Merge tag 'v3.10.79' into linux-linaro-lsk-v3.10
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned long offset);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140                 struct inode *inode, struct page *page, loff_t from,
141                 loff_t length, int flags);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 (inode->i_sb->s_blocksize >> 9) : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 ext4_ioend_shutdown(inode);
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229         ext4_ioend_shutdown(inode);
230
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428  * Return the number of contiguous dirty pages in a given inode
429  * starting at page frame idx.
430  */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432                                     unsigned int max_pages)
433 {
434         struct address_space *mapping = inode->i_mapping;
435         pgoff_t index;
436         struct pagevec pvec;
437         pgoff_t num = 0;
438         int i, nr_pages, done = 0;
439
440         if (max_pages == 0)
441                 return 0;
442         pagevec_init(&pvec, 0);
443         while (!done) {
444                 index = idx;
445                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446                                               PAGECACHE_TAG_DIRTY,
447                                               (pgoff_t)PAGEVEC_SIZE);
448                 if (nr_pages == 0)
449                         break;
450                 for (i = 0; i < nr_pages; i++) {
451                         struct page *page = pvec.pages[i];
452                         struct buffer_head *bh, *head;
453
454                         lock_page(page);
455                         if (unlikely(page->mapping != mapping) ||
456                             !PageDirty(page) ||
457                             PageWriteback(page) ||
458                             page->index != idx) {
459                                 done = 1;
460                                 unlock_page(page);
461                                 break;
462                         }
463                         if (page_has_buffers(page)) {
464                                 bh = head = page_buffers(page);
465                                 do {
466                                         if (!buffer_delay(bh) &&
467                                             !buffer_unwritten(bh))
468                                                 done = 1;
469                                         bh = bh->b_this_page;
470                                 } while (!done && (bh != head));
471                         }
472                         unlock_page(page);
473                         if (done)
474                                 break;
475                         idx++;
476                         num++;
477                         if (num >= max_pages) {
478                                 done = 1;
479                                 break;
480                         }
481                 }
482                 pagevec_release(&pvec);
483         }
484         return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489                                        struct inode *inode,
490                                        struct ext4_map_blocks *es_map,
491                                        struct ext4_map_blocks *map,
492                                        int flags)
493 {
494         int retval;
495
496         map->m_flags = 0;
497         /*
498          * There is a race window that the result is not the same.
499          * e.g. xfstests #223 when dioread_nolock enables.  The reason
500          * is that we lookup a block mapping in extent status tree with
501          * out taking i_data_sem.  So at the time the unwritten extent
502          * could be converted.
503          */
504         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505                 down_read((&EXT4_I(inode)->i_data_sem));
506         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508                                              EXT4_GET_BLOCKS_KEEP_SIZE);
509         } else {
510                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511                                              EXT4_GET_BLOCKS_KEEP_SIZE);
512         }
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 up_read((&EXT4_I(inode)->i_data_sem));
515         /*
516          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517          * because it shouldn't be marked in es_map->m_flags.
518          */
519         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521         /*
522          * We don't check m_len because extent will be collpased in status
523          * tree.  So the m_len might not equal.
524          */
525         if (es_map->m_lblk != map->m_lblk ||
526             es_map->m_flags != map->m_flags ||
527             es_map->m_pblk != map->m_pblk) {
528                 printk("ES cache assertation failed for inode: %lu "
529                        "es_cached ex [%d/%d/%llu/%x] != "
530                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531                        inode->i_ino, es_map->m_lblk, es_map->m_len,
532                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
533                        map->m_len, map->m_pblk, map->m_flags,
534                        retval, flags);
535         }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540  * The ext4_map_blocks() function tries to look up the requested blocks,
541  * and returns if the blocks are already mapped.
542  *
543  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544  * and store the allocated blocks in the result buffer head and mark it
545  * mapped.
546  *
547  * If file type is extents based, it will call ext4_ext_map_blocks(),
548  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549  * based files
550  *
551  * On success, it returns the number of blocks being mapped or allocate.
552  * if create==0 and the blocks are pre-allocated and uninitialized block,
553  * the result buffer head is unmapped. If the create ==1, it will make sure
554  * the buffer head is mapped.
555  *
556  * It returns 0 if plain look up failed (blocks have not been allocated), in
557  * that case, buffer head is unmapped
558  *
559  * It returns the error in case of allocation failure.
560  */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562                     struct ext4_map_blocks *map, int flags)
563 {
564         struct extent_status es;
565         int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567         struct ext4_map_blocks orig_map;
568
569         memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572         map->m_flags = 0;
573         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
575                   (unsigned long) map->m_lblk);
576
577         /* Lookup extent status tree firstly */
578         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580                         map->m_pblk = ext4_es_pblock(&es) +
581                                         map->m_lblk - es.es_lblk;
582                         map->m_flags |= ext4_es_is_written(&es) ?
583                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584                         retval = es.es_len - (map->m_lblk - es.es_lblk);
585                         if (retval > map->m_len)
586                                 retval = map->m_len;
587                         map->m_len = retval;
588                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589                         retval = 0;
590                 } else {
591                         BUG_ON(1);
592                 }
593 #ifdef ES_AGGRESSIVE_TEST
594                 ext4_map_blocks_es_recheck(handle, inode, map,
595                                            &orig_map, flags);
596 #endif
597                 goto found;
598         }
599
600         /*
601          * Try to see if we can get the block without requesting a new
602          * file system block.
603          */
604         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605                 down_read((&EXT4_I(inode)->i_data_sem));
606         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608                                              EXT4_GET_BLOCKS_KEEP_SIZE);
609         } else {
610                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611                                              EXT4_GET_BLOCKS_KEEP_SIZE);
612         }
613         if (retval > 0) {
614                 int ret;
615                 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618                 if (retval != map->m_len) {
619                         printk("ES len assertation failed for inode: %lu "
620                                "retval %d != map->m_len %d "
621                                "in %s (lookup)\n", inode->i_ino, retval,
622                                map->m_len, __func__);
623                 }
624 #endif
625
626                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629                     !(status & EXTENT_STATUS_WRITTEN) &&
630                     ext4_find_delalloc_range(inode, map->m_lblk,
631                                              map->m_lblk + map->m_len - 1))
632                         status |= EXTENT_STATUS_DELAYED;
633                 ret = ext4_es_insert_extent(inode, map->m_lblk,
634                                             map->m_len, map->m_pblk, status);
635                 if (ret < 0)
636                         retval = ret;
637         }
638         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
639                 up_read((&EXT4_I(inode)->i_data_sem));
640
641 found:
642         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
643                 int ret = check_block_validity(inode, map);
644                 if (ret != 0)
645                         return ret;
646         }
647
648         /* If it is only a block(s) look up */
649         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
650                 return retval;
651
652         /*
653          * Returns if the blocks have already allocated
654          *
655          * Note that if blocks have been preallocated
656          * ext4_ext_get_block() returns the create = 0
657          * with buffer head unmapped.
658          */
659         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660                 return retval;
661
662         /*
663          * Here we clear m_flags because after allocating an new extent,
664          * it will be set again.
665          */
666         map->m_flags &= ~EXT4_MAP_FLAGS;
667
668         /*
669          * New blocks allocate and/or writing to uninitialized extent
670          * will possibly result in updating i_data, so we take
671          * the write lock of i_data_sem, and call get_blocks()
672          * with create == 1 flag.
673          */
674         down_write((&EXT4_I(inode)->i_data_sem));
675
676         /*
677          * if the caller is from delayed allocation writeout path
678          * we have already reserved fs blocks for allocation
679          * let the underlying get_block() function know to
680          * avoid double accounting
681          */
682         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
683                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
684         /*
685          * We need to check for EXT4 here because migrate
686          * could have changed the inode type in between
687          */
688         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
689                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
690         } else {
691                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
692
693                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
694                         /*
695                          * We allocated new blocks which will result in
696                          * i_data's format changing.  Force the migrate
697                          * to fail by clearing migrate flags
698                          */
699                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
700                 }
701
702                 /*
703                  * Update reserved blocks/metadata blocks after successful
704                  * block allocation which had been deferred till now. We don't
705                  * support fallocate for non extent files. So we can update
706                  * reserve space here.
707                  */
708                 if ((retval > 0) &&
709                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
710                         ext4_da_update_reserve_space(inode, retval, 1);
711         }
712         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
713                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
714
715         if (retval > 0) {
716                 int ret;
717                 unsigned long long status;
718
719 #ifdef ES_AGGRESSIVE_TEST
720                 if (retval != map->m_len) {
721                         printk("ES len assertation failed for inode: %lu "
722                                "retval %d != map->m_len %d "
723                                "in %s (allocation)\n", inode->i_ino, retval,
724                                map->m_len, __func__);
725                 }
726 #endif
727
728                 /*
729                  * If the extent has been zeroed out, we don't need to update
730                  * extent status tree.
731                  */
732                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
733                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
734                         if (ext4_es_is_written(&es))
735                                 goto has_zeroout;
736                 }
737                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
738                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
739                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
740                     !(status & EXTENT_STATUS_WRITTEN) &&
741                     ext4_find_delalloc_range(inode, map->m_lblk,
742                                              map->m_lblk + map->m_len - 1))
743                         status |= EXTENT_STATUS_DELAYED;
744                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
745                                             map->m_pblk, status);
746                 if (ret < 0)
747                         retval = ret;
748         }
749
750 has_zeroout:
751         up_write((&EXT4_I(inode)->i_data_sem));
752         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
753                 int ret = check_block_validity(inode, map);
754                 if (ret != 0)
755                         return ret;
756         }
757         return retval;
758 }
759
760 /* Maximum number of blocks we map for direct IO at once. */
761 #define DIO_MAX_BLOCKS 4096
762
763 static int _ext4_get_block(struct inode *inode, sector_t iblock,
764                            struct buffer_head *bh, int flags)
765 {
766         handle_t *handle = ext4_journal_current_handle();
767         struct ext4_map_blocks map;
768         int ret = 0, started = 0;
769         int dio_credits;
770
771         if (ext4_has_inline_data(inode))
772                 return -ERANGE;
773
774         map.m_lblk = iblock;
775         map.m_len = bh->b_size >> inode->i_blkbits;
776
777         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
778                 /* Direct IO write... */
779                 if (map.m_len > DIO_MAX_BLOCKS)
780                         map.m_len = DIO_MAX_BLOCKS;
781                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
782                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
783                                             dio_credits);
784                 if (IS_ERR(handle)) {
785                         ret = PTR_ERR(handle);
786                         return ret;
787                 }
788                 started = 1;
789         }
790
791         ret = ext4_map_blocks(handle, inode, &map, flags);
792         if (ret > 0) {
793                 map_bh(bh, inode->i_sb, map.m_pblk);
794                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
795                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
796                 ret = 0;
797         }
798         if (started)
799                 ext4_journal_stop(handle);
800         return ret;
801 }
802
803 int ext4_get_block(struct inode *inode, sector_t iblock,
804                    struct buffer_head *bh, int create)
805 {
806         return _ext4_get_block(inode, iblock, bh,
807                                create ? EXT4_GET_BLOCKS_CREATE : 0);
808 }
809
810 /*
811  * `handle' can be NULL if create is zero
812  */
813 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
814                                 ext4_lblk_t block, int create, int *errp)
815 {
816         struct ext4_map_blocks map;
817         struct buffer_head *bh;
818         int fatal = 0, err;
819
820         J_ASSERT(handle != NULL || create == 0);
821
822         map.m_lblk = block;
823         map.m_len = 1;
824         err = ext4_map_blocks(handle, inode, &map,
825                               create ? EXT4_GET_BLOCKS_CREATE : 0);
826
827         /* ensure we send some value back into *errp */
828         *errp = 0;
829
830         if (create && err == 0)
831                 err = -ENOSPC;  /* should never happen */
832         if (err < 0)
833                 *errp = err;
834         if (err <= 0)
835                 return NULL;
836
837         bh = sb_getblk(inode->i_sb, map.m_pblk);
838         if (unlikely(!bh)) {
839                 *errp = -ENOMEM;
840                 return NULL;
841         }
842         if (map.m_flags & EXT4_MAP_NEW) {
843                 J_ASSERT(create != 0);
844                 J_ASSERT(handle != NULL);
845
846                 /*
847                  * Now that we do not always journal data, we should
848                  * keep in mind whether this should always journal the
849                  * new buffer as metadata.  For now, regular file
850                  * writes use ext4_get_block instead, so it's not a
851                  * problem.
852                  */
853                 lock_buffer(bh);
854                 BUFFER_TRACE(bh, "call get_create_access");
855                 fatal = ext4_journal_get_create_access(handle, bh);
856                 if (!fatal && !buffer_uptodate(bh)) {
857                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
858                         set_buffer_uptodate(bh);
859                 }
860                 unlock_buffer(bh);
861                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
862                 err = ext4_handle_dirty_metadata(handle, inode, bh);
863                 if (!fatal)
864                         fatal = err;
865         } else {
866                 BUFFER_TRACE(bh, "not a new buffer");
867         }
868         if (fatal) {
869                 *errp = fatal;
870                 brelse(bh);
871                 bh = NULL;
872         }
873         return bh;
874 }
875
876 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
877                                ext4_lblk_t block, int create, int *err)
878 {
879         struct buffer_head *bh;
880
881         bh = ext4_getblk(handle, inode, block, create, err);
882         if (!bh)
883                 return bh;
884         if (buffer_uptodate(bh))
885                 return bh;
886         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
887         wait_on_buffer(bh);
888         if (buffer_uptodate(bh))
889                 return bh;
890         put_bh(bh);
891         *err = -EIO;
892         return NULL;
893 }
894
895 int ext4_walk_page_buffers(handle_t *handle,
896                            struct buffer_head *head,
897                            unsigned from,
898                            unsigned to,
899                            int *partial,
900                            int (*fn)(handle_t *handle,
901                                      struct buffer_head *bh))
902 {
903         struct buffer_head *bh;
904         unsigned block_start, block_end;
905         unsigned blocksize = head->b_size;
906         int err, ret = 0;
907         struct buffer_head *next;
908
909         for (bh = head, block_start = 0;
910              ret == 0 && (bh != head || !block_start);
911              block_start = block_end, bh = next) {
912                 next = bh->b_this_page;
913                 block_end = block_start + blocksize;
914                 if (block_end <= from || block_start >= to) {
915                         if (partial && !buffer_uptodate(bh))
916                                 *partial = 1;
917                         continue;
918                 }
919                 err = (*fn)(handle, bh);
920                 if (!ret)
921                         ret = err;
922         }
923         return ret;
924 }
925
926 /*
927  * To preserve ordering, it is essential that the hole instantiation and
928  * the data write be encapsulated in a single transaction.  We cannot
929  * close off a transaction and start a new one between the ext4_get_block()
930  * and the commit_write().  So doing the jbd2_journal_start at the start of
931  * prepare_write() is the right place.
932  *
933  * Also, this function can nest inside ext4_writepage().  In that case, we
934  * *know* that ext4_writepage() has generated enough buffer credits to do the
935  * whole page.  So we won't block on the journal in that case, which is good,
936  * because the caller may be PF_MEMALLOC.
937  *
938  * By accident, ext4 can be reentered when a transaction is open via
939  * quota file writes.  If we were to commit the transaction while thus
940  * reentered, there can be a deadlock - we would be holding a quota
941  * lock, and the commit would never complete if another thread had a
942  * transaction open and was blocking on the quota lock - a ranking
943  * violation.
944  *
945  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
946  * will _not_ run commit under these circumstances because handle->h_ref
947  * is elevated.  We'll still have enough credits for the tiny quotafile
948  * write.
949  */
950 int do_journal_get_write_access(handle_t *handle,
951                                 struct buffer_head *bh)
952 {
953         int dirty = buffer_dirty(bh);
954         int ret;
955
956         if (!buffer_mapped(bh) || buffer_freed(bh))
957                 return 0;
958         /*
959          * __block_write_begin() could have dirtied some buffers. Clean
960          * the dirty bit as jbd2_journal_get_write_access() could complain
961          * otherwise about fs integrity issues. Setting of the dirty bit
962          * by __block_write_begin() isn't a real problem here as we clear
963          * the bit before releasing a page lock and thus writeback cannot
964          * ever write the buffer.
965          */
966         if (dirty)
967                 clear_buffer_dirty(bh);
968         ret = ext4_journal_get_write_access(handle, bh);
969         if (!ret && dirty)
970                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
971         return ret;
972 }
973
974 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
975                    struct buffer_head *bh_result, int create);
976 static int ext4_write_begin(struct file *file, struct address_space *mapping,
977                             loff_t pos, unsigned len, unsigned flags,
978                             struct page **pagep, void **fsdata)
979 {
980         struct inode *inode = mapping->host;
981         int ret, needed_blocks;
982         handle_t *handle;
983         int retries = 0;
984         struct page *page;
985         pgoff_t index;
986         unsigned from, to;
987
988         trace_ext4_write_begin(inode, pos, len, flags);
989         /*
990          * Reserve one block more for addition to orphan list in case
991          * we allocate blocks but write fails for some reason
992          */
993         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
994         index = pos >> PAGE_CACHE_SHIFT;
995         from = pos & (PAGE_CACHE_SIZE - 1);
996         to = from + len;
997
998         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
999                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1000                                                     flags, pagep);
1001                 if (ret < 0)
1002                         return ret;
1003                 if (ret == 1)
1004                         return 0;
1005         }
1006
1007         /*
1008          * grab_cache_page_write_begin() can take a long time if the
1009          * system is thrashing due to memory pressure, or if the page
1010          * is being written back.  So grab it first before we start
1011          * the transaction handle.  This also allows us to allocate
1012          * the page (if needed) without using GFP_NOFS.
1013          */
1014 retry_grab:
1015         page = grab_cache_page_write_begin(mapping, index, flags);
1016         if (!page)
1017                 return -ENOMEM;
1018         unlock_page(page);
1019
1020 retry_journal:
1021         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1022         if (IS_ERR(handle)) {
1023                 page_cache_release(page);
1024                 return PTR_ERR(handle);
1025         }
1026
1027         lock_page(page);
1028         if (page->mapping != mapping) {
1029                 /* The page got truncated from under us */
1030                 unlock_page(page);
1031                 page_cache_release(page);
1032                 ext4_journal_stop(handle);
1033                 goto retry_grab;
1034         }
1035         wait_on_page_writeback(page);
1036
1037         if (ext4_should_dioread_nolock(inode))
1038                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1039         else
1040                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1041
1042         if (!ret && ext4_should_journal_data(inode)) {
1043                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1044                                              from, to, NULL,
1045                                              do_journal_get_write_access);
1046         }
1047
1048         if (ret) {
1049                 unlock_page(page);
1050                 /*
1051                  * __block_write_begin may have instantiated a few blocks
1052                  * outside i_size.  Trim these off again. Don't need
1053                  * i_size_read because we hold i_mutex.
1054                  *
1055                  * Add inode to orphan list in case we crash before
1056                  * truncate finishes
1057                  */
1058                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1059                         ext4_orphan_add(handle, inode);
1060
1061                 ext4_journal_stop(handle);
1062                 if (pos + len > inode->i_size) {
1063                         ext4_truncate_failed_write(inode);
1064                         /*
1065                          * If truncate failed early the inode might
1066                          * still be on the orphan list; we need to
1067                          * make sure the inode is removed from the
1068                          * orphan list in that case.
