Merge branch develop-3.10 into develop-3.10-next
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / super.c
1 /*
2  *  linux/fs/ext4/super.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Big-endian to little-endian byte-swapping/bitmaps by
16  *        David S. Miller (davem@caip.rutgers.edu), 1995
17  */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"       /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64                              unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68                                         struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70                                    struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static int ext4_remount(struct super_block *sb, int *flags, char *data);
73 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
74 static int ext4_unfreeze(struct super_block *sb);
75 static int ext4_freeze(struct super_block *sb);
76 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
77                        const char *dev_name, void *data);
78 static inline int ext2_feature_set_ok(struct super_block *sb);
79 static inline int ext3_feature_set_ok(struct super_block *sb);
80 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
81 static void ext4_destroy_lazyinit_thread(void);
82 static void ext4_unregister_li_request(struct super_block *sb);
83 static void ext4_clear_request_list(void);
84 static int ext4_reserve_clusters(struct ext4_sb_info *, ext4_fsblk_t);
85
86 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
87 static struct file_system_type ext2_fs_type = {
88         .owner          = THIS_MODULE,
89         .name           = "ext2",
90         .mount          = ext4_mount,
91         .kill_sb        = kill_block_super,
92         .fs_flags       = FS_REQUIRES_DEV,
93 };
94 MODULE_ALIAS_FS("ext2");
95 MODULE_ALIAS("ext2");
96 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
97 #else
98 #define IS_EXT2_SB(sb) (0)
99 #endif
100
101
102 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
103 static struct file_system_type ext3_fs_type = {
104         .owner          = THIS_MODULE,
105         .name           = "ext3",
106         .mount          = ext4_mount,
107         .kill_sb        = kill_block_super,
108         .fs_flags       = FS_REQUIRES_DEV,
109 };
110 MODULE_ALIAS_FS("ext3");
111 MODULE_ALIAS("ext3");
112 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
113 #else
114 #define IS_EXT3_SB(sb) (0)
115 #endif
116
117 static int ext4_verify_csum_type(struct super_block *sb,
118                                  struct ext4_super_block *es)
119 {
120         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
121                                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
122                 return 1;
123
124         return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
125 }
126
127 static __le32 ext4_superblock_csum(struct super_block *sb,
128                                    struct ext4_super_block *es)
129 {
130         struct ext4_sb_info *sbi = EXT4_SB(sb);
131         int offset = offsetof(struct ext4_super_block, s_checksum);
132         __u32 csum;
133
134         csum = ext4_chksum(sbi, ~0, (char *)es, offset);
135
136         return cpu_to_le32(csum);
137 }
138
139 int ext4_superblock_csum_verify(struct super_block *sb,
140                                 struct ext4_super_block *es)
141 {
142         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
143                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
144                 return 1;
145
146         return es->s_checksum == ext4_superblock_csum(sb, es);
147 }
148
149 void ext4_superblock_csum_set(struct super_block *sb)
150 {
151         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
152
153         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
154                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
155                 return;
156
157         es->s_checksum = ext4_superblock_csum(sb, es);
158 }
159
160 void *ext4_kvmalloc(size_t size, gfp_t flags)
161 {
162         void *ret;
163
164         ret = kmalloc(size, flags);
165         if (!ret)
166                 ret = __vmalloc(size, flags, PAGE_KERNEL);
167         return ret;
168 }
169
170 void *ext4_kvzalloc(size_t size, gfp_t flags)
171 {
172         void *ret;
173
174         ret = kzalloc(size, flags);
175         if (!ret)
176                 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
177         return ret;
178 }
179
180 void ext4_kvfree(void *ptr)
181 {
182         if (is_vmalloc_addr(ptr))
183                 vfree(ptr);
184         else
185                 kfree(ptr);
186
187 }
188
189 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
190                                struct ext4_group_desc *bg)
191 {
192         return le32_to_cpu(bg->bg_block_bitmap_lo) |
193                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
194                  (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
195 }
196
197 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
198                                struct ext4_group_desc *bg)
199 {
200         return le32_to_cpu(bg->bg_inode_bitmap_lo) |
201                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
202                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
203 }
204
205 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
206                               struct ext4_group_desc *bg)
207 {
208         return le32_to_cpu(bg->bg_inode_table_lo) |
209                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
210                  (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
211 }
212
213 __u32 ext4_free_group_clusters(struct super_block *sb,
214                                struct ext4_group_desc *bg)
215 {
216         return le16_to_cpu(bg->bg_free_blocks_count_lo) |
217                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
218                  (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
219 }
220
221 __u32 ext4_free_inodes_count(struct super_block *sb,
222                               struct ext4_group_desc *bg)
223 {
224         return le16_to_cpu(bg->bg_free_inodes_count_lo) |
225                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
226                  (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
227 }
228
229 __u32 ext4_used_dirs_count(struct super_block *sb,
230                               struct ext4_group_desc *bg)
231 {
232         return le16_to_cpu(bg->bg_used_dirs_count_lo) |
233                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
234                  (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
235 }
236
237 __u32 ext4_itable_unused_count(struct super_block *sb,
238                               struct ext4_group_desc *bg)
239 {
240         return le16_to_cpu(bg->bg_itable_unused_lo) |
241                 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
242                  (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
243 }
244
245 void ext4_block_bitmap_set(struct super_block *sb,
246                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
247 {
248         bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
249         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
250                 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
251 }
252
253 void ext4_inode_bitmap_set(struct super_block *sb,
254                            struct ext4_group_desc *bg, ext4_fsblk_t blk)
255 {
256         bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
257         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
258                 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
259 }
260
261 void ext4_inode_table_set(struct super_block *sb,
262                           struct ext4_group_desc *bg, ext4_fsblk_t blk)
263 {
264         bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
265         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
266                 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
267 }
268
269 void ext4_free_group_clusters_set(struct super_block *sb,
270                                   struct ext4_group_desc *bg, __u32 count)
271 {
272         bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
273         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
274                 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
275 }
276
277 void ext4_free_inodes_set(struct super_block *sb,
278                           struct ext4_group_desc *bg, __u32 count)
279 {
280         bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
281         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
282                 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
283 }
284
285 void ext4_used_dirs_set(struct super_block *sb,
286                           struct ext4_group_desc *bg, __u32 count)
287 {
288         bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
289         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
290                 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
291 }
292
293 void ext4_itable_unused_set(struct super_block *sb,
294                           struct ext4_group_desc *bg, __u32 count)
295 {
296         bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
297         if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
298                 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
299 }
300
301
302 static void __save_error_info(struct super_block *sb, const char *func,
303                             unsigned int line)
304 {
305         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
306
307         EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
308         es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
309         es->s_last_error_time = cpu_to_le32(get_seconds());
310         strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
311         es->s_last_error_line = cpu_to_le32(line);
312         if (!es->s_first_error_time) {
313                 es->s_first_error_time = es->s_last_error_time;
314                 strncpy(es->s_first_error_func, func,
315                         sizeof(es->s_first_error_func));
316                 es->s_first_error_line = cpu_to_le32(line);
317                 es->s_first_error_ino = es->s_last_error_ino;
318                 es->s_first_error_block = es->s_last_error_block;
319         }
320         /*
321          * Start the daily error reporting function if it hasn't been
322          * started already
323          */
324         if (!es->s_error_count)
325                 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
326         le32_add_cpu(&es->s_error_count, 1);
327 }
328
329 static void save_error_info(struct super_block *sb, const char *func,
330                             unsigned int line)
331 {
332         __save_error_info(sb, func, line);
333         ext4_commit_super(sb, 1);
334 }
335
336 /*
337  * The del_gendisk() function uninitializes the disk-specific data
338  * structures, including the bdi structure, without telling anyone
339  * else.  Once this happens, any attempt to call mark_buffer_dirty()
340  * (for example, by ext4_commit_super), will cause a kernel OOPS.
341  * This is a kludge to prevent these oops until we can put in a proper
342  * hook in del_gendisk() to inform the VFS and file system layers.
343  */
344 static int block_device_ejected(struct super_block *sb)
345 {
346         struct inode *bd_inode = sb->s_bdev->bd_inode;
347         struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
348
349         return bdi->dev == NULL;
350 }
351
352 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
353 {
354         struct super_block              *sb = journal->j_private;
355         struct ext4_sb_info             *sbi = EXT4_SB(sb);
356         int                             error = is_journal_aborted(journal);
357         struct ext4_journal_cb_entry    *jce;
358
359         BUG_ON(txn->t_state == T_FINISHED);
360         spin_lock(&sbi->s_md_lock);
361         while (!list_empty(&txn->t_private_list)) {
362                 jce = list_entry(txn->t_private_list.next,
363                                  struct ext4_journal_cb_entry, jce_list);
364                 list_del_init(&jce->jce_list);
365                 spin_unlock(&sbi->s_md_lock);
366                 jce->jce_func(sb, jce, error);
367                 spin_lock(&sbi->s_md_lock);
368         }
369         spin_unlock(&sbi->s_md_lock);
370 }
371
372 /* Deal with the reporting of failure conditions on a filesystem such as
373  * inconsistencies detected or read IO failures.
374  *
375  * On ext2, we can store the error state of the filesystem in the
376  * superblock.  That is not possible on ext4, because we may have other
377  * write ordering constraints on the superblock which prevent us from
378  * writing it out straight away; and given that the journal is about to
379  * be aborted, we can't rely on the current, or future, transactions to
380  * write out the superblock safely.
381  *
382  * We'll just use the jbd2_journal_abort() error code to record an error in
383  * the journal instead.  On recovery, the journal will complain about
384  * that error until we've noted it down and cleared it.
385  */
386
387 static void ext4_handle_error(struct super_block *sb)
388 {
389         if (sb->s_flags & MS_RDONLY)
390                 return;
391
392         if (!test_opt(sb, ERRORS_CONT)) {
393                 journal_t *journal = EXT4_SB(sb)->s_journal;
394
395                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
396                 if (journal)
397                         jbd2_journal_abort(journal, -EIO);
398         }
399         if (test_opt(sb, ERRORS_RO)) {
400                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
401                 sb->s_flags |= MS_RDONLY;
402         }
403         if (test_opt(sb, ERRORS_PANIC))
404                 panic("EXT4-fs (device %s): panic forced after error\n",
405                         sb->s_id);
406 }
407
408 void __ext4_error(struct super_block *sb, const char *function,
409                   unsigned int line, const char *fmt, ...)
410 {
411         struct va_format vaf;
412         va_list args;
413
414         va_start(args, fmt);
415         vaf.fmt = fmt;
416         vaf.va = &args;
417         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
418                sb->s_id, function, line, current->comm, &vaf);
419         va_end(args);
420         save_error_info(sb, function, line);
421
422         ext4_handle_error(sb);
423 }
424
425 void ext4_error_inode(struct inode *inode, const char *function,
426                       unsigned int line, ext4_fsblk_t block,
427                       const char *fmt, ...)
428 {
429         va_list args;
430         struct va_format vaf;
431         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
432
433         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
434         es->s_last_error_block = cpu_to_le64(block);
435         save_error_info(inode->i_sb, function, line);
436         va_start(args, fmt);
437         vaf.fmt = fmt;
438         vaf.va = &args;
439         if (block)
440                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
441                        "inode #%lu: block %llu: comm %s: %pV\n",
442                        inode->i_sb->s_id, function, line, inode->i_ino,
443                        block, current->comm, &vaf);
444         else
445                 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
446                        "inode #%lu: comm %s: %pV\n",
447                        inode->i_sb->s_id, function, line, inode->i_ino,
448                        current->comm, &vaf);
449         va_end(args);
450
451         ext4_handle_error(inode->i_sb);
452 }
453
454 void ext4_error_file(struct file *file, const char *function,
455                      unsigned int line, ext4_fsblk_t block,
456                      const char *fmt, ...)
457 {
458         va_list args;
459         struct va_format vaf;
460         struct ext4_super_block *es;
461         struct inode *inode = file_inode(file);
462         char pathname[80], *path;
463
464         es = EXT4_SB(inode->i_sb)->s_es;
465         es->s_last_error_ino = cpu_to_le32(inode->i_ino);
466         save_error_info(inode->i_sb, function, line);
467         path = d_path(&(file->f_path), pathname, sizeof(pathname));
468         if (IS_ERR(path))
469                 path = "(unknown)";
470         va_start(args, fmt);
471         vaf.fmt = fmt;
472         vaf.va = &args;
473         if (block)
474                 printk(KERN_CRIT
475                        "EXT4-fs error (device %s): %s:%d: inode #%lu: "
476                        "block %llu: comm %s: path %s: %pV\n",
477                        inode->i_sb->s_id, function, line, inode->i_ino,
478                        block, current->comm, path, &vaf);
479         else
480                 printk(KERN_CRIT
481                        "EXT4-fs error (device %s): %s:%d: inode #%lu: "
482                        "comm %s: path %s: %pV\n",
483                        inode->i_sb->s_id, function, line, inode->i_ino,
484                        current->comm, path, &vaf);
485         va_end(args);
486
487         ext4_handle_error(inode->i_sb);
488 }
489
490 const char *ext4_decode_error(struct super_block *sb, int errno,
491                               char nbuf[16])
492 {
493         char *errstr = NULL;
494
495         switch (errno) {
496         case -EIO:
497                 errstr = "IO failure";
498                 break;
499         case -ENOMEM:
500                 errstr = "Out of memory";
501                 break;
502         case -EROFS:
503                 if (!sb || (EXT4_SB(sb)->s_journal &&
504                             EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
505                         errstr = "Journal has aborted";
506                 else
507                         errstr = "Readonly filesystem";
508                 break;
509         default:
510                 /* If the caller passed in an extra buffer for unknown
511                  * errors, textualise them now.  Else we just return
512                  * NULL. */
513                 if (nbuf) {
514                         /* Check for truncated error codes... */
515                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
516                                 errstr = nbuf;
517                 }
518                 break;
519         }
520
521         return errstr;
522 }
523
524 /* __ext4_std_error decodes expected errors from journaling functions
525  * automatically and invokes the appropriate error response.  */
526
527 void __ext4_std_error(struct super_block *sb, const char *function,
528                       unsigned int line, int errno)
529 {
530         char nbuf[16];
531         const char *errstr;
532
533         /* Special case: if the error is EROFS, and we're not already
534          * inside a transaction, then there's really no point in logging
535          * an error. */
536         if (errno == -EROFS && journal_current_handle() == NULL &&
537             (sb->s_flags & MS_RDONLY))
538                 return;
539
540         errstr = ext4_decode_error(sb, errno, nbuf);
541         printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
542                sb->s_id, function, line, errstr);
543         save_error_info(sb, function, line);
544
545         ext4_handle_error(sb);
546 }
547
548 /*
549  * ext4_abort is a much stronger failure handler than ext4_error.  The
550  * abort function may be used to deal with unrecoverable failures such
551  * as journal IO errors or ENOMEM at a critical moment in log management.
552  *
553  * We unconditionally force the filesystem into an ABORT|READONLY state,
554  * unless the error response on the fs has been set to panic in which
555  * case we take the easy way out and panic immediately.
556  */
557
558 void __ext4_abort(struct super_block *sb, const char *function,
559                 unsigned int line, const char *fmt, ...)
560 {
561         va_list args;
562
563         save_error_info(sb, function, line);
564         va_start(args, fmt);
565         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
566                function, line);
567         vprintk(fmt, args);
568         printk("\n");
569         va_end(args);
570
571         if ((sb->s_flags & MS_RDONLY) == 0) {
572                 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
573                 sb->s_flags |= MS_RDONLY;
574                 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
575                 if (EXT4_SB(sb)->s_journal)
576                         jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
577                 save_error_info(sb, function, line);
578         }
579         if (test_opt(sb, ERRORS_PANIC))
580                 panic("EXT4-fs panic from previous error\n");
581 }
582
583 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
584 {
585         struct va_format vaf;
586         va_list args;
587
588         va_start(args, fmt);
589         vaf.fmt = fmt;
590         vaf.va = &args;
591         printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
592         va_end(args);
593 }
594
595 void __ext4_warning(struct super_block *sb, const char *function,
596                     unsigned int line, const char *fmt, ...)
597 {
598         struct va_format vaf;
599         va_list args;
600
601         va_start(args, fmt);
602         vaf.fmt = fmt;
603         vaf.va = &args;
604         printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
605                sb->s_id, function, line, &vaf);
606         va_end(args);
607 }
608
609 void __ext4_grp_locked_error(const char *function, unsigned int line,
610                              struct super_block *sb, ext4_group_t grp,
611                              unsigned long ino, ext4_fsblk_t block,
612                              const char *fmt, ...)
613 __releases(bitlock)
614 __acquires(bitlock)
615 {
616         struct va_format vaf;
617         va_list args;
618         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
619
620         es->s_last_error_ino = cpu_to_le32(ino);
621         es->s_last_error_block = cpu_to_le64(block);
622         __save_error_info(sb, function, line);
623
624         va_start(args, fmt);
625
626         vaf.fmt = fmt;
627         vaf.va = &args;
628         printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
629                sb->s_id, function, line, grp);
630         if (ino)
631                 printk(KERN_CONT "inode %lu: ", ino);
632         if (block)
633                 printk(KERN_CONT "block %llu:", (unsigned long long) block);
634         printk(KERN_CONT "%pV\n", &vaf);
635         va_end(args);
636
637         if (test_opt(sb, ERRORS_CONT)) {
638                 ext4_commit_super(sb, 0);
639                 return;
640         }
641
642         ext4_unlock_group(sb, grp);
643         ext4_handle_error(sb);
644         /*
645          * We only get here in the ERRORS_RO case; relocking the group
646          * may be dangerous, but nothing bad will happen since the
647          * filesystem will have already been marked read/only and the
648          * journal has been aborted.  We return 1 as a hint to callers
649          * who might what to use the return value from
650          * ext4_grp_locked_error() to distinguish between the
651          * ERRORS_CONT and ERRORS_RO case, and perhaps return more
652          * aggressively from the ext4 function in question, with a
653          * more appropriate error code.
654          */
655         ext4_lock_group(sb, grp);
656         return;
657 }
658
659 void ext4_update_dynamic_rev(struct super_block *sb)
660 {
661         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
662
663         if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
664                 return;
665
666         ext4_warning(sb,
667                      "updating to rev %d because of new feature flag, "
668                      "running e2fsck is recommended",
669                      EXT4_DYNAMIC_REV);
670
671         es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
672         es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
673         es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
674         /* leave es->s_feature_*compat flags alone */
675         /* es->s_uuid will be set by e2fsck if empty */
676
677         /*
678          * The rest of the superblock fields should be zero, and if not it
679          * means they are likely already in use, so leave them alone.  We
680          * can leave it up to e2fsck to clean up any inconsistencies there.
681          */
682 }
683
684 /*
685  * Open the external journal device
686  */
687 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
688 {
689         struct block_device *bdev;
690         char b[BDEVNAME_SIZE];
691
692         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
693         if (IS_ERR(bdev))
694                 goto fail;
695         return bdev;
696
697 fail:
698         ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
699                         __bdevname(dev, b), PTR_ERR(bdev));
700         return NULL;
701 }
702
703 /*
704  * Release the journal device
705  */
706 static void ext4_blkdev_put(struct block_device *bdev)
707 {
708         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
709 }
710
711 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
712 {
713         struct block_device *bdev;
714         bdev = sbi->journal_bdev;
715         if (bdev) {
716                 ext4_blkdev_put(bdev);
717                 sbi->journal_bdev = NULL;
718         }
719 }
720
721 static inline struct inode *orphan_list_entry(struct list_head *l)
722 {
723         return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
724 }
725
726 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
727 {
728         struct list_head *l;
729
730         ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
731                  le32_to_cpu(sbi->s_es->s_last_orphan));
732
733         printk(KERN_ERR "sb_info orphan list:\n");
734         list_for_each(l, &sbi->s_orphan) {
735                 struct inode *inode = orphan_list_entry(l);
736                 printk(KERN_ERR "  "
737                        "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
738                        inode->i_sb->s_id, inode->i_ino, inode,
739                        inode->i_mode, inode->i_nlink,
740                        NEXT_ORPHAN(inode));
741         }
742 }
743
744 static void ext4_put_super(struct super_block *sb)
745 {
746         struct ext4_sb_info *sbi = EXT4_SB(sb);
747         struct ext4_super_block *es = sbi->s_es;
748         int i, err;
749
750         ext4_unregister_li_request(sb);
751         dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
752
753         flush_workqueue(sbi->dio_unwritten_wq);
754         destroy_workqueue(sbi->dio_unwritten_wq);
755
756         if (sbi->s_journal) {
757                 err = jbd2_journal_destroy(sbi->s_journal);
758                 sbi->s_journal = NULL;
759                 if (err < 0)
760                         ext4_abort(sb, "Couldn't clean up the journal");
761         }
762
763         ext4_es_unregister_shrinker(sb);
764         del_timer(&sbi->s_err_report);
765         ext4_release_system_zone(sb);
766         ext4_mb_release(sb);
767         ext4_ext_release(sb);
768         ext4_xattr_put_super(sb);
769
770         if (!(sb->s_flags & MS_RDONLY)) {
771                 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
772                 es->s_state = cpu_to_le16(sbi->s_mount_state);
773         }
774         if (!(sb->s_flags & MS_RDONLY))
775                 ext4_commit_super(sb, 1);
776
777         if (sbi->s_proc) {
778                 remove_proc_entry("options", sbi->s_proc);
779                 remove_proc_entry(sb->s_id, ext4_proc_root);
780         }
781         kobject_del(&sbi->s_kobj);
782
783         for (i = 0; i < sbi->s_gdb_count; i++)
784                 brelse(sbi->s_group_desc[i]);
785         ext4_kvfree(sbi->s_group_desc);
786         ext4_kvfree(sbi->s_flex_groups);
787         percpu_counter_destroy(&sbi->s_freeclusters_counter);
788         percpu_counter_destroy(&sbi->s_freeinodes_counter);
789         percpu_counter_destroy(&sbi->s_dirs_counter);
790         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
791         percpu_counter_destroy(&sbi->s_extent_cache_cnt);
792         brelse(sbi->s_sbh);
793 #ifdef CONFIG_QUOTA
794         for (i = 0; i < MAXQUOTAS; i++)
795                 kfree(sbi->s_qf_names[i]);
796 #endif
797
798         /* Debugging code just in case the in-memory inode orphan list
799          * isn't empty.  The on-disk one can be non-empty if we've
800          * detected an error and taken the fs readonly, but the
801          * in-memory list had better be clean by this point. */
802         if (!list_empty(&sbi->s_orphan))
803                 dump_orphan_list(sb, sbi);
804         J_ASSERT(list_empty(&sbi->s_orphan));
805
806         invalidate_bdev(sb->s_bdev);
807         if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
808                 /*
809                  * Invalidate the journal device's buffers.  We don't want them
810                  * floating about in memory - the physical journal device may
811                  * hotswapped, and it breaks the `ro-after' testing code.
