Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = META_MAPPING(sbi);
53         struct page *page;
54         struct f2fs_io_info fio = {
55                 .type = META,
56                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
57                 .blk_addr = index,
58         };
59 repeat:
60         page = grab_cache_page(mapping, index);
61         if (!page) {
62                 cond_resched();
63                 goto repeat;
64         }
65         if (PageUptodate(page))
66                 goto out;
67
68         if (f2fs_submit_page_bio(sbi, page, &fio))
69                 goto repeat;
70
71         lock_page(page);
72         if (unlikely(page->mapping != mapping)) {
73                 f2fs_put_page(page, 1);
74                 goto repeat;
75         }
76 out:
77         return page;
78 }
79
80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
81                                                 block_t blkaddr, int type)
82 {
83         switch (type) {
84         case META_NAT:
85                 break;
86         case META_SIT:
87                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
88                         return false;
89                 break;
90         case META_SSA:
91                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
92                         blkaddr < SM_I(sbi)->ssa_blkaddr))
93                         return false;
94                 break;
95         case META_CP:
96                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
97                         blkaddr < __start_cp_addr(sbi)))
98                         return false;
99                 break;
100         case META_POR:
101                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
102                         blkaddr < MAIN_BLKADDR(sbi)))
103                         return false;
104                 break;
105         default:
106                 BUG();
107         }
108
109         return true;
110 }
111
112 /*
113  * Readahead CP/NAT/SIT/SSA pages
114  */
115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
116 {
117         block_t prev_blk_addr = 0;
118         struct page *page;
119         block_t blkno = start;
120         struct f2fs_io_info fio = {
121                 .type = META,
122                 .rw = READ_SYNC | REQ_META | REQ_PRIO
123         };
124
125         for (; nrpages-- > 0; blkno++) {
126
127                 if (!is_valid_blkaddr(sbi, blkno, type))
128                         goto out;
129
130                 switch (type) {
131                 case META_NAT:
132                         if (unlikely(blkno >=
133                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
134                                 blkno = 0;
135                         /* get nat block addr */
136                         fio.blk_addr = current_nat_addr(sbi,
137                                         blkno * NAT_ENTRY_PER_BLOCK);
138                         break;
139                 case META_SIT:
140                         /* get sit block addr */
141                         fio.blk_addr = current_sit_addr(sbi,
142                                         blkno * SIT_ENTRY_PER_BLOCK);
143                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
144                                 goto out;
145                         prev_blk_addr = fio.blk_addr;
146                         break;
147                 case META_SSA:
148                 case META_CP:
149                 case META_POR:
150                         fio.blk_addr = blkno;
151                         break;
152                 default:
153                         BUG();
154                 }
155
156                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
157                 if (!page)
158                         continue;
159                 if (PageUptodate(page)) {
160                         f2fs_put_page(page, 1);
161                         continue;
162                 }
163
164                 f2fs_submit_page_mbio(sbi, page, &fio);
165                 f2fs_put_page(page, 0);
166         }
167 out:
168         f2fs_submit_merged_bio(sbi, META, READ);
169         return blkno - start;
170 }
171
172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
173 {
174         struct page *page;
175         bool readahead = false;
176
177         page = find_get_page(META_MAPPING(sbi), index);
178         if (!page || (page && !PageUptodate(page)))
179                 readahead = true;
180         f2fs_put_page(page, 0);
181
182         if (readahead)
183                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
184 }
185
186 static int f2fs_write_meta_page(struct page *page,
187                                 struct writeback_control *wbc)
188 {
189         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
190
191         trace_f2fs_writepage(page, META);
192
193         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
