ext4: fix reservation release on invalidatepage for delalloc fs
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned long offset);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140                 struct inode *inode, struct page *page, loff_t from,
141                 loff_t length, int flags);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 (inode->i_sb->s_blocksize >> 9) : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 ext4_ioend_shutdown(inode);
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229         ext4_ioend_shutdown(inode);
230
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428  * Return the number of contiguous dirty pages in a given inode
429  * starting at page frame idx.
430  */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432                                     unsigned int max_pages)
433 {
434         struct address_space *mapping = inode->i_mapping;
435         pgoff_t index;
436         struct pagevec pvec;
437         pgoff_t num = 0;
438         int i, nr_pages, done = 0;
439
440         if (max_pages == 0)
441                 return 0;
442         pagevec_init(&pvec, 0);
443         while (!done) {
444                 index = idx;
445                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446                                               PAGECACHE_TAG_DIRTY,
447                                               (pgoff_t)PAGEVEC_SIZE);
448                 if (nr_pages == 0)
449                         break;
450                 for (i = 0; i < nr_pages; i++) {
451                         struct page *page = pvec.pages[i];
452                         struct buffer_head *bh, *head;
453
454                         lock_page(page);
455                         if (unlikely(page->mapping != mapping) ||
456                             !PageDirty(page) ||
457                             PageWriteback(page) ||
458                             page->index != idx) {
459                                 done = 1;
460                                 unlock_page(page);
461                                 break;
462                         }
463                         if (page_has_buffers(page)) {
464                                 bh = head = page_buffers(page);
465                                 do {
466                                         if (!buffer_delay(bh) &&
467                                             !buffer_unwritten(bh))
468                                                 done = 1;
469                                         bh = bh->b_this_page;
470                                 } while (!done && (bh != head));
471                         }
472                         unlock_page(page);
473                         if (done)
474                                 break;
475                         idx++;
476                         num++;
477                         if (num >= max_pages) {
478                                 done = 1;
479                                 break;
480                         }
481                 }
482                 pagevec_release(&pvec);
483         }
484         return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489                                        struct inode *inode,
490                                        struct ext4_map_blocks *es_map,
491                                        struct ext4_map_blocks *map,
492                                        int flags)
493 {
494         int retval;
495
496         map->m_flags = 0;
497         /*
498          * There is a race window that the result is not the same.
499          * e.g. xfstests #223 when dioread_nolock enables.  The reason
500          * is that we lookup a block mapping in extent status tree with
501          * out taking i_data_sem.  So at the time the unwritten extent
502          * could be converted.
503          */
504         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505                 down_read((&EXT4_I(inode)->i_data_sem));
506         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508                                              EXT4_GET_BLOCKS_KEEP_SIZE);
509         } else {
510                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511                                              EXT4_GET_BLOCKS_KEEP_SIZE);
512         }
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 up_read((&EXT4_I(inode)->i_data_sem));
515         /*
516          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517          * because it shouldn't be marked in es_map->m_flags.
518          */
519         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521         /*
522          * We don't check m_len because extent will be collpased in status
523          * tree.  So the m_len might not equal.
524          */
525         if (es_map->m_lblk != map->m_lblk ||
526             es_map->m_flags != map->m_flags ||
527             es_map->m_pblk != map->m_pblk) {
528                 printk("ES cache assertation failed for inode: %lu "
529                        "es_cached ex [%d/%d/%llu/%x] != "
530                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531                        inode->i_ino, es_map->m_lblk, es_map->m_len,
532                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
533                        map->m_len, map->m_pblk, map->m_flags,
534                        retval, flags);
535         }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540  * The ext4_map_blocks() function tries to look up the requested blocks,
541  * and returns if the blocks are already mapped.
542  *
543  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544  * and store the allocated blocks in the result buffer head and mark it
545  * mapped.
546  *
547  * If file type is extents based, it will call ext4_ext_map_blocks(),
548  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549  * based files
550  *
551  * On success, it returns the number of blocks being mapped or allocate.
552  * if create==0 and the blocks are pre-allocated and uninitialized block,
553  * the result buffer head is unmapped. If the create ==1, it will make sure
554  * the buffer head is mapped.
555  *
556  * It returns 0 if plain look up failed (blocks have not been allocated), in
557  * that case, buffer head is unmapped
558  *
559  * It returns the error in case of allocation failure.
560  */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562                     struct ext4_map_blocks *map, int flags)
563 {
564         struct extent_status es;
565         int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567         struct ext4_map_blocks orig_map;
568
569         memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572         map->m_flags = 0;
573         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
575                   (unsigned long) map->m_lblk);
576
577         /* Lookup extent status tree firstly */
578         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580                         map->m_pblk = ext4_es_pblock(&es) +
581                                         map->m_lblk - es.es_lblk;
582                         map->m_flags |= ext4_es_is_written(&es) ?
583                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584                         retval = es.es_len - (map->m_lblk - es.es_lblk);
585                         if (retval > map->m_len)
586                                 retval = map->m_len;
587                         map->m_len = retval;
588                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589                         retval = 0;
590                 } else {
591                         BUG_ON(1);
592                 }
593 #ifdef ES_AGGRESSIVE_TEST
594                 ext4_map_blocks_es_recheck(handle, inode, map,
595                                            &orig_map, flags);
596 #endif
597                 goto found;
598         }
599
600         /*
601          * Try to see if we can get the block without requesting a new
602          * file system block.
603          */
604         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605                 down_read((&EXT4_I(inode)->i_data_sem));
606         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608                                              EXT4_GET_BLOCKS_KEEP_SIZE);
609         } else {
610                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611                                              EXT4_GET_BLOCKS_KEEP_SIZE);
612         }
613         if (retval > 0) {
614                 int ret;
615                 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618                 if (retval != map->m_len) {
619                         printk("ES len assertation failed for inode: %lu "
620                                "retval %d != map->m_len %d "
621                                "in %s (lookup)\n", inode->i_ino, retval,
622                                map->m_len, __func__);
623                 }
624 #endif
625
626                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629                     !(status & EXTENT_STATUS_WRITTEN) &&
630                     ext4_find_delalloc_range(inode, map->m_lblk,
631                                              map->m_lblk + map->m_len - 1))
632                         status |= EXTENT_STATUS_DELAYED;
633                 ret = ext4_es_insert_extent(inode, map->m_lblk,
634                                             map->m_len, map->m_pblk, status);
635                 if (ret < 0)
636                         retval = ret;
637         }
638         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
639                 up_read((&EXT4_I(inode)->i_data_sem));
640
641 found:
642         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
643                 int ret = check_block_validity(inode, map);
644                 if (ret != 0)
645                         return ret;
646         }
647
648         /* If it is only a block(s) look up */
649         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
650                 return retval;
651
652         /*
653          * Returns if the blocks have already allocated
654          *
655          * Note that if blocks have been preallocated
656          * ext4_ext_get_block() returns the create = 0
657          * with buffer head unmapped.
658          */
659         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660                 return retval;
661
662         /*
663          * Here we clear m_flags because after allocating an new extent,
664          * it will be set again.
665          */
666         map->m_flags &= ~EXT4_MAP_FLAGS;
667
668         /*
669          * New blocks allocate and/or writing to uninitialized extent
670          * will possibly result in updating i_data, so we take
671          * the write lock of i_data_sem, and call get_blocks()
672          * with create == 1 flag.
673          */
674         down_write((&EXT4_I(inode)->i_data_sem));
675
676         /*
677          * if the caller is from delayed allocation writeout path
678          * we have already reserved fs blocks for allocation
679          * let the underlying get_block() function know to
680          * avoid double accounting
681          */
682         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
683                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
684         /*
685          * We need to check for EXT4 here because migrate
686          * could have changed the inode type in between
687          */
688         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
689                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
690         } else {
691                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
692
693                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
694                         /*
695                          * We allocated new blocks which will result in
696                          * i_data's format changing.  Force the migrate
697                          * to fail by clearing migrate flags
698                          */
699                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
700                 }
701
702                 /*
703                  * Update reserved blocks/metadata blocks after successful
704                  * block allocation which had been deferred till now. We don't
705                  * support fallocate for non extent files. So we can update
706                  * reserve space here.
707                  */
708                 if ((retval > 0) &&
709                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
710                         ext4_da_update_reserve_space(inode, retval, 1);
711         }
712         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
713                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
714
715         if (retval > 0) {
716                 int ret;
717                 unsigned long long status;
718
719 #ifdef ES_AGGRESSIVE_TEST
720                 if (retval != map->m_len) {
721                         printk("ES len assertation failed for inode: %lu "
722                                "retval %d != map->m_len %d "
723                                "in %s (allocation)\n", inode->i_ino, retval,
724                                map->m_len, __func__);
725                 }
726 #endif
727
728                 /*
729                  * If the extent has been zeroed out, we don't need to update
730                  * extent status tree.
731                  */
732                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
733                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
734                         if (ext4_es_is_written(&es))
735                                 goto has_zeroout;
736                 }
737                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
738                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
739                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
740                     !(status & EXTENT_STATUS_WRITTEN) &&
741                     ext4_find_delalloc_range(inode, map->m_lblk,
742                                              map->m_lblk + map->m_len - 1))
743                         status |= EXTENT_STATUS_DELAYED;
744                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
745                                             map->m_pblk, status);
746                 if (ret < 0)
747                         retval = ret;
748         }
749
750 has_zeroout:
751         up_write((&EXT4_I(inode)->i_data_sem));
752         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
753                 int ret = check_block_validity(inode, map);
754                 if (ret != 0)
755                         return ret;
756         }
757         return retval;
758 }
759
760 /* Maximum number of blocks we map for direct IO at once. */
761 #define DIO_MAX_BLOCKS 4096
762
763 static int _ext4_get_block(struct inode *inode, sector_t iblock,
764                            struct buffer_head *bh, int flags)
765 {
766         handle_t *handle = ext4_journal_current_handle();
767         struct ext4_map_blocks map;
768         int ret = 0, started = 0;
769         int dio_credits;
770
771         if (ext4_has_inline_data(inode))
772                 return -ERANGE;
773
774         map.m_lblk = iblock;
775         map.m_len = bh->b_size >> inode->i_blkbits;
776
777         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
778                 /* Direct IO write... */
779                 if (map.m_len > DIO_MAX_BLOCKS)
780                         map.m_len = DIO_MAX_BLOCKS;
781                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
782                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
783                                             dio_credits);
784                 if (IS_ERR(handle)) {
785                         ret = PTR_ERR(handle);
786                         return ret;
787                 }
788                 started = 1;
789         }
790
791         ret = ext4_map_blocks(handle, inode, &map, flags);
792         if (ret > 0) {
793                 map_bh(bh, inode->i_sb, map.m_pblk);
794                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
795                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
796                 ret = 0;
797         }
798         if (started)
799                 ext4_journal_stop(handle);
800         return ret;
801 }
802
803 int ext4_get_block(struct inode *inode, sector_t iblock,
804                    struct buffer_head *bh, int create)
805 {
806         return _ext4_get_block(inode, iblock, bh,
807                                create ? EXT4_GET_BLOCKS_CREATE : 0);
808 }
809
810 /*
811  * `handle' can be NULL if create is zero
812  */
813 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
814                                 ext4_lblk_t block, int create, int *errp)
815 {
816         struct ext4_map_blocks map;
817         struct buffer_head *bh;
818         int fatal = 0, err;
819
820         J_ASSERT(handle != NULL || create == 0);
821
822         map.m_lblk = block;
823         map.m_len = 1;
824         err = ext4_map_blocks(handle, inode, &map,
825                               create ? EXT4_GET_BLOCKS_CREATE : 0);
826
827         /* ensure we send some value back into *errp */
828         *errp = 0;
829
830         if (create && err == 0)
831                 err = -ENOSPC;  /* should never happen */
832         if (err < 0)
833                 *errp = err;
834         if (err <= 0)
835                 return NULL;
836
837         bh = sb_getblk(inode->i_sb, map.m_pblk);
838         if (unlikely(!bh)) {
839                 *errp = -ENOMEM;
840                 return NULL;
841         }
842         if (map.m_flags & EXT4_MAP_NEW) {
843                 J_ASSERT(create != 0);
844                 J_ASSERT(handle != NULL);
845
846                 /*
847                  * Now that we do not always journal data, we should
848                  * keep in mind whether this should always journal the
849                  * new buffer as metadata.  For now, regular file
850                  * writes use ext4_get_block instead, so it's not a
851                  * problem.
852                  */
853                 lock_buffer(bh);
854                 BUFFER_TRACE(bh, "call get_create_access");
855                 fatal = ext4_journal_get_create_access(handle, bh);
856                 if (!fatal && !buffer_uptodate(bh)) {
857                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
858                         set_buffer_uptodate(bh);
859                 }
860                 unlock_buffer(bh);
861                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
862                 err = ext4_handle_dirty_metadata(handle, inode, bh);
863                 if (!fatal)
864                         fatal = err;
865         } else {
866                 BUFFER_TRACE(bh, "not a new buffer");
867         }
868         if (fatal) {
869                 *errp = fatal;
870                 brelse(bh);
871                 bh = NULL;
872         }
873         return bh;
874 }
875
876 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
877                                ext4_lblk_t block, int create, int *err)
878 {
879         struct buffer_head *bh;
880
881         bh = ext4_getblk(handle, inode, block, create, err);
882         if (!bh)
883                 return bh;
884         if (buffer_uptodate(bh))
885                 return bh;
886         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
887         wait_on_buffer(bh);
888         if (buffer_uptodate(bh))
889                 return bh;
890         put_bh(bh);
891         *err = -EIO;
892         return NULL;
893 }
894
895 int ext4_walk_page_buffers(handle_t *handle,
896                            struct buffer_head *head,
897                            unsigned from,
898                            unsigned to,
899                            int *partial,
900                            int (*fn)(handle_t *handle,
901                                      struct buffer_head *bh))
902 {
903         struct buffer_head *bh;
904         unsigned block_start, block_end;
905         unsigned blocksize = head->b_size;
906         int err, ret = 0;
907         struct buffer_head *next;
908
909         for (bh = head, block_start = 0;
910              ret == 0 && (bh != head || !block_start);
911              block_start = block_end, bh = next) {
912                 next = bh->b_this_page;
913                 block_end = block_start + blocksize;
914                 if (block_end <= from || block_start >= to) {
915                         if (partial && !buffer_uptodate(bh))
916                                 *partial = 1;
917                         continue;
918                 }
919                 err = (*fn)(handle, bh);
920                 if (!ret)
921                         ret = err;
922         }
923         return ret;
924 }
925
926 /*
927  * To preserve ordering, it is essential that the hole instantiation and
928  * the data write be encapsulated in a single transaction.  We cannot
929  * close off a transaction and start a new one between the ext4_get_block()
930  * and the commit_write().  So doing the jbd2_journal_start at the start of
931  * prepare_write() is the right place.
932  *
933  * Also, this function can nest inside ext4_writepage().  In that case, we
934  * *know* that ext4_writepage() has generated enough buffer credits to do the
935  * whole page.  So we won't block on the journal in that case, which is good,
936  * because the caller may be PF_MEMALLOC.
937  *
938  * By accident, ext4 can be reentered when a transaction is open via
939  * quota file writes.  If we were to commit the transaction while thus
940  * reentered, there can be a deadlock - we would be holding a quota
941  * lock, and the commit would never complete if another thread had a
942  * transaction open and was blocking on the quota lock - a ranking
943  * violation.
944  *
945  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
946  * will _not_ run commit under these circumstances because handle->h_ref
947  * is elevated.  We'll still have enough credits for the tiny quotafile
948  * write.
949  */
950 int do_journal_get_write_access(handle_t *handle,
951                                 struct buffer_head *bh)
952 {
953         int dirty = buffer_dirty(bh);
954         int ret;
955
956         if (!buffer_mapped(bh) || buffer_freed(bh))
957                 return 0;
958         /*
959          * __block_write_begin() could have dirtied some buffers. Clean
960          * the dirty bit as jbd2_journal_get_write_access() could complain
961          * otherwise about fs integrity issues. Setting of the dirty bit
962          * by __block_write_begin() isn't a real problem here as we clear
963          * the bit before releasing a page lock and thus writeback cannot
964          * ever write the buffer.
965          */
966         if (dirty)
967                 clear_buffer_dirty(bh);
968         ret = ext4_journal_get_write_access(handle, bh);
969         if (!ret && dirty)
970                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
971         return ret;
972 }
973
974 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
975                    struct buffer_head *bh_result, int create);
976 static int ext4_write_begin(struct file *file, struct address_space *mapping,
977                             loff_t pos, unsigned len, unsigned flags,
978                             struct page **pagep, void **fsdata)
979 {
980         struct inode *inode = mapping->host;
981         int ret, needed_blocks;
982         handle_t *handle;
983         int retries = 0;
984         struct page *page;
985         pgoff_t index;
986         unsigned from, to;
987
988         trace_ext4_write_begin(inode, pos, len, flags);
989         /*
990          * Reserve one block more for addition to orphan list in case
991          * we allocate blocks but write fails for some reason
992          */
993         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
994         index = pos >> PAGE_CACHE_SHIFT;
995         from = pos & (PAGE_CACHE_SIZE - 1);
996         to = from + len;
997
998         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
999                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1000                                                     flags, pagep);
1001                 if (ret < 0)
1002                         return ret;
1003                 if (ret == 1)
1004                         return 0;
1005         }
1006
1007         /*
1008          * grab_cache_page_write_begin() can take a long time if the
1009          * system is thrashing due to memory pressure, or if the page
1010          * is being written back.  So grab it first before we start
1011          * the transaction handle.  This also allows us to allocate
1012          * the page (if needed) without using GFP_NOFS.
1013          */
1014 retry_grab:
1015         page = grab_cache_page_write_begin(mapping, index, flags);
1016         if (!page)
1017                 return -ENOMEM;
1018         unlock_page(page);
1019
1020 retry_journal:
1021         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1022         if (IS_ERR(handle)) {
1023                 page_cache_release(page);
1024                 return PTR_ERR(handle);
1025         }
1026
1027         lock_page(page);
1028         if (page->mapping != mapping) {
1029                 /* The page got truncated from under us */
1030                 unlock_page(page);
1031                 page_cache_release(page);
1032                 ext4_journal_stop(handle);
1033                 goto retry_grab;
1034         }
1035         /* In case writeback began while the page was unlocked */
1036         wait_for_stable_page(page);
1037
1038         if (ext4_should_dioread_nolock(inode))
1039                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1040         else
1041                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1042
1043         if (!ret && ext4_should_journal_data(inode)) {
1044                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1045                                              from, to, NULL,
1046                                              do_journal_get_write_access);
1047         }
1048
1049         if (ret) {
1050                 unlock_page(page);
1051                 /*
1052                  * __block_write_begin may have instantiated a few blocks
1053                  * outside i_size.  Trim these off again. Don't need
1054                  * i_size_read because we hold i_mutex.
1055                  *
1056                  * Add inode to orphan list in case we crash before
1057                  * truncate finishes
1058                  */
1059                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1060                         ext4_orphan_add(handle, inode);
1061
1062                 ext4_journal_stop(handle);
1063                 if (pos + len > inode->i_size) {
1064                         ext4_truncate_failed_write(inode);
1065                         /*
1066                          * If truncate failed early the inode might
1067                          * still be on the orphan list; we need to
1068                          * make sure the inode is removed from the
1069                          * orphan list in that case.