812                  */
813                 sync_blockdev(sbi->journal_bdev);
814                 invalidate_bdev(sbi->journal_bdev);
815                 ext4_blkdev_remove(sbi);
816         }
817         if (sbi->s_mmp_tsk)
818                 kthread_stop(sbi->s_mmp_tsk);
819         sb->s_fs_info = NULL;
820         /*
821          * Now that we are completely done shutting down the
822          * superblock, we need to actually destroy the kobject.
823          */
824         kobject_put(&sbi->s_kobj);
825         wait_for_completion(&sbi->s_kobj_unregister);
826         if (sbi->s_chksum_driver)
827                 crypto_free_shash(sbi->s_chksum_driver);
828         kfree(sbi->s_blockgroup_lock);
829         kfree(sbi);
830 }
831
832 static struct kmem_cache *ext4_inode_cachep;
833
834 /*
835  * Called inside transaction, so use GFP_NOFS
836  */
837 static struct inode *ext4_alloc_inode(struct super_block *sb)
838 {
839         struct ext4_inode_info *ei;
840
841         ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
842         if (!ei)
843                 return NULL;
844
845         ei->vfs_inode.i_version = 1;
846         INIT_LIST_HEAD(&ei->i_prealloc_list);
847         spin_lock_init(&ei->i_prealloc_lock);
848         ext4_es_init_tree(&ei->i_es_tree);
849         rwlock_init(&ei->i_es_lock);
850         INIT_LIST_HEAD(&ei->i_es_lru);
851         ei->i_es_lru_nr = 0;
852         ei->i_reserved_data_blocks = 0;
853         ei->i_reserved_meta_blocks = 0;
854         ei->i_allocated_meta_blocks = 0;
855         ei->i_da_metadata_calc_len = 0;
856         ei->i_da_metadata_calc_last_lblock = 0;
857         spin_lock_init(&(ei->i_block_reservation_lock));
858 #ifdef CONFIG_QUOTA
859         ei->i_reserved_quota = 0;
860 #endif
861         ei->jinode = NULL;
862         INIT_LIST_HEAD(&ei->i_completed_io_list);
863         spin_lock_init(&ei->i_completed_io_lock);
864         ei->i_sync_tid = 0;
865         ei->i_datasync_tid = 0;
866         atomic_set(&ei->i_ioend_count, 0);
867         atomic_set(&ei->i_unwritten, 0);
868         INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work);
869
870         return &ei->vfs_inode;
871 }
872
873 static int ext4_drop_inode(struct inode *inode)
874 {
875         int drop = generic_drop_inode(inode);
876
877         trace_ext4_drop_inode(inode, drop);
878         return drop;
879 }
880
881 static void ext4_i_callback(struct rcu_head *head)
882 {
883         struct inode *inode = container_of(head, struct inode, i_rcu);
884         kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
885 }
886
887 static void ext4_destroy_inode(struct inode *inode)
888 {
889         if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
890                 ext4_msg(inode->i_sb, KERN_ERR,
891                          "Inode %lu (%p): orphan list check failed!",
892                          inode->i_ino, EXT4_I(inode));
893                 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
894                                 EXT4_I(inode), sizeof(struct ext4_inode_info),
895                                 true);
896                 dump_stack();
897         }
898         call_rcu(&inode->i_rcu, ext4_i_callback);
899 }
900
901 static void init_once(void *foo)
902 {
903         struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
904
905         INIT_LIST_HEAD(&ei->i_orphan);
906         init_rwsem(&ei->xattr_sem);
907         init_rwsem(&ei->i_data_sem);
908         inode_init_once(&ei->vfs_inode);
909 }
910
911 static int init_inodecache(void)
912 {
913         ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
914                                              sizeof(struct ext4_inode_info),
915                                              0, (SLAB_RECLAIM_ACCOUNT|
916                                                 SLAB_MEM_SPREAD),
917                                              init_once);
918         if (ext4_inode_cachep == NULL)
919                 return -ENOMEM;
920         return 0;
921 }
922
923 static void destroy_inodecache(void)
924 {
925         /*
926          * Make sure all delayed rcu free inodes are flushed before we
927          * destroy cache.
928          */
929         rcu_barrier();
930         kmem_cache_destroy(ext4_inode_cachep);
931 }
932
933 void ext4_clear_inode(struct inode *inode)
934 {
935         invalidate_inode_buffers(inode);
936         clear_inode(inode);
937         dquot_drop(inode);
938         ext4_discard_preallocations(inode);
939         ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
940         ext4_es_lru_del(inode);
941         if (EXT4_I(inode)->jinode) {
942                 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
943                                                EXT4_I(inode)->jinode);
944                 jbd2_free_inode(EXT4_I(inode)->jinode);
945                 EXT4_I(inode)->jinode = NULL;
946         }
947 }
948
949 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
950                                         u64 ino, u32 generation)
951 {
952         struct inode *inode;
953
954         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
955                 return ERR_PTR(-ESTALE);
956         if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
957                 return ERR_PTR(-ESTALE);
958
959         /* iget isn't really right if the inode is currently unallocated!!
960          *
961          * ext4_read_inode will return a bad_inode if the inode had been
962          * deleted, so we should be safe.
963          *
964          * Currently we don't know the generation for parent directory, so
965          * a generation of 0 means "accept any"
966          */
967         inode = ext4_iget_normal(sb, ino);
968         if (IS_ERR(inode))
969                 return ERR_CAST(inode);
970         if (generation && inode->i_generation != generation) {
971                 iput(inode);
972                 return ERR_PTR(-ESTALE);
973         }
974
975         return inode;
976 }
977
978 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
979                                         int fh_len, int fh_type)
980 {
981         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
982                                     ext4_nfs_get_inode);
983 }
984
985 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
986                                         int fh_len, int fh_type)
987 {
988         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
989                                     ext4_nfs_get_inode);
990 }
991
992 /*
993  * Try to release metadata pages (indirect blocks, directories) which are
994  * mapped via the block device.  Since these pages could have journal heads
995  * which would prevent try_to_free_buffers() from freeing them, we must use
996  * jbd2 layer's try_to_free_buffers() function to release them.
997  */
998 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
999                                  gfp_t wait)
1000 {
1001         journal_t *journal = EXT4_SB(sb)->s_journal;
1002
1003         WARN_ON(PageChecked(page));
1004         if (!page_has_buffers(page))
1005                 return 0;
1006         if (journal)
1007                 return jbd2_journal_try_to_free_buffers(journal, page,
1008                                                         wait & ~__GFP_WAIT);
1009         return try_to_free_buffers(page);
1010 }
1011
1012 #ifdef CONFIG_QUOTA
1013 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1014 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1015
1016 static int ext4_write_dquot(struct dquot *dquot);
1017 static int ext4_acquire_dquot(struct dquot *dquot);
1018 static int ext4_release_dquot(struct dquot *dquot);
1019 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1020 static int ext4_write_info(struct super_block *sb, int type);
1021 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1022                          struct path *path);
1023 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1024                                  int format_id);
1025 static int ext4_quota_off(struct super_block *sb, int type);
1026 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1027 static int ext4_quota_on_mount(struct super_block *sb, int type);
1028 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1029                                size_t len, loff_t off);
1030 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1031                                 const char *data, size_t len, loff_t off);
1032 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1033                              unsigned int flags);
1034 static int ext4_enable_quotas(struct super_block *sb);
1035
1036 static const struct dquot_operations ext4_quota_operations = {
1037         .get_reserved_space = ext4_get_reserved_space,
1038         .write_dquot    = ext4_write_dquot,
1039         .acquire_dquot  = ext4_acquire_dquot,
1040         .release_dquot  = ext4_release_dquot,
1041         .mark_dirty     = ext4_mark_dquot_dirty,
1042         .write_info     = ext4_write_info,
1043         .alloc_dquot    = dquot_alloc,
1044         .destroy_dquot  = dquot_destroy,
1045 };
1046
1047 static const struct quotactl_ops ext4_qctl_operations = {
1048         .quota_on       = ext4_quota_on,
1049         .quota_off      = ext4_quota_off,
1050         .quota_sync     = dquot_quota_sync,
1051         .get_info       = dquot_get_dqinfo,
1052         .set_info       = dquot_set_dqinfo,
1053         .get_dqblk      = dquot_get_dqblk,
1054         .set_dqblk      = dquot_set_dqblk
1055 };
1056
1057 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1058         .quota_on_meta  = ext4_quota_on_sysfile,
1059         .quota_off      = ext4_quota_off_sysfile,
1060         .quota_sync     = dquot_quota_sync,
1061         .get_info       = dquot_get_dqinfo,
1062         .set_info       = dquot_set_dqinfo,
1063         .get_dqblk      = dquot_get_dqblk,
1064         .set_dqblk      = dquot_set_dqblk
1065 };
1066 #endif
1067
1068 static const struct super_operations ext4_sops = {
1069         .alloc_inode    = ext4_alloc_inode,
1070         .destroy_inode  = ext4_destroy_inode,
1071         .write_inode    = ext4_write_inode,
1072         .dirty_inode    = ext4_dirty_inode,
1073         .drop_inode     = ext4_drop_inode,
1074         .evict_inode    = ext4_evict_inode,
1075         .put_super      = ext4_put_super,
1076         .sync_fs        = ext4_sync_fs,
1077         .freeze_fs      = ext4_freeze,
1078         .unfreeze_fs    = ext4_unfreeze,
1079         .statfs         = ext4_statfs,
1080         .remount_fs     = ext4_remount,
1081         .show_options   = ext4_show_options,
1082 #ifdef CONFIG_QUOTA
1083         .quota_read     = ext4_quota_read,
1084         .quota_write    = ext4_quota_write,
1085 #endif
1086         .bdev_try_to_free_page = bdev_try_to_free_page,
1087 };
1088
1089 static const struct super_operations ext4_nojournal_sops = {
1090         .alloc_inode    = ext4_alloc_inode,
1091         .destroy_inode  = ext4_destroy_inode,
1092         .write_inode    = ext4_write_inode,
1093         .dirty_inode    = ext4_dirty_inode,
1094         .drop_inode     = ext4_drop_inode,
1095         .evict_inode    = ext4_evict_inode,
1096         .put_super      = ext4_put_super,
1097         .statfs         = ext4_statfs,
1098         .remount_fs     = ext4_remount,
1099         .show_options   = ext4_show_options,
1100 #ifdef CONFIG_QUOTA
1101         .quota_read     = ext4_quota_read,
1102         .quota_write    = ext4_quota_write,
1103 #endif
1104         .bdev_try_to_free_page = bdev_try_to_free_page,
1105 };
1106
1107 static const struct export_operations ext4_export_ops = {
1108         .fh_to_dentry = ext4_fh_to_dentry,
1109         .fh_to_parent = ext4_fh_to_parent,
1110         .get_parent = ext4_get_parent,
1111 };
1112
1113 enum {
1114         Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1115         Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1116         Opt_nouid32, Opt_debug, Opt_removed,
1117         Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1118         Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1119         Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1120         Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1121         Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1122         Opt_data_err_abort, Opt_data_err_ignore,
1123         Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1124         Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1125         Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1126         Opt_usrquota, Opt_grpquota, Opt_i_version,
1127         Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1128         Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1129         Opt_inode_readahead_blks, Opt_journal_ioprio,
1130         Opt_dioread_nolock, Opt_dioread_lock,
1131         Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1132         Opt_max_dir_size_kb,
1133 };
1134
1135 static const match_table_t tokens = {
1136         {Opt_bsd_df, "bsddf"},
1137         {Opt_minix_df, "minixdf"},
1138         {Opt_grpid, "grpid"},
1139         {Opt_grpid, "bsdgroups"},
1140         {Opt_nogrpid, "nogrpid"},
1141         {Opt_nogrpid, "sysvgroups"},
1142         {Opt_resgid, "resgid=%u"},
1143         {Opt_resuid, "resuid=%u"},
1144         {Opt_sb, "sb=%u"},
1145         {Opt_err_cont, "errors=continue"},
1146         {Opt_err_panic, "errors=panic"},
1147         {Opt_err_ro, "errors=remount-ro"},
1148         {Opt_nouid32, "nouid32"},
1149         {Opt_debug, "debug"},
1150         {Opt_removed, "oldalloc"},
1151         {Opt_removed, "orlov"},
1152         {Opt_user_xattr, "user_xattr"},
1153         {Opt_nouser_xattr, "nouser_xattr"},
1154         {Opt_acl, "acl"},
1155         {Opt_noacl, "noacl"},
1156         {Opt_noload, "norecovery"},
1157         {Opt_noload, "noload"},
1158         {Opt_removed, "nobh"},
1159         {Opt_removed, "bh"},
1160         {Opt_commit, "commit=%u"},
1161         {Opt_min_batch_time, "min_batch_time=%u"},
1162         {Opt_max_batch_time, "max_batch_time=%u"},
1163         {Opt_journal_dev, "journal_dev=%u"},
1164         {Opt_journal_checksum, "journal_checksum"},
1165         {Opt_journal_async_commit, "journal_async_commit"},
1166         {Opt_abort, "abort"},
1167         {Opt_data_journal, "data=journal"},
1168         {Opt_data_ordered, "data=ordered"},
1169         {Opt_data_writeback, "data=writeback"},
1170         {Opt_data_err_abort, "data_err=abort"},
1171         {Opt_data_err_ignore, "data_err=ignore"},
1172         {Opt_offusrjquota, "usrjquota="},
1173         {Opt_usrjquota, "usrjquota=%s"},
1174         {Opt_offgrpjquota, "grpjquota="},
1175         {Opt_grpjquota, "grpjquota=%s"},
1176         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1177         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1178         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1179         {Opt_grpquota, "grpquota"},
1180         {Opt_noquota, "noquota"},
1181         {Opt_quota, "quota"},
1182         {Opt_usrquota, "usrquota"},
1183         {Opt_barrier, "barrier=%u"},
1184         {Opt_barrier, "barrier"},
1185         {Opt_nobarrier, "nobarrier"},
1186         {Opt_i_version, "i_version"},
1187         {Opt_stripe, "stripe=%u"},
1188         {Opt_delalloc, "delalloc"},
1189         {Opt_nodelalloc, "nodelalloc"},
1190         {Opt_removed, "mblk_io_submit"},
1191         {Opt_removed, "nomblk_io_submit"},
1192         {Opt_block_validity, "block_validity"},
1193         {Opt_noblock_validity, "noblock_validity"},
1194         {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1195         {Opt_journal_ioprio, "journal_ioprio=%u"},
1196         {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1197         {Opt_auto_da_alloc, "auto_da_alloc"},
1198         {Opt_noauto_da_alloc, "noauto_da_alloc"},
1199         {Opt_dioread_nolock, "dioread_nolock"},
1200         {Opt_dioread_lock, "dioread_lock"},
1201         {Opt_discard, "discard"},
1202         {Opt_nodiscard, "nodiscard"},
1203         {Opt_init_itable, "init_itable=%u"},
1204         {Opt_init_itable, "init_itable"},
1205         {Opt_noinit_itable, "noinit_itable"},
1206         {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1207         {Opt_removed, "check=none"},    /* mount option from ext2/3 */
1208         {Opt_removed, "nocheck"},       /* mount option from ext2/3 */
1209         {Opt_removed, "reservation"},   /* mount option from ext2/3 */
1210         {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1211         {Opt_removed, "journal=%u"},    /* mount option from ext2/3 */
1212         {Opt_err, NULL},
1213 };
1214
1215 static ext4_fsblk_t get_sb_block(void **data)
1216 {
1217         ext4_fsblk_t    sb_block;
1218         char            *options = (char *) *data;
1219
1220         if (!options || strncmp(options, "sb=", 3) != 0)
1221                 return 1;       /* Default location */
1222
1223         options += 3;
1224         /* TODO: use simple_strtoll with >32bit ext4 */
1225         sb_block = simple_strtoul(options, &options, 0);
1226         if (*options && *options != ',') {
1227                 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1228                        (char *) *data);
1229                 return 1;
1230         }
1231         if (*options == ',')
1232                 options++;
1233         *data = (void *) options;
1234
1235         return sb_block;
1236 }
1237
1238 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1239 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1240         "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1241
1242 #ifdef CONFIG_QUOTA
1243 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1244 {
1245         struct ext4_sb_info *sbi = EXT4_SB(sb);
1246         char *qname;
1247         int ret = -1;
1248
1249         if (sb_any_quota_loaded(sb) &&
1250                 !sbi->s_qf_names[qtype]) {
1251                 ext4_msg(sb, KERN_ERR,
1252                         "Cannot change journaled "
1253                         "quota options when quota turned on");
1254                 return -1;
1255         }
1256         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1257                 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options "
1258                          "when QUOTA feature is enabled");
1259                 return -1;
1260         }
1261         qname = match_strdup(args);
1262         if (!qname) {
1263                 ext4_msg(sb, KERN_ERR,
1264                         "Not enough memory for storing quotafile name");
1265                 return -1;
1266         }
1267         if (sbi->s_qf_names[qtype]) {
1268                 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1269                         ret = 1;
1270                 else
1271                         ext4_msg(sb, KERN_ERR,
1272                                  "%s quota file already specified",
1273                                  QTYPE2NAME(qtype));
1274                 goto errout;
1275         }
1276         if (strchr(qname, '/')) {
1277                 ext4_msg(sb, KERN_ERR,
1278                         "quotafile must be on filesystem root");
1279                 goto errout;
1280         }
1281         sbi->s_qf_names[qtype] = qname;
1282         set_opt(sb, QUOTA);
1283         return 1;
1284 errout:
1285         kfree(qname);
1286         return ret;
1287 }
1288
1289 static int clear_qf_name(struct super_block *sb, int qtype)
1290 {
1291
1292         struct ext4_sb_info *sbi = EXT4_SB(sb);
1293
1294         if (sb_any_quota_loaded(sb) &&
1295                 sbi->s_qf_names[qtype]) {
1296                 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1297                         " when quota turned on");
1298                 return -1;
1299         }
1300         kfree(sbi->s_qf_names[qtype]);
1301         sbi->s_qf_names[qtype] = NULL;
1302         return 1;
1303 }
1304 #endif
1305
1306 #define MOPT_SET        0x0001
1307 #define MOPT_CLEAR      0x0002
1308 #define MOPT_NOSUPPORT  0x0004
1309 #define MOPT_EXPLICIT   0x0008
1310 #define MOPT_CLEAR_ERR  0x0010
1311 #define MOPT_GTE0       0x0020
1312 #ifdef CONFIG_QUOTA
1313 #define MOPT_Q          0
1314 #define MOPT_QFMT       0x0040
1315 #else
1316 #define MOPT_Q          MOPT_NOSUPPORT
1317 #define MOPT_QFMT       MOPT_NOSUPPORT
1318 #endif
1319 #define MOPT_DATAJ      0x0080
1320 #define MOPT_NO_EXT2    0x0100
1321 #define MOPT_NO_EXT3    0x0200
1322 #define MOPT_EXT4_ONLY  (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1323
1324 static const struct mount_opts {
1325         int     token;
1326         int     mount_opt;
1327         int     flags;
1328 } ext4_mount_opts[] = {
1329         {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1330         {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1331         {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1332         {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1333         {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1334         {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1335         {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1336          MOPT_EXT4_ONLY | MOPT_SET},
1337         {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1338          MOPT_EXT4_ONLY | MOPT_CLEAR},
1339         {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1340         {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1341         {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1342          MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1343         {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1344          MOPT_EXT4_ONLY | MOPT_CLEAR},
1345         {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1346          MOPT_EXT4_ONLY | MOPT_SET},
1347         {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1348                                     EXT4_MOUNT_JOURNAL_CHECKSUM),
1349          MOPT_EXT4_ONLY | MOPT_SET},
1350         {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1351         {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1352         {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1353         {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1354         {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1355          MOPT_NO_EXT2 | MOPT_SET},
1356         {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1357          MOPT_NO_EXT2 | MOPT_CLEAR},
1358         {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1359         {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1360         {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1361         {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1362         {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1363         {Opt_commit, 0, MOPT_GTE0},
1364         {Opt_max_batch_time, 0, MOPT_GTE0},
1365         {Opt_min_batch_time, 0, MOPT_GTE0},
1366         {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1367         {Opt_init_itable, 0, MOPT_GTE0},
1368         {Opt_stripe, 0, MOPT_GTE0},
1369         {Opt_resuid, 0, MOPT_GTE0},
1370         {Opt_resgid, 0, MOPT_GTE0},
1371         {Opt_journal_dev, 0, MOPT_GTE0},
1372         {Opt_journal_ioprio, 0, MOPT_GTE0},
1373         {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1374         {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1375         {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1376          MOPT_NO_EXT2 | MOPT_DATAJ},
1377         {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1378         {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1379 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1380         {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1381         {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1382 #else
1383         {Opt_acl, 0, MOPT_NOSUPPORT},
1384         {Opt_noacl, 0, MOPT_NOSUPPORT},
1385 #endif
1386         {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1387         {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1388         {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1389         {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1390                                                         MOPT_SET | MOPT_Q},
1391         {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1392                                                         MOPT_SET | MOPT_Q},
1393         {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1394                        EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1395         {Opt_usrjquota, 0, MOPT_Q},
1396         {Opt_grpjquota, 0, MOPT_Q},
1397         {Opt_offusrjquota, 0, MOPT_Q},
1398         {Opt_offgrpjquota, 0, MOPT_Q},
1399         {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1400         {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1401         {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1402         {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1403         {Opt_err, 0, 0}
1404 };
1405
1406 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1407                             substring_t *args, unsigned long *journal_devnum,
1408                             unsigned int *journal_ioprio, int is_remount)
1409 {
1410         struct ext4_sb_info *sbi = EXT4_SB(sb);
1411         const struct mount_opts *m;
1412         kuid_t uid;
1413         kgid_t gid;
1414         int arg = 0;
1415
1416 #ifdef CONFIG_QUOTA
1417         if (token == Opt_usrjquota)
1418                 return set_qf_name(sb, USRQUOTA, &args[0]);
1419         else if (token == Opt_grpjquota)
1420                 return set_qf_name(sb, GRPQUOTA, &args[0]);
1421         else if (token == Opt_offusrjquota)
1422                 return clear_qf_name(sb, USRQUOTA);
1423         else if (token == Opt_offgrpjquota)
1424                 return clear_qf_name(sb, GRPQUOTA);
1425 #endif
1426         switch (token) {
1427         case Opt_noacl:
1428         case Opt_nouser_xattr:
1429                 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1430                 break;
1431         case Opt_sb:
1432                 return 1;       /* handled by get_sb_block() */
1433         case Opt_removed:
1434                 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1435                 return 1;
1436         case Opt_abort:
1437                 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1438                 return 1;
1439         case Opt_i_version:
1440                 sb->s_flags |= MS_I_VERSION;
1441                 return 1;
1442         }
1443
1444         for (m = ext4_mount_opts; m->token != Opt_err; m++)
1445                 if (token == m->token)
1446                         break;
1447
1448         if (m->token == Opt_err) {
1449                 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1450                          "or missing value", opt);
1451                 return -1;
1452         }
1453
1454         if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1455                 ext4_msg(sb, KERN_ERR,
1456                          "Mount option \"%s\" incompatible with ext2", opt);
1457                 return -1;
1458         }
1459         if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1460                 ext4_msg(sb, KERN_ERR,
1461                          "Mount option \"%s\" incompatible with ext3", opt);
1462                 return -1;
1463         }
1464