1069                          */
1070                         if (inode->i_nlink)
1071                                 ext4_orphan_del(NULL, inode);
1072                 }
1073
1074                 if (ret == -ENOSPC &&
1075                     ext4_should_retry_alloc(inode->i_sb, &retries))
1076                         goto retry_journal;
1077                 page_cache_release(page);
1078                 return ret;
1079         }
1080         *pagep = page;
1081         return ret;
1082 }
1083
1084 /* For write_end() in data=journal mode */
1085 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1086 {
1087         int ret;
1088         if (!buffer_mapped(bh) || buffer_freed(bh))
1089                 return 0;
1090         set_buffer_uptodate(bh);
1091         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1092         clear_buffer_meta(bh);
1093         clear_buffer_prio(bh);
1094         return ret;
1095 }
1096
1097 /*
1098  * We need to pick up the new inode size which generic_commit_write gave us
1099  * `file' can be NULL - eg, when called from page_symlink().
1100  *
1101  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1102  * buffers are managed internally.
1103  */
1104 static int ext4_write_end(struct file *file,
1105                           struct address_space *mapping,
1106                           loff_t pos, unsigned len, unsigned copied,
1107                           struct page *page, void *fsdata)
1108 {
1109         handle_t *handle = ext4_journal_current_handle();
1110         struct inode *inode = mapping->host;
1111         int ret = 0, ret2;
1112         int i_size_changed = 0;
1113
1114         trace_ext4_write_end(inode, pos, len, copied);
1115         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1116                 ret = ext4_jbd2_file_inode(handle, inode);
1117                 if (ret) {
1118                         unlock_page(page);
1119                         page_cache_release(page);
1120                         goto errout;
1121                 }
1122         }
1123
1124         if (ext4_has_inline_data(inode)) {
1125                 ret = ext4_write_inline_data_end(inode, pos, len,
1126                                                  copied, page);
1127                 if (ret < 0)
1128                         goto errout;
1129                 copied = ret;
1130         } else
1131                 copied = block_write_end(file, mapping, pos,
1132                                          len, copied, page, fsdata);
1133
1134         /*
1135          * No need to use i_size_read() here, the i_size
1136          * cannot change under us because we hole i_mutex.
1137          *
1138          * But it's important to update i_size while still holding page lock:
1139          * page writeout could otherwise come in and zero beyond i_size.
1140          */
1141         if (pos + copied > inode->i_size) {
1142                 i_size_write(inode, pos + copied);
1143                 i_size_changed = 1;
1144         }
1145
1146         if (pos + copied > EXT4_I(inode)->i_disksize) {
1147                 /* We need to mark inode dirty even if
1148                  * new_i_size is less that inode->i_size
1149                  * but greater than i_disksize. (hint delalloc)
1150                  */
1151                 ext4_update_i_disksize(inode, (pos + copied));
1152                 i_size_changed = 1;
1153         }
1154         unlock_page(page);
1155         page_cache_release(page);
1156
1157         /*
1158          * Don't mark the inode dirty under page lock. First, it unnecessarily
1159          * makes the holding time of page lock longer. Second, it forces lock
1160          * ordering of page lock and transaction start for journaling
1161          * filesystems.
1162          */
1163         if (i_size_changed)
1164                 ext4_mark_inode_dirty(handle, inode);
1165
1166         if (copied < 0)
1167                 ret = copied;
1168         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1169                 /* if we have allocated more blocks and copied
1170                  * less. We will have blocks allocated outside
1171                  * inode->i_size. So truncate them
1172                  */
1173                 ext4_orphan_add(handle, inode);
1174 errout:
1175         ret2 = ext4_journal_stop(handle);
1176         if (!ret)
1177                 ret = ret2;
1178
1179         if (pos + len > inode->i_size) {
1180                 ext4_truncate_failed_write(inode);
1181                 /*
1182                  * If truncate failed early the inode might still be
1183                  * on the orphan list; we need to make sure the inode
1184                  * is removed from the orphan list in that case.
1185                  */
1186                 if (inode->i_nlink)
1187                         ext4_orphan_del(NULL, inode);
1188         }
1189
1190         return ret ? ret : copied;
1191 }
1192
1193 static int ext4_journalled_write_end(struct file *file,
1194                                      struct address_space *mapping,
1195                                      loff_t pos, unsigned len, unsigned copied,
1196                                      struct page *page, void *fsdata)
1197 {
1198         handle_t *handle = ext4_journal_current_handle();
1199         struct inode *inode = mapping->host;
1200         int ret = 0, ret2;
1201         int partial = 0;
1202         unsigned from, to;
1203         loff_t new_i_size;
1204
1205         trace_ext4_journalled_write_end(inode, pos, len, copied);
1206         from = pos & (PAGE_CACHE_SIZE - 1);
1207         to = from + len;
1208
1209         BUG_ON(!ext4_handle_valid(handle));
1210
1211         if (ext4_has_inline_data(inode))
1212                 copied = ext4_write_inline_data_end(inode, pos, len,
1213                                                     copied, page);
1214         else {
1215                 if (copied < len) {
1216                         if (!PageUptodate(page))
1217                                 copied = 0;
1218                         page_zero_new_buffers(page, from+copied, to);
1219                 }
1220
1221                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1222                                              to, &partial, write_end_fn);
1223                 if (!partial)
1224                         SetPageUptodate(page);
1225         }
1226         new_i_size = pos + copied;
1227         if (new_i_size > inode->i_size)
1228                 i_size_write(inode, pos+copied);
1229         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1230         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1231         if (new_i_size > EXT4_I(inode)->i_disksize) {
1232                 ext4_update_i_disksize(inode, new_i_size);
1233                 ret2 = ext4_mark_inode_dirty(handle, inode);
1234                 if (!ret)
1235                         ret = ret2;
1236         }
1237
1238         unlock_page(page);
1239         page_cache_release(page);
1240         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1241                 /* if we have allocated more blocks and copied
1242                  * less. We will have blocks allocated outside
1243                  * inode->i_size. So truncate them
1244                  */
1245                 ext4_orphan_add(handle, inode);
1246
1247         ret2 = ext4_journal_stop(handle);
1248         if (!ret)
1249                 ret = ret2;
1250         if (pos + len > inode->i_size) {
1251                 ext4_truncate_failed_write(inode);
1252                 /*
1253                  * If truncate failed early the inode might still be
1254                  * on the orphan list; we need to make sure the inode
1255                  * is removed from the orphan list in that case.
1256                  */
1257                 if (inode->i_nlink)
1258                         ext4_orphan_del(NULL, inode);
1259         }
1260
1261         return ret ? ret : copied;
1262 }
1263
1264 /*
1265  * Reserve a metadata for a single block located at lblock
1266  */
1267 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1268 {
1269         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1270         struct ext4_inode_info *ei = EXT4_I(inode);
1271         unsigned int md_needed;
1272         ext4_lblk_t save_last_lblock;
1273         int save_len;
1274
1275         /*
1276          * recalculate the amount of metadata blocks to reserve
1277          * in order to allocate nrblocks
1278          * worse case is one extent per block
1279          */
1280         spin_lock(&ei->i_block_reservation_lock);
1281         /*
1282          * ext4_calc_metadata_amount() has side effects, which we have
1283          * to be prepared undo if we fail to claim space.
1284          */
1285         save_len = ei->i_da_metadata_calc_len;
1286         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1287         md_needed = EXT4_NUM_B2C(sbi,
1288                                  ext4_calc_metadata_amount(inode, lblock));
1289         trace_ext4_da_reserve_space(inode, md_needed);
1290
1291         /*
1292          * We do still charge estimated metadata to the sb though;
1293          * we cannot afford to run out of free blocks.
1294          */
1295         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1296                 ei->i_da_metadata_calc_len = save_len;
1297                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1298                 spin_unlock(&ei->i_block_reservation_lock);
1299                 return -ENOSPC;
1300         }
1301         ei->i_reserved_meta_blocks += md_needed;
1302         spin_unlock(&ei->i_block_reservation_lock);
1303
1304         return 0;       /* success */
1305 }
1306
1307 /*
1308  * Reserve a single cluster located at lblock
1309  */
1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1311 {
1312         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1313         struct ext4_inode_info *ei = EXT4_I(inode);
1314         unsigned int md_needed;
1315         int ret;
1316         ext4_lblk_t save_last_lblock;
1317         int save_len;
1318
1319         /*
1320          * We will charge metadata quota at writeout time; this saves
1321          * us from metadata over-estimation, though we may go over by
1322          * a small amount in the end.  Here we just reserve for data.
1323          */
1324         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1325         if (ret)
1326                 return ret;
1327
1328         /*
1329          * recalculate the amount of metadata blocks to reserve
1330          * in order to allocate nrblocks
1331          * worse case is one extent per block
1332          */
1333         spin_lock(&ei->i_block_reservation_lock);
1334         /*
1335          * ext4_calc_metadata_amount() has side effects, which we have
1336          * to be prepared undo if we fail to claim space.
1337          */
1338         save_len = ei->i_da_metadata_calc_len;
1339         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1340         md_needed = EXT4_NUM_B2C(sbi,
1341                                  ext4_calc_metadata_amount(inode, lblock));
1342         trace_ext4_da_reserve_space(inode, md_needed);
1343
1344         /*
1345          * We do still charge estimated metadata to the sb though;
1346          * we cannot afford to run out of free blocks.
1347          */
1348         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1349                 ei->i_da_metadata_calc_len = save_len;
1350                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1351                 spin_unlock(&ei->i_block_reservation_lock);
1352                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1353                 return -ENOSPC;
1354         }
1355         ei->i_reserved_data_blocks++;
1356         ei->i_reserved_meta_blocks += md_needed;
1357         spin_unlock(&ei->i_block_reservation_lock);
1358
1359         return 0;       /* success */
1360 }
1361
1362 static void ext4_da_release_space(struct inode *inode, int to_free)
1363 {
1364         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1365         struct ext4_inode_info *ei = EXT4_I(inode);
1366
1367         if (!to_free)
1368                 return;         /* Nothing to release, exit */
1369
1370         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1371
1372         trace_ext4_da_release_space(inode, to_free);
1373         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1374                 /*
1375                  * if there aren't enough reserved blocks, then the
1376                  * counter is messed up somewhere.  Since this
1377                  * function is called from invalidate page, it's
1378                  * harmless to return without any action.
1379                  */
1380                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1381                          "ino %lu, to_free %d with only %d reserved "
1382                          "data blocks", inode->i_ino, to_free,
1383                          ei->i_reserved_data_blocks);
1384                 WARN_ON(1);
1385                 to_free = ei->i_reserved_data_blocks;
1386         }
1387         ei->i_reserved_data_blocks -= to_free;
1388
1389         if (ei->i_reserved_data_blocks == 0) {
1390                 /*
1391                  * We can release all of the reserved metadata blocks
1392                  * only when we have written all of the delayed
1393                  * allocation blocks.
1394                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1395                  * i_reserved_data_blocks, etc. refer to number of clusters.
1396                  */
1397                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1398                                    ei->i_reserved_meta_blocks);
1399                 ei->i_reserved_meta_blocks = 0;
1400                 ei->i_da_metadata_calc_len = 0;
1401         }
1402
1403         /* update fs dirty data blocks counter */
1404         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1405
1406         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1407
1408         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1409 }
1410
1411 static void ext4_da_page_release_reservation(struct page *page,
1412                                              unsigned long offset)
1413 {
1414         int to_release = 0;
1415         struct buffer_head *head, *bh;
1416         unsigned int curr_off = 0;
1417         struct inode *inode = page->mapping->host;
1418         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1419         int num_clusters;
1420         ext4_fsblk_t lblk;
1421
1422         head = page_buffers(page);
1423         bh = head;
1424         do {
1425                 unsigned int next_off = curr_off + bh->b_size;
1426
1427                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1428                         to_release++;
1429                         clear_buffer_delay(bh);
1430                 }
1431                 curr_off = next_off;
1432         } while ((bh = bh->b_this_page) != head);
1433
1434         if (to_release) {
1435                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1436                 ext4_es_remove_extent(inode, lblk, to_release);
1437         }
1438
1439         /* If we have released all the blocks belonging to a cluster, then we
1440          * need to release the reserved space for that cluster. */
1441         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1442         while (num_clusters > 0) {
1443                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1444                         ((num_clusters - 1) << sbi->s_cluster_bits);
1445                 if (sbi->s_cluster_ratio == 1 ||
1446                     !ext4_find_delalloc_cluster(inode, lblk))
1447                         ext4_da_release_space(inode, 1);
1448
1449                 num_clusters--;
1450         }
1451 }
1452
1453 /*
1454  * Delayed allocation stuff
1455  */
1456
1457 /*
1458  * mpage_da_submit_io - walks through extent of pages and try to write
1459  * them with writepage() call back
1460  *
1461  * @mpd->inode: inode
1462  * @mpd->first_page: first page of the extent
1463  * @mpd->next_page: page after the last page of the extent
1464  *
1465  * By the time mpage_da_submit_io() is called we expect all blocks
1466  * to be allocated. this may be wrong if allocation failed.
1467  *
1468  * As pages are already locked by write_cache_pages(), we can't use it
1469  */
1470 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1471                               struct ext4_map_blocks *map)
1472 {
1473         struct pagevec pvec;
1474         unsigned long index, end;
1475         int ret = 0, err, nr_pages, i;
1476         struct inode *inode = mpd->inode;
1477         struct address_space *mapping = inode->i_mapping;
1478         loff_t size = i_size_read(inode);
1479         unsigned int len, block_start;
1480         struct buffer_head *bh, *page_bufs = NULL;
1481         sector_t pblock = 0, cur_logical = 0;
1482         struct ext4_io_submit io_submit;
1483
1484         BUG_ON(mpd->next_page <= mpd->first_page);
1485         memset(&io_submit, 0, sizeof(io_submit));
1486         /*
1487          * We need to start from the first_page to the next_page - 1
1488          * to make sure we also write the mapped dirty buffer_heads.
1489          * If we look at mpd->b_blocknr we would only be looking
1490          * at the currently mapped buffer_heads.
1491          */
1492         index = mpd->first_page;
1493         end = mpd->next_page - 1;
1494
1495         pagevec_init(&pvec, 0);
1496         while (index <= end) {
1497                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1498                 if (nr_pages == 0)
1499                         break;
1500                 for (i = 0; i < nr_pages; i++) {
1501                         int skip_page = 0;
1502                         struct page *page = pvec.pages[i];
1503
1504                         index = page->index;
1505                         if (index > end)
1506                                 break;
1507
1508                         if (index == size >> PAGE_CACHE_SHIFT)
1509                                 len = size & ~PAGE_CACHE_MASK;
1510                         else
1511                                 len = PAGE_CACHE_SIZE;
1512                         if (map) {
1513                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1514                                                         inode->i_blkbits);
1515                                 pblock = map->m_pblk + (cur_logical -
1516                                                         map->m_lblk);
1517                         }
1518                         index++;
1519
1520                         BUG_ON(!PageLocked(page));
1521                         BUG_ON(PageWriteback(page));
1522
1523                         bh = page_bufs = page_buffers(page);
1524                         block_start = 0;
1525                         do {
1526                                 if (map && (cur_logical >= map->m_lblk) &&
1527                                     (cur_logical <= (map->m_lblk +
1528                                                      (map->m_len - 1)))) {
1529                                         if (buffer_delay(bh)) {
1530                                                 clear_buffer_delay(bh);
1531                                                 bh->b_blocknr = pblock;
1532                                         }
1533                                         if (buffer_unwritten(bh) ||
1534                                             buffer_mapped(bh))
1535                                                 BUG_ON(bh->b_blocknr != pblock);
1536                                         if (map->m_flags & EXT4_MAP_UNINIT)
1537                                                 set_buffer_uninit(bh);
1538                                         clear_buffer_unwritten(bh);
1539                                 }
1540
1541                                 /*
1542                                  * skip page if block allocation undone and
1543                                  * block is dirty
1544                                  */
1545                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1546                                         skip_page = 1;
1547                                 bh = bh->b_this_page;
1548                                 block_start += bh->b_size;
1549                                 cur_logical++;
1550                                 pblock++;
1551                         } while (bh != page_bufs);
1552
1553                         if (skip_page) {
1554                                 unlock_page(page);
1555                                 continue;
1556                         }
1557
1558                         clear_page_dirty_for_io(page);
1559                         err = ext4_bio_write_page(&io_submit, page, len,
1560                                                   mpd->wbc);
1561                         if (!err)
1562                                 mpd->pages_written++;
1563                         /*
1564                          * In error case, we have to continue because
1565                          * remaining pages are still locked
1566                          */
1567                         if (ret == 0)
1568                                 ret = err;
1569                 }
1570                 pagevec_release(&pvec);
1571         }
1572         ext4_io_submit(&io_submit);
1573         return ret;
1574 }
1575
1576 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1577 {
1578         int nr_pages, i;
1579         pgoff_t index, end;
1580         struct pagevec pvec;
1581         struct inode *inode = mpd->inode;
1582         struct address_space *mapping = inode->i_mapping;
1583         ext4_lblk_t start, last;
1584
1585         index = mpd->first_page;
1586         end   = mpd->next_page - 1;
1587
1588         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1589         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1590         ext4_es_remove_extent(inode, start, last - start + 1);
1591
1592         pagevec_init(&pvec, 0);
1593         while (index <= end) {
1594                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1595                 if (nr_pages == 0)
1596                         break;
1597                 for (i = 0; i < nr_pages; i++) {
1598                         struct page *page = pvec.pages[i];
1599                         if (page->index > end)
1600                                 break;
1601                         BUG_ON(!PageLocked(page));
1602                         BUG_ON(PageWriteback(page));
1603                         block_invalidatepage(page, 0);
1604                         ClearPageUptodate(page);
1605                         unlock_page(page);
1606                 }
1607                 index = pvec.pages[nr_pages - 1]->index + 1;
1608                 pagevec_release(&pvec);
1609         }
1610         return;
1611 }
1612
1613 static void ext4_print_free_blocks(struct inode *inode)
1614 {
1615         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1616         struct super_block *sb = inode->i_sb;
1617         struct ext4_inode_info *ei = EXT4_I(inode);
1618
1619         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1620                EXT4_C2B(EXT4_SB(inode->i_sb),
1621                         ext4_count_free_clusters(sb)));
1622         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1623         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1624                (long long) EXT4_C2B(EXT4_SB(sb),
1625                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1626         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1627                (long long) EXT4_C2B(EXT4_SB(sb),
1628                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1629         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1630         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1631                  ei->i_reserved_data_blocks);
1632         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1633                ei->i_reserved_meta_blocks);
1634         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1635                ei->i_allocated_meta_blocks);
1636         return;
1637 }
1638
1639 /*
1640  * mpage_da_map_and_submit - go through given space, map them
1641  *       if necessary, and then submit them for I/O
1642  *
1643  * @mpd - bh describing space
1644  *
1645  * The function skips space we know is already mapped to disk blocks.
1646  *
1647  */
1648 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1649 {
1650         int err, blks, get_blocks_flags;
1651         struct ext4_map_blocks map, *mapp = NULL;
1652         sector_t next = mpd->b_blocknr;
1653         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1654         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1655         handle_t *handle = NULL;
1656
1657         /*
1658          * If the blocks are mapped already, or we couldn't accumulate
1659          * any blocks, then proceed immediately to the submission stage.
1660          */
1661         if ((mpd->b_size == 0) ||
1662             ((mpd->b_state  & (1 << BH_Mapped)) &&
1663              !(mpd->b_state & (1 << BH_Delay)) &&
1664              !(mpd->b_state & (1 << BH_Unwritten))))
1665                 goto submit_io;
1666
1667         handle = ext4_journal_current_handle();
1668         BUG_ON(!handle);
1669
1670         /*
1671          * Call ext4_map_blocks() to allocate any delayed allocation
1672          * blocks, or to convert an uninitialized extent to be
1673          * initialized (in the case where we have written into
1674          * one or more preallocated blocks).