1070                          */
1071                         if (inode->i_nlink)
1072                                 ext4_orphan_del(NULL, inode);
1073                 }
1074
1075                 if (ret == -ENOSPC &&
1076                     ext4_should_retry_alloc(inode->i_sb, &retries))
1077                         goto retry_journal;
1078                 page_cache_release(page);
1079                 return ret;
1080         }
1081         *pagep = page;
1082         return ret;
1083 }
1084
1085 /* For write_end() in data=journal mode */
1086 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1087 {
1088         int ret;
1089         if (!buffer_mapped(bh) || buffer_freed(bh))
1090                 return 0;
1091         set_buffer_uptodate(bh);
1092         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1093         clear_buffer_meta(bh);
1094         clear_buffer_prio(bh);
1095         return ret;
1096 }
1097
1098 /*
1099  * We need to pick up the new inode size which generic_commit_write gave us
1100  * `file' can be NULL - eg, when called from page_symlink().
1101  *
1102  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1103  * buffers are managed internally.
1104  */
1105 static int ext4_write_end(struct file *file,
1106                           struct address_space *mapping,
1107                           loff_t pos, unsigned len, unsigned copied,
1108                           struct page *page, void *fsdata)
1109 {
1110         handle_t *handle = ext4_journal_current_handle();
1111         struct inode *inode = mapping->host;
1112         int ret = 0, ret2;
1113         int i_size_changed = 0;
1114
1115         trace_ext4_write_end(inode, pos, len, copied);
1116         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1117                 ret = ext4_jbd2_file_inode(handle, inode);
1118                 if (ret) {
1119                         unlock_page(page);
1120                         page_cache_release(page);
1121                         goto errout;
1122                 }
1123         }
1124
1125         if (ext4_has_inline_data(inode)) {
1126                 ret = ext4_write_inline_data_end(inode, pos, len,
1127                                                  copied, page);
1128                 if (ret < 0)
1129                         goto errout;
1130                 copied = ret;
1131         } else
1132                 copied = block_write_end(file, mapping, pos,
1133                                          len, copied, page, fsdata);
1134
1135         /*
1136          * No need to use i_size_read() here, the i_size
1137          * cannot change under us because we hole i_mutex.
1138          *
1139          * But it's important to update i_size while still holding page lock:
1140          * page writeout could otherwise come in and zero beyond i_size.
1141          */
1142         if (pos + copied > inode->i_size) {
1143                 i_size_write(inode, pos + copied);
1144                 i_size_changed = 1;
1145         }
1146
1147         if (pos + copied > EXT4_I(inode)->i_disksize) {
1148                 /* We need to mark inode dirty even if
1149                  * new_i_size is less that inode->i_size
1150                  * but greater than i_disksize. (hint delalloc)
1151                  */
1152                 ext4_update_i_disksize(inode, (pos + copied));
1153                 i_size_changed = 1;
1154         }
1155         unlock_page(page);
1156         page_cache_release(page);
1157
1158         /*
1159          * Don't mark the inode dirty under page lock. First, it unnecessarily
1160          * makes the holding time of page lock longer. Second, it forces lock
1161          * ordering of page lock and transaction start for journaling
1162          * filesystems.
1163          */
1164         if (i_size_changed)
1165                 ext4_mark_inode_dirty(handle, inode);
1166
1167         if (copied < 0)
1168                 ret = copied;
1169         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1170                 /* if we have allocated more blocks and copied
1171                  * less. We will have blocks allocated outside
1172                  * inode->i_size. So truncate them
1173                  */
1174                 ext4_orphan_add(handle, inode);
1175 errout:
1176         ret2 = ext4_journal_stop(handle);
1177         if (!ret)
1178                 ret = ret2;
1179
1180         if (pos + len > inode->i_size) {
1181                 ext4_truncate_failed_write(inode);
1182                 /*
1183                  * If truncate failed early the inode might still be
1184                  * on the orphan list; we need to make sure the inode
1185                  * is removed from the orphan list in that case.
1186                  */
1187                 if (inode->i_nlink)
1188                         ext4_orphan_del(NULL, inode);
1189         }
1190
1191         return ret ? ret : copied;
1192 }
1193
1194 static int ext4_journalled_write_end(struct file *file,
1195                                      struct address_space *mapping,
1196                                      loff_t pos, unsigned len, unsigned copied,
1197                                      struct page *page, void *fsdata)
1198 {
1199         handle_t *handle = ext4_journal_current_handle();
1200         struct inode *inode = mapping->host;
1201         int ret = 0, ret2;
1202         int partial = 0;
1203         unsigned from, to;
1204         loff_t new_i_size;
1205
1206         trace_ext4_journalled_write_end(inode, pos, len, copied);
1207         from = pos & (PAGE_CACHE_SIZE - 1);
1208         to = from + len;
1209
1210         BUG_ON(!ext4_handle_valid(handle));
1211
1212         if (ext4_has_inline_data(inode))
1213                 copied = ext4_write_inline_data_end(inode, pos, len,
1214                                                     copied, page);
1215         else {
1216                 if (copied < len) {
1217                         if (!PageUptodate(page))
1218                                 copied = 0;
1219                         page_zero_new_buffers(page, from+copied, to);
1220                 }
1221
1222                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1223                                              to, &partial, write_end_fn);
1224                 if (!partial)
1225                         SetPageUptodate(page);
1226         }
1227         new_i_size = pos + copied;
1228         if (new_i_size > inode->i_size)
1229                 i_size_write(inode, pos+copied);
1230         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1231         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1232         if (new_i_size > EXT4_I(inode)->i_disksize) {
1233                 ext4_update_i_disksize(inode, new_i_size);
1234                 ret2 = ext4_mark_inode_dirty(handle, inode);
1235                 if (!ret)
1236                         ret = ret2;
1237         }
1238
1239         unlock_page(page);
1240         page_cache_release(page);
1241         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1242                 /* if we have allocated more blocks and copied
1243                  * less. We will have blocks allocated outside
1244                  * inode->i_size. So truncate them
1245                  */
1246                 ext4_orphan_add(handle, inode);
1247
1248         ret2 = ext4_journal_stop(handle);
1249         if (!ret)
1250                 ret = ret2;
1251         if (pos + len > inode->i_size) {
1252                 ext4_truncate_failed_write(inode);
1253                 /*
1254                  * If truncate failed early the inode might still be
1255                  * on the orphan list; we need to make sure the inode
1256                  * is removed from the orphan list in that case.
1257                  */
1258                 if (inode->i_nlink)
1259                         ext4_orphan_del(NULL, inode);
1260         }
1261
1262         return ret ? ret : copied;
1263 }
1264
1265 /*
1266  * Reserve a metadata for a single block located at lblock
1267  */
1268 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1269 {
1270         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1271         struct ext4_inode_info *ei = EXT4_I(inode);
1272         unsigned int md_needed;
1273         ext4_lblk_t save_last_lblock;
1274         int save_len;
1275
1276         /*
1277          * recalculate the amount of metadata blocks to reserve
1278          * in order to allocate nrblocks
1279          * worse case is one extent per block
1280          */
1281         spin_lock(&ei->i_block_reservation_lock);
1282         /*
1283          * ext4_calc_metadata_amount() has side effects, which we have
1284          * to be prepared undo if we fail to claim space.
1285          */
1286         save_len = ei->i_da_metadata_calc_len;
1287         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1288         md_needed = EXT4_NUM_B2C(sbi,
1289                                  ext4_calc_metadata_amount(inode, lblock));
1290         trace_ext4_da_reserve_space(inode, md_needed);
1291
1292         /*
1293          * We do still charge estimated metadata to the sb though;
1294          * we cannot afford to run out of free blocks.
1295          */
1296         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1297                 ei->i_da_metadata_calc_len = save_len;
1298                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1299                 spin_unlock(&ei->i_block_reservation_lock);
1300                 return -ENOSPC;
1301         }
1302         ei->i_reserved_meta_blocks += md_needed;
1303         spin_unlock(&ei->i_block_reservation_lock);
1304
1305         return 0;       /* success */
1306 }
1307
1308 /*
1309  * Reserve a single cluster located at lblock
1310  */
1311 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1312 {
1313         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314         struct ext4_inode_info *ei = EXT4_I(inode);
1315         unsigned int md_needed;
1316         int ret;
1317         ext4_lblk_t save_last_lblock;
1318         int save_len;
1319
1320         /*
1321          * We will charge metadata quota at writeout time; this saves
1322          * us from metadata over-estimation, though we may go over by
1323          * a small amount in the end.  Here we just reserve for data.
1324          */
1325         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326         if (ret)
1327                 return ret;
1328
1329         /*
1330          * recalculate the amount of metadata blocks to reserve
1331          * in order to allocate nrblocks
1332          * worse case is one extent per block
1333          */
1334         spin_lock(&ei->i_block_reservation_lock);
1335         /*
1336          * ext4_calc_metadata_amount() has side effects, which we have
1337          * to be prepared undo if we fail to claim space.
1338          */
1339         save_len = ei->i_da_metadata_calc_len;
1340         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1341         md_needed = EXT4_NUM_B2C(sbi,
1342                                  ext4_calc_metadata_amount(inode, lblock));
1343         trace_ext4_da_reserve_space(inode, md_needed);
1344
1345         /*
1346          * We do still charge estimated metadata to the sb though;
1347          * we cannot afford to run out of free blocks.
1348          */
1349         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1350                 ei->i_da_metadata_calc_len = save_len;
1351                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1352                 spin_unlock(&ei->i_block_reservation_lock);
1353                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1354                 return -ENOSPC;
1355         }
1356         ei->i_reserved_data_blocks++;
1357         ei->i_reserved_meta_blocks += md_needed;
1358         spin_unlock(&ei->i_block_reservation_lock);
1359
1360         return 0;       /* success */
1361 }
1362
1363 static void ext4_da_release_space(struct inode *inode, int to_free)
1364 {
1365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366         struct ext4_inode_info *ei = EXT4_I(inode);
1367
1368         if (!to_free)
1369                 return;         /* Nothing to release, exit */
1370
1371         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1372
1373         trace_ext4_da_release_space(inode, to_free);
1374         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1375                 /*
1376                  * if there aren't enough reserved blocks, then the
1377                  * counter is messed up somewhere.  Since this
1378                  * function is called from invalidate page, it's
1379                  * harmless to return without any action.
1380                  */
1381                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1382                          "ino %lu, to_free %d with only %d reserved "
1383                          "data blocks", inode->i_ino, to_free,
1384                          ei->i_reserved_data_blocks);
1385                 WARN_ON(1);
1386                 to_free = ei->i_reserved_data_blocks;
1387         }
1388         ei->i_reserved_data_blocks -= to_free;
1389
1390         if (ei->i_reserved_data_blocks == 0) {
1391                 /*
1392                  * We can release all of the reserved metadata blocks
1393                  * only when we have written all of the delayed
1394                  * allocation blocks.
1395                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1396                  * i_reserved_data_blocks, etc. refer to number of clusters.
1397                  */
1398                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1399                                    ei->i_reserved_meta_blocks);
1400                 ei->i_reserved_meta_blocks = 0;
1401                 ei->i_da_metadata_calc_len = 0;
1402         }
1403
1404         /* update fs dirty data blocks counter */
1405         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1406
1407         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1408
1409         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1410 }
1411
1412 static void ext4_da_page_release_reservation(struct page *page,
1413                                              unsigned long offset)
1414 {
1415         int to_release = 0, contiguous_blks = 0;
1416         struct buffer_head *head, *bh;
1417         unsigned int curr_off = 0;
1418         struct inode *inode = page->mapping->host;
1419         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420         int num_clusters;
1421         ext4_fsblk_t lblk;
1422
1423         head = page_buffers(page);
1424         bh = head;
1425         do {
1426                 unsigned int next_off = curr_off + bh->b_size;
1427
1428                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1429                         to_release++;
1430                         contiguous_blks++;
1431                         clear_buffer_delay(bh);
1432                 } else if (contiguous_blks) {
1433                         lblk = page->index <<
1434                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1435                         lblk += (curr_off >> inode->i_blkbits) -
1436                                 contiguous_blks;
1437                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1438                         contiguous_blks = 0;
1439                 }
1440                 curr_off = next_off;
1441         } while ((bh = bh->b_this_page) != head);
1442
1443         if (contiguous_blks) {
1444                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1446                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1447         }
1448
1449         /* If we have released all the blocks belonging to a cluster, then we
1450          * need to release the reserved space for that cluster. */
1451         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1452         while (num_clusters > 0) {
1453                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1454                         ((num_clusters - 1) << sbi->s_cluster_bits);
1455                 if (sbi->s_cluster_ratio == 1 ||
1456                     !ext4_find_delalloc_cluster(inode, lblk))
1457                         ext4_da_release_space(inode, 1);
1458
1459                 num_clusters--;
1460         }
1461 }
1462
1463 /*
1464  * Delayed allocation stuff
1465  */
1466
1467 /*
1468  * mpage_da_submit_io - walks through extent of pages and try to write
1469  * them with writepage() call back
1470  *
1471  * @mpd->inode: inode
1472  * @mpd->first_page: first page of the extent
1473  * @mpd->next_page: page after the last page of the extent
1474  *
1475  * By the time mpage_da_submit_io() is called we expect all blocks
1476  * to be allocated. this may be wrong if allocation failed.
1477  *
1478  * As pages are already locked by write_cache_pages(), we can't use it
1479  */
1480 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1481                               struct ext4_map_blocks *map)
1482 {
1483         struct pagevec pvec;
1484         unsigned long index, end;
1485         int ret = 0, err, nr_pages, i;
1486         struct inode *inode = mpd->inode;
1487         struct address_space *mapping = inode->i_mapping;
1488         loff_t size = i_size_read(inode);
1489         unsigned int len, block_start;
1490         struct buffer_head *bh, *page_bufs = NULL;
1491         sector_t pblock = 0, cur_logical = 0;
1492         struct ext4_io_submit io_submit;
1493
1494         BUG_ON(mpd->next_page <= mpd->first_page);
1495         memset(&io_submit, 0, sizeof(io_submit));
1496         /*
1497          * We need to start from the first_page to the next_page - 1
1498          * to make sure we also write the mapped dirty buffer_heads.
1499          * If we look at mpd->b_blocknr we would only be looking
1500          * at the currently mapped buffer_heads.
1501          */
1502         index = mpd->first_page;
1503         end = mpd->next_page - 1;
1504
1505         pagevec_init(&pvec, 0);
1506         while (index <= end) {
1507                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1508                 if (nr_pages == 0)
1509                         break;
1510                 for (i = 0; i < nr_pages; i++) {
1511                         int skip_page = 0;
1512                         struct page *page = pvec.pages[i];
1513
1514                         index = page->index;
1515                         if (index > end)
1516                                 break;
1517
1518                         if (index == size >> PAGE_CACHE_SHIFT)
1519                                 len = size & ~PAGE_CACHE_MASK;
1520                         else
1521                                 len = PAGE_CACHE_SIZE;
1522                         if (map) {
1523                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1524                                                         inode->i_blkbits);
1525                                 pblock = map->m_pblk + (cur_logical -
1526                                                         map->m_lblk);
1527                         }
1528                         index++;
1529
1530                         BUG_ON(!PageLocked(page));
1531                         BUG_ON(PageWriteback(page));
1532
1533                         bh = page_bufs = page_buffers(page);
1534                         block_start = 0;
1535                         do {
1536                                 if (map && (cur_logical >= map->m_lblk) &&
1537                                     (cur_logical <= (map->m_lblk +
1538                                                      (map->m_len - 1)))) {
1539                                         if (buffer_delay(bh)) {
1540                                                 clear_buffer_delay(bh);
1541                                                 bh->b_blocknr = pblock;
1542                                         }
1543                                         if (buffer_unwritten(bh) ||
1544                                             buffer_mapped(bh))
1545                                                 BUG_ON(bh->b_blocknr != pblock);
1546                                         if (map->m_flags & EXT4_MAP_UNINIT)
1547                                                 set_buffer_uninit(bh);
1548                                         clear_buffer_unwritten(bh);
1549                                 }
1550
1551                                 /*
1552                                  * skip page if block allocation undone and
1553                                  * block is dirty
1554                                  */
1555                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1556                                         skip_page = 1;
1557                                 bh = bh->b_this_page;
1558                                 block_start += bh->b_size;
1559                                 cur_logical++;
1560                                 pblock++;
1561                         } while (bh != page_bufs);
1562
1563                         if (skip_page) {
1564                                 unlock_page(page);
1565                                 continue;
1566                         }
1567
1568                         clear_page_dirty_for_io(page);
1569                         err = ext4_bio_write_page(&io_submit, page, len,
1570                                                   mpd->wbc);
1571                         if (!err)
1572                                 mpd->pages_written++;
1573                         /*
1574                          * In error case, we have to continue because
1575                          * remaining pages are still locked
1576                          */
1577                         if (ret == 0)
1578                                 ret = err;
1579                 }
1580                 pagevec_release(&pvec);
1581         }
1582         ext4_io_submit(&io_submit);
1583         return ret;
1584 }
1585
1586 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1587 {
1588         int nr_pages, i;
1589         pgoff_t index, end;
1590         struct pagevec pvec;
1591         struct inode *inode = mpd->inode;
1592         struct address_space *mapping = inode->i_mapping;
1593         ext4_lblk_t start, last;
1594
1595         index = mpd->first_page;
1596         end   = mpd->next_page - 1;
1597
1598         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1599         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1600         ext4_es_remove_extent(inode, start, last - start + 1);
1601
1602         pagevec_init(&pvec, 0);
1603         while (index <= end) {
1604                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1605                 if (nr_pages == 0)
1606                         break;
1607                 for (i = 0; i < nr_pages; i++) {
1608                         struct page *page = pvec.pages[i];
1609                         if (page->index > end)
1610                                 break;
1611                         BUG_ON(!PageLocked(page));
1612                         BUG_ON(PageWriteback(page));
1613                         block_invalidatepage(page, 0);
1614                         ClearPageUptodate(page);
1615                         unlock_page(page);
1616                 }
1617                 index = pvec.pages[nr_pages - 1]->index + 1;
1618                 pagevec_release(&pvec);
1619         }
1620         return;
1621 }
1622
1623 static void ext4_print_free_blocks(struct inode *inode)
1624 {
1625         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1626         struct super_block *sb = inode->i_sb;
1627         struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1630                EXT4_C2B(EXT4_SB(inode->i_sb),
1631                         ext4_count_free_clusters(sb)));
1632         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1633         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1634                (long long) EXT4_C2B(EXT4_SB(sb),
1635                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1636         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1637                (long long) EXT4_C2B(EXT4_SB(sb),
1638                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1639         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1640         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1641                  ei->i_reserved_data_blocks);
1642         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1643                ei->i_reserved_meta_blocks);
1644         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1645                ei->i_allocated_meta_blocks);
1646         return;
1647 }
1648
1649 /*
1650  * mpage_da_map_and_submit - go through given space, map them
1651  *       if necessary, and then submit them for I/O
1652  *
1653  * @mpd - bh describing space
1654  *
1655  * The function skips space we know is already mapped to disk blocks.
1656  *
1657  */
1658 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1659 {
1660         int err, blks, get_blocks_flags;
1661         struct ext4_map_blocks map, *mapp = NULL;
1662         sector_t next = mpd->b_blocknr;
1663         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1664         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1665         handle_t *handle = NULL;
1666
1667         /*
1668          * If the blocks are mapped already, or we couldn't accumulate
1669          * any blocks, then proceed immediately to the submission stage.
1670          */
1671         if ((mpd->b_size == 0) ||
1672             ((mpd->b_state  & (1 << BH_Mapped)) &&
1673              !(mpd->b_state & (1 << BH_Delay)) &&
1674              !(mpd->b_state & (1 << BH_Unwritten))))
1675                 goto submit_io;
1676
1677         handle = ext4_journal_current_handle();
1678         BUG_ON(!handle);
1679
1680         /*
1681          * Call ext4_map_blocks() to allocate any delayed allocation
1682          * blocks, or to convert an uninitialized extent to be
1683          * initialized (in the case where we have written into
1684          * one or more preallocated blocks).
