f2fs: split UMOUNT and FASTBOOT flags
[firefly-linux-kernel-4.4.55.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52         struct address_space *mapping = META_MAPPING(sbi);
53         struct page *page;
54         struct f2fs_io_info fio = {
55                 .type = META,
56                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
57                 .blk_addr = index,
58         };
59 repeat:
60         page = grab_cache_page(mapping, index);
61         if (!page) {
62                 cond_resched();
63                 goto repeat;
64         }
65         if (PageUptodate(page))
66                 goto out;
67
68         if (f2fs_submit_page_bio(sbi, page, &fio))
69                 goto repeat;
70
71         lock_page(page);
72         if (unlikely(page->mapping != mapping)) {
73                 f2fs_put_page(page, 1);
74                 goto repeat;
75         }
76 out:
77         return page;
78 }
79
80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
81                                                 block_t blkaddr, int type)
82 {
83         switch (type) {
84         case META_NAT:
85                 break;
86         case META_SIT:
87                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
88                         return false;
89                 break;
90         case META_SSA:
91                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
92                         blkaddr < SM_I(sbi)->ssa_blkaddr))
93                         return false;
94                 break;
95         case META_CP:
96                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
97                         blkaddr < __start_cp_addr(sbi)))
98                         return false;
99                 break;
100         case META_POR:
101                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
102                         blkaddr < MAIN_BLKADDR(sbi)))
103                         return false;
104                 break;
105         default:
106                 BUG();
107         }
108
109         return true;
110 }
111
112 /*
113  * Readahead CP/NAT/SIT/SSA pages
114  */
115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
116 {
117         block_t prev_blk_addr = 0;
118         struct page *page;
119         block_t blkno = start;
120         struct f2fs_io_info fio = {
121                 .type = META,
122                 .rw = READ_SYNC | REQ_META | REQ_PRIO
123         };
124
125         for (; nrpages-- > 0; blkno++) {
126
127                 if (!is_valid_blkaddr(sbi, blkno, type))
128                         goto out;
129
130                 switch (type) {
131                 case META_NAT:
132                         if (unlikely(blkno >=
133                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
134                                 blkno = 0;
135                         /* get nat block addr */
136                         fio.blk_addr = current_nat_addr(sbi,
137                                         blkno * NAT_ENTRY_PER_BLOCK);
138                         break;
139                 case META_SIT:
140                         /* get sit block addr */
141                         fio.blk_addr = current_sit_addr(sbi,
142                                         blkno * SIT_ENTRY_PER_BLOCK);
143                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
144                                 goto out;
145                         prev_blk_addr = fio.blk_addr;
146                         break;
147                 case META_SSA:
148                 case META_CP:
149                 case META_POR:
150                         fio.blk_addr = blkno;
151                         break;
152                 default:
153                         BUG();
154                 }
155
156                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
157                 if (!page)
158                         continue;
159                 if (PageUptodate(page)) {
160                         f2fs_put_page(page, 1);
161                         continue;
162                 }
163
164                 f2fs_submit_page_mbio(sbi, page, &fio);
165                 f2fs_put_page(page, 0);
166         }
167 out:
168         f2fs_submit_merged_bio(sbi, META, READ);
169         return blkno - start;
170 }
171
172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
173 {
174         struct page *page;
175         bool readahead = false;
176
177         page = find_get_page(META_MAPPING(sbi), index);
178         if (!page || (page && !PageUptodate(page)))
179                 readahead = true;
180         f2fs_put_page(page, 0);
181
182         if (readahead)
183                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