194                 goto redirty_out;
195         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
196                 goto redirty_out;
197         if (unlikely(f2fs_cp_error(sbi)))
198                 goto redirty_out;
199
200         f2fs_wait_on_page_writeback(page, META);
201         write_meta_page(sbi, page);
202         dec_page_count(sbi, F2FS_DIRTY_META);
203         unlock_page(page);
204
205         if (wbc->for_reclaim)
206                 f2fs_submit_merged_bio(sbi, META, WRITE);
207         return 0;
208
209 redirty_out:
210         redirty_page_for_writepage(wbc, page);
211         return AOP_WRITEPAGE_ACTIVATE;
212 }
213
214 static int f2fs_write_meta_pages(struct address_space *mapping,
215                                 struct writeback_control *wbc)
216 {
217         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
218         long diff, written;
219
220         trace_f2fs_writepages(mapping->host, wbc, META);
221
222         /* collect a number of dirty meta pages and write together */
223         if (wbc->for_kupdate ||
224                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
225                 goto skip_write;
226
227         /* if mounting is failed, skip writing node pages */
228         mutex_lock(&sbi->cp_mutex);
229         diff = nr_pages_to_write(sbi, META, wbc);
230         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
231         mutex_unlock(&sbi->cp_mutex);
232         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
233         return 0;
234
235 skip_write:
236         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
237         return 0;
238 }
239
240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
241                                                 long nr_to_write)
242 {
243         struct address_space *mapping = META_MAPPING(sbi);
244         pgoff_t index = 0, end = LONG_MAX;
245         struct pagevec pvec;
246         long nwritten = 0;
247         struct writeback_control wbc = {
248                 .for_reclaim = 0,
249         };
250
251         pagevec_init(&pvec, 0);
252
253         while (index <= end) {
254                 int i, nr_pages;
255                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
256                                 PAGECACHE_TAG_DIRTY,
257                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
258                 if (unlikely(nr_pages == 0))
259                         break;
260
261                 for (i = 0; i < nr_pages; i++) {
262                         struct page *page = pvec.pages[i];
263
264                         lock_page(page);
265
266                         if (unlikely(page->mapping != mapping)) {
267 continue_unlock:
268                                 unlock_page(page);
269                                 continue;
270                         }
271                         if (!PageDirty(page)) {
272                                 /* someone wrote it for us */
273                                 goto continue_unlock;
274                         }
275
276                         if (!clear_page_dirty_for_io(page))
277                                 goto continue_unlock;
278
279                         if (f2fs_write_meta_page(page, &wbc)) {
280                                 unlock_page(page);
281                                 break;
282                         }
283                         nwritten++;
284                         if (unlikely(nwritten >= nr_to_write))
285                                 break;
286                 }
287                 pagevec_release(&pvec);
288                 cond_resched();
289         }
290
291         if (nwritten)
292                 f2fs_submit_merged_bio(sbi, type, WRITE);
293
294         return nwritten;
295 }
296
297 static int f2fs_set_meta_page_dirty(struct page *page)
298 {
299         trace_f2fs_set_page_dirty(page, META);
300
301         SetPageUptodate(page);
302         if (!PageDirty(page)) {
303                 __set_page_dirty_nobuffers(page);
304                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
305                 SetPagePrivate(page);
306                 f2fs_trace_pid(page);
307                 return 1;
308         }
309         return 0;
310 }
311
312 const struct address_space_operations f2fs_meta_aops = {
313         .writepage      = f2fs_write_meta_page,
314         .writepages     = f2fs_write_meta_pages,
315         .set_page_dirty = f2fs_set_meta_page_dirty,
316         .invalidatepage = f2fs_invalidate_page,
317         .releasepage    = f2fs_release_page,
318 };
319
320 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
321 {
322         struct inode_management *im = &sbi->im[type];
323         struct ino_entry *e;
324 retry:
325         if (radix_tree_preload(GFP_NOFS)) {
326                 cond_resched();
327                 goto retry;
328         }
329
330         spin_lock(&im->ino_lock);
331