1675          *
1676          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1677          * indicate that we are on the delayed allocation path.  This
1678          * affects functions in many different parts of the allocation
1679          * call path.  This flag exists primarily because we don't
1680          * want to change *many* call functions, so ext4_map_blocks()
1681          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1682          * inode's allocation semaphore is taken.
1683          *
1684          * If the blocks in questions were delalloc blocks, set
1685          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1686          * variables are updated after the blocks have been allocated.
1687          */
1688         map.m_lblk = next;
1689         map.m_len = max_blocks;
1690         /*
1691          * We're in delalloc path and it is possible that we're going to
1692          * need more metadata blocks than previously reserved. However
1693          * we must not fail because we're in writeback and there is
1694          * nothing we can do about it so it might result in data loss.
1695          * So use reserved blocks to allocate metadata if possible.
1696          */
1697         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1698                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1699         if (ext4_should_dioread_nolock(mpd->inode))
1700                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1701         if (mpd->b_state & (1 << BH_Delay))
1702                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1703
1704
1705         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1706         if (blks < 0) {
1707                 struct super_block *sb = mpd->inode->i_sb;
1708
1709                 err = blks;
1710                 /*
1711                  * If get block returns EAGAIN or ENOSPC and there
1712                  * appears to be free blocks we will just let
1713                  * mpage_da_submit_io() unlock all of the pages.
1714                  */
1715                 if (err == -EAGAIN)
1716                         goto submit_io;
1717
1718                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1719                         mpd->retval = err;
1720                         goto submit_io;
1721                 }
1722
1723                 /*
1724                  * get block failure will cause us to loop in
1725                  * writepages, because a_ops->writepage won't be able
1726                  * to make progress. The page will be redirtied by
1727                  * writepage and writepages will again try to write
1728                  * the same.
1729                  */
1730                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1731                         ext4_msg(sb, KERN_CRIT,
1732                                  "delayed block allocation failed for inode %lu "
1733                                  "at logical offset %llu with max blocks %zd "
1734                                  "with error %d", mpd->inode->i_ino,
1735                                  (unsigned long long) next,
1736                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1737                         ext4_msg(sb, KERN_CRIT,
1738                                 "This should not happen!! Data will be lost");
1739                         if (err == -ENOSPC)
1740                                 ext4_print_free_blocks(mpd->inode);
1741                 }
1742                 /* invalidate all the pages */
1743                 ext4_da_block_invalidatepages(mpd);
1744
1745                 /* Mark this page range as having been completed */
1746                 mpd->io_done = 1;
1747                 return;
1748         }
1749         BUG_ON(blks == 0);
1750
1751         mapp = &map;
1752         if (map.m_flags & EXT4_MAP_NEW) {
1753                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1754                 int i;
1755
1756                 for (i = 0; i < map.m_len; i++)
1757                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1758         }
1759
1760         /*
1761          * Update on-disk size along with block allocation.
1762          */
1763         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1764         if (disksize > i_size_read(mpd->inode))
1765                 disksize = i_size_read(mpd->inode);
1766         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1767                 ext4_update_i_disksize(mpd->inode, disksize);
1768                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1769                 if (err)
1770                         ext4_error(mpd->inode->i_sb,
1771                                    "Failed to mark inode %lu dirty",
1772                                    mpd->inode->i_ino);
1773         }
1774
1775 submit_io:
1776         mpage_da_submit_io(mpd, mapp);
1777         mpd->io_done = 1;
1778 }
1779
1780 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1781                 (1 << BH_Delay) | (1 << BH_Unwritten))
1782
1783 /*
1784  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1785  *
1786  * @mpd->lbh - extent of blocks
1787  * @logical - logical number of the block in the file
1788  * @b_state - b_state of the buffer head added
1789  *
1790  * the function is used to collect contig. blocks in same state
1791  */
1792 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1793                                    unsigned long b_state)
1794 {
1795         sector_t next;
1796         int blkbits = mpd->inode->i_blkbits;
1797         int nrblocks = mpd->b_size >> blkbits;
1798
1799         /*
1800          * XXX Don't go larger than mballoc is willing to allocate
1801          * This is a stopgap solution.  We eventually need to fold
1802          * mpage_da_submit_io() into this function and then call
1803          * ext4_map_blocks() multiple times in a loop
1804          */
1805         if (nrblocks >= (8*1024*1024 >> blkbits))
1806                 goto flush_it;
1807
1808         /* check if the reserved journal credits might overflow */
1809         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1810                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1811                         /*
1812                          * With non-extent format we are limited by the journal
1813                          * credit available.  Total credit needed to insert
1814                          * nrblocks contiguous blocks is dependent on the
1815                          * nrblocks.  So limit nrblocks.
1816                          */
1817                         goto flush_it;
1818                 }
1819         }
1820         /*
1821          * First block in the extent
1822          */
1823         if (mpd->b_size == 0) {
1824                 mpd->b_blocknr = logical;
1825                 mpd->b_size = 1 << blkbits;
1826                 mpd->b_state = b_state & BH_FLAGS;
1827                 return;
1828         }
1829
1830         next = mpd->b_blocknr + nrblocks;
1831         /*
1832          * Can we merge the block to our big extent?
1833          */
1834         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1835                 mpd->b_size += 1 << blkbits;
1836                 return;
1837         }
1838
1839 flush_it:
1840         /*
1841          * We couldn't merge the block to our extent, so we
1842          * need to flush current  extent and start new one
1843          */
1844         mpage_da_map_and_submit(mpd);
1845         return;
1846 }
1847
1848 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1849 {
1850         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1851 }
1852
1853 /*
1854  * This function is grabs code from the very beginning of
1855  * ext4_map_blocks, but assumes that the caller is from delayed write
1856  * time. This function looks up the requested blocks and sets the
1857  * buffer delay bit under the protection of i_data_sem.
1858  */
1859 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1860                               struct ext4_map_blocks *map,
1861                               struct buffer_head *bh)
1862 {
1863         struct extent_status es;
1864         int retval;
1865         sector_t invalid_block = ~((sector_t) 0xffff);
1866 #ifdef ES_AGGRESSIVE_TEST
1867         struct ext4_map_blocks orig_map;
1868
1869         memcpy(&orig_map, map, sizeof(*map));
1870 #endif
1871
1872         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1873                 invalid_block = ~0;
1874
1875         map->m_flags = 0;
1876         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1877                   "logical block %lu\n", inode->i_ino, map->m_len,
1878                   (unsigned long) map->m_lblk);
1879
1880         /* Lookup extent status tree firstly */
1881         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1882
1883                 if (ext4_es_is_hole(&es)) {
1884                         retval = 0;
1885                         down_read((&EXT4_I(inode)->i_data_sem));
1886                         goto add_delayed;
1887                 }
1888
1889                 /*
1890                  * Delayed extent could be allocated by fallocate.
1891                  * So we need to check it.
1892                  */
1893                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1894                         map_bh(bh, inode->i_sb, invalid_block);
1895                         set_buffer_new(bh);
1896                         set_buffer_delay(bh);
1897                         return 0;
1898                 }
1899
1900                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1901                 retval = es.es_len - (iblock - es.es_lblk);
1902                 if (retval > map->m_len)
1903                         retval = map->m_len;
1904                 map->m_len = retval;
1905                 if (ext4_es_is_written(&es))
1906                         map->m_flags |= EXT4_MAP_MAPPED;
1907                 else if (ext4_es_is_unwritten(&es))
1908                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1909                 else
1910                         BUG_ON(1);
1911
1912 #ifdef ES_AGGRESSIVE_TEST
1913                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1914 #endif
1915                 return retval;
1916         }
1917
1918         /*
1919          * Try to see if we can get the block without requesting a new
1920          * file system block.
1921          */
1922         down_read((&EXT4_I(inode)->i_data_sem));
1923         if (ext4_has_inline_data(inode)) {
1924                 /*
1925                  * We will soon create blocks for this page, and let
1926                  * us pretend as if the blocks aren't allocated yet.
1927                  * In case of clusters, we have to handle the work
1928                  * of mapping from cluster so that the reserved space
1929                  * is calculated properly.
1930                  */
1931                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1932                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1933                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1934                 retval = 0;
1935         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1936                 retval = ext4_ext_map_blocks(NULL, inode, map,
1937                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1938         else
1939                 retval = ext4_ind_map_blocks(NULL, inode, map,
1940                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1941
1942 add_delayed:
1943         if (retval == 0) {
1944                 int ret;
1945                 /*
1946                  * XXX: __block_prepare_write() unmaps passed block,
1947                  * is it OK?
1948                  */
1949                 /*
1950                  * If the block was allocated from previously allocated cluster,
1951                  * then we don't need to reserve it again. However we still need
1952                  * to reserve metadata for every block we're going to write.
1953                  */
1954                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1955                         ret = ext4_da_reserve_space(inode, iblock);
1956                         if (ret) {
1957                                 /* not enough space to reserve */
1958                                 retval = ret;
1959                                 goto out_unlock;
1960                         }
1961                 } else {
1962                         ret = ext4_da_reserve_metadata(inode, iblock);
1963                         if (ret) {
1964                                 /* not enough space to reserve */
1965                                 retval = ret;
1966                                 goto out_unlock;
1967                         }
1968                 }
1969
1970                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1971                                             ~0, EXTENT_STATUS_DELAYED);
1972                 if (ret) {
1973                         retval = ret;
1974                         goto out_unlock;
1975                 }
1976
1977                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1978                  * and it should not appear on the bh->b_state.
1979                  */
1980                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1981
1982                 map_bh(bh, inode->i_sb, invalid_block);
1983                 set_buffer_new(bh);
1984                 set_buffer_delay(bh);
1985         } else if (retval > 0) {
1986                 int ret;
1987                 unsigned long long status;
1988
1989 #ifdef ES_AGGRESSIVE_TEST
1990                 if (retval != map->m_len) {
1991                         printk("ES len assertation failed for inode: %lu "
1992                                "retval %d != map->m_len %d "
1993                                "in %s (lookup)\n", inode->i_ino, retval,
1994                                map->m_len, __func__);
1995                 }
1996 #endif
1997
1998                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1999                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2000                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2001                                             map->m_pblk, status);
2002                 if (ret != 0)
2003                         retval = ret;
2004         }
2005
2006 out_unlock:
2007         up_read((&EXT4_I(inode)->i_data_sem));
2008
2009         return retval;
2010 }
2011
2012 /*
2013  * This is a special get_blocks_t callback which is used by
2014  * ext4_da_write_begin().  It will either return mapped block or
2015  * reserve space for a single block.
2016  *
2017  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2018  * We also have b_blocknr = -1 and b_bdev initialized properly
2019  *
2020  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2021  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2022  * initialized properly.
2023  */
2024 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2025                            struct buffer_head *bh, int create)
2026 {
2027         struct ext4_map_blocks map;
2028         int ret = 0;
2029
2030         BUG_ON(create == 0);
2031         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2032
2033         map.m_lblk = iblock;
2034         map.m_len = 1;
2035
2036         /*
2037          * first, we need to know whether the block is allocated already
2038          * preallocated blocks are unmapped but should treated
2039          * the same as allocated blocks.
2040          */
2041         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2042         if (ret <= 0)
2043                 return ret;
2044
2045         map_bh(bh, inode->i_sb, map.m_pblk);
2046         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2047
2048         if (buffer_unwritten(bh)) {
2049                 /* A delayed write to unwritten bh should be marked
2050                  * new and mapped.  Mapped ensures that we don't do
2051                  * get_block multiple times when we write to the same
2052                  * offset and new ensures that we do proper zero out
2053                  * for partial write.
2054                  */
2055                 set_buffer_new(bh);
2056                 set_buffer_mapped(bh);
2057         }
2058         return 0;
2059 }
2060
2061 static int bget_one(handle_t *handle, struct buffer_head *bh)
2062 {
2063         get_bh(bh);
2064         return 0;
2065 }
2066
2067 static int bput_one(handle_t *handle, struct buffer_head *bh)
2068 {
2069         put_bh(bh);
2070         return 0;
2071 }
2072
2073 static int __ext4_journalled_writepage(struct page *page,
2074                                        unsigned int len)
2075 {
2076         struct address_space *mapping = page->mapping;
2077         struct inode *inode = mapping->host;
2078         struct buffer_head *page_bufs = NULL;
2079         handle_t *handle = NULL;
2080         int ret = 0, err = 0;
2081         int inline_data = ext4_has_inline_data(inode);
2082         struct buffer_head *inode_bh = NULL;
2083
2084         ClearPageChecked(page);
2085
2086         if (inline_data) {
2087                 BUG_ON(page->index != 0);
2088                 BUG_ON(len > ext4_get_max_inline_size(inode));
2089                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2090                 if (inode_bh == NULL)
2091                         goto out;
2092         } else {
2093                 page_bufs = page_buffers(page);
2094                 if (!page_bufs) {
2095                         BUG();
2096                         goto out;
2097                 }
2098                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2099                                        NULL, bget_one);
2100         }
2101         /* As soon as we unlock the page, it can go away, but we have
2102          * references to buffers so we are safe */
2103         unlock_page(page);
2104
2105         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2106                                     ext4_writepage_trans_blocks(inode));
2107         if (IS_ERR(handle)) {
2108                 ret = PTR_ERR(handle);
2109                 goto out;
2110         }
2111
2112         BUG_ON(!ext4_handle_valid(handle));
2113
2114         if (inline_data) {
2115                 ret = ext4_journal_get_write_access(handle, inode_bh);
2116
2117                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2118
2119         } else {
2120                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2121                                              do_journal_get_write_access);
2122
2123                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2124                                              write_end_fn);
2125         }
2126         if (ret == 0)
2127                 ret = err;
2128         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2129         err = ext4_journal_stop(handle);
2130         if (!ret)
2131                 ret = err;
2132
2133         if (!ext4_has_inline_data(inode))
2134                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2135                                        NULL, bput_one);
2136         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2137 out:
2138         brelse(inode_bh);
2139         return ret;
2140 }
2141
2142 /*
2143  * Note that we don't need to start a transaction unless we're journaling data
2144  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2145  * need to file the inode to the transaction's list in ordered mode because if
2146  * we are writing back data added by write(), the inode is already there and if
2147  * we are writing back data modified via mmap(), no one guarantees in which
2148  * transaction the data will hit the disk. In case we are journaling data, we
2149  * cannot start transaction directly because transaction start ranks above page
2150  * lock so we have to do some magic.
2151  *
2152  * This function can get called via...
2153  *   - ext4_da_writepages after taking page lock (have journal handle)
2154  *   - journal_submit_inode_data_buffers (no journal handle)
2155  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2156  *   - grab_page_cache when doing write_begin (have journal handle)
2157  *
2158  * We don't do any block allocation in this function. If we have page with
2159  * multiple blocks we need to write those buffer_heads that are mapped. This
2160  * is important for mmaped based write. So if we do with blocksize 1K
2161  * truncate(f, 1024);
2162  * a = mmap(f, 0, 4096);
2163  * a[0] = 'a';
2164  * truncate(f, 4096);
2165  * we have in the page first buffer_head mapped via page_mkwrite call back
2166  * but other buffer_heads would be unmapped but dirty (dirty done via the
2167  * do_wp_page). So writepage should write the first block. If we modify
2168  * the mmap area beyond 1024 we will again get a page_fault and the
2169  * page_mkwrite callback will do the block allocation and mark the
2170  * buffer_heads mapped.
2171  *
2172  * We redirty the page if we have any buffer_heads that is either delay or
2173  * unwritten in the page.
2174  *
2175  * We can get recursively called as show below.
2176  *
2177  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2178  *              ext4_writepage()
2179  *
2180  * But since we don't do any block allocation we should not deadlock.
2181  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2182  */
2183 static int ext4_writepage(struct page *page,
2184                           struct writeback_control *wbc)
2185 {
2186         int ret = 0;
2187         loff_t size;
2188         unsigned int len;
2189         struct buffer_head *page_bufs = NULL;
2190         struct inode *inode = page->mapping->host;
2191         struct ext4_io_submit io_submit;
2192
2193         trace_ext4_writepage(page);
2194         size = i_size_read(inode);
2195         if (page->index == size >> PAGE_CACHE_SHIFT)
2196                 len = size & ~PAGE_CACHE_MASK;
2197         else
2198                 len = PAGE_CACHE_SIZE;
2199
2200         page_bufs = page_buffers(page);
2201         /*
2202          * We cannot do block allocation or other extent handling in this
2203          * function. If there are buffers needing that, we have to redirty
2204          * the page. But we may reach here when we do a journal commit via
2205          * journal_submit_inode_data_buffers() and in that case we must write
2206          * allocated buffers to achieve data=ordered mode guarantees.
2207          */
2208         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2209                                    ext4_bh_delay_or_unwritten)) {
2210                 redirty_page_for_writepage(wbc, page);
2211                 if (current->flags & PF_MEMALLOC) {
2212                         /*
2213                          * For memory cleaning there's no point in writing only
2214                          * some buffers. So just bail out. Warn if we came here
2215                          * from direct reclaim.
2216                          */
2217                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2218                                                         == PF_MEMALLOC);
2219                         unlock_page(page);
2220                         return 0;
2221                 }
2222         }
2223
2224         if (PageChecked(page) && ext4_should_journal_data(inode))
2225                 /*
2226                  * It's mmapped pagecache.  Add buffers and journal it.  There
2227                  * doesn't seem much point in redirtying the page here.
2228                  */
2229                 return __ext4_journalled_writepage(page, len);
2230
2231         memset(&io_submit, 0, sizeof(io_submit));
2232         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2233         ext4_io_submit(&io_submit);
2234         return ret;
2235 }
2236
2237 /*
2238  * This is called via ext4_da_writepages() to
2239  * calculate the total number of credits to reserve to fit
2240  * a single extent allocation into a single transaction,
2241  * ext4_da_writpeages() will loop calling this before
2242  * the block allocation.
2243  */
2244
2245 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2246 {
2247         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2248
2249         /*
2250          * With non-extent format the journal credit needed to
2251          * insert nrblocks contiguous block is dependent on
2252          * number of contiguous block. So we will limit
2253          * number of contiguous block to a sane value
2254          */
2255         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2256             (max_blocks > EXT4_MAX_TRANS_DATA))
2257                 max_blocks = EXT4_MAX_TRANS_DATA;
2258
2259         return ext4_chunk_trans_blocks(inode, max_blocks);
2260 }
2261
2262 /*
2263  * write_cache_pages_da - walk the list of dirty pages of the given
2264  * address space and accumulate pages that need writing, and call
2265  * mpage_da_map_and_submit to map a single contiguous memory region
2266  * and then write them.