184 }
185
186 static int f2fs_write_meta_page(struct page *page,
187                                 struct writeback_control *wbc)
188 {
189         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
190
191         trace_f2fs_writepage(page, META);
192
193         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
194                 goto redirty_out;
195         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
196                 goto redirty_out;
197         if (unlikely(f2fs_cp_error(sbi)))
198                 goto redirty_out;
199
200         f2fs_wait_on_page_writeback(page, META);
201         write_meta_page(sbi, page);
202         dec_page_count(sbi, F2FS_DIRTY_META);
203         unlock_page(page);
204
205         if (wbc->for_reclaim)
206                 f2fs_submit_merged_bio(sbi, META, WRITE);
207         return 0;
208
209 redirty_out:
210         redirty_page_for_writepage(wbc, page);
211         return AOP_WRITEPAGE_ACTIVATE;
212 }
213
214 static int f2fs_write_meta_pages(struct address_space *mapping,
215                                 struct writeback_control *wbc)
216 {
217         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
218         long diff, written;
219
220         trace_f2fs_writepages(mapping->host, wbc, META);
221
222         /* collect a number of dirty meta pages and write together */
223         if (wbc->for_kupdate ||
224                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
225                 goto skip_write;
226
227         /* if mounting is failed, skip writing node pages */
228         mutex_lock(&sbi->cp_mutex);
229         diff = nr_pages_to_write(sbi, META, wbc);
230         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
231         mutex_unlock(&sbi->cp_mutex);
232         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
233         return 0;
234
235 skip_write:
236         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
237         return 0;
238 }
239
240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
241                                                 long nr_to_write)
242 {
243         struct address_space *mapping = META_MAPPING(sbi);
244         pgoff_t index = 0, end = LONG_MAX;
245         struct pagevec pvec;
246         long nwritten = 0;
247         struct writeback_control wbc = {
248                 .for_reclaim = 0,
249         };
250
251         pagevec_init(&pvec, 0);
252
253         while (index <= end) {
254                 int i, nr_pages;
255                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
256                                 PAGECACHE_TAG_DIRTY,
257                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
258                 if (unlikely(nr_pages == 0))
259                         break;
260
261                 for (i = 0; i < nr_pages; i++) {
262                         struct page *page = pvec.pages[i];
263
264                         lock_page(page);
265
266                         if (unlikely(page->mapping != mapping)) {
267 continue_unlock:
268                                 unlock_page(page);
269                                 continue;
270                         }
271                         if (!PageDirty(page)) {
272                                 /* someone wrote it for us */
273                                 goto continue_unlock;
274                         }
275
276                         if (!clear_page_dirty_for_io(page))
277                                 goto continue_unlock;
278
279                         if (f2fs_write_meta_page(page, &wbc)) {
280                                 unlock_page(page);
281                                 break;
282                         }
283                         nwritten++;
284                         if (unlikely(nwritten >= nr_to_write))
285                                 break;
286                 }
287                 pagevec_release(&pvec);
288                 cond_resched();
289         }
290
291         if (nwritten)
292                 f2fs_submit_merged_bio(sbi, type, WRITE);
293
294         return nwritten;
295 }
296
297 static int f2fs_set_meta_page_dirty(struct page *page)
298 {
299         trace_f2fs_set_page_dirty(page, META);
300
301         SetPageUptodate(page);
302         if (!PageDirty(page)) {
303                 __set_page_dirty_nobuffers(page);
304                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
305                 SetPagePrivate(page);
306                 f2fs_trace_pid(page);
307                 return 1;
308         }
309         return 0;
310 }
311
312 static void f2fs_invalidate_meta_page(struct page *page, unsigned int offset,
313                                       unsigned int length)
314 {
