list */
1622         remove_free_nid(NM_I(sbi), ino);
1623
1624         get_node_info(sbi, ino, &old_ni);
1625         SetPageUptodate(ipage);
1626         fill_node_footer(ipage, ino, ino, 0, true);
1627
1628         src = F2FS_INODE(page);
1629         dst = F2FS_INODE(ipage);
1630
1631         memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1632         dst->i_size = 0;
1633         dst->i_blocks = cpu_to_le64(1);
1634         dst->i_links = cpu_to_le32(1);
1635         dst->i_xattr_nid = 0;
1636
1637         new_ni = old_ni;
1638         new_ni.ino = ino;
1639
1640         if (unlikely(!inc_valid_node_count(sbi, NULL)))
1641                 WARN_ON(1);
1642         set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1643         inc_valid_inode_count(sbi);
1644         f2fs_put_page(ipage, 1);
1645         return 0;
1646 }
1647
1648 /*
1649  * ra_sum_pages() merge contiguous pages into one bio and submit.
1650  * these pre-readed pages are linked in pages list.
1651  */
1652 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1653                                 int start, int nrpages)
1654 {
1655         struct page *page;
1656         int page_idx = start;
1657         struct f2fs_io_info fio = {
1658                 .type = META,
1659                 .rw = READ_SYNC | REQ_META | REQ_PRIO
1660         };
1661
1662         for (; page_idx < start + nrpages; page_idx++) {
1663                 /* alloc temporal page for read node summary info*/
1664                 page = alloc_page(GFP_F2FS_ZERO);
1665                 if (!page)
1666                         break;
1667
1668                 lock_page(page);
1669                 page->index = page_idx;
1670                 list_add_tail(&page->lru, pages);
1671         }
1672
1673         list_for_each_entry(page, pages, lru)
1674                 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1675
1676         f2fs_submit_merged_bio(sbi, META, READ);
1677
1678         return page_idx - start;
1679 }
1680
1681 int restore_node_summary(struct f2fs_sb_info *sbi,
1682                         unsigned int segno, struct f2fs_summary_block *sum)
1683 {
1684         struct f2fs_node *rn;
1685         struct f2fs_summary *sum_entry;
1686         struct page *page, *tmp;
1687         block_t addr;
1688         int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1689         int i, last_offset, nrpages, err = 0;
1690         LIST_HEAD(page_list);
1691
1692         /* scan the node segment */
1693         last_offset = sbi->blocks_per_seg;
1694         addr = START_BLOCK(sbi, segno);
1695         sum_entry = &sum->entries[0];
1696
1697         for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1698                 nrpages = min(last_offset - i, bio_blocks);
1699
1700                 /* read ahead node pages */
1701                 nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
1702                 if (!nrpages)
1703                         return -ENOMEM;
1704
1705                 list_for_each_entry_safe(page, tmp, &page_list, lru) {
1706                         if (err)
1707                                 goto skip;
1708
1709                         lock_page(page);
1710                         if (unlikely(!PageUptodate(page))) {
1711                                 err = -EIO;
1712                         } else {
1713                                 rn = F2FS_NODE(page);
1714                                 sum_entry->nid = rn->footer.nid;
1715                                 sum_entry->version = 0;
1716                                 sum_entry->ofs_in_node = 0;
1717                                 sum_entry++;
1718                         }
1719                         unlock_page(page);
1720 skip:
1721                         list_del(&page->lru);
1722                         __free_pages(page, 0);
1723                 }
1724         }
1725         return err;
1726 }
1727
1728 static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1729 {
1730         struct f2fs_nm_info *nm_i = NM_I(sbi);
1731         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1732         struct f2fs_summary_block *sum = curseg->sum_blk;
1733         int i;
1734
1735         mutex_lock(&curseg->curseg_mutex);
1736
1737         if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1738                 mutex_unlock(&curseg->curseg_mutex);
1739                 return false;
1740         }
1741
1742         for (i = 0; i < nats_in_cursum(sum); i++) {
1743                 struct nat_entry *ne;
1744                 struct f2fs_nat_entry raw_ne;
1745                 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1746
1747                 raw_ne = nat_in_journal(sum, i);
1748 retry:
1749                 write_lock(&nm_i->nat_tree_lock);
1750                 ne = __lookup_nat_cache(nm_i, nid);
1751                 if (ne) {
1752                         __set_nat_cache_dirty(nm_i, ne);
1753                         write_unlock(&nm_i->nat_tree_lock);
1754                         continue;
1755                 }
1756                 ne = grab_nat_entry(nm_i, nid);
1757                 if (!ne) {
1758                         write_unlock(&nm_i->nat_tree_lock);
1759                         goto retry;
1760                 }
1761                 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1762                 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1763                 nat_set_version(ne, raw_ne.version);
1764                 __set_nat_cache_dirty(nm_i, ne);
1765                 write_unlock(&nm_i->nat_tree_lock);
1766         }
1767         update_nats_in_cursum(sum, -i);
1768         mutex_unlock(&curseg->curseg_mutex);
1769         return true;
1770 }
1771
1772 /*
1773  * This function is called during the checkpointing process.