1685          *
1686          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1687          * indicate that we are on the delayed allocation path.  This
1688          * affects functions in many different parts of the allocation
1689          * call path.  This flag exists primarily because we don't
1690          * want to change *many* call functions, so ext4_map_blocks()
1691          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1692          * inode's allocation semaphore is taken.
1693          *
1694          * If the blocks in questions were delalloc blocks, set
1695          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1696          * variables are updated after the blocks have been allocated.
1697          */
1698         map.m_lblk = next;
1699         map.m_len = max_blocks;
1700         /*
1701          * We're in delalloc path and it is possible that we're going to
1702          * need more metadata blocks than previously reserved. However
1703          * we must not fail because we're in writeback and there is
1704          * nothing we can do about it so it might result in data loss.
1705          * So use reserved blocks to allocate metadata if possible.
1706          */
1707         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1708                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1709         if (ext4_should_dioread_nolock(mpd->inode))
1710                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1711         if (mpd->b_state & (1 << BH_Delay))
1712                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1713
1714
1715         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1716         if (blks < 0) {
1717                 struct super_block *sb = mpd->inode->i_sb;
1718
1719                 err = blks;
1720                 /*
1721                  * If get block returns EAGAIN or ENOSPC and there
1722                  * appears to be free blocks we will just let
1723                  * mpage_da_submit_io() unlock all of the pages.
1724                  */
1725                 if (err == -EAGAIN)
1726                         goto submit_io;
1727
1728                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1729                         mpd->retval = err;
1730                         goto submit_io;
1731                 }
1732
1733                 /*
1734                  * get block failure will cause us to loop in
1735                  * writepages, because a_ops->writepage won't be able
1736                  * to make progress. The page will be redirtied by
1737                  * writepage and writepages will again try to write
1738                  * the same.
1739                  */
1740                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1741                         ext4_msg(sb, KERN_CRIT,
1742                                  "delayed block allocation failed for inode %lu "
1743                                  "at logical offset %llu with max blocks %zd "
1744                                  "with error %d", mpd->inode->i_ino,
1745                                  (unsigned long long) next,
1746                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1747                         ext4_msg(sb, KERN_CRIT,
1748                                 "This should not happen!! Data will be lost");
1749                         if (err == -ENOSPC)
1750                                 ext4_print_free_blocks(mpd->inode);
1751                 }
1752                 /* invalidate all the pages */
1753                 ext4_da_block_invalidatepages(mpd);
1754
1755                 /* Mark this page range as having been completed */
1756                 mpd->io_done = 1;
1757                 return;
1758         }
1759         BUG_ON(blks == 0);
1760
1761         mapp = &map;
1762         if (map.m_flags & EXT4_MAP_NEW) {
1763                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1764                 int i;
1765
1766                 for (i = 0; i < map.m_len; i++)
1767                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1768         }
1769
1770         /*
1771          * Update on-disk size along with block allocation.
1772          */
1773         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1774         if (disksize > i_size_read(mpd->inode))
1775                 disksize = i_size_read(mpd->inode);
1776         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1777                 ext4_update_i_disksize(mpd->inode, disksize);
1778                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1779                 if (err)
1780                         ext4_error(mpd->inode->i_sb,
1781                                    "Failed to mark inode %lu dirty",
1782                                    mpd->inode->i_ino);
1783         }
1784
1785 submit_io:
1786         mpage_da_submit_io(mpd, mapp);
1787         mpd->io_done = 1;
1788 }
1789
1790 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1791                 (1 << BH_Delay) | (1 << BH_Unwritten))
1792
1793 /*
1794  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1795  *
1796  * @mpd->lbh - extent of blocks
1797  * @logical - logical number of the block in the file
1798  * @b_state - b_state of the buffer head added
1799  *
1800  * the function is used to collect contig. blocks in same state
1801  */
1802 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1803                                    unsigned long b_state)
1804 {
1805         sector_t next;
1806         int blkbits = mpd->inode->i_blkbits;
1807         int nrblocks = mpd->b_size >> blkbits;
1808
1809         /*
1810          * XXX Don't go larger than mballoc is willing to allocate
1811          * This is a stopgap solution.  We eventually need to fold
1812          * mpage_da_submit_io() into this function and then call
1813          * ext4_map_blocks() multiple times in a loop
1814          */
1815         if (nrblocks >= (8*1024*1024 >> blkbits))
1816                 goto flush_it;
1817
1818         /* check if the reserved journal credits might overflow */
1819         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1820                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1821                         /*
1822                          * With non-extent format we are limited by the journal
1823                          * credit available.  Total credit needed to insert
1824                          * nrblocks contiguous blocks is dependent on the
1825                          * nrblocks.  So limit nrblocks.
1826                          */
1827                         goto flush_it;
1828                 }
1829         }
1830         /*
1831          * First block in the extent
1832          */
1833         if (mpd->b_size == 0) {
1834                 mpd->b_blocknr = logical;
1835                 mpd->b_size = 1 << blkbits;
1836                 mpd->b_state = b_state & BH_FLAGS;
1837                 return;
1838         }
1839
1840         next = mpd->b_blocknr + nrblocks;
1841         /*
1842          * Can we merge the block to our big extent?
1843          */
1844         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1845                 mpd->b_size += 1 << blkbits;
1846                 return;
1847         }
1848
1849 flush_it:
1850         /*
1851          * We couldn't merge the block to our extent, so we
1852          * need to flush current  extent and start new one
1853          */
1854         mpage_da_map_and_submit(mpd);
1855         return;
1856 }
1857
1858 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1859 {
1860         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1861 }
1862
1863 /*
1864  * This function is grabs code from the very beginning of
1865  * ext4_map_blocks, but assumes that the caller is from delayed write
1866  * time. This function looks up the requested blocks and sets the
1867  * buffer delay bit under the protection of i_data_sem.
1868  */
1869 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1870                               struct ext4_map_blocks *map,
1871                               struct buffer_head *bh)
1872 {
1873         struct extent_status es;
1874         int retval;
1875         sector_t invalid_block = ~((sector_t) 0xffff);
1876 #ifdef ES_AGGRESSIVE_TEST
1877         struct ext4_map_blocks orig_map;
1878
1879         memcpy(&orig_map, map, sizeof(*map));
1880 #endif
1881
1882         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1883                 invalid_block = ~0;
1884
1885         map->m_flags = 0;
1886         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1887                   "logical block %lu\n", inode->i_ino, map->m_len,
1888                   (unsigned long) map->m_lblk);
1889
1890         /* Lookup extent status tree firstly */
1891         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1892
1893                 if (ext4_es_is_hole(&es)) {
1894                         retval = 0;
1895                         down_read((&EXT4_I(inode)->i_data_sem));
1896                         goto add_delayed;
1897                 }
1898
1899                 /*
1900                  * Delayed extent could be allocated by fallocate.
1901                  * So we need to check it.
1902                  */
1903                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1904                         map_bh(bh, inode->i_sb, invalid_block);
1905                         set_buffer_new(bh);
1906                         set_buffer_delay(bh);
1907                         return 0;
1908                 }
1909
1910                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1911                 retval = es.es_len - (iblock - es.es_lblk);
1912                 if (retval > map->m_len)
1913                         retval = map->m_len;
1914                 map->m_len = retval;
1915                 if (ext4_es_is_written(&es))
1916                         map->m_flags |= EXT4_MAP_MAPPED;
1917                 else if (ext4_es_is_unwritten(&es))
1918                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1919                 else
1920                         BUG_ON(1);
1921
1922 #ifdef ES_AGGRESSIVE_TEST
1923                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1924 #endif
1925                 return retval;
1926         }
1927
1928         /*
1929          * Try to see if we can get the block without requesting a new
1930          * file system block.
1931          */
1932         down_read((&EXT4_I(inode)->i_data_sem));
1933         if (ext4_has_inline_data(inode)) {
1934                 /*
1935                  * We will soon create blocks for this page, and let
1936                  * us pretend as if the blocks aren't allocated yet.
1937                  * In case of clusters, we have to handle the work
1938                  * of mapping from cluster so that the reserved space
1939                  * is calculated properly.
1940                  */
1941                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1942                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1943                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1944                 retval = 0;
1945         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1946                 retval = ext4_ext_map_blocks(NULL, inode, map,
1947                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1948         else
1949                 retval = ext4_ind_map_blocks(NULL, inode, map,
1950                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1951
1952 add_delayed:
1953         if (retval == 0) {
1954                 int ret;
1955                 /*
1956                  * XXX: __block_prepare_write() unmaps passed block,
1957                  * is it OK?
1958                  */
1959                 /*
1960                  * If the block was allocated from previously allocated cluster,
1961                  * then we don't need to reserve it again. However we still need
1962                  * to reserve metadata for every block we're going to write.
1963                  */
1964                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1965                         ret = ext4_da_reserve_space(inode, iblock);
1966                         if (ret) {
1967                                 /* not enough space to reserve */
1968                                 retval = ret;
1969                                 goto out_unlock;
1970                         }
1971                 } else {
1972                         ret = ext4_da_reserve_metadata(inode, iblock);
1973                         if (ret) {
1974                                 /* not enough space to reserve */
1975                                 retval = ret;
1976                                 goto out_unlock;
1977                         }
1978                 }
1979
1980                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1981                                             ~0, EXTENT_STATUS_DELAYED);
1982                 if (ret) {
1983                         retval = ret;
1984                         goto out_unlock;
1985                 }
1986
1987                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1988                  * and it should not appear on the bh->b_state.
1989                  */
1990                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1991
1992                 map_bh(bh, inode->i_sb, invalid_block);
1993                 set_buffer_new(bh);
1994                 set_buffer_delay(bh);
1995         } else if (retval > 0) {
1996                 int ret;
1997                 unsigned long long status;
1998
1999 #ifdef ES_AGGRESSIVE_TEST
2000                 if (retval != map->m_len) {
2001                         printk("ES len assertation failed for inode: %lu "
2002                                "retval %d != map->m_len %d "
2003                                "in %s (lookup)\n", inode->i_ino, retval,
2004                                map->m_len, __func__);
2005                 }
2006 #endif
2007
2008                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2009                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2010                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2011                                             map->m_pblk, status);
2012                 if (ret != 0)
2013                         retval = ret;
2014         }
2015
2016 out_unlock:
2017         up_read((&EXT4_I(inode)->i_data_sem));
2018
2019         return retval;
2020 }
2021
2022 /*
2023  * This is a special get_blocks_t callback which is used by
2024  * ext4_da_write_begin().  It will either return mapped block or
2025  * reserve space for a single block.
2026  *
2027  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2028  * We also have b_blocknr = -1 and b_bdev initialized properly
2029  *
2030  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2031  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2032  * initialized properly.
2033  */
2034 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2035                            struct buffer_head *bh, int create)
2036 {
2037         struct ext4_map_blocks map;
2038         int ret = 0;
2039
2040         BUG_ON(create == 0);
2041         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2042
2043         map.m_lblk = iblock;
2044         map.m_len = 1;
2045
2046         /*
2047          * first, we need to know whether the block is allocated already
2048          * preallocated blocks are unmapped but should treated
2049          * the same as allocated blocks.
2050          */
2051         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2052         if (ret <= 0)
2053                 return ret;
2054
2055         map_bh(bh, inode->i_sb, map.m_pblk);
2056         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2057
2058         if (buffer_unwritten(bh)) {
2059                 /* A delayed write to unwritten bh should be marked
2060                  * new and mapped.  Mapped ensures that we don't do
2061                  * get_block multiple times when we write to the same
2062                  * offset and new ensures that we do proper zero out
2063                  * for partial write.
2064                  */
2065                 set_buffer_new(bh);
2066                 set_buffer_mapped(bh);
2067         }
2068         return 0;
2069 }
2070
2071 static int bget_one(handle_t *handle, struct buffer_head *bh)
2072 {
2073         get_bh(bh);
2074         return 0;
2075 }
2076
2077 static int bput_one(handle_t *handle, struct buffer_head *bh)
2078 {
2079         put_bh(bh);
2080         return 0;
2081 }
2082
2083 static int __ext4_journalled_writepage(struct page *page,
2084                                        unsigned int len)
2085 {
2086         struct address_space *mapping = page->mapping;
2087         struct inode *inode = mapping->host;
2088         struct buffer_head *page_bufs = NULL;
2089         handle_t *handle = NULL;
2090         int ret = 0, err = 0;
2091         int inline_data = ext4_has_inline_data(inode);
2092         struct buffer_head *inode_bh = NULL;
2093
2094         ClearPageChecked(page);
2095
2096         if (inline_data) {
2097                 BUG_ON(page->index != 0);
2098                 BUG_ON(len > ext4_get_max_inline_size(inode));
2099                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2100                 if (inode_bh == NULL)
2101                         goto out;
2102         } else {
2103                 page_bufs = page_buffers(page);
2104                 if (!page_bufs) {
2105                         BUG();
2106                         goto out;
2107                 }
2108                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2109                                        NULL, bget_one);
2110         }
2111         /*
2112          * We need to release the page lock before we start the
2113          * journal, so grab a reference so the page won't disappear
2114          * out from under us.
2115          */
2116         get_page(page);
2117         unlock_page(page);
2118
2119         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2120                                     ext4_writepage_trans_blocks(inode));
2121         if (IS_ERR(handle)) {
2122                 ret = PTR_ERR(handle);
2123                 put_page(page);
2124                 goto out_no_pagelock;
2125         }
2126         BUG_ON(!ext4_handle_valid(handle));
2127
2128         lock_page(page);
2129         put_page(page);
2130         if (page->mapping != mapping) {
2131                 /* The page got truncated from under us */
2132                 ext4_journal_stop(handle);
2133                 ret = 0;
2134                 goto out;
2135         }
2136
2137         if (inline_data) {
2138                 ret = ext4_journal_get_write_access(handle, inode_bh);
2139
2140                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2141
2142         } else {
2143                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2144                                              do_journal_get_write_access);
2145
2146                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2147                                              write_end_fn);
2148         }
2149         if (ret == 0)
2150                 ret = err;
2151         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2152         err = ext4_journal_stop(handle);
2153         if (!ret)
2154                 ret = err;
2155
2156         if (!ext4_has_inline_data(inode))
2157                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2158                                        NULL, bput_one);
2159         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2160 out:
2161         unlock_page(page);
2162 out_no_pagelock:
2163         brelse(inode_bh);
2164         return ret;
2165 }
2166
2167 /*
2168  * Note that we don't need to start a transaction unless we're journaling data
2169  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2170  * need to file the inode to the transaction's list in ordered mode because if
2171  * we are writing back data added by write(), the inode is already there and if
2172  * we are writing back data modified via mmap(), no one guarantees in which
2173  * transaction the data will hit the disk. In case we are journaling data, we
2174  * cannot start transaction directly because transaction start ranks above page
2175  * lock so we have to do some magic.
2176  *
2177  * This function can get called via...
2178  *   - ext4_da_writepages after taking page lock (have journal handle)
2179  *   - journal_submit_inode_data_buffers (no journal handle)
2180  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2181  *   - grab_page_cache when doing write_begin (have journal handle)
2182  *
2183  * We don't do any block allocation in this function. If we have page with
2184  * multiple blocks we need to write those buffer_heads that are mapped. This
2185  * is important for mmaped based write. So if we do with blocksize 1K
2186  * truncate(f, 1024);
2187  * a = mmap(f, 0, 4096);
2188  * a[0] = 'a';
2189  * truncate(f, 4096);
2190  * we have in the page first buffer_head mapped via page_mkwrite call back
2191  * but other buffer_heads would be unmapped but dirty (dirty done via the
2192  * do_wp_page). So writepage should write the first block. If we modify
2193  * the mmap area beyond 1024 we will again get a page_fault and the
2194  * page_mkwrite callback will do the block allocation and mark the
2195  * buffer_heads mapped.
2196  *
2197  * We redirty the page if we have any buffer_heads that is either delay or
2198  * unwritten in the page.
2199  *
2200  * We can get recursively called as show below.
2201  *
2202  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2203  *              ext4_writepage()
2204  *
2205  * But since we don't do any block allocation we should not deadlock.
2206  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2207  */
2208 static int ext4_writepage(struct page *page,
2209                           struct writeback_control *wbc)
2210 {
2211         int ret = 0;
2212         loff_t size;
2213         unsigned int len;
2214         struct buffer_head *page_bufs = NULL;
2215         struct inode *inode = page->mapping->host;
2216         struct ext4_io_submit io_submit;
2217
2218         trace_ext4_writepage(page);
2219         size = i_size_read(inode);
2220         if (page->index == size >> PAGE_CACHE_SHIFT)
2221                 len = size & ~PAGE_CACHE_MASK;
2222         else
2223                 len = PAGE_CACHE_SIZE;
2224
2225         page_bufs = page_buffers(page);
2226         /*
2227          * We cannot do block allocation or other extent handling in this
2228          * function. If there are buffers needing that, we have to redirty
2229          * the page. But we may reach here when we do a journal commit via
2230          * journal_submit_inode_data_buffers() and in that case we must write
2231          * allocated buffers to achieve data=ordered mode guarantees.
2232          */
2233         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2234                                    ext4_bh_delay_or_unwritten)) {
2235                 redirty_page_for_writepage(wbc, page);
2236                 if (current->flags & PF_MEMALLOC) {
2237                         /*
2238                          * For memory cleaning there's no point in writing only
2239                          * some buffers. So just bail out. Warn if we came here
2240                          * from direct reclaim.
2241                          */
2242                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2243                                                         == PF_MEMALLOC);
2244                         unlock_page(page);
2245                         return 0;
2246                 }
2247         }
2248
2249         if (PageChecked(page) && ext4_should_journal_data(inode))
2250                 /*
2251                  * It's mmapped pagecache.  Add buffers and journal it.  There
2252                  * doesn't seem much point in redirtying the page here.
2253                  */
2254                 return __ext4_journalled_writepage(page, len);
2255
2256         memset(&io_submit, 0, sizeof(io_submit));
2257         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2258         ext4_io_submit(&io_submit);
2259         return ret;
2260 }
2261
2262 /*
2263  * This is called via ext4_da_writepages() to
2264  * calculate the total number of credits to reserve to fit
2265  * a single extent allocation into a single transaction,
2266  * ext4_da_writpeages() will loop calling this before
2267  * the block allocation.
2268  */
2269
2270 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2271 {
2272         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2273
2274         /*
2275          * With non-extent format the journal credit needed to
2276          * insert nrblocks contiguous block is dependent on
2277          * number of contiguous block. So we will limit
2278          * number of contiguous block to a sane value
2279          */
2280         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2281             (max_blocks > EXT4_MAX_TRANS_DATA))
2282                 max_blocks = EXT4_MAX_TRANS_DATA;
2283
2284         return ext4_chunk_trans_blocks(inode, max_blocks);
2285 }
2286
2287 /*
2288  * write_cache_pages_da - walk the list of dirty pages of the given
2289  * address space and accumulate pages that need writing, and call
2290  * mpage_da_map_and_submit to map a single contiguous memory region
2291  * and then write them.