332         e = radix_tree_lookup(&im->ino_root, ino);
333         if (!e) {
334                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
335                 if (!e) {
336                         spin_unlock(&im->ino_lock);
337                         radix_tree_preload_end();
338                         goto retry;
339                 }
340                 if (radix_tree_insert(&im->ino_root, ino, e)) {
341                         spin_unlock(&im->ino_lock);
342                         kmem_cache_free(ino_entry_slab, e);
343                         radix_tree_preload_end();
344                         goto retry;
345                 }
346                 memset(e, 0, sizeof(struct ino_entry));
347                 e->ino = ino;
348
349                 list_add_tail(&e->list, &im->ino_list);
350                 if (type != ORPHAN_INO)
351                         im->ino_num++;
352         }
353         spin_unlock(&im->ino_lock);
354         radix_tree_preload_end();
355 }
356
357 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
358 {
359         struct inode_management *im = &sbi->im[type];
360         struct ino_entry *e;
361
362         spin_lock(&im->ino_lock);
363         e = radix_tree_lookup(&im->ino_root, ino);
364         if (e) {
365                 list_del(&e->list);
366                 radix_tree_delete(&im->ino_root, ino);
367                 im->ino_num--;
368                 spin_unlock(&im->ino_lock);
369                 kmem_cache_free(ino_entry_slab, e);
370                 return;
371         }
372         spin_unlock(&im->ino_lock);
373 }
374
375 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
376 {
377         /* add new dirty ino entry into list */
378         __add_ino_entry(sbi, ino, type);
379 }
380
381 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
382 {
383         /* remove dirty ino entry from list */
384         __remove_ino_entry(sbi, ino, type);
385 }
386
387 /* mode should be APPEND_INO or UPDATE_INO */
388 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
389 {
390         struct inode_management *im = &sbi->im[mode];
391         struct ino_entry *e;
392
393         spin_lock(&im->ino_lock);
394         e = radix_tree_lookup(&im->ino_root, ino);
395         spin_unlock(&im->ino_lock);
396         return e ? true : false;
397 }
398
399 void release_dirty_inode(struct f2fs_sb_info *sbi)
400 {
401         struct ino_entry *e, *tmp;
402         int i;
403
404         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
405                 struct inode_management *im = &sbi->im[i];
406
407                 spin_lock(&im->ino_lock);
408                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
409                         list_del(&e->list);
410                         radix_tree_delete(&im->ino_root, e->ino);
411                         kmem_cache_free(ino_entry_slab, e);
412                         im->ino_num--;
413                 }
414                 spin_unlock(&im->ino_lock);
415         }
416 }
417
418 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
419 {
420         struct inode_management *im = &sbi->im[ORPHAN_INO];
421         int err = 0;
422
423         spin_lock(&im->ino_lock);
424         if (unlikely(im->ino_num >= sbi->max_orphans))
425                 err = -ENOSPC;
426         else
427                 im->ino_num++;
428         spin_unlock(&im->ino_lock);
429
430         return err;
431 }
432
433 void release_orphan_inode(struct f2fs_sb_info *sbi)
434 {
435         struct inode_management *im = &sbi->im[ORPHAN_INO];
436
437         spin_lock(&im->ino_lock);
438         f2fs_bug_on(sbi, im->ino_num == 0);
439         im->ino_num--;
440         spin_unlock(&im->ino_lock);
441 }
442
443 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
444 {
445         /* add new orphan ino entry into list */
446         __add_ino_entry(sbi, ino, ORPHAN_INO);
447 }
448
449 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
450 {
451         /* remove orphan entry from orphan list */
452         __remove_ino_entry(sbi, ino, ORPHAN_INO);
453 }
454
455 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
456 {
457         struct inode *inode = f2fs_iget(sbi->sb, ino);
458         f2fs_bug_on(sbi, IS_ERR(inode));
459         clear_nlink(inode);
460
461         /* truncate all the data during iput */
462         iput(inode);
463 }
464
465 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
466 {
467         block_t start_blk, orphan_blkaddr, i, j;
468
469         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
470                 return;
471
472         set_sbi_flag(sbi, SBI_POR_DOING);
473
474         start_blk = __start_cp_addr(sbi) + 1 +
475                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
476         orphan_blkaddr = __start_sum_addr(sbi) - 1;
477
478         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
479
480         for (i = 0; i < orphan_blkaddr; i++) {