1465         if (args->from && match_int(args, &arg))
1466                 return -1;
1467         if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1468                 return -1;
1469         if (m->flags & MOPT_EXPLICIT)
1470                 set_opt2(sb, EXPLICIT_DELALLOC);
1471         if (m->flags & MOPT_CLEAR_ERR)
1472                 clear_opt(sb, ERRORS_MASK);
1473         if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1474                 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1475                          "options when quota turned on");
1476                 return -1;
1477         }
1478
1479         if (m->flags & MOPT_NOSUPPORT) {
1480                 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1481         } else if (token == Opt_commit) {
1482                 if (arg == 0)
1483                         arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1484                 sbi->s_commit_interval = HZ * arg;
1485         } else if (token == Opt_max_batch_time) {
1486                 sbi->s_max_batch_time = arg;
1487         } else if (token == Opt_min_batch_time) {
1488                 sbi->s_min_batch_time = arg;
1489         } else if (token == Opt_inode_readahead_blks) {
1490                 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1491                         ext4_msg(sb, KERN_ERR,
1492                                  "EXT4-fs: inode_readahead_blks must be "
1493                                  "0 or a power of 2 smaller than 2^31");
1494                         return -1;
1495                 }
1496                 sbi->s_inode_readahead_blks = arg;
1497         } else if (token == Opt_init_itable) {
1498                 set_opt(sb, INIT_INODE_TABLE);
1499                 if (!args->from)
1500                         arg = EXT4_DEF_LI_WAIT_MULT;
1501                 sbi->s_li_wait_mult = arg;
1502         } else if (token == Opt_max_dir_size_kb) {
1503                 sbi->s_max_dir_size_kb = arg;
1504         } else if (token == Opt_stripe) {
1505                 sbi->s_stripe = arg;
1506         } else if (token == Opt_resuid) {
1507                 uid = make_kuid(current_user_ns(), arg);
1508                 if (!uid_valid(uid)) {
1509                         ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1510                         return -1;
1511                 }
1512                 sbi->s_resuid = uid;
1513         } else if (token == Opt_resgid) {
1514                 gid = make_kgid(current_user_ns(), arg);
1515                 if (!gid_valid(gid)) {
1516                         ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1517                         return -1;
1518                 }
1519                 sbi->s_resgid = gid;
1520         } else if (token == Opt_journal_dev) {
1521                 if (is_remount) {
1522                         ext4_msg(sb, KERN_ERR,
1523                                  "Cannot specify journal on remount");
1524                         return -1;
1525                 }
1526                 *journal_devnum = arg;
1527         } else if (token == Opt_journal_ioprio) {
1528                 if (arg > 7) {
1529                         ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1530                                  " (must be 0-7)");
1531                         return -1;
1532                 }
1533                 *journal_ioprio =
1534                         IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1535         } else if (m->flags & MOPT_DATAJ) {
1536                 if (is_remount) {
1537                         if (!sbi->s_journal)
1538                                 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1539                         else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1540                                 ext4_msg(sb, KERN_ERR,
1541                                          "Cannot change data mode on remount");
1542                                 return -1;
1543                         }
1544                 } else {
1545                         clear_opt(sb, DATA_FLAGS);
1546                         sbi->s_mount_opt |= m->mount_opt;
1547                 }
1548 #ifdef CONFIG_QUOTA
1549         } else if (m->flags & MOPT_QFMT) {
1550                 if (sb_any_quota_loaded(sb) &&
1551                     sbi->s_jquota_fmt != m->mount_opt) {
1552                         ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1553                                  "quota options when quota turned on");
1554                         return -1;
1555                 }
1556                 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1557                                                EXT4_FEATURE_RO_COMPAT_QUOTA)) {
1558                         ext4_msg(sb, KERN_ERR,
1559                                  "Cannot set journaled quota options "
1560                                  "when QUOTA feature is enabled");
1561                         return -1;
1562                 }
1563                 sbi->s_jquota_fmt = m->mount_opt;
1564 #endif
1565         } else {
1566                 if (!args->from)
1567                         arg = 1;
1568                 if (m->flags & MOPT_CLEAR)
1569                         arg = !arg;
1570                 else if (unlikely(!(m->flags & MOPT_SET))) {
1571                         ext4_msg(sb, KERN_WARNING,
1572                                  "buggy handling of option %s", opt);
1573                         WARN_ON(1);
1574                         return -1;
1575                 }
1576                 if (arg != 0)
1577                         sbi->s_mount_opt |= m->mount_opt;
1578                 else
1579                         sbi->s_mount_opt &= ~m->mount_opt;
1580         }
1581         return 1;
1582 }
1583
1584 static int parse_options(char *options, struct super_block *sb,
1585                          unsigned long *journal_devnum,
1586                          unsigned int *journal_ioprio,
1587                          int is_remount)
1588 {
1589         struct ext4_sb_info *sbi = EXT4_SB(sb);
1590         char *p;
1591         substring_t args[MAX_OPT_ARGS];
1592         int token;
1593
1594         if (!options)
1595                 return 1;
1596
1597         while ((p = strsep(&options, ",")) != NULL) {
1598                 if (!*p)
1599                         continue;
1600                 /*
1601                  * Initialize args struct so we know whether arg was
1602                  * found; some options take optional arguments.
1603                  */
1604                 args[0].to = args[0].from = NULL;
1605                 token = match_token(p, tokens, args);
1606                 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1607                                      journal_ioprio, is_remount) < 0)
1608                         return 0;
1609         }
1610 #ifdef CONFIG_QUOTA
1611         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
1612             (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) {
1613                 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA "
1614                          "feature is enabled");
1615                 return 0;
1616         }
1617         if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1618                 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1619                         clear_opt(sb, USRQUOTA);
1620
1621                 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1622                         clear_opt(sb, GRPQUOTA);
1623
1624                 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1625                         ext4_msg(sb, KERN_ERR, "old and new quota "
1626                                         "format mixing");
1627                         return 0;
1628                 }
1629
1630                 if (!sbi->s_jquota_fmt) {
1631                         ext4_msg(sb, KERN_ERR, "journaled quota format "
1632                                         "not specified");
1633                         return 0;
1634                 }
1635         }
1636 #endif
1637         if (test_opt(sb, DIOREAD_NOLOCK)) {
1638                 int blocksize =
1639                         BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1640
1641                 if (blocksize < PAGE_CACHE_SIZE) {
1642                         ext4_msg(sb, KERN_ERR, "can't mount with "
1643                                  "dioread_nolock if block size != PAGE_SIZE");
1644                         return 0;
1645                 }
1646         }
1647         return 1;
1648 }
1649
1650 static inline void ext4_show_quota_options(struct seq_file *seq,
1651                                            struct super_block *sb)
1652 {
1653 #if defined(CONFIG_QUOTA)
1654         struct ext4_sb_info *sbi = EXT4_SB(sb);
1655
1656         if (sbi->s_jquota_fmt) {
1657                 char *fmtname = "";
1658
1659                 switch (sbi->s_jquota_fmt) {
1660                 case QFMT_VFS_OLD:
1661                         fmtname = "vfsold";
1662                         break;
1663                 case QFMT_VFS_V0:
1664                         fmtname = "vfsv0";
1665                         break;
1666                 case QFMT_VFS_V1:
1667                         fmtname = "vfsv1";
1668                         break;
1669                 }
1670                 seq_printf(seq, ",jqfmt=%s", fmtname);
1671         }
1672
1673         if (sbi->s_qf_names[USRQUOTA])
1674                 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1675
1676         if (sbi->s_qf_names[GRPQUOTA])
1677                 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1678 #endif
1679 }
1680
1681 static const char *token2str(int token)
1682 {
1683         const struct match_token *t;
1684
1685         for (t = tokens; t->token != Opt_err; t++)
1686                 if (t->token == token && !strchr(t->pattern, '='))
1687                         break;
1688         return t->pattern;
1689 }
1690
1691 /*
1692  * Show an option if
1693  *  - it's set to a non-default value OR
1694  *  - if the per-sb default is different from the global default
1695  */
1696 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1697                               int nodefs)
1698 {
1699         struct ext4_sb_info *sbi = EXT4_SB(sb);
1700         struct ext4_super_block *es = sbi->s_es;
1701         int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1702         const struct mount_opts *m;
1703         char sep = nodefs ? '\n' : ',';
1704
1705 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1706 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1707
1708         if (sbi->s_sb_block != 1)
1709                 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1710
1711         for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1712                 int want_set = m->flags & MOPT_SET;
1713                 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1714                     (m->flags & MOPT_CLEAR_ERR))
1715                         continue;
1716                 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1717                         continue; /* skip if same as the default */
1718                 if ((want_set &&
1719                      (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1720                     (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1721                         continue; /* select Opt_noFoo vs Opt_Foo */
1722                 SEQ_OPTS_PRINT("%s", token2str(m->token));
1723         }
1724
1725         if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1726             le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1727                 SEQ_OPTS_PRINT("resuid=%u",
1728                                 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1729         if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1730             le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1731                 SEQ_OPTS_PRINT("resgid=%u",
1732                                 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1733         def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1734         if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1735                 SEQ_OPTS_PUTS("errors=remount-ro");
1736         if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1737                 SEQ_OPTS_PUTS("errors=continue");
1738         if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1739                 SEQ_OPTS_PUTS("errors=panic");
1740         if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1741                 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1742         if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1743                 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1744         if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1745                 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1746         if (sb->s_flags & MS_I_VERSION)
1747                 SEQ_OPTS_PUTS("i_version");
1748         if (nodefs || sbi->s_stripe)
1749                 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1750         if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1751                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1752                         SEQ_OPTS_PUTS("data=journal");
1753                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1754                         SEQ_OPTS_PUTS("data=ordered");
1755                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1756                         SEQ_OPTS_PUTS("data=writeback");
1757         }
1758         if (nodefs ||
1759             sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1760                 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1761                                sbi->s_inode_readahead_blks);
1762
1763         if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1764                        (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1765                 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1766         if (nodefs || sbi->s_max_dir_size_kb)
1767                 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1768
1769         ext4_show_quota_options(seq, sb);
1770         return 0;
1771 }
1772
1773 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1774 {
1775         return _ext4_show_options(seq, root->d_sb, 0);
1776 }
1777
1778 static int options_seq_show(struct seq_file *seq, void *offset)
1779 {
1780         struct super_block *sb = seq->private;
1781         int rc;
1782
1783         seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1784         rc = _ext4_show_options(seq, sb, 1);
1785         seq_puts(seq, "\n");
1786         return rc;
1787 }
1788
1789 static int options_open_fs(struct inode *inode, struct file *file)
1790 {
1791         return single_open(file, options_seq_show, PDE_DATA(inode));
1792 }
1793
1794 static const struct file_operations ext4_seq_options_fops = {
1795         .owner = THIS_MODULE,
1796         .open = options_open_fs,
1797         .read = seq_read,
1798         .llseek = seq_lseek,
1799         .release = single_release,
1800 };
1801
1802 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1803                             int read_only)
1804 {
1805         struct ext4_sb_info *sbi = EXT4_SB(sb);
1806         int res = 0;
1807
1808         if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1809                 ext4_msg(sb, KERN_ERR, "revision level too high, "
1810                          "forcing read-only mode");
1811                 res = MS_RDONLY;
1812         }
1813         if (read_only)
1814                 goto done;
1815         if (!(sbi->s_mount_state & EXT4_VALID_FS))
1816                 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1817                          "running e2fsck is recommended");
1818         else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1819                 ext4_msg(sb, KERN_WARNING,
1820                          "warning: mounting fs with errors, "
1821                          "running e2fsck is recommended");
1822         else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1823                  le16_to_cpu(es->s_mnt_count) >=
1824                  (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1825                 ext4_msg(sb, KERN_WARNING,
1826                          "warning: maximal mount count reached, "
1827                          "running e2fsck is recommended");
1828         else if (le32_to_cpu(es->s_checkinterval) &&
1829                 (le32_to_cpu(es->s_lastcheck) +
1830                         le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1831                 ext4_msg(sb, KERN_WARNING,
1832                          "warning: checktime reached, "
1833                          "running e2fsck is recommended");
1834         if (!sbi->s_journal)
1835                 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1836         if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1837                 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1838         le16_add_cpu(&es->s_mnt_count, 1);
1839         es->s_mtime = cpu_to_le32(get_seconds());
1840         ext4_update_dynamic_rev(sb);
1841         if (sbi->s_journal)
1842                 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1843
1844         ext4_commit_super(sb, 1);
1845 done:
1846         if (test_opt(sb, DEBUG))
1847                 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1848                                 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1849                         sb->s_blocksize,
1850                         sbi->s_groups_count,
1851                         EXT4_BLOCKS_PER_GROUP(sb),
1852                         EXT4_INODES_PER_GROUP(sb),
1853                         sbi->s_mount_opt, sbi->s_mount_opt2);
1854
1855         cleancache_init_fs(sb);
1856         return res;
1857 }
1858
1859 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1860 {
1861         struct ext4_sb_info *sbi = EXT4_SB(sb);
1862         struct flex_groups *new_groups;
1863         int size;
1864
1865         if (!sbi->s_log_groups_per_flex)
1866                 return 0;
1867
1868         size = ext4_flex_group(sbi, ngroup - 1) + 1;
1869         if (size <= sbi->s_flex_groups_allocated)
1870                 return 0;
1871
1872         size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1873         new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1874         if (!new_groups) {
1875                 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1876                          size / (int) sizeof(struct flex_groups));
1877                 return -ENOMEM;
1878         }
1879
1880         if (sbi->s_flex_groups) {
1881                 memcpy(new_groups, sbi->s_flex_groups,
1882                        (sbi->s_flex_groups_allocated *
1883                         sizeof(struct flex_groups)));
1884                 ext4_kvfree(sbi->s_flex_groups);
1885         }
1886         sbi->s_flex_groups = new_groups;
1887         sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1888         return 0;
1889 }
1890
1891 static int ext4_fill_flex_info(struct super_block *sb)
1892 {
1893         struct ext4_sb_info *sbi = EXT4_SB(sb);
1894         struct ext4_group_desc *gdp = NULL;
1895         ext4_group_t flex_group;
1896         unsigned int groups_per_flex = 0;
1897         int i, err;
1898
1899         sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1900         if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1901                 sbi->s_log_groups_per_flex = 0;
1902                 return 1;
1903         }
1904         groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1905
1906         err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1907         if (err)
1908                 goto failed;
1909
1910         for (i = 0; i < sbi->s_groups_count; i++) {
1911                 gdp = ext4_get_group_desc(sb, i, NULL);
1912
1913                 flex_group = ext4_flex_group(sbi, i);
1914                 atomic_add(ext4_free_inodes_count(sb, gdp),
1915                            &sbi->s_flex_groups[flex_group].free_inodes);
1916                 atomic64_add(ext4_free_group_clusters(sb, gdp),
1917                              &sbi->s_flex_groups[flex_group].free_clusters);
1918                 atomic_add(ext4_used_dirs_count(sb, gdp),
1919                            &sbi->s_flex_groups[flex_group].used_dirs);
1920         }
1921
1922         return 1;
1923 failed:
1924         return 0;
1925 }
1926
1927 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1928                                    struct ext4_group_desc *gdp)
1929 {
1930         int offset;
1931         __u16 crc = 0;
1932         __le32 le_group = cpu_to_le32(block_group);
1933
1934         if ((sbi->s_es->s_feature_ro_compat &
1935              cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1936                 /* Use new metadata_csum algorithm */
1937                 __le16 save_csum;
1938                 __u32 csum32;
1939
1940                 save_csum = gdp->bg_checksum;
1941                 gdp->bg_checksum = 0;
1942                 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
1943                                      sizeof(le_group));
1944                 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
1945                                      sbi->s_desc_size);
1946                 gdp->bg_checksum = save_csum;
1947
1948                 crc = csum32 & 0xFFFF;
1949                 goto out;
1950         }
1951
1952         /* old crc16 code */
1953         if (!(sbi->s_es->s_feature_ro_compat &
1954               cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)))
1955                 return 0;
1956
1957         offset = offsetof(struct ext4_group_desc, bg_checksum);
1958
1959         crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
1960         crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
1961         crc = crc16(crc, (__u8 *)gdp, offset);
1962         offset += sizeof(gdp->bg_checksum); /* skip checksum */
1963         /* for checksum of struct ext4_group_desc do the rest...*/
1964         if ((sbi->s_es->s_feature_incompat &
1965              cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
1966             offset < le16_to_cpu(sbi->s_es->s_desc_size))
1967                 crc = crc16(crc, (__u8 *)gdp + offset,
1968                             le16_to_cpu(sbi->s_es->s_desc_size) -
1969                                 offset);
1970
1971 out:
1972         return cpu_to_le16(crc);
1973 }
1974
1975 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
1976                                 struct ext4_group_desc *gdp)
1977 {
1978         if (ext4_has_group_desc_csum(sb) &&
1979             (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
1980                                                       block_group, gdp)))
1981                 return 0;
1982
1983         return 1;
1984 }
1985
1986 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
1987                               struct ext4_group_desc *gdp)
1988 {
1989         if (!ext4_has_group_desc_csum(sb))
1990                 return;
1991         gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
1992 }
1993
1994 /* Called at mount-time, super-block is locked */
1995 static int ext4_check_descriptors(struct super_block *sb,
1996                                   ext4_group_t *first_not_zeroed)
1997 {
1998         struct ext4_sb_info *sbi = EXT4_SB(sb);
1999         ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2000         ext4_fsblk_t last_block;
2001         ext4_fsblk_t block_bitmap;
2002         ext4_fsblk_t inode_bitmap;
2003         ext4_fsblk_t inode_table;
2004         int flexbg_flag = 0;
2005         ext4_group_t i, grp = sbi->s_groups_count;
2006
2007         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2008                 flexbg_flag = 1;
2009
2010         ext4_debug("Checking group descriptors");
2011
2012         for (i = 0; i < sbi->s_groups_count; i++) {
2013                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2014
2015                 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2016                         last_block = ext4_blocks_count(sbi->s_es) - 1;
2017                 else
2018                         last_block = first_block +
2019                                 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2020
2021                 if ((grp == sbi->s_groups_count) &&
2022                    !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2023                         grp = i;
2024
2025                 block_bitmap = ext4_block_bitmap(sb, gdp);
2026                 if (block_bitmap < first_block || block_bitmap > last_block) {
2027                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2028                                "Block bitmap for group %u not in group "
2029                                "(block %llu)!", i, block_bitmap);
2030                         return 0;
2031                 }
2032                 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2033                 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2034                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2035                                "Inode bitmap for group %u not in group "
2036                                "(block %llu)!", i, inode_bitmap);
2037                         return 0;
2038                 }
2039                 inode_table = ext4_inode_table(sb, gdp);
2040                 if (inode_table < first_block ||
2041                     inode_table + sbi->s_itb_per_group - 1 > last_block) {
2042                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2043                                "Inode table for group %u not in group "
2044                                "(block %llu)!", i, inode_table);
2045                         return 0;
2046                 }
2047                 ext4_lock_group(sb, i);
2048                 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2049                         ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2050                                  "Checksum for group %u failed (%u!=%u)",
2051                                  i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2052                                      gdp)), le16_to_cpu(gdp->bg_checksum));
2053                         if (!(sb->s_flags & MS_RDONLY)) {
2054                                 ext4_unlock_group(sb, i);
2055                                 return 0;
2056                         }
2057                 }
2058                 ext4_unlock_group(sb, i);
2059                 if (!flexbg_flag)
2060                         first_block += EXT4_BLOCKS_PER_GROUP(sb);
2061         }
2062         if (NULL != first_not_zeroed)
2063                 *first_not_zeroed = grp;
2064
2065         ext4_free_blocks_count_set(sbi->s_es,
2066                                    EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2067         sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2068         return 1;
2069 }
2070
2071 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2072  * the superblock) which were deleted from all directories, but held open by
2073  * a process at the time of a crash.  We walk the list and try to delete these
2074  * inodes at recovery time (only with a read-write filesystem).