2292  */
2293 static int write_cache_pages_da(handle_t *handle,
2294                                 struct address_space *mapping,
2295                                 struct writeback_control *wbc,
2296                                 struct mpage_da_data *mpd,
2297                                 pgoff_t *done_index)
2298 {
2299         struct buffer_head      *bh, *head;
2300         struct inode            *inode = mapping->host;
2301         struct pagevec          pvec;
2302         unsigned int            nr_pages;
2303         sector_t                logical;
2304         pgoff_t                 index, end;
2305         long                    nr_to_write = wbc->nr_to_write;
2306         int                     i, tag, ret = 0;
2307
2308         memset(mpd, 0, sizeof(struct mpage_da_data));
2309         mpd->wbc = wbc;
2310         mpd->inode = inode;
2311         pagevec_init(&pvec, 0);
2312         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2313         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2314
2315         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2316                 tag = PAGECACHE_TAG_TOWRITE;
2317         else
2318                 tag = PAGECACHE_TAG_DIRTY;
2319
2320         *done_index = index;
2321         while (index <= end) {
2322                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2323                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2324                 if (nr_pages == 0)
2325                         return 0;
2326
2327                 for (i = 0; i < nr_pages; i++) {
2328                         struct page *page = pvec.pages[i];
2329
2330                         /*
2331                          * At this point, the page may be truncated or
2332                          * invalidated (changing page->mapping to NULL), or
2333                          * even swizzled back from swapper_space to tmpfs file
2334                          * mapping. However, page->index will not change
2335                          * because we have a reference on the page.
2336                          */
2337                         if (page->index > end)
2338                                 goto out;
2339
2340                         *done_index = page->index + 1;
2341
2342                         /*
2343                          * If we can't merge this page, and we have
2344                          * accumulated an contiguous region, write it
2345                          */
2346                         if ((mpd->next_page != page->index) &&
2347                             (mpd->next_page != mpd->first_page)) {
2348                                 mpage_da_map_and_submit(mpd);
2349                                 goto ret_extent_tail;
2350                         }
2351
2352                         lock_page(page);
2353
2354                         /*
2355                          * If the page is no longer dirty, or its
2356                          * mapping no longer corresponds to inode we
2357                          * are writing (which means it has been
2358                          * truncated or invalidated), or the page is
2359                          * already under writeback and we are not
2360                          * doing a data integrity writeback, skip the page
2361                          */
2362                         if (!PageDirty(page) ||
2363                             (PageWriteback(page) &&
2364                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2365                             unlikely(page->mapping != mapping)) {
2366                                 unlock_page(page);
2367                                 continue;
2368                         }
2369
2370                         wait_on_page_writeback(page);
2371                         BUG_ON(PageWriteback(page));
2372
2373                         /*
2374                          * If we have inline data and arrive here, it means that
2375                          * we will soon create the block for the 1st page, so
2376                          * we'd better clear the inline data here.
2377                          */
2378                         if (ext4_has_inline_data(inode)) {
2379                                 BUG_ON(ext4_test_inode_state(inode,
2380                                                 EXT4_STATE_MAY_INLINE_DATA));
2381                                 ext4_destroy_inline_data(handle, inode);
2382                         }
2383
2384                         if (mpd->next_page != page->index)
2385                                 mpd->first_page = page->index;
2386                         mpd->next_page = page->index + 1;
2387                         logical = (sector_t) page->index <<
2388                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2389
2390                         /* Add all dirty buffers to mpd */
2391                         head = page_buffers(page);
2392                         bh = head;
2393                         do {
2394                                 BUG_ON(buffer_locked(bh));
2395                                 /*
2396                                  * We need to try to allocate unmapped blocks
2397                                  * in the same page.  Otherwise we won't make
2398                                  * progress with the page in ext4_writepage
2399                                  */
2400                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2401                                         mpage_add_bh_to_extent(mpd, logical,
2402                                                                bh->b_state);
2403                                         if (mpd->io_done)
2404                                                 goto ret_extent_tail;
2405                                 } else if (buffer_dirty(bh) &&
2406                                            buffer_mapped(bh)) {
2407                                         /*
2408                                          * mapped dirty buffer. We need to
2409                                          * update the b_state because we look
2410                                          * at b_state in mpage_da_map_blocks.
2411                                          * We don't update b_size because if we
2412                                          * find an unmapped buffer_head later
2413                                          * we need to use the b_state flag of
2414                                          * that buffer_head.
2415                                          */
2416                                         if (mpd->b_size == 0)
2417                                                 mpd->b_state =
2418                                                         bh->b_state & BH_FLAGS;
2419                                 }
2420                                 logical++;
2421                         } while ((bh = bh->b_this_page) != head);
2422
2423                         if (nr_to_write > 0) {
2424                                 nr_to_write--;
2425                                 if (nr_to_write == 0 &&
2426                                     wbc->sync_mode == WB_SYNC_NONE)
2427                                         /*
2428                                          * We stop writing back only if we are
2429                                          * not doing integrity sync. In case of
2430                                          * integrity sync we have to keep going
2431                                          * because someone may be concurrently
2432                                          * dirtying pages, and we might have
2433                                          * synced a lot of newly appeared dirty
2434                                          * pages, but have not synced all of the
2435                                          * old dirty pages.
2436                                          */
2437                                         goto out;
2438                         }
2439                 }
2440                 pagevec_release(&pvec);
2441                 cond_resched();
2442         }
2443         return 0;
2444 ret_extent_tail:
2445         ret = MPAGE_DA_EXTENT_TAIL;
2446 out:
2447         pagevec_release(&pvec);
2448         cond_resched();
2449         return ret;
2450 }
2451
2452
2453 static int ext4_da_writepages(struct address_space *mapping,
2454                               struct writeback_control *wbc)
2455 {
2456         pgoff_t index;
2457         int range_whole = 0;
2458         handle_t *handle = NULL;
2459         struct mpage_da_data mpd;
2460         struct inode *inode = mapping->host;
2461         int pages_written = 0;
2462         unsigned int max_pages;
2463         int range_cyclic, cycled = 1, io_done = 0;
2464         int needed_blocks, ret = 0;
2465         long desired_nr_to_write, nr_to_writebump = 0;
2466         loff_t range_start = wbc->range_start;
2467         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2468         pgoff_t done_index = 0;
2469         pgoff_t end;
2470         struct blk_plug plug;
2471
2472         trace_ext4_da_writepages(inode, wbc);
2473
2474         /*
2475          * No pages to write? This is mainly a kludge to avoid starting
2476          * a transaction for special inodes like journal inode on last iput()
2477          * because that could violate lock ordering on umount
2478          */
2479         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2480                 return 0;
2481
2482         /*
2483          * If the filesystem has aborted, it is read-only, so return
2484          * right away instead of dumping stack traces later on that
2485          * will obscure the real source of the problem.  We test
2486          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2487          * the latter could be true if the filesystem is mounted
2488          * read-only, and in that case, ext4_da_writepages should
2489          * *never* be called, so if that ever happens, we would want
2490          * the stack trace.
2491          */
2492         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2493                 return -EROFS;
2494
2495         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2496                 range_whole = 1;
2497
2498         range_cyclic = wbc->range_cyclic;
2499         if (wbc->range_cyclic) {
2500                 index = mapping->writeback_index;
2501                 if (index)
2502                         cycled = 0;
2503                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2504                 wbc->range_end  = LLONG_MAX;
2505                 wbc->range_cyclic = 0;
2506                 end = -1;
2507         } else {
2508                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2509                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2510         }
2511
2512         /*
2513          * This works around two forms of stupidity.  The first is in
2514          * the writeback code, which caps the maximum number of pages
2515          * written to be 1024 pages.  This is wrong on multiple
2516          * levels; different architectues have a different page size,
2517          * which changes the maximum amount of data which gets
2518          * written.  Secondly, 4 megabytes is way too small.  XFS
2519          * forces this value to be 16 megabytes by multiplying
2520          * nr_to_write parameter by four, and then relies on its
2521          * allocator to allocate larger extents to make them
2522          * contiguous.  Unfortunately this brings us to the second
2523          * stupidity, which is that ext4's mballoc code only allocates
2524          * at most 2048 blocks.  So we force contiguous writes up to
2525          * the number of dirty blocks in the inode, or
2526          * sbi->max_writeback_mb_bump whichever is smaller.
2527          */
2528         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2529         if (!range_cyclic && range_whole) {
2530                 if (wbc->nr_to_write == LONG_MAX)
2531                         desired_nr_to_write = wbc->nr_to_write;
2532                 else
2533                         desired_nr_to_write = wbc->nr_to_write * 8;
2534         } else
2535                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2536                                                            max_pages);
2537         if (desired_nr_to_write > max_pages)
2538                 desired_nr_to_write = max_pages;
2539
2540         if (wbc->nr_to_write < desired_nr_to_write) {
2541                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2542                 wbc->nr_to_write = desired_nr_to_write;
2543         }
2544
2545 retry:
2546         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2547                 tag_pages_for_writeback(mapping, index, end);
2548
2549         blk_start_plug(&plug);
2550         while (!ret && wbc->nr_to_write > 0) {
2551
2552                 /*
2553                  * we  insert one extent at a time. So we need
2554                  * credit needed for single extent allocation.
2555                  * journalled mode is currently not supported
2556                  * by delalloc
2557                  */
2558                 BUG_ON(ext4_should_journal_data(inode));
2559                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2560
2561                 /* start a new transaction*/
2562                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2563                                             needed_blocks);
2564                 if (IS_ERR(handle)) {
2565                         ret = PTR_ERR(handle);
2566                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2567                                "%ld pages, ino %lu; err %d", __func__,
2568                                 wbc->nr_to_write, inode->i_ino, ret);
2569                         blk_finish_plug(&plug);
2570                         goto out_writepages;
2571                 }
2572
2573                 /*
2574                  * Now call write_cache_pages_da() to find the next
2575                  * contiguous region of logical blocks that need
2576                  * blocks to be allocated by ext4 and submit them.
2577                  */
2578                 ret = write_cache_pages_da(handle, mapping,
2579                                            wbc, &mpd, &done_index);
2580                 /*
2581                  * If we have a contiguous extent of pages and we
2582                  * haven't done the I/O yet, map the blocks and submit
2583                  * them for I/O.
2584                  */
2585                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2586                         mpage_da_map_and_submit(&mpd);
2587                         ret = MPAGE_DA_EXTENT_TAIL;
2588                 }
2589                 trace_ext4_da_write_pages(inode, &mpd);
2590                 wbc->nr_to_write -= mpd.pages_written;
2591
2592                 ext4_journal_stop(handle);
2593
2594                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2595                         /* commit the transaction which would
2596                          * free blocks released in the transaction
2597                          * and try again
2598                          */
2599                         jbd2_journal_force_commit_nested(sbi->s_journal);
2600                         ret = 0;
2601                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2602                         /*
2603                          * Got one extent now try with rest of the pages.
2604                          * If mpd.retval is set -EIO, journal is aborted.
2605                          * So we don't need to write any more.
2606                          */
2607                         pages_written += mpd.pages_written;
2608                         ret = mpd.retval;
2609                         io_done = 1;
2610                 } else if (wbc->nr_to_write)
2611                         /*
2612                          * There is no more writeout needed
2613                          * or we requested for a noblocking writeout
2614                          * and we found the device congested
2615                          */
2616                         break;
2617         }
2618         blk_finish_plug(&plug);
2619         if (!io_done && !cycled) {
2620                 cycled = 1;
2621                 index = 0;
2622                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2623                 wbc->range_end  = mapping->writeback_index - 1;
2624                 goto retry;
2625         }
2626
2627         /* Update index */
2628         wbc->range_cyclic = range_cyclic;
2629         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2630                 /*
2631                  * set the writeback_index so that range_cyclic
2632                  * mode will write it back later
2633                  */
2634                 mapping->writeback_index = done_index;
2635
2636 out_writepages:
2637         wbc->nr_to_write -= nr_to_writebump;
2638         wbc->range_start = range_start;
2639         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2640         return ret;
2641 }
2642
2643 static int ext4_nonda_switch(struct super_block *sb)
2644 {
2645         s64 free_clusters, dirty_clusters;
2646         struct ext4_sb_info *sbi = EXT4_SB(sb);
2647
2648         /*
2649          * switch to non delalloc mode if we are running low
2650          * on free block. The free block accounting via percpu
2651          * counters can get slightly wrong with percpu_counter_batch getting
2652          * accumulated on each CPU without updating global counters
2653          * Delalloc need an accurate free block accounting. So switch
2654          * to non delalloc when we are near to error range.
2655          */
2656         free_clusters =
2657                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2658         dirty_clusters =
2659                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2660         /*
2661          * Start pushing delalloc when 1/2 of free blocks are dirty.
2662          */
2663         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2664                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2665
2666         if (2 * free_clusters < 3 * dirty_clusters ||
2667             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2668                 /*
2669                  * free block count is less than 150% of dirty blocks
2670                  * or free blocks is less than watermark
2671                  */
2672                 return 1;
2673         }
2674         return 0;
2675 }
2676
2677 /* We always reserve for an inode update; the superblock could be there too */
2678 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2679 {
2680         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2681                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2682                 return 1;
2683
2684         if (pos + len <= 0x7fffffffULL)
2685                 return 1;
2686
2687         /* We might need to update the superblock to set LARGE_FILE */
2688         return 2;
2689 }
2690
2691 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2692                                loff_t pos, unsigned len, unsigned flags,
2693                                struct page **pagep, void **fsdata)
2694 {
2695         int ret, retries = 0;
2696         struct page *page;
2697         pgoff_t index;
2698         struct inode *inode = mapping->host;
2699         handle_t *handle;
2700
2701         index = pos >> PAGE_CACHE_SHIFT;
2702
2703         if (ext4_nonda_switch(inode->i_sb)) {
2704                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2705                 return ext4_write_begin(file, mapping, pos,
2706                                         len, flags, pagep, fsdata);
2707         }
2708         *fsdata = (void *)0;
2709         trace_ext4_da_write_begin(inode, pos, len, flags);
2710
2711         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2712                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2713                                                       pos, len, flags,
2714                                                       pagep, fsdata);
2715                 if (ret < 0)
2716                         return ret;
2717                 if (ret == 1)
2718                         return 0;
2719         }
2720
2721         /*
2722          * grab_cache_page_write_begin() can take a long time if the
2723          * system is thrashing due to memory pressure, or if the page
2724          * is being written back.  So grab it first before we start
2725          * the transaction handle.  This also allows us to allocate
2726          * the page (if needed) without using GFP_NOFS.
2727          */
2728 retry_grab:
2729         page = grab_cache_page_write_begin(mapping, index, flags);
2730         if (!page)
2731                 return -ENOMEM;
2732         unlock_page(page);
2733
2734         /*
2735          * With delayed allocation, we don't log the i_disksize update
2736          * if there is delayed block allocation. But we still need
2737          * to journalling the i_disksize update if writes to the end
2738          * of file which has an already mapped buffer.
2739          */
2740 retry_journal:
2741         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2742                                 ext4_da_write_credits(inode, pos, len));
2743         if (IS_ERR(handle)) {
2744                 page_cache_release(page);
2745                 return PTR_ERR(handle);
2746         }
2747
2748         lock_page(page);
2749         if (page->mapping != mapping) {
2750                 /* The page got truncated from under us */
2751                 unlock_page(page);
2752                 page_cache_release(page);
2753                 ext4_journal_stop(handle);
2754                 goto retry_grab;
2755         }
2756         /* In case writeback began while the page was unlocked */
2757         wait_for_stable_page(page);
2758
2759         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2760         if (ret < 0) {
2761                 unlock_page(page);
2762                 ext4_journal_stop(handle);
2763                 /*
2764                  * block_write_begin may have instantiated a few blocks
2765                  * outside i_size.  Trim these off again. Don't need
2766                  * i_size_read because we hold i_mutex.
2767                  */
2768                 if (pos + len > inode->i_size)
2769                         ext4_truncate_failed_write(inode);
2770
2771                 if (ret == -ENOSPC &&
2772                     ext4_should_retry_alloc(inode->i_sb, &retries))
2773                         goto retry_journal;
2774
2775                 page_cache_release(page);
2776                 return ret;
2777         }
2778
2779         *pagep = page;
2780         return ret;
2781 }
2782
2783 /*
2784  * Check if we should update i_disksize
2785  * when write to the end of file but not require block allocation
2786  */
2787 static int ext4_da_should_update_i_disksize(struct page *page,
2788                                             unsigned long offset)
2789 {
2790         struct buffer_head *bh;
2791         struct inode *inode = page->mapping->host;
2792         unsigned int idx;
2793         int i;
2794
2795         bh = page_buffers(page);
2796         idx = offset >> inode->i_blkbits;
2797
2798         for (i = 0; i < idx; i++)
2799                 bh = bh->b_this_page;
2800
2801         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2802                 return 0;
2803         return 1;
2804 }
2805
2806 static int ext4_da_write_end(struct file *file,
2807                              struct address_space *mapping,
2808                              loff_t pos, unsigned len, unsigned copied,
2809                              struct page *page, void *fsdata)
2810 {
2811         struct inode *inode = mapping->host;
2812         int ret = 0, ret2;
2813         handle_t *handle = ext4_journal_current_handle();
2814         loff_t new_i_size;
2815         unsigned long start, end;
2816         int write_mode = (int)(unsigned long)fsdata;
2817
2818         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2819                 return ext4_write_end(file, mapping, pos,
2820                                       len, copied, page, fsdata);
2821
2822         trace_ext4_da_write_end(inode, pos, len, copied);
2823         start = pos & (PAGE_CACHE_SIZE - 1);
2824         end = start + copied - 1;
2825
2826         /*
2827          * generic_write_end() will run mark_inode_dirty() if i_size
2828          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2829          * into that.
2830          */
2831         new_i_size = pos + copied;
2832         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2833                 if (ext4_has_inline_data(inode) ||
2834                     ext4_da_should_update_i_disksize(page, end)) {
2835                         down_write(&EXT4_I(inode)->i_data_sem);
2836                         if (new_i_size > EXT4_I(inode)->i_disksize)
2837                                 EXT4_I(inode)->i_disksize = new_i_size;
2838                         up_write(&EXT4_I(inode)->i_data_sem);
2839                         /* We need to mark inode dirty even if
2840                          * new_i_size is less that inode->i_size
2841                          * bu greater than i_disksize.(hint delalloc)
2842                          */
2843                         ext4_mark_inode_dirty(handle, inode);
2844                 }
2845         }
2846
2847         if (write_mode != CONVERT_INLINE_DATA &&
2848             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2849             ext4_has_inline_data(inode))
2850                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2851                                                      page);
2852         else
2853                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2854                                                         page, fsdata);
2855
2856         copied = ret2;
2857         if (ret2 < 0)
2858                 ret = ret2;
2859         ret2 = ext4_journal_stop(handle);
2860         if (!ret)
2861                 ret = ret2;
2862
2863         return ret ? ret : copied;
2864 }
2865
2866 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2867 {
2868         /*
2869          * Drop reserved blocks
2870          */
2871         BUG_ON(!PageLocked(page));
2872         if (!page_has_buffers(page))
2873                 goto out;
2874
2875         ext4_da_page_release_reservation(page, offset);
2876
2877 out:
2878         ext4_invalidatepage(page, offset);
2879
2880         return;
2881 }
2882
2883 /*
2884  * Force all delayed allocation blocks to be allocated for a given inode.
2885  */
2886 int ext4_alloc_da_blocks(struct inode *inode)
2887 {
2888         trace_ext4_alloc_da_blocks(inode);
2889
2890         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2891             !EXT4_I(inode)->i_reserved_meta_blocks)
2892                 return 0;
2893
2894         /*
2895          * We do something simple for now.  The filemap_flush() will
2896          * also start triggering a write of the data blocks, which is
2897          * not strictly speaking necessary (and for users of
2898          * laptop_mode, not even desirable).  However, to do otherwise
2899          * would require replicating code paths in:
2900          *
2901          * ext4_da_writepages() ->
2902          *    write_cache_pages() ---> (via passed in callback function)
2903          *        __mpage_da_writepage() -->
2904          *           mpage_add_bh_to_extent()
2905          *           mpage_da_map_blocks()
2906          *
2907          * The problem is that write_cache_pages(), located in
2908          * mm/page-writeback.c, marks pages clean in preparation for
2909          * doing I/O, which is not desirable if we're not planning on
2910          * doing I/O at all.