315         struct inode *inode = page->mapping->host;
316
317         if (PageDirty(page))
318                 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_META);
319         ClearPagePrivate(page);
320 }
321
322 static int f2fs_release_meta_page(struct page *page, gfp_t wait)
323 {
324         ClearPagePrivate(page);
325         return 1;
326 }
327
328 const struct address_space_operations f2fs_meta_aops = {
329         .writepage      = f2fs_write_meta_page,
330         .writepages     = f2fs_write_meta_pages,
331         .set_page_dirty = f2fs_set_meta_page_dirty,
332         .invalidatepage = f2fs_invalidate_meta_page,
333         .releasepage    = f2fs_release_meta_page,
334 };
335
336 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
337 {
338         struct inode_management *im = &sbi->im[type];
339         struct ino_entry *e;
340 retry:
341         if (radix_tree_preload(GFP_NOFS)) {
342                 cond_resched();
343                 goto retry;
344         }
345
346         spin_lock(&im->ino_lock);
347
348         e = radix_tree_lookup(&im->ino_root, ino);
349         if (!e) {
350                 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
351                 if (!e) {
352                         spin_unlock(&im->ino_lock);
353                         radix_tree_preload_end();
354                         goto retry;
355                 }
356                 if (radix_tree_insert(&im->ino_root, ino, e)) {
357                         spin_unlock(&im->ino_lock);
358                         kmem_cache_free(ino_entry_slab, e);
359                         radix_tree_preload_end();
360                         goto retry;
361                 }
362                 memset(e, 0, sizeof(struct ino_entry));
363                 e->ino = ino;
364
365                 list_add_tail(&e->list, &im->ino_list);
366                 if (type != ORPHAN_INO)
367                         im->ino_num++;
368         }
369         spin_unlock(&im->ino_lock);
370         radix_tree_preload_end();
371 }
372
373 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
374 {
375         struct inode_management *im = &sbi->im[type];
376         struct ino_entry *e;
377
378         spin_lock(&im->ino_lock);
379         e = radix_tree_lookup(&im->ino_root, ino);
380         if (e) {
381                 list_del(&e->list);
382                 radix_tree_delete(&im->ino_root, ino);
383                 im->ino_num--;
384                 spin_unlock(&im->ino_lock);
385                 kmem_cache_free(ino_entry_slab, e);
386                 return;
387         }
388         spin_unlock(&im->ino_lock);
389 }
390
391 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
392 {
393         /* add new dirty ino entry into list */
394         __add_ino_entry(sbi, ino, type);
395 }
396
397 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
398 {
399         /* remove dirty ino entry from list */
400         __remove_ino_entry(sbi, ino, type);
401 }
402
403 /* mode should be APPEND_INO or UPDATE_INO */
404 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
405 {
406         struct inode_management *im = &sbi->im[mode];
407         struct ino_entry *e;
408
409         spin_lock(&im->ino_lock);
410         e = radix_tree_lookup(&im->ino_root, ino);
411         spin_unlock(&im->ino_lock);
412         return e ? true : false;
413 }
414
415 void release_dirty_inode(struct f2fs_sb_info *sbi)
416 {
417         struct ino_entry *e, *tmp;
418         int i;
419
420         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
421                 struct inode_management *im = &sbi->im[i];
422
423                 spin_lock(&im->ino_lock);
424                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
425                         list_del(&e->list);
426                         radix_tree_delete(&im->ino_root, e->ino);
427                         kmem_cache_free(ino_entry_slab, e);
428                         im->ino_num--;
429                 }
430                 spin_unlock(&im->ino_lock);
431         }
432 }
433
434 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
435 {
436         struct inode_management *im = &sbi->im[ORPHAN_INO];
437         int err = 0;
438
439         spin_lock(&im->ino_lock);
440         if (unlikely(im->ino_num >= sbi->max_orphans))
441                 err = -ENOSPC;
442         else
443                 im->ino_num++;
444         spin_unlock(&im->ino_lock);
445
446         return err;
447 }
448
449 void release_orphan_inode(struct f2fs_sb_info *sbi)
450 {
451         struct inode_management *im = &sbi->im[ORPHAN_INO];
452
453         spin_lock(&im->ino_lock);
454         f2fs_bug_on(sbi, im->ino_num == 0);
455         im->ino_num--;
456         spin_unlock(&im->ino_lock);