1774  */
1775 void flush_nat_entries(struct f2fs_sb_info *sbi)
1776 {
1777         struct f2fs_nm_info *nm_i = NM_I(sbi);
1778         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1779         struct f2fs_summary_block *sum = curseg->sum_blk;
1780         struct nat_entry *ne, *cur;
1781         struct page *page = NULL;
1782         struct f2fs_nat_block *nat_blk = NULL;
1783         nid_t start_nid = 0, end_nid = 0;
1784         bool flushed;
1785
1786         flushed = flush_nats_in_journal(sbi);
1787
1788         if (!flushed)
1789                 mutex_lock(&curseg->curseg_mutex);
1790
1791         /* 1) flush dirty nat caches */
1792         list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1793                 nid_t nid;
1794                 struct f2fs_nat_entry raw_ne;
1795                 int offset = -1;
1796                 block_t new_blkaddr;
1797
1798                 if (nat_get_blkaddr(ne) == NEW_ADDR)
1799                         continue;
1800
1801                 nid = nat_get_nid(ne);
1802
1803                 if (flushed)
1804                         goto to_nat_page;
1805
1806                 /* if there is room for nat enries in curseg->sumpage */
1807                 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1808                 if (offset >= 0) {
1809                         raw_ne = nat_in_journal(sum, offset);
1810                         goto flush_now;
1811                 }
1812 to_nat_page:
1813                 if (!page || (start_nid > nid || nid > end_nid)) {
1814                         if (page) {
1815                                 f2fs_put_page(page, 1);
1816                                 page = NULL;
1817                         }
1818                         start_nid = START_NID(nid);
1819                         end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1820
1821                         /*
1822                          * get nat block with dirty flag, increased reference
1823                          * count, mapped and lock
1824                          */
1825                         page = get_next_nat_page(sbi, start_nid);
1826                         nat_blk = page_address(page);
1827                 }
1828
1829                 f2fs_bug_on(!nat_blk);
1830                 raw_ne = nat_blk->entries[nid - start_nid];
1831 flush_now:
1832                 new_blkaddr = nat_get_blkaddr(ne);
1833
1834                 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1835                 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1836                 raw_ne.version = nat_get_version(ne);
1837
1838                 if (offset < 0) {
1839                         nat_blk->entries[nid - start_nid] = raw_ne;
1840                 } else {
1841                         nat_in_journal(sum, offset) = raw_ne;
1842                         nid_in_journal(sum, offset) = cpu_to_le32(nid);
1843                 }
1844
1845                 if (nat_get_blkaddr(ne) == NULL_ADDR &&
1846                                 add_free_nid(NM_I(sbi), nid, false) <= 0) {
1847                         write_lock(&nm_i->nat_tree_lock);
1848                         __del_from_nat_cache(nm_i, ne);
1849                         write_unlock(&nm_i->nat_tree_lock);
1850                 } else {
1851                         write_lock(&nm_i->nat_tree_lock);
1852                         __clear_nat_cache_dirty(nm_i, ne);
1853                         write_unlock(&nm_i->nat_tree_lock);
1854                 }
1855         }
1856         if (!flushed)
1857                 mutex_unlock(&curseg->curseg_mutex);
1858         f2fs_put_page(page, 1);
1859 }
1860
1861 static int init_node_manager(struct f2fs_sb_info *sbi)
1862 {
1863         struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1864         struct f2fs_nm_info *nm_i = NM_I(sbi);
1865         unsigned char *version_bitmap;
1866         unsigned int nat_segs, nat_blocks;
1867
1868         nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1869
1870         /* segment_count_nat includes pair segment so divide to 2. */