2267  */
2268 static int write_cache_pages_da(handle_t *handle,
2269                                 struct address_space *mapping,
2270                                 struct writeback_control *wbc,
2271                                 struct mpage_da_data *mpd,
2272                                 pgoff_t *done_index)
2273 {
2274         struct buffer_head      *bh, *head;
2275         struct inode            *inode = mapping->host;
2276         struct pagevec          pvec;
2277         unsigned int            nr_pages;
2278         sector_t                logical;
2279         pgoff_t                 index, end;
2280         long                    nr_to_write = wbc->nr_to_write;
2281         int                     i, tag, ret = 0;
2282
2283         memset(mpd, 0, sizeof(struct mpage_da_data));
2284         mpd->wbc = wbc;
2285         mpd->inode = inode;
2286         pagevec_init(&pvec, 0);
2287         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2288         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2289
2290         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2291                 tag = PAGECACHE_TAG_TOWRITE;
2292         else
2293                 tag = PAGECACHE_TAG_DIRTY;
2294
2295         *done_index = index;
2296         while (index <= end) {
2297                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2298                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2299                 if (nr_pages == 0)
2300                         return 0;
2301
2302                 for (i = 0; i < nr_pages; i++) {
2303                         struct page *page = pvec.pages[i];
2304
2305                         /*
2306                          * At this point, the page may be truncated or
2307                          * invalidated (changing page->mapping to NULL), or
2308                          * even swizzled back from swapper_space to tmpfs file
2309                          * mapping. However, page->index will not change
2310                          * because we have a reference on the page.
2311                          */
2312                         if (page->index > end)
2313                                 goto out;
2314
2315                         *done_index = page->index + 1;
2316
2317                         /*
2318                          * If we can't merge this page, and we have
2319                          * accumulated an contiguous region, write it
2320                          */
2321                         if ((mpd->next_page != page->index) &&
2322                             (mpd->next_page != mpd->first_page)) {
2323                                 mpage_da_map_and_submit(mpd);
2324                                 goto ret_extent_tail;
2325                         }
2326
2327                         lock_page(page);
2328
2329                         /*
2330                          * If the page is no longer dirty, or its
2331                          * mapping no longer corresponds to inode we
2332                          * are writing (which means it has been
2333                          * truncated or invalidated), or the page is
2334                          * already under writeback and we are not
2335                          * doing a data integrity writeback, skip the page
2336                          */
2337                         if (!PageDirty(page) ||
2338                             (PageWriteback(page) &&
2339                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2340                             unlikely(page->mapping != mapping)) {
2341                                 unlock_page(page);
2342                                 continue;
2343                         }
2344
2345                         wait_on_page_writeback(page);
2346                         BUG_ON(PageWriteback(page));
2347
2348                         /*
2349                          * If we have inline data and arrive here, it means that
2350                          * we will soon create the block for the 1st page, so
2351                          * we'd better clear the inline data here.
2352                          */
2353                         if (ext4_has_inline_data(inode)) {
2354                                 BUG_ON(ext4_test_inode_state(inode,
2355                                                 EXT4_STATE_MAY_INLINE_DATA));
2356                                 ext4_destroy_inline_data(handle, inode);
2357                         }
2358
2359                         if (mpd->next_page != page->index)
2360                                 mpd->first_page = page->index;
2361                         mpd->next_page = page->index + 1;
2362                         logical = (sector_t) page->index <<
2363                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2364
2365                         /* Add all dirty buffers to mpd */
2366                         head = page_buffers(page);
2367                         bh = head;
2368                         do {
2369                                 BUG_ON(buffer_locked(bh));
2370                                 /*
2371                                  * We need to try to allocate unmapped blocks
2372                                  * in the same page.  Otherwise we won't make
2373                                  * progress with the page in ext4_writepage
2374                                  */
2375                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2376                                         mpage_add_bh_to_extent(mpd, logical,
2377                                                                bh->b_state);
2378                                         if (mpd->io_done)
2379                                                 goto ret_extent_tail;
2380                                 } else if (buffer_dirty(bh) &&
2381                                            buffer_mapped(bh)) {
2382                                         /*
2383                                          * mapped dirty buffer. We need to
2384                                          * update the b_state because we look
2385                                          * at b_state in mpage_da_map_blocks.
2386                                          * We don't update b_size because if we
2387                                          * find an unmapped buffer_head later
2388                                          * we need to use the b_state flag of
2389                                          * that buffer_head.
2390                                          */
2391                                         if (mpd->b_size == 0)
2392                                                 mpd->b_state =
2393                                                         bh->b_state & BH_FLAGS;
2394                                 }
2395                                 logical++;
2396                         } while ((bh = bh->b_this_page) != head);
2397
2398                         if (nr_to_write > 0) {
2399                                 nr_to_write--;
2400                                 if (nr_to_write == 0 &&
2401                                     wbc->sync_mode == WB_SYNC_NONE)
2402                                         /*
2403                                          * We stop writing back only if we are
2404                                          * not doing integrity sync. In case of
2405                                          * integrity sync we have to keep going
2406                                          * because someone may be concurrently
2407                                          * dirtying pages, and we might have
2408                                          * synced a lot of newly appeared dirty
2409                                          * pages, but have not synced all of the
2410                                          * old dirty pages.
2411                                          */
2412                                         goto out;
2413                         }
2414                 }
2415                 pagevec_release(&pvec);
2416                 cond_resched();
2417         }
2418         return 0;
2419 ret_extent_tail:
2420         ret = MPAGE_DA_EXTENT_TAIL;
2421 out:
2422         pagevec_release(&pvec);
2423         cond_resched();
2424         return ret;
2425 }
2426
2427
2428 static int ext4_da_writepages(struct address_space *mapping,
2429                               struct writeback_control *wbc)
2430 {
2431         pgoff_t index;
2432         int range_whole = 0;
2433         handle_t *handle = NULL;
2434         struct mpage_da_data mpd;
2435         struct inode *inode = mapping->host;
2436         int pages_written = 0;
2437         unsigned int max_pages;
2438         int range_cyclic, cycled = 1, io_done = 0;
2439         int needed_blocks, ret = 0;
2440         long desired_nr_to_write, nr_to_writebump = 0;
2441         loff_t range_start = wbc->range_start;
2442         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2443         pgoff_t done_index = 0;
2444         pgoff_t end;
2445         struct blk_plug plug;
2446
2447         trace_ext4_da_writepages(inode, wbc);
2448
2449         /*
2450          * No pages to write? This is mainly a kludge to avoid starting
2451          * a transaction for special inodes like journal inode on last iput()
2452          * because that could violate lock ordering on umount
2453          */
2454         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2455                 return 0;
2456
2457         /*
2458          * If the filesystem has aborted, it is read-only, so return
2459          * right away instead of dumping stack traces later on that
2460          * will obscure the real source of the problem.  We test
2461          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2462          * the latter could be true if the filesystem is mounted
2463          * read-only, and in that case, ext4_da_writepages should
2464          * *never* be called, so if that ever happens, we would want
2465          * the stack trace.
2466          */
2467         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2468                 return -EROFS;
2469
2470         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2471                 range_whole = 1;
2472
2473         range_cyclic = wbc->range_cyclic;
2474         if (wbc->range_cyclic) {
2475                 index = mapping->writeback_index;
2476                 if (index)
2477                         cycled = 0;
2478                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2479                 wbc->range_end  = LLONG_MAX;
2480                 wbc->range_cyclic = 0;
2481                 end = -1;
2482         } else {
2483                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2484                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2485         }
2486
2487         /*
2488          * This works around two forms of stupidity.  The first is in
2489          * the writeback code, which caps the maximum number of pages
2490          * written to be 1024 pages.  This is wrong on multiple
2491          * levels; different architectues have a different page size,
2492          * which changes the maximum amount of data which gets
2493          * written.  Secondly, 4 megabytes is way too small.  XFS
2494          * forces this value to be 16 megabytes by multiplying
2495          * nr_to_write parameter by four, and then relies on its
2496          * allocator to allocate larger extents to make them
2497          * contiguous.  Unfortunately this brings us to the second
2498          * stupidity, which is that ext4's mballoc code only allocates
2499          * at most 2048 blocks.  So we force contiguous writes up to
2500          * the number of dirty blocks in the inode, or
2501          * sbi->max_writeback_mb_bump whichever is smaller.
2502          */
2503         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2504         if (!range_cyclic && range_whole) {
2505                 if (wbc->nr_to_write == LONG_MAX)
2506                         desired_nr_to_write = wbc->nr_to_write;
2507                 else
2508                         desired_nr_to_write = wbc->nr_to_write * 8;
2509         } else
2510                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2511                                                            max_pages);
2512         if (desired_nr_to_write > max_pages)
2513                 desired_nr_to_write = max_pages;
2514
2515         if (wbc->nr_to_write < desired_nr_to_write) {
2516                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2517                 wbc->nr_to_write = desired_nr_to_write;
2518         }
2519
2520 retry:
2521         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2522                 tag_pages_for_writeback(mapping, index, end);
2523
2524         blk_start_plug(&plug);
2525         while (!ret && wbc->nr_to_write > 0) {
2526
2527                 /*
2528                  * we  insert one extent at a time. So we need
2529                  * credit needed for single extent allocation.
2530                  * journalled mode is currently not supported
2531                  * by delalloc
2532                  */
2533                 BUG_ON(ext4_should_journal_data(inode));
2534                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2535
2536                 /* start a new transaction*/
2537                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2538                                             needed_blocks);
2539                 if (IS_ERR(handle)) {
2540                         ret = PTR_ERR(handle);
2541                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2542                                "%ld pages, ino %lu; err %d", __func__,
2543                                 wbc->nr_to_write, inode->i_ino, ret);
2544                         blk_finish_plug(&plug);
2545                         goto out_writepages;
2546                 }
2547
2548                 /*
2549                  * Now call write_cache_pages_da() to find the next
2550                  * contiguous region of logical blocks that need
2551                  * blocks to be allocated by ext4 and submit them.
2552                  */
2553                 ret = write_cache_pages_da(handle, mapping,
2554                                            wbc, &mpd, &done_index);
2555                 /*
2556                  * If we have a contiguous extent of pages and we
2557                  * haven't done the I/O yet, map the blocks and submit
2558                  * them for I/O.
2559                  */
2560                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2561                         mpage_da_map_and_submit(&mpd);
2562                         ret = MPAGE_DA_EXTENT_TAIL;
2563                 }
2564                 trace_ext4_da_write_pages(inode, &mpd);
2565                 wbc->nr_to_write -= mpd.pages_written;
2566
2567                 ext4_journal_stop(handle);
2568
2569                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2570                         /* commit the transaction which would
2571                          * free blocks released in the transaction
2572                          * and try again
2573                          */
2574                         jbd2_journal_force_commit_nested(sbi->s_journal);
2575                         ret = 0;
2576                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2577                         /*
2578                          * Got one extent now try with rest of the pages.
2579                          * If mpd.retval is set -EIO, journal is aborted.
2580                          * So we don't need to write any more.
2581                          */
2582                         pages_written += mpd.pages_written;
2583                         ret = mpd.retval;
2584                         io_done = 1;
2585                 } else if (wbc->nr_to_write)
2586                         /*
2587                          * There is no more writeout needed
2588                          * or we requested for a noblocking writeout
2589                          * and we found the device congested
2590                          */
2591                         break;
2592         }
2593         blk_finish_plug(&plug);
2594         if (!io_done && !cycled) {
2595                 cycled = 1;
2596                 index = 0;
2597                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2598                 wbc->range_end  = mapping->writeback_index - 1;
2599                 goto retry;
2600         }
2601
2602         /* Update index */
2603         wbc->range_cyclic = range_cyclic;
2604         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2605                 /*
2606                  * set the writeback_index so that range_cyclic
2607                  * mode will write it back later
2608                  */
2609                 mapping->writeback_index = done_index;
2610
2611 out_writepages:
2612         wbc->nr_to_write -= nr_to_writebump;
2613         wbc->range_start = range_start;
2614         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2615         return ret;
2616 }
2617
2618 static int ext4_nonda_switch(struct super_block *sb)
2619 {
2620         s64 free_clusters, dirty_clusters;
2621         struct ext4_sb_info *sbi = EXT4_SB(sb);
2622
2623         /*
2624          * switch to non delalloc mode if we are running low
2625          * on free block. The free block accounting via percpu
2626          * counters can get slightly wrong with percpu_counter_batch getting
2627          * accumulated on each CPU without updating global counters
2628          * Delalloc need an accurate free block accounting. So switch
2629          * to non delalloc when we are near to error range.
2630          */
2631         free_clusters =
2632                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2633         dirty_clusters =
2634                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2635         /*
2636          * Start pushing delalloc when 1/2 of free blocks are dirty.
2637          */
2638         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2639                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2640
2641         if (2 * free_clusters < 3 * dirty_clusters ||
2642             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2643                 /*
2644                  * free block count is less than 150% of dirty blocks
2645                  * or free blocks is less than watermark
2646                  */
2647                 return 1;
2648         }
2649         return 0;
2650 }
2651
2652 /* We always reserve for an inode update; the superblock could be there too */
2653 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2654 {
2655         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2656                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2657                 return 1;
2658
2659         if (pos + len <= 0x7fffffffULL)
2660                 return 1;
2661
2662         /* We might need to update the superblock to set LARGE_FILE */
2663         return 2;
2664 }
2665
2666 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2667                                loff_t pos, unsigned len, unsigned flags,
2668                                struct page **pagep, void **fsdata)
2669 {
2670         int ret, retries = 0;
2671         struct page *page;
2672         pgoff_t index;
2673         struct inode *inode = mapping->host;
2674         handle_t *handle;
2675
2676         index = pos >> PAGE_CACHE_SHIFT;
2677
2678         if (ext4_nonda_switch(inode->i_sb)) {
2679                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2680                 return ext4_write_begin(file, mapping, pos,
2681                                         len, flags, pagep, fsdata);
2682         }
2683         *fsdata = (void *)0;
2684         trace_ext4_da_write_begin(inode, pos, len, flags);
2685
2686         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2687                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2688                                                       pos, len, flags,
2689                                                       pagep, fsdata);
2690                 if (ret < 0)
2691                         return ret;
2692                 if (ret == 1)
2693                         return 0;
2694         }
2695
2696         /*
2697          * grab_cache_page_write_begin() can take a long time if the
2698          * system is thrashing due to memory pressure, or if the page
2699          * is being written back.  So grab it first before we start
2700          * the transaction handle.  This also allows us to allocate
2701          * the page (if needed) without using GFP_NOFS.
2702          */
2703 retry_grab:
2704         page = grab_cache_page_write_begin(mapping, index, flags);
2705         if (!page)
2706                 return -ENOMEM;
2707         unlock_page(page);
2708
2709         /*
2710          * With delayed allocation, we don't log the i_disksize update
2711          * if there is delayed block allocation. But we still need
2712          * to journalling the i_disksize update if writes to the end
2713          * of file which has an already mapped buffer.
2714          */
2715 retry_journal:
2716         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2717                                 ext4_da_write_credits(inode, pos, len));
2718         if (IS_ERR(handle)) {
2719                 page_cache_release(page);
2720                 return PTR_ERR(handle);
2721         }
2722
2723         lock_page(page);
2724         if (page->mapping != mapping) {
2725                 /* The page got truncated from under us */
2726                 unlock_page(page);
2727                 page_cache_release(page);
2728                 ext4_journal_stop(handle);
2729                 goto retry_grab;
2730         }
2731         /* In case writeback began while the page was unlocked */
2732         wait_on_page_writeback(page);
2733
2734         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2735         if (ret < 0) {
2736                 unlock_page(page);
2737                 ext4_journal_stop(handle);
2738                 /*
2739                  * block_write_begin may have instantiated a few blocks
2740                  * outside i_size.  Trim these off again. Don't need
2741                  * i_size_read because we hold i_mutex.
2742                  */
2743                 if (pos + len > inode->i_size)
2744                         ext4_truncate_failed_write(inode);
2745
2746                 if (ret == -ENOSPC &&
2747                     ext4_should_retry_alloc(inode->i_sb, &retries))
2748                         goto retry_journal;
2749
2750                 page_cache_release(page);
2751                 return ret;
2752         }
2753
2754         *pagep = page;
2755         return ret;
2756 }
2757
2758 /*
2759  * Check if we should update i_disksize
2760  * when write to the end of file but not require block allocation
2761  */
2762 static int ext4_da_should_update_i_disksize(struct page *page,
2763                                             unsigned long offset)
2764 {
2765         struct buffer_head *bh;
2766         struct inode *inode = page->mapping->host;
2767         unsigned int idx;
2768         int i;
2769
2770         bh = page_buffers(page);
2771         idx = offset >> inode->i_blkbits;
2772
2773         for (i = 0; i < idx; i++)
2774                 bh = bh->b_this_page;
2775
2776         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2777                 return 0;
2778         return 1;
2779 }
2780
2781 static int ext4_da_write_end(struct file *file,
2782                              struct address_space *mapping,
2783                              loff_t pos, unsigned len, unsigned copied,
2784                              struct page *page, void *fsdata)
2785 {
2786         struct inode *inode = mapping->host;
2787         int ret = 0, ret2;
2788         handle_t *handle = ext4_journal_current_handle();
2789         loff_t new_i_size;
2790         unsigned long start, end;
2791         int write_mode = (int)(unsigned long)fsdata;
2792
2793         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2794                 return ext4_write_end(file, mapping, pos,
2795                                       len, copied, page, fsdata);
2796
2797         trace_ext4_da_write_end(inode, pos, len, copied);
2798         start = pos & (PAGE_CACHE_SIZE - 1);
2799         end = start + copied - 1;
2800
2801         /*
2802          * generic_write_end() will run mark_inode_dirty() if i_size
2803          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2804          * into that.
2805          */
2806         new_i_size = pos + copied;
2807         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2808                 if (ext4_has_inline_data(inode) ||
2809                     ext4_da_should_update_i_disksize(page, end)) {
2810                         down_write(&EXT4_I(inode)->i_data_sem);
2811                         if (new_i_size > EXT4_I(inode)->i_disksize)
2812                                 EXT4_I(inode)->i_disksize = new_i_size;
2813                         up_write(&EXT4_I(inode)->i_data_sem);
2814                         /* We need to mark inode dirty even if
2815                          * new_i_size is less that inode->i_size
2816                          * bu greater than i_disksize.(hint delalloc)
2817                          */
2818                         ext4_mark_inode_dirty(handle, inode);
2819                 }
2820         }
2821
2822         if (write_mode != CONVERT_INLINE_DATA &&
2823             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2824             ext4_has_inline_data(inode))
2825                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2826                                                      page);
2827         else
2828                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2829                                                         page, fsdata);
2830
2831         copied = ret2;
2832         if (ret2 < 0)
2833                 ret = ret2;
2834         ret2 = ext4_journal_stop(handle);
2835         if (!ret)
2836                 ret = ret2;
2837
2838         return ret ? ret : copied;
2839 }
2840
2841 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2842 {
2843         /*
2844          * Drop reserved blocks
2845          */
2846         BUG_ON(!PageLocked(page));
2847         if (!page_has_buffers(page))
2848                 goto out;
2849
2850         ext4_da_page_release_reservation(page, offset);
2851
2852 out:
2853         ext4_invalidatepage(page, offset);
2854
2855         return;
2856 }
2857
2858 /*
2859  * Force all delayed allocation blocks to be allocated for a given inode.
2860  */
2861 int ext4_alloc_da_blocks(struct inode *inode)
2862 {
2863         trace_ext4_alloc_da_blocks(inode);
2864
2865         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2866             !EXT4_I(inode)->i_reserved_meta_blocks)
2867                 return 0;
2868
2869         /*
2870          * We do something simple for now.  The filemap_flush() will
2871          * also start triggering a write of the data blocks, which is
2872          * not strictly speaking necessary (and for users of
2873          * laptop_mode, not even desirable).  However, to do otherwise
2874          * would require replicating code paths in:
2875          *
2876          * ext4_da_writepages() ->
2877          *    write_cache_pages() ---> (via passed in callback function)
2878          *        __mpage_da_writepage() -->
2879          *           mpage_add_bh_to_extent()
2880          *           mpage_da_map_blocks()
2881          *
2882          * The problem is that write_cache_pages(), located in
2883          * mm/page-writeback.c, marks pages clean in preparation for
2884          * doing I/O, which is not desirable if we're not planning on
2885          * doing I/O at all.