457 }
458
459 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
460 {
461         /* add new orphan ino entry into list */
462         __add_ino_entry(sbi, ino, ORPHAN_INO);
463 }
464
465 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
466 {
467         /* remove orphan entry from orphan list */
468         __remove_ino_entry(sbi, ino, ORPHAN_INO);
469 }
470
471 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
472 {
473         struct inode *inode = f2fs_iget(sbi->sb, ino);
474         f2fs_bug_on(sbi, IS_ERR(inode));
475         clear_nlink(inode);
476
477         /* truncate all the data during iput */
478         iput(inode);
479 }
480
481 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
482 {
483         block_t start_blk, orphan_blkaddr, i, j;
484
485         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
486                 return;
487
488         set_sbi_flag(sbi, SBI_POR_DOING);
489
490         start_blk = __start_cp_addr(sbi) + 1 +
491                 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
492         orphan_blkaddr = __start_sum_addr(sbi) - 1;
493
494         ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
495
496         for (i = 0; i < orphan_blkaddr; i++) {
497                 struct page *page = get_meta_page(sbi, start_blk + i);
498                 struct f2fs_orphan_block *orphan_blk;
499
500                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
501                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
502                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
503                         recover_orphan_inode(sbi, ino);
504                 }
505                 f2fs_put_page(page, 1);
506         }
507         /* clear Orphan Flag */
508         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
509         clear_sbi_flag(sbi, SBI_POR_DOING);
510         return;
511 }
512
513 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
514 {
515         struct list_head *head;
516         struct f2fs_orphan_block *orphan_blk = NULL;
517         unsigned int nentries = 0;
518         unsigned short index;
519         unsigned short orphan_blocks;
520         struct page *page = NULL;
521         struct ino_entry *orphan = NULL;
522         struct inode_management *im = &sbi->im[ORPHAN_INO];
523
524         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
525
526         for (index = 0; index < orphan_blocks; index++)
527                 grab_meta_page(sbi, start_blk + index);
528
529         index = 1;
530         spin_lock(&im->ino_lock);
531         head = &im->ino_list;
532
533         /* loop for each orphan inode entry and write them in Jornal block */
534         list_for_each_entry(orphan, head, list) {
535                 if (!page) {
536                         page = find_get_page(META_MAPPING(sbi), start_blk++);
537                         f2fs_bug_on(sbi, !page);
538                         orphan_blk =
539                                 (struct f2fs_orphan_block *)page_address(page);
540                         memset(orphan_blk, 0, sizeof(*orphan_blk));
541                         f2fs_put_page(page, 0);
542                 }
543
544                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
545
546                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
547                         /*
548                          * an orphan block is full of 1020 entries,
549                          * then we need to flush current orphan blocks
550                          * and bring another one in memory
551                          */
552                         orphan_blk->blk_addr = cpu_to_le16(index);
553                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
554                         orphan_blk->entry_count = cpu_to_le32(nentries);
555                         set_page_dirty(page);
556                         f2fs_put_page(page, 1);
557                         index++;
558                         nentries = 0;
559                         page = NULL;
560                 }
561         }
562
563         if (page) {
564                 orphan_blk->blk_addr = cpu_to_le16(index);
565                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
566                 orphan_blk->entry_count = cpu_to_le32(nentries);
567                 set_page_dirty(page);
568                 f2fs_put_page(page, 1);
569         }
570
571         spin_unlock(&im->ino_lock);
572 }
573
574 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
575                                 block_t cp_addr, unsigned long long *version)
576 {
577         struct page *cp_page_1, *cp_page_2 = NULL;
578         unsigned long blk_size = sbi->blocksize;
