Merge branch 'v3.10/topic/big.LITTLE' into linux-linaro-lsk-v3.10
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned long offset);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140                 struct inode *inode, struct page *page, loff_t from,
141                 loff_t length, int flags);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 (inode->i_sb->s_blocksize >> 9) : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 ext4_ioend_shutdown(inode);
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229         ext4_ioend_shutdown(inode);
230
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428  * Return the number of contiguous dirty pages in a given inode
429  * starting at page frame idx.
430  */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432                                     unsigned int max_pages)
433 {
434         struct address_space *mapping = inode->i_mapping;
435         pgoff_t index;
436         struct pagevec pvec;
437         pgoff_t num = 0;
438         int i, nr_pages, done = 0;
439
440         if (max_pages == 0)
441                 return 0;
442         pagevec_init(&pvec, 0);
443         while (!done) {
444                 index = idx;
445                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446                                               PAGECACHE_TAG_DIRTY,
447                                               (pgoff_t)PAGEVEC_SIZE);
448                 if (nr_pages == 0)
449                         break;
450                 for (i = 0; i < nr_pages; i++) {
451                         struct page *page = pvec.pages[i];
452                         struct buffer_head *bh, *head;
453
454                         lock_page(page);
455                         if (unlikely(page->mapping != mapping) ||
456                             !PageDirty(page) ||
457                             PageWriteback(page) ||
458                             page->index != idx) {
459                                 done = 1;
460                                 unlock_page(page);
461                                 break;
462                         }
463                         if (page_has_buffers(page)) {
464                                 bh = head = page_buffers(page);
465                                 do {
466                                         if (!buffer_delay(bh) &&
467                                             !buffer_unwritten(bh))
468                                                 done = 1;
469                                         bh = bh->b_this_page;
470                                 } while (!done && (bh != head));
471                         }
472                         unlock_page(page);
473                         if (done)
474                                 break;
475                         idx++;
476                         num++;
477                         if (num >= max_pages) {
478                                 done = 1;
479                                 break;
480                         }
481                 }
482                 pagevec_release(&pvec);
483         }
484         return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489                                        struct inode *inode,
490                                        struct ext4_map_blocks *es_map,
491                                        struct ext4_map_blocks *map,
492                                        int flags)
493 {
494         int retval;
495
496         map->m_flags = 0;
497         /*
498          * There is a race window that the result is not the same.
499          * e.g. xfstests #223 when dioread_nolock enables.  The reason
500          * is that we lookup a block mapping in extent status tree with
501          * out taking i_data_sem.  So at the time the unwritten extent
502          * could be converted.
503          */
504         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505                 down_read((&EXT4_I(inode)->i_data_sem));
506         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508                                              EXT4_GET_BLOCKS_KEEP_SIZE);
509         } else {
510                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511                                              EXT4_GET_BLOCKS_KEEP_SIZE);
512         }
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 up_read((&EXT4_I(inode)->i_data_sem));
515         /*
516          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517          * because it shouldn't be marked in es_map->m_flags.
518          */
519         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521         /*
522          * We don't check m_len because extent will be collpased in status
523          * tree.  So the m_len might not equal.
524          */
525         if (es_map->m_lblk != map->m_lblk ||
526             es_map->m_flags != map->m_flags ||
527             es_map->m_pblk != map->m_pblk) {
528                 printk("ES cache assertation failed for inode: %lu "
529                        "es_cached ex [%d/%d/%llu/%x] != "
530                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531                        inode->i_ino, es_map->m_lblk, es_map->m_len,
532                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
533                        map->m_len, map->m_pblk, map->m_flags,
534                        retval, flags);
535         }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540  * The ext4_map_blocks() function tries to look up the requested blocks,
541  * and returns if the blocks are already mapped.
542  *
543  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544  * and store the allocated blocks in the result buffer head and mark it
545  * mapped.
546  *
547  * If file type is extents based, it will call ext4_ext_map_blocks(),
548  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549  * based files
550  *
551  * On success, it returns the number of blocks being mapped or allocate.
552  * if create==0 and the blocks are pre-allocated and uninitialized block,
553  * the result buffer head is unmapped. If the create ==1, it will make sure
554  * the buffer head is mapped.
555  *
556  * It returns 0 if plain look up failed (blocks have not been allocated), in
557  * that case, buffer head is unmapped
558  *
559  * It returns the error in case of allocation failure.
560  */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562                     struct ext4_map_blocks *map, int flags)
563 {
564         struct extent_status es;
565         int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567         struct ext4_map_blocks orig_map;
568
569         memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572         map->m_flags = 0;
573         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
575                   (unsigned long) map->m_lblk);
576
577         /* Lookup extent status tree firstly */
578         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580                         map->m_pblk = ext4_es_pblock(&es) +
581                                         map->m_lblk - es.es_lblk;
582                         map->m_flags |= ext4_es_is_written(&es) ?
583                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584                         retval = es.es_len - (map->m_lblk - es.es_lblk);
585                         if (retval > map->m_len)
586                                 retval = map->m_len;
587                         map->m_len = retval;
588                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589                         retval = 0;
590                 } else {
591                         BUG_ON(1);
592                 }
593 #ifdef ES_AGGRESSIVE_TEST
594                 ext4_map_blocks_es_recheck(handle, inode, map,
595                                            &orig_map, flags);
596 #endif
597                 goto found;
598         }
599
600         /*
601          * Try to see if we can get the block without requesting a new
602          * file system block.
603          */
604         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605                 down_read((&EXT4_I(inode)->i_data_sem));
606         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608                                              EXT4_GET_BLOCKS_KEEP_SIZE);
609         } else {
610                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611                                              EXT4_GET_BLOCKS_KEEP_SIZE);
612         }
613         if (retval > 0) {
614                 int ret;
615                 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618                 if (retval != map->m_len) {
619                         printk("ES len assertation failed for inode: %lu "
620                                "retval %d != map->m_len %d "
621                                "in %s (lookup)\n", inode->i_ino, retval,
622                                map->m_len, __func__);
623                 }
624 #endif
625
626                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629                     !(status & EXTENT_STATUS_WRITTEN) &&
630                     ext4_find_delalloc_range(inode, map->m_lblk,
631                                              map->m_lblk + map->m_len - 1))
632                         status |= EXTENT_STATUS_DELAYED;
633                 ret = ext4_es_insert_extent(inode, map->m_lblk,
634                                             map->m_len, map->m_pblk, status);
635                 if (ret < 0)
636                         retval = ret;
637         }
638         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
639                 up_read((&EXT4_I(inode)->i_data_sem));
640
641 found:
642         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
643                 int ret = check_block_validity(inode, map);
644                 if (ret != 0)
645                         return ret;
646         }
647
648         /* If it is only a block(s) look up */
649         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
650                 return retval;
651
652         /*
653          * Returns if the blocks have already allocated
654          *
655          * Note that if blocks have been preallocated
656          * ext4_ext_get_block() returns the create = 0
657          * with buffer head unmapped.
658          */
659         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660                 return retval;
661
662         /*
663          * Here we clear m_flags because after allocating an new extent,
664          * it will be set again.
665          */
666         map->m_flags &= ~EXT4_MAP_FLAGS;
667
668         /*
669          * New blocks allocate and/or writing to uninitialized extent
670          * will possibly result in updating i_data, so we take
671          * the write lock of i_data_sem, and call get_blocks()
672          * with create == 1 flag.
673          */
674         down_write((&EXT4_I(inode)->i_data_sem));
675
676         /*
677          * if the caller is from delayed allocation writeout path
678          * we have already reserved fs blocks for allocation
679          * let the underlying get_block() function know to
680          * avoid double accounting
681          */
682         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
683                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
684         /*
685          * We need to check for EXT4 here because migrate
686          * could have changed the inode type in between
687          */
688         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
689                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
690         } else {
691                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
692
693                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
694                         /*
695                          * We allocated new blocks which will result in
696                          * i_data's format changing.  Force the migrate
697                          * to fail by clearing migrate flags
698                          */
699                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
700                 }
701
702                 /*
703                  * Update reserved blocks/metadata blocks after successful
704                  * block allocation which had been deferred till now. We don't
705                  * support fallocate for non extent files. So we can update
706                  * reserve space here.
707                  */
708                 if ((retval > 0) &&
709                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
710                         ext4_da_update_reserve_space(inode, retval, 1);
711         }
712         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
713                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
714
715         if (retval > 0) {
716                 int ret;
717                 unsigned long long status;
718
719 #ifdef ES_AGGRESSIVE_TEST
720                 if (retval != map->m_len) {
721                         printk("ES len assertation failed for inode: %lu "
722                                "retval %d != map->m_len %d "
723                                "in %s (allocation)\n", inode->i_ino, retval,
724                                map->m_len, __func__);
725                 }
726 #endif
727
728                 /*
729                  * If the extent has been zeroed out, we don't need to update
730                  * extent status tree.