2075  *
2076  * In order to keep the orphan inode chain consistent during traversal (in
2077  * case of crash during recovery), we link each inode into the superblock
2078  * orphan list_head and handle it the same way as an inode deletion during
2079  * normal operation (which journals the operations for us).
2080  *
2081  * We only do an iget() and an iput() on each inode, which is very safe if we
2082  * accidentally point at an in-use or already deleted inode.  The worst that
2083  * can happen in this case is that we get a "bit already cleared" message from
2084  * ext4_free_inode().  The only reason we would point at a wrong inode is if
2085  * e2fsck was run on this filesystem, and it must have already done the orphan
2086  * inode cleanup for us, so we can safely abort without any further action.
2087  */
2088 static void ext4_orphan_cleanup(struct super_block *sb,
2089                                 struct ext4_super_block *es)
2090 {
2091         unsigned int s_flags = sb->s_flags;
2092         int nr_orphans = 0, nr_truncates = 0;
2093 #ifdef CONFIG_QUOTA
2094         int i;
2095 #endif
2096         if (!es->s_last_orphan) {
2097                 jbd_debug(4, "no orphan inodes to clean up\n");
2098                 return;
2099         }
2100
2101         if (bdev_read_only(sb->s_bdev)) {
2102                 ext4_msg(sb, KERN_ERR, "write access "
2103                         "unavailable, skipping orphan cleanup");
2104                 return;
2105         }
2106
2107         /* Check if feature set would not allow a r/w mount */
2108         if (!ext4_feature_set_ok(sb, 0)) {
2109                 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2110                          "unknown ROCOMPAT features");
2111                 return;
2112         }
2113
2114         if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2115                 /* don't clear list on RO mount w/ errors */
2116                 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2117                         jbd_debug(1, "Errors on filesystem, "
2118                                   "clearing orphan list.\n");
2119                         es->s_last_orphan = 0;
2120                 }
2121                 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2122                 return;
2123         }
2124
2125         if (s_flags & MS_RDONLY) {
2126                 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2127                 sb->s_flags &= ~MS_RDONLY;
2128         }
2129 #ifdef CONFIG_QUOTA
2130         /* Needed for iput() to work correctly and not trash data */
2131         sb->s_flags |= MS_ACTIVE;
2132         /* Turn on quotas so that they are updated correctly */
2133         for (i = 0; i < MAXQUOTAS; i++) {
2134                 if (EXT4_SB(sb)->s_qf_names[i]) {
2135                         int ret = ext4_quota_on_mount(sb, i);
2136                         if (ret < 0)
2137                                 ext4_msg(sb, KERN_ERR,
2138                                         "Cannot turn on journaled "
2139                                         "quota: error %d", ret);
2140                 }
2141         }
2142 #endif
2143
2144         while (es->s_last_orphan) {
2145                 struct inode *inode;
2146
2147                 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2148                 if (IS_ERR(inode)) {
2149                         es->s_last_orphan = 0;
2150                         break;
2151                 }
2152
2153                 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2154                 dquot_initialize(inode);
2155                 if (inode->i_nlink) {
2156                         ext4_msg(sb, KERN_DEBUG,
2157                                 "%s: truncating inode %lu to %lld bytes",
2158                                 __func__, inode->i_ino, inode->i_size);
2159                         jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2160                                   inode->i_ino, inode->i_size);
2161                         mutex_lock(&inode->i_mutex);
2162                         ext4_truncate(inode);
2163                         mutex_unlock(&inode->i_mutex);
2164                         nr_truncates++;
2165                 } else {
2166                         ext4_msg(sb, KERN_DEBUG,
2167                                 "%s: deleting unreferenced inode %lu",
2168                                 __func__, inode->i_ino);
2169                         jbd_debug(2, "deleting unreferenced inode %lu\n",
2170                                   inode->i_ino);
2171                         nr_orphans++;
2172                 }
2173                 iput(inode);  /* The delete magic happens here! */
2174         }
2175
2176 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2177
2178         if (nr_orphans)
2179                 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2180                        PLURAL(nr_orphans));
2181         if (nr_truncates)
2182                 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2183                        PLURAL(nr_truncates));
2184 #ifdef CONFIG_QUOTA
2185         /* Turn quotas off */
2186         for (i = 0; i < MAXQUOTAS; i++) {
2187                 if (sb_dqopt(sb)->files[i])
2188                         dquot_quota_off(sb, i);
2189         }
2190 #endif
2191         sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2192 }
2193
2194 /*
2195  * Maximal extent format file size.
2196  * Resulting logical blkno at s_maxbytes must fit in our on-disk
2197  * extent format containers, within a sector_t, and within i_blocks
2198  * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2199  * so that won't be a limiting factor.
2200  *
2201  * However there is other limiting factor. We do store extents in the form
2202  * of starting block and length, hence the resulting length of the extent
2203  * covering maximum file size must fit into on-disk format containers as
2204  * well. Given that length is always by 1 unit bigger than max unit (because
2205  * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2206  *
2207  * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2208  */
2209 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2210 {
2211         loff_t res;
2212         loff_t upper_limit = MAX_LFS_FILESIZE;
2213
2214         /* small i_blocks in vfs inode? */
2215         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2216                 /*
2217                  * CONFIG_LBDAF is not enabled implies the inode
2218                  * i_block represent total blocks in 512 bytes
2219                  * 32 == size of vfs inode i_blocks * 8
2220                  */
2221                 upper_limit = (1LL << 32) - 1;
2222
2223                 /* total blocks in file system block size */
2224                 upper_limit >>= (blkbits - 9);
2225                 upper_limit <<= blkbits;
2226         }
2227
2228         /*
2229          * 32-bit extent-start container, ee_block. We lower the maxbytes
2230          * by one fs block, so ee_len can cover the extent of maximum file
2231          * size
2232          */
2233         res = (1LL << 32) - 1;
2234         res <<= blkbits;
2235
2236         /* Sanity check against vm- & vfs- imposed limits */
2237         if (res > upper_limit)
2238                 res = upper_limit;
2239
2240         return res;
2241 }
2242
2243 /*
2244  * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2245  * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2246  * We need to be 1 filesystem block less than the 2^48 sector limit.
2247  */
2248 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2249 {
2250         loff_t res = EXT4_NDIR_BLOCKS;
2251         int meta_blocks;
2252         loff_t upper_limit;
2253         /* This is calculated to be the largest file size for a dense, block
2254          * mapped file such that the file's total number of 512-byte sectors,
2255          * including data and all indirect blocks, does not exceed (2^48 - 1).
2256          *
2257          * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2258          * number of 512-byte sectors of the file.
2259          */
2260
2261         if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2262                 /*
2263                  * !has_huge_files or CONFIG_LBDAF not enabled implies that
2264                  * the inode i_block field represents total file blocks in
2265                  * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2266                  */
2267                 upper_limit = (1LL << 32) - 1;
2268
2269                 /* total blocks in file system block size */
2270                 upper_limit >>= (bits - 9);
2271
2272         } else {
2273                 /*
2274                  * We use 48 bit ext4_inode i_blocks
2275                  * With EXT4_HUGE_FILE_FL set the i_blocks
2276                  * represent total number of blocks in
2277                  * file system block size
2278                  */
2279                 upper_limit = (1LL << 48) - 1;
2280
2281         }
2282
2283         /* indirect blocks */
2284         meta_blocks = 1;
2285         /* double indirect blocks */
2286         meta_blocks += 1 + (1LL << (bits-2));
2287         /* tripple indirect blocks */
2288         meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2289
2290         upper_limit -= meta_blocks;
2291         upper_limit <<= bits;
2292
2293         res += 1LL << (bits-2);
2294         res += 1LL << (2*(bits-2));
2295         res += 1LL << (3*(bits-2));
2296         res <<= bits;
2297         if (res > upper_limit)
2298                 res = upper_limit;
2299
2300         if (res > MAX_LFS_FILESIZE)
2301                 res = MAX_LFS_FILESIZE;
2302
2303         return res;
2304 }
2305
2306 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2307                                    ext4_fsblk_t logical_sb_block, int nr)
2308 {
2309         struct ext4_sb_info *sbi = EXT4_SB(sb);
2310         ext4_group_t bg, first_meta_bg;
2311         int has_super = 0;
2312
2313         first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2314
2315         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2316             nr < first_meta_bg)
2317                 return logical_sb_block + nr + 1;
2318         bg = sbi->s_desc_per_block * nr;
2319         if (ext4_bg_has_super(sb, bg))
2320                 has_super = 1;
2321
2322         return (has_super + ext4_group_first_block_no(sb, bg));
2323 }
2324
2325 /**
2326  * ext4_get_stripe_size: Get the stripe size.
2327  * @sbi: In memory super block info
2328  *
2329  * If we have specified it via mount option, then
2330  * use the mount option value. If the value specified at mount time is
2331  * greater than the blocks per group use the super block value.
2332  * If the super block value is greater than blocks per group return 0.
2333  * Allocator needs it be less than blocks per group.
2334  *
2335  */
2336 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2337 {
2338         unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2339         unsigned long stripe_width =
2340                         le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2341         int ret;
2342
2343         if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2344                 ret = sbi->s_stripe;
2345         else if (stripe_width <= sbi->s_blocks_per_group)
2346                 ret = stripe_width;
2347         else if (stride <= sbi->s_blocks_per_group)
2348                 ret = stride;
2349         else
2350                 ret = 0;
2351
2352         /*
2353          * If the stripe width is 1, this makes no sense and
2354          * we set it to 0 to turn off stripe handling code.
2355          */
2356         if (ret <= 1)
2357                 ret = 0;
2358
2359         return ret;
2360 }
2361
2362 /* sysfs supprt */
2363
2364 struct ext4_attr {
2365         struct attribute attr;
2366         ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2367         ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2368                          const char *, size_t);
2369         int offset;
2370 };
2371
2372 static int parse_strtoull(const char *buf,
2373                 unsigned long long max, unsigned long long *value)
2374 {
2375         int ret;
2376
2377         ret = kstrtoull(skip_spaces(buf), 0, value);
2378         if (!ret && *value > max)
2379                 ret = -EINVAL;
2380         return ret;
2381 }
2382
2383 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2384                                               struct ext4_sb_info *sbi,
2385                                               char *buf)
2386 {
2387         return snprintf(buf, PAGE_SIZE, "%llu\n",
2388                 (s64) EXT4_C2B(sbi,
2389                         percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2390 }
2391
2392 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2393                                          struct ext4_sb_info *sbi, char *buf)
2394 {
2395         struct super_block *sb = sbi->s_buddy_cache->i_sb;
2396
2397         if (!sb->s_bdev->bd_part)
2398                 return snprintf(buf, PAGE_SIZE, "0\n");
2399         return snprintf(buf, PAGE_SIZE, "%lu\n",
2400                         (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2401                          sbi->s_sectors_written_start) >> 1);
2402 }
2403
2404 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2405                                           struct ext4_sb_info *sbi, char *buf)
2406 {
2407         struct super_block *sb = sbi->s_buddy_cache->i_sb;
2408
2409         if (!sb->s_bdev->bd_part)
2410                 return snprintf(buf, PAGE_SIZE, "0\n");
2411         return snprintf(buf, PAGE_SIZE, "%llu\n",
2412                         (unsigned long long)(sbi->s_kbytes_written +
2413                         ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2414                           EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2415 }
2416
2417 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2418                                           struct ext4_sb_info *sbi,
2419                                           const char *buf, size_t count)
2420 {
2421         unsigned long t;
2422         int ret;
2423
2424         ret = kstrtoul(skip_spaces(buf), 0, &t);
2425         if (ret)
2426                 return ret;
2427
2428         if (t && (!is_power_of_2(t) || t > 0x40000000))
2429                 return -EINVAL;
2430
2431         sbi->s_inode_readahead_blks = t;
2432         return count;
2433 }
2434
2435 static ssize_t sbi_ui_show(struct ext4_attr *a,
2436                            struct ext4_sb_info *sbi, char *buf)
2437 {
2438         unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2439
2440         return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2441 }
2442
2443 static ssize_t sbi_ui_store(struct ext4_attr *a,
2444                             struct ext4_sb_info *sbi,
2445                             const char *buf, size_t count)
2446 {
2447         unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2448         unsigned long t;
2449         int ret;
2450
2451         ret = kstrtoul(skip_spaces(buf), 0, &t);
2452         if (ret)
2453                 return ret;
2454         *ui = t;
2455         return count;
2456 }
2457
2458 static ssize_t reserved_clusters_show(struct ext4_attr *a,
2459                                   struct ext4_sb_info *sbi, char *buf)
2460 {
2461         return snprintf(buf, PAGE_SIZE, "%llu\n",
2462                 (unsigned long long) atomic64_read(&sbi->s_resv_clusters));
2463 }
2464
2465 static ssize_t reserved_clusters_store(struct ext4_attr *a,
2466                                    struct ext4_sb_info *sbi,
2467                                    const char *buf, size_t count)
2468 {
2469         unsigned long long val;
2470         int ret;
2471
2472         if (parse_strtoull(buf, -1ULL, &val))
2473                 return -EINVAL;
2474         ret = ext4_reserve_clusters(sbi, val);
2475
2476         return ret ? ret : count;
2477 }
2478
2479 static ssize_t trigger_test_error(struct ext4_attr *a,
2480                                   struct ext4_sb_info *sbi,
2481                                   const char *buf, size_t count)
2482 {
2483         int len = count;
2484
2485         if (!capable(CAP_SYS_ADMIN))
2486                 return -EPERM;
2487
2488         if (len && buf[len-1] == '\n')
2489                 len--;
2490
2491         if (len)
2492                 ext4_error(sbi->s_sb, "%.*s", len, buf);
2493         return count;
2494 }
2495
2496 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2497 static struct ext4_attr ext4_attr_##_name = {                   \
2498         .attr = {.name = __stringify(_name), .mode = _mode },   \
2499         .show   = _show,                                        \
2500         .store  = _store,                                       \
2501         .offset = offsetof(struct ext4_sb_info, _elname),       \
2502 }
2503 #define EXT4_ATTR(name, mode, show, store) \
2504 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2505
2506 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2507 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2508 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2509 #define EXT4_RW_ATTR_SBI_UI(name, elname)       \
2510         EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2511 #define ATTR_LIST(name) &ext4_attr_##name.attr
2512
2513 EXT4_RO_ATTR(delayed_allocation_blocks);
2514 EXT4_RO_ATTR(session_write_kbytes);
2515 EXT4_RO_ATTR(lifetime_write_kbytes);
2516 EXT4_RW_ATTR(reserved_clusters);
2517 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2518                  inode_readahead_blks_store, s_inode_readahead_blks);
2519 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2520 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2521 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2522 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2523 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2524 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2525 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2526 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2527 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2528 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2529
2530 static struct attribute *ext4_attrs[] = {
2531         ATTR_LIST(delayed_allocation_blocks),
2532         ATTR_LIST(session_write_kbytes),
2533         ATTR_LIST(lifetime_write_kbytes),
2534         ATTR_LIST(reserved_clusters),
2535         ATTR_LIST(inode_readahead_blks),
2536         ATTR_LIST(inode_goal),
2537         ATTR_LIST(mb_stats),
2538         ATTR_LIST(mb_max_to_scan),
2539         ATTR_LIST(mb_min_to_scan),
2540         ATTR_LIST(mb_order2_req),
2541         ATTR_LIST(mb_stream_req),
2542         ATTR_LIST(mb_group_prealloc),
2543         ATTR_LIST(max_writeback_mb_bump),
2544         ATTR_LIST(extent_max_zeroout_kb),
2545         ATTR_LIST(trigger_fs_error),
2546         NULL,
2547 };
2548
2549 /* Features this copy of ext4 supports */
2550 EXT4_INFO_ATTR(lazy_itable_init);
2551 EXT4_INFO_ATTR(batched_discard);
2552 EXT4_INFO_ATTR(meta_bg_resize);
2553
2554 static struct attribute *ext4_feat_attrs[] = {
2555         ATTR_LIST(lazy_itable_init),
2556         ATTR_LIST(batched_discard),
2557         ATTR_LIST(meta_bg_resize),
2558         NULL,
2559 };
2560
2561 static ssize_t ext4_attr_show(struct kobject *kobj,
2562                               struct attribute *attr, char *buf)
2563 {
2564         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2565                                                 s_kobj);
2566         struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2567
2568         return a->show ? a->show(a, sbi, buf) : 0;
2569 }
2570
2571 static ssize_t ext4_attr_store(struct kobject *kobj,
2572                                struct attribute *attr,
2573                                const char *buf, size_t len)
2574 {
2575         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2576                                                 s_kobj);
2577         struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2578
2579         return a->store ? a->store(a, sbi, buf, len) : 0;
2580 }
2581
2582 static void ext4_sb_release(struct kobject *kobj)
2583 {
2584         struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2585                                                 s_kobj);
2586         complete(&sbi->s_kobj_unregister);
2587 }
2588
2589 static const struct sysfs_ops ext4_attr_ops = {
2590         .show   = ext4_attr_show,
2591         .store  = ext4_attr_store,
2592 };
2593
2594 static struct kobj_type ext4_ktype = {
2595         .default_attrs  = ext4_attrs,
2596         .sysfs_ops      = &ext4_attr_ops,
2597         .release        = ext4_sb_release,
2598 };
2599
2600 static void ext4_feat_release(struct kobject *kobj)
2601 {
2602         complete(&ext4_feat->f_kobj_unregister);
2603 }
2604
2605 static struct kobj_type ext4_feat_ktype = {
2606         .default_attrs  = ext4_feat_attrs,
2607         .sysfs_ops      = &ext4_attr_ops,
2608         .release        = ext4_feat_release,
2609 };
2610
2611 /*
2612  * Check whether this filesystem can be mounted based on
2613  * the features present and the RDONLY/RDWR mount requested.
2614  * Returns 1 if this filesystem can be mounted as requested,
2615  * 0 if it cannot be.