579         struct f2fs_checkpoint *cp_block;
580         unsigned long long cur_version = 0, pre_version = 0;
581         size_t crc_offset;
582         __u32 crc = 0;
583
584         /* Read the 1st cp block in this CP pack */
585         cp_page_1 = get_meta_page(sbi, cp_addr);
586
587         /* get the version number */
588         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
589         crc_offset = le32_to_cpu(cp_block->checksum_offset);
590         if (crc_offset >= blk_size)
591                 goto invalid_cp1;
592
593         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
594         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
595                 goto invalid_cp1;
596
597         pre_version = cur_cp_version(cp_block);
598
599         /* Read the 2nd cp block in this CP pack */
600         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
601         cp_page_2 = get_meta_page(sbi, cp_addr);
602
603         cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
604         crc_offset = le32_to_cpu(cp_block->checksum_offset);
605         if (crc_offset >= blk_size)
606                 goto invalid_cp2;
607
608         crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
609         if (!f2fs_crc_valid(crc, cp_block, crc_offset))
610                 goto invalid_cp2;
611
612         cur_version = cur_cp_version(cp_block);
613
614         if (cur_version == pre_version) {
615                 *version = cur_version;
616                 f2fs_put_page(cp_page_2, 1);
617                 return cp_page_1;
618         }
619 invalid_cp2:
620         f2fs_put_page(cp_page_2, 1);
621 invalid_cp1:
622         f2fs_put_page(cp_page_1, 1);
623         return NULL;
624 }
625
626 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
627 {
628         struct f2fs_checkpoint *cp_block;
629         struct f2fs_super_block *fsb = sbi->raw_super;
630         struct page *cp1, *cp2, *cur_page;
631         unsigned long blk_size = sbi->blocksize;
632         unsigned long long cp1_version = 0, cp2_version = 0;
633         unsigned long long cp_start_blk_no;
634         unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
635         block_t cp_blk_no;
636         int i;
637
638         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
639         if (!sbi->ckpt)
640                 return -ENOMEM;
641         /*
642          * Finding out valid cp block involves read both
643          * sets( cp pack1 and cp pack 2)
644          */
645         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
646         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
647
648         /* The second checkpoint pack should start at the next segment */
649         cp_start_blk_no += ((unsigned long long)1) <<
650                                 le32_to_cpu(fsb->log_blocks_per_seg);
651         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
652
653         if (cp1 && cp2) {
654                 if (ver_after(cp2_version, cp1_version))
655                         cur_page = cp2;
656                 else
657                         cur_page = cp1;
658         } else if (cp1) {
659                 cur_page = cp1;
660         } else if (cp2) {
661                 cur_page = cp2;
662         } else {
663                 goto fail_no_cp;
664         }
665
666         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
667         memcpy(sbi->ckpt, cp_block, blk_size);
668
669         if (cp_blks <= 1)
670                 goto done;
671
672         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
673         if (cur_page == cp2)
674                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
675
676         for (i = 1; i < cp_blks; i++) {
677                 void *sit_bitmap_ptr;
678                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
679
680                 cur_page = get_meta_page(sbi, cp_blk_no + i);
681                 sit_bitmap_ptr = page_address(cur_page);
682                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
683                 f2fs_put_page(cur_page, 1);
684         }
685 done:
686         f2fs_put_page(cp1, 1);
687         f2fs_put_page(cp2, 1);
688         return 0;
689
690 fail_no_cp:
691         kfree(sbi->ckpt);
692         return -EINVAL;
693 }
694
695 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
696 {
697         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
698
699         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
700                 return -EEXIST;
701
702         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
703         F2FS_I(inode)->dirty_dir = new;
704         list_add_tail(&new->list, &sbi->dir_inode_list);
705         stat_inc_dirty_dir(sbi);