2911          *
2912          * We could call write_cache_pages(), and then redirty all of
2913          * the pages by calling redirty_page_for_writepage() but that
2914          * would be ugly in the extreme.  So instead we would need to
2915          * replicate parts of the code in the above functions,
2916          * simplifying them because we wouldn't actually intend to
2917          * write out the pages, but rather only collect contiguous
2918          * logical block extents, call the multi-block allocator, and
2919          * then update the buffer heads with the block allocations.
2920          *
2921          * For now, though, we'll cheat by calling filemap_flush(),
2922          * which will map the blocks, and start the I/O, but not
2923          * actually wait for the I/O to complete.
2924          */
2925         return filemap_flush(inode->i_mapping);
2926 }
2927
2928 /*
2929  * bmap() is special.  It gets used by applications such as lilo and by
2930  * the swapper to find the on-disk block of a specific piece of data.
2931  *
2932  * Naturally, this is dangerous if the block concerned is still in the
2933  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2934  * filesystem and enables swap, then they may get a nasty shock when the
2935  * data getting swapped to that swapfile suddenly gets overwritten by
2936  * the original zero's written out previously to the journal and
2937  * awaiting writeback in the kernel's buffer cache.
2938  *
2939  * So, if we see any bmap calls here on a modified, data-journaled file,
2940  * take extra steps to flush any blocks which might be in the cache.
2941  */
2942 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2943 {
2944         struct inode *inode = mapping->host;
2945         journal_t *journal;
2946         int err;
2947
2948         /*
2949          * We can get here for an inline file via the FIBMAP ioctl
2950          */
2951         if (ext4_has_inline_data(inode))
2952                 return 0;
2953
2954         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2955                         test_opt(inode->i_sb, DELALLOC)) {
2956                 /*
2957                  * With delalloc we want to sync the file
2958                  * so that we can make sure we allocate
2959                  * blocks for file
2960                  */
2961                 filemap_write_and_wait(mapping);
2962         }
2963
2964         if (EXT4_JOURNAL(inode) &&
2965             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2966                 /*
2967                  * This is a REALLY heavyweight approach, but the use of
2968                  * bmap on dirty files is expected to be extremely rare:
2969                  * only if we run lilo or swapon on a freshly made file
2970                  * do we expect this to happen.
2971                  *
2972                  * (bmap requires CAP_SYS_RAWIO so this does not
2973                  * represent an unprivileged user DOS attack --- we'd be
2974                  * in trouble if mortal users could trigger this path at
2975                  * will.)
2976                  *
2977                  * NB. EXT4_STATE_JDATA is not set on files other than
2978                  * regular files.  If somebody wants to bmap a directory
2979                  * or symlink and gets confused because the buffer
2980                  * hasn't yet been flushed to disk, they deserve
2981                  * everything they get.
2982                  */
2983
2984                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2985                 journal = EXT4_JOURNAL(inode);
2986                 jbd2_journal_lock_updates(journal);
2987                 err = jbd2_journal_flush(journal);
2988                 jbd2_journal_unlock_updates(journal);
2989
2990                 if (err)
2991                         return 0;
2992         }
2993
2994         return generic_block_bmap(mapping, block, ext4_get_block);
2995 }
2996
2997 static int ext4_readpage(struct file *file, struct page *page)
2998 {
2999         int ret = -EAGAIN;
3000         struct inode *inode = page->mapping->host;
3001
3002         trace_ext4_readpage(page);
3003
3004         if (ext4_has_inline_data(inode))
3005                 ret = ext4_readpage_inline(inode, page);
3006
3007         if (ret == -EAGAIN)
3008                 return mpage_readpage(page, ext4_get_block);
3009
3010         return ret;
3011 }
3012
3013 static int
3014 ext4_readpages(struct file *file, struct address_space *mapping,
3015                 struct list_head *pages, unsigned nr_pages)
3016 {
3017         struct inode *inode = mapping->host;
3018
3019         /* If the file has inline data, no need to do readpages. */
3020         if (ext4_has_inline_data(inode))
3021                 return 0;
3022
3023         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3024 }
3025
3026 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3027 {
3028         trace_ext4_invalidatepage(page, offset);
3029
3030         /* No journalling happens on data buffers when this function is used */
3031         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3032
3033         block_invalidatepage(page, offset);
3034 }
3035
3036 static int __ext4_journalled_invalidatepage(struct page *page,
3037                                             unsigned long offset)
3038 {
3039         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3040
3041         trace_ext4_journalled_invalidatepage(page, offset);
3042
3043         /*
3044          * If it's a full truncate we just forget about the pending dirtying
3045          */
3046         if (offset == 0)
3047                 ClearPageChecked(page);
3048
3049         return jbd2_journal_invalidatepage(journal, page, offset);
3050 }
3051
3052 /* Wrapper for aops... */
3053 static void ext4_journalled_invalidatepage(struct page *page,
3054                                            unsigned long offset)
3055 {
3056         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3057 }
3058
3059 static int ext4_releasepage(struct page *page, gfp_t wait)
3060 {
3061         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3062
3063         trace_ext4_releasepage(page);
3064
3065         /* Page has dirty journalled data -> cannot release */
3066         if (PageChecked(page))
3067                 return 0;
3068         if (journal)
3069                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3070         else
3071                 return try_to_free_buffers(page);
3072 }
3073
3074 /*
3075  * ext4_get_block used when preparing for a DIO write or buffer write.
3076  * We allocate an uinitialized extent if blocks haven't been allocated.
3077  * The extent will be converted to initialized after the IO is complete.
3078  */
3079 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3080                    struct buffer_head *bh_result, int create)
3081 {
3082         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3083                    inode->i_ino, create);
3084         return _ext4_get_block(inode, iblock, bh_result,
3085                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3086 }
3087
3088 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3089                    struct buffer_head *bh_result, int create)
3090 {
3091         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3092                    inode->i_ino, create);
3093         return _ext4_get_block(inode, iblock, bh_result,
3094                                EXT4_GET_BLOCKS_NO_LOCK);
3095 }
3096
3097 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3098                             ssize_t size, void *private, int ret,
3099                             bool is_async)
3100 {
3101         struct inode *inode = file_inode(iocb->ki_filp);
3102         ext4_io_end_t *io_end = iocb->private;
3103
3104         /* if not async direct IO or dio with 0 bytes write, just return */
3105         if (!io_end || !size)
3106                 goto out;
3107
3108         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3109                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3110                   iocb->private, io_end->inode->i_ino, iocb, offset,
3111                   size);
3112
3113         iocb->private = NULL;
3114
3115         /* if not aio dio with unwritten extents, just free io and return */
3116         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3117                 ext4_free_io_end(io_end);
3118 out:
3119                 inode_dio_done(inode);
3120                 if (is_async)
3121                         aio_complete(iocb, ret, 0);
3122                 return;
3123         }
3124
3125         io_end->offset = offset;
3126         io_end->size = size;
3127         if (is_async) {
3128                 io_end->iocb = iocb;
3129                 io_end->result = ret;
3130         }
3131
3132         ext4_add_complete_io(io_end);
3133 }
3134
3135 /*
3136  * For ext4 extent files, ext4 will do direct-io write to holes,
3137  * preallocated extents, and those write extend the file, no need to
3138  * fall back to buffered IO.
3139  *
3140  * For holes, we fallocate those blocks, mark them as uninitialized
3141  * If those blocks were preallocated, we mark sure they are split, but
3142  * still keep the range to write as uninitialized.
3143  *
3144  * The unwritten extents will be converted to written when DIO is completed.
3145  * For async direct IO, since the IO may still pending when return, we
3146  * set up an end_io call back function, which will do the conversion
3147  * when async direct IO completed.
3148  *
3149  * If the O_DIRECT write will extend the file then add this inode to the
3150  * orphan list.  So recovery will truncate it back to the original size
3151  * if the machine crashes during the write.
3152  *
3153  */
3154 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3155                               const struct iovec *iov, loff_t offset,
3156                               unsigned long nr_segs)
3157 {
3158         struct file *file = iocb->ki_filp;
3159         struct inode *inode = file->f_mapping->host;
3160         ssize_t ret;
3161         size_t count = iov_length(iov, nr_segs);
3162         int overwrite = 0;
3163         get_block_t *get_block_func = NULL;
3164         int dio_flags = 0;
3165         loff_t final_size = offset + count;
3166
3167         /* Use the old path for reads and writes beyond i_size. */
3168         if (rw != WRITE || final_size > inode->i_size)
3169                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3170
3171         BUG_ON(iocb->private == NULL);
3172
3173         /* If we do a overwrite dio, i_mutex locking can be released */
3174         overwrite = *((int *)iocb->private);
3175
3176         if (overwrite) {
3177                 atomic_inc(&inode->i_dio_count);
3178                 down_read(&EXT4_I(inode)->i_data_sem);
3179                 mutex_unlock(&inode->i_mutex);
3180         }
3181
3182         /*
3183          * We could direct write to holes and fallocate.
3184          *
3185          * Allocated blocks to fill the hole are marked as
3186          * uninitialized to prevent parallel buffered read to expose
3187          * the stale data before DIO complete the data IO.
3188          *
3189          * As to previously fallocated extents, ext4 get_block will
3190          * just simply mark the buffer mapped but still keep the
3191          * extents uninitialized.
3192          *
3193          * For non AIO case, we will convert those unwritten extents
3194          * to written after return back from blockdev_direct_IO.
3195          *
3196          * For async DIO, the conversion needs to be deferred when the
3197          * IO is completed. The ext4 end_io callback function will be
3198          * called to take care of the conversion work.  Here for async
3199          * case, we allocate an io_end structure to hook to the iocb.
3200          */
3201         iocb->private = NULL;
3202         ext4_inode_aio_set(inode, NULL);
3203         if (!is_sync_kiocb(iocb)) {
3204                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3205                 if (!io_end) {
3206                         ret = -ENOMEM;
3207                         goto retake_lock;
3208                 }
3209                 io_end->flag |= EXT4_IO_END_DIRECT;
3210                 iocb->private = io_end;
3211                 /*
3212                  * we save the io structure for current async direct
3213                  * IO, so that later ext4_map_blocks() could flag the
3214                  * io structure whether there is a unwritten extents
3215                  * needs to be converted when IO is completed.
3216                  */
3217                 ext4_inode_aio_set(inode, io_end);
3218         }
3219
3220         if (overwrite) {
3221                 get_block_func = ext4_get_block_write_nolock;
3222         } else {
3223                 get_block_func = ext4_get_block_write;
3224                 dio_flags = DIO_LOCKING;
3225         }
3226         ret = __blockdev_direct_IO(rw, iocb, inode,
3227                                    inode->i_sb->s_bdev, iov,
3228                                    offset, nr_segs,
3229                                    get_block_func,
3230                                    ext4_end_io_dio,
3231                                    NULL,
3232                                    dio_flags);
3233
3234         if (iocb->private)
3235                 ext4_inode_aio_set(inode, NULL);
3236         /*
3237          * The io_end structure takes a reference to the inode, that
3238          * structure needs to be destroyed and the reference to the
3239          * inode need to be dropped, when IO is complete, even with 0
3240          * byte write, or failed.
3241          *
3242          * In the successful AIO DIO case, the io_end structure will
3243          * be destroyed and the reference to the inode will be dropped
3244          * after the end_io call back function is called.
3245          *
3246          * In the case there is 0 byte write, or error case, since VFS
3247          * direct IO won't invoke the end_io call back function, we
3248          * need to free the end_io structure here.
3249          */
3250         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3251                 ext4_free_io_end(iocb->private);
3252                 iocb->private = NULL;
3253         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3254                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3255                 int err;
3256                 /*
3257                  * for non AIO case, since the IO is already
3258                  * completed, we could do the conversion right here
3259                  */
3260                 err = ext4_convert_unwritten_extents(inode,
3261                                                      offset, ret);
3262                 if (err < 0)
3263                         ret = err;
3264                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3265         }
3266
3267 retake_lock:
3268         /* take i_mutex locking again if we do a ovewrite dio */
3269         if (overwrite) {
3270                 inode_dio_done(inode);
3271                 up_read(&EXT4_I(inode)->i_data_sem);
3272                 mutex_lock(&inode->i_mutex);
3273         }
3274
3275         return ret;
3276 }
3277
3278 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3279                               const struct iovec *iov, loff_t offset,
3280                               unsigned long nr_segs)
3281 {
3282         struct file *file = iocb->ki_filp;
3283         struct inode *inode = file->f_mapping->host;
3284         ssize_t ret;
3285
3286         /*
3287          * If we are doing data journalling we don't support O_DIRECT
3288          */
3289         if (ext4_should_journal_data(inode))
3290                 return 0;
3291
3292         /* Let buffer I/O handle the inline data case. */
3293         if (ext4_has_inline_data(inode))
3294                 return 0;
3295
3296         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3297         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3298                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3299         else
3300                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3301         trace_ext4_direct_IO_exit(inode, offset,
3302                                 iov_length(iov, nr_segs), rw, ret);
3303         return ret;
3304 }
3305
3306 /*
3307  * Pages can be marked dirty completely asynchronously from ext4's journalling
3308  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3309  * much here because ->set_page_dirty is called under VFS locks.  The page is
3310  * not necessarily locked.
3311  *
3312  * We cannot just dirty the page and leave attached buffers clean, because the
3313  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3314  * or jbddirty because all the journalling code will explode.
3315  *
3316  * So what we do is to mark the page "pending dirty" and next time writepage
3317  * is called, propagate that into the buffers appropriately.
3318  */
3319 static int ext4_journalled_set_page_dirty(struct page *page)
3320 {
3321         SetPageChecked(page);
3322         return __set_page_dirty_nobuffers(page);
3323 }
3324
3325 static const struct address_space_operations ext4_aops = {
3326         .readpage               = ext4_readpage,
3327         .readpages              = ext4_readpages,
3328         .writepage              = ext4_writepage,
3329         .write_begin            = ext4_write_begin,
3330         .write_end              = ext4_write_end,
3331         .bmap                   = ext4_bmap,
3332         .invalidatepage         = ext4_invalidatepage,
3333         .releasepage            = ext4_releasepage,
3334         .direct_IO              = ext4_direct_IO,
3335         .migratepage            = buffer_migrate_page,
3336         .is_partially_uptodate  = block_is_partially_uptodate,
3337         .error_remove_page      = generic_error_remove_page,
3338 };
3339
3340 static const struct address_space_operations ext4_journalled_aops = {
3341         .readpage               = ext4_readpage,
3342         .readpages              = ext4_readpages,
3343         .writepage              = ext4_writepage,
3344         .write_begin            = ext4_write_begin,
3345         .write_end              = ext4_journalled_write_end,
3346         .set_page_dirty         = ext4_journalled_set_page_dirty,
3347         .bmap                   = ext4_bmap,
3348         .invalidatepage         = ext4_journalled_invalidatepage,
3349         .releasepage            = ext4_releasepage,
3350         .direct_IO              = ext4_direct_IO,
3351         .is_partially_uptodate  = block_is_partially_uptodate,
3352         .error_remove_page      = generic_error_remove_page,
3353 };
3354
3355 static const struct address_space_operations ext4_da_aops = {
3356         .readpage               = ext4_readpage,
3357         .readpages              = ext4_readpages,
3358         .writepage              = ext4_writepage,
3359         .writepages             = ext4_da_writepages,
3360         .write_begin            = ext4_da_write_begin,
3361         .write_end              = ext4_da_write_end,
3362         .bmap                   = ext4_bmap,
3363         .invalidatepage         = ext4_da_invalidatepage,
3364         .releasepage            = ext4_releasepage,
3365         .direct_IO              = ext4_direct_IO,
3366         .migratepage            = buffer_migrate_page,
3367         .is_partially_uptodate  = block_is_partially_uptodate,
3368         .error_remove_page      = generic_error_remove_page,
3369 };
3370
3371 void ext4_set_aops(struct inode *inode)
3372 {
3373         switch (ext4_inode_journal_mode(inode)) {
3374         case EXT4_INODE_ORDERED_DATA_MODE:
3375                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3376                 break;
3377         case EXT4_INODE_WRITEBACK_DATA_MODE:
3378                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3379                 break;
3380         case EXT4_INODE_JOURNAL_DATA_MODE:
3381                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3382                 return;
3383         default:
3384                 BUG();
3385         }
3386         if (test_opt(inode->i_sb, DELALLOC))
3387                 inode->i_mapping->a_ops = &ext4_da_aops;
3388         else
3389                 inode->i_mapping->a_ops = &ext4_aops;
3390 }
3391
3392
3393 /*
3394  * ext4_discard_partial_page_buffers()
3395  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3396  * This function finds and locks the page containing the offset
3397  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3398  * Calling functions that already have the page locked should call
3399  * ext4_discard_partial_page_buffers_no_lock directly.
3400  */
3401 int ext4_discard_partial_page_buffers(handle_t *handle,
3402                 struct address_space *mapping, loff_t from,
3403                 loff_t length, int flags)
3404 {
3405         struct inode *inode = mapping->host;
3406         struct page *page;
3407         int err = 0;
3408
3409         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3410                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3411         if (!page)
3412                 return -ENOMEM;
3413
3414         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3415                 from, length, flags);
3416
3417         unlock_page(page);
3418         page_cache_release(page);
3419         return err;
3420 }
3421
3422 /*
3423  * ext4_discard_partial_page_buffers_no_lock()
3424  * Zeros a page range of length 'length' starting from offset 'from'.
3425  * Buffer heads that correspond to the block aligned regions of the
3426  * zeroed range will be unmapped.  Unblock aligned regions
3427  * will have the corresponding buffer head mapped if needed so that
3428  * that region of the page can be updated with the partial zero out.
3429  *
3430  * This function assumes that the page has already been  locked.  The
3431  * The range to be discarded must be contained with in the given page.
3432  * If the specified range exceeds the end of the page it will be shortened
3433  * to the end of the page that corresponds to 'from'.  This function is
3434  * appropriate for updating a page and it buffer heads to be unmapped and
3435  * zeroed for blocks that have been either released, or are going to be
3436  * released.
3437  *
3438  * handle: The journal handle
3439  * inode:  The files inode
3440  * page:   A locked page that contains the offset "from"
3441  * from:   The starting byte offset (from the beginning of the file)
3442  *         to begin discarding
3443  * len:    The length of bytes to discard
3444  * flags:  Optional flags that may be used:
3445  *
3446  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3447  *         Only zero the regions of the page whose buffer heads
3448  *         have already been unmapped.  This flag is appropriate
3449  *         for updating the contents of a page whose blocks may
3450  *         have already been released, and we only want to zero
3451  *         out the regions that correspond to those released blocks.
3452  *
3453  * Returns zero on success or negative on failure.