2616  */
2617 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2618 {
2619         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2620                 ext4_msg(sb, KERN_ERR,
2621                         "Couldn't mount because of "
2622                         "unsupported optional features (%x)",
2623                         (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2624                         ~EXT4_FEATURE_INCOMPAT_SUPP));
2625                 return 0;
2626         }
2627
2628         if (readonly)
2629                 return 1;
2630
2631         /* Check that feature set is OK for a read-write mount */
2632         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2633                 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2634                          "unsupported optional features (%x)",
2635                          (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2636                                 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2637                 return 0;
2638         }
2639         /*
2640          * Large file size enabled file system can only be mounted
2641          * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2642          */
2643         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2644                 if (sizeof(blkcnt_t) < sizeof(u64)) {
2645                         ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2646                                  "cannot be mounted RDWR without "
2647                                  "CONFIG_LBDAF");
2648                         return 0;
2649                 }
2650         }
2651         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2652             !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2653                 ext4_msg(sb, KERN_ERR,
2654                          "Can't support bigalloc feature without "
2655                          "extents feature\n");
2656                 return 0;
2657         }
2658
2659 #ifndef CONFIG_QUOTA
2660         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2661             !readonly) {
2662                 ext4_msg(sb, KERN_ERR,
2663                          "Filesystem with quota feature cannot be mounted RDWR "
2664                          "without CONFIG_QUOTA");
2665                 return 0;
2666         }
2667 #endif  /* CONFIG_QUOTA */
2668         return 1;
2669 }
2670
2671 /*
2672  * This function is called once a day if we have errors logged
2673  * on the file system
2674  */
2675 static void print_daily_error_info(unsigned long arg)
2676 {
2677         struct super_block *sb = (struct super_block *) arg;
2678         struct ext4_sb_info *sbi;
2679         struct ext4_super_block *es;
2680
2681         sbi = EXT4_SB(sb);
2682         es = sbi->s_es;
2683
2684         if (es->s_error_count)
2685                 /* fsck newer than v1.41.13 is needed to clean this condition. */
2686                 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2687                          le32_to_cpu(es->s_error_count));
2688         if (es->s_first_error_time) {
2689                 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2690                        sb->s_id, le32_to_cpu(es->s_first_error_time),
2691                        (int) sizeof(es->s_first_error_func),
2692                        es->s_first_error_func,
2693                        le32_to_cpu(es->s_first_error_line));
2694                 if (es->s_first_error_ino)
2695                         printk(": inode %u",
2696                                le32_to_cpu(es->s_first_error_ino));
2697                 if (es->s_first_error_block)
2698                         printk(": block %llu", (unsigned long long)
2699                                le64_to_cpu(es->s_first_error_block));
2700                 printk("\n");
2701         }
2702         if (es->s_last_error_time) {
2703                 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2704                        sb->s_id, le32_to_cpu(es->s_last_error_time),
2705                        (int) sizeof(es->s_last_error_func),
2706                        es->s_last_error_func,
2707                        le32_to_cpu(es->s_last_error_line));
2708                 if (es->s_last_error_ino)
2709                         printk(": inode %u",
2710                                le32_to_cpu(es->s_last_error_ino));
2711                 if (es->s_last_error_block)
2712                         printk(": block %llu", (unsigned long long)
2713                                le64_to_cpu(es->s_last_error_block));
2714                 printk("\n");
2715         }
2716         mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2717 }
2718
2719 /* Find next suitable group and run ext4_init_inode_table */
2720 static int ext4_run_li_request(struct ext4_li_request *elr)
2721 {
2722         struct ext4_group_desc *gdp = NULL;
2723         ext4_group_t group, ngroups;
2724         struct super_block *sb;
2725         unsigned long timeout = 0;
2726         int ret = 0;
2727
2728         sb = elr->lr_super;
2729         ngroups = EXT4_SB(sb)->s_groups_count;
2730
2731         sb_start_write(sb);
2732         for (group = elr->lr_next_group; group < ngroups; group++) {
2733                 gdp = ext4_get_group_desc(sb, group, NULL);
2734                 if (!gdp) {
2735                         ret = 1;
2736                         break;
2737                 }
2738
2739                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2740                         break;
2741         }
2742
2743         if (group >= ngroups)
2744                 ret = 1;
2745
2746         if (!ret) {
2747                 timeout = jiffies;
2748                 ret = ext4_init_inode_table(sb, group,
2749                                             elr->lr_timeout ? 0 : 1);
2750                 if (elr->lr_timeout == 0) {
2751                         timeout = (jiffies - timeout) *
2752                                   elr->lr_sbi->s_li_wait_mult;
2753                         elr->lr_timeout = timeout;
2754                 }
2755                 elr->lr_next_sched = jiffies + elr->lr_timeout;
2756                 elr->lr_next_group = group + 1;
2757         }
2758         sb_end_write(sb);
2759
2760         return ret;
2761 }
2762
2763 /*
2764  * Remove lr_request from the list_request and free the
2765  * request structure. Should be called with li_list_mtx held
2766  */
2767 static void ext4_remove_li_request(struct ext4_li_request *elr)
2768 {
2769         struct ext4_sb_info *sbi;
2770
2771         if (!elr)
2772                 return;
2773
2774         sbi = elr->lr_sbi;
2775
2776         list_del(&elr->lr_request);
2777         sbi->s_li_request = NULL;
2778         kfree(elr);
2779 }
2780
2781 static void ext4_unregister_li_request(struct super_block *sb)
2782 {
2783         mutex_lock(&ext4_li_mtx);
2784         if (!ext4_li_info) {
2785                 mutex_unlock(&ext4_li_mtx);
2786                 return;
2787         }
2788
2789         mutex_lock(&ext4_li_info->li_list_mtx);
2790         ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2791         mutex_unlock(&ext4_li_info->li_list_mtx);
2792         mutex_unlock(&ext4_li_mtx);
2793 }
2794
2795 static struct task_struct *ext4_lazyinit_task;
2796
2797 /*
2798  * This is the function where ext4lazyinit thread lives. It walks
2799  * through the request list searching for next scheduled filesystem.
2800  * When such a fs is found, run the lazy initialization request
2801  * (ext4_rn_li_request) and keep track of the time spend in this
2802  * function. Based on that time we compute next schedule time of
2803  * the request. When walking through the list is complete, compute
2804  * next waking time and put itself into sleep.
2805  */
2806 static int ext4_lazyinit_thread(void *arg)
2807 {
2808         struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2809         struct list_head *pos, *n;
2810         struct ext4_li_request *elr;
2811         unsigned long next_wakeup, cur;
2812
2813         BUG_ON(NULL == eli);
2814
2815 cont_thread:
2816         while (true) {
2817                 next_wakeup = MAX_JIFFY_OFFSET;
2818
2819                 mutex_lock(&eli->li_list_mtx);
2820                 if (list_empty(&eli->li_request_list)) {
2821                         mutex_unlock(&eli->li_list_mtx);
2822                         goto exit_thread;
2823                 }
2824
2825                 list_for_each_safe(pos, n, &eli->li_request_list) {
2826                         elr = list_entry(pos, struct ext4_li_request,
2827                                          lr_request);
2828
2829                         if (time_after_eq(jiffies, elr->lr_next_sched)) {
2830                                 if (ext4_run_li_request(elr) != 0) {
2831                                         /* error, remove the lazy_init job */
2832                                         ext4_remove_li_request(elr);
2833                                         continue;
2834                                 }
2835                         }
2836
2837                         if (time_before(elr->lr_next_sched, next_wakeup))
2838                                 next_wakeup = elr->lr_next_sched;
2839                 }
2840                 mutex_unlock(&eli->li_list_mtx);
2841
2842                 try_to_freeze();
2843
2844                 cur = jiffies;
2845                 if ((time_after_eq(cur, next_wakeup)) ||
2846                     (MAX_JIFFY_OFFSET == next_wakeup)) {
2847                         cond_resched();
2848                         continue;
2849                 }
2850
2851                 schedule_timeout_interruptible(next_wakeup - cur);
2852
2853                 if (kthread_should_stop()) {
2854                         ext4_clear_request_list();
2855                         goto exit_thread;
2856                 }
2857         }
2858
2859 exit_thread:
2860         /*
2861          * It looks like the request list is empty, but we need
2862          * to check it under the li_list_mtx lock, to prevent any
2863          * additions into it, and of course we should lock ext4_li_mtx
2864          * to atomically free the list and ext4_li_info, because at
2865          * this point another ext4 filesystem could be registering
2866          * new one.
2867          */
2868         mutex_lock(&ext4_li_mtx);
2869         mutex_lock(&eli->li_list_mtx);
2870         if (!list_empty(&eli->li_request_list)) {
2871                 mutex_unlock(&eli->li_list_mtx);
2872                 mutex_unlock(&ext4_li_mtx);
2873                 goto cont_thread;
2874         }
2875         mutex_unlock(&eli->li_list_mtx);
2876         kfree(ext4_li_info);
2877         ext4_li_info = NULL;
2878         mutex_unlock(&ext4_li_mtx);
2879
2880         return 0;
2881 }
2882
2883 static void ext4_clear_request_list(void)
2884 {
2885         struct list_head *pos, *n;
2886         struct ext4_li_request *elr;
2887
2888         mutex_lock(&ext4_li_info->li_list_mtx);
2889         list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2890                 elr = list_entry(pos, struct ext4_li_request,
2891                                  lr_request);
2892                 ext4_remove_li_request(elr);
2893         }
2894         mutex_unlock(&ext4_li_info->li_list_mtx);
2895 }
2896
2897 static int ext4_run_lazyinit_thread(void)
2898 {
2899         ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2900                                          ext4_li_info, "ext4lazyinit");
2901         if (IS_ERR(ext4_lazyinit_task)) {
2902                 int err = PTR_ERR(ext4_lazyinit_task);
2903                 ext4_clear_request_list();
2904                 kfree(ext4_li_info);
2905                 ext4_li_info = NULL;
2906                 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2907                                  "initialization thread\n",
2908                                  err);
2909                 return err;
2910         }
2911         ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2912         return 0;
2913 }
2914
2915 /*
2916  * Check whether it make sense to run itable init. thread or not.
2917  * If there is at least one uninitialized inode table, return
2918  * corresponding group number, else the loop goes through all
2919  * groups and return total number of groups.
2920  */
2921 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2922 {
2923         ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2924         struct ext4_group_desc *gdp = NULL;
2925
2926         for (group = 0; group < ngroups; group++) {
2927                 gdp = ext4_get_group_desc(sb, group, NULL);
2928                 if (!gdp)
2929                         continue;
2930
2931                 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2932                         break;
2933         }
2934
2935         return group;
2936 }
2937
2938 static int ext4_li_info_new(void)
2939 {
2940         struct ext4_lazy_init *eli = NULL;
2941
2942         eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2943         if (!eli)
2944                 return -ENOMEM;
2945
2946         INIT_LIST_HEAD(&eli->li_request_list);
2947         mutex_init(&eli->li_list_mtx);
2948
2949         eli->li_state |= EXT4_LAZYINIT_QUIT;
2950
2951         ext4_li_info = eli;
2952
2953         return 0;
2954 }
2955
2956 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2957                                             ext4_group_t start)
2958 {
2959         struct ext4_sb_info *sbi = EXT4_SB(sb);
2960         struct ext4_li_request *elr;
2961         unsigned long rnd;
2962
2963         elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2964         if (!elr)
2965                 return NULL;
2966
2967         elr->lr_super = sb;
2968         elr->lr_sbi = sbi;
2969         elr->lr_next_group = start;
2970
2971         /*
2972          * Randomize first schedule time of the request to
2973          * spread the inode table initialization requests
2974          * better.
2975          */
2976         get_random_bytes(&rnd, sizeof(rnd));
2977         elr->lr_next_sched = jiffies + (unsigned long)rnd %
2978                              (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2979
2980         return elr;
2981 }
2982
2983 int ext4_register_li_request(struct super_block *sb,
2984                              ext4_group_t first_not_zeroed)
2985 {
2986         struct ext4_sb_info *sbi = EXT4_SB(sb);
2987         struct ext4_li_request *elr = NULL;
2988         ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
2989         int ret = 0;
2990
2991         mutex_lock(&ext4_li_mtx);
2992         if (sbi->s_li_request != NULL) {
2993                 /*
2994                  * Reset timeout so it can be computed again, because
2995                  * s_li_wait_mult might have changed.
2996                  */
2997                 sbi->s_li_request->lr_timeout = 0;
2998                 goto out;
2999         }
3000
3001         if (first_not_zeroed == ngroups ||
3002             (sb->s_flags & MS_RDONLY) ||
3003             !test_opt(sb, INIT_INODE_TABLE))
3004                 goto out;
3005
3006         elr = ext4_li_request_new(sb, first_not_zeroed);
3007         if (!elr) {
3008                 ret = -ENOMEM;
3009                 goto out;
3010         }
3011
3012         if (NULL == ext4_li_info) {
3013                 ret = ext4_li_info_new();
3014                 if (ret)
3015                         goto out;
3016         }
3017
3018         mutex_lock(&ext4_li_info->li_list_mtx);
3019         list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3020         mutex_unlock(&ext4_li_info->li_list_mtx);
3021
3022         sbi->s_li_request = elr;
3023         /*
3024          * set elr to NULL here since it has been inserted to
3025          * the request_list and the removal and free of it is
3026          * handled by ext4_clear_request_list from now on.
3027          */
3028         elr = NULL;
3029
3030         if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3031                 ret = ext4_run_lazyinit_thread();
3032                 if (ret)
3033                         goto out;
3034         }
3035 out:
3036         mutex_unlock(&ext4_li_mtx);
3037         if (ret)
3038                 kfree(elr);
3039         return ret;
3040 }
3041
3042 /*
3043  * We do not need to lock anything since this is called on
3044  * module unload.
3045  */
3046 static void ext4_destroy_lazyinit_thread(void)
3047 {
3048         /*
3049          * If thread exited earlier
3050          * there's nothing to be done.
3051          */
3052         if (!ext4_li_info || !ext4_lazyinit_task)
3053                 return;
3054
3055         kthread_stop(ext4_lazyinit_task);
3056 }
3057
3058 static int set_journal_csum_feature_set(struct super_block *sb)
3059 {
3060         int ret = 1;
3061         int compat, incompat;
3062         struct ext4_sb_info *sbi = EXT4_SB(sb);
3063
3064         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3065                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3066                 /* journal checksum v2 */
3067                 compat = 0;
3068                 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3069         } else {
3070                 /* journal checksum v1 */
3071                 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3072                 incompat = 0;
3073         }
3074
3075         if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3076                 ret = jbd2_journal_set_features(sbi->s_journal,
3077                                 compat, 0,
3078                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3079                                 incompat);
3080         } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3081                 ret = jbd2_journal_set_features(sbi->s_journal,
3082                                 compat, 0,
3083                                 incompat);
3084                 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3085                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3086         } else {
3087                 jbd2_journal_clear_features(sbi->s_journal,
3088                                 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3089                                 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3090                                 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3091         }
3092
3093         return ret;
3094 }
3095
3096 /*
3097  * Note: calculating the overhead so we can be compatible with
3098  * historical BSD practice is quite difficult in the face of
3099  * clusters/bigalloc.  This is because multiple metadata blocks from
3100  * different block group can end up in the same allocation cluster.
3101  * Calculating the exact overhead in the face of clustered allocation
3102  * requires either O(all block bitmaps) in memory or O(number of block
3103  * groups**2) in time.  We will still calculate the superblock for
3104  * older file systems --- and if we come across with a bigalloc file
3105  * system with zero in s_overhead_clusters the estimate will be close to
3106  * correct especially for very large cluster sizes --- but for newer
3107  * file systems, it's better to calculate this figure once at mkfs
3108  * time, and store it in the superblock.  If the superblock value is
3109  * present (even for non-bigalloc file systems), we will use it.
3110  */
3111 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3112                           char *buf)
3113 {
3114         struct ext4_sb_info     *sbi = EXT4_SB(sb);
3115         struct ext4_group_desc  *gdp;
3116         ext4_fsblk_t            first_block, last_block, b;
3117         ext4_group_t            i, ngroups = ext4_get_groups_count(sb);
3118         int                     s, j, count = 0;
3119
3120         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3121                 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3122                         sbi->s_itb_per_group + 2);
3123
3124         first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3125                 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3126         last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3127         for (i = 0; i < ngroups; i++) {
3128                 gdp = ext4_get_group_desc(sb, i, NULL);
3129                 b = ext4_block_bitmap(sb, gdp);
3130                 if (b >= first_block && b <= last_block) {
3131                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3132                         count++;
3133                 }
3134                 b = ext4_inode_bitmap(sb, gdp);
3135                 if (b >= first_block && b <= last_block) {
3136                         ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3137                         count++;
3138                 }
3139                 b = ext4_inode_table(sb, gdp);
3140                 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3141                         for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3142                                 int c = EXT4_B2C(sbi, b - first_block);
3143                                 ext4_set_bit(c, buf);
3144                                 count++;
3145                         }
3146                 if (i != grp)
3147                         continue;
3148                 s = 0;
3149                 if (ext4_bg_has_super(sb, grp)) {
3150                         ext4_set_bit(s++, buf);
3151                         count++;
3152                 }
3153                 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3154                         ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3155                         count++;
3156                 }
3157         }
3158         if (!count)
3159                 return 0;
3160         return EXT4_CLUSTERS_PER_GROUP(sb) -
3161                 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3162 }
3163
3164 /*
3165  * Compute the overhead and stash it in sbi->s_overhead
3166  */
3167 int ext4_calculate_overhead(struct super_block *sb)
3168 {
3169         struct ext4_sb_info *sbi = EXT4_SB(sb);
3170         struct ext4_super_block *es = sbi->s_es;
3171         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3172         ext4_fsblk_t overhead = 0;
3173         char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3174
3175         if (!buf)
3176                 return -ENOMEM;
3177
3178         /*
3179          * Compute the overhead (FS structures).  This is constant
3180          * for a given filesystem unless the number of block groups
3181          * changes so we cache the previous value until it does.
3182          */
3183
3184         /*
3185          * All of the blocks before first_data_block are overhead
3186          */
3187         overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3188
3189         /*
3190          * Add the overhead found in each block group
3191          */
3192         for (i = 0; i < ngroups; i++) {
3193                 int blks;
3194
3195                 blks = count_overhead(sb, i, buf);
3196                 overhead += blks;
3197                 if (blks)
3198                         memset(buf, 0, PAGE_SIZE);
3199                 cond_resched();
3200         }
3201         /* Add the journal blocks as well */
3202         if (sbi->s_journal)
3203                 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3204
3205         sbi->s_overhead = overhead;
3206         smp_wmb();
3207         free_page((unsigned long) buf);
3208         return 0;
3209 }
3210
3211
3212 static ext4_fsblk_t ext4_calculate_resv_clusters(struct super_block *sb)
3213 {
3214         ext4_fsblk_t resv_clusters;
3215
3216         /*
3217          * There's no need to reserve anything when we aren't using extents.
3218          * The space estimates are exact, there are no unwritten extents,
3219          * hole punching doesn't need new metadata... This is needed especially
3220          * to keep ext2/3 backward compatibility.
3221          */
3222         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
3223                 return 0;
3224         /*
3225          * By default we reserve 2% or 4096 clusters, whichever is smaller.
3226          * This should cover the situations where we can not afford to run
3227          * out of space like for example punch hole, or converting
3228          * uninitialized extents in delalloc path. In most cases such
3229          * allocation would require 1, or 2 blocks, higher numbers are
3230          * very rare.
3231          */
3232         resv_clusters = ext4_blocks_count(EXT4_SB(sb)->s_es) >>
3233                         EXT4_SB(sb)->s_cluster_bits;
3234
3235         do_div(resv_clusters, 50);
3236         resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3237
3238         return resv_clusters;
3239 }
3240
3241
3242 static int ext4_reserve_clusters(struct ext4_sb_info *sbi, ext4_fsblk_t count)
3243 {
3244         ext4_fsblk_t clusters = ext4_blocks_count(sbi->s_es) >>
3245                                 sbi->s_cluster_bits;
3246
3247         if (count >= clusters)
3248                 return -EINVAL;
3249
3250         atomic64_set(&sbi->s_resv_clusters, count);
3251         return 0;
3252 }
3253
3254 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3255 {
3256         char *orig_data = kstrdup(data, GFP_KERNEL);
3257         struct buffer_head *bh;
3258         struct ext4_super_block *es = NULL;
3259         struct ext4_sb_info *sbi;
3260         ext4_fsblk_t block;
3261         ext4_fsblk_t sb_block = get_sb_block(&data);
3262         ext4_fsblk_t logical_sb_block;
3263         unsigned long offset = 0;
3264         unsigned long journal_devnum = 0;
3265         unsigned long def_mount_opts;
3266         struct inode *root;
3267         char *cp;
3268         const char *descr;
3269         int ret = -ENOMEM;
3270         int blocksize, clustersize;
3271         unsigned int db_count;
3272         unsigned int i;
3273         int needs_recovery, has_huge_files, has_bigalloc;
3274         __u64 blocks_count;
3275         int err = 0;
3276         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3277         ext4_group_t first_not_zeroed;
3278
3279         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3280         if (!sbi)
3281                 goto out_free_orig;
3282
3283         sbi->s_blockgroup_lock =
3284                 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3285         if (!sbi->s_blockgroup_lock) {
3286                 kfree(sbi);
3287                 goto out_free_orig;
3288         }
3289         sb->s_fs_info = sbi;
3290         sbi->s_sb = sb;
3291         sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3292         sbi->s_sb_block = sb_block;
3293         if (sb->s_bdev->bd_part)
3294                 sbi->s_sectors_written_start =
3295                         part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3296
3297         /* Cleanup superblock name */
3298         for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3299                 *cp = '!';
3300
3301         /* -EINVAL is default */
3302         ret = -EINVAL;
3303         blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3304         if (!blocksize) {
3305                 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3306                 goto out_fail;
3307         }
3308
3309         /*
3310          * The ext4 superblock will not be buffer aligned for other than 1kB
3311          * block sizes.  We need to calculate the offset from buffer start.
3312          */
3313         if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3314                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3315                 offset = do_div(logical_sb_block, blocksize);
3316         } else {
3317                 logical_sb_block = sb_block;
3318         }
3319
3320         if (!(bh = sb_bread(sb, logical_sb_block))) {
3321                 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3322                 goto out_fail;
3323         }
3324         /*
3325          * Note: s_es must be initialized as soon as possible because
3326          *       some ext4 macro-instructions depend on its value
3327          */
3328         es = (struct ext4_super_block *) (bh->b_data + offset);
3329         sbi->s_es = es;
3330         sb->s_magic = le16_to_cpu(es->s_magic);
3331         if (sb->s_magic != EXT4_SUPER_MAGIC)
3332                 goto cantfind_ext4;
3333         sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3334
3335         /* Warn if metadata_csum and gdt_csum are both set. */
3336         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3337                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3338             EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3339                 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3340                              "redundant flags; please run fsck.");
3341
3342         /* Check for a known checksum algorithm */
3343         if (!ext4_verify_csum_type(sb, es)) {
3344                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3345                          "unknown checksum algorithm.");
3346                 silent = 1;
3347                 goto cantfind_ext4;
3348         }
3349
3350         /* Load the checksum driver */
3351         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3352                                        EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3353                 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3354                 if (IS_ERR(sbi->s_chksum_driver)) {
3355                         ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3356                         ret = PTR_ERR(sbi->s_chksum_driver);
3357                         sbi->s_chksum_driver = NULL;
3358                         goto failed_mount;
3359                 }
3360         }
3361
3362         /* Check superblock checksum */
3363         if (!ext4_superblock_csum_verify(sb, es)) {
3364                 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3365                          "invalid superblock checksum.  Run e2fsck?");
3366                 silent = 1;
3367                 goto cantfind_ext4;
3368         }
3369
3370         /* Precompute checksum seed for all metadata */
3371         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3372                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3373                 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3374                                                sizeof(es->s_uuid));
3375
3376         /* Set defaults before we parse the mount options */
3377         def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3378         set_opt(sb, INIT_INODE_TABLE);
3379         if (def_mount_opts & EXT4_DEFM_DEBUG)
3380                 set_opt(sb, DEBUG);
3381         if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3382                 set_opt(sb, GRPID);
3383         if (def_mount_opts & EXT4_DEFM_UID16)
3384                 set_opt(sb, NO_UID32);
3385         /* xattr user namespace & acls are now defaulted on */
3386         set_opt(sb, XATTR_USER);
3387 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3388         set_opt(sb, POSIX_ACL);
3389 #endif
3390         if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3391                 set_opt(sb, JOURNAL_DATA);
3392         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3393                 set_opt(sb, ORDERED_DATA);
3394         else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3395                 set_opt(sb, WRITEBACK_DATA);
3396
3397         if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3398                 set_opt(sb, ERRORS_PANIC);
3399         else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3400                 set_opt(sb, ERRORS_CONT);
3401         else
3402                 set_opt(sb, ERRORS_RO);
3403         if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3404                 set_opt(sb, BLOCK_VALIDITY);
3405         if (def_mount_opts & EXT4_DEFM_DISCARD)
3406                 set_opt(sb, DISCARD);
3407
3408         sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3409         sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3410         sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3411         sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3412         sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3413
3414         if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3415                 set_opt(sb, BARRIER);
3416
3417         /*
3418          * enable delayed allocation by default
3419          * Use -o nodelalloc to turn it off
3420          */
3421         if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3422             ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3423                 set_opt(sb, DELALLOC);
3424
3425         /*
3426          * set default s_li_wait_mult for lazyinit, for the case there is
3427          * no mount option specified.