706         return 0;
707 }
708
709 void update_dirty_page(struct inode *inode, struct page *page)
710 {
711         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
712         struct inode_entry *new;
713         int ret = 0;
714
715         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
716                 return;
717
718         if (!S_ISDIR(inode->i_mode)) {
719                 inode_inc_dirty_pages(inode);
720                 goto out;
721         }
722
723         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
724         new->inode = inode;
725         INIT_LIST_HEAD(&new->list);
726
727         spin_lock(&sbi->dir_inode_lock);
728         ret = __add_dirty_inode(inode, new);
729         inode_inc_dirty_pages(inode);
730         spin_unlock(&sbi->dir_inode_lock);
731
732         if (ret)
733                 kmem_cache_free(inode_entry_slab, new);
734 out:
735         SetPagePrivate(page);
736         f2fs_trace_pid(page);
737 }
738
739 void add_dirty_dir_inode(struct inode *inode)
740 {
741         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
742         struct inode_entry *new =
743                         f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
744         int ret = 0;
745
746         new->inode = inode;
747         INIT_LIST_HEAD(&new->list);
748
749         spin_lock(&sbi->dir_inode_lock);
750         ret = __add_dirty_inode(inode, new);
751         spin_unlock(&sbi->dir_inode_lock);
752
753         if (ret)
754                 kmem_cache_free(inode_entry_slab, new);
755 }
756
757 void remove_dirty_dir_inode(struct inode *inode)
758 {
759         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
760         struct inode_entry *entry;
761
762         if (!S_ISDIR(inode->i_mode))
763                 return;
764
765         spin_lock(&sbi->dir_inode_lock);
766         if (get_dirty_pages(inode) ||
767                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
768                 spin_unlock(&sbi->dir_inode_lock);
769                 return;
770         }
771
772         entry = F2FS_I(inode)->dirty_dir;
773         list_del(&entry->list);
774         F2FS_I(inode)->dirty_dir = NULL;
775         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
776         stat_dec_dirty_dir(sbi);
777         spin_unlock(&sbi->dir_inode_lock);
778         kmem_cache_free(inode_entry_slab, entry);
779
780         /* Only from the recovery routine */
781         if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
782                 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
783                 iput(inode);
784         }
785 }
786
787 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
788 {
789         struct list_head *head;
790         struct inode_entry *entry;
791         struct inode *inode;
792 retry:
793         if (unlikely(f2fs_cp_error(sbi)))
794                 return;
795
796         spin_lock(&sbi->dir_inode_lock);
797
798         head = &sbi->dir_inode_list;
799         if (list_empty(head)) {
800                 spin_unlock(&sbi->dir_inode_lock);
801                 return;
802         }
803         entry = list_entry(head->next, struct inode_entry, list);
804         inode = igrab(entry->inode);
805         spin_unlock(&sbi->dir_inode_lock);
806         if (inode) {
807                 filemap_fdatawrite(inode->i_mapping);
808                 iput(inode);
809         } else {
810                 /*
811                  * We should submit bio, since it exists several
812                  * wribacking dentry pages in the freeing inode.
813                  */
814                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
815         }
816         goto retry;
817 }
818
819 /*
820  * Freeze all the FS-operations for checkpoint.
821  */
822 static int block_operations(struct f2fs_sb_info *sbi)
823 {
824         struct writeback_control wbc = {
825                 .sync_mode = WB_SYNC_ALL,
826                 .nr_to_write = LONG_MAX,
827                 .for_reclaim = 0,
828         };
829         struct blk_plug plug;
830         int err = 0;
831
832         blk_start_plug(&plug);
833
834 retry_flush_dents:
835         f2fs_lock_all(sbi);
836         /* write all the dirty dentry pages */
837         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
838                 f2fs_unlock_all(sbi);
839                 sync_dirty_dir_inodes(sbi);
840                 if (unlikely(f2fs_cp_error(sbi))) {
841                         err = -EIO;
842                         goto out;
843                 }
844                 goto retry_flush_dents;
845         }
846
847         /*
848          * POR: we should ensure that there are no dirty node pages
849          * until finishing nat/sit flush.