3454  */
3455 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3456                 struct inode *inode, struct page *page, loff_t from,
3457                 loff_t length, int flags)
3458 {
3459         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3460         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3461         unsigned int blocksize, max, pos;
3462         ext4_lblk_t iblock;
3463         struct buffer_head *bh;
3464         int err = 0;
3465
3466         blocksize = inode->i_sb->s_blocksize;
3467         max = PAGE_CACHE_SIZE - offset;
3468
3469         if (index != page->index)
3470                 return -EINVAL;
3471
3472         /*
3473          * correct length if it does not fall between
3474          * 'from' and the end of the page
3475          */
3476         if (length > max || length < 0)
3477                 length = max;
3478
3479         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3480
3481         if (!page_has_buffers(page))
3482                 create_empty_buffers(page, blocksize, 0);
3483
3484         /* Find the buffer that contains "offset" */
3485         bh = page_buffers(page);
3486         pos = blocksize;
3487         while (offset >= pos) {
3488                 bh = bh->b_this_page;
3489                 iblock++;
3490                 pos += blocksize;
3491         }
3492
3493         pos = offset;
3494         while (pos < offset + length) {
3495                 unsigned int end_of_block, range_to_discard;
3496
3497                 err = 0;
3498
3499                 /* The length of space left to zero and unmap */
3500                 range_to_discard = offset + length - pos;
3501
3502                 /* The length of space until the end of the block */
3503                 end_of_block = blocksize - (pos & (blocksize-1));
3504
3505                 /*
3506                  * Do not unmap or zero past end of block
3507                  * for this buffer head
3508                  */
3509                 if (range_to_discard > end_of_block)
3510                         range_to_discard = end_of_block;
3511
3512
3513                 /*
3514                  * Skip this buffer head if we are only zeroing unampped
3515                  * regions of the page
3516                  */
3517                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3518                         buffer_mapped(bh))
3519                                 goto next;
3520
3521                 /* If the range is block aligned, unmap */
3522                 if (range_to_discard == blocksize) {
3523                         clear_buffer_dirty(bh);
3524                         bh->b_bdev = NULL;
3525                         clear_buffer_mapped(bh);
3526                         clear_buffer_req(bh);
3527                         clear_buffer_new(bh);
3528                         clear_buffer_delay(bh);
3529                         clear_buffer_unwritten(bh);
3530                         clear_buffer_uptodate(bh);
3531                         zero_user(page, pos, range_to_discard);
3532                         BUFFER_TRACE(bh, "Buffer discarded");
3533                         goto next;
3534                 }
3535
3536                 /*
3537                  * If this block is not completely contained in the range
3538                  * to be discarded, then it is not going to be released. Because
3539                  * we need to keep this block, we need to make sure this part
3540                  * of the page is uptodate before we modify it by writeing
3541                  * partial zeros on it.
3542                  */
3543                 if (!buffer_mapped(bh)) {
3544                         /*
3545                          * Buffer head must be mapped before we can read
3546                          * from the block
3547                          */
3548                         BUFFER_TRACE(bh, "unmapped");
3549                         ext4_get_block(inode, iblock, bh, 0);
3550                         /* unmapped? It's a hole - nothing to do */
3551                         if (!buffer_mapped(bh)) {
3552                                 BUFFER_TRACE(bh, "still unmapped");
3553                                 goto next;
3554                         }
3555                 }
3556
3557                 /* Ok, it's mapped. Make sure it's up-to-date */
3558                 if (PageUptodate(page))
3559                         set_buffer_uptodate(bh);
3560
3561                 if (!buffer_uptodate(bh)) {
3562                         err = -EIO;
3563                         ll_rw_block(READ, 1, &bh);
3564                         wait_on_buffer(bh);
3565                         /* Uhhuh. Read error. Complain and punt.*/
3566                         if (!buffer_uptodate(bh))
3567                                 goto next;
3568                 }
3569
3570                 if (ext4_should_journal_data(inode)) {
3571                         BUFFER_TRACE(bh, "get write access");
3572                         err = ext4_journal_get_write_access(handle, bh);
3573                         if (err)
3574                                 goto next;
3575                 }
3576
3577                 zero_user(page, pos, range_to_discard);
3578
3579                 err = 0;
3580                 if (ext4_should_journal_data(inode)) {
3581                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3582                 } else
3583                         mark_buffer_dirty(bh);
3584
3585                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3586 next:
3587                 bh = bh->b_this_page;
3588                 iblock++;
3589                 pos += range_to_discard;
3590         }
3591
3592         return err;
3593 }
3594
3595 int ext4_can_truncate(struct inode *inode)
3596 {
3597         if (S_ISREG(inode->i_mode))
3598                 return 1;
3599         if (S_ISDIR(inode->i_mode))
3600                 return 1;
3601         if (S_ISLNK(inode->i_mode))
3602                 return !ext4_inode_is_fast_symlink(inode);
3603         return 0;
3604 }
3605
3606 /*
3607  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3608  * associated with the given offset and length
3609  *
3610  * @inode:  File inode
3611  * @offset: The offset where the hole will begin
3612  * @len:    The length of the hole
3613  *
3614  * Returns: 0 on success or negative on failure
3615  */
3616
3617 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3618 {
3619         struct inode *inode = file_inode(file);
3620         struct super_block *sb = inode->i_sb;
3621         ext4_lblk_t first_block, stop_block;
3622         struct address_space *mapping = inode->i_mapping;
3623         loff_t first_page, last_page, page_len;
3624         loff_t first_page_offset, last_page_offset;
3625         handle_t *handle;
3626         unsigned int credits;
3627         int ret = 0;
3628
3629         if (!S_ISREG(inode->i_mode))
3630                 return -EOPNOTSUPP;
3631
3632         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3633                 /* TODO: Add support for bigalloc file systems */
3634                 return -EOPNOTSUPP;
3635         }
3636
3637         trace_ext4_punch_hole(inode, offset, length);
3638
3639         /*
3640          * Write out all dirty pages to avoid race conditions
3641          * Then release them.
3642          */
3643         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3644                 ret = filemap_write_and_wait_range(mapping, offset,
3645                                                    offset + length - 1);
3646                 if (ret)
3647                         return ret;
3648         }
3649
3650         mutex_lock(&inode->i_mutex);
3651         /* It's not possible punch hole on append only file */
3652         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3653                 ret = -EPERM;
3654                 goto out_mutex;
3655         }
3656         if (IS_SWAPFILE(inode)) {
3657                 ret = -ETXTBSY;
3658                 goto out_mutex;
3659         }
3660
3661         /* No need to punch hole beyond i_size */
3662         if (offset >= inode->i_size)
3663                 goto out_mutex;
3664
3665         /*
3666          * If the hole extends beyond i_size, set the hole
3667          * to end after the page that contains i_size
3668          */
3669         if (offset + length > inode->i_size) {
3670                 length = inode->i_size +
3671                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3672                    offset;
3673         }
3674
3675         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3676         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3677
3678         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3679         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3680
3681         /* Now release the pages */
3682         if (last_page_offset > first_page_offset) {
3683                 truncate_pagecache_range(inode, first_page_offset,
3684                                          last_page_offset - 1);
3685         }
3686
3687         /* Wait all existing dio workers, newcomers will block on i_mutex */
3688         ext4_inode_block_unlocked_dio(inode);
3689         ret = ext4_flush_unwritten_io(inode);
3690         if (ret)
3691                 goto out_dio;
3692         inode_dio_wait(inode);
3693
3694         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3695                 credits = ext4_writepage_trans_blocks(inode);
3696         else
3697                 credits = ext4_blocks_for_truncate(inode);
3698         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3699         if (IS_ERR(handle)) {
3700                 ret = PTR_ERR(handle);
3701                 ext4_std_error(sb, ret);
3702                 goto out_dio;
3703         }
3704
3705         /*
3706          * Now we need to zero out the non-page-aligned data in the
3707          * pages at the start and tail of the hole, and unmap the
3708          * buffer heads for the block aligned regions of the page that
3709          * were completely zeroed.
3710          */
3711         if (first_page > last_page) {
3712                 /*
3713                  * If the file space being truncated is contained
3714                  * within a page just zero out and unmap the middle of
3715                  * that page
3716                  */
3717                 ret = ext4_discard_partial_page_buffers(handle,
3718                         mapping, offset, length, 0);
3719
3720                 if (ret)
3721                         goto out_stop;
3722         } else {
3723                 /*
3724                  * zero out and unmap the partial page that contains
3725                  * the start of the hole
3726                  */
3727                 page_len = first_page_offset - offset;
3728                 if (page_len > 0) {
3729                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3730                                                 offset, page_len, 0);
3731                         if (ret)
3732                                 goto out_stop;
3733                 }
3734
3735                 /*
3736                  * zero out and unmap the partial page that contains
3737                  * the end of the hole
3738                  */
3739                 page_len = offset + length - last_page_offset;
3740                 if (page_len > 0) {
3741                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3742                                         last_page_offset, page_len, 0);
3743                         if (ret)
3744                                 goto out_stop;
3745                 }
3746         }
3747
3748         /*
3749          * If i_size is contained in the last page, we need to
3750          * unmap and zero the partial page after i_size
3751          */
3752         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3753            inode->i_size % PAGE_CACHE_SIZE != 0) {
3754                 page_len = PAGE_CACHE_SIZE -
3755                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3756
3757                 if (page_len > 0) {
3758                         ret = ext4_discard_partial_page_buffers(handle,
3759                                         mapping, inode->i_size, page_len, 0);
3760
3761                         if (ret)
3762                                 goto out_stop;
3763                 }
3764         }
3765
3766         first_block = (offset + sb->s_blocksize - 1) >>
3767                 EXT4_BLOCK_SIZE_BITS(sb);
3768         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3769
3770         /* If there are no blocks to remove, return now */
3771         if (first_block >= stop_block)
3772                 goto out_stop;
3773
3774         down_write(&EXT4_I(inode)->i_data_sem);
3775         ext4_discard_preallocations(inode);
3776
3777         ret = ext4_es_remove_extent(inode, first_block,
3778                                     stop_block - first_block);
3779         if (ret) {
3780                 up_write(&EXT4_I(inode)->i_data_sem);
3781                 goto out_stop;
3782         }
3783
3784         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3785                 ret = ext4_ext_remove_space(inode, first_block,
3786                                             stop_block - 1);
3787         else
3788                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3789                                             stop_block);
3790
3791         ext4_discard_preallocations(inode);
3792         up_write(&EXT4_I(inode)->i_data_sem);
3793         if (IS_SYNC(inode))
3794                 ext4_handle_sync(handle);
3795         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3796         ext4_mark_inode_dirty(handle, inode);
3797 out_stop:
3798         ext4_journal_stop(handle);
3799 out_dio:
3800         ext4_inode_resume_unlocked_dio(inode);
3801 out_mutex:
3802         mutex_unlock(&inode->i_mutex);
3803         return ret;
3804 }
3805
3806 /*
3807  * ext4_truncate()
3808  *
3809  * We block out ext4_get_block() block instantiations across the entire
3810  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3811  * simultaneously on behalf of the same inode.
3812  *
3813  * As we work through the truncate and commit bits of it to the journal there
3814  * is one core, guiding principle: the file's tree must always be consistent on
3815  * disk.  We must be able to restart the truncate after a crash.
3816  *
3817  * The file's tree may be transiently inconsistent in memory (although it
3818  * probably isn't), but whenever we close off and commit a journal transaction,
3819  * the contents of (the filesystem + the journal) must be consistent and
3820  * restartable.  It's pretty simple, really: bottom up, right to left (although
3821  * left-to-right works OK too).
3822  *
3823  * Note that at recovery time, journal replay occurs *before* the restart of
3824  * truncate against the orphan inode list.
3825  *
3826  * The committed inode has the new, desired i_size (which is the same as
3827  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3828  * that this inode's truncate did not complete and it will again call
3829  * ext4_truncate() to have another go.  So there will be instantiated blocks
3830  * to the right of the truncation point in a crashed ext4 filesystem.  But
3831  * that's fine - as long as they are linked from the inode, the post-crash
3832  * ext4_truncate() run will find them and release them.
3833  */
3834 void ext4_truncate(struct inode *inode)
3835 {
3836         struct ext4_inode_info *ei = EXT4_I(inode);
3837         unsigned int credits;
3838         handle_t *handle;
3839         struct address_space *mapping = inode->i_mapping;
3840         loff_t page_len;
3841
3842         /*
3843          * There is a possibility that we're either freeing the inode
3844          * or it completely new indode. In those cases we might not
3845          * have i_mutex locked because it's not necessary.
3846          */
3847         if (!(inode->i_state & (I_NEW|I_FREEING)))
3848                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3849         trace_ext4_truncate_enter(inode);
3850
3851         if (!ext4_can_truncate(inode))
3852                 return;
3853
3854         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3855
3856         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3857                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3858
3859         if (ext4_has_inline_data(inode)) {
3860                 int has_inline = 1;
3861
3862                 ext4_inline_data_truncate(inode, &has_inline);
3863                 if (has_inline)
3864                         return;
3865         }
3866
3867         /*
3868          * finish any pending end_io work so we won't run the risk of
3869          * converting any truncated blocks to initialized later
3870          */
3871         ext4_flush_unwritten_io(inode);
3872
3873         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3874                 credits = ext4_writepage_trans_blocks(inode);
3875         else
3876                 credits = ext4_blocks_for_truncate(inode);
3877
3878         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3879         if (IS_ERR(handle)) {
3880                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3881                 return;
3882         }
3883
3884         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3885                 page_len = PAGE_CACHE_SIZE -
3886                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3887
3888                 if (ext4_discard_partial_page_buffers(handle,
3889                                 mapping, inode->i_size, page_len, 0))
3890                         goto out_stop;
3891         }
3892
3893         /*
3894          * We add the inode to the orphan list, so that if this
3895          * truncate spans multiple transactions, and we crash, we will
3896          * resume the truncate when the filesystem recovers.  It also
3897          * marks the inode dirty, to catch the new size.
3898          *
3899          * Implication: the file must always be in a sane, consistent
3900          * truncatable state while each transaction commits.
3901          */
3902         if (ext4_orphan_add(handle, inode))
3903                 goto out_stop;
3904
3905         down_write(&EXT4_I(inode)->i_data_sem);
3906
3907         ext4_discard_preallocations(inode);
3908
3909         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3910                 ext4_ext_truncate(handle, inode);
3911         else
3912                 ext4_ind_truncate(handle, inode);
3913
3914         up_write(&ei->i_data_sem);
3915
3916         if (IS_SYNC(inode))
3917                 ext4_handle_sync(handle);
3918
3919 out_stop:
3920         /*
3921          * If this was a simple ftruncate() and the file will remain alive,
3922          * then we need to clear up the orphan record which we created above.
3923          * However, if this was a real unlink then we were called by
3924          * ext4_delete_inode(), and we allow that function to clean up the
3925          * orphan info for us.
3926          */
3927         if (inode->i_nlink)
3928                 ext4_orphan_del(handle, inode);
3929
3930         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3931         ext4_mark_inode_dirty(handle, inode);
3932         ext4_journal_stop(handle);
3933
3934         trace_ext4_truncate_exit(inode);
3935 }
3936
3937 /*
3938  * ext4_get_inode_loc returns with an extra refcount against the inode's
3939  * underlying buffer_head on success. If 'in_mem' is true, we have all
3940  * data in memory that is needed to recreate the on-disk version of this
3941  * inode.
3942  */
3943 static int __ext4_get_inode_loc(struct inode *inode,
3944                                 struct ext4_iloc *iloc, int in_mem)
3945 {
3946         struct ext4_group_desc  *gdp;
3947         struct buffer_head      *bh;
3948         struct super_block      *sb = inode->i_sb;
3949         ext4_fsblk_t            block;
3950         int                     inodes_per_block, inode_offset;
3951
3952         iloc->bh = NULL;
3953         if (!ext4_valid_inum(sb, inode->i_ino))
3954                 return -EIO;
3955
3956         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3957         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3958         if (!gdp)
3959                 return -EIO;
3960
3961         /*
3962          * Figure out the offset within the block group inode table
3963          */
3964         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3965         inode_offset = ((inode->i_ino - 1) %
3966                         EXT4_INODES_PER_GROUP(sb));
3967         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3968         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3969
3970         bh = sb_getblk(sb, block);
3971         if (unlikely(!bh))
3972                 return -ENOMEM;
3973         if (!buffer_uptodate(bh)) {
3974                 lock_buffer(bh);
3975
3976                 /*
3977                  * If the buffer has the write error flag, we have failed
3978                  * to write out another inode in the same block.  In this
3979                  * case, we don't have to read the block because we may
3980                  * read the old inode data successfully.
3981                  */
3982                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3983                         set_buffer_uptodate(bh);
3984
3985                 if (buffer_uptodate(bh)) {
3986                         /* someone brought it uptodate while we waited */
3987                         unlock_buffer(bh);
3988                         goto has_buffer;
3989                 }
3990
3991                 /*
3992                  * If we have all information of the inode in memory and this
3993                  * is the only valid inode in the block, we need not read the
3994                  * block.
3995                  */
3996                 if (in_mem) {
3997                         struct buffer_head *bitmap_bh;
3998                         int i, start;
3999
4000                         start = inode_offset & ~(inodes_per_block - 1);
4001
4002                         /* Is the inode bitmap in cache? */
4003                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4004                         if (unlikely(!bitmap_bh))
4005                                 goto make_io;
4006
4007                         /*
4008                          * If the inode bitmap isn't in cache then the
4009                          * optimisation may end up performing two reads instead
4010                          * of one, so skip it.
4011                          */
4012                         if (!buffer_uptodate(bitmap_bh)) {
4013                                 brelse(bitmap_bh);
4014                                 goto make_io;
4015                         }
4016                         for (i = start; i < start + inodes_per_block; i++) {
4017                                 if (i == inode_offset)
4018                                         continue;
4019                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4020                                         break;
4021                         }
4022                         brelse(bitmap_bh);
4023                         if (i == start + inodes_per_block) {
4024                                 /* all other inodes are free, so skip I/O */
4025                                 memset(bh->b_data, 0, bh->b_size);
4026                                 set_buffer_uptodate(bh);
4027                                 unlock_buffer(bh);
4028                                 goto has_buffer;
4029                         }
4030                 }
4031
4032 make_io:
4033                 /*
4034                  * If we need to do any I/O, try to pre-readahead extra
4035                  * blocks from the inode table.
4036                  */
4037                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4038                         ext4_fsblk_t b, end, table;
4039                         unsigned num;
4040                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4041
4042                         table = ext4_inode_table(sb, gdp);
4043                         /* s_inode_readahead_blks is always a power of 2 */
4044                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4045                         if (table > b)
4046                                 b = table;
4047                         end = b + ra_blks;
4048                         num = EXT4_INODES_PER_GROUP(sb);
4049                         if (ext4_has_group_desc_csum(sb))
4050                                 num -= ext4_itable_unused_count(sb, gdp);
4051                         table += num / inodes_per_block;
4052                         if (end > table)
4053                                 end = table;
4054                         while (b <= end)
4055                                 sb_breadahead(sb, b++);
4056                 }
4057
4058                 /*
4059                  * There are other valid inodes in the buffer, this inode
4060                  * has in-inode xattrs, or we don't have this inode in memory.
4061                  * Read the block from disk.