2886          *
2887          * We could call write_cache_pages(), and then redirty all of
2888          * the pages by calling redirty_page_for_writepage() but that
2889          * would be ugly in the extreme.  So instead we would need to
2890          * replicate parts of the code in the above functions,
2891          * simplifying them because we wouldn't actually intend to
2892          * write out the pages, but rather only collect contiguous
2893          * logical block extents, call the multi-block allocator, and
2894          * then update the buffer heads with the block allocations.
2895          *
2896          * For now, though, we'll cheat by calling filemap_flush(),
2897          * which will map the blocks, and start the I/O, but not
2898          * actually wait for the I/O to complete.
2899          */
2900         return filemap_flush(inode->i_mapping);
2901 }
2902
2903 /*
2904  * bmap() is special.  It gets used by applications such as lilo and by
2905  * the swapper to find the on-disk block of a specific piece of data.
2906  *
2907  * Naturally, this is dangerous if the block concerned is still in the
2908  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2909  * filesystem and enables swap, then they may get a nasty shock when the
2910  * data getting swapped to that swapfile suddenly gets overwritten by
2911  * the original zero's written out previously to the journal and
2912  * awaiting writeback in the kernel's buffer cache.
2913  *
2914  * So, if we see any bmap calls here on a modified, data-journaled file,
2915  * take extra steps to flush any blocks which might be in the cache.
2916  */
2917 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2918 {
2919         struct inode *inode = mapping->host;
2920         journal_t *journal;
2921         int err;
2922
2923         /*
2924          * We can get here for an inline file via the FIBMAP ioctl
2925          */
2926         if (ext4_has_inline_data(inode))
2927                 return 0;
2928
2929         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2930                         test_opt(inode->i_sb, DELALLOC)) {
2931                 /*
2932                  * With delalloc we want to sync the file
2933                  * so that we can make sure we allocate
2934                  * blocks for file
2935                  */
2936                 filemap_write_and_wait(mapping);
2937         }
2938
2939         if (EXT4_JOURNAL(inode) &&
2940             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2941                 /*
2942                  * This is a REALLY heavyweight approach, but the use of
2943                  * bmap on dirty files is expected to be extremely rare:
2944                  * only if we run lilo or swapon on a freshly made file
2945                  * do we expect this to happen.
2946                  *
2947                  * (bmap requires CAP_SYS_RAWIO so this does not
2948                  * represent an unprivileged user DOS attack --- we'd be
2949                  * in trouble if mortal users could trigger this path at
2950                  * will.)
2951                  *
2952                  * NB. EXT4_STATE_JDATA is not set on files other than
2953                  * regular files.  If somebody wants to bmap a directory
2954                  * or symlink and gets confused because the buffer
2955                  * hasn't yet been flushed to disk, they deserve
2956                  * everything they get.
2957                  */
2958
2959                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2960                 journal = EXT4_JOURNAL(inode);
2961                 jbd2_journal_lock_updates(journal);
2962                 err = jbd2_journal_flush(journal);
2963                 jbd2_journal_unlock_updates(journal);
2964
2965                 if (err)
2966                         return 0;
2967         }
2968
2969         return generic_block_bmap(mapping, block, ext4_get_block);
2970 }
2971
2972 static int ext4_readpage(struct file *file, struct page *page)
2973 {
2974         int ret = -EAGAIN;
2975         struct inode *inode = page->mapping->host;
2976
2977         trace_ext4_readpage(page);
2978
2979         if (ext4_has_inline_data(inode))
2980                 ret = ext4_readpage_inline(inode, page);
2981
2982         if (ret == -EAGAIN)
2983                 return mpage_readpage(page, ext4_get_block);
2984
2985         return ret;
2986 }
2987
2988 static int
2989 ext4_readpages(struct file *file, struct address_space *mapping,
2990                 struct list_head *pages, unsigned nr_pages)
2991 {
2992         struct inode *inode = mapping->host;
2993
2994         /* If the file has inline data, no need to do readpages. */
2995         if (ext4_has_inline_data(inode))
2996                 return 0;
2997
2998         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2999 }
3000
3001 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3002 {
3003         trace_ext4_invalidatepage(page, offset);
3004
3005         /* No journalling happens on data buffers when this function is used */
3006         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3007
3008         block_invalidatepage(page, offset);
3009 }
3010
3011 static int __ext4_journalled_invalidatepage(struct page *page,
3012                                             unsigned long offset)
3013 {
3014         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3015
3016         trace_ext4_journalled_invalidatepage(page, offset);
3017
3018         /*
3019          * If it's a full truncate we just forget about the pending dirtying
3020          */
3021         if (offset == 0)
3022                 ClearPageChecked(page);
3023
3024         return jbd2_journal_invalidatepage(journal, page, offset);
3025 }
3026
3027 /* Wrapper for aops... */
3028 static void ext4_journalled_invalidatepage(struct page *page,
3029                                            unsigned long offset)
3030 {
3031         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3032 }
3033
3034 static int ext4_releasepage(struct page *page, gfp_t wait)
3035 {
3036         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3037
3038         trace_ext4_releasepage(page);
3039
3040         /* Page has dirty journalled data -> cannot release */
3041         if (PageChecked(page))
3042                 return 0;
3043         if (journal)
3044                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3045         else
3046                 return try_to_free_buffers(page);
3047 }
3048
3049 /*
3050  * ext4_get_block used when preparing for a DIO write or buffer write.
3051  * We allocate an uinitialized extent if blocks haven't been allocated.
3052  * The extent will be converted to initialized after the IO is complete.
3053  */
3054 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3055                    struct buffer_head *bh_result, int create)
3056 {
3057         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3058                    inode->i_ino, create);
3059         return _ext4_get_block(inode, iblock, bh_result,
3060                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3061 }
3062
3063 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3064                    struct buffer_head *bh_result, int create)
3065 {
3066         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3067                    inode->i_ino, create);
3068         return _ext4_get_block(inode, iblock, bh_result,
3069                                EXT4_GET_BLOCKS_NO_LOCK);
3070 }
3071
3072 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3073                             ssize_t size, void *private, int ret,
3074                             bool is_async)
3075 {
3076         struct inode *inode = file_inode(iocb->ki_filp);
3077         ext4_io_end_t *io_end = iocb->private;
3078
3079         /* if not async direct IO or dio with 0 bytes write, just return */
3080         if (!io_end || !size)
3081                 goto out;
3082
3083         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3084                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3085                   iocb->private, io_end->inode->i_ino, iocb, offset,
3086                   size);
3087
3088         iocb->private = NULL;
3089
3090         /* if not aio dio with unwritten extents, just free io and return */
3091         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3092                 ext4_free_io_end(io_end);
3093 out:
3094                 inode_dio_done(inode);
3095                 if (is_async)
3096                         aio_complete(iocb, ret, 0);
3097                 return;
3098         }
3099
3100         io_end->offset = offset;
3101         io_end->size = size;
3102         if (is_async) {
3103                 io_end->iocb = iocb;
3104                 io_end->result = ret;
3105         }
3106
3107         ext4_add_complete_io(io_end);
3108 }
3109
3110 /*
3111  * For ext4 extent files, ext4 will do direct-io write to holes,
3112  * preallocated extents, and those write extend the file, no need to
3113  * fall back to buffered IO.
3114  *
3115  * For holes, we fallocate those blocks, mark them as uninitialized
3116  * If those blocks were preallocated, we mark sure they are split, but
3117  * still keep the range to write as uninitialized.
3118  *
3119  * The unwritten extents will be converted to written when DIO is completed.
3120  * For async direct IO, since the IO may still pending when return, we
3121  * set up an end_io call back function, which will do the conversion
3122  * when async direct IO completed.
3123  *
3124  * If the O_DIRECT write will extend the file then add this inode to the
3125  * orphan list.  So recovery will truncate it back to the original size
3126  * if the machine crashes during the write.
3127  *
3128  */
3129 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3130                               const struct iovec *iov, loff_t offset,
3131                               unsigned long nr_segs)
3132 {
3133         struct file *file = iocb->ki_filp;
3134         struct inode *inode = file->f_mapping->host;
3135         ssize_t ret;
3136         size_t count = iov_length(iov, nr_segs);
3137         int overwrite = 0;
3138         get_block_t *get_block_func = NULL;
3139         int dio_flags = 0;
3140         loff_t final_size = offset + count;
3141
3142         /* Use the old path for reads and writes beyond i_size. */
3143         if (rw != WRITE || final_size > inode->i_size)
3144                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3145
3146         BUG_ON(iocb->private == NULL);
3147
3148         /* If we do a overwrite dio, i_mutex locking can be released */
3149         overwrite = *((int *)iocb->private);
3150
3151         if (overwrite) {
3152                 atomic_inc(&inode->i_dio_count);
3153                 down_read(&EXT4_I(inode)->i_data_sem);
3154                 mutex_unlock(&inode->i_mutex);
3155         }
3156
3157         /*
3158          * We could direct write to holes and fallocate.
3159          *
3160          * Allocated blocks to fill the hole are marked as
3161          * uninitialized to prevent parallel buffered read to expose
3162          * the stale data before DIO complete the data IO.
3163          *
3164          * As to previously fallocated extents, ext4 get_block will
3165          * just simply mark the buffer mapped but still keep the
3166          * extents uninitialized.
3167          *
3168          * For non AIO case, we will convert those unwritten extents
3169          * to written after return back from blockdev_direct_IO.
3170          *
3171          * For async DIO, the conversion needs to be deferred when the
3172          * IO is completed. The ext4 end_io callback function will be
3173          * called to take care of the conversion work.  Here for async
3174          * case, we allocate an io_end structure to hook to the iocb.
3175          */
3176         iocb->private = NULL;
3177         ext4_inode_aio_set(inode, NULL);
3178         if (!is_sync_kiocb(iocb)) {
3179                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3180                 if (!io_end) {
3181                         ret = -ENOMEM;
3182                         goto retake_lock;
3183                 }
3184                 io_end->flag |= EXT4_IO_END_DIRECT;
3185                 iocb->private = io_end;
3186                 /*
3187                  * we save the io structure for current async direct
3188                  * IO, so that later ext4_map_blocks() could flag the
3189                  * io structure whether there is a unwritten extents
3190                  * needs to be converted when IO is completed.
3191                  */
3192                 ext4_inode_aio_set(inode, io_end);
3193         }
3194
3195         if (overwrite) {
3196                 get_block_func = ext4_get_block_write_nolock;
3197         } else {
3198                 get_block_func = ext4_get_block_write;
3199                 dio_flags = DIO_LOCKING;
3200         }
3201         ret = __blockdev_direct_IO(rw, iocb, inode,
3202                                    inode->i_sb->s_bdev, iov,
3203                                    offset, nr_segs,
3204                                    get_block_func,
3205                                    ext4_end_io_dio,
3206                                    NULL,
3207                                    dio_flags);
3208
3209         if (iocb->private)
3210                 ext4_inode_aio_set(inode, NULL);
3211         /*
3212          * The io_end structure takes a reference to the inode, that
3213          * structure needs to be destroyed and the reference to the
3214          * inode need to be dropped, when IO is complete, even with 0
3215          * byte write, or failed.
3216          *
3217          * In the successful AIO DIO case, the io_end structure will
3218          * be destroyed and the reference to the inode will be dropped
3219          * after the end_io call back function is called.
3220          *
3221          * In the case there is 0 byte write, or error case, since VFS
3222          * direct IO won't invoke the end_io call back function, we
3223          * need to free the end_io structure here.
3224          */
3225         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3226                 ext4_free_io_end(iocb->private);
3227                 iocb->private = NULL;
3228         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3229                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3230                 int err;
3231                 /*
3232                  * for non AIO case, since the IO is already
3233                  * completed, we could do the conversion right here
3234                  */
3235                 err = ext4_convert_unwritten_extents(inode,
3236                                                      offset, ret);
3237                 if (err < 0)
3238                         ret = err;
3239                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3240         }
3241
3242 retake_lock:
3243         /* take i_mutex locking again if we do a ovewrite dio */
3244         if (overwrite) {
3245                 inode_dio_done(inode);
3246                 up_read(&EXT4_I(inode)->i_data_sem);
3247                 mutex_lock(&inode->i_mutex);
3248         }
3249
3250         return ret;
3251 }
3252
3253 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3254                               const struct iovec *iov, loff_t offset,
3255                               unsigned long nr_segs)
3256 {
3257         struct file *file = iocb->ki_filp;
3258         struct inode *inode = file->f_mapping->host;
3259         ssize_t ret;
3260
3261         /*
3262          * If we are doing data journalling we don't support O_DIRECT
3263          */
3264         if (ext4_should_journal_data(inode))
3265                 return 0;
3266
3267         /* Let buffer I/O handle the inline data case. */
3268         if (ext4_has_inline_data(inode))
3269                 return 0;
3270
3271         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3272         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3273                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3274         else
3275                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3276         trace_ext4_direct_IO_exit(inode, offset,
3277                                 iov_length(iov, nr_segs), rw, ret);
3278         return ret;
3279 }
3280
3281 /*
3282  * Pages can be marked dirty completely asynchronously from ext4's journalling
3283  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3284  * much here because ->set_page_dirty is called under VFS locks.  The page is
3285  * not necessarily locked.
3286  *
3287  * We cannot just dirty the page and leave attached buffers clean, because the
3288  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3289  * or jbddirty because all the journalling code will explode.
3290  *
3291  * So what we do is to mark the page "pending dirty" and next time writepage
3292  * is called, propagate that into the buffers appropriately.
3293  */
3294 static int ext4_journalled_set_page_dirty(struct page *page)
3295 {
3296         SetPageChecked(page);
3297         return __set_page_dirty_nobuffers(page);
3298 }
3299
3300 static const struct address_space_operations ext4_aops = {
3301         .readpage               = ext4_readpage,
3302         .readpages              = ext4_readpages,
3303         .writepage              = ext4_writepage,
3304         .write_begin            = ext4_write_begin,
3305         .write_end              = ext4_write_end,
3306         .bmap                   = ext4_bmap,
3307         .invalidatepage         = ext4_invalidatepage,
3308         .releasepage            = ext4_releasepage,
3309         .direct_IO              = ext4_direct_IO,
3310         .migratepage            = buffer_migrate_page,
3311         .is_partially_uptodate  = block_is_partially_uptodate,
3312         .error_remove_page      = generic_error_remove_page,
3313 };
3314
3315 static const struct address_space_operations ext4_journalled_aops = {
3316         .readpage               = ext4_readpage,
3317         .readpages              = ext4_readpages,
3318         .writepage              = ext4_writepage,
3319         .write_begin            = ext4_write_begin,
3320         .write_end              = ext4_journalled_write_end,
3321         .set_page_dirty         = ext4_journalled_set_page_dirty,
3322         .bmap                   = ext4_bmap,
3323         .invalidatepage         = ext4_journalled_invalidatepage,
3324         .releasepage            = ext4_releasepage,
3325         .direct_IO              = ext4_direct_IO,
3326         .is_partially_uptodate  = block_is_partially_uptodate,
3327         .error_remove_page      = generic_error_remove_page,
3328 };
3329
3330 static const struct address_space_operations ext4_da_aops = {
3331         .readpage               = ext4_readpage,
3332         .readpages              = ext4_readpages,
3333         .writepage              = ext4_writepage,
3334         .writepages             = ext4_da_writepages,
3335         .write_begin            = ext4_da_write_begin,
3336         .write_end              = ext4_da_write_end,
3337         .bmap                   = ext4_bmap,
3338         .invalidatepage         = ext4_da_invalidatepage,
3339         .releasepage            = ext4_releasepage,
3340         .direct_IO              = ext4_direct_IO,
3341         .migratepage            = buffer_migrate_page,
3342         .is_partially_uptodate  = block_is_partially_uptodate,
3343         .error_remove_page      = generic_error_remove_page,
3344 };
3345
3346 void ext4_set_aops(struct inode *inode)
3347 {
3348         switch (ext4_inode_journal_mode(inode)) {
3349         case EXT4_INODE_ORDERED_DATA_MODE:
3350                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3351                 break;
3352         case EXT4_INODE_WRITEBACK_DATA_MODE:
3353                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3354                 break;
3355         case EXT4_INODE_JOURNAL_DATA_MODE:
3356                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3357                 return;
3358         default:
3359                 BUG();
3360         }
3361         if (test_opt(inode->i_sb, DELALLOC))
3362                 inode->i_mapping->a_ops = &ext4_da_aops;
3363         else
3364                 inode->i_mapping->a_ops = &ext4_aops;
3365 }
3366
3367
3368 /*
3369  * ext4_discard_partial_page_buffers()
3370  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3371  * This function finds and locks the page containing the offset
3372  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3373  * Calling functions that already have the page locked should call
3374  * ext4_discard_partial_page_buffers_no_lock directly.
3375  */
3376 int ext4_discard_partial_page_buffers(handle_t *handle,
3377                 struct address_space *mapping, loff_t from,
3378                 loff_t length, int flags)
3379 {
3380         struct inode *inode = mapping->host;
3381         struct page *page;
3382         int err = 0;
3383
3384         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3385                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3386         if (!page)
3387                 return -ENOMEM;
3388
3389         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3390                 from, length, flags);
3391
3392         unlock_page(page);
3393         page_cache_release(page);
3394         return err;
3395 }
3396
3397 /*
3398  * ext4_discard_partial_page_buffers_no_lock()
3399  * Zeros a page range of length 'length' starting from offset 'from'.
3400  * Buffer heads that correspond to the block aligned regions of the
3401  * zeroed range will be unmapped.  Unblock aligned regions
3402  * will have the corresponding buffer head mapped if needed so that
3403  * that region of the page can be updated with the partial zero out.
3404  *
3405  * This function assumes that the page has already been  locked.  The
3406  * The range to be discarded must be contained with in the given page.
3407  * If the specified range exceeds the end of the page it will be shortened
3408  * to the end of the page that corresponds to 'from'.  This function is
3409  * appropriate for updating a page and it buffer heads to be unmapped and
3410  * zeroed for blocks that have been either released, or are going to be
3411  * released.
3412  *
3413  * handle: The journal handle
3414  * inode:  The files inode
3415  * page:   A locked page that contains the offset "from"
3416  * from:   The starting byte offset (from the beginning of the file)
3417  *         to begin discarding
3418  * len:    The length of bytes to discard
3419  * flags:  Optional flags that may be used:
3420  *
3421  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3422  *         Only zero the regions of the page whose buffer heads
3423  *         have already been unmapped.  This flag is appropriate
3424  *         for updating the contents of a page whose blocks may
3425  *         have already been released, and we only want to zero
3426  *         out the regions that correspond to those released blocks.
3427  *
3428  * Returns zero on success or negative on failure.