481                 struct page *page = get_meta_page(sbi, start_blk + i);
482                 struct f2fs_orphan_block *orphan_blk;
483
484                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
485                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
486                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
487                         recover_orphan_inode(sbi, ino);
488                 }
489                 f2fs_put_page(page, 1);
490         }
491         /* clear Orphan Flag */
492         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
493         clear_sbi_flag(sbi, SBI_POR_DOING);
494         return;
495 }
496
497 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
498 {
499         struct list_head *head;
500         struct f2fs_orphan_block *orphan_blk = NULL;
501         unsigned int nentries = 0;
502         unsigned short index;
503         unsigned short orphan_blocks;
504         struct page *page = NULL;
505         struct ino_entry *orphan = NULL;
506         struct inode_management *im = &sbi->im[ORPHAN_INO];
507
508         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
509
510         for (index = 0; index < orphan_blocks; index++)
511                 grab_meta_page(sbi, start_blk + index);
512
513         index = 1;
514         spin_lock(&im->ino_lock);
515         head = &im->ino_list;
516
517         /* loop for each orphan inode entry and write them in Jornal block */
518         list_for_each_entry(orphan, head, list) {
519                 if (!page) {
520                         page = find_get_page(META_MAPPING(sbi), start_blk++);
521                         f2fs_bug_on(sbi, !page);
522                         orphan_blk =
523                                 (struct f2fs_orphan_block *)page_address(page);
524                         memset(orphan_blk, 0, sizeof(*orphan_blk));
525                         f2fs_put_page(page, 0);
526                 }
527
528                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
529
530                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
531                         /*
532                          * an orphan block is full of 1020 entries,
533                          * then we need to flush current orphan blocks
534                          * and bring another one in memory
535                          */
536                         orphan_blk->blk_addr = cpu_to_le16(index);
537                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
538                         orphan_blk->entry_count = cpu_to_le32(nentries);
539                         set_page_dirty(page);
540                         f2fs_put_page(page, 1);
541                         index++;
542                         nentries = 0;
543                         page = NULL;
544                 }
545         }
546
547         if (page) {
548                 orphan_blk->blk_addr = cpu_to_le16(index);
549                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
550                 orphan_blk->entry_count = cpu_to_le32(nentries);
551                 set_page_dirty(page);
552                 f2fs_put_page(page, 1);
553         }
554
555         spin_unlock(&im->ino_lock);
556 }
557
558 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
559                                 block_t cp_addr, unsigned long long *version)
560 {
561         struct page *cp_page_1, *cp_page_2 = NULL;
562         unsigned long blk_size = sbi->blocksize;
563         struct f2fs_checkpoint *cp_block;
564         unsigned long long cur_version = 0, pre_version = 0;
565         size_t crc_offset;
566         __u32 crc = 0;
567
568         /* Read the 1st cp block in this CP pack */
569         cp_page_1 = get_meta_page(sbi, cp_addr);
570
571         /* get the version number */
572         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
573         crc_offset = le32_to_cpu(cp_block->checksum_offset);
574         if (crc_offset >= blk_size)
575                 goto invalid_cp1;
576
577         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
578         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
579                 goto invalid_cp1;
580
581         pre_version = cur_cp_version(cp_block);
582
583         /* Read the 2nd cp block in this CP pack */
584         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
585         cp_page_2 = get_meta_page(sbi, cp_addr);
586
587         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
588         crc_offset = le32_to_cpu(cp_block->checksum_offset);
589         if (crc_offset >= blk_size)
590                 goto invalid_cp2;
591
592         crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
593         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
594                 goto invalid_cp2;
595
596         cur_version = cur_cp_version(cp_block);
597
598         if (cur_version == pre_version) {
599                 *version = cur_version;