4062                  */
4063                 trace_ext4_load_inode(inode);
4064                 get_bh(bh);
4065                 bh->b_end_io = end_buffer_read_sync;
4066                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4067                 wait_on_buffer(bh);
4068                 if (!buffer_uptodate(bh)) {
4069                         EXT4_ERROR_INODE_BLOCK(inode, block,
4070                                                "unable to read itable block");
4071                         brelse(bh);
4072                         return -EIO;
4073                 }
4074         }
4075 has_buffer:
4076         iloc->bh = bh;
4077         return 0;
4078 }
4079
4080 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4081 {
4082         /* We have all inode data except xattrs in memory here. */
4083         return __ext4_get_inode_loc(inode, iloc,
4084                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4085 }
4086
4087 void ext4_set_inode_flags(struct inode *inode)
4088 {
4089         unsigned int flags = EXT4_I(inode)->i_flags;
4090         unsigned int new_fl = 0;
4091
4092         if (flags & EXT4_SYNC_FL)
4093                 new_fl |= S_SYNC;
4094         if (flags & EXT4_APPEND_FL)
4095                 new_fl |= S_APPEND;
4096         if (flags & EXT4_IMMUTABLE_FL)
4097                 new_fl |= S_IMMUTABLE;
4098         if (flags & EXT4_NOATIME_FL)
4099                 new_fl |= S_NOATIME;
4100         if (flags & EXT4_DIRSYNC_FL)
4101                 new_fl |= S_DIRSYNC;
4102         set_mask_bits(&inode->i_flags,
4103                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4104 }
4105
4106 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4107 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4108 {
4109         unsigned int vfs_fl;
4110         unsigned long old_fl, new_fl;
4111
4112         do {
4113                 vfs_fl = ei->vfs_inode.i_flags;
4114                 old_fl = ei->i_flags;
4115                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4116                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4117                                 EXT4_DIRSYNC_FL);
4118                 if (vfs_fl & S_SYNC)
4119                         new_fl |= EXT4_SYNC_FL;
4120                 if (vfs_fl & S_APPEND)
4121                         new_fl |= EXT4_APPEND_FL;
4122                 if (vfs_fl & S_IMMUTABLE)
4123                         new_fl |= EXT4_IMMUTABLE_FL;
4124                 if (vfs_fl & S_NOATIME)
4125                         new_fl |= EXT4_NOATIME_FL;
4126                 if (vfs_fl & S_DIRSYNC)
4127                         new_fl |= EXT4_DIRSYNC_FL;
4128         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4129 }
4130
4131 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4132                                   struct ext4_inode_info *ei)
4133 {
4134         blkcnt_t i_blocks ;
4135         struct inode *inode = &(ei->vfs_inode);
4136         struct super_block *sb = inode->i_sb;
4137
4138         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4139                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4140                 /* we are using combined 48 bit field */
4141                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4142                                         le32_to_cpu(raw_inode->i_blocks_lo);
4143                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4144                         /* i_blocks represent file system block size */
4145                         return i_blocks  << (inode->i_blkbits - 9);
4146                 } else {
4147                         return i_blocks;
4148                 }
4149         } else {
4150                 return le32_to_cpu(raw_inode->i_blocks_lo);
4151         }
4152 }
4153
4154 static inline void ext4_iget_extra_inode(struct inode *inode,
4155                                          struct ext4_inode *raw_inode,
4156                                          struct ext4_inode_info *ei)
4157 {
4158         __le32 *magic = (void *)raw_inode +
4159                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4160         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4161                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4162                 ext4_find_inline_data_nolock(inode);
4163         } else
4164                 EXT4_I(inode)->i_inline_off = 0;
4165 }
4166
4167 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4168 {
4169         struct ext4_iloc iloc;
4170         struct ext4_inode *raw_inode;
4171         struct ext4_inode_info *ei;
4172         struct inode *inode;
4173         journal_t *journal = EXT4_SB(sb)->s_journal;
4174         long ret;
4175         int block;
4176         uid_t i_uid;
4177         gid_t i_gid;
4178
4179         inode = iget_locked(sb, ino);
4180         if (!inode)
4181                 return ERR_PTR(-ENOMEM);
4182         if (!(inode->i_state & I_NEW))
4183                 return inode;
4184
4185         ei = EXT4_I(inode);
4186         iloc.bh = NULL;
4187
4188         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4189         if (ret < 0)
4190                 goto bad_inode;
4191         raw_inode = ext4_raw_inode(&iloc);
4192
4193         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4194                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4195                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4196                     EXT4_INODE_SIZE(inode->i_sb)) {
4197                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4198                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4199                                 EXT4_INODE_SIZE(inode->i_sb));
4200                         ret = -EIO;
4201                         goto bad_inode;
4202                 }
4203         } else
4204                 ei->i_extra_isize = 0;
4205
4206         /* Precompute checksum seed for inode metadata */
4207         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4208                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4209                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4210                 __u32 csum;
4211                 __le32 inum = cpu_to_le32(inode->i_ino);
4212                 __le32 gen = raw_inode->i_generation;
4213                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4214                                    sizeof(inum));
4215                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4216                                               sizeof(gen));
4217         }
4218
4219         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4220                 EXT4_ERROR_INODE(inode, "checksum invalid");
4221                 ret = -EIO;
4222                 goto bad_inode;
4223         }
4224
4225         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4226         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4227         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4228         if (!(test_opt(inode->i_sb, NO_UID32))) {
4229                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4230                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4231         }
4232         i_uid_write(inode, i_uid);
4233         i_gid_write(inode, i_gid);
4234         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4235
4236         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4237         ei->i_inline_off = 0;
4238         ei->i_dir_start_lookup = 0;
4239         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4240         /* We now have enough fields to check if the inode was active or not.
4241          * This is needed because nfsd might try to access dead inodes
4242          * the test is that same one that e2fsck uses
4243          * NeilBrown 1999oct15
4244          */
4245         if (inode->i_nlink == 0) {
4246                 if ((inode->i_mode == 0 ||
4247                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4248                     ino != EXT4_BOOT_LOADER_INO) {
4249                         /* this inode is deleted */
4250                         ret = -ESTALE;
4251                         goto bad_inode;
4252                 }
4253                 /* The only unlinked inodes we let through here have
4254                  * valid i_mode and are being read by the orphan
4255                  * recovery code: that's fine, we're about to complete
4256                  * the process of deleting those.
4257                  * OR it is the EXT4_BOOT_LOADER_INO which is
4258                  * not initialized on a new filesystem. */
4259         }
4260         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4261         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4262         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4263         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4264                 ei->i_file_acl |=
4265                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4266         inode->i_size = ext4_isize(raw_inode);
4267         ei->i_disksize = inode->i_size;
4268 #ifdef CONFIG_QUOTA
4269         ei->i_reserved_quota = 0;
4270 #endif
4271         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4272         ei->i_block_group = iloc.block_group;
4273         ei->i_last_alloc_group = ~0;
4274         /*
4275          * NOTE! The in-memory inode i_data array is in little-endian order
4276          * even on big-endian machines: we do NOT byteswap the block numbers!
4277          */
4278         for (block = 0; block < EXT4_N_BLOCKS; block++)
4279                 ei->i_data[block] = raw_inode->i_block[block];
4280         INIT_LIST_HEAD(&ei->i_orphan);
4281
4282         /*
4283          * Set transaction id's of transactions that have to be committed
4284          * to finish f[data]sync. We set them to currently running transaction
4285          * as we cannot be sure that the inode or some of its metadata isn't
4286          * part of the transaction - the inode could have been reclaimed and
4287          * now it is reread from disk.
4288          */
4289         if (journal) {
4290                 transaction_t *transaction;
4291                 tid_t tid;
4292
4293                 read_lock(&journal->j_state_lock);
4294                 if (journal->j_running_transaction)
4295                         transaction = journal->j_running_transaction;
4296                 else
4297                         transaction = journal->j_committing_transaction;
4298                 if (transaction)
4299                         tid = transaction->t_tid;
4300                 else
4301                         tid = journal->j_commit_sequence;
4302                 read_unlock(&journal->j_state_lock);
4303                 ei->i_sync_tid = tid;
4304                 ei->i_datasync_tid = tid;
4305         }
4306
4307         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4308                 if (ei->i_extra_isize == 0) {
4309                         /* The extra space is currently unused. Use it. */
4310                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4311                                             EXT4_GOOD_OLD_INODE_SIZE;
4312                 } else {
4313                         ext4_iget_extra_inode(inode, raw_inode, ei);
4314                 }
4315         }
4316
4317         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4318         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4319         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4320         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4321
4322         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4323         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4324                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4325                         inode->i_version |=
4326                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4327         }
4328
4329         ret = 0;
4330         if (ei->i_file_acl &&
4331             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4332                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4333                                  ei->i_file_acl);
4334                 ret = -EIO;
4335                 goto bad_inode;
4336         } else if (!ext4_has_inline_data(inode)) {
4337                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4338                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4339                             (S_ISLNK(inode->i_mode) &&
4340                              !ext4_inode_is_fast_symlink(inode))))
4341                                 /* Validate extent which is part of inode */
4342                                 ret = ext4_ext_check_inode(inode);
4343                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4344                            (S_ISLNK(inode->i_mode) &&
4345                             !ext4_inode_is_fast_symlink(inode))) {
4346                         /* Validate block references which are part of inode */
4347                         ret = ext4_ind_check_inode(inode);
4348                 }
4349         }
4350         if (ret)
4351                 goto bad_inode;
4352
4353         if (S_ISREG(inode->i_mode)) {
4354                 inode->i_op = &ext4_file_inode_operations;
4355                 inode->i_fop = &ext4_file_operations;
4356                 ext4_set_aops(inode);
4357         } else if (S_ISDIR(inode->i_mode)) {
4358                 inode->i_op = &ext4_dir_inode_operations;
4359                 inode->i_fop = &ext4_dir_operations;
4360         } else if (S_ISLNK(inode->i_mode)) {
4361                 if (ext4_inode_is_fast_symlink(inode)) {
4362                         inode->i_op = &ext4_fast_symlink_inode_operations;
4363                         nd_terminate_link(ei->i_data, inode->i_size,
4364                                 sizeof(ei->i_data) - 1);
4365                 } else {
4366                         inode->i_op = &ext4_symlink_inode_operations;
4367                         ext4_set_aops(inode);
4368                 }
4369         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4370               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4371                 inode->i_op = &ext4_special_inode_operations;
4372                 if (raw_inode->i_block[0])
4373                         init_special_inode(inode, inode->i_mode,
4374                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4375                 else
4376                         init_special_inode(inode, inode->i_mode,
4377                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4378         } else if (ino == EXT4_BOOT_LOADER_INO) {
4379                 make_bad_inode(inode);
4380         } else {
4381                 ret = -EIO;
4382                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4383                 goto bad_inode;
4384         }
4385         brelse(iloc.bh);
4386         ext4_set_inode_flags(inode);
4387         unlock_new_inode(inode);
4388         return inode;
4389
4390 bad_inode:
4391         brelse(iloc.bh);
4392         iget_failed(inode);
4393         return ERR_PTR(ret);
4394 }
4395
4396 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4397 {
4398         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4399                 return ERR_PTR(-EIO);
4400         return ext4_iget(sb, ino);
4401 }
4402
4403 static int ext4_inode_blocks_set(handle_t *handle,
4404                                 struct ext4_inode *raw_inode,
4405                                 struct ext4_inode_info *ei)
4406 {
4407         struct inode *inode = &(ei->vfs_inode);
4408         u64 i_blocks = inode->i_blocks;
4409         struct super_block *sb = inode->i_sb;
4410
4411         if (i_blocks <= ~0U) {
4412                 /*
4413                  * i_blocks can be represented in a 32 bit variable
4414                  * as multiple of 512 bytes
4415                  */
4416                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4417                 raw_inode->i_blocks_high = 0;
4418                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4419                 return 0;
4420         }
4421         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4422                 return -EFBIG;
4423
4424         if (i_blocks <= 0xffffffffffffULL) {
4425                 /*
4426                  * i_blocks can be represented in a 48 bit variable
4427                  * as multiple of 512 bytes
4428                  */
4429                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4430                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4431                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4432         } else {
4433                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4434                 /* i_block is stored in file system block size */
4435                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4436                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4437                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4438         }
4439         return 0;
4440 }
4441
4442 /*
4443  * Post the struct inode info into an on-disk inode location in the
4444  * buffer-cache.  This gobbles the caller's reference to the
4445  * buffer_head in the inode location struct.
4446  *
4447  * The caller must have write access to iloc->bh.
4448  */
4449 static int ext4_do_update_inode(handle_t *handle,
4450                                 struct inode *inode,
4451                                 struct ext4_iloc *iloc)
4452 {
4453         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4454         struct ext4_inode_info *ei = EXT4_I(inode);
4455         struct buffer_head *bh = iloc->bh;
4456         int err = 0, rc, block;
4457         int need_datasync = 0;
4458         uid_t i_uid;
4459         gid_t i_gid;
4460
4461         /* For fields not not tracking in the in-memory inode,
4462          * initialise them to zero for new inodes. */
4463         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4464                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4465
4466         ext4_get_inode_flags(ei);
4467         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4468         i_uid = i_uid_read(inode);
4469         i_gid = i_gid_read(inode);
4470         if (!(test_opt(inode->i_sb, NO_UID32))) {
4471                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4472                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4473 /*
4474  * Fix up interoperability with old kernels. Otherwise, old inodes get
4475  * re-used with the upper 16 bits of the uid/gid intact
4476  */
4477                 if (!ei->i_dtime) {
4478                         raw_inode->i_uid_high =
4479                                 cpu_to_le16(high_16_bits(i_uid));
4480                         raw_inode->i_gid_high =
4481                                 cpu_to_le16(high_16_bits(i_gid));
4482                 } else {
4483                         raw_inode->i_uid_high = 0;
4484                         raw_inode->i_gid_high = 0;
4485                 }
4486         } else {
4487                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4488                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4489                 raw_inode->i_uid_high = 0;
4490                 raw_inode->i_gid_high = 0;
4491         }
4492         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4493
4494         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4495         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4496         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4497         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4498
4499         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4500                 goto out_brelse;
4501         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4502         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4503         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4504             cpu_to_le32(EXT4_OS_HURD))
4505                 raw_inode->i_file_acl_high =
4506                         cpu_to_le16(ei->i_file_acl >> 32);
4507         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4508         if (ei->i_disksize != ext4_isize(raw_inode)) {
4509                 ext4_isize_set(raw_inode, ei->i_disksize);
4510                 need_datasync = 1;
4511         }
4512         if (ei->i_disksize > 0x7fffffffULL) {
4513                 struct super_block *sb = inode->i_sb;
4514                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4515                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4516                                 EXT4_SB(sb)->s_es->s_rev_level ==
4517                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4518                         /* If this is the first large file
4519                          * created, add a flag to the superblock.
4520                          */
4521                         err = ext4_journal_get_write_access(handle,
4522                                         EXT4_SB(sb)->s_sbh);
4523                         if (err)
4524                                 goto out_brelse;
4525                         ext4_update_dynamic_rev(sb);
4526                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4527                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4528                         ext4_handle_sync(handle);
4529                         err = ext4_handle_dirty_super(handle, sb);
4530                 }
4531         }
4532         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4533         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4534                 if (old_valid_dev(inode->i_rdev)) {
4535                         raw_inode->i_block[0] =
4536                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4537                         raw_inode->i_block[1] = 0;
4538                 } else {
4539                         raw_inode->i_block[0] = 0;
4540                         raw_inode->i_block[1] =
4541                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4542                         raw_inode->i_block[2] = 0;
4543                 }
4544         } else if (!ext4_has_inline_data(inode)) {
4545                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4546                         raw_inode->i_block[block] = ei->i_data[block];
4547         }
4548
4549         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4550         if (ei->i_extra_isize) {
4551                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4552                         raw_inode->i_version_hi =
4553                         cpu_to_le32(inode->i_version >> 32);
4554                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4555         }
4556
4557         ext4_inode_csum_set(inode, raw_inode, ei);
4558
4559         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4560         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4561         if (!err)
4562                 err = rc;
4563         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4564
4565         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4566 out_brelse:
4567         brelse(bh);
4568         ext4_std_error(inode->i_sb, err);
4569         return err;
4570 }
4571
4572 /*
4573  * ext4_write_inode()
4574  *
4575  * We are called from a few places:
4576  *
4577  * - Within generic_file_write() for O_SYNC files.
4578  *   Here, there will be no transaction running. We wait for any running
4579  *   transaction to commit.
4580  *
4581  * - Within sys_sync(), kupdate and such.
4582  *   We wait on commit, if tol to.
4583  *
4584  * - Within prune_icache() (PF_MEMALLOC == true)
4585  *   Here we simply return.  We can't afford to block kswapd on the
4586  *   journal commit.
4587  *
4588  * In all cases it is actually safe for us to return without doing anything,
4589  * because the inode has been copied into a raw inode buffer in
4590  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4591  * knfsd.
4592  *
4593  * Note that we are absolutely dependent upon all inode dirtiers doing the
4594  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4595  * which we are interested.
4596  *
4597  * It would be a bug for them to not do this.  The code:
4598  *
4599  *      mark_inode_dirty(inode)
4600  *      stuff();
4601  *      inode->i_size = expr;
4602  *
4603  * is in error because a kswapd-driven write_inode() could occur while
4604  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4605  * will no longer be on the superblock's dirty inode list.
4606  */
4607 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4608 {
4609         int err;
4610
4611         if (current->flags & PF_MEMALLOC)
4612                 return 0;
4613
4614         if (EXT4_SB(inode->i_sb)->s_journal) {
4615                 if (ext4_journal_current_handle()) {
4616                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4617                         dump_stack();
4618                         return -EIO;
4619                 }
4620
4621                 if (wbc->sync_mode != WB_SYNC_ALL)
4622                         return 0;
4623
4624                 err = ext4_force_commit(inode->i_sb);
4625         } else {
4626                 struct ext4_iloc iloc;
4627
4628                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4629                 if (err)
4630                         return err;
4631                 if (wbc->sync_mode == WB_SYNC_ALL)
4632                         sync_dirty_buffer(iloc.bh);
4633                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4634                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4635                                          "IO error syncing inode");
4636                         err = -EIO;
4637                 }
4638                 brelse(iloc.bh);
4639         }
4640         return err;
4641 }
4642
4643 /*
4644  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4645  * buffers that are attached to a page stradding i_size and are undergoing
4646  * commit. In that case we have to wait for commit to finish and try again.
4647  */
4648 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4649 {
4650         struct page *page;
4651         unsigned offset;
4652         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4653         tid_t commit_tid = 0;
4654         int ret;
4655
4656         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4657         /*
4658          * All buffers in the last page remain valid? Then there's nothing to
4659          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4660          * blocksize case
4661          */
4662         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4663                 return;
4664         while (1) {
4665                 page = find_lock_page(inode->i_mapping,
4666                                       inode->i_size >> PAGE_CACHE_SHIFT);
4667                 if (!page)
4668                         return;
4669                 ret = __ext4_journalled_invalidatepage(page, offset);
4670                 unlock_page(page);
4671                 page_cache_release(page);
4672                 if (ret != -EBUSY)
4673                         return;
4674                 commit_tid = 0;
4675                 read_lock(&journal->j_state_lock);
4676                 if (journal->j_committing_transaction)
4677                         commit_tid = journal->j_committing_transaction->t_tid;
4678                 read_unlock(&journal->j_state_lock);
4679                 if (commit_tid)
4680                         jbd2_log_wait_commit(journal, commit_tid);
4681         }
4682 }
4683
4684 /*
4685  * ext4_setattr()
4686  *
4687  * Called from notify_change.
4688  *
4689  * We want to trap VFS attempts to truncate the file as soon as
4690  * possible.  In particular, we want to make sure that when the VFS
4691  * shrinks i_size, we put the inode on the orphan list and modify
4692  * i_disksize immediately, so that during the subsequent flushing of
4693  * dirty pages and freeing of disk blocks, we can guarantee that any
4694  * commit will leave the blocks being flushed in an unused state on
4695  * disk.  (On recovery, the inode will get truncated and the blocks will
4696  * be freed, so we have a strong guarantee that no future commit will
4697  * leave these blocks visible to the user.)
4698  *
4699  * Another thing we have to assure is that if we are in ordered mode
4700  * and inode is still attached to the committing transaction, we must
4701  * we start writeout of all the dirty pages which are being truncated.