850          */
851 retry_flush_nodes:
852         down_write(&sbi->node_write);
853
854         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
855                 up_write(&sbi->node_write);
856                 sync_node_pages(sbi, 0, &wbc);
857                 if (unlikely(f2fs_cp_error(sbi))) {
858                         f2fs_unlock_all(sbi);
859                         err = -EIO;
860                         goto out;
861                 }
862                 goto retry_flush_nodes;
863         }
864 out:
865         blk_finish_plug(&plug);
866         return err;
867 }
868
869 static void unblock_operations(struct f2fs_sb_info *sbi)
870 {
871         up_write(&sbi->node_write);
872         f2fs_unlock_all(sbi);
873 }
874
875 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
876 {
877         DEFINE_WAIT(wait);
878
879         for (;;) {
880                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
881
882                 if (!get_pages(sbi, F2FS_WRITEBACK))
883                         break;
884
885                 io_schedule();
886         }
887         finish_wait(&sbi->cp_wait, &wait);
888 }
889
890 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
891 {
892         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
893         struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
894         struct f2fs_nm_info *nm_i = NM_I(sbi);
895         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
896         nid_t last_nid = nm_i->next_scan_nid;
897         block_t start_blk;
898         struct page *cp_page;
899         unsigned int data_sum_blocks, orphan_blocks;
900         __u32 crc32 = 0;
901         void *kaddr;
902         int i;
903         int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
904
905         /*
906          * This avoids to conduct wrong roll-forward operations and uses
907          * metapages, so should be called prior to sync_meta_pages below.
908          */
909         discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
910
911         /* Flush all the NAT/SIT pages */
912         while (get_pages(sbi, F2FS_DIRTY_META)) {
913                 sync_meta_pages(sbi, META, LONG_MAX);
914                 if (unlikely(f2fs_cp_error(sbi)))
915                         return;
916         }
917
918         next_free_nid(sbi, &last_nid);
919
920         /*
921          * modify checkpoint
922          * version number is already updated
923          */
924         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
925         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
926         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
927         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
928                 ckpt->cur_node_segno[i] =
929                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
930                 ckpt->cur_node_blkoff[i] =
931                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
932                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
933                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
934         }
935         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
936                 ckpt->cur_data_segno[i] =
937                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
938                 ckpt->cur_data_blkoff[i] =
939                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
940                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
941                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
942         }
943
944         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
945         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
946         ckpt->next_free_nid = cpu_to_le32(last_nid);
947
948         /* 2 cp  + n data seg summary + orphan inode blocks */
949         data_sum_blocks = npages_for_summary_flush(sbi, false);
950         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
951                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
952         else
953                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
954
955         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
956         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
957                         orphan_blocks);
958
959         if (__remain_node_summaries(cpc->reason))
960                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
961                                 cp_payload_blks + data_sum_blocks +
962                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
963         else
964                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
965                                 cp_payload_blks + data_sum_blocks +
966                                 orphan_blocks);
967
968         if (cpc->reason == CP_UMOUNT)
969                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
970         else
971                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
972
973         if (cpc->reason == CP_FASTBOOT)
974                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
975         else
976                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
977
978         if (orphan_num)
979                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
980         else
981                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
982
983         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
984                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
985
986         /* update SIT/NAT bitmap */
987         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
988         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
989
990         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
991         *((__le32 *)((unsigned char *)ckpt +
992                                 le32_to_cpu(ckpt->checksum_offset)))
993                                 = cpu_to_le32(crc32);
994