1871         nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1872         nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1873
1874         /* not used nids: 0, node, meta, (and root counted as valid node) */
1875         nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
1876         nm_i->fcnt = 0;
1877         nm_i->nat_cnt = 0;
1878         nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1879
1880         INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1881         INIT_LIST_HEAD(&nm_i->free_nid_list);
1882         INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1883         INIT_LIST_HEAD(&nm_i->nat_entries);
1884         INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1885
1886         mutex_init(&nm_i->build_lock);
1887         spin_lock_init(&nm_i->free_nid_list_lock);
1888         rwlock_init(&nm_i->nat_tree_lock);
1889
1890         nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1891         nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1892         version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1893         if (!version_bitmap)
1894                 return -EFAULT;
1895
1896         nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1897                                         GFP_KERNEL);
1898         if (!nm_i->nat_bitmap)
1899                 return -ENOMEM;
1900         return 0;
1901 }
1902
1903 int build_node_manager(struct f2fs_sb_info *sbi)
1904 {
1905         int err;
1906
1907         sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1908         if (!sbi->nm_info)
1909                 return -ENOMEM;
1910
1911         err = init_node_manager(sbi);
1912         if (err)
1913                 return err;
1914
1915         build_free_nids(sbi);
1916         return 0;
1917 }
1918
1919 void destroy_node_manager(struct f2fs_sb_info *sbi)
1920 {
1921         struct f2fs_nm_info *nm_i = NM_I(sbi);
1922         struct free_nid *i, *next_i;
1923         struct nat_entry *natvec[NATVEC_SIZE];
1924         nid_t nid = 0;
1925         unsigned int found;
1926
1927         if (!nm_i)
1928                 return;
1929
1930         /* destroy free nid list */
1931         spin_lock(&nm_i->free_nid_list_lock);
1932         list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1933                 f2fs_bug_on(i->state == NID_ALLOC);
1934                 __del_from_free_nid_list(nm_i, i);
1935                 nm_i->fcnt--;
1936                 spin_unlock(&nm_i->free_nid_list_lock);
1937                 kmem_cache_free(free_nid_slab, i);
1938                 spin_lock(&nm_i->free_nid_list_lock);
1939         }
1940         f2fs_bug_on(nm_i->fcnt);
1941         spin_unlock(&nm_i->free_nid_list_lock);
1942
1943         /* destroy nat cache */
1944         write_lock(&nm_i->nat_tree_lock);
1945         while ((found = __gang_lookup_nat_cache(nm_i,
1946                                         nid, NATVEC_SIZE, natvec))) {
1947                 unsigned idx;
1948                 nid = nat_get_nid(natvec[found - 1]) + 1;
1949                 for (idx = 0; idx < found; idx++)
1950                         __del_from_nat_cache(nm_i, natvec[idx]);
1951         }
1952         f2fs_bug_on(nm_i->nat_cnt);
1953         write_unlock(&nm_i->nat_tree_lock);
1954
1955         kfree(nm_i->nat_bitmap);
1956         sbi->nm_info = NULL;
1957         kfree(nm_i);
1958 }
1959
1960 int __init create_node_manager_caches(void)
1961 {
1962         nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1963                         sizeof(struct nat_entry));
1964         if (!nat_entry_slab)
1965                 return -ENOMEM;
1966
1967         free_nid_slab = f2fs_kmem_cache_create("free_nid",
1968                         sizeof(struct free_nid));
1969         if (!free_nid_slab) {
1970                 kmem_cache_destroy(nat_entry_slab);
1971                 return -ENOMEM;
1972         }
1973         return 0;
1974 }
1975
1976 void destroy_node_manager_caches(void)
1977 {
1978         kmem_cache_destroy(free_nid_slab);
1979         kmem_cache_destroy(nat_entry_slab);
1980 }