731                  */
732                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
733                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
734                         if (ext4_es_is_written(&es))
735                                 goto has_zeroout;
736                 }
737                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
738                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
739                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
740                     !(status & EXTENT_STATUS_WRITTEN) &&
741                     ext4_find_delalloc_range(inode, map->m_lblk,
742                                              map->m_lblk + map->m_len - 1))
743                         status |= EXTENT_STATUS_DELAYED;
744                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
745                                             map->m_pblk, status);
746                 if (ret < 0)
747                         retval = ret;
748         }
749
750 has_zeroout:
751         up_write((&EXT4_I(inode)->i_data_sem));
752         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
753                 int ret = check_block_validity(inode, map);
754                 if (ret != 0)
755                         return ret;
756         }
757         return retval;
758 }
759
760 /* Maximum number of blocks we map for direct IO at once. */
761 #define DIO_MAX_BLOCKS 4096
762
763 static int _ext4_get_block(struct inode *inode, sector_t iblock,
764                            struct buffer_head *bh, int flags)
765 {
766         handle_t *handle = ext4_journal_current_handle();
767         struct ext4_map_blocks map;
768         int ret = 0, started = 0;
769         int dio_credits;
770
771         if (ext4_has_inline_data(inode))
772                 return -ERANGE;
773
774         map.m_lblk = iblock;
775         map.m_len = bh->b_size >> inode->i_blkbits;
776
777         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
778                 /* Direct IO write... */
779                 if (map.m_len > DIO_MAX_BLOCKS)
780                         map.m_len = DIO_MAX_BLOCKS;
781                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
782                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
783                                             dio_credits);
784                 if (IS_ERR(handle)) {
785                         ret = PTR_ERR(handle);
786                         return ret;
787                 }
788                 started = 1;
789         }
790
791         ret = ext4_map_blocks(handle, inode, &map, flags);
792         if (ret > 0) {
793                 map_bh(bh, inode->i_sb, map.m_pblk);
794                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
795                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
796                 ret = 0;
797         }
798         if (started)
799                 ext4_journal_stop(handle);
800         return ret;
801 }
802
803 int ext4_get_block(struct inode *inode, sector_t iblock,
804                    struct buffer_head *bh, int create)
805 {
806         return _ext4_get_block(inode, iblock, bh,
807                                create ? EXT4_GET_BLOCKS_CREATE : 0);
808 }
809
810 /*
811  * `handle' can be NULL if create is zero
812  */
813 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
814                                 ext4_lblk_t block, int create, int *errp)
815 {
816         struct ext4_map_blocks map;
817         struct buffer_head *bh;
818         int fatal = 0, err;
819
820         J_ASSERT(handle != NULL || create == 0);
821
822         map.m_lblk = block;
823         map.m_len = 1;
824         err = ext4_map_blocks(handle, inode, &map,
825                               create ? EXT4_GET_BLOCKS_CREATE : 0);
826
827         /* ensure we send some value back into *errp */
828         *errp = 0;
829
830         if (create && err == 0)
831                 err = -ENOSPC;  /* should never happen */
832         if (err < 0)
833                 *errp = err;
834         if (err <= 0)
835                 return NULL;
836
837         bh = sb_getblk(inode->i_sb, map.m_pblk);
838         if (unlikely(!bh)) {
839                 *errp = -ENOMEM;
840                 return NULL;
841         }
842         if (map.m_flags & EXT4_MAP_NEW) {
843                 J_ASSERT(create != 0);
844                 J_ASSERT(handle != NULL);
845
846                 /*
847                  * Now that we do not always journal data, we should
848                  * keep in mind whether this should always journal the
849                  * new buffer as metadata.  For now, regular file
850                  * writes use ext4_get_block instead, so it's not a
851                  * problem.
852                  */
853                 lock_buffer(bh);
854                 BUFFER_TRACE(bh, "call get_create_access");
855                 fatal = ext4_journal_get_create_access(handle, bh);
856                 if (!fatal && !buffer_uptodate(bh)) {
857                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
858                         set_buffer_uptodate(bh);
859                 }
860                 unlock_buffer(bh);
861                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
862                 err = ext4_handle_dirty_metadata(handle, inode, bh);
863                 if (!fatal)
864                         fatal = err;
865         } else {
866                 BUFFER_TRACE(bh, "not a new buffer");
867         }
868         if (fatal) {
869                 *errp = fatal;
870                 brelse(bh);
871                 bh = NULL;
872         }
873         return bh;
874 }
875
876 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
877                                ext4_lblk_t block, int create, int *err)
878 {
879         struct buffer_head *bh;
880
881         bh = ext4_getblk(handle, inode, block, create, err);
882         if (!bh)
883                 return bh;
884         if (buffer_uptodate(bh))
885                 return bh;
886         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
887         wait_on_buffer(bh);
888         if (buffer_uptodate(bh))
889                 return bh;
890         put_bh(bh);
891         *err = -EIO;
892         return NULL;
893 }
894
895 int ext4_walk_page_buffers(handle_t *handle,
896                            struct buffer_head *head,
897                            unsigned from,
898                            unsigned to,
899                            int *partial,
900                            int (*fn)(handle_t *handle,
901                                      struct buffer_head *bh))
902 {
903         struct buffer_head *bh;
904         unsigned block_start, block_end;
905         unsigned blocksize = head->b_size;
906         int err, ret = 0;
907         struct buffer_head *next;
908
909         for (bh = head, block_start = 0;
910              ret == 0 && (bh != head || !block_start);
911              block_start = block_end, bh = next) {
912                 next = bh->b_this_page;
913                 block_end = block_start + blocksize;
914                 if (block_end <= from || block_start >= to) {
915                         if (partial && !buffer_uptodate(bh))
916                                 *partial = 1;
917                         continue;
918                 }
919                 err = (*fn)(handle, bh);
920                 if (!ret)
921                         ret = err;
922         }
923         return ret;
924 }
925
926 /*
927  * To preserve ordering, it is essential that the hole instantiation and
928  * the data write be encapsulated in a single transaction.  We cannot
929  * close off a transaction and start a new one between the ext4_get_block()
930  * and the commit_write().  So doing the jbd2_journal_start at the start of
931  * prepare_write() is the right place.
932  *
933  * Also, this function can nest inside ext4_writepage().  In that case, we
934  * *know* that ext4_writepage() has generated enough buffer credits to do the
935  * whole page.  So we won't block on the journal in that case, which is good,
936  * because the caller may be PF_MEMALLOC.
937  *
938  * By accident, ext4 can be reentered when a transaction is open via
939  * quota file writes.  If we were to commit the transaction while thus
940  * reentered, there can be a deadlock - we would be holding a quota
941  * lock, and the commit would never complete if another thread had a
942  * transaction open and was blocking on the quota lock - a ranking
943  * violation.
944  *
945  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
946  * will _not_ run commit under these circumstances because handle->h_ref
947  * is elevated.  We'll still have enough credits for the tiny quotafile
948  * write.
949  */
950 int do_journal_get_write_access(handle_t *handle,
951                                 struct buffer_head *bh)
952 {
953         int dirty = buffer_dirty(bh);
954         int ret;
955
956         if (!buffer_mapped(bh) || buffer_freed(bh))
957                 return 0;
958         /*
959          * __block_write_begin() could have dirtied some buffers. Clean
960          * the dirty bit as jbd2_journal_get_write_access() could complain
961          * otherwise about fs integrity issues. Setting of the dirty bit
962          * by __block_write_begin() isn't a real problem here as we clear
963          * the bit before releasing a page lock and thus writeback cannot
964          * ever write the buffer.
965          */
966         if (dirty)
967                 clear_buffer_dirty(bh);
968         ret = ext4_journal_get_write_access(handle, bh);
969         if (!ret && dirty)
970                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
971         return ret;
972 }
973
974 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
975                    struct buffer_head *bh_result, int create);
976 static int ext4_write_begin(struct file *file, struct address_space *mapping,
977                             loff_t pos, unsigned len, unsigned flags,
978                             struct page **pagep, void **fsdata)
979 {
980         struct inode *inode = mapping->host;
981         int ret, needed_blocks;
982         handle_t *handle;
983         int retries = 0;
984         struct page *page;
985         pgoff_t index;
986         unsigned from, to;
987
988         trace_ext4_write_begin(inode, pos, len, flags);
989         /*
990          * Reserve one block more for addition to orphan list in case
991          * we allocate blocks but write fails for some reason
992          */
993         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
994         index = pos >> PAGE_CACHE_SHIFT;
995         from = pos & (PAGE_CACHE_SIZE - 1);
996         to = from + len;
997
998         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
999                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1000                                                     flags, pagep);
1001                 if (ret < 0)
1002                         return ret;
1003                 if (ret == 1)
1004                         return 0;
1005         }
1006
1007         /*
1008          * grab_cache_page_write_begin() can take a long time if the
1009          * system is thrashing due to memory pressure, or if the page
1010          * is being written back.  So grab it first before we start
1011          * the transaction handle.  This also allows us to allocate
1012          * the page (if needed) without using GFP_NOFS.
1013          */
1014 retry_grab:
1015         page = grab_cache_page_write_begin(mapping, index, flags);
1016         if (!page)
1017                 return -ENOMEM;
1018         unlock_page(page);
1019
1020 retry_journal:
1021         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1022         if (IS_ERR(handle)) {
1023                 page_cache_release(page);
1024                 return PTR_ERR(handle);
1025         }
1026
1027         lock_page(page);
1028         if (page->mapping != mapping) {
1029                 /* The page got truncated from under us */
1030                 unlock_page(page);
1031                 page_cache_release(page);
1032                 ext4_journal_stop(handle);
1033                 goto retry_grab;
1034         }
1035         /* In case writeback began while the page was unlocked */
1036         wait_for_stable_page(page);
1037
1038         if (ext4_should_dioread_nolock(inode))
1039                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1040         else
1041                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1042
1043         if (!ret && ext4_should_journal_data(inode)) {
1044                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1045                                              from, to, NULL,
1046                                              do_journal_get_write_access);
1047         }
1048
1049         if (ret) {
1050                 unlock_page(page);
1051                 /*
1052                  * __block_write_begin may have instantiated a few blocks
1053                  * outside i_size.  Trim these off again. Don't need
1054                  * i_size_read because we hold i_mutex.
1055                  *
1056                  * Add inode to orphan list in case we crash before
1057                  * truncate finishes
1058                  */
1059                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1060                         ext4_orphan_add(handle, inode);
1061
1062                 ext4_journal_stop(handle);
1063                 if (pos + len > inode->i_size) {
1064                         ext4_truncate_failed_write(inode);
1065                         /*
1066                          * If truncate failed early the inode might
1067                          * still be on the orphan list; we need to
1068                          * make sure the inode is removed from the
1069                          * orphan list in that case.