3429  */
3430 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3431                 struct inode *inode, struct page *page, loff_t from,
3432                 loff_t length, int flags)
3433 {
3434         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3435         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3436         unsigned int blocksize, max, pos;
3437         ext4_lblk_t iblock;
3438         struct buffer_head *bh;
3439         int err = 0;
3440
3441         blocksize = inode->i_sb->s_blocksize;
3442         max = PAGE_CACHE_SIZE - offset;
3443
3444         if (index != page->index)
3445                 return -EINVAL;
3446
3447         /*
3448          * correct length if it does not fall between
3449          * 'from' and the end of the page
3450          */
3451         if (length > max || length < 0)
3452                 length = max;
3453
3454         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3455
3456         if (!page_has_buffers(page))
3457                 create_empty_buffers(page, blocksize, 0);
3458
3459         /* Find the buffer that contains "offset" */
3460         bh = page_buffers(page);
3461         pos = blocksize;
3462         while (offset >= pos) {
3463                 bh = bh->b_this_page;
3464                 iblock++;
3465                 pos += blocksize;
3466         }
3467
3468         pos = offset;
3469         while (pos < offset + length) {
3470                 unsigned int end_of_block, range_to_discard;
3471
3472                 err = 0;
3473
3474                 /* The length of space left to zero and unmap */
3475                 range_to_discard = offset + length - pos;
3476
3477                 /* The length of space until the end of the block */
3478                 end_of_block = blocksize - (pos & (blocksize-1));
3479
3480                 /*
3481                  * Do not unmap or zero past end of block
3482                  * for this buffer head
3483                  */
3484                 if (range_to_discard > end_of_block)
3485                         range_to_discard = end_of_block;
3486
3487
3488                 /*
3489                  * Skip this buffer head if we are only zeroing unampped
3490                  * regions of the page
3491                  */
3492                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3493                         buffer_mapped(bh))
3494                                 goto next;
3495
3496                 /* If the range is block aligned, unmap */
3497                 if (range_to_discard == blocksize) {
3498                         clear_buffer_dirty(bh);
3499                         bh->b_bdev = NULL;
3500                         clear_buffer_mapped(bh);
3501                         clear_buffer_req(bh);
3502                         clear_buffer_new(bh);
3503                         clear_buffer_delay(bh);
3504                         clear_buffer_unwritten(bh);
3505                         clear_buffer_uptodate(bh);
3506                         zero_user(page, pos, range_to_discard);
3507                         BUFFER_TRACE(bh, "Buffer discarded");
3508                         goto next;
3509                 }
3510
3511                 /*
3512                  * If this block is not completely contained in the range
3513                  * to be discarded, then it is not going to be released. Because
3514                  * we need to keep this block, we need to make sure this part
3515                  * of the page is uptodate before we modify it by writeing
3516                  * partial zeros on it.
3517                  */
3518                 if (!buffer_mapped(bh)) {
3519                         /*
3520                          * Buffer head must be mapped before we can read
3521                          * from the block
3522                          */
3523                         BUFFER_TRACE(bh, "unmapped");
3524                         ext4_get_block(inode, iblock, bh, 0);
3525                         /* unmapped? It's a hole - nothing to do */
3526                         if (!buffer_mapped(bh)) {
3527                                 BUFFER_TRACE(bh, "still unmapped");
3528                                 goto next;
3529                         }
3530                 }
3531
3532                 /* Ok, it's mapped. Make sure it's up-to-date */
3533                 if (PageUptodate(page))
3534                         set_buffer_uptodate(bh);
3535
3536                 if (!buffer_uptodate(bh)) {
3537                         err = -EIO;
3538                         ll_rw_block(READ, 1, &bh);
3539                         wait_on_buffer(bh);
3540                         /* Uhhuh. Read error. Complain and punt.*/
3541                         if (!buffer_uptodate(bh))
3542                                 goto next;
3543                 }
3544
3545                 if (ext4_should_journal_data(inode)) {
3546                         BUFFER_TRACE(bh, "get write access");
3547                         err = ext4_journal_get_write_access(handle, bh);
3548                         if (err)
3549                                 goto next;
3550                 }
3551
3552                 zero_user(page, pos, range_to_discard);
3553
3554                 err = 0;
3555                 if (ext4_should_journal_data(inode)) {
3556                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3557                 } else
3558                         mark_buffer_dirty(bh);
3559
3560                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3561 next:
3562                 bh = bh->b_this_page;
3563                 iblock++;
3564                 pos += range_to_discard;
3565         }
3566
3567         return err;
3568 }
3569
3570 int ext4_can_truncate(struct inode *inode)
3571 {
3572         if (S_ISREG(inode->i_mode))
3573                 return 1;
3574         if (S_ISDIR(inode->i_mode))
3575                 return 1;
3576         if (S_ISLNK(inode->i_mode))
3577                 return !ext4_inode_is_fast_symlink(inode);
3578         return 0;
3579 }
3580
3581 /*
3582  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3583  * associated with the given offset and length
3584  *
3585  * @inode:  File inode
3586  * @offset: The offset where the hole will begin
3587  * @len:    The length of the hole
3588  *
3589  * Returns: 0 on success or negative on failure
3590  */
3591
3592 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3593 {
3594         struct inode *inode = file_inode(file);
3595         struct super_block *sb = inode->i_sb;
3596         ext4_lblk_t first_block, stop_block;
3597         struct address_space *mapping = inode->i_mapping;
3598         loff_t first_page, last_page, page_len;
3599         loff_t first_page_offset, last_page_offset;
3600         handle_t *handle;
3601         unsigned int credits;
3602         int ret = 0;
3603
3604         if (!S_ISREG(inode->i_mode))
3605                 return -EOPNOTSUPP;
3606
3607         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3608                 /* TODO: Add support for bigalloc file systems */
3609                 return -EOPNOTSUPP;
3610         }
3611
3612         trace_ext4_punch_hole(inode, offset, length);
3613
3614         /*
3615          * Write out all dirty pages to avoid race conditions
3616          * Then release them.
3617          */
3618         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3619                 ret = filemap_write_and_wait_range(mapping, offset,
3620                                                    offset + length - 1);
3621                 if (ret)
3622                         return ret;
3623         }
3624
3625         mutex_lock(&inode->i_mutex);
3626         /* It's not possible punch hole on append only file */
3627         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3628                 ret = -EPERM;
3629                 goto out_mutex;
3630         }
3631         if (IS_SWAPFILE(inode)) {
3632                 ret = -ETXTBSY;
3633                 goto out_mutex;
3634         }
3635
3636         /* No need to punch hole beyond i_size */
3637         if (offset >= inode->i_size)
3638                 goto out_mutex;
3639
3640         /*
3641          * If the hole extends beyond i_size, set the hole
3642          * to end after the page that contains i_size
3643          */
3644         if (offset + length > inode->i_size) {
3645                 length = inode->i_size +
3646                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3647                    offset;
3648         }
3649
3650         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3651         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3652
3653         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3654         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3655
3656         /* Now release the pages */
3657         if (last_page_offset > first_page_offset) {
3658                 truncate_pagecache_range(inode, first_page_offset,
3659                                          last_page_offset - 1);
3660         }
3661
3662         /* Wait all existing dio workers, newcomers will block on i_mutex */
3663         ext4_inode_block_unlocked_dio(inode);
3664         ret = ext4_flush_unwritten_io(inode);
3665         if (ret)
3666                 goto out_dio;
3667         inode_dio_wait(inode);
3668
3669         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3670                 credits = ext4_writepage_trans_blocks(inode);
3671         else
3672                 credits = ext4_blocks_for_truncate(inode);
3673         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3674         if (IS_ERR(handle)) {
3675                 ret = PTR_ERR(handle);
3676                 ext4_std_error(sb, ret);
3677                 goto out_dio;
3678         }
3679
3680         /*
3681          * Now we need to zero out the non-page-aligned data in the
3682          * pages at the start and tail of the hole, and unmap the
3683          * buffer heads for the block aligned regions of the page that
3684          * were completely zeroed.
3685          */
3686         if (first_page > last_page) {
3687                 /*
3688                  * If the file space being truncated is contained
3689                  * within a page just zero out and unmap the middle of
3690                  * that page
3691                  */
3692                 ret = ext4_discard_partial_page_buffers(handle,
3693                         mapping, offset, length, 0);
3694
3695                 if (ret)
3696                         goto out_stop;
3697         } else {
3698                 /*
3699                  * zero out and unmap the partial page that contains
3700                  * the start of the hole
3701                  */
3702                 page_len = first_page_offset - offset;
3703                 if (page_len > 0) {
3704                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3705                                                 offset, page_len, 0);
3706                         if (ret)
3707                                 goto out_stop;
3708                 }
3709
3710                 /*
3711                  * zero out and unmap the partial page that contains
3712                  * the end of the hole
3713                  */
3714                 page_len = offset + length - last_page_offset;
3715                 if (page_len > 0) {
3716                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3717                                         last_page_offset, page_len, 0);
3718                         if (ret)
3719                                 goto out_stop;
3720                 }
3721         }
3722
3723         /*
3724          * If i_size is contained in the last page, we need to
3725          * unmap and zero the partial page after i_size
3726          */
3727         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3728            inode->i_size % PAGE_CACHE_SIZE != 0) {
3729                 page_len = PAGE_CACHE_SIZE -
3730                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3731
3732                 if (page_len > 0) {
3733                         ret = ext4_discard_partial_page_buffers(handle,
3734                                         mapping, inode->i_size, page_len, 0);
3735
3736                         if (ret)
3737                                 goto out_stop;
3738                 }
3739         }
3740
3741         first_block = (offset + sb->s_blocksize - 1) >>
3742                 EXT4_BLOCK_SIZE_BITS(sb);
3743         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3744
3745         /* If there are no blocks to remove, return now */
3746         if (first_block >= stop_block)
3747                 goto out_stop;
3748
3749         down_write(&EXT4_I(inode)->i_data_sem);
3750         ext4_discard_preallocations(inode);
3751
3752         ret = ext4_es_remove_extent(inode, first_block,
3753                                     stop_block - first_block);
3754         if (ret) {
3755                 up_write(&EXT4_I(inode)->i_data_sem);
3756                 goto out_stop;
3757         }
3758
3759         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3760                 ret = ext4_ext_remove_space(inode, first_block,
3761                                             stop_block - 1);
3762         else
3763                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3764                                             stop_block);
3765
3766         ext4_discard_preallocations(inode);
3767         up_write(&EXT4_I(inode)->i_data_sem);
3768         if (IS_SYNC(inode))
3769                 ext4_handle_sync(handle);
3770         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3771         ext4_mark_inode_dirty(handle, inode);
3772 out_stop:
3773         ext4_journal_stop(handle);
3774 out_dio:
3775         ext4_inode_resume_unlocked_dio(inode);
3776 out_mutex:
3777         mutex_unlock(&inode->i_mutex);
3778         return ret;
3779 }
3780
3781 /*
3782  * ext4_truncate()
3783  *
3784  * We block out ext4_get_block() block instantiations across the entire
3785  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3786  * simultaneously on behalf of the same inode.
3787  *
3788  * As we work through the truncate and commit bits of it to the journal there
3789  * is one core, guiding principle: the file's tree must always be consistent on
3790  * disk.  We must be able to restart the truncate after a crash.
3791  *
3792  * The file's tree may be transiently inconsistent in memory (although it
3793  * probably isn't), but whenever we close off and commit a journal transaction,
3794  * the contents of (the filesystem + the journal) must be consistent and
3795  * restartable.  It's pretty simple, really: bottom up, right to left (although
3796  * left-to-right works OK too).
3797  *
3798  * Note that at recovery time, journal replay occurs *before* the restart of
3799  * truncate against the orphan inode list.
3800  *
3801  * The committed inode has the new, desired i_size (which is the same as
3802  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3803  * that this inode's truncate did not complete and it will again call
3804  * ext4_truncate() to have another go.  So there will be instantiated blocks
3805  * to the right of the truncation point in a crashed ext4 filesystem.  But
3806  * that's fine - as long as they are linked from the inode, the post-crash
3807  * ext4_truncate() run will find them and release them.
3808  */
3809 void ext4_truncate(struct inode *inode)
3810 {
3811         struct ext4_inode_info *ei = EXT4_I(inode);
3812         unsigned int credits;
3813         handle_t *handle;
3814         struct address_space *mapping = inode->i_mapping;
3815         loff_t page_len;
3816
3817         /*
3818          * There is a possibility that we're either freeing the inode
3819          * or it completely new indode. In those cases we might not
3820          * have i_mutex locked because it's not necessary.
3821          */
3822         if (!(inode->i_state & (I_NEW|I_FREEING)))
3823                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3824         trace_ext4_truncate_enter(inode);
3825
3826         if (!ext4_can_truncate(inode))
3827                 return;
3828
3829         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3830
3831         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3832                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3833
3834         if (ext4_has_inline_data(inode)) {
3835                 int has_inline = 1;
3836
3837                 ext4_inline_data_truncate(inode, &has_inline);
3838                 if (has_inline)
3839                         return;
3840         }
3841
3842         /*
3843          * finish any pending end_io work so we won't run the risk of
3844          * converting any truncated blocks to initialized later
3845          */
3846         ext4_flush_unwritten_io(inode);
3847
3848         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3849                 credits = ext4_writepage_trans_blocks(inode);
3850         else
3851                 credits = ext4_blocks_for_truncate(inode);
3852
3853         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3854         if (IS_ERR(handle)) {
3855                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3856                 return;
3857         }
3858
3859         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3860                 page_len = PAGE_CACHE_SIZE -
3861                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3862
3863                 if (ext4_discard_partial_page_buffers(handle,
3864                                 mapping, inode->i_size, page_len, 0))
3865                         goto out_stop;
3866         }
3867
3868         /*
3869          * We add the inode to the orphan list, so that if this
3870          * truncate spans multiple transactions, and we crash, we will
3871          * resume the truncate when the filesystem recovers.  It also
3872          * marks the inode dirty, to catch the new size.
3873          *
3874          * Implication: the file must always be in a sane, consistent
3875          * truncatable state while each transaction commits.
3876          */
3877         if (ext4_orphan_add(handle, inode))
3878                 goto out_stop;
3879
3880         down_write(&EXT4_I(inode)->i_data_sem);
3881
3882         ext4_discard_preallocations(inode);
3883
3884         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3885                 ext4_ext_truncate(handle, inode);
3886         else
3887                 ext4_ind_truncate(handle, inode);
3888
3889         up_write(&ei->i_data_sem);
3890
3891         if (IS_SYNC(inode))
3892                 ext4_handle_sync(handle);
3893
3894 out_stop:
3895         /*
3896          * If this was a simple ftruncate() and the file will remain alive,
3897          * then we need to clear up the orphan record which we created above.
3898          * However, if this was a real unlink then we were called by
3899          * ext4_delete_inode(), and we allow that function to clean up the
3900          * orphan info for us.
3901          */
3902         if (inode->i_nlink)
3903                 ext4_orphan_del(handle, inode);
3904
3905         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3906         ext4_mark_inode_dirty(handle, inode);
3907         ext4_journal_stop(handle);
3908
3909         trace_ext4_truncate_exit(inode);
3910 }
3911
3912 /*
3913  * ext4_get_inode_loc returns with an extra refcount against the inode's
3914  * underlying buffer_head on success. If 'in_mem' is true, we have all
3915  * data in memory that is needed to recreate the on-disk version of this
3916  * inode.
3917  */
3918 static int __ext4_get_inode_loc(struct inode *inode,
3919                                 struct ext4_iloc *iloc, int in_mem)
3920 {
3921         struct ext4_group_desc  *gdp;
3922         struct buffer_head      *bh;
3923         struct super_block      *sb = inode->i_sb;
3924         ext4_fsblk_t            block;
3925         int                     inodes_per_block, inode_offset;
3926
3927         iloc->bh = NULL;
3928         if (!ext4_valid_inum(sb, inode->i_ino))
3929                 return -EIO;
3930
3931         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3932         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3933         if (!gdp)
3934                 return -EIO;
3935
3936         /*
3937          * Figure out the offset within the block group inode table
3938          */
3939         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3940         inode_offset = ((inode->i_ino - 1) %
3941                         EXT4_INODES_PER_GROUP(sb));
3942         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3943         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3944
3945         bh = sb_getblk(sb, block);
3946         if (unlikely(!bh))
3947                 return -ENOMEM;
3948         if (!buffer_uptodate(bh)) {
3949                 lock_buffer(bh);
3950
3951                 /*
3952                  * If the buffer has the write error flag, we have failed
3953                  * to write out another inode in the same block.  In this
3954                  * case, we don't have to read the block because we may
3955                  * read the old inode data successfully.
3956                  */
3957                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3958                         set_buffer_uptodate(bh);
3959
3960                 if (buffer_uptodate(bh)) {
3961                         /* someone brought it uptodate while we waited */
3962                         unlock_buffer(bh);
3963                         goto has_buffer;
3964                 }
3965
3966                 /*
3967                  * If we have all information of the inode in memory and this
3968                  * is the only valid inode in the block, we need not read the
3969                  * block.
3970                  */
3971                 if (in_mem) {
3972                         struct buffer_head *bitmap_bh;
3973                         int i, start;
3974
3975                         start = inode_offset & ~(inodes_per_block - 1);
3976
3977                         /* Is the inode bitmap in cache? */
3978                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3979                         if (unlikely(!bitmap_bh))
3980                                 goto make_io;
3981
3982                         /*
3983                          * If the inode bitmap isn't in cache then the
3984                          * optimisation may end up performing two reads instead
3985                          * of one, so skip it.
3986                          */
3987                         if (!buffer_uptodate(bitmap_bh)) {
3988                                 brelse(bitmap_bh);
3989                                 goto make_io;
3990                         }
3991                         for (i = start; i < start + inodes_per_block; i++) {
3992                                 if (i == inode_offset)
3993                                         continue;
3994                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3995                                         break;
3996                         }
3997                         brelse(bitmap_bh);
3998                         if (i == start + inodes_per_block) {
3999                                 /* all other inodes are free, so skip I/O */
4000                                 memset(bh->b_data, 0, bh->b_size);
4001                                 set_buffer_uptodate(bh);
4002                                 unlock_buffer(bh);
4003                                 goto has_buffer;
4004                         }
4005                 }
4006
4007 make_io:
4008                 /*
4009                  * If we need to do any I/O, try to pre-readahead extra
4010                  * blocks from the inode table.
4011                  */
4012                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4013                         ext4_fsblk_t b, end, table;
4014                         unsigned num;
4015                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4016
4017                         table = ext4_inode_table(sb, gdp);
4018                         /* s_inode_readahead_blks is always a power of 2 */
4019                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4020                         if (table > b)
4021                                 b = table;
4022                         end = b + ra_blks;
4023                         num = EXT4_INODES_PER_GROUP(sb);
4024                         if (ext4_has_group_desc_csum(sb))
4025                                 num -= ext4_itable_unused_count(sb, gdp);
4026                         table += num / inodes_per_block;
4027                         if (end > table)
4028                                 end = table;
4029                         while (b <= end)
4030                                 sb_breadahead(sb, b++);
4031                 }
4032
4033                 /*
4034                  * There are other valid inodes in the buffer, this inode
4035                  * has in-inode xattrs, or we don't have this inode in memory.
4036                  * Read the block from disk.