3428          */
3429         sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3430
3431         if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3432                            &journal_devnum, &journal_ioprio, 0)) {
3433                 ext4_msg(sb, KERN_WARNING,
3434                          "failed to parse options in superblock: %s",
3435                          sbi->s_es->s_mount_opts);
3436         }
3437         sbi->s_def_mount_opt = sbi->s_mount_opt;
3438         if (!parse_options((char *) data, sb, &journal_devnum,
3439                            &journal_ioprio, 0))
3440                 goto failed_mount;
3441
3442         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3443                 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3444                             "with data=journal disables delayed "
3445                             "allocation and O_DIRECT support!\n");
3446                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3447                         ext4_msg(sb, KERN_ERR, "can't mount with "
3448                                  "both data=journal and delalloc");
3449                         goto failed_mount;
3450                 }
3451                 if (test_opt(sb, DIOREAD_NOLOCK)) {
3452                         ext4_msg(sb, KERN_ERR, "can't mount with "
3453                                  "both data=journal and dioread_nolock");
3454                         goto failed_mount;
3455                 }
3456                 if (test_opt(sb, DELALLOC))
3457                         clear_opt(sb, DELALLOC);
3458         }
3459
3460         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3461                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3462
3463         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3464             (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3465              EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3466              EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3467                 ext4_msg(sb, KERN_WARNING,
3468                        "feature flags set on rev 0 fs, "
3469                        "running e2fsck is recommended");
3470
3471         if (IS_EXT2_SB(sb)) {
3472                 if (ext2_feature_set_ok(sb))
3473                         ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3474                                  "using the ext4 subsystem");
3475                 else {
3476                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3477                                  "to feature incompatibilities");
3478                         goto failed_mount;
3479                 }
3480         }
3481
3482         if (IS_EXT3_SB(sb)) {
3483                 if (ext3_feature_set_ok(sb))
3484                         ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3485                                  "using the ext4 subsystem");
3486                 else {
3487                         ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3488                                  "to feature incompatibilities");
3489                         goto failed_mount;
3490                 }
3491         }
3492
3493         /*
3494          * Check feature flags regardless of the revision level, since we
3495          * previously didn't change the revision level when setting the flags,
3496          * so there is a chance incompat flags are set on a rev 0 filesystem.
3497          */
3498         if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3499                 goto failed_mount;
3500
3501         blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3502         if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3503             blocksize > EXT4_MAX_BLOCK_SIZE) {
3504                 ext4_msg(sb, KERN_ERR,
3505                        "Unsupported filesystem blocksize %d", blocksize);
3506                 goto failed_mount;
3507         }
3508
3509         if (sb->s_blocksize != blocksize) {
3510                 /* Validate the filesystem blocksize */
3511                 if (!sb_set_blocksize(sb, blocksize)) {
3512                         ext4_msg(sb, KERN_ERR, "bad block size %d",
3513                                         blocksize);
3514                         goto failed_mount;
3515                 }
3516
3517                 brelse(bh);
3518                 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3519                 offset = do_div(logical_sb_block, blocksize);
3520                 bh = sb_bread(sb, logical_sb_block);
3521                 if (!bh) {
3522                         ext4_msg(sb, KERN_ERR,
3523                                "Can't read superblock on 2nd try");
3524                         goto failed_mount;
3525                 }
3526                 es = (struct ext4_super_block *)(bh->b_data + offset);
3527                 sbi->s_es = es;
3528                 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3529                         ext4_msg(sb, KERN_ERR,
3530                                "Magic mismatch, very weird!");
3531                         goto failed_mount;
3532                 }
3533         }
3534
3535         has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3536                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3537         sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3538                                                       has_huge_files);
3539         sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3540
3541         if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3542                 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3543                 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3544         } else {
3545                 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3546                 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3547                 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3548                     (!is_power_of_2(sbi->s_inode_size)) ||
3549                     (sbi->s_inode_size > blocksize)) {
3550                         ext4_msg(sb, KERN_ERR,
3551                                "unsupported inode size: %d",
3552                                sbi->s_inode_size);
3553                         goto failed_mount;
3554                 }
3555                 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3556                         sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3557         }
3558
3559         sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3560         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3561                 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3562                     sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3563                     !is_power_of_2(sbi->s_desc_size)) {
3564                         ext4_msg(sb, KERN_ERR,
3565                                "unsupported descriptor size %lu",
3566                                sbi->s_desc_size);
3567                         goto failed_mount;
3568                 }
3569         } else
3570                 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3571
3572         sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3573         sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3574         if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3575                 goto cantfind_ext4;
3576
3577         sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3578         if (sbi->s_inodes_per_block == 0)
3579                 goto cantfind_ext4;
3580         sbi->s_itb_per_group = sbi->s_inodes_per_group /
3581                                         sbi->s_inodes_per_block;
3582         sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3583         sbi->s_sbh = bh;
3584         sbi->s_mount_state = le16_to_cpu(es->s_state);
3585         sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3586         sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3587
3588         for (i = 0; i < 4; i++)
3589                 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3590         sbi->s_def_hash_version = es->s_def_hash_version;
3591         if (EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_DIR_INDEX)) {
3592                 i = le32_to_cpu(es->s_flags);
3593                 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3594                         sbi->s_hash_unsigned = 3;
3595                 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3596 #ifdef __CHAR_UNSIGNED__
3597                         if (!(sb->s_flags & MS_RDONLY))
3598                                 es->s_flags |=
3599                                         cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3600                         sbi->s_hash_unsigned = 3;
3601 #else
3602                         if (!(sb->s_flags & MS_RDONLY))
3603                                 es->s_flags |=
3604                                         cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3605 #endif
3606                 }
3607         }
3608
3609         /* Handle clustersize */
3610         clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3611         has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3612                                 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3613         if (has_bigalloc) {
3614                 if (clustersize < blocksize) {
3615                         ext4_msg(sb, KERN_ERR,
3616                                  "cluster size (%d) smaller than "
3617                                  "block size (%d)", clustersize, blocksize);
3618                         goto failed_mount;
3619                 }
3620                 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3621                         le32_to_cpu(es->s_log_block_size);
3622                 sbi->s_clusters_per_group =
3623                         le32_to_cpu(es->s_clusters_per_group);
3624                 if (sbi->s_clusters_per_group > blocksize * 8) {
3625                         ext4_msg(sb, KERN_ERR,
3626                                  "#clusters per group too big: %lu",
3627                                  sbi->s_clusters_per_group);
3628                         goto failed_mount;
3629                 }
3630                 if (sbi->s_blocks_per_group !=
3631                     (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3632                         ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3633                                  "clusters per group (%lu) inconsistent",
3634                                  sbi->s_blocks_per_group,
3635                                  sbi->s_clusters_per_group);
3636                         goto failed_mount;
3637                 }
3638         } else {
3639                 if (clustersize != blocksize) {
3640                         ext4_warning(sb, "fragment/cluster size (%d) != "
3641                                      "block size (%d)", clustersize,
3642                                      blocksize);
3643                         clustersize = blocksize;
3644                 }
3645                 if (sbi->s_blocks_per_group > blocksize * 8) {
3646                         ext4_msg(sb, KERN_ERR,
3647                                  "#blocks per group too big: %lu",
3648                                  sbi->s_blocks_per_group);
3649                         goto failed_mount;
3650                 }
3651                 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3652                 sbi->s_cluster_bits = 0;
3653         }
3654         sbi->s_cluster_ratio = clustersize / blocksize;
3655
3656         if (sbi->s_inodes_per_group > blocksize * 8) {
3657                 ext4_msg(sb, KERN_ERR,
3658                        "#inodes per group too big: %lu",
3659                        sbi->s_inodes_per_group);
3660                 goto failed_mount;
3661         }
3662
3663         /* Do we have standard group size of clustersize * 8 blocks ? */
3664         if (sbi->s_blocks_per_group == clustersize << 3)
3665                 set_opt2(sb, STD_GROUP_SIZE);
3666
3667         /*
3668          * Test whether we have more sectors than will fit in sector_t,
3669          * and whether the max offset is addressable by the page cache.
3670          */
3671         err = generic_check_addressable(sb->s_blocksize_bits,
3672                                         ext4_blocks_count(es));
3673         if (err) {
3674                 ext4_msg(sb, KERN_ERR, "filesystem"
3675                          " too large to mount safely on this system");
3676                 if (sizeof(sector_t) < 8)
3677                         ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3678                 goto failed_mount;
3679         }
3680
3681         if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3682                 goto cantfind_ext4;
3683
3684         /* check blocks count against device size */
3685         blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3686         if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3687                 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3688                        "exceeds size of device (%llu blocks)",
3689                        ext4_blocks_count(es), blocks_count);
3690                 goto failed_mount;
3691         }
3692
3693         /*
3694          * It makes no sense for the first data block to be beyond the end
3695          * of the filesystem.
3696          */
3697         if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3698                 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3699                          "block %u is beyond end of filesystem (%llu)",
3700                          le32_to_cpu(es->s_first_data_block),
3701                          ext4_blocks_count(es));
3702                 goto failed_mount;
3703         }
3704         blocks_count = (ext4_blocks_count(es) -
3705                         le32_to_cpu(es->s_first_data_block) +
3706                         EXT4_BLOCKS_PER_GROUP(sb) - 1);
3707         do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3708         if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3709                 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3710                        "(block count %llu, first data block %u, "
3711                        "blocks per group %lu)", sbi->s_groups_count,
3712                        ext4_blocks_count(es),
3713                        le32_to_cpu(es->s_first_data_block),
3714                        EXT4_BLOCKS_PER_GROUP(sb));
3715                 goto failed_mount;
3716         }
3717         sbi->s_groups_count = blocks_count;
3718         sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3719                         (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3720         db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3721                    EXT4_DESC_PER_BLOCK(sb);
3722         sbi->s_group_desc = ext4_kvmalloc(db_count *
3723                                           sizeof(struct buffer_head *),
3724                                           GFP_KERNEL);
3725         if (sbi->s_group_desc == NULL) {
3726                 ext4_msg(sb, KERN_ERR, "not enough memory");
3727                 ret = -ENOMEM;
3728                 goto failed_mount;
3729         }
3730
3731         if (ext4_proc_root)
3732                 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3733
3734         if (sbi->s_proc)
3735                 proc_create_data("options", S_IRUGO, sbi->s_proc,
3736                                  &ext4_seq_options_fops, sb);
3737
3738         bgl_lock_init(sbi->s_blockgroup_lock);
3739
3740         for (i = 0; i < db_count; i++) {
3741                 block = descriptor_loc(sb, logical_sb_block, i);
3742                 sbi->s_group_desc[i] = sb_bread(sb, block);
3743                 if (!sbi->s_group_desc[i]) {
3744                         ext4_msg(sb, KERN_ERR,
3745                                "can't read group descriptor %d", i);
3746                         db_count = i;
3747                         goto failed_mount2;
3748                 }
3749         }
3750         if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3751                 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3752                 goto failed_mount2;
3753         }
3754         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3755                 if (!ext4_fill_flex_info(sb)) {
3756                         ext4_msg(sb, KERN_ERR,
3757                                "unable to initialize "
3758                                "flex_bg meta info!");
3759                         goto failed_mount2;
3760                 }
3761
3762         sbi->s_gdb_count = db_count;
3763         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3764         spin_lock_init(&sbi->s_next_gen_lock);
3765
3766         init_timer(&sbi->s_err_report);
3767         sbi->s_err_report.function = print_daily_error_info;
3768         sbi->s_err_report.data = (unsigned long) sb;
3769
3770         /* Register extent status tree shrinker */
3771         ext4_es_register_shrinker(sb);
3772
3773         err = percpu_counter_init(&sbi->s_freeclusters_counter,
3774                         ext4_count_free_clusters(sb));
3775         if (!err) {
3776                 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3777                                 ext4_count_free_inodes(sb));
3778         }
3779         if (!err) {
3780                 err = percpu_counter_init(&sbi->s_dirs_counter,
3781                                 ext4_count_dirs(sb));
3782         }
3783         if (!err) {
3784                 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3785         }
3786         if (!err) {
3787                 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0);
3788         }
3789         if (err) {
3790                 ext4_msg(sb, KERN_ERR, "insufficient memory");
3791                 goto failed_mount3;
3792         }
3793
3794         sbi->s_stripe = ext4_get_stripe_size(sbi);
3795         sbi->s_max_writeback_mb_bump = 128;
3796         sbi->s_extent_max_zeroout_kb = 32;
3797
3798         /*
3799          * set up enough so that it can read an inode
3800          */
3801         if (!test_opt(sb, NOLOAD) &&
3802             EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3803                 sb->s_op = &ext4_sops;
3804         else
3805                 sb->s_op = &ext4_nojournal_sops;
3806         sb->s_export_op = &ext4_export_ops;
3807         sb->s_xattr = ext4_xattr_handlers;
3808 #ifdef CONFIG_QUOTA
3809         sb->dq_op = &ext4_quota_operations;
3810         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
3811                 sb->s_qcop = &ext4_qctl_sysfile_operations;
3812         else
3813                 sb->s_qcop = &ext4_qctl_operations;
3814 #endif
3815         memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3816
3817         INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3818         mutex_init(&sbi->s_orphan_lock);
3819
3820         sb->s_root = NULL;
3821
3822         needs_recovery = (es->s_last_orphan != 0 ||
3823                           EXT4_HAS_INCOMPAT_FEATURE(sb,
3824                                     EXT4_FEATURE_INCOMPAT_RECOVER));
3825
3826         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3827             !(sb->s_flags & MS_RDONLY))
3828                 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3829                         goto failed_mount3;
3830
3831         /*
3832          * The first inode we look at is the journal inode.  Don't try
3833          * root first: it may be modified in the journal!
3834          */
3835         if (!test_opt(sb, NOLOAD) &&
3836             EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3837                 if (ext4_load_journal(sb, es, journal_devnum))
3838                         goto failed_mount3;
3839         } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3840               EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3841                 ext4_msg(sb, KERN_ERR, "required journal recovery "
3842                        "suppressed and not mounted read-only");
3843                 goto failed_mount_wq;
3844         } else {
3845                 clear_opt(sb, DATA_FLAGS);
3846                 sbi->s_journal = NULL;
3847                 needs_recovery = 0;
3848                 goto no_journal;
3849         }
3850
3851         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3852             !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3853                                        JBD2_FEATURE_INCOMPAT_64BIT)) {
3854                 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3855                 goto failed_mount_wq;
3856         }
3857
3858         if (!set_journal_csum_feature_set(sb)) {
3859                 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3860                          "feature set");
3861                 goto failed_mount_wq;
3862         }
3863
3864         /* We have now updated the journal if required, so we can
3865          * validate the data journaling mode. */
3866         switch (test_opt(sb, DATA_FLAGS)) {
3867         case 0:
3868                 /* No mode set, assume a default based on the journal
3869                  * capabilities: ORDERED_DATA if the journal can
3870                  * cope, else JOURNAL_DATA
3871                  */
3872                 if (jbd2_journal_check_available_features
3873                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3874                         set_opt(sb, ORDERED_DATA);
3875                 else
3876                         set_opt(sb, JOURNAL_DATA);
3877                 break;
3878
3879         case EXT4_MOUNT_ORDERED_DATA:
3880         case EXT4_MOUNT_WRITEBACK_DATA:
3881                 if (!jbd2_journal_check_available_features
3882                     (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3883                         ext4_msg(sb, KERN_ERR, "Journal does not support "
3884                                "requested data journaling mode");
3885                         goto failed_mount_wq;
3886                 }
3887         default:
3888                 break;
3889         }
3890         set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3891
3892         sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3893
3894         /*
3895          * The journal may have updated the bg summary counts, so we
3896          * need to update the global counters.
3897          */
3898         percpu_counter_set(&sbi->s_freeclusters_counter,
3899                            ext4_count_free_clusters(sb));
3900         percpu_counter_set(&sbi->s_freeinodes_counter,
3901                            ext4_count_free_inodes(sb));
3902         percpu_counter_set(&sbi->s_dirs_counter,
3903                            ext4_count_dirs(sb));
3904         percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3905
3906 no_journal:
3907         /*
3908          * Get the # of file system overhead blocks from the
3909          * superblock if present.
3910          */
3911         if (es->s_overhead_clusters)
3912                 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3913         else {
3914                 err = ext4_calculate_overhead(sb);
3915                 if (err)
3916                         goto failed_mount_wq;
3917         }
3918
3919         /*
3920          * The maximum number of concurrent works can be high and
3921          * concurrency isn't really necessary.  Limit it to 1.
3922          */
3923         EXT4_SB(sb)->dio_unwritten_wq =
3924                 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3925         if (!EXT4_SB(sb)->dio_unwritten_wq) {
3926                 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3927                 ret = -ENOMEM;
3928                 goto failed_mount_wq;
3929         }
3930
3931         /*
3932          * The jbd2_journal_load will have done any necessary log recovery,
3933          * so we can safely mount the rest of the filesystem now.
3934          */
3935
3936         root = ext4_iget(sb, EXT4_ROOT_INO);
3937         if (IS_ERR(root)) {
3938                 ext4_msg(sb, KERN_ERR, "get root inode failed");
3939                 ret = PTR_ERR(root);
3940                 root = NULL;
3941                 goto failed_mount4;
3942         }
3943         if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3944                 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3945                 iput(root);
3946                 goto failed_mount4;
3947         }
3948         sb->s_root = d_make_root(root);
3949         if (!sb->s_root) {
3950                 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3951                 ret = -ENOMEM;
3952                 goto failed_mount4;
3953         }
3954
3955         if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3956                 sb->s_flags |= MS_RDONLY;
3957
3958         /* determine the minimum size of new large inodes, if present */
3959         if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3960                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3961                                                      EXT4_GOOD_OLD_INODE_SIZE;
3962                 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3963                                        EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3964                         if (sbi->s_want_extra_isize <
3965                             le16_to_cpu(es->s_want_extra_isize))
3966                                 sbi->s_want_extra_isize =
3967                                         le16_to_cpu(es->s_want_extra_isize);
3968                         if (sbi->s_want_extra_isize <
3969                             le16_to_cpu(es->s_min_extra_isize))
3970                                 sbi->s_want_extra_isize =
3971                                         le16_to_cpu(es->s_min_extra_isize);
3972                 }
3973         }
3974         /* Check if enough inode space is available */
3975         if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3976                                                         sbi->s_inode_size) {
3977                 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3978                                                        EXT4_GOOD_OLD_INODE_SIZE;
3979                 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3980                          "available");
3981         }
3982
3983         err = ext4_reserve_clusters(sbi, ext4_calculate_resv_clusters(sb));
3984         if (err) {
3985                 ext4_msg(sb, KERN_ERR, "failed to reserve %llu clusters for "
3986                          "reserved pool", ext4_calculate_resv_clusters(sb));
3987                 goto failed_mount4a;
3988         }
3989
3990         err = ext4_setup_system_zone(sb);
3991         if (err) {
3992                 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3993                          "zone (%d)", err);
3994                 goto failed_mount4a;
3995         }
3996
3997         ext4_ext_init(sb);
3998         err = ext4_mb_init(sb);
3999         if (err) {
4000                 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4001                          err);
4002                 goto failed_mount5;
4003         }
4004
4005         err = ext4_register_li_request(sb, first_not_zeroed);
4006         if (err)
4007                 goto failed_mount6;
4008
4009         sbi->s_kobj.kset = ext4_kset;
4010         init_completion(&sbi->s_kobj_unregister);
4011         err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
4012                                    "%s", sb->s_id);
4013         if (err)
4014                 goto failed_mount7;
4015
4016 #ifdef CONFIG_QUOTA
4017         /* Enable quota usage during mount. */
4018         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4019             !(sb->s_flags & MS_RDONLY)) {
4020                 err = ext4_enable_quotas(sb);
4021                 if (err)
4022                         goto failed_mount8;
4023         }
4024 #endif  /* CONFIG_QUOTA */
4025
4026         EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4027         ext4_orphan_cleanup(sb, es);
4028         EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4029         if (needs_recovery) {
4030                 ext4_msg(sb, KERN_INFO, "recovery complete");
4031                 ext4_mark_recovery_complete(sb, es);
4032         }
4033         if (EXT4_SB(sb)->s_journal) {
4034                 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4035                         descr = " journalled data mode";
4036                 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4037                         descr = " ordered data mode";
4038                 else
4039                         descr = " writeback data mode";
4040         } else
4041                 descr = "out journal";
4042
4043         if (test_opt(sb, DISCARD)) {
4044                 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4045                 if (!blk_queue_discard(q))
4046                         ext4_msg(sb, KERN_WARNING,
4047                                  "mounting with \"discard\" option, but "
4048                                  "the device does not support discard");
4049         }
4050
4051         ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4052                  "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4053                  *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4054
4055         if (es->s_error_count)
4056                 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4057
4058         kfree(orig_data);
4059         return 0;
4060
4061 cantfind_ext4:
4062         if (!silent)
4063                 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4064         goto failed_mount;
4065
4066 #ifdef CONFIG_QUOTA
4067 failed_mount8:
4068         kobject_del(&sbi->s_kobj);
4069 #endif
4070 failed_mount7:
4071         ext4_unregister_li_request(sb);
4072 failed_mount6:
4073         ext4_mb_release(sb);
4074 failed_mount5:
4075         ext4_ext_release(sb);
4076         ext4_release_system_zone(sb);
4077 failed_mount4a:
4078         dput(sb->s_root);
4079         sb->s_root = NULL;
4080 failed_mount4:
4081         ext4_msg(sb, KERN_ERR, "mount failed");
4082         destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4083 failed_mount_wq:
4084         if (sbi->s_journal) {
4085                 jbd2_journal_destroy(sbi->s_journal);
4086                 sbi->s_journal = NULL;
4087         }
4088 failed_mount3:
4089         ext4_es_unregister_shrinker(sb);
4090         del_timer(&sbi->s_err_report);
4091         if (sbi->s_flex_groups)
4092                 ext4_kvfree(sbi->s_flex_groups);
4093         percpu_counter_destroy(&sbi->s_freeclusters_counter);
4094         percpu_counter_destroy(&sbi->s_freeinodes_counter);
4095         percpu_counter_destroy(&sbi->s_dirs_counter);
4096         percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4097         percpu_counter_destroy(&sbi->s_extent_cache_cnt);
4098         if (sbi->s_mmp_tsk)
4099                 kthread_stop(sbi->s_mmp_tsk);
4100 failed_mount2:
4101         for (i = 0; i < db_count; i++)
4102                 brelse(sbi->s_group_desc[i]);
4103         ext4_kvfree(sbi->s_group_desc);
4104 failed_mount:
4105         if (sbi->s_chksum_driver)
4106                 crypto_free_shash(sbi->s_chksum_driver);
4107         if (sbi->s_proc) {
4108                 remove_proc_entry("options", sbi->s_proc);
4109                 remove_proc_entry(sb->s_id, ext4_proc_root);
4110         }
4111 #ifdef CONFIG_QUOTA
4112         for (i = 0; i < MAXQUOTAS; i++)
4113                 kfree(sbi->s_qf_names[i]);
4114 #endif
4115         ext4_blkdev_remove(sbi);
4116         brelse(bh);
4117 out_fail:
4118         sb->s_fs_info = NULL;
4119         kfree(sbi->s_blockgroup_lock);
4120         kfree(sbi);
4121 out_free_orig:
4122         kfree(orig_data);
4123         return err ? err : ret;
4124 }
4125
4126 /*
4127  * Setup any per-fs journal parameters now.  We'll do this both on
4128  * initial mount, once the journal has been initialised but before we've
4129  * done any recovery; and again on any subsequent remount.