1070                          */
1071                         if (inode->i_nlink)
1072                                 ext4_orphan_del(NULL, inode);
1073                 }
1074
1075                 if (ret == -ENOSPC &&
1076                     ext4_should_retry_alloc(inode->i_sb, &retries))
1077                         goto retry_journal;
1078                 page_cache_release(page);
1079                 return ret;
1080         }
1081         *pagep = page;
1082         return ret;
1083 }
1084
1085 /* For write_end() in data=journal mode */
1086 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1087 {
1088         int ret;
1089         if (!buffer_mapped(bh) || buffer_freed(bh))
1090                 return 0;
1091         set_buffer_uptodate(bh);
1092         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1093         clear_buffer_meta(bh);
1094         clear_buffer_prio(bh);
1095         return ret;
1096 }
1097
1098 /*
1099  * We need to pick up the new inode size which generic_commit_write gave us
1100  * `file' can be NULL - eg, when called from page_symlink().
1101  *
1102  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1103  * buffers are managed internally.
1104  */
1105 static int ext4_write_end(struct file *file,
1106                           struct address_space *mapping,
1107                           loff_t pos, unsigned len, unsigned copied,
1108                           struct page *page, void *fsdata)
1109 {
1110         handle_t *handle = ext4_journal_current_handle();
1111         struct inode *inode = mapping->host;
1112         int ret = 0, ret2;
1113         int i_size_changed = 0;
1114
1115         trace_ext4_write_end(inode, pos, len, copied);
1116         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1117                 ret = ext4_jbd2_file_inode(handle, inode);
1118                 if (ret) {
1119                         unlock_page(page);
1120                         page_cache_release(page);
1121                         goto errout;
1122                 }
1123         }
1124
1125         if (ext4_has_inline_data(inode)) {
1126                 ret = ext4_write_inline_data_end(inode, pos, len,
1127                                                  copied, page);
1128                 if (ret < 0)
1129                         goto errout;
1130                 copied = ret;
1131         } else
1132                 copied = block_write_end(file, mapping, pos,
1133                                          len, copied, page, fsdata);
1134
1135         /*
1136          * No need to use i_size_read() here, the i_size
1137          * cannot change under us because we hole i_mutex.
1138          *
1139          * But it's important to update i_size while still holding page lock:
1140          * page writeout could otherwise come in and zero beyond i_size.
1141          */
1142         if (pos + copied > inode->i_size) {
1143                 i_size_write(inode, pos + copied);
1144                 i_size_changed = 1;
1145         }
1146
1147         if (pos + copied > EXT4_I(inode)->i_disksize) {
1148                 /* We need to mark inode dirty even if
1149                  * new_i_size is less that inode->i_size
1150                  * but greater than i_disksize. (hint delalloc)
1151                  */
1152                 ext4_update_i_disksize(inode, (pos + copied));
1153                 i_size_changed = 1;
1154         }
1155         unlock_page(page);
1156         page_cache_release(page);
1157
1158         /*
1159          * Don't mark the inode dirty under page lock. First, it unnecessarily
1160          * makes the holding time of page lock longer. Second, it forces lock
1161          * ordering of page lock and transaction start for journaling
1162          * filesystems.
1163          */
1164         if (i_size_changed)
1165                 ext4_mark_inode_dirty(handle, inode);
1166
1167         if (copied < 0)
1168                 ret = copied;
1169         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1170                 /* if we have allocated more blocks and copied
1171                  * less. We will have blocks allocated outside
1172                  * inode->i_size. So truncate them
1173                  */
1174                 ext4_orphan_add(handle, inode);
1175 errout:
1176         ret2 = ext4_journal_stop(handle);
1177         if (!ret)
1178                 ret = ret2;
1179
1180         if (pos + len > inode->i_size) {
1181                 ext4_truncate_failed_write(inode);
1182                 /*
1183                  * If truncate failed early the inode might still be
1184                  * on the orphan list; we need to make sure the inode
1185                  * is removed from the orphan list in that case.
1186                  */
1187                 if (inode->i_nlink)
1188                         ext4_orphan_del(NULL, inode);
1189         }
1190
1191         return ret ? ret : copied;
1192 }
1193
1194 static int ext4_journalled_write_end(struct file *file,
1195                                      struct address_space *mapping,
1196                                      loff_t pos, unsigned len, unsigned copied,
1197                                      struct page *page, void *fsdata)
1198 {
1199         handle_t *handle = ext4_journal_current_handle();
1200         struct inode *inode = mapping->host;
1201         int ret = 0, ret2;
1202         int partial = 0;
1203         unsigned from, to;
1204         loff_t new_i_size;
1205
1206         trace_ext4_journalled_write_end(inode, pos, len, copied);
1207         from = pos & (PAGE_CACHE_SIZE - 1);
1208         to = from + len;
1209
1210         BUG_ON(!ext4_handle_valid(handle));
1211
1212         if (ext4_has_inline_data(inode))
1213                 copied = ext4_write_inline_data_end(inode, pos, len,
1214                                                     copied, page);
1215         else {
1216                 if (copied < len) {
1217                         if (!PageUptodate(page))
1218                                 copied = 0;
1219                         page_zero_new_buffers(page, from+copied, to);
1220                 }
1221
1222                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1223                                              to, &partial, write_end_fn);
1224                 if (!partial)
1225                         SetPageUptodate(page);
1226         }
1227         new_i_size = pos + copied;
1228         if (new_i_size > inode->i_size)
1229                 i_size_write(inode, pos+copied);
1230         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1231         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1232         if (new_i_size > EXT4_I(inode)->i_disksize) {
1233                 ext4_update_i_disksize(inode, new_i_size);
1234                 ret2 = ext4_mark_inode_dirty(handle, inode);
1235                 if (!ret)
1236                         ret = ret2;
1237         }
1238
1239         unlock_page(page);
1240         page_cache_release(page);
1241         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1242                 /* if we have allocated more blocks and copied
1243                  * less. We will have blocks allocated outside
1244                  * inode->i_size. So truncate them
1245                  */
1246                 ext4_orphan_add(handle, inode);
1247
1248         ret2 = ext4_journal_stop(handle);
1249         if (!ret)
1250                 ret = ret2;
1251         if (pos + len > inode->i_size) {
1252                 ext4_truncate_failed_write(inode);
1253                 /*
1254                  * If truncate failed early the inode might still be
1255                  * on the orphan list; we need to make sure the inode
1256                  * is removed from the orphan list in that case.
1257                  */
1258                 if (inode->i_nlink)
1259                         ext4_orphan_del(NULL, inode);
1260         }
1261
1262         return ret ? ret : copied;
1263 }
1264
1265 /*
1266  * Reserve a metadata for a single block located at lblock
1267  */
1268 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1269 {
1270         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1271         struct ext4_inode_info *ei = EXT4_I(inode);
1272         unsigned int md_needed;
1273         ext4_lblk_t save_last_lblock;
1274         int save_len;
1275
1276         /*
1277          * recalculate the amount of metadata blocks to reserve
1278          * in order to allocate nrblocks
1279          * worse case is one extent per block
1280          */
1281         spin_lock(&ei->i_block_reservation_lock);
1282         /*
1283          * ext4_calc_metadata_amount() has side effects, which we have
1284          * to be prepared undo if we fail to claim space.
1285          */
1286         save_len = ei->i_da_metadata_calc_len;
1287         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1288         md_needed = EXT4_NUM_B2C(sbi,
1289                                  ext4_calc_metadata_amount(inode, lblock));
1290         trace_ext4_da_reserve_space(inode, md_needed);
1291
1292         /*
1293          * We do still charge estimated metadata to the sb though;
1294          * we cannot afford to run out of free blocks.
1295          */
1296         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1297                 ei->i_da_metadata_calc_len = save_len;
1298                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1299                 spin_unlock(&ei->i_block_reservation_lock);
1300                 return -ENOSPC;
1301         }
1302         ei->i_reserved_meta_blocks += md_needed;
1303         spin_unlock(&ei->i_block_reservation_lock);
1304
1305         return 0;       /* success */
1306 }
1307
1308 /*
1309  * Reserve a single cluster located at lblock
1310  */
1311 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1312 {
1313         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314         struct ext4_inode_info *ei = EXT4_I(inode);
1315         unsigned int md_needed;
1316         int ret;
1317         ext4_lblk_t save_last_lblock;
1318         int save_len;
1319
1320         /*
1321          * We will charge metadata quota at writeout time; this saves
1322          * us from metadata over-estimation, though we may go over by
1323          * a small amount in the end.  Here we just reserve for data.
1324          */
1325         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326         if (ret)
1327                 return ret;
1328
1329         /*
1330          * recalculate the amount of metadata blocks to reserve
1331          * in order to allocate nrblocks
1332          * worse case is one extent per block
1333          */
1334         spin_lock(&ei->i_block_reservation_lock);
1335         /*
1336          * ext4_calc_metadata_amount() has side effects, which we have
1337          * to be prepared undo if we fail to claim space.
1338          */
1339         save_len = ei->i_da_metadata_calc_len;
1340         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1341         md_needed = EXT4_NUM_B2C(sbi,
1342                                  ext4_calc_metadata_amount(inode, lblock));
1343         trace_ext4_da_reserve_space(inode, md_needed);
1344
1345         /*
1346          * We do still charge estimated metadata to the sb though;
1347          * we cannot afford to run out of free blocks.
1348          */
1349         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1350                 ei->i_da_metadata_calc_len = save_len;
1351                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1352                 spin_unlock(&ei->i_block_reservation_lock);
1353                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1354                 return -ENOSPC;
1355         }
1356         ei->i_reserved_data_blocks++;
1357         ei->i_reserved_meta_blocks += md_needed;
1358         spin_unlock(&ei->i_block_reservation_lock);
1359
1360         return 0;       /* success */
1361 }
1362
1363 static void ext4_da_release_space(struct inode *inode, int to_free)
1364 {
1365         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1366         struct ext4_inode_info *ei = EXT4_I(inode);
1367
1368         if (!to_free)
1369                 return;         /* Nothing to release, exit */
1370
1371         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1372
1373         trace_ext4_da_release_space(inode, to_free);
1374         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1375                 /*
1376                  * if there aren't enough reserved blocks, then the
1377                  * counter is messed up somewhere.  Since this
1378                  * function is called from invalidate page, it's
1379                  * harmless to return without any action.