600                 f2fs_put_page(cp_page_2, 1);
601                 return cp_page_1;
602         }
603 invalid_cp2:
604         f2fs_put_page(cp_page_2, 1);
605 invalid_cp1:
606         f2fs_put_page(cp_page_1, 1);
607         return NULL;
608 }
609
610 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
611 {
612         struct f2fs_checkpoint *cp_block;
613         struct f2fs_super_block *fsb = sbi->raw_super;
614         struct page *cp1, *cp2, *cur_page;
615         unsigned long blk_size = sbi->blocksize;
616         unsigned long long cp1_version = 0, cp2_version = 0;
617         unsigned long long cp_start_blk_no;
618         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
619         block_t cp_blk_no;
620         int i;
621
622         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
623         if (!sbi->ckpt)
624                 return -ENOMEM;
625         /*
626          * Finding out valid cp block involves read both
627          * sets( cp pack1 and cp pack 2)
628          */
629         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
630         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
631
632         /* The second checkpoint pack should start at the next segment */
633         cp_start_blk_no += ((unsigned long long)1) <<
634                                 le32_to_cpu(fsb->log_blocks_per_seg);
635         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
636
637         if (cp1 && cp2) {
638                 if (ver_after(cp2_version, cp1_version))
639                         cur_page = cp2;
640                 else
641                         cur_page = cp1;
642         } else if (cp1) {
643                 cur_page = cp1;
644         } else if (cp2) {
645                 cur_page = cp2;
646         } else {
647                 goto fail_no_cp;
648         }
649
650         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
651         memcpy(sbi->ckpt, cp_block, blk_size);
652
653         if (cp_blks <= 1)
654                 goto done;
655
656         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
657         if (cur_page == cp2)
658                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
659
660         for (i = 1; i < cp_blks; i++) {
661                 void *sit_bitmap_ptr;
662                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
663
664                 cur_page = get_meta_page(sbi, cp_blk_no + i);
665                 sit_bitmap_ptr = page_address(cur_page);
666                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
667                 f2fs_put_page(cur_page, 1);
668         }
669 done:
670         f2fs_put_page(cp1, 1);
671         f2fs_put_page(cp2, 1);
672         return 0;
673
674 fail_no_cp:
675         kfree(sbi->ckpt);
676         return -EINVAL;
677 }
678
679 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
680 {
681         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
682
683         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
684                 return -EEXIST;
685
686         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
687         F2FS_I(inode)->dirty_dir = new;
688         list_add_tail(&new->list, &sbi->dir_inode_list);
689         stat_inc_dirty_dir(sbi);
690         return 0;
691 }
692
693 void update_dirty_page(struct inode *inode, struct page *page)
694 {
695         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
696         struct inode_entry *new;
697         int ret = 0;
698
699         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
700                 return;
701
702         if (!S_ISDIR(inode->i_mode)) {
703                 inode_inc_dirty_pages(inode);
704                 goto out;
705         }
706
707         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
708         new->inode = inode;
709         INIT_LIST_HEAD(&new->list);
710
711         spin_lock(&sbi->dir_inode_lock);
712         ret = __add_dirty_inode(inode, new);
713         inode_inc_dirty_pages(inode);
714         spin_unlock(&sbi->dir_inode_lock);
715
716         if (ret)
717                 kmem_cache_free(inode_entry_slab, new);
718 out:
719         SetPagePrivate(page);
720         f2fs_trace_pid(page);
721 }
722
723 void add_dirty_dir_inode(struct inode *inode)
724 {
725         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
726         struct inode_entry *new =
727                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
728         int ret = 0;
729
730         new->inode = inode;
731         INIT_LIST_HEAD(&new->list);
732
733         spin_lock(&sbi->dir_inode_lock);
734         ret = __add_dirty_inode(inode, new);
735         spin_unlock(&sbi->dir_inode_lock);
736
737         if (ret)
738                 kmem_cache_free(inode_entry_slab, new);
739 }
740
741 void remove_dirty_dir_inode(struct inode *inode)
742 {
743         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
744         struct inode_entry *entry;
745