4037                  */
4038                 trace_ext4_load_inode(inode);
4039                 get_bh(bh);
4040                 bh->b_end_io = end_buffer_read_sync;
4041                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4042                 wait_on_buffer(bh);
4043                 if (!buffer_uptodate(bh)) {
4044                         EXT4_ERROR_INODE_BLOCK(inode, block,
4045                                                "unable to read itable block");
4046                         brelse(bh);
4047                         return -EIO;
4048                 }
4049         }
4050 has_buffer:
4051         iloc->bh = bh;
4052         return 0;
4053 }
4054
4055 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4056 {
4057         /* We have all inode data except xattrs in memory here. */
4058         return __ext4_get_inode_loc(inode, iloc,
4059                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4060 }
4061
4062 void ext4_set_inode_flags(struct inode *inode)
4063 {
4064         unsigned int flags = EXT4_I(inode)->i_flags;
4065         unsigned int new_fl = 0;
4066
4067         if (flags & EXT4_SYNC_FL)
4068                 new_fl |= S_SYNC;
4069         if (flags & EXT4_APPEND_FL)
4070                 new_fl |= S_APPEND;
4071         if (flags & EXT4_IMMUTABLE_FL)
4072                 new_fl |= S_IMMUTABLE;
4073         if (flags & EXT4_NOATIME_FL)
4074                 new_fl |= S_NOATIME;
4075         if (flags & EXT4_DIRSYNC_FL)
4076                 new_fl |= S_DIRSYNC;
4077         set_mask_bits(&inode->i_flags,
4078                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4079 }
4080
4081 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4082 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4083 {
4084         unsigned int vfs_fl;
4085         unsigned long old_fl, new_fl;
4086
4087         do {
4088                 vfs_fl = ei->vfs_inode.i_flags;
4089                 old_fl = ei->i_flags;
4090                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4091                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4092                                 EXT4_DIRSYNC_FL);
4093                 if (vfs_fl & S_SYNC)
4094                         new_fl |= EXT4_SYNC_FL;
4095                 if (vfs_fl & S_APPEND)
4096                         new_fl |= EXT4_APPEND_FL;
4097                 if (vfs_fl & S_IMMUTABLE)
4098                         new_fl |= EXT4_IMMUTABLE_FL;
4099                 if (vfs_fl & S_NOATIME)
4100                         new_fl |= EXT4_NOATIME_FL;
4101                 if (vfs_fl & S_DIRSYNC)
4102                         new_fl |= EXT4_DIRSYNC_FL;
4103         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4104 }
4105
4106 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4107                                   struct ext4_inode_info *ei)
4108 {
4109         blkcnt_t i_blocks ;
4110         struct inode *inode = &(ei->vfs_inode);
4111         struct super_block *sb = inode->i_sb;
4112
4113         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4114                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4115                 /* we are using combined 48 bit field */
4116                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4117                                         le32_to_cpu(raw_inode->i_blocks_lo);
4118                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4119                         /* i_blocks represent file system block size */
4120                         return i_blocks  << (inode->i_blkbits - 9);
4121                 } else {
4122                         return i_blocks;
4123                 }
4124         } else {
4125                 return le32_to_cpu(raw_inode->i_blocks_lo);
4126         }
4127 }
4128
4129 static inline void ext4_iget_extra_inode(struct inode *inode,
4130                                          struct ext4_inode *raw_inode,
4131                                          struct ext4_inode_info *ei)
4132 {
4133         __le32 *magic = (void *)raw_inode +
4134                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4135         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4136                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4137                 ext4_find_inline_data_nolock(inode);
4138         } else
4139                 EXT4_I(inode)->i_inline_off = 0;
4140 }
4141
4142 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4143 {
4144         struct ext4_iloc iloc;
4145         struct ext4_inode *raw_inode;
4146         struct ext4_inode_info *ei;
4147         struct inode *inode;
4148         journal_t *journal = EXT4_SB(sb)->s_journal;
4149         long ret;
4150         int block;
4151         uid_t i_uid;
4152         gid_t i_gid;
4153
4154         inode = iget_locked(sb, ino);
4155         if (!inode)
4156                 return ERR_PTR(-ENOMEM);
4157         if (!(inode->i_state & I_NEW))
4158                 return inode;
4159
4160         ei = EXT4_I(inode);
4161         iloc.bh = NULL;
4162
4163         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4164         if (ret < 0)
4165                 goto bad_inode;
4166         raw_inode = ext4_raw_inode(&iloc);
4167
4168         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4169                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4170                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4171                     EXT4_INODE_SIZE(inode->i_sb)) {
4172                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4173                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4174                                 EXT4_INODE_SIZE(inode->i_sb));
4175                         ret = -EIO;
4176                         goto bad_inode;
4177                 }
4178         } else
4179                 ei->i_extra_isize = 0;
4180
4181         /* Precompute checksum seed for inode metadata */
4182         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4183                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4184                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4185                 __u32 csum;
4186                 __le32 inum = cpu_to_le32(inode->i_ino);
4187                 __le32 gen = raw_inode->i_generation;
4188                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4189                                    sizeof(inum));
4190                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4191                                               sizeof(gen));
4192         }
4193
4194         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4195                 EXT4_ERROR_INODE(inode, "checksum invalid");
4196                 ret = -EIO;
4197                 goto bad_inode;
4198         }
4199
4200         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4201         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4202         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4203         if (!(test_opt(inode->i_sb, NO_UID32))) {
4204                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4205                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4206         }
4207         i_uid_write(inode, i_uid);
4208         i_gid_write(inode, i_gid);
4209         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4210
4211         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4212         ei->i_inline_off = 0;
4213         ei->i_dir_start_lookup = 0;
4214         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4215         /* We now have enough fields to check if the inode was active or not.
4216          * This is needed because nfsd might try to access dead inodes
4217          * the test is that same one that e2fsck uses
4218          * NeilBrown 1999oct15
4219          */
4220         if (inode->i_nlink == 0) {
4221                 if ((inode->i_mode == 0 ||
4222                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4223                     ino != EXT4_BOOT_LOADER_INO) {
4224                         /* this inode is deleted */
4225                         ret = -ESTALE;
4226                         goto bad_inode;
4227                 }
4228                 /* The only unlinked inodes we let through here have
4229                  * valid i_mode and are being read by the orphan
4230                  * recovery code: that's fine, we're about to complete
4231                  * the process of deleting those.
4232                  * OR it is the EXT4_BOOT_LOADER_INO which is
4233                  * not initialized on a new filesystem. */
4234         }
4235         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4236         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4237         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4238         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4239                 ei->i_file_acl |=
4240                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4241         inode->i_size = ext4_isize(raw_inode);
4242         ei->i_disksize = inode->i_size;
4243 #ifdef CONFIG_QUOTA
4244         ei->i_reserved_quota = 0;
4245 #endif
4246         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4247         ei->i_block_group = iloc.block_group;
4248         ei->i_last_alloc_group = ~0;
4249         /*
4250          * NOTE! The in-memory inode i_data array is in little-endian order
4251          * even on big-endian machines: we do NOT byteswap the block numbers!
4252          */
4253         for (block = 0; block < EXT4_N_BLOCKS; block++)
4254                 ei->i_data[block] = raw_inode->i_block[block];
4255         INIT_LIST_HEAD(&ei->i_orphan);
4256
4257         /*
4258          * Set transaction id's of transactions that have to be committed
4259          * to finish f[data]sync. We set them to currently running transaction
4260          * as we cannot be sure that the inode or some of its metadata isn't
4261          * part of the transaction - the inode could have been reclaimed and
4262          * now it is reread from disk.
4263          */
4264         if (journal) {
4265                 transaction_t *transaction;
4266                 tid_t tid;
4267
4268                 read_lock(&journal->j_state_lock);
4269                 if (journal->j_running_transaction)
4270                         transaction = journal->j_running_transaction;
4271                 else
4272                         transaction = journal->j_committing_transaction;
4273                 if (transaction)
4274                         tid = transaction->t_tid;
4275                 else
4276                         tid = journal->j_commit_sequence;
4277                 read_unlock(&journal->j_state_lock);
4278                 ei->i_sync_tid = tid;
4279                 ei->i_datasync_tid = tid;
4280         }
4281
4282         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4283                 if (ei->i_extra_isize == 0) {
4284                         /* The extra space is currently unused. Use it. */
4285                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4286                                             EXT4_GOOD_OLD_INODE_SIZE;
4287                 } else {
4288                         ext4_iget_extra_inode(inode, raw_inode, ei);
4289                 }
4290         }
4291
4292         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4293         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4294         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4295         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4296
4297         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4298         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4299                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4300                         inode->i_version |=
4301                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4302         }
4303
4304         ret = 0;
4305         if (ei->i_file_acl &&
4306             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4307                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4308                                  ei->i_file_acl);
4309                 ret = -EIO;
4310                 goto bad_inode;
4311         } else if (!ext4_has_inline_data(inode)) {
4312                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4313                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4314                             (S_ISLNK(inode->i_mode) &&
4315                              !ext4_inode_is_fast_symlink(inode))))
4316                                 /* Validate extent which is part of inode */
4317                                 ret = ext4_ext_check_inode(inode);
4318                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4319                            (S_ISLNK(inode->i_mode) &&
4320                             !ext4_inode_is_fast_symlink(inode))) {
4321                         /* Validate block references which are part of inode */
4322                         ret = ext4_ind_check_inode(inode);
4323                 }
4324         }
4325         if (ret)
4326                 goto bad_inode;
4327
4328         if (S_ISREG(inode->i_mode)) {
4329                 inode->i_op = &ext4_file_inode_operations;
4330                 inode->i_fop = &ext4_file_operations;
4331                 ext4_set_aops(inode);
4332         } else if (S_ISDIR(inode->i_mode)) {
4333                 inode->i_op = &ext4_dir_inode_operations;
4334                 inode->i_fop = &ext4_dir_operations;
4335         } else if (S_ISLNK(inode->i_mode)) {
4336                 if (ext4_inode_is_fast_symlink(inode)) {
4337                         inode->i_op = &ext4_fast_symlink_inode_operations;
4338                         nd_terminate_link(ei->i_data, inode->i_size,
4339                                 sizeof(ei->i_data) - 1);
4340                 } else {
4341                         inode->i_op = &ext4_symlink_inode_operations;
4342                         ext4_set_aops(inode);
4343                 }
4344         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4345               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4346                 inode->i_op = &ext4_special_inode_operations;
4347                 if (raw_inode->i_block[0])
4348                         init_special_inode(inode, inode->i_mode,
4349                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4350                 else
4351                         init_special_inode(inode, inode->i_mode,
4352                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4353         } else if (ino == EXT4_BOOT_LOADER_INO) {
4354                 make_bad_inode(inode);
4355         } else {
4356                 ret = -EIO;
4357                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4358                 goto bad_inode;
4359         }
4360         brelse(iloc.bh);
4361         ext4_set_inode_flags(inode);
4362         unlock_new_inode(inode);
4363         return inode;
4364
4365 bad_inode:
4366         brelse(iloc.bh);
4367         iget_failed(inode);
4368         return ERR_PTR(ret);
4369 }
4370
4371 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4372 {
4373         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4374                 return ERR_PTR(-EIO);
4375         return ext4_iget(sb, ino);
4376 }
4377
4378 static int ext4_inode_blocks_set(handle_t *handle,
4379                                 struct ext4_inode *raw_inode,
4380                                 struct ext4_inode_info *ei)
4381 {
4382         struct inode *inode = &(ei->vfs_inode);
4383         u64 i_blocks = inode->i_blocks;
4384         struct super_block *sb = inode->i_sb;
4385
4386         if (i_blocks <= ~0U) {
4387                 /*
4388                  * i_blocks can be represented in a 32 bit variable
4389                  * as multiple of 512 bytes
4390                  */
4391                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4392                 raw_inode->i_blocks_high = 0;
4393                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4394                 return 0;
4395         }
4396         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4397                 return -EFBIG;
4398
4399         if (i_blocks <= 0xffffffffffffULL) {
4400                 /*
4401                  * i_blocks can be represented in a 48 bit variable
4402                  * as multiple of 512 bytes
4403                  */
4404                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4405                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4406                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4407         } else {
4408                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4409                 /* i_block is stored in file system block size */
4410                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4411                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4412                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4413         }
4414         return 0;
4415 }
4416
4417 /*
4418  * Post the struct inode info into an on-disk inode location in the
4419  * buffer-cache.  This gobbles the caller's reference to the
4420  * buffer_head in the inode location struct.
4421  *
4422  * The caller must have write access to iloc->bh.
4423  */
4424 static int ext4_do_update_inode(handle_t *handle,
4425                                 struct inode *inode,
4426                                 struct ext4_iloc *iloc)
4427 {
4428         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4429         struct ext4_inode_info *ei = EXT4_I(inode);
4430         struct buffer_head *bh = iloc->bh;
4431         int err = 0, rc, block;
4432         int need_datasync = 0;
4433         uid_t i_uid;
4434         gid_t i_gid;
4435
4436         /* For fields not not tracking in the in-memory inode,
4437          * initialise them to zero for new inodes. */
4438         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4439                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4440
4441         ext4_get_inode_flags(ei);
4442         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4443         i_uid = i_uid_read(inode);
4444         i_gid = i_gid_read(inode);
4445         if (!(test_opt(inode->i_sb, NO_UID32))) {
4446                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4447                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4448 /*
4449  * Fix up interoperability with old kernels. Otherwise, old inodes get
4450  * re-used with the upper 16 bits of the uid/gid intact
4451  */
4452                 if (!ei->i_dtime) {
4453                         raw_inode->i_uid_high =
4454                                 cpu_to_le16(high_16_bits(i_uid));
4455                         raw_inode->i_gid_high =
4456                                 cpu_to_le16(high_16_bits(i_gid));
4457                 } else {
4458                         raw_inode->i_uid_high = 0;
4459                         raw_inode->i_gid_high = 0;
4460                 }
4461         } else {
4462                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4463                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4464                 raw_inode->i_uid_high = 0;
4465                 raw_inode->i_gid_high = 0;
4466         }
4467         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4468
4469         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4470         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4471         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4472         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4473
4474         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4475                 goto out_brelse;
4476         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4477         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4478         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4479             cpu_to_le32(EXT4_OS_HURD))
4480                 raw_inode->i_file_acl_high =
4481                         cpu_to_le16(ei->i_file_acl >> 32);
4482         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4483         if (ei->i_disksize != ext4_isize(raw_inode)) {
4484                 ext4_isize_set(raw_inode, ei->i_disksize);
4485                 need_datasync = 1;
4486         }
4487         if (ei->i_disksize > 0x7fffffffULL) {
4488                 struct super_block *sb = inode->i_sb;
4489                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4490                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4491                                 EXT4_SB(sb)->s_es->s_rev_level ==
4492                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4493                         /* If this is the first large file
4494                          * created, add a flag to the superblock.
4495                          */
4496                         err = ext4_journal_get_write_access(handle,
4497                                         EXT4_SB(sb)->s_sbh);
4498                         if (err)
4499                                 goto out_brelse;
4500                         ext4_update_dynamic_rev(sb);
4501                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4502                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4503                         ext4_handle_sync(handle);
4504                         err = ext4_handle_dirty_super(handle, sb);
4505                 }
4506         }
4507         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4508         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4509                 if (old_valid_dev(inode->i_rdev)) {
4510                         raw_inode->i_block[0] =
4511                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4512                         raw_inode->i_block[1] = 0;
4513                 } else {
4514                         raw_inode->i_block[0] = 0;
4515                         raw_inode->i_block[1] =
4516                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4517                         raw_inode->i_block[2] = 0;
4518                 }
4519         } else if (!ext4_has_inline_data(inode)) {
4520                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4521                         raw_inode->i_block[block] = ei->i_data[block];
4522         }
4523
4524         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4525         if (ei->i_extra_isize) {
4526                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4527                         raw_inode->i_version_hi =
4528                         cpu_to_le32(inode->i_version >> 32);
4529                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4530         }
4531
4532         ext4_inode_csum_set(inode, raw_inode, ei);
4533
4534         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4535         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4536         if (!err)
4537                 err = rc;
4538         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4539
4540         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4541 out_brelse:
4542         brelse(bh);
4543         ext4_std_error(inode->i_sb, err);
4544         return err;
4545 }
4546
4547 /*
4548  * ext4_write_inode()
4549  *
4550  * We are called from a few places:
4551  *
4552  * - Within generic_file_write() for O_SYNC files.
4553  *   Here, there will be no transaction running. We wait for any running
4554  *   transaction to commit.
4555  *
4556  * - Within sys_sync(), kupdate and such.
4557  *   We wait on commit, if tol to.
4558  *
4559  * - Within prune_icache() (PF_MEMALLOC == true)
4560  *   Here we simply return.  We can't afford to block kswapd on the
4561  *   journal commit.
4562  *
4563  * In all cases it is actually safe for us to return without doing anything,
4564  * because the inode has been copied into a raw inode buffer in
4565  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4566  * knfsd.
4567  *
4568  * Note that we are absolutely dependent upon all inode dirtiers doing the
4569  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4570  * which we are interested.
4571  *
4572  * It would be a bug for them to not do this.  The code:
4573  *
4574  *      mark_inode_dirty(inode)
4575  *      stuff();
4576  *      inode->i_size = expr;
4577  *
4578  * is in error because a kswapd-driven write_inode() could occur while
4579  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4580  * will no longer be on the superblock's dirty inode list.
4581  */
4582 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4583 {
4584         int err;
4585
4586         if (current->flags & PF_MEMALLOC)
4587                 return 0;
4588
4589         if (EXT4_SB(inode->i_sb)->s_journal) {
4590                 if (ext4_journal_current_handle()) {
4591                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4592                         dump_stack();
4593                         return -EIO;
4594                 }
4595
4596                 if (wbc->sync_mode != WB_SYNC_ALL)
4597                         return 0;
4598
4599                 err = ext4_force_commit(inode->i_sb);
4600         } else {
4601                 struct ext4_iloc iloc;
4602
4603                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4604                 if (err)
4605                         return err;
4606                 if (wbc->sync_mode == WB_SYNC_ALL)
4607                         sync_dirty_buffer(iloc.bh);
4608                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4609                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4610                                          "IO error syncing inode");
4611                         err = -EIO;
4612                 }
4613                 brelse(iloc.bh);
4614         }
4615         return err;
4616 }
4617
4618 /*
4619  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4620  * buffers that are attached to a page stradding i_size and are undergoing
4621  * commit. In that case we have to wait for commit to finish and try again.
4622  */
4623 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4624 {
4625         struct page *page;
4626         unsigned offset;
4627         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4628         tid_t commit_tid = 0;
4629         int ret;
4630
4631         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4632         /*
4633          * All buffers in the last page remain valid? Then there's nothing to
4634          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4635          * blocksize case
4636          */
4637         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4638                 return;
4639         while (1) {
4640                 page = find_lock_page(inode->i_mapping,
4641                                       inode->i_size >> PAGE_CACHE_SHIFT);
4642                 if (!page)
4643                         return;
4644                 ret = __ext4_journalled_invalidatepage(page, offset);
4645                 unlock_page(page);
4646                 page_cache_release(page);
4647                 if (ret != -EBUSY)
4648                         return;
4649                 commit_tid = 0;
4650                 read_lock(&journal->j_state_lock);
4651                 if (journal->j_committing_transaction)
4652                         commit_tid = journal->j_committing_transaction->t_tid;
4653                 read_unlock(&journal->j_state_lock);
4654                 if (commit_tid)
4655                         jbd2_log_wait_commit(journal, commit_tid);
4656         }
4657 }
4658
4659 /*
4660  * ext4_setattr()
4661  *
4662  * Called from notify_change.
4663  *
4664  * We want to trap VFS attempts to truncate the file as soon as
4665  * possible.  In particular, we want to make sure that when the VFS
4666  * shrinks i_size, we put the inode on the orphan list and modify
4667  * i_disksize immediately, so that during the subsequent flushing of
4668  * dirty pages and freeing of disk blocks, we can guarantee that any
4669  * commit will leave the blocks being flushed in an unused state on
4670  * disk.  (On recovery, the inode will get truncated and the blocks will
4671  * be freed, so we have a strong guarantee that no future commit will
4672  * leave these blocks visible to the user.)
4673  *
4674  * Another thing we have to assure is that if we are in ordered mode
4675  * and inode is still attached to the committing transaction, we must
4676  * we start writeout of all the dirty pages which are being truncated.