4130  */
4131 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4132 {
4133         struct ext4_sb_info *sbi = EXT4_SB(sb);
4134
4135         journal->j_commit_interval = sbi->s_commit_interval;
4136         journal->j_min_batch_time = sbi->s_min_batch_time;
4137         journal->j_max_batch_time = sbi->s_max_batch_time;
4138
4139         write_lock(&journal->j_state_lock);
4140         if (test_opt(sb, BARRIER))
4141                 journal->j_flags |= JBD2_BARRIER;
4142         else
4143                 journal->j_flags &= ~JBD2_BARRIER;
4144         if (test_opt(sb, DATA_ERR_ABORT))
4145                 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4146         else
4147                 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4148         write_unlock(&journal->j_state_lock);
4149 }
4150
4151 static journal_t *ext4_get_journal(struct super_block *sb,
4152                                    unsigned int journal_inum)
4153 {
4154         struct inode *journal_inode;
4155         journal_t *journal;
4156
4157         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4158
4159         /* First, test for the existence of a valid inode on disk.  Bad
4160          * things happen if we iget() an unused inode, as the subsequent
4161          * iput() will try to delete it. */
4162
4163         journal_inode = ext4_iget(sb, journal_inum);
4164         if (IS_ERR(journal_inode)) {
4165                 ext4_msg(sb, KERN_ERR, "no journal found");
4166                 return NULL;
4167         }
4168         if (!journal_inode->i_nlink) {
4169                 make_bad_inode(journal_inode);
4170                 iput(journal_inode);
4171                 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4172                 return NULL;
4173         }
4174
4175         jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4176                   journal_inode, journal_inode->i_size);
4177         if (!S_ISREG(journal_inode->i_mode)) {
4178                 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4179                 iput(journal_inode);
4180                 return NULL;
4181         }
4182
4183         journal = jbd2_journal_init_inode(journal_inode);
4184         if (!journal) {
4185                 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4186                 iput(journal_inode);
4187                 return NULL;
4188         }
4189         journal->j_private = sb;
4190         ext4_init_journal_params(sb, journal);
4191         return journal;
4192 }
4193
4194 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4195                                        dev_t j_dev)
4196 {
4197         struct buffer_head *bh;
4198         journal_t *journal;
4199         ext4_fsblk_t start;
4200         ext4_fsblk_t len;
4201         int hblock, blocksize;
4202         ext4_fsblk_t sb_block;
4203         unsigned long offset;
4204         struct ext4_super_block *es;
4205         struct block_device *bdev;
4206
4207         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4208
4209         bdev = ext4_blkdev_get(j_dev, sb);
4210         if (bdev == NULL)
4211                 return NULL;
4212
4213         blocksize = sb->s_blocksize;
4214         hblock = bdev_logical_block_size(bdev);
4215         if (blocksize < hblock) {
4216                 ext4_msg(sb, KERN_ERR,
4217                         "blocksize too small for journal device");
4218                 goto out_bdev;
4219         }
4220
4221         sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4222         offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4223         set_blocksize(bdev, blocksize);
4224         if (!(bh = __bread(bdev, sb_block, blocksize))) {
4225                 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4226                        "external journal");
4227                 goto out_bdev;
4228         }
4229
4230         es = (struct ext4_super_block *) (bh->b_data + offset);
4231         if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4232             !(le32_to_cpu(es->s_feature_incompat) &
4233               EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4234                 ext4_msg(sb, KERN_ERR, "external journal has "
4235                                         "bad superblock");
4236                 brelse(bh);
4237                 goto out_bdev;
4238         }
4239
4240         if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4241                 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4242                 brelse(bh);
4243                 goto out_bdev;
4244         }
4245
4246         len = ext4_blocks_count(es);
4247         start = sb_block + 1;
4248         brelse(bh);     /* we're done with the superblock */
4249
4250         journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4251                                         start, len, blocksize);
4252         if (!journal) {
4253                 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4254                 goto out_bdev;
4255         }
4256         journal->j_private = sb;
4257         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4258         wait_on_buffer(journal->j_sb_buffer);
4259         if (!buffer_uptodate(journal->j_sb_buffer)) {
4260                 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4261                 goto out_journal;
4262         }
4263         if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4264                 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4265                                         "user (unsupported) - %d",
4266                         be32_to_cpu(journal->j_superblock->s_nr_users));
4267                 goto out_journal;
4268         }
4269         EXT4_SB(sb)->journal_bdev = bdev;
4270         ext4_init_journal_params(sb, journal);
4271         return journal;
4272
4273 out_journal:
4274         jbd2_journal_destroy(journal);
4275 out_bdev:
4276         ext4_blkdev_put(bdev);
4277         return NULL;
4278 }
4279
4280 static int ext4_load_journal(struct super_block *sb,
4281                              struct ext4_super_block *es,
4282                              unsigned long journal_devnum)
4283 {
4284         journal_t *journal;
4285         unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4286         dev_t journal_dev;
4287         int err = 0;
4288         int really_read_only;
4289
4290         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4291
4292         if (journal_devnum &&
4293             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4294                 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4295                         "numbers have changed");
4296                 journal_dev = new_decode_dev(journal_devnum);
4297         } else
4298                 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4299
4300         really_read_only = bdev_read_only(sb->s_bdev);
4301
4302         /*
4303          * Are we loading a blank journal or performing recovery after a
4304          * crash?  For recovery, we need to check in advance whether we
4305          * can get read-write access to the device.
4306          */
4307         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4308                 if (sb->s_flags & MS_RDONLY) {
4309                         ext4_msg(sb, KERN_INFO, "INFO: recovery "
4310                                         "required on readonly filesystem");
4311                         if (really_read_only) {
4312                                 ext4_msg(sb, KERN_ERR, "write access "
4313                                         "unavailable, cannot proceed");
4314                                 return -EROFS;
4315                         }
4316                         ext4_msg(sb, KERN_INFO, "write access will "
4317                                "be enabled during recovery");
4318                 }
4319         }
4320
4321         if (journal_inum && journal_dev) {
4322                 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4323                        "and inode journals!");
4324                 return -EINVAL;
4325         }
4326
4327         if (journal_inum) {
4328                 if (!(journal = ext4_get_journal(sb, journal_inum)))
4329                         return -EINVAL;
4330         } else {
4331                 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4332                         return -EINVAL;
4333         }
4334
4335         if (!(journal->j_flags & JBD2_BARRIER))
4336                 ext4_msg(sb, KERN_INFO, "barriers disabled");
4337
4338         if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4339                 err = jbd2_journal_wipe(journal, !really_read_only);
4340         if (!err) {
4341                 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4342                 if (save)
4343                         memcpy(save, ((char *) es) +
4344                                EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4345                 err = jbd2_journal_load(journal);
4346                 if (save)
4347                         memcpy(((char *) es) + EXT4_S_ERR_START,
4348                                save, EXT4_S_ERR_LEN);
4349                 kfree(save);
4350         }
4351
4352         if (err) {
4353                 ext4_msg(sb, KERN_ERR, "error loading journal");
4354                 jbd2_journal_destroy(journal);
4355                 return err;
4356         }
4357
4358         EXT4_SB(sb)->s_journal = journal;
4359         ext4_clear_journal_err(sb, es);
4360
4361         if (!really_read_only && journal_devnum &&
4362             journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4363                 es->s_journal_dev = cpu_to_le32(journal_devnum);
4364
4365                 /* Make sure we flush the recovery flag to disk. */
4366                 ext4_commit_super(sb, 1);
4367         }
4368
4369         return 0;
4370 }
4371
4372 static int ext4_commit_super(struct super_block *sb, int sync)
4373 {
4374         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4375         struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4376         int error = 0;
4377
4378         if (!sbh || block_device_ejected(sb))
4379                 return error;
4380         if (buffer_write_io_error(sbh)) {
4381                 /*
4382                  * Oh, dear.  A previous attempt to write the
4383                  * superblock failed.  This could happen because the
4384                  * USB device was yanked out.  Or it could happen to
4385                  * be a transient write error and maybe the block will
4386                  * be remapped.  Nothing we can do but to retry the
4387                  * write and hope for the best.
4388                  */
4389                 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4390                        "superblock detected");
4391                 clear_buffer_write_io_error(sbh);
4392                 set_buffer_uptodate(sbh);
4393         }
4394         /*
4395          * If the file system is mounted read-only, don't update the
4396          * superblock write time.  This avoids updating the superblock
4397          * write time when we are mounting the root file system
4398          * read/only but we need to replay the journal; at that point,
4399          * for people who are east of GMT and who make their clock
4400          * tick in localtime for Windows bug-for-bug compatibility,
4401          * the clock is set in the future, and this will cause e2fsck
4402          * to complain and force a full file system check.
4403          */
4404         if (!(sb->s_flags & MS_RDONLY))
4405                 es->s_wtime = cpu_to_le32(get_seconds());
4406         if (sb->s_bdev->bd_part)
4407                 es->s_kbytes_written =
4408                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4409                             ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4410                               EXT4_SB(sb)->s_sectors_written_start) >> 1));
4411         else
4412                 es->s_kbytes_written =
4413                         cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4414         ext4_free_blocks_count_set(es,
4415                         EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4416                                 &EXT4_SB(sb)->s_freeclusters_counter)));
4417         es->s_free_inodes_count =
4418                 cpu_to_le32(percpu_counter_sum_positive(
4419                                 &EXT4_SB(sb)->s_freeinodes_counter));
4420         BUFFER_TRACE(sbh, "marking dirty");
4421         ext4_superblock_csum_set(sb);
4422         mark_buffer_dirty(sbh);
4423         if (sync) {
4424                 error = sync_dirty_buffer(sbh);
4425                 if (error)
4426                         return error;
4427
4428                 error = buffer_write_io_error(sbh);
4429                 if (error) {
4430                         ext4_msg(sb, KERN_ERR, "I/O error while writing "
4431                                "superblock");
4432                         clear_buffer_write_io_error(sbh);
4433                         set_buffer_uptodate(sbh);
4434                 }
4435         }
4436         return error;
4437 }
4438
4439 /*
4440  * Have we just finished recovery?  If so, and if we are mounting (or
4441  * remounting) the filesystem readonly, then we will end up with a
4442  * consistent fs on disk.  Record that fact.
4443  */
4444 static void ext4_mark_recovery_complete(struct super_block *sb,
4445                                         struct ext4_super_block *es)
4446 {
4447         journal_t *journal = EXT4_SB(sb)->s_journal;
4448
4449         if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4450                 BUG_ON(journal != NULL);
4451                 return;
4452         }
4453         jbd2_journal_lock_updates(journal);
4454         if (jbd2_journal_flush(journal) < 0)
4455                 goto out;
4456
4457         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4458             sb->s_flags & MS_RDONLY) {
4459                 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4460                 ext4_commit_super(sb, 1);
4461         }
4462
4463 out:
4464         jbd2_journal_unlock_updates(journal);
4465 }
4466
4467 /*
4468  * If we are mounting (or read-write remounting) a filesystem whose journal
4469  * has recorded an error from a previous lifetime, move that error to the
4470  * main filesystem now.
4471  */
4472 static void ext4_clear_journal_err(struct super_block *sb,
4473                                    struct ext4_super_block *es)
4474 {
4475         journal_t *journal;
4476         int j_errno;
4477         const char *errstr;
4478
4479         BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4480
4481         journal = EXT4_SB(sb)->s_journal;
4482
4483         /*
4484          * Now check for any error status which may have been recorded in the
4485          * journal by a prior ext4_error() or ext4_abort()
4486          */
4487
4488         j_errno = jbd2_journal_errno(journal);
4489         if (j_errno) {
4490                 char nbuf[16];
4491
4492                 errstr = ext4_decode_error(sb, j_errno, nbuf);
4493                 ext4_warning(sb, "Filesystem error recorded "
4494                              "from previous mount: %s", errstr);
4495                 ext4_warning(sb, "Marking fs in need of filesystem check.");
4496
4497                 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4498                 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4499                 ext4_commit_super(sb, 1);
4500
4501                 jbd2_journal_clear_err(journal);
4502                 jbd2_journal_update_sb_errno(journal);
4503         }
4504 }
4505
4506 /*
4507  * Force the running and committing transactions to commit,
4508  * and wait on the commit.
4509  */
4510 int ext4_force_commit(struct super_block *sb)
4511 {
4512         journal_t *journal;
4513
4514         if (sb->s_flags & MS_RDONLY)
4515                 return 0;
4516
4517         journal = EXT4_SB(sb)->s_journal;
4518         return ext4_journal_force_commit(journal);
4519 }
4520
4521 static int ext4_sync_fs(struct super_block *sb, int wait)
4522 {
4523         int ret = 0;
4524         tid_t target;
4525         struct ext4_sb_info *sbi = EXT4_SB(sb);
4526
4527         trace_ext4_sync_fs(sb, wait);
4528         flush_workqueue(sbi->dio_unwritten_wq);
4529         /*
4530          * Writeback quota in non-journalled quota case - journalled quota has
4531          * no dirty dquots
4532          */
4533         dquot_writeback_dquots(sb, -1);
4534         if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4535                 if (wait)
4536                         jbd2_log_wait_commit(sbi->s_journal, target);
4537         }
4538         return ret;
4539 }
4540
4541 /*
4542  * LVM calls this function before a (read-only) snapshot is created.  This
4543  * gives us a chance to flush the journal completely and mark the fs clean.
4544  *
4545  * Note that only this function cannot bring a filesystem to be in a clean
4546  * state independently. It relies on upper layer to stop all data & metadata
4547  * modifications.
4548  */
4549 static int ext4_freeze(struct super_block *sb)
4550 {
4551         int error = 0;
4552         journal_t *journal;
4553
4554         if (sb->s_flags & MS_RDONLY)
4555                 return 0;
4556
4557         journal = EXT4_SB(sb)->s_journal;
4558
4559         /* Now we set up the journal barrier. */
4560         jbd2_journal_lock_updates(journal);
4561
4562         /*
4563          * Don't clear the needs_recovery flag if we failed to flush
4564          * the journal.
4565          */
4566         error = jbd2_journal_flush(journal);
4567         if (error < 0)
4568                 goto out;
4569
4570         /* Journal blocked and flushed, clear needs_recovery flag. */
4571         EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4572         error = ext4_commit_super(sb, 1);
4573 out:
4574         /* we rely on upper layer to stop further updates */
4575         jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4576         return error;
4577 }
4578
4579 /*
4580  * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4581  * flag here, even though the filesystem is not technically dirty yet.
4582  */
4583 static int ext4_unfreeze(struct super_block *sb)
4584 {
4585         if (sb->s_flags & MS_RDONLY)
4586                 return 0;
4587
4588         /* Reset the needs_recovery flag before the fs is unlocked. */
4589         EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4590         ext4_commit_super(sb, 1);
4591         return 0;
4592 }
4593
4594 /*
4595  * Structure to save mount options for ext4_remount's benefit
4596  */
4597 struct ext4_mount_options {
4598         unsigned long s_mount_opt;
4599         unsigned long s_mount_opt2;
4600         kuid_t s_resuid;
4601         kgid_t s_resgid;
4602         unsigned long s_commit_interval;
4603         u32 s_min_batch_time, s_max_batch_time;
4604 #ifdef CONFIG_QUOTA
4605         int s_jquota_fmt;
4606         char *s_qf_names[MAXQUOTAS];
4607 #endif
4608 };
4609
4610 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4611 {
4612         struct ext4_super_block *es;
4613         struct ext4_sb_info *sbi = EXT4_SB(sb);
4614         unsigned long old_sb_flags;
4615         struct ext4_mount_options old_opts;
4616         int enable_quota = 0;
4617         ext4_group_t g;
4618         unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4619         int err = 0;
4620 #ifdef CONFIG_QUOTA
4621         int i, j;
4622 #endif
4623         char *orig_data = kstrdup(data, GFP_KERNEL);
4624
4625         /* Store the original options */
4626         old_sb_flags = sb->s_flags;
4627         old_opts.s_mount_opt = sbi->s_mount_opt;
4628         old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4629         old_opts.s_resuid = sbi->s_resuid;
4630         old_opts.s_resgid = sbi->s_resgid;
4631         old_opts.s_commit_interval = sbi->s_commit_interval;
4632         old_opts.s_min_batch_time = sbi->s_min_batch_time;
4633         old_opts.s_max_batch_time = sbi->s_max_batch_time;
4634 #ifdef CONFIG_QUOTA
4635         old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4636         for (i = 0; i < MAXQUOTAS; i++)
4637                 if (sbi->s_qf_names[i]) {
4638                         old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4639                                                          GFP_KERNEL);
4640                         if (!old_opts.s_qf_names[i]) {
4641                                 for (j = 0; j < i; j++)
4642                                         kfree(old_opts.s_qf_names[j]);
4643                                 kfree(orig_data);
4644                                 return -ENOMEM;
4645                         }
4646                 } else
4647                         old_opts.s_qf_names[i] = NULL;
4648 #endif
4649         if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4650                 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4651
4652         /*
4653          * Allow the "check" option to be passed as a remount option.
4654          */
4655         if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4656                 err = -EINVAL;
4657                 goto restore_opts;
4658         }
4659
4660         if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4661                 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4662                         ext4_msg(sb, KERN_ERR, "can't mount with "
4663                                  "both data=journal and delalloc");
4664                         err = -EINVAL;
4665                         goto restore_opts;
4666                 }
4667                 if (test_opt(sb, DIOREAD_NOLOCK)) {
4668                         ext4_msg(sb, KERN_ERR, "can't mount with "
4669                                  "both data=journal and dioread_nolock");
4670                         err = -EINVAL;
4671                         goto restore_opts;
4672                 }
4673         }
4674
4675         if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4676                 ext4_abort(sb, "Abort forced by user");
4677
4678         sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4679                 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4680
4681         es = sbi->s_es;
4682
4683         if (sbi->s_journal) {
4684                 ext4_init_journal_params(sb, sbi->s_journal);
4685                 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4686         }
4687
4688         if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4689                 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4690                         err = -EROFS;
4691                         goto restore_opts;
4692                 }
4693
4694                 if (*flags & MS_RDONLY) {
4695                         err = dquot_suspend(sb, -1);
4696                         if (err < 0)
4697                                 goto restore_opts;
4698
4699                         /*
4700                          * First of all, the unconditional stuff we have to do
4701                          * to disable replay of the journal when we next remount
4702                          */
4703                         sb->s_flags |= MS_RDONLY;
4704
4705                         /*
4706                          * OK, test if we are remounting a valid rw partition
4707                          * readonly, and if so set the rdonly flag and then
4708                          * mark the partition as valid again.