1380                  */
1381                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1382                          "ino %lu, to_free %d with only %d reserved "
1383                          "data blocks", inode->i_ino, to_free,
1384                          ei->i_reserved_data_blocks);
1385                 WARN_ON(1);
1386                 to_free = ei->i_reserved_data_blocks;
1387         }
1388         ei->i_reserved_data_blocks -= to_free;
1389
1390         if (ei->i_reserved_data_blocks == 0) {
1391                 /*
1392                  * We can release all of the reserved metadata blocks
1393                  * only when we have written all of the delayed
1394                  * allocation blocks.
1395                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1396                  * i_reserved_data_blocks, etc. refer to number of clusters.
1397                  */
1398                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1399                                    ei->i_reserved_meta_blocks);
1400                 ei->i_reserved_meta_blocks = 0;
1401                 ei->i_da_metadata_calc_len = 0;
1402         }
1403
1404         /* update fs dirty data blocks counter */
1405         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1406
1407         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1408
1409         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1410 }
1411
1412 static void ext4_da_page_release_reservation(struct page *page,
1413                                              unsigned long offset)
1414 {
1415         int to_release = 0;
1416         struct buffer_head *head, *bh;
1417         unsigned int curr_off = 0;
1418         struct inode *inode = page->mapping->host;
1419         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420         int num_clusters;
1421         ext4_fsblk_t lblk;
1422
1423         head = page_buffers(page);
1424         bh = head;
1425         do {
1426                 unsigned int next_off = curr_off + bh->b_size;
1427
1428                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1429                         to_release++;
1430                         clear_buffer_delay(bh);
1431                 }
1432                 curr_off = next_off;
1433         } while ((bh = bh->b_this_page) != head);
1434
1435         if (to_release) {
1436                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1437                 ext4_es_remove_extent(inode, lblk, to_release);
1438         }
1439
1440         /* If we have released all the blocks belonging to a cluster, then we
1441          * need to release the reserved space for that cluster. */
1442         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1443         while (num_clusters > 0) {
1444                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1445                         ((num_clusters - 1) << sbi->s_cluster_bits);
1446                 if (sbi->s_cluster_ratio == 1 ||
1447                     !ext4_find_delalloc_cluster(inode, lblk))
1448                         ext4_da_release_space(inode, 1);
1449
1450                 num_clusters--;
1451         }
1452 }
1453
1454 /*
1455  * Delayed allocation stuff
1456  */
1457
1458 /*
1459  * mpage_da_submit_io - walks through extent of pages and try to write
1460  * them with writepage() call back
1461  *
1462  * @mpd->inode: inode
1463  * @mpd->first_page: first page of the extent
1464  * @mpd->next_page: page after the last page of the extent
1465  *
1466  * By the time mpage_da_submit_io() is called we expect all blocks
1467  * to be allocated. this may be wrong if allocation failed.
1468  *
1469  * As pages are already locked by write_cache_pages(), we can't use it
1470  */
1471 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1472                               struct ext4_map_blocks *map)
1473 {
1474         struct pagevec pvec;
1475         unsigned long index, end;
1476         int ret = 0, err, nr_pages, i;
1477         struct inode *inode = mpd->inode;
1478         struct address_space *mapping = inode->i_mapping;
1479         loff_t size = i_size_read(inode);
1480         unsigned int len, block_start;
1481         struct buffer_head *bh, *page_bufs = NULL;
1482         sector_t pblock = 0, cur_logical = 0;
1483         struct ext4_io_submit io_submit;
1484
1485         BUG_ON(mpd->next_page <= mpd->first_page);
1486         memset(&io_submit, 0, sizeof(io_submit));
1487         /*
1488          * We need to start from the first_page to the next_page - 1
1489          * to make sure we also write the mapped dirty buffer_heads.
1490          * If we look at mpd->b_blocknr we would only be looking
1491          * at the currently mapped buffer_heads.
1492          */
1493         index = mpd->first_page;
1494         end = mpd->next_page - 1;
1495
1496         pagevec_init(&pvec, 0);
1497         while (index <= end) {
1498                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1499                 if (nr_pages == 0)
1500                         break;
1501                 for (i = 0; i < nr_pages; i++) {
1502                         int skip_page = 0;
1503                         struct page *page = pvec.pages[i];
1504
1505                         index = page->index;
1506                         if (index > end)
1507                                 break;
1508
1509                         if (index == size >> PAGE_CACHE_SHIFT)
1510                                 len = size & ~PAGE_CACHE_MASK;
1511                         else
1512                                 len = PAGE_CACHE_SIZE;
1513                         if (map) {
1514                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1515                                                         inode->i_blkbits);
1516                                 pblock = map->m_pblk + (cur_logical -
1517                                                         map->m_lblk);
1518                         }
1519                         index++;
1520
1521                         BUG_ON(!PageLocked(page));
1522                         BUG_ON(PageWriteback(page));
1523
1524                         bh = page_bufs = page_buffers(page);
1525                         block_start = 0;
1526                         do {
1527                                 if (map && (cur_logical >= map->m_lblk) &&
1528                                     (cur_logical <= (map->m_lblk +
1529                                                      (map->m_len - 1)))) {
1530                                         if (buffer_delay(bh)) {
1531                                                 clear_buffer_delay(bh);
1532                                                 bh->b_blocknr = pblock;
1533                                         }
1534                                         if (buffer_unwritten(bh) ||
1535                                             buffer_mapped(bh))
1536                                                 BUG_ON(bh->b_blocknr != pblock);
1537                                         if (map->m_flags & EXT4_MAP_UNINIT)
1538                                                 set_buffer_uninit(bh);
1539                                         clear_buffer_unwritten(bh);
1540                                 }
1541
1542                                 /*
1543                                  * skip page if block allocation undone and
1544                                  * block is dirty
1545                                  */
1546                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1547                                         skip_page = 1;
1548                                 bh = bh->b_this_page;
1549                                 block_start += bh->b_size;
1550                                 cur_logical++;
1551                                 pblock++;
1552                         } while (bh != page_bufs);
1553
1554                         if (skip_page) {
1555                                 unlock_page(page);
1556                                 continue;
1557                         }
1558
1559                         clear_page_dirty_for_io(page);
1560                         err = ext4_bio_write_page(&io_submit, page, len,
1561                                                   mpd->wbc);
1562                         if (!err)
1563                                 mpd->pages_written++;
1564                         /*
1565                          * In error case, we have to continue because
1566                          * remaining pages are still locked
1567                          */
1568                         if (ret == 0)
1569                                 ret = err;
1570                 }
1571                 pagevec_release(&pvec);
1572         }
1573         ext4_io_submit(&io_submit);
1574         return ret;
1575 }
1576
1577 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1578 {
1579         int nr_pages, i;
1580         pgoff_t index, end;
1581         struct pagevec pvec;
1582         struct inode *inode = mpd->inode;
1583         struct address_space *mapping = inode->i_mapping;
1584         ext4_lblk_t start, last;
1585
1586         index = mpd->first_page;
1587         end   = mpd->next_page - 1;
1588
1589         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1590         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1591         ext4_es_remove_extent(inode, start, last - start + 1);
1592
1593         pagevec_init(&pvec, 0);
1594         while (index <= end) {
1595                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1596                 if (nr_pages == 0)
1597                         break;
1598                 for (i = 0; i < nr_pages; i++) {
1599                         struct page *page = pvec.pages[i];
1600                         if (page->index > end)
1601                                 break;
1602                         BUG_ON(!PageLocked(page));
1603                         BUG_ON(PageWriteback(page));
1604                         block_invalidatepage(page, 0);
1605                         ClearPageUptodate(page);
1606                         unlock_page(page);
1607                 }
1608                 index = pvec.pages[nr_pages - 1]->index + 1;
1609                 pagevec_release(&pvec);
1610         }
1611         return;
1612 }
1613
1614 static void ext4_print_free_blocks(struct inode *inode)
1615 {
1616         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617         struct super_block *sb = inode->i_sb;
1618         struct ext4_inode_info *ei = EXT4_I(inode);
1619
1620         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1621                EXT4_C2B(EXT4_SB(inode->i_sb),
1622                         ext4_count_free_clusters(sb)));
1623         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1624         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1625                (long long) EXT4_C2B(EXT4_SB(sb),
1626                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1627         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1628                (long long) EXT4_C2B(EXT4_SB(sb),
1629                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1630         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1631         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1632                  ei->i_reserved_data_blocks);
1633         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1634                ei->i_reserved_meta_blocks);
1635         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1636                ei->i_allocated_meta_blocks);
1637         return;
1638 }
1639
1640 /*
1641  * mpage_da_map_and_submit - go through given space, map them
1642  *       if necessary, and then submit them for I/O
1643  *
1644  * @mpd - bh describing space
1645  *
1646  * The function skips space we know is already mapped to disk blocks.
1647  *
1648  */
1649 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1650 {
1651         int err, blks, get_blocks_flags;
1652         struct ext4_map_blocks map, *mapp = NULL;
1653         sector_t next = mpd->b_blocknr;
1654         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1655         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1656         handle_t *handle = NULL;
1657
1658         /*
1659          * If the blocks are mapped already, or we couldn't accumulate
1660          * any blocks, then proceed immediately to the submission stage.
1661          */
1662         if ((mpd->b_size == 0) ||
1663             ((mpd->b_state  & (1 << BH_Mapped)) &&
1664              !(mpd->b_state & (1 << BH_Delay)) &&
1665              !(mpd->b_state & (1 << BH_Unwritten))))
1666                 goto submit_io;
1667
1668         handle = ext4_journal_current_handle();
1669         BUG_ON(!handle);
1670
1671         /*
1672          * Call ext4_map_blocks() to allocate any delayed allocation
1673          * blocks, or to convert an uninitialized extent to be
1674          * initialized (in the case where we have written into
1675          * one or more preallocated blocks).
1676          *
1677          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1678          * indicate that we are on the delayed allocation path.  This
1679          * affects functions in many different parts of the allocation
1680          * call path.  This flag exists primarily because we don't
1681          * want to change *many* call functions, so ext4_map_blocks()
1682          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1683          * inode's allocation semaphore is taken.