4677  * This way we are sure that all the data written in the previous
4678  * transaction are already on disk (truncate waits for pages under
4679  * writeback).
4680  *
4681  * Called with inode->i_mutex down.
4682  */
4683 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4684 {
4685         struct inode *inode = dentry->d_inode;
4686         int error, rc = 0;
4687         int orphan = 0;
4688         const unsigned int ia_valid = attr->ia_valid;
4689
4690         error = inode_change_ok(inode, attr);
4691         if (error)
4692                 return error;
4693
4694         if (is_quota_modification(inode, attr))
4695                 dquot_initialize(inode);
4696         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4697             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4698                 handle_t *handle;
4699
4700                 /* (user+group)*(old+new) structure, inode write (sb,
4701                  * inode block, ? - but truncate inode update has it) */
4702                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4703                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4704                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4705                 if (IS_ERR(handle)) {
4706                         error = PTR_ERR(handle);
4707                         goto err_out;
4708                 }
4709                 error = dquot_transfer(inode, attr);
4710                 if (error) {
4711                         ext4_journal_stop(handle);
4712                         return error;
4713                 }
4714                 /* Update corresponding info in inode so that everything is in
4715                  * one transaction */
4716                 if (attr->ia_valid & ATTR_UID)
4717                         inode->i_uid = attr->ia_uid;
4718                 if (attr->ia_valid & ATTR_GID)
4719                         inode->i_gid = attr->ia_gid;
4720                 error = ext4_mark_inode_dirty(handle, inode);
4721                 ext4_journal_stop(handle);
4722         }
4723
4724         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4725                 handle_t *handle;
4726                 loff_t oldsize = inode->i_size;
4727
4728                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4729                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4730
4731                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4732                                 return -EFBIG;
4733                 }
4734
4735                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4736                         inode_inc_iversion(inode);
4737
4738                 if (S_ISREG(inode->i_mode) &&
4739                     (attr->ia_size < inode->i_size)) {
4740                         if (ext4_should_order_data(inode)) {
4741                                 error = ext4_begin_ordered_truncate(inode,
4742                                                             attr->ia_size);
4743                                 if (error)
4744                                         goto err_out;
4745                         }
4746                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4747                         if (IS_ERR(handle)) {
4748                                 error = PTR_ERR(handle);
4749                                 goto err_out;
4750                         }
4751                         if (ext4_handle_valid(handle)) {
4752                                 error = ext4_orphan_add(handle, inode);
4753                                 orphan = 1;
4754                         }
4755                         EXT4_I(inode)->i_disksize = attr->ia_size;
4756                         rc = ext4_mark_inode_dirty(handle, inode);
4757                         if (!error)
4758                                 error = rc;
4759                         ext4_journal_stop(handle);
4760                         if (error) {
4761                                 ext4_orphan_del(NULL, inode);
4762                                 goto err_out;
4763                         }
4764                 }
4765
4766                 i_size_write(inode, attr->ia_size);
4767                 /*
4768                  * Blocks are going to be removed from the inode. Wait
4769                  * for dio in flight.  Temporarily disable
4770                  * dioread_nolock to prevent livelock.
4771                  */
4772                 if (orphan) {
4773                         if (!ext4_should_journal_data(inode)) {
4774                                 ext4_inode_block_unlocked_dio(inode);
4775                                 inode_dio_wait(inode);
4776                                 ext4_inode_resume_unlocked_dio(inode);
4777                         } else
4778                                 ext4_wait_for_tail_page_commit(inode);
4779                 }
4780                 /*
4781                  * Truncate pagecache after we've waited for commit
4782                  * in data=journal mode to make pages freeable.
4783                  */
4784                 truncate_pagecache(inode, oldsize, inode->i_size);
4785         }
4786         /*
4787          * We want to call ext4_truncate() even if attr->ia_size ==
4788          * inode->i_size for cases like truncation of fallocated space
4789          */
4790         if (attr->ia_valid & ATTR_SIZE)
4791                 ext4_truncate(inode);
4792
4793         if (!rc) {
4794                 setattr_copy(inode, attr);
4795                 mark_inode_dirty(inode);
4796         }
4797
4798         /*
4799          * If the call to ext4_truncate failed to get a transaction handle at
4800          * all, we need to clean up the in-core orphan list manually.
4801          */
4802         if (orphan && inode->i_nlink)
4803                 ext4_orphan_del(NULL, inode);
4804
4805         if (!rc && (ia_valid & ATTR_MODE))
4806                 rc = ext4_acl_chmod(inode);
4807
4808 err_out:
4809         ext4_std_error(inode->i_sb, error);
4810         if (!error)
4811                 error = rc;
4812         return error;
4813 }
4814
4815 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4816                  struct kstat *stat)
4817 {
4818         struct inode *inode;
4819         unsigned long long delalloc_blocks;
4820
4821         inode = dentry->d_inode;
4822         generic_fillattr(inode, stat);
4823
4824         /*
4825          * We can't update i_blocks if the block allocation is delayed
4826          * otherwise in the case of system crash before the real block
4827          * allocation is done, we will have i_blocks inconsistent with
4828          * on-disk file blocks.
4829          * We always keep i_blocks updated together with real
4830          * allocation. But to not confuse with user, stat
4831          * will return the blocks that include the delayed allocation
4832          * blocks for this file.
4833          */
4834         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4835                                 EXT4_I(inode)->i_reserved_data_blocks);
4836
4837         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4838         return 0;
4839 }
4840
4841 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4842 {
4843         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4844                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4845         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4846 }
4847
4848 /*
4849  * Account for index blocks, block groups bitmaps and block group
4850  * descriptor blocks if modify datablocks and index blocks
4851  * worse case, the indexs blocks spread over different block groups
4852  *
4853  * If datablocks are discontiguous, they are possible to spread over
4854  * different block groups too. If they are contiguous, with flexbg,
4855  * they could still across block group boundary.
4856  *
4857  * Also account for superblock, inode, quota and xattr blocks
4858  */
4859 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4860 {
4861         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4862         int gdpblocks;
4863         int idxblocks;
4864         int ret = 0;
4865
4866         /*
4867          * How many index blocks need to touch to modify nrblocks?
4868          * The "Chunk" flag indicating whether the nrblocks is
4869          * physically contiguous on disk
4870          *
4871          * For Direct IO and fallocate, they calls get_block to allocate
4872          * one single extent at a time, so they could set the "Chunk" flag
4873          */
4874         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4875
4876         ret = idxblocks;
4877
4878         /*
4879          * Now let's see how many group bitmaps and group descriptors need
4880          * to account
4881          */
4882         groups = idxblocks;
4883         if (chunk)
4884                 groups += 1;
4885         else
4886                 groups += nrblocks;
4887
4888         gdpblocks = groups;
4889         if (groups > ngroups)
4890                 groups = ngroups;
4891         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4892                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4893
4894         /* bitmaps and block group descriptor blocks */
4895         ret += groups + gdpblocks;
4896
4897         /* Blocks for super block, inode, quota and xattr blocks */
4898         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4899
4900         return ret;
4901 }
4902
4903 /*
4904  * Calculate the total number of credits to reserve to fit
4905  * the modification of a single pages into a single transaction,
4906  * which may include multiple chunks of block allocations.
4907  *
4908  * This could be called via ext4_write_begin()
4909  *
4910  * We need to consider the worse case, when
4911  * one new block per extent.
4912  */
4913 int ext4_writepage_trans_blocks(struct inode *inode)
4914 {
4915         int bpp = ext4_journal_blocks_per_page(inode);
4916         int ret;
4917
4918         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4919
4920         /* Account for data blocks for journalled mode */
4921         if (ext4_should_journal_data(inode))
4922                 ret += bpp;
4923         return ret;
4924 }
4925
4926 /*
4927  * Calculate the journal credits for a chunk of data modification.
4928  *
4929  * This is called from DIO, fallocate or whoever calling
4930  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4931  *
4932  * journal buffers for data blocks are not included here, as DIO
4933  * and fallocate do no need to journal data buffers.
4934  */
4935 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4936 {
4937         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4938 }
4939
4940 /*
4941  * The caller must have previously called ext4_reserve_inode_write().
4942  * Give this, we know that the caller already has write access to iloc->bh.
4943  */
4944 int ext4_mark_iloc_dirty(handle_t *handle,
4945                          struct inode *inode, struct ext4_iloc *iloc)
4946 {
4947         int err = 0;
4948
4949         if (IS_I_VERSION(inode))
4950                 inode_inc_iversion(inode);
4951
4952         /* the do_update_inode consumes one bh->b_count */
4953         get_bh(iloc->bh);
4954
4955         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4956         err = ext4_do_update_inode(handle, inode, iloc);
4957         put_bh(iloc->bh);
4958         return err;
4959 }
4960
4961 /*
4962  * On success, We end up with an outstanding reference count against
4963  * iloc->bh.  This _must_ be cleaned up later.
4964  */
4965
4966 int
4967 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4968                          struct ext4_iloc *iloc)
4969 {
4970         int err;
4971
4972         err = ext4_get_inode_loc(inode, iloc);
4973         if (!err) {
4974                 BUFFER_TRACE(iloc->bh, "get_write_access");
4975                 err = ext4_journal_get_write_access(handle, iloc->bh);
4976                 if (err) {
4977                         brelse(iloc->bh);
4978                         iloc->bh = NULL;
4979                 }
4980         }
4981         ext4_std_error(inode->i_sb, err);
4982         return err;
4983 }
4984
4985 /*
4986  * Expand an inode by new_extra_isize bytes.
4987  * Returns 0 on success or negative error number on failure.
4988  */
4989 static int ext4_expand_extra_isize(struct inode *inode,
4990                                    unsigned int new_extra_isize,
4991                                    struct ext4_iloc iloc,
4992                                    handle_t *handle)
4993 {
4994         struct ext4_inode *raw_inode;
4995         struct ext4_xattr_ibody_header *header;
4996
4997         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4998                 return 0;
4999
5000         raw_inode = ext4_raw_inode(&iloc);
5001
5002         header = IHDR(inode, raw_inode);
5003
5004         /* No extended attributes present */
5005         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5006             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5007                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5008                         new_extra_isize);
5009                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5010                 return 0;
5011         }
5012
5013         /* try to expand with EAs present */
5014         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5015                                           raw_inode, handle);
5016 }
5017
5018 /*
5019  * What we do here is to mark the in-core inode as clean with respect to inode
5020  * dirtiness (it may still be data-dirty).
5021  * This means that the in-core inode may be reaped by prune_icache
5022  * without having to perform any I/O.  This is a very good thing,
5023  * because *any* task may call prune_icache - even ones which
5024  * have a transaction open against a different journal.
5025  *
5026  * Is this cheating?  Not really.  Sure, we haven't written the
5027  * inode out, but prune_icache isn't a user-visible syncing function.
5028  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5029  * we start and wait on commits.
5030  */
5031 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5032 {
5033         struct ext4_iloc iloc;
5034         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5035         static unsigned int mnt_count;
5036         int err, ret;
5037
5038         might_sleep();
5039         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5040         err = ext4_reserve_inode_write(handle, inode, &iloc);
5041         if (ext4_handle_valid(handle) &&
5042             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5043             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5044                 /*
5045                  * We need extra buffer credits since we may write into EA block
5046                  * with this same handle. If journal_extend fails, then it will
5047                  * only result in a minor loss of functionality for that inode.
5048                  * If this is felt to be critical, then e2fsck should be run to
5049                  * force a large enough s_min_extra_isize.
5050                  */
5051                 if ((jbd2_journal_extend(handle,
5052                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5053                         ret = ext4_expand_extra_isize(inode,
5054                                                       sbi->s_want_extra_isize,
5055                                                       iloc, handle);
5056                         if (ret) {
5057                                 ext4_set_inode_state(inode,
5058                                                      EXT4_STATE_NO_EXPAND);
5059                                 if (mnt_count !=
5060                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5061                                         ext4_warning(inode->i_sb,
5062                                         "Unable to expand inode %lu. Delete"
5063                                         " some EAs or run e2fsck.",
5064                                         inode->i_ino);
5065                                         mnt_count =
5066                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5067                                 }
5068                         }
5069                 }
5070         }
5071         if (!err)
5072                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5073         return err;
5074 }
5075
5076 /*
5077  * ext4_dirty_inode() is called from __mark_inode_dirty()
5078  *
5079  * We're really interested in the case where a file is being extended.
5080  * i_size has been changed by generic_commit_write() and we thus need
5081  * to include the updated inode in the current transaction.
5082  *
5083  * Also, dquot_alloc_block() will always dirty the inode when blocks
5084  * are allocated to the file.
5085  *
5086  * If the inode is marked synchronous, we don't honour that here - doing
5087  * so would cause a commit on atime updates, which we don't bother doing.
5088  * We handle synchronous inodes at the highest possible level.
5089  */
5090 void ext4_dirty_inode(struct inode *inode, int flags)
5091 {
5092         handle_t *handle;
5093
5094         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5095         if (IS_ERR(handle))
5096                 goto out;
5097
5098         ext4_mark_inode_dirty(handle, inode);
5099
5100         ext4_journal_stop(handle);
5101 out:
5102         return;
5103 }
5104
5105 #if 0
5106 /*
5107  * Bind an inode's backing buffer_head into this transaction, to prevent
5108  * it from being flushed to disk early.  Unlike
5109  * ext4_reserve_inode_write, this leaves behind no bh reference and
5110  * returns no iloc structure, so the caller needs to repeat the iloc
5111  * lookup to mark the inode dirty later.
5112  */
5113 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5114 {
5115         struct ext4_iloc iloc;
5116
5117         int err = 0;
5118         if (handle) {
5119                 err = ext4_get_inode_loc(inode, &iloc);
5120                 if (!err) {
5121                         BUFFER_TRACE(iloc.bh, "get_write_access");
5122                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5123                         if (!err)
5124                                 err = ext4_handle_dirty_metadata(handle,
5125                                                                  NULL,
5126                                                                  iloc.bh);
5127                         brelse(iloc.bh);
5128                 }
5129         }
5130         ext4_std_error(inode->i_sb, err);
5131         return err;
5132 }
5133 #endif
5134
5135 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5136 {
5137         journal_t *journal;
5138         handle_t *handle;
5139         int err;
5140
5141         /*
5142          * We have to be very careful here: changing a data block's
5143          * journaling status dynamically is dangerous.  If we write a
5144          * data block to the journal, change the status and then delete
5145          * that block, we risk forgetting to revoke the old log record
5146          * from the journal and so a subsequent replay can corrupt data.
5147          * So, first we make sure that the journal is empty and that
5148          * nobody is changing anything.
5149          */
5150
5151         journal = EXT4_JOURNAL(inode);
5152         if (!journal)
5153                 return 0;
5154         if (is_journal_aborted(journal))
5155                 return -EROFS;
5156         /* We have to allocate physical blocks for delalloc blocks
5157          * before flushing journal. otherwise delalloc blocks can not
5158          * be allocated any more. even more truncate on delalloc blocks
5159          * could trigger BUG by flushing delalloc blocks in journal.
5160          * There is no delalloc block in non-journal data mode.
5161          */
5162         if (val && test_opt(inode->i_sb, DELALLOC)) {
5163                 err = ext4_alloc_da_blocks(inode);
5164                 if (err < 0)
5165                         return err;
5166         }
5167
5168         /* Wait for all existing dio workers */
5169         ext4_inode_block_unlocked_dio(inode);
5170         inode_dio_wait(inode);
5171
5172         jbd2_journal_lock_updates(journal);
5173
5174         /*
5175          * OK, there are no updates running now, and all cached data is
5176          * synced to disk.  We are now in a completely consistent state
5177          * which doesn't have anything in the journal, and we know that
5178          * no filesystem updates are running, so it is safe to modify
5179          * the inode's in-core data-journaling state flag now.
5180          */
5181
5182         if (val)
5183                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5184         else {
5185                 jbd2_journal_flush(journal);
5186                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5187         }
5188         ext4_set_aops(inode);
5189
5190         jbd2_journal_unlock_updates(journal);
5191         ext4_inode_resume_unlocked_dio(inode);
5192
5193         /* Finally we can mark the inode as dirty. */
5194
5195         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5196         if (IS_ERR(handle))
5197                 return PTR_ERR(handle);
5198
5199         err = ext4_mark_inode_dirty(handle, inode);
5200         ext4_handle_sync(handle);
5201         ext4_journal_stop(handle);
5202         ext4_std_error(inode->i_sb, err);
5203
5204         return err;
5205 }
5206
5207 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5208 {
5209         return !buffer_mapped(bh);
5210 }
5211
5212 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5213 {
5214         struct page *page = vmf->page;
5215         loff_t size;
5216         unsigned long len;
5217         int ret;
5218         struct file *file = vma->vm_file;
5219         struct inode *inode = file_inode(file);
5220         struct address_space *mapping = inode->i_mapping;
5221         handle_t *handle;
5222         get_block_t *get_block;
5223         int retries = 0;
5224
5225         sb_start_pagefault(inode->i_sb);
5226         file_update_time(vma->vm_file);
5227         /* Delalloc case is easy... */
5228         if (test_opt(inode->i_sb, DELALLOC) &&
5229             !ext4_should_journal_data(inode) &&
5230             !ext4_nonda_switch(inode->i_sb)) {
5231                 do {
5232                         ret = __block_page_mkwrite(vma, vmf,
5233                                                    ext4_da_get_block_prep);
5234                 } while (ret == -ENOSPC &&
5235                        ext4_should_retry_alloc(inode->i_sb, &retries));
5236                 goto out_ret;
5237         }
5238
5239         lock_page(page);
5240         size = i_size_read(inode);
5241         /* Page got truncated from under us? */
5242         if (page->mapping != mapping || page_offset(page) > size) {
5243                 unlock_page(page);
5244                 ret = VM_FAULT_NOPAGE;
5245                 goto out;
5246         }
5247
5248         if (page->index == size >> PAGE_CACHE_SHIFT)
5249                 len = size & ~PAGE_CACHE_MASK;
5250         else
5251                 len = PAGE_CACHE_SIZE;
5252         /*
5253          * Return if we have all the buffers mapped. This avoids the need to do
5254          * journal_start/journal_stop which can block and take a long time
5255          */
5256         if (page_has_buffers(page)) {
5257                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5258                                             0, len, NULL,
5259                                             ext4_bh_unmapped)) {
5260                         /* Wait so that we don't change page under IO */
5261                         wait_for_stable_page(page);
5262                         ret = VM_FAULT_LOCKED;
5263                         goto out;
5264                 }
5265         }
5266         unlock_page(page);
5267         /* OK, we need to fill the hole... */
5268         if (ext4_should_dioread_nolock(inode))
5269                 get_block = ext4_get_block_write;
5270         else
5271                 get_block = ext4_get_block;
5272 retry_alloc:
5273         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5274                                     ext4_writepage_trans_blocks(inode));
5275         if (IS_ERR(handle)) {
5276                 ret = VM_FAULT_SIGBUS;
5277                 goto out;
5278         }
5279         ret = __block_page_mkwrite(vma, vmf, get_block);
5280         if (!ret && ext4_should_journal_data(inode)) {
5281                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5282                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5283                         unlock_page(page);
5284                         ret = VM_FAULT_SIGBUS;
5285                         ext4_journal_stop(handle);
5286                         goto out;
5287                 }
5288                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5289         }
5290         ext4_journal_stop(handle);
5291         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5292                 goto retry_alloc;
5293 out_ret:
5294         ret = block_page_mkwrite_return(ret);
5295 out:
5296         sb_end_pagefault(inode->i_sb);
5297         return ret;
5298 }