4709                          */
4710                         if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4711                             (sbi->s_mount_state & EXT4_VALID_FS))
4712                                 es->s_state = cpu_to_le16(sbi->s_mount_state);
4713
4714                         if (sbi->s_journal)
4715                                 ext4_mark_recovery_complete(sb, es);
4716                 } else {
4717                         /* Make sure we can mount this feature set readwrite */
4718                         if (!ext4_feature_set_ok(sb, 0)) {
4719                                 err = -EROFS;
4720                                 goto restore_opts;
4721                         }
4722                         /*
4723                          * Make sure the group descriptor checksums
4724                          * are sane.  If they aren't, refuse to remount r/w.
4725                          */
4726                         for (g = 0; g < sbi->s_groups_count; g++) {
4727                                 struct ext4_group_desc *gdp =
4728                                         ext4_get_group_desc(sb, g, NULL);
4729
4730                                 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4731                                         ext4_msg(sb, KERN_ERR,
4732                "ext4_remount: Checksum for group %u failed (%u!=%u)",
4733                 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4734                                                le16_to_cpu(gdp->bg_checksum));
4735                                         err = -EINVAL;
4736                                         goto restore_opts;
4737                                 }
4738                         }
4739
4740                         /*
4741                          * If we have an unprocessed orphan list hanging
4742                          * around from a previously readonly bdev mount,
4743                          * require a full umount/remount for now.
4744                          */
4745                         if (es->s_last_orphan) {
4746                                 ext4_msg(sb, KERN_WARNING, "Couldn't "
4747                                        "remount RDWR because of unprocessed "
4748                                        "orphan inode list.  Please "
4749                                        "umount/remount instead");
4750                                 err = -EINVAL;
4751                                 goto restore_opts;
4752                         }
4753
4754                         /*
4755                          * Mounting a RDONLY partition read-write, so reread
4756                          * and store the current valid flag.  (It may have
4757                          * been changed by e2fsck since we originally mounted
4758                          * the partition.)
4759                          */
4760                         if (sbi->s_journal)
4761                                 ext4_clear_journal_err(sb, es);
4762                         sbi->s_mount_state = le16_to_cpu(es->s_state);
4763                         if (!ext4_setup_super(sb, es, 0))
4764                                 sb->s_flags &= ~MS_RDONLY;
4765                         if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4766                                                      EXT4_FEATURE_INCOMPAT_MMP))
4767                                 if (ext4_multi_mount_protect(sb,
4768                                                 le64_to_cpu(es->s_mmp_block))) {
4769                                         err = -EROFS;
4770                                         goto restore_opts;
4771                                 }
4772                         enable_quota = 1;
4773                 }
4774         }
4775
4776         /*
4777          * Reinitialize lazy itable initialization thread based on
4778          * current settings
4779          */
4780         if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4781                 ext4_unregister_li_request(sb);
4782         else {
4783                 ext4_group_t first_not_zeroed;
4784                 first_not_zeroed = ext4_has_uninit_itable(sb);
4785                 ext4_register_li_request(sb, first_not_zeroed);
4786         }
4787
4788         ext4_setup_system_zone(sb);
4789         if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
4790                 ext4_commit_super(sb, 1);
4791
4792 #ifdef CONFIG_QUOTA
4793         /* Release old quota file names */
4794         for (i = 0; i < MAXQUOTAS; i++)
4795                 kfree(old_opts.s_qf_names[i]);
4796         if (enable_quota) {
4797                 if (sb_any_quota_suspended(sb))
4798                         dquot_resume(sb, -1);
4799                 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4800                                         EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4801                         err = ext4_enable_quotas(sb);
4802                         if (err)
4803                                 goto restore_opts;
4804                 }
4805         }
4806 #endif
4807
4808         ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4809         kfree(orig_data);
4810         return 0;
4811
4812 restore_opts:
4813         sb->s_flags = old_sb_flags;
4814         sbi->s_mount_opt = old_opts.s_mount_opt;
4815         sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4816         sbi->s_resuid = old_opts.s_resuid;
4817         sbi->s_resgid = old_opts.s_resgid;
4818         sbi->s_commit_interval = old_opts.s_commit_interval;
4819         sbi->s_min_batch_time = old_opts.s_min_batch_time;
4820         sbi->s_max_batch_time = old_opts.s_max_batch_time;
4821 #ifdef CONFIG_QUOTA
4822         sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4823         for (i = 0; i < MAXQUOTAS; i++) {
4824                 kfree(sbi->s_qf_names[i]);
4825                 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4826         }
4827 #endif
4828         kfree(orig_data);
4829         return err;
4830 }
4831
4832 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4833 {
4834         struct super_block *sb = dentry->d_sb;
4835         struct ext4_sb_info *sbi = EXT4_SB(sb);
4836         struct ext4_super_block *es = sbi->s_es;
4837         ext4_fsblk_t overhead = 0, resv_blocks;
4838         u64 fsid;
4839         s64 bfree;
4840         resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
4841
4842         if (!test_opt(sb, MINIX_DF))
4843                 overhead = sbi->s_overhead;
4844
4845         buf->f_type = EXT4_SUPER_MAGIC;
4846         buf->f_bsize = sb->s_blocksize;
4847         buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4848         bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4849                 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4850         /* prevent underflow in case that few free space is available */
4851         buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4852         buf->f_bavail = buf->f_bfree -
4853                         (ext4_r_blocks_count(es) + resv_blocks);
4854         if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
4855                 buf->f_bavail = 0;
4856         buf->f_files = le32_to_cpu(es->s_inodes_count);
4857         buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4858         buf->f_namelen = EXT4_NAME_LEN;
4859         fsid = le64_to_cpup((void *)es->s_uuid) ^
4860                le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4861         buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4862         buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4863
4864         return 0;
4865 }
4866
4867 /* Helper function for writing quotas on sync - we need to start transaction
4868  * before quota file is locked for write. Otherwise the are possible deadlocks:
4869  * Process 1                         Process 2
4870  * ext4_create()                     quota_sync()
4871  *   jbd2_journal_start()                  write_dquot()
4872  *   dquot_initialize()                         down(dqio_mutex)
4873  *     down(dqio_mutex)                    jbd2_journal_start()
4874  *
4875  */
4876
4877 #ifdef CONFIG_QUOTA
4878
4879 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4880 {
4881         return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4882 }
4883
4884 static int ext4_write_dquot(struct dquot *dquot)
4885 {
4886         int ret, err;
4887         handle_t *handle;
4888         struct inode *inode;
4889
4890         inode = dquot_to_inode(dquot);
4891         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4892                                     EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4893         if (IS_ERR(handle))
4894                 return PTR_ERR(handle);
4895         ret = dquot_commit(dquot);
4896         err = ext4_journal_stop(handle);
4897         if (!ret)
4898                 ret = err;
4899         return ret;
4900 }
4901
4902 static int ext4_acquire_dquot(struct dquot *dquot)
4903 {
4904         int ret, err;
4905         handle_t *handle;
4906
4907         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4908                                     EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4909         if (IS_ERR(handle))
4910                 return PTR_ERR(handle);
4911         ret = dquot_acquire(dquot);
4912         err = ext4_journal_stop(handle);
4913         if (!ret)
4914                 ret = err;
4915         return ret;
4916 }
4917
4918 static int ext4_release_dquot(struct dquot *dquot)
4919 {
4920         int ret, err;
4921         handle_t *handle;
4922
4923         handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
4924                                     EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4925         if (IS_ERR(handle)) {
4926                 /* Release dquot anyway to avoid endless cycle in dqput() */
4927                 dquot_release(dquot);
4928                 return PTR_ERR(handle);
4929         }
4930         ret = dquot_release(dquot);
4931         err = ext4_journal_stop(handle);
4932         if (!ret)
4933                 ret = err;
4934         return ret;
4935 }
4936
4937 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4938 {
4939         struct super_block *sb = dquot->dq_sb;
4940         struct ext4_sb_info *sbi = EXT4_SB(sb);
4941
4942         /* Are we journaling quotas? */
4943         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) ||
4944             sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
4945                 dquot_mark_dquot_dirty(dquot);
4946                 return ext4_write_dquot(dquot);
4947         } else {
4948                 return dquot_mark_dquot_dirty(dquot);
4949         }
4950 }
4951
4952 static int ext4_write_info(struct super_block *sb, int type)
4953 {
4954         int ret, err;
4955         handle_t *handle;
4956
4957         /* Data block + inode block */
4958         handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2);
4959         if (IS_ERR(handle))
4960                 return PTR_ERR(handle);
4961         ret = dquot_commit_info(sb, type);
4962         err = ext4_journal_stop(handle);
4963         if (!ret)
4964                 ret = err;
4965         return ret;
4966 }
4967
4968 /*
4969  * Turn on quotas during mount time - we need to find
4970  * the quota file and such...
4971  */
4972 static int ext4_quota_on_mount(struct super_block *sb, int type)
4973 {
4974         return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4975                                         EXT4_SB(sb)->s_jquota_fmt, type);
4976 }
4977
4978 /*
4979  * Standard function to be called on quota_on
4980  */
4981 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4982                          struct path *path)
4983 {
4984         int err;
4985
4986         if (!test_opt(sb, QUOTA))
4987                 return -EINVAL;
4988
4989         /* Quotafile not on the same filesystem? */
4990         if (path->dentry->d_sb != sb)
4991                 return -EXDEV;
4992         /* Journaling quota? */
4993         if (EXT4_SB(sb)->s_qf_names[type]) {
4994                 /* Quotafile not in fs root? */
4995                 if (path->dentry->d_parent != sb->s_root)
4996                         ext4_msg(sb, KERN_WARNING,
4997                                 "Quota file not on filesystem root. "
4998                                 "Journaled quota will not work");
4999         }
5000
5001         /*
5002          * When we journal data on quota file, we have to flush journal to see
5003          * all updates to the file when we bypass pagecache...
5004          */
5005         if (EXT4_SB(sb)->s_journal &&
5006             ext4_should_journal_data(path->dentry->d_inode)) {
5007                 /*
5008                  * We don't need to lock updates but journal_flush() could
5009                  * otherwise be livelocked...
5010                  */
5011                 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5012                 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5013                 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5014                 if (err)
5015                         return err;
5016         }
5017
5018         return dquot_quota_on(sb, type, format_id, path);
5019 }
5020
5021 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5022                              unsigned int flags)
5023 {
5024         int err;
5025         struct inode *qf_inode;
5026         unsigned long qf_inums[MAXQUOTAS] = {
5027                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5028                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5029         };
5030
5031         BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
5032
5033         if (!qf_inums[type])
5034                 return -EPERM;
5035
5036         qf_inode = ext4_iget(sb, qf_inums[type]);
5037         if (IS_ERR(qf_inode)) {
5038                 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5039                 return PTR_ERR(qf_inode);
5040         }
5041
5042         /* Don't account quota for quota files to avoid recursion */
5043         qf_inode->i_flags |= S_NOQUOTA;
5044         err = dquot_enable(qf_inode, type, format_id, flags);
5045         iput(qf_inode);
5046
5047         return err;
5048 }
5049
5050 /* Enable usage tracking for all quota types. */
5051 static int ext4_enable_quotas(struct super_block *sb)
5052 {
5053         int type, err = 0;
5054         unsigned long qf_inums[MAXQUOTAS] = {
5055                 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5056                 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
5057         };
5058
5059         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5060         for (type = 0; type < MAXQUOTAS; type++) {
5061                 if (qf_inums[type]) {
5062                         err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5063                                                 DQUOT_USAGE_ENABLED);
5064                         if (err) {
5065                                 ext4_warning(sb,
5066                                         "Failed to enable quota tracking "
5067                                         "(type=%d, err=%d). Please run "
5068                                         "e2fsck to fix.", type, err);
5069                                 return err;
5070                         }
5071                 }
5072         }
5073         return 0;
5074 }
5075
5076 /*
5077  * quota_on function that is used when QUOTA feature is set.
5078  */
5079 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5080                                  int format_id)
5081 {
5082         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5083                 return -EINVAL;
5084
5085         /*
5086          * USAGE was enabled at mount time. Only need to enable LIMITS now.
5087          */
5088         return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5089 }
5090
5091 static int ext4_quota_off(struct super_block *sb, int type)
5092 {
5093         struct inode *inode = sb_dqopt(sb)->files[type];
5094         handle_t *handle;
5095
5096         /* Force all delayed allocation blocks to be allocated.
5097          * Caller already holds s_umount sem */
5098         if (test_opt(sb, DELALLOC))
5099                 sync_filesystem(sb);
5100
5101         if (!inode)
5102                 goto out;
5103
5104         /* Update modification times of quota files when userspace can
5105          * start looking at them */
5106         handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5107         if (IS_ERR(handle))
5108                 goto out;
5109         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5110         ext4_mark_inode_dirty(handle, inode);
5111         ext4_journal_stop(handle);
5112
5113 out:
5114         return dquot_quota_off(sb, type);
5115 }
5116
5117 /*
5118  * quota_off function that is used when QUOTA feature is set.
5119  */
5120 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5121 {
5122         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5123                 return -EINVAL;
5124
5125         /* Disable only the limits. */
5126         return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5127 }
5128
5129 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5130  * acquiring the locks... As quota files are never truncated and quota code
5131  * itself serializes the operations (and no one else should touch the files)
5132  * we don't have to be afraid of races */
5133 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5134                                size_t len, loff_t off)
5135 {
5136         struct inode *inode = sb_dqopt(sb)->files[type];
5137         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5138         int err = 0;
5139         int offset = off & (sb->s_blocksize - 1);
5140         int tocopy;
5141         size_t toread;
5142         struct buffer_head *bh;
5143         loff_t i_size = i_size_read(inode);
5144
5145         if (off > i_size)
5146                 return 0;
5147         if (off+len > i_size)
5148                 len = i_size-off;
5149         toread = len;
5150         while (toread > 0) {
5151                 tocopy = sb->s_blocksize - offset < toread ?
5152                                 sb->s_blocksize - offset : toread;
5153                 bh = ext4_bread(NULL, inode, blk, 0, &err);
5154                 if (err)
5155                         return err;
5156                 if (!bh)        /* A hole? */
5157                         memset(data, 0, tocopy);
5158                 else
5159                         memcpy(data, bh->b_data+offset, tocopy);
5160                 brelse(bh);
5161                 offset = 0;
5162                 toread -= tocopy;
5163                 data += tocopy;
5164                 blk++;
5165         }
5166         return len;
5167 }
5168
5169 /* Write to quotafile (we know the transaction is already started and has
5170  * enough credits) */
5171 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5172                                 const char *data, size_t len, loff_t off)
5173 {
5174         struct inode *inode = sb_dqopt(sb)->files[type];
5175         ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5176         int err = 0;
5177         int offset = off & (sb->s_blocksize - 1);
5178         struct buffer_head *bh;
5179         handle_t *handle = journal_current_handle();
5180
5181         if (EXT4_SB(sb)->s_journal && !handle) {
5182                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5183                         " cancelled because transaction is not started",
5184                         (unsigned long long)off, (unsigned long long)len);
5185                 return -EIO;
5186         }
5187         /*
5188          * Since we account only one data block in transaction credits,
5189          * then it is impossible to cross a block boundary.
5190          */
5191         if (sb->s_blocksize - offset < len) {
5192                 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5193                         " cancelled because not block aligned",
5194                         (unsigned long long)off, (unsigned long long)len);
5195                 return -EIO;
5196         }
5197
5198         bh = ext4_bread(handle, inode, blk, 1, &err);
5199         if (!bh)
5200                 goto out;
5201         err = ext4_journal_get_write_access(handle, bh);
5202         if (err) {
5203                 brelse(bh);
5204                 goto out;
5205         }
5206         lock_buffer(bh);
5207         memcpy(bh->b_data+offset, data, len);
5208         flush_dcache_page(bh->b_page);
5209         unlock_buffer(bh);
5210         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5211         brelse(bh);
5212 out:
5213         if (err)
5214                 return err;
5215         if (inode->i_size < off + len) {
5216                 i_size_write(inode, off + len);
5217                 EXT4_I(inode)->i_disksize = inode->i_size;
5218                 ext4_mark_inode_dirty(handle, inode);
5219         }
5220         return len;
5221 }
5222
5223 #endif
5224
5225 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5226                        const char *dev_name, void *data)
5227 {
5228         return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5229 }
5230
5231 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5232 static inline void register_as_ext2(void)
5233 {
5234         int err = register_filesystem(&ext2_fs_type);
5235         if (err)
5236                 printk(KERN_WARNING
5237                        "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5238 }
5239
5240 static inline void unregister_as_ext2(void)
5241 {
5242         unregister_filesystem(&ext2_fs_type);
5243 }
5244
5245 static inline int ext2_feature_set_ok(struct super_block *sb)
5246 {
5247         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5248                 return 0;
5249         if (sb->s_flags & MS_RDONLY)
5250                 return 1;
5251         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5252                 return 0;
5253         return 1;
5254 }
5255 #else
5256 static inline void register_as_ext2(void) { }
5257 static inline void unregister_as_ext2(void) { }
5258 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5259 #endif
5260
5261 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5262 static inline void register_as_ext3(void)
5263 {
5264         int err = register_filesystem(&ext3_fs_type);
5265         if (err)
5266                 printk(KERN_WARNING
5267                        "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5268 }
5269
5270 static inline void unregister_as_ext3(void)
5271 {
5272         unregister_filesystem(&ext3_fs_type);
5273 }
5274
5275 static inline int ext3_feature_set_ok(struct super_block *sb)
5276 {
5277         if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5278                 return 0;
5279         if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5280                 return 0;
5281         if (sb->s_flags & MS_RDONLY)
5282                 return 1;
5283         if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5284                 return 0;
5285         return 1;
5286 }
5287 #else
5288 static inline void register_as_ext3(void) { }
5289 static inline void unregister_as_ext3(void) { }
5290 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5291 #endif
5292
5293 static struct file_system_type ext4_fs_type = {
5294         .owner          = THIS_MODULE,
5295         .name           = "ext4",
5296         .mount          = ext4_mount,
5297         .kill_sb        = kill_block_super,
5298         .fs_flags       = FS_REQUIRES_DEV,
5299 };
5300 MODULE_ALIAS_FS("ext4");
5301
5302 static int __init ext4_init_feat_adverts(void)
5303 {
5304         struct ext4_features *ef;
5305         int ret = -ENOMEM;
5306
5307         ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5308         if (!ef)
5309                 goto out;
5310
5311         ef->f_kobj.kset = ext4_kset;
5312         init_completion(&ef->f_kobj_unregister);
5313         ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5314                                    "features");
5315         if (ret) {
5316                 kfree(ef);
5317                 goto out;
5318         }
5319
5320         ext4_feat = ef;
5321         ret = 0;
5322 out:
5323         return ret;
5324 }
5325
5326 static void ext4_exit_feat_adverts(void)
5327 {
5328         kobject_put(&ext4_feat->f_kobj);
5329         wait_for_completion(&ext4_feat->f_kobj_unregister);
5330         kfree(ext4_feat);
5331 }
5332
5333 /* Shared across all ext4 file systems */
5334 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5335 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5336
5337 static int __init ext4_init_fs(void)
5338 {
5339         int i, err;
5340
5341         ext4_li_info = NULL;
5342         mutex_init(&ext4_li_mtx);
5343
5344         /* Build-time check for flags consistency */
5345         ext4_check_flag_values();
5346
5347         for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5348                 mutex_init(&ext4__aio_mutex[i]);
5349                 init_waitqueue_head(&ext4__ioend_wq[i]);
5350         }
5351
5352         err = ext4_init_es();
5353         if (err)
5354                 return err;
5355
5356         err = ext4_init_pageio();
5357         if (err)
5358                 goto out7;
5359
5360         err = ext4_init_system_zone();
5361         if (err)
5362                 goto out6;
5363         ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5364         if (!ext4_kset) {
5365                 err = -ENOMEM;
5366                 goto out5;
5367         }
5368         ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5369
5370         err = ext4_init_feat_adverts();
5371         if (err)
5372                 goto out4;
5373
5374         err = ext4_init_mballoc();
5375         if (err)
5376                 goto out3;
5377
5378         err = ext4_init_xattr();
5379         if (err)
5380                 goto out2;
5381         err = init_inodecache();
5382         if (err)
5383                 goto out1;
5384         register_as_ext3();
5385         register_as_ext2();
5386         err = register_filesystem(&ext4_fs_type);
5387         if (err)
5388                 goto out;
5389
5390         return 0;
5391 out:
5392         unregister_as_ext2();
5393         unregister_as_ext3();
5394         destroy_inodecache();
5395 out1:
5396         ext4_exit_xattr();
5397 out2:
5398         ext4_exit_mballoc();
5399 out3:
5400         ext4_exit_feat_adverts();
5401 out4:
5402         if (ext4_proc_root)
5403                 remove_proc_entry("fs/ext4", NULL);
5404         kset_unregister(ext4_kset);
5405 out5:
5406         ext4_exit_system_zone();
5407 out6:
5408         ext4_exit_pageio();
5409 out7:
5410         ext4_exit_es();
5411
5412         return err;
5413 }
5414
5415 static void __exit ext4_exit_fs(void)
5416 {
5417         ext4_destroy_lazyinit_thread();
5418         unregister_as_ext2();
5419         unregister_as_ext3();
5420         unregister_filesystem(&ext4_fs_type);
5421         destroy_inodecache();
5422         ext4_exit_xattr();
5423         ext4_exit_mballoc();
5424         ext4_exit_feat_adverts();
5425         remove_proc_entry("fs/ext4", NULL);
5426         kset_unregister(ext4_kset);
5427         ext4_exit_system_zone();
5428         ext4_exit_pageio();
5429         ext4_exit_es();
5430 }
5431
5432 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5433 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5434 MODULE_LICENSE("GPL");
5435 module_init(ext4_init_fs)
5436 module_exit(ext4_exit_fs)