746         if (!S_ISDIR(inode->i_mode))
747                 return;
748
749         spin_lock(&sbi->dir_inode_lock);
750         if (get_dirty_pages(inode) ||
751                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
752                 spin_unlock(&sbi->dir_inode_lock);
753                 return;
754         }
755
756         entry = F2FS_I(inode)->dirty_dir;
757         list_del(&entry->list);
758         F2FS_I(inode)->dirty_dir = NULL;
759         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
760         stat_dec_dirty_dir(sbi);
761         spin_unlock(&sbi->dir_inode_lock);
762         kmem_cache_free(inode_entry_slab, entry);
763
764         /* Only from the recovery routine */
765         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
766                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
767                 iput(inode);
768         }
769 }
770
771 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
772 {
773         struct list_head *head;
774         struct inode_entry *entry;
775         struct inode *inode;
776 retry:
777         if (unlikely(f2fs_cp_error(sbi)))
778                 return;
779
780         spin_lock(&sbi->dir_inode_lock);
781
782         head = &sbi->dir_inode_list;
783         if (list_empty(head)) {
784                 spin_unlock(&sbi->dir_inode_lock);
785                 return;
786         }
787         entry = list_entry(head->next, struct inode_entry, list);
788         inode = igrab(entry->inode);
789         spin_unlock(&sbi->dir_inode_lock);
790         if (inode) {
791                 filemap_fdatawrite(inode->i_mapping);
792                 iput(inode);
793         } else {
794                 /*
795                  * We should submit bio, since it exists several
796                  * wribacking dentry pages in the freeing inode.
797                  */
798                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
799         }
800         goto retry;
801 }
802
803 /*
804  * Freeze all the FS-operations for checkpoint.
805  */
806 static int block_operations(struct f2fs_sb_info *sbi)
807 {
808         struct writeback_control wbc = {
809                 .sync_mode = WB_SYNC_ALL,
810                 .nr_to_write = LONG_MAX,
811                 .for_reclaim = 0,
812         };
813         struct blk_plug plug;
814         int err = 0;
815
816         blk_start_plug(&plug);
817
818 retry_flush_dents:
819         f2fs_lock_all(sbi);
820         /* write all the dirty dentry pages */
821         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
822                 f2fs_unlock_all(sbi);
823                 sync_dirty_dir_inodes(sbi);
824                 if (unlikely(f2fs_cp_error(sbi))) {
825                         err = -EIO;
826                         goto out;
827                 }
828                 goto retry_flush_dents;
829         }
830
831         /*
832          * POR: we should ensure that there are no dirty node pages
833          * until finishing nat/sit flush.
834          */
835 retry_flush_nodes:
836         down_write(&sbi->node_write);
837
838         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
839                 up_write(&sbi->node_write);
840                 sync_node_pages(sbi, 0, &wbc);
841                 if (unlikely(f2fs_cp_error(sbi))) {
842                         f2fs_unlock_all(sbi);
843                         err = -EIO;
844                         goto out;
845                 }
846                 goto retry_flush_nodes;
847         }
848 out:
849         blk_finish_plug(&plug);
850         return err;
851 }
852
853 static void unblock_operations(struct f2fs_sb_info *sbi)
854 {
855         up_write(&sbi->node_write);
856         f2fs_unlock_all(sbi);
857 }
858
859 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
860 {
861         DEFINE_WAIT(wait);
862
863         for (;;) {
864                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
865
866                 if (!get_pages(sbi, F2FS_WRITEBACK))
867                         break;
868
869                 io_schedule();
870         }
871         finish_wait(&sbi->cp_wait, &wait);
872 }
873
874 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
875 {
876         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
877         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
878         struct f2fs_nm_info *nm_i = NM_I(sbi);
879         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
880         nid_t last_nid = nm_i->next_scan_nid;
881         block_t start_blk;
882         struct page *cp_page;
883         unsigned int data_sum_blocks, orphan_blocks;
884         __u32 crc32 = 0;
885         void *kaddr;
886         int i;
887         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
888
889         /*
890          * This avoids to conduct wrong roll-forward operations and uses
891          * metapages, so should be called prior to sync_meta_pages below.