1684          *
1685          * If the blocks in questions were delalloc blocks, set
1686          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1687          * variables are updated after the blocks have been allocated.
1688          */
1689         map.m_lblk = next;
1690         map.m_len = max_blocks;
1691         /*
1692          * We're in delalloc path and it is possible that we're going to
1693          * need more metadata blocks than previously reserved. However
1694          * we must not fail because we're in writeback and there is
1695          * nothing we can do about it so it might result in data loss.
1696          * So use reserved blocks to allocate metadata if possible.
1697          */
1698         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1699                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1700         if (ext4_should_dioread_nolock(mpd->inode))
1701                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1702         if (mpd->b_state & (1 << BH_Delay))
1703                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1704
1705
1706         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1707         if (blks < 0) {
1708                 struct super_block *sb = mpd->inode->i_sb;
1709
1710                 err = blks;
1711                 /*
1712                  * If get block returns EAGAIN or ENOSPC and there
1713                  * appears to be free blocks we will just let
1714                  * mpage_da_submit_io() unlock all of the pages.
1715                  */
1716                 if (err == -EAGAIN)
1717                         goto submit_io;
1718
1719                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1720                         mpd->retval = err;
1721                         goto submit_io;
1722                 }
1723
1724                 /*
1725                  * get block failure will cause us to loop in
1726                  * writepages, because a_ops->writepage won't be able
1727                  * to make progress. The page will be redirtied by
1728                  * writepage and writepages will again try to write
1729                  * the same.
1730                  */
1731                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1732                         ext4_msg(sb, KERN_CRIT,
1733                                  "delayed block allocation failed for inode %lu "
1734                                  "at logical offset %llu with max blocks %zd "
1735                                  "with error %d", mpd->inode->i_ino,
1736                                  (unsigned long long) next,
1737                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1738                         ext4_msg(sb, KERN_CRIT,
1739                                 "This should not happen!! Data will be lost");
1740                         if (err == -ENOSPC)
1741                                 ext4_print_free_blocks(mpd->inode);
1742                 }
1743                 /* invalidate all the pages */
1744                 ext4_da_block_invalidatepages(mpd);
1745
1746                 /* Mark this page range as having been completed */
1747                 mpd->io_done = 1;
1748                 return;
1749         }
1750         BUG_ON(blks == 0);
1751
1752         mapp = &map;
1753         if (map.m_flags & EXT4_MAP_NEW) {
1754                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1755                 int i;
1756
1757                 for (i = 0; i < map.m_len; i++)
1758                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1759         }
1760
1761         /*
1762          * Update on-disk size along with block allocation.
1763          */
1764         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1765         if (disksize > i_size_read(mpd->inode))
1766                 disksize = i_size_read(mpd->inode);
1767         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1768                 ext4_update_i_disksize(mpd->inode, disksize);
1769                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1770                 if (err)
1771                         ext4_error(mpd->inode->i_sb,
1772                                    "Failed to mark inode %lu dirty",
1773                                    mpd->inode->i_ino);
1774         }
1775
1776 submit_io:
1777         mpage_da_submit_io(mpd, mapp);
1778         mpd->io_done = 1;
1779 }
1780
1781 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1782                 (1 << BH_Delay) | (1 << BH_Unwritten))
1783
1784 /*
1785  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1786  *
1787  * @mpd->lbh - extent of blocks
1788  * @logical - logical number of the block in the file
1789  * @b_state - b_state of the buffer head added
1790  *
1791  * the function is used to collect contig. blocks in same state
1792  */
1793 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1794                                    unsigned long b_state)
1795 {
1796         sector_t next;
1797         int blkbits = mpd->inode->i_blkbits;
1798         int nrblocks = mpd->b_size >> blkbits;
1799
1800         /*
1801          * XXX Don't go larger than mballoc is willing to allocate
1802          * This is a stopgap solution.  We eventually need to fold
1803          * mpage_da_submit_io() into this function and then call
1804          * ext4_map_blocks() multiple times in a loop
1805          */
1806         if (nrblocks >= (8*1024*1024 >> blkbits))
1807                 goto flush_it;
1808
1809         /* check if the reserved journal credits might overflow */
1810         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1811                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1812                         /*
1813                          * With non-extent format we are limited by the journal
1814                          * credit available.  Total credit needed to insert
1815                          * nrblocks contiguous blocks is dependent on the
1816                          * nrblocks.  So limit nrblocks.
1817                          */
1818                         goto flush_it;
1819                 }
1820         }
1821         /*
1822          * First block in the extent
1823          */
1824         if (mpd->b_size == 0) {
1825                 mpd->b_blocknr = logical;
1826                 mpd->b_size = 1 << blkbits;
1827                 mpd->b_state = b_state & BH_FLAGS;
1828                 return;
1829         }
1830
1831         next = mpd->b_blocknr + nrblocks;
1832         /*
1833          * Can we merge the block to our big extent?
1834          */
1835         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1836                 mpd->b_size += 1 << blkbits;
1837                 return;
1838         }
1839
1840 flush_it:
1841         /*
1842          * We couldn't merge the block to our extent, so we
1843          * need to flush current  extent and start new one
1844          */
1845         mpage_da_map_and_submit(mpd);
1846         return;
1847 }
1848
1849 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1850 {
1851         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1852 }
1853
1854 /*
1855  * This function is grabs code from the very beginning of
1856  * ext4_map_blocks, but assumes that the caller is from delayed write
1857  * time. This function looks up the requested blocks and sets the
1858  * buffer delay bit under the protection of i_data_sem.
1859  */
1860 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1861                               struct ext4_map_blocks *map,
1862                               struct buffer_head *bh)
1863 {
1864         struct extent_status es;
1865         int retval;
1866         sector_t invalid_block = ~((sector_t) 0xffff);
1867 #ifdef ES_AGGRESSIVE_TEST
1868         struct ext4_map_blocks orig_map;
1869
1870         memcpy(&orig_map, map, sizeof(*map));
1871 #endif
1872
1873         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1874                 invalid_block = ~0;
1875
1876         map->m_flags = 0;
1877         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1878                   "logical block %lu\n", inode->i_ino, map->m_len,
1879                   (unsigned long) map->m_lblk);
1880
1881         /* Lookup extent status tree firstly */
1882         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1883
1884                 if (ext4_es_is_hole(&es)) {
1885                         retval = 0;
1886                         down_read((&EXT4_I(inode)->i_data_sem));
1887                         goto add_delayed;
1888                 }
1889
1890                 /*
1891                  * Delayed extent could be allocated by fallocate.
1892                  * So we need to check it.
1893                  */
1894                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1895                         map_bh(bh, inode->i_sb, invalid_block);
1896                         set_buffer_new(bh);
1897                         set_buffer_delay(bh);
1898                         return 0;
1899                 }
1900
1901                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1902                 retval = es.es_len - (iblock - es.es_lblk);
1903                 if (retval > map->m_len)
1904                         retval = map->m_len;
1905                 map->m_len = retval;
1906                 if (ext4_es_is_written(&es))
1907                         map->m_flags |= EXT4_MAP_MAPPED;
1908                 else if (ext4_es_is_unwritten(&es))
1909                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1910                 else
1911                         BUG_ON(1);
1912
1913 #ifdef ES_AGGRESSIVE_TEST
1914                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1915 #endif
1916                 return retval;
1917         }
1918
1919         /*
1920          * Try to see if we can get the block without requesting a new
1921          * file system block.
1922          */
1923         down_read((&EXT4_I(inode)->i_data_sem));
1924         if (ext4_has_inline_data(inode)) {
1925                 /*
1926                  * We will soon create blocks for this page, and let
1927                  * us pretend as if the blocks aren't allocated yet.
1928                  * In case of clusters, we have to handle the work
1929                  * of mapping from cluster so that the reserved space
1930                  * is calculated properly.
1931                  */
1932                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1933                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1934                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1935                 retval = 0;
1936         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1937                 retval = ext4_ext_map_blocks(NULL, inode, map,
1938                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1939         else
1940                 retval = ext4_ind_map_blocks(NULL, inode, map,
1941                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1942
1943 add_delayed:
1944         if (retval == 0) {
1945                 int ret;
1946                 /*
1947                  * XXX: __block_prepare_write() unmaps passed block,
1948                  * is it OK?
1949                  */
1950                 /*
1951                  * If the block was allocated from previously allocated cluster,
1952                  * then we don't need to reserve it again. However we still need
1953                  * to reserve metadata for every block we're going to write.
1954                  */
1955                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1956                         ret = ext4_da_reserve_space(inode, iblock);
1957                         if (ret) {
1958                                 /* not enough space to reserve */
1959                                 retval = ret;
1960                                 goto out_unlock;
1961                         }
1962                 } else {
1963                         ret = ext4_da_reserve_metadata(inode, iblock);
1964                         if (ret) {
1965                                 /* not enough space to reserve */
1966                                 retval = ret;
1967                                 goto out_unlock;
1968                         }
1969                 }
1970
1971                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1972                                             ~0, EXTENT_STATUS_DELAYED);
1973                 if (ret) {
1974                         retval = ret;
1975                         goto out_unlock;
1976                 }
1977
1978                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1979                  * and it should not appear on the bh->b_state.
1980                  */
1981                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1982
1983                 map_bh(bh, inode->i_sb, invalid_block);
1984                 set_buffer_new(bh);
1985                 set_buffer_delay(bh);
1986         } else if (retval > 0) {
1987                 int ret;
1988                 unsigned long long status;
1989
1990 #ifdef ES_AGGRESSIVE_TEST
1991                 if (retval != map->m_len) {
1992                         printk("ES len assertation failed for inode: %lu "
1993                                "retval %d != map->m_len %d "
1994                                "in %s (lookup)\n", inode->i_ino, retval,
1995                                map->m_len, __func__);
1996                 }
1997 #endif
1998
1999                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2000                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2001                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2002                                             map->m_pblk, status);
2003                 if (ret != 0)
2004                         retval = ret;
2005         }
2006
2007 out_unlock:
2008         up_read((&EXT4_I(inode)->i_data_sem));
2009
2010         return retval;
2011 }
2012
2013 /*
2014  * This is a special get_blocks_t callback which is used by
2015  * ext4_da_write_begin().  It will either return mapped block or
2016  * reserve space for a single block.