4702  * This way we are sure that all the data written in the previous
4703  * transaction are already on disk (truncate waits for pages under
4704  * writeback).
4705  *
4706  * Called with inode->i_mutex down.
4707  */
4708 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4709 {
4710         struct inode *inode = dentry->d_inode;
4711         int error, rc = 0;
4712         int orphan = 0;
4713         const unsigned int ia_valid = attr->ia_valid;
4714
4715         error = inode_change_ok(inode, attr);
4716         if (error)
4717                 return error;
4718
4719         if (is_quota_modification(inode, attr))
4720                 dquot_initialize(inode);
4721         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4722             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4723                 handle_t *handle;
4724
4725                 /* (user+group)*(old+new) structure, inode write (sb,
4726                  * inode block, ? - but truncate inode update has it) */
4727                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4728                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4729                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4730                 if (IS_ERR(handle)) {
4731                         error = PTR_ERR(handle);
4732                         goto err_out;
4733                 }
4734                 error = dquot_transfer(inode, attr);
4735                 if (error) {
4736                         ext4_journal_stop(handle);
4737                         return error;
4738                 }
4739                 /* Update corresponding info in inode so that everything is in
4740                  * one transaction */
4741                 if (attr->ia_valid & ATTR_UID)
4742                         inode->i_uid = attr->ia_uid;
4743                 if (attr->ia_valid & ATTR_GID)
4744                         inode->i_gid = attr->ia_gid;
4745                 error = ext4_mark_inode_dirty(handle, inode);
4746                 ext4_journal_stop(handle);
4747         }
4748
4749         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4750                 handle_t *handle;
4751                 loff_t oldsize = inode->i_size;
4752
4753                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4754                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4755
4756                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4757                                 return -EFBIG;
4758                 }
4759
4760                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4761                         inode_inc_iversion(inode);
4762
4763                 if (S_ISREG(inode->i_mode) &&
4764                     (attr->ia_size < inode->i_size)) {
4765                         if (ext4_should_order_data(inode)) {
4766                                 error = ext4_begin_ordered_truncate(inode,
4767                                                             attr->ia_size);
4768                                 if (error)
4769                                         goto err_out;
4770                         }
4771                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4772                         if (IS_ERR(handle)) {
4773                                 error = PTR_ERR(handle);
4774                                 goto err_out;
4775                         }
4776                         if (ext4_handle_valid(handle)) {
4777                                 error = ext4_orphan_add(handle, inode);
4778                                 orphan = 1;
4779                         }
4780                         EXT4_I(inode)->i_disksize = attr->ia_size;
4781                         rc = ext4_mark_inode_dirty(handle, inode);
4782                         if (!error)
4783                                 error = rc;
4784                         ext4_journal_stop(handle);
4785                         if (error) {
4786                                 ext4_orphan_del(NULL, inode);
4787                                 goto err_out;
4788                         }
4789                 }
4790
4791                 i_size_write(inode, attr->ia_size);
4792                 /*
4793                  * Blocks are going to be removed from the inode. Wait
4794                  * for dio in flight.  Temporarily disable
4795                  * dioread_nolock to prevent livelock.
4796                  */
4797                 if (orphan) {
4798                         if (!ext4_should_journal_data(inode)) {
4799                                 ext4_inode_block_unlocked_dio(inode);
4800                                 inode_dio_wait(inode);
4801                                 ext4_inode_resume_unlocked_dio(inode);
4802                         } else
4803                                 ext4_wait_for_tail_page_commit(inode);
4804                 }
4805                 /*
4806                  * Truncate pagecache after we've waited for commit
4807                  * in data=journal mode to make pages freeable.
4808                  */
4809                 truncate_pagecache(inode, oldsize, inode->i_size);
4810         }
4811         /*
4812          * We want to call ext4_truncate() even if attr->ia_size ==
4813          * inode->i_size for cases like truncation of fallocated space
4814          */
4815         if (attr->ia_valid & ATTR_SIZE)
4816                 ext4_truncate(inode);
4817
4818         if (!rc) {
4819                 setattr_copy(inode, attr);
4820                 mark_inode_dirty(inode);
4821         }
4822
4823         /*
4824          * If the call to ext4_truncate failed to get a transaction handle at
4825          * all, we need to clean up the in-core orphan list manually.
4826          */
4827         if (orphan && inode->i_nlink)
4828                 ext4_orphan_del(NULL, inode);
4829
4830         if (!rc && (ia_valid & ATTR_MODE))
4831                 rc = ext4_acl_chmod(inode);
4832
4833 err_out:
4834         ext4_std_error(inode->i_sb, error);
4835         if (!error)
4836                 error = rc;
4837         return error;
4838 }
4839
4840 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4841                  struct kstat *stat)
4842 {
4843         struct inode *inode;
4844         unsigned long long delalloc_blocks;
4845
4846         inode = dentry->d_inode;
4847         generic_fillattr(inode, stat);
4848
4849         /*
4850          * We can't update i_blocks if the block allocation is delayed
4851          * otherwise in the case of system crash before the real block
4852          * allocation is done, we will have i_blocks inconsistent with
4853          * on-disk file blocks.
4854          * We always keep i_blocks updated together with real
4855          * allocation. But to not confuse with user, stat
4856          * will return the blocks that include the delayed allocation
4857          * blocks for this file.
4858          */
4859         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4860                                 EXT4_I(inode)->i_reserved_data_blocks);
4861
4862         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4863         return 0;
4864 }
4865
4866 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4867 {
4868         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4869                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4870         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4871 }
4872
4873 /*
4874  * Account for index blocks, block groups bitmaps and block group
4875  * descriptor blocks if modify datablocks and index blocks
4876  * worse case, the indexs blocks spread over different block groups
4877  *
4878  * If datablocks are discontiguous, they are possible to spread over
4879  * different block groups too. If they are contiguous, with flexbg,
4880  * they could still across block group boundary.
4881  *
4882  * Also account for superblock, inode, quota and xattr blocks
4883  */
4884 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4885 {
4886         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4887         int gdpblocks;
4888         int idxblocks;
4889         int ret = 0;
4890
4891         /*
4892          * How many index blocks need to touch to modify nrblocks?
4893          * The "Chunk" flag indicating whether the nrblocks is
4894          * physically contiguous on disk
4895          *
4896          * For Direct IO and fallocate, they calls get_block to allocate
4897          * one single extent at a time, so they could set the "Chunk" flag
4898          */
4899         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4900
4901         ret = idxblocks;
4902
4903         /*
4904          * Now let's see how many group bitmaps and group descriptors need
4905          * to account
4906          */
4907         groups = idxblocks;
4908         if (chunk)
4909                 groups += 1;
4910         else
4911                 groups += nrblocks;
4912
4913         gdpblocks = groups;
4914         if (groups > ngroups)
4915                 groups = ngroups;
4916         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4917                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4918
4919         /* bitmaps and block group descriptor blocks */
4920         ret += groups + gdpblocks;
4921
4922         /* Blocks for super block, inode, quota and xattr blocks */
4923         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4924
4925         return ret;
4926 }
4927
4928 /*
4929  * Calculate the total number of credits to reserve to fit
4930  * the modification of a single pages into a single transaction,
4931  * which may include multiple chunks of block allocations.
4932  *
4933  * This could be called via ext4_write_begin()
4934  *
4935  * We need to consider the worse case, when
4936  * one new block per extent.
4937  */
4938 int ext4_writepage_trans_blocks(struct inode *inode)
4939 {
4940         int bpp = ext4_journal_blocks_per_page(inode);
4941         int ret;
4942
4943         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4944
4945         /* Account for data blocks for journalled mode */
4946         if (ext4_should_journal_data(inode))
4947                 ret += bpp;
4948         return ret;
4949 }
4950
4951 /*
4952  * Calculate the journal credits for a chunk of data modification.
4953  *
4954  * This is called from DIO, fallocate or whoever calling
4955  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4956  *
4957  * journal buffers for data blocks are not included here, as DIO
4958  * and fallocate do no need to journal data buffers.
4959  */
4960 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4961 {
4962         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4963 }
4964
4965 /*
4966  * The caller must have previously called ext4_reserve_inode_write().
4967  * Give this, we know that the caller already has write access to iloc->bh.
4968  */
4969 int ext4_mark_iloc_dirty(handle_t *handle,
4970                          struct inode *inode, struct ext4_iloc *iloc)
4971 {
4972         int err = 0;
4973
4974         if (IS_I_VERSION(inode))
4975                 inode_inc_iversion(inode);
4976
4977         /* the do_update_inode consumes one bh->b_count */
4978         get_bh(iloc->bh);
4979
4980         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4981         err = ext4_do_update_inode(handle, inode, iloc);
4982         put_bh(iloc->bh);
4983         return err;
4984 }
4985
4986 /*
4987  * On success, We end up with an outstanding reference count against
4988  * iloc->bh.  This _must_ be cleaned up later.
4989  */
4990
4991 int
4992 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4993                          struct ext4_iloc *iloc)
4994 {
4995         int err;
4996
4997         err = ext4_get_inode_loc(inode, iloc);
4998         if (!err) {
4999                 BUFFER_TRACE(iloc->bh, "get_write_access");
5000                 err = ext4_journal_get_write_access(handle, iloc->bh);
5001                 if (err) {
5002                         brelse(iloc->bh);
5003                         iloc->bh = NULL;
5004                 }
5005         }
5006         ext4_std_error(inode->i_sb, err);
5007         return err;
5008 }
5009
5010 /*
5011  * Expand an inode by new_extra_isize bytes.
5012  * Returns 0 on success or negative error number on failure.
5013  */
5014 static int ext4_expand_extra_isize(struct inode *inode,
5015                                    unsigned int new_extra_isize,
5016                                    struct ext4_iloc iloc,
5017                                    handle_t *handle)
5018 {
5019         struct ext4_inode *raw_inode;
5020         struct ext4_xattr_ibody_header *header;
5021
5022         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5023                 return 0;
5024
5025         raw_inode = ext4_raw_inode(&iloc);
5026
5027         header = IHDR(inode, raw_inode);
5028
5029         /* No extended attributes present */
5030         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5031             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5032                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5033                         new_extra_isize);
5034                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5035                 return 0;
5036         }
5037
5038         /* try to expand with EAs present */
5039         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5040                                           raw_inode, handle);
5041 }
5042
5043 /*
5044  * What we do here is to mark the in-core inode as clean with respect to inode
5045  * dirtiness (it may still be data-dirty).
5046  * This means that the in-core inode may be reaped by prune_icache
5047  * without having to perform any I/O.  This is a very good thing,
5048  * because *any* task may call prune_icache - even ones which
5049  * have a transaction open against a different journal.
5050  *
5051  * Is this cheating?  Not really.  Sure, we haven't written the
5052  * inode out, but prune_icache isn't a user-visible syncing function.
5053  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5054  * we start and wait on commits.
5055  */
5056 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5057 {
5058         struct ext4_iloc iloc;
5059         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5060         static unsigned int mnt_count;
5061         int err, ret;
5062
5063         might_sleep();
5064         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5065         err = ext4_reserve_inode_write(handle, inode, &iloc);
5066         if (ext4_handle_valid(handle) &&
5067             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5068             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5069                 /*
5070                  * We need extra buffer credits since we may write into EA block
5071                  * with this same handle. If journal_extend fails, then it will
5072                  * only result in a minor loss of functionality for that inode.
5073                  * If this is felt to be critical, then e2fsck should be run to
5074                  * force a large enough s_min_extra_isize.
5075                  */
5076                 if ((jbd2_journal_extend(handle,
5077                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5078                         ret = ext4_expand_extra_isize(inode,
5079                                                       sbi->s_want_extra_isize,
5080                                                       iloc, handle);
5081                         if (ret) {
5082                                 ext4_set_inode_state(inode,
5083                                                      EXT4_STATE_NO_EXPAND);
5084                                 if (mnt_count !=
5085                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5086                                         ext4_warning(inode->i_sb,
5087                                         "Unable to expand inode %lu. Delete"
5088                                         " some EAs or run e2fsck.",
5089                                         inode->i_ino);
5090                                         mnt_count =
5091                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5092                                 }
5093                         }
5094                 }
5095         }
5096         if (!err)
5097                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5098         return err;
5099 }
5100
5101 /*
5102  * ext4_dirty_inode() is called from __mark_inode_dirty()
5103  *
5104  * We're really interested in the case where a file is being extended.
5105  * i_size has been changed by generic_commit_write() and we thus need
5106  * to include the updated inode in the current transaction.
5107  *
5108  * Also, dquot_alloc_block() will always dirty the inode when blocks
5109  * are allocated to the file.
5110  *
5111  * If the inode is marked synchronous, we don't honour that here - doing
5112  * so would cause a commit on atime updates, which we don't bother doing.
5113  * We handle synchronous inodes at the highest possible level.
5114  */
5115 void ext4_dirty_inode(struct inode *inode, int flags)
5116 {
5117         handle_t *handle;
5118
5119         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5120         if (IS_ERR(handle))
5121                 goto out;
5122
5123         ext4_mark_inode_dirty(handle, inode);
5124
5125         ext4_journal_stop(handle);
5126 out:
5127         return;
5128 }
5129
5130 #if 0
5131 /*
5132  * Bind an inode's backing buffer_head into this transaction, to prevent
5133  * it from being flushed to disk early.  Unlike
5134  * ext4_reserve_inode_write, this leaves behind no bh reference and
5135  * returns no iloc structure, so the caller needs to repeat the iloc
5136  * lookup to mark the inode dirty later.
5137  */
5138 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5139 {
5140         struct ext4_iloc iloc;
5141
5142         int err = 0;
5143         if (handle) {
5144                 err = ext4_get_inode_loc(inode, &iloc);
5145                 if (!err) {
5146                         BUFFER_TRACE(iloc.bh, "get_write_access");
5147                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5148                         if (!err)
5149                                 err = ext4_handle_dirty_metadata(handle,
5150                                                                  NULL,
5151                                                                  iloc.bh);
5152                         brelse(iloc.bh);
5153                 }
5154         }
5155         ext4_std_error(inode->i_sb, err);
5156         return err;
5157 }
5158 #endif
5159
5160 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5161 {
5162         journal_t *journal;
5163         handle_t *handle;
5164         int err;
5165
5166         /*
5167          * We have to be very careful here: changing a data block's
5168          * journaling status dynamically is dangerous.  If we write a
5169          * data block to the journal, change the status and then delete
5170          * that block, we risk forgetting to revoke the old log record
5171          * from the journal and so a subsequent replay can corrupt data.
5172          * So, first we make sure that the journal is empty and that
5173          * nobody is changing anything.
5174          */
5175
5176         journal = EXT4_JOURNAL(inode);
5177         if (!journal)
5178                 return 0;
5179         if (is_journal_aborted(journal))
5180                 return -EROFS;
5181         /* We have to allocate physical blocks for delalloc blocks
5182          * before flushing journal. otherwise delalloc blocks can not
5183          * be allocated any more. even more truncate on delalloc blocks
5184          * could trigger BUG by flushing delalloc blocks in journal.
5185          * There is no delalloc block in non-journal data mode.
5186          */
5187         if (val && test_opt(inode->i_sb, DELALLOC)) {
5188                 err = ext4_alloc_da_blocks(inode);
5189                 if (err < 0)
5190                         return err;
5191         }
5192
5193         /* Wait for all existing dio workers */
5194         ext4_inode_block_unlocked_dio(inode);
5195         inode_dio_wait(inode);
5196
5197         jbd2_journal_lock_updates(journal);
5198
5199         /*
5200          * OK, there are no updates running now, and all cached data is
5201          * synced to disk.  We are now in a completely consistent state
5202          * which doesn't have anything in the journal, and we know that
5203          * no filesystem updates are running, so it is safe to modify
5204          * the inode's in-core data-journaling state flag now.
5205          */
5206
5207         if (val)
5208                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5209         else {
5210                 jbd2_journal_flush(journal);
5211                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5212         }
5213         ext4_set_aops(inode);
5214
5215         jbd2_journal_unlock_updates(journal);
5216         ext4_inode_resume_unlocked_dio(inode);
5217
5218         /* Finally we can mark the inode as dirty. */
5219
5220         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5221         if (IS_ERR(handle))
5222                 return PTR_ERR(handle);
5223
5224         err = ext4_mark_inode_dirty(handle, inode);
5225         ext4_handle_sync(handle);
5226         ext4_journal_stop(handle);
5227         ext4_std_error(inode->i_sb, err);
5228
5229         return err;
5230 }
5231
5232 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5233 {
5234         return !buffer_mapped(bh);
5235 }
5236
5237 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5238 {
5239         struct page *page = vmf->page;
5240         loff_t size;
5241         unsigned long len;
5242         int ret;
5243         struct file *file = vma->vm_file;
5244         struct inode *inode = file_inode(file);
5245         struct address_space *mapping = inode->i_mapping;
5246         handle_t *handle;
5247         get_block_t *get_block;
5248         int retries = 0;
5249
5250         sb_start_pagefault(inode->i_sb);
5251         file_update_time(vma->vm_file);
5252         /* Delalloc case is easy... */
5253         if (test_opt(inode->i_sb, DELALLOC) &&
5254             !ext4_should_journal_data(inode) &&
5255             !ext4_nonda_switch(inode->i_sb)) {
5256                 do {
5257                         ret = __block_page_mkwrite(vma, vmf,
5258                                                    ext4_da_get_block_prep);
5259                 } while (ret == -ENOSPC &&
5260                        ext4_should_retry_alloc(inode->i_sb, &retries));
5261                 goto out_ret;
5262         }
5263
5264         lock_page(page);
5265         size = i_size_read(inode);
5266         /* Page got truncated from under us? */
5267         if (page->mapping != mapping || page_offset(page) > size) {
5268                 unlock_page(page);
5269                 ret = VM_FAULT_NOPAGE;
5270                 goto out;
5271         }
5272
5273         if (page->index == size >> PAGE_CACHE_SHIFT)
5274                 len = size & ~PAGE_CACHE_MASK;
5275         else
5276                 len = PAGE_CACHE_SIZE;
5277         /*
5278          * Return if we have all the buffers mapped. This avoids the need to do
5279          * journal_start/journal_stop which can block and take a long time
5280          */
5281         if (page_has_buffers(page)) {
5282                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5283                                             0, len, NULL,
5284                                             ext4_bh_unmapped)) {
5285                         /* Wait so that we don't change page under IO */
5286                         wait_for_stable_page(page);
5287                         ret = VM_FAULT_LOCKED;
5288                         goto out;
5289                 }
5290         }
5291         unlock_page(page);
5292         /* OK, we need to fill the hole... */
5293         if (ext4_should_dioread_nolock(inode))
5294                 get_block = ext4_get_block_write;
5295         else
5296                 get_block = ext4_get_block;
5297 retry_alloc:
5298         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5299                                     ext4_writepage_trans_blocks(inode));
5300         if (IS_ERR(handle)) {
5301                 ret = VM_FAULT_SIGBUS;
5302                 goto out;
5303         }
5304         ret = __block_page_mkwrite(vma, vmf, get_block);
5305         if (!ret && ext4_should_journal_data(inode)) {
5306                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5307                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5308                         unlock_page(page);
5309                         ret = VM_FAULT_SIGBUS;
5310                         ext4_journal_stop(handle);
5311                         goto out;
5312                 }
5313                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5314         }
5315         ext4_journal_stop(handle);
5316         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5317                 goto retry_alloc;
5318 out_ret:
5319         ret = block_page_mkwrite_return(ret);
5320 out:
5321         sb_end_pagefault(inode->i_sb);
5322         return ret;
5323 }