892          */
893         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
894
895         /* Flush all the NAT/SIT pages */
896         while (get_pages(sbi, F2FS_DIRTY_META)) {
897                 sync_meta_pages(sbi, META, LONG_MAX);
898                 if (unlikely(f2fs_cp_error(sbi)))
899                         return;
900         }
901
902         next_free_nid(sbi, &last_nid);
903
904         /*
905          * modify checkpoint
906          * version number is already updated
907          */
908         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
909         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
910         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
911         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
912                 ckpt->cur_node_segno[i] =
913                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
914                 ckpt->cur_node_blkoff[i] =
915                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
916                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
917                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
918         }
919         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
920                 ckpt->cur_data_segno[i] =
921                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
922                 ckpt->cur_data_blkoff[i] =
923                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
924                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
925                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
926         }
927
928         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
929         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
930         ckpt->next_free_nid = cpu_to_le32(last_nid);
931
932         /* 2 cp  + n data seg summary + orphan inode blocks */
933         data_sum_blocks = npages_for_summary_flush(sbi, false);
934         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
935                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
936         else
937                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
938
939         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
940         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
941                         orphan_blocks);
942
943         if (__remain_node_summaries(cpc->reason))
944                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
945                                 cp_payload_blks + data_sum_blocks +
946                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
947         else
948                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
949                                 cp_payload_blks + data_sum_blocks +
950                                 orphan_blocks);
951
952         if (cpc->reason == CP_UMOUNT)
953                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
954         else
955                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
956
957         if (cpc->reason == CP_FASTBOOT)
958                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
959         else
960                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
961
962         if (orphan_num)
963                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
964         else
965                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
966
967         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
968                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
969
970         /* update SIT/NAT bitmap */
971         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
972         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
973
974         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
975         *((__le32 *)((unsigned char *)ckpt +
976                                 le32_to_cpu(ckpt->checksum_offset)))
977                                 = cpu_to_le32(crc32);
978
979         start_blk = __start_cp_addr(sbi);
980
981         /* write out checkpoint buffer at block 0 */
982         cp_page = grab_meta_page(sbi, start_blk++);
983         kaddr = page_address(cp_page);
984         memcpy(kaddr, ckpt, F2FS_BLKSIZE);
985         set_page_dirty(cp_page);
986         f2fs_put_page(cp_page, 1);
987
988         for (i = 1; i < 1 + cp_payload_blks; i++) {
989                 cp_page = grab_meta_page(sbi, start_blk++);
990                 kaddr = page_address(cp_page);
991                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, F2FS_BLKSIZE);
992                 set_page_dirty(cp_page);
993                 f2fs_put_page(cp_page, 1);
994         }
995
996         if (orphan_num) {
997                 write_orphan_inodes(sbi, start_blk);
998                 start_blk += orphan_blocks;
999         }
1000
1001         write_data_summaries(sbi, start_blk);
1002         start_blk += data_sum_blocks;
1003         if (__remain_node_summaries(cpc->reason)) {
1004                 write_node_summaries(sbi, start_blk);
1005                 start_blk += NR_CURSEG_NODE_TYPE;
1006         }
1007
1008         /* writeout checkpoint block */
1009         cp_page = grab_meta_page(sbi, start_blk);
1010         kaddr = page_address(cp_page);
1011         memcpy(kaddr, ckpt, F2FS_BLKSIZE);
1012         set_page_dirty(cp_page);
1013         f2fs_put_page(cp_page, 1);
1014
1015         /* wait for previous submitted node/meta pages writeback */
1016         wait_on_all_pages_writeback(sbi);
1017
1018         if (unlikely(f2fs_cp_error(sbi)))
1019                 return;
1020
1021         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1022         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1023
1024         /* update user_block_counts */
1025         sbi->last_valid_block_count = sbi->total_valid_block_count;
1026         sbi->alloc_valid_block_count = 0;
1027
1028         /* Here, we only have one bio having CP pack */
1029         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1030
1031         /* wait for previous submitted meta pages writeback */
1032         wait_on_all_pages_writeback(sbi);
1033
1034         release_dirty_inode(sbi);
1035
1036         if (unlikely(f2fs_cp_error(sbi)))
1037                 return;
1038
1039         clear_prefree_segments(sbi);
1040         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1041 }
1042
1043 /*
1044  * We guarantee that this checkpoint procedure will not fail.