2017  *
2018  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2019  * We also have b_blocknr = -1 and b_bdev initialized properly
2020  *
2021  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2022  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2023  * initialized properly.
2024  */
2025 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2026                            struct buffer_head *bh, int create)
2027 {
2028         struct ext4_map_blocks map;
2029         int ret = 0;
2030
2031         BUG_ON(create == 0);
2032         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2033
2034         map.m_lblk = iblock;
2035         map.m_len = 1;
2036
2037         /*
2038          * first, we need to know whether the block is allocated already
2039          * preallocated blocks are unmapped but should treated
2040          * the same as allocated blocks.
2041          */
2042         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2043         if (ret <= 0)
2044                 return ret;
2045
2046         map_bh(bh, inode->i_sb, map.m_pblk);
2047         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2048
2049         if (buffer_unwritten(bh)) {
2050                 /* A delayed write to unwritten bh should be marked
2051                  * new and mapped.  Mapped ensures that we don't do
2052                  * get_block multiple times when we write to the same
2053                  * offset and new ensures that we do proper zero out
2054                  * for partial write.
2055                  */
2056                 set_buffer_new(bh);
2057                 set_buffer_mapped(bh);
2058         }
2059         return 0;
2060 }
2061
2062 static int bget_one(handle_t *handle, struct buffer_head *bh)
2063 {
2064         get_bh(bh);
2065         return 0;
2066 }
2067
2068 static int bput_one(handle_t *handle, struct buffer_head *bh)
2069 {
2070         put_bh(bh);
2071         return 0;
2072 }
2073
2074 static int __ext4_journalled_writepage(struct page *page,
2075                                        unsigned int len)
2076 {
2077         struct address_space *mapping = page->mapping;
2078         struct inode *inode = mapping->host;
2079         struct buffer_head *page_bufs = NULL;
2080         handle_t *handle = NULL;
2081         int ret = 0, err = 0;
2082         int inline_data = ext4_has_inline_data(inode);
2083         struct buffer_head *inode_bh = NULL;
2084
2085         ClearPageChecked(page);
2086
2087         if (inline_data) {
2088                 BUG_ON(page->index != 0);
2089                 BUG_ON(len > ext4_get_max_inline_size(inode));
2090                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2091                 if (inode_bh == NULL)
2092                         goto out;
2093         } else {
2094                 page_bufs = page_buffers(page);
2095                 if (!page_bufs) {
2096                         BUG();
2097                         goto out;
2098                 }
2099                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2100                                        NULL, bget_one);
2101         }
2102         /* As soon as we unlock the page, it can go away, but we have
2103          * references to buffers so we are safe */
2104         unlock_page(page);
2105
2106         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2107                                     ext4_writepage_trans_blocks(inode));
2108         if (IS_ERR(handle)) {
2109                 ret = PTR_ERR(handle);
2110                 goto out;
2111         }
2112
2113         BUG_ON(!ext4_handle_valid(handle));
2114
2115         if (inline_data) {
2116                 ret = ext4_journal_get_write_access(handle, inode_bh);
2117
2118                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2119
2120         } else {
2121                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2122                                              do_journal_get_write_access);
2123
2124                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2125                                              write_end_fn);
2126         }
2127         if (ret == 0)
2128                 ret = err;
2129         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2130         err = ext4_journal_stop(handle);
2131         if (!ret)
2132                 ret = err;
2133
2134         if (!ext4_has_inline_data(inode))
2135                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2136                                        NULL, bput_one);
2137         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2138 out:
2139         brelse(inode_bh);
2140         return ret;
2141 }
2142
2143 /*
2144  * Note that we don't need to start a transaction unless we're journaling data
2145  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2146  * need to file the inode to the transaction's list in ordered mode because if
2147  * we are writing back data added by write(), the inode is already there and if
2148  * we are writing back data modified via mmap(), no one guarantees in which
2149  * transaction the data will hit the disk. In case we are journaling data, we
2150  * cannot start transaction directly because transaction start ranks above page
2151  * lock so we have to do some magic.
2152  *
2153  * This function can get called via...
2154  *   - ext4_da_writepages after taking page lock (have journal handle)
2155  *   - journal_submit_inode_data_buffers (no journal handle)
2156  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2157  *   - grab_page_cache when doing write_begin (have journal handle)
2158  *
2159  * We don't do any block allocation in this function. If we have page with
2160  * multiple blocks we need to write those buffer_heads that are mapped. This
2161  * is important for mmaped based write. So if we do with blocksize 1K
2162  * truncate(f, 1024);
2163  * a = mmap(f, 0, 4096);
2164  * a[0] = 'a';
2165  * truncate(f, 4096);
2166  * we have in the page first buffer_head mapped via page_mkwrite call back
2167  * but other buffer_heads would be unmapped but dirty (dirty done via the
2168  * do_wp_page). So writepage should write the first block. If we modify
2169  * the mmap area beyond 1024 we will again get a page_fault and the
2170  * page_mkwrite callback will do the block allocation and mark the
2171  * buffer_heads mapped.
2172  *
2173  * We redirty the page if we have any buffer_heads that is either delay or
2174  * unwritten in the page.
2175  *
2176  * We can get recursively called as show below.
2177  *
2178  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2179  *              ext4_writepage()
2180  *
2181  * But since we don't do any block allocation we should not deadlock.
2182  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2183  */
2184 static int ext4_writepage(struct page *page,
2185                           struct writeback_control *wbc)
2186 {
2187         int ret = 0;
2188         loff_t size;
2189         unsigned int len;
2190         struct buffer_head *page_bufs = NULL;
2191         struct inode *inode = page->mapping->host;
2192         struct ext4_io_submit io_submit;
2193
2194         trace_ext4_writepage(page);
2195         size = i_size_read(inode);
2196         if (page->index == size >> PAGE_CACHE_SHIFT)
2197                 len = size & ~PAGE_CACHE_MASK;
2198         else
2199                 len = PAGE_CACHE_SIZE;
2200
2201         page_bufs = page_buffers(page);
2202         /*
2203          * We cannot do block allocation or other extent handling in this
2204          * function. If there are buffers needing that, we have to redirty
2205          * the page. But we may reach here when we do a journal commit via
2206          * journal_submit_inode_data_buffers() and in that case we must write
2207          * allocated buffers to achieve data=ordered mode guarantees.
2208          */
2209         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2210                                    ext4_bh_delay_or_unwritten)) {
2211                 redirty_page_for_writepage(wbc, page);
2212                 if (current->flags & PF_MEMALLOC) {
2213                         /*
2214                          * For memory cleaning there's no point in writing only
2215                          * some buffers. So just bail out. Warn if we came here
2216                          * from direct reclaim.
2217                          */
2218                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2219                                                         == PF_MEMALLOC);
2220                         unlock_page(page);
2221                         return 0;
2222                 }
2223         }
2224
2225         if (PageChecked(page) && ext4_should_journal_data(inode))
2226                 /*
2227                  * It's mmapped pagecache.  Add buffers and journal it.  There
2228                  * doesn't seem much point in redirtying the page here.
2229                  */
2230                 return __ext4_journalled_writepage(page, len);
2231
2232         memset(&io_submit, 0, sizeof(io_submit));
2233         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2234         ext4_io_submit(&io_submit);
2235         return ret;
2236 }
2237
2238 /*
2239  * This is called via ext4_da_writepages() to
2240  * calculate the total number of credits to reserve to fit
2241  * a single extent allocation into a single transaction,
2242  * ext4_da_writpeages() will loop calling this before
2243  * the block allocation.
2244  */
2245
2246 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2247 {
2248         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2249
2250         /*
2251          * With non-extent format the journal credit needed to
2252          * insert nrblocks contiguous block is dependent on
2253          * number of contiguous block. So we will limit
2254          * number of contiguous block to a sane value
2255          */
2256         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2257             (max_blocks > EXT4_MAX_TRANS_DATA))
2258                 max_blocks = EXT4_MAX_TRANS_DATA;
2259
2260         return ext4_chunk_trans_blocks(inode, max_blocks);
2261 }
2262
2263 /*
2264  * write_cache_pages_da - walk the list of dirty pages of the given
2265  * address space and accumulate pages that need writing, and call
2266  * mpage_da_map_and_submit to map a single contiguous memory region
2267  * and then write them.
2268  */
2269 static int write_cache_pages_da(handle_t *handle,
2270                                 struct address_space *mapping,
2271                                 struct writeback_control *wbc,
2272                                 struct mpage_da_data *mpd,
2273                                 pgoff_t *done_index)
2274 {
2275         struct buffer_head      *bh, *head;
2276         struct inode            *inode = mapping->host;
2277         struct pagevec          pvec;
2278         unsigned int            nr_pages;
2279         sector_t                logical;
2280         pgoff_t                 index, end;
2281         long                    nr_to_write = wbc->nr_to_write;
2282         int                     i, tag, ret = 0;
2283
2284         memset(mpd, 0, sizeof(struct mpage_da_data));
2285         mpd->wbc = wbc;
2286         mpd->inode = inode;
2287         pagevec_init(&pvec, 0);
2288         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2289         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2290
2291         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2292                 tag = PAGECACHE_TAG_TOWRITE;
2293         else
2294                 tag = PAGECACHE_TAG_DIRTY;
2295
2296         *done_index = index;
2297         while (index <= end) {
2298                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2299                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2300                 if (nr_pages == 0)
2301                         return 0;
2302
2303                 for (i = 0; i < nr_pages; i++) {
2304                         struct page *page = pvec.pages[i];
2305
2306                         /*
2307                          * At this point, the page may be truncated or
2308                          * invalidated (changing page->mapping to NULL), or
2309                          * even swizzled back from swapper_space to tmpfs file
2310                          * mapping. However, page->index will not change
2311                          * because we have a reference on the page.