995         start_blk = __start_cp_addr(sbi);
996
997         /* write out checkpoint buffer at block 0 */
998         cp_page = grab_meta_page(sbi, start_blk++);
999         kaddr = page_address(cp_page);
1000         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
1001         set_page_dirty(cp_page);
1002         f2fs_put_page(cp_page, 1);
1003
1004         for (i = 1; i < 1 + cp_payload_blks; i++) {
1005                 cp_page = grab_meta_page(sbi, start_blk++);
1006                 kaddr = page_address(cp_page);
1007                 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
1008                                 (1 << sbi->log_blocksize));
1009                 set_page_dirty(cp_page);
1010                 f2fs_put_page(cp_page, 1);
1011         }
1012
1013         if (orphan_num) {
1014                 write_orphan_inodes(sbi, start_blk);
1015                 start_blk += orphan_blocks;
1016         }
1017
1018         write_data_summaries(sbi, start_blk);
1019         start_blk += data_sum_blocks;
1020         if (__remain_node_summaries(cpc->reason)) {
1021                 write_node_summaries(sbi, start_blk);
1022                 start_blk += NR_CURSEG_NODE_TYPE;
1023         }
1024
1025         /* writeout checkpoint block */
1026         cp_page = grab_meta_page(sbi, start_blk);
1027         kaddr = page_address(cp_page);
1028         memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
1029         set_page_dirty(cp_page);
1030         f2fs_put_page(cp_page, 1);
1031
1032         /* wait for previous submitted node/meta pages writeback */
1033         wait_on_all_pages_writeback(sbi);
1034
1035         if (unlikely(f2fs_cp_error(sbi)))
1036                 return;
1037
1038         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1039         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1040
1041         /* update user_block_counts */
1042         sbi->last_valid_block_count = sbi->total_valid_block_count;
1043         sbi->alloc_valid_block_count = 0;
1044
1045         /* Here, we only have one bio having CP pack */
1046         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1047
1048         /* wait for previous submitted meta pages writeback */
1049         wait_on_all_pages_writeback(sbi);
1050
1051         release_dirty_inode(sbi);
1052
1053         if (unlikely(f2fs_cp_error(sbi)))
1054                 return;
1055
1056         clear_prefree_segments(sbi);
1057         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1058 }
1059
1060 /*
1061  * We guarantee that this checkpoint procedure will not fail.
1062  */
1063 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1064 {
1065         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1066         unsigned long long ckpt_ver;
1067
1068         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1069
1070         mutex_lock(&sbi->cp_mutex);
1071
1072         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1073                         cpc->reason != CP_DISCARD && cpc->reason != CP_UMOUNT)
1074                 goto out;
1075         if (unlikely(f2fs_cp_error(sbi)))
1076                 goto out;
1077         if (f2fs_readonly(sbi->sb))
1078                 goto out;
1079         if (block_operations(sbi))
1080                 goto out;
1081
1082         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1083
1084         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1085         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1086         f2fs_submit_merged_bio(sbi, META, WRITE);
1087
1088         /*
1089          * update checkpoint pack index
1090          * Increase the version number so that
1091          * SIT entries and seg summaries are written at correct place
1092          */
1093         ckpt_ver = cur_cp_version(ckpt);
1094         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1095
1096         /* write cached NAT/SIT entries to NAT/SIT area */
1097         flush_nat_entries(sbi);
1098         flush_sit_entries(sbi, cpc);
1099
1100         /* unlock all the fs_lock[] in do_checkpoint() */
1101         do_checkpoint(sbi, cpc);
1102
1103         unblock_operations(sbi);
1104         stat_inc_cp_count(sbi->stat_info);
1105 out:
1106         mutex_unlock(&sbi->cp_mutex);
1107         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1108 }
1109
1110 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1111 {
1112         int i;
1113
1114         for (i = 0; i < MAX_INO_ENTRY; i++) {
1115                 struct inode_management *im = &sbi->im[i];
1116
1117                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1118                 spin_lock_init(&im->ino_lock);
1119                 INIT_LIST_HEAD(&im->ino_list);
1120                 im->ino_num = 0;
1121         }
1122
1123         /*
1124          * considering 512 blocks in a segment 8 blocks are needed for cp
1125          * and log segment summaries. Remaining blocks are used to keep
1126          * orphan entries with the limitation one reserved segment
1127          * for cp pack we can have max 1020*504 orphan entries
1128          */
1129         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1130                         NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1131 }
1132
1133 int __init create_checkpoint_caches(void)
1134 {
1135         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1136                         sizeof(struct ino_entry));
1137         if (!ino_entry_slab)
1138                 return -ENOMEM;
1139         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1140                         sizeof(struct inode_entry));
1141         if (!inode_entry_slab) {
1142                 kmem_cache_destroy(ino_entry_slab);
1143                 return -ENOMEM;
1144         }
1145         return 0;
1146 }
1147
1148 void destroy_checkpoint_caches(void)
1149 {
1150         kmem_cache_destroy(ino_entry_slab);
1151         kmem_cache_destroy(inode_entry_slab);
1152 }