1045  */
1046 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1047 {
1048         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1049         unsigned long long ckpt_ver;
1050
1051         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1052
1053         mutex_lock(&sbi->cp_mutex);
1054
1055         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1056                         cpc->reason != CP_DISCARD && cpc->reason != CP_UMOUNT)
1057                 goto out;
1058         if (unlikely(f2fs_cp_error(sbi)))
1059                 goto out;
1060         if (f2fs_readonly(sbi->sb))
1061                 goto out;
1062         if (block_operations(sbi))
1063                 goto out;
1064
1065         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1066
1067         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1068         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1069         f2fs_submit_merged_bio(sbi, META, WRITE);
1070
1071         /*
1072          * update checkpoint pack index
1073          * Increase the version number so that
1074          * SIT entries and seg summaries are written at correct place
1075          */
1076         ckpt_ver = cur_cp_version(ckpt);
1077         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1078
1079         /* write cached NAT/SIT entries to NAT/SIT area */
1080         flush_nat_entries(sbi);
1081         flush_sit_entries(sbi, cpc);
1082
1083         /* unlock all the fs_lock[] in do_checkpoint() */
1084         do_checkpoint(sbi, cpc);
1085
1086         unblock_operations(sbi);
1087         stat_inc_cp_count(sbi->stat_info);
1088 out:
1089         mutex_unlock(&sbi->cp_mutex);
1090         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1091 }
1092
1093 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1094 {
1095         int i;
1096
1097         for (i = 0; i < MAX_INO_ENTRY; i++) {
1098                 struct inode_management *im = &sbi->im[i];
1099
1100                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1101                 spin_lock_init(&im->ino_lock);
1102                 INIT_LIST_HEAD(&im->ino_list);
1103                 im->ino_num = 0;
1104         }
1105
1106         /*
1107          * considering 512 blocks in a segment 8 blocks are needed for cp
1108          * and log segment summaries. Remaining blocks are used to keep
1109          * orphan entries with the limitation one reserved segment
1110          * for cp pack we can have max 1020*504 orphan entries
1111          */
1112         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1113                         NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1114 }
1115
1116 int __init create_checkpoint_caches(void)
1117 {
1118         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1119                         sizeof(struct ino_entry));
1120         if (!ino_entry_slab)
1121                 return -ENOMEM;
1122         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1123                         sizeof(struct inode_entry));
1124         if (!inode_entry_slab) {
1125                 kmem_cache_destroy(ino_entry_slab);
1126                 return -ENOMEM;
1127         }
1128         return 0;
1129 }
1130
1131 void destroy_checkpoint_caches(void)
1132 {
1133         kmem_cache_destroy(ino_entry_slab);
1134         kmem_cache_destroy(inode_entry_slab);
1135 }