2312                          */
2313                         if (page->index > end)
2314                                 goto out;
2315
2316                         *done_index = page->index + 1;
2317
2318                         /*
2319                          * If we can't merge this page, and we have
2320                          * accumulated an contiguous region, write it
2321                          */
2322                         if ((mpd->next_page != page->index) &&
2323                             (mpd->next_page != mpd->first_page)) {
2324                                 mpage_da_map_and_submit(mpd);
2325                                 goto ret_extent_tail;
2326                         }
2327
2328                         lock_page(page);
2329
2330                         /*
2331                          * If the page is no longer dirty, or its
2332                          * mapping no longer corresponds to inode we
2333                          * are writing (which means it has been
2334                          * truncated or invalidated), or the page is
2335                          * already under writeback and we are not
2336                          * doing a data integrity writeback, skip the page
2337                          */
2338                         if (!PageDirty(page) ||
2339                             (PageWriteback(page) &&
2340                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2341                             unlikely(page->mapping != mapping)) {
2342                                 unlock_page(page);
2343                                 continue;
2344                         }
2345
2346                         wait_on_page_writeback(page);
2347                         BUG_ON(PageWriteback(page));
2348
2349                         /*
2350                          * If we have inline data and arrive here, it means that
2351                          * we will soon create the block for the 1st page, so
2352                          * we'd better clear the inline data here.
2353                          */
2354                         if (ext4_has_inline_data(inode)) {
2355                                 BUG_ON(ext4_test_inode_state(inode,
2356                                                 EXT4_STATE_MAY_INLINE_DATA));
2357                                 ext4_destroy_inline_data(handle, inode);
2358                         }
2359
2360                         if (mpd->next_page != page->index)
2361                                 mpd->first_page = page->index;
2362                         mpd->next_page = page->index + 1;
2363                         logical = (sector_t) page->index <<
2364                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2365
2366                         /* Add all dirty buffers to mpd */
2367                         head = page_buffers(page);
2368                         bh = head;
2369                         do {
2370                                 BUG_ON(buffer_locked(bh));
2371                                 /*
2372                                  * We need to try to allocate unmapped blocks
2373                                  * in the same page.  Otherwise we won't make
2374                                  * progress with the page in ext4_writepage
2375                                  */
2376                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2377                                         mpage_add_bh_to_extent(mpd, logical,
2378                                                                bh->b_state);
2379                                         if (mpd->io_done)
2380                                                 goto ret_extent_tail;
2381                                 } else if (buffer_dirty(bh) &&
2382                                            buffer_mapped(bh)) {
2383                                         /*
2384                                          * mapped dirty buffer. We need to
2385                                          * update the b_state because we look
2386                                          * at b_state in mpage_da_map_blocks.
2387                                          * We don't update b_size because if we
2388                                          * find an unmapped buffer_head later
2389                                          * we need to use the b_state flag of
2390                                          * that buffer_head.
2391                                          */
2392                                         if (mpd->b_size == 0)
2393                                                 mpd->b_state =
2394                                                         bh->b_state & BH_FLAGS;
2395                                 }
2396                                 logical++;
2397                         } while ((bh = bh->b_this_page) != head);
2398
2399                         if (nr_to_write > 0) {
2400                                 nr_to_write--;
2401                                 if (nr_to_write == 0 &&
2402                                     wbc->sync_mode == WB_SYNC_NONE)
2403                                         /*
2404                                          * We stop writing back only if we are
2405                                          * not doing integrity sync. In case of
2406                                          * integrity sync we have to keep going
2407                                          * because someone may be concurrently
2408                                          * dirtying pages, and we might have
2409                                          * synced a lot of newly appeared dirty
2410                                          * pages, but have not synced all of the
2411                                          * old dirty pages.
2412                                          */
2413                                         goto out;
2414                         }
2415                 }
2416                 pagevec_release(&pvec);
2417                 cond_resched();
2418         }
2419         return 0;
2420 ret_extent_tail:
2421         ret = MPAGE_DA_EXTENT_TAIL;
2422 out:
2423         pagevec_release(&pvec);
2424         cond_resched();
2425         return ret;
2426 }
2427
2428
2429 static int ext4_da_writepages(struct address_space *mapping,
2430                               struct writeback_control *wbc)
2431 {
2432         pgoff_t index;
2433         int range_whole = 0;
2434         handle_t *handle = NULL;
2435         struct mpage_da_data mpd;
2436         struct inode *inode = mapping->host;
2437         int pages_written = 0;
2438         unsigned int max_pages;
2439         int range_cyclic, cycled = 1, io_done = 0;
2440         int needed_blocks, ret = 0;
2441         long desired_nr_to_write, nr_to_writebump = 0;
2442         loff_t range_start = wbc->range_start;
2443         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2444         pgoff_t done_index = 0;
2445         pgoff_t end;
2446         struct blk_plug plug;
2447
2448         trace_ext4_da_writepages(inode, wbc);
2449
2450         /*
2451          * No pages to write? This is mainly a kludge to avoid starting
2452          * a transaction for special inodes like journal inode on last iput()
2453          * because that could violate lock ordering on umount
2454          */
2455         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2456                 return 0;
2457
2458         /*
2459          * If the filesystem has aborted, it is read-only, so return
2460          * right away instead of dumping stack traces later on that
2461          * will obscure the real source of the problem.  We test
2462          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2463          * the latter could be true if the filesystem is mounted
2464          * read-only, and in that case, ext4_da_writepages should
2465          * *never* be called, so if that ever happens, we would want
2466          * the stack trace.
2467          */
2468         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2469                 return -EROFS;
2470
2471         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2472                 range_whole = 1;
2473
2474         range_cyclic = wbc->range_cyclic;
2475         if (wbc->range_cyclic) {
2476                 index = mapping->writeback_index;
2477                 if (index)
2478                         cycled = 0;
2479                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2480                 wbc->range_end  = LLONG_MAX;
2481                 wbc->range_cyclic = 0;
2482                 end = -1;
2483         } else {
2484                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2485                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2486         }
2487
2488         /*
2489          * This works around two forms of stupidity.  The first is in
2490          * the writeback code, which caps the maximum number of pages
2491          * written to be 1024 pages.  This is wrong on multiple
2492          * levels; different architectues have a different page size,
2493          * which changes the maximum amount of data which gets
2494          * written.  Secondly, 4 megabytes is way too small.  XFS
2495          * forces this value to be 16 megabytes by multiplying
2496          * nr_to_write parameter by four, and then relies on its
2497          * allocator to allocate larger extents to make them
2498          * contiguous.  Unfortunately this brings us to the second
2499          * stupidity, which is that ext4's mballoc code only allocates
2500          * at most 2048 blocks.  So we force contiguous writes up to
2501          * the number of dirty blocks in the inode, or
2502          * sbi->max_writeback_mb_bump whichever is smaller.
2503          */
2504         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2505         if (!range_cyclic && range_whole) {
2506                 if (wbc->nr_to_write == LONG_MAX)
2507                         desired_nr_to_write = wbc->nr_to_write;
2508                 else
2509                         desired_nr_to_write = wbc->nr_to_write * 8;
2510         } else
2511                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2512                                                            max_pages);
2513         if (desired_nr_to_write > max_pages)
2514                 desired_nr_to_write = max_pages;
2515
2516         if (wbc->nr_to_write < desired_nr_to_write) {
2517                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2518                 wbc->nr_to_write = desired_nr_to_write;
2519         }
2520
2521 retry:
2522         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2523                 tag_pages_for_writeback(mapping, index, end);
2524
2525         blk_start_plug(&plug);
2526         while (!ret && wbc->nr_to_write > 0) {
2527
2528                 /*
2529                  * we  insert one extent at a time. So we need
2530                  * credit needed for single extent allocation.
2531                  * journalled mode is currently not supported
2532                  * by delalloc
2533                  */
2534                 BUG_ON(ext4_should_journal_data(inode));
2535                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2536
2537                 /* start a new transaction*/
2538                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2539                                             needed_blocks);
2540                 if (IS_ERR(handle)) {
2541                         ret = PTR_ERR(handle);
2542                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2543                                "%ld pages, ino %lu; err %d", __func__,
2544                                 wbc->nr_to_write, inode->i_ino, ret);
2545                         blk_finish_plug(&plug);
2546                         goto out_writepages;
2547                 }
2548
2549                 /*
2550                  * Now call write_cache_pages_da() to find the next
2551                  * contiguous region of logical blocks that need
2552                  * blocks to be allocated by ext4 and submit them.
2553                  */
2554                 ret = write_cache_pages_da(handle, mapping,
2555                                            wbc, &mpd, &done_index);
2556                 /*
2557                  * If we have a contiguous extent of pages and we
2558                  * haven't done the I/O yet, map the blocks and submit
2559                  * them for I/O.
2560                  */
2561                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2562                         mpage_da_map_and_submit(&mpd);
2563                         ret = MPAGE_DA_EXTENT_TAIL;
2564                 }
2565                 trace_ext4_da_write_pages(inode, &mpd);
2566                 wbc->nr_to_write -= mpd.pages_written;
2567
2568                 ext4_journal_stop(handle);
2569
2570                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2571                         /* commit the transaction which would
2572                          * free blocks released in the transaction
2573                          * and try again
2574                          */
2575                         jbd2_journal_force_commit_nested(sbi->s_journal);
2576                         ret = 0;
2577                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2578                         /*
2579                          * Got one extent now try with rest of the pages.
2580                          * If mpd.retval is set -EIO, journal is aborted.
2581                          * So we don't need to write any more.
2582                          */
2583                         pages_written += mpd.pages_written;
2584                         ret = mpd.retval;
2585                         io_done = 1;
2586                 } else if (wbc->nr_to_write)
2587                         /*
2588                          * There is no more writeout needed
2589                          * or we requested for a noblocking writeout
2590                          * and we found the device congested
2591                          */
2592                         break;
2593         }
2594         blk_finish_plug(&plug);
2595         if (!io_done && !cycled) {
2596                 cycled = 1;
2597                 index = 0;
2598                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2599                 wbc->range_end  = mapping->writeback_index - 1;
2600                 goto retry;
2601         }
2602
2603         /* Update index */
2604         wbc->range_cyclic = range_cyclic;
2605         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2606                 /*
2607                  * set the writeback_index so that range_cyclic
2608                  * mode will write it back later
2609                  */
2610                 mapping->writeback_index = done_index;
2611
2612 out_writepages:
2613         wbc->nr_to_write -= nr_to_writebump;
2614         wbc->range_start = range_start;
2615         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2616         return ret;
2617 }
2618
2619 static int ext4_nonda_switch(struct super_block *sb)
2620 {
2621         s64 free_clusters, dirty_clusters;
2622         struct ext4_sb_info *sbi = EXT4_SB(sb);
2623
2624         /*
2625          * switch to non delalloc mode if we are running low
2626          * on free block. The free block accounting via percpu
2627          * counters can get slightly wrong with percpu_counter_batch getting
2628          * accumulated on each CPU without updating global counters
2629          * Delalloc need an accurate free block accounting. So switch
2630          * to non delalloc when we are near to error range.
2631          */
2632         free_clusters =
2633                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2634         dirty_clusters =
2635                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2636         /*
2637          * Start pushing delalloc when 1/2 of free blocks are dirty.
2638          */
2639         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2640                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2641
2642         if (2 * free_clusters < 3 * dirty_clusters ||
2643             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2644                 /*
2645                  * free block count is less than 150% of dirty blocks
2646                  * or free blocks is less than watermark
2647                  */
2648                 return 1;
2649         }
2650         return 0;
2651 }
2652
2653 /* We always reserve for an inode update; the superblock could be there too */
2654 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2655 {
2656         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2657                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2658                 return 1;
2659
2660         if (pos + len <= 0x7fffffffULL)
2661                 return 1;
2662
2663         /* We might need to update the superblock to set LARGE_FILE */
2664         return 2;
2665 }
2666
2667 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2668                                loff_t pos, unsigned len, unsigned flags,
2669                                struct page **pagep, void **fsdata)
2670 {
2671         int ret, retries = 0;
2672         struct page *page;
2673         pgoff_t index;
2674         struct inode *inode = mapping->host;
2675         handle_t *handle;
2676
2677         index = pos >> PAGE_CACHE_SHIFT;
2678
2679         if (ext4_nonda_switch(inode->i_sb)) {
2680                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2681                 return ext4_write_begin(file, mapping, pos,
2682                                         len, flags, pagep, fsdata);
2683         }
2684         *fsdata = (void *)0;
2685         trace_ext4_da_write_begin(inode, pos, len, flags);
2686
2687         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2688                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2689                                                       pos, len, flags,
2690                                                       pagep, fsdata);
2691                 if (ret < 0)
2692                         return ret;
2693                 if (ret == 1)
2694                         return 0;
2695         }
2696
2697         /*
2698          * grab_cache_page_write_begin() can take a long time if the
2699          * system is thrashing due to memory pressure, or if the page
2700          * is being written back.  So grab it first before we start
2701          * the transaction handle.  This also allows us to allocate
2702          * the page (if needed) without using GFP_NOFS.
2703          */
2704 retry_grab:
2705         page = grab_cache_page_write_begin(mapping, index, flags);
2706         if (!page)
2707                 return -ENOMEM;
2708         unlock_page(page);
2709
2710         /*
2711          * With delayed allocation, we don't log the i_disksize update
2712          * if there is delayed block allocation. But we still need
2713          * to journalling the i_disksize update if writes to the end
2714          * of file which has an already mapped buffer.
2715          */
2716 retry_journal:
2717         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2718                                 ext4_da_write_credits(inode, pos, len));
2719         if (IS_ERR(handle)) {
2720                 page_cache_release(page);
2721                 return PTR_ERR(handle);
2722         }
2723
2724         lock_page(page);
2725         if (page->mapping != mapping) {
2726                 /* The page got truncated from under us */
2727                 unlock_page(page);
2728                 page_cache_release(page);
2729                 ext4_journal_stop(handle);
2730                 goto retry_grab;
2731         }
2732         /* In case writeback began while the page was unlocked */
2733         wait_for_stable_page(page);
2734
2735         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2736         if (ret < 0) {
2737                 unlock_page(page);
2738                 ext4_journal_stop(handle);
2739                 /*
2740                  * block_write_begin may have instantiated a few blocks
2741                  * outside i_size.  Trim these off again. Don't need
2742                  * i_size_read because we hold i_mutex.
2743                  */
2744                 if (pos + len > inode->i_size)
2745                         ext4_truncate_failed_write(inode);
2746
2747                 if (ret == -ENOSPC &&
2748                     ext4_should_retry_alloc(inode->i_sb, &retries))
2749                         goto retry_journal;
2750
2751                 page_cache_release(page);
2752                 return ret;
2753         }
2754
2755         *pagep = page;
2756         return ret;
2757 }
2758
2759 /*
2760  * Check if we should update i_disksize
2761  * when write to the end of file but not require block allocation
2762  */
2763 static int ext4_da_should_update_i_disksize(struct page *page,
2764                                             unsigned long offset)
2765 {
2766         struct buffer_head *bh;
2767         struct inode *inode = page->mapping->host;
2768         unsigned int idx;
2769         int i;
2770
2771         bh = page_buffers(page);
2772         idx = offset >> inode->i_blkbits;
2773
2774         for (i = 0; i < idx; i++)
2775                 bh = bh->b_this_page;
2776
2777         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2778                 return 0;
2779         return 1;
2780 }
2781
2782 static int ext4_da_write_end(struct file *file,
2783                              struct address_space *mapping,
2784                              loff_t pos, unsigned len, unsigned copied,
2785                              struct page *page, void *fsdata)
2786 {
2787         struct inode *inode = mapping->host;
2788         int ret = 0, ret2;
2789         handle_t *handle = ext4_journal_current_handle();
2790         loff_t new_i_size;
2791         unsigned long start, end;
2792         int write_mode = (int)(unsigned long)fsdata;
2793
2794         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2795                 return ext4_write_end(file, mapping, pos,
2796                                       len, copied, page, fsdata);
2797
2798         trace_ext4_da_write_end(inode, pos, len, copied);
2799         start = pos & (PAGE_CACHE_SIZE - 1);
2800         end = start + copied - 1;
2801
2802         /*
2803          * generic_write_end() will run mark_inode_dirty() if i_size
2804          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2805          * into that.
2806          */
2807         new_i_size = pos + copied;
2808         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2809                 if (ext4_has_inline_data(inode) ||
2810                     ext4_da_should_update_i_disksize(page, end)) {
2811                         down_write(&EXT4_I(inode)->i_data_sem);
2812                         if (new_i_size > EXT4_I(inode)->i_disksize)
2813                                 EXT4_I(inode)->i_disksize = new_i_size;
2814                         up_write(&EXT4_I(inode)->i_data_sem);
2815                         /* We need to mark inode dirty even if
2816                          * new_i_size is less that inode->i_size
2817                          * bu greater than i_disksize.(hint delalloc)
2818                          */
2819                         ext4_mark_inode_dirty(handle, inode);
2820                 }
2821         }
2822
2823         if (write_mode != CONVERT_INLINE_DATA &&
2824             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2825             ext4_has_inline_data(inode))
2826                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2827                                                      page);
2828         else
2829                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2830                                                         page, fsdata);
2831
2832         copied = ret2;
2833         if (ret2 < 0)
2834                 ret = ret2;
2835         ret2 = ext4_journal_stop(handle);
2836         if (!ret)
2837                 ret = ret2;
2838
2839         return ret ? ret : copied;
2840 }
2841
2842 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2843 {
2844         /*
2845          * Drop reserved blocks
2846          */
2847         BUG_ON(!PageLocked(page));
2848         if (!page_has_buffers(page))
2849                 goto out;
2850
2851         ext4_da_page_release_reservation(page, offset);
2852
2853 out:
2854         ext4_invalidatepage(page, offset);
2855
2856         return;
2857 }
2858
2859 /*
2860  * Force all delayed allocation blocks to be allocated for a given inode.
2861  */
2862 int ext4_alloc_da_blocks(struct inode *inode)
2863 {
2864         trace_ext4_alloc_da_blocks(inode);
2865
2866         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2867             !EXT4_I(inode)->i_reserved_meta_blocks)
2868                 return 0;
2869
2870         /*
2871          * We do something simple for now.  The filemap_flush() will
2872          * also start triggering a write of the data blocks, which is
2873          * not strictly speaking necessary (and for users of
2874          * laptop_mode, not even desirable).  However, to do otherwise
2875          * would require replicating code paths in:
2876          *
2877          * ext4_da_writepages() ->
2878          *    write_cache_pages() ---> (via passed in callback function)
2879          *        __mpage_da_writepage() -->
2880          *           mpage_add_bh_to_extent()
2881          *           mpage_da_map_blocks()
2882          *
2883          * The problem is that write_cache_pages(), located in
2884          * mm/page-writeback.c, marks pages clean in preparation for
2885          * doing I/O, which is not desirable if we're not planning on
2886          * doing I/O at all.
2887          *
2888          * We could call write_cache_pages(), and then redirty all of
2889          * the pages by calling redirty_page_for_writepage() but that
2890          * would be ugly in the extreme.  So instead we would need to
2891          * replicate parts of the code in the above functions,
2892          * simplifying them because we wouldn't actually intend to
2893          * write out the pages, but rather only collect contiguous
2894          * logical block extents, call the multi-block allocator, and
2895          * then update the buffer heads with the block allocations.
2896          *
2897          * For now, though, we'll cheat by calling filemap_flush(),
2898          * which will map the blocks, and start the I/O, but not
2899          * actually wait for the I/O to complete.
2900          */
2901         return filemap_flush(inode->i_mapping);
2902 }
2903
2904 /*
2905  * bmap() is special.  It gets used by applications such as lilo and by
2906  * the swapper to find the on-disk block of a specific piece of data.
2907  *
2908  * Naturally, this is dangerous if the block concerned is still in the
2909  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2910  * filesystem and enables swap, then they may get a nasty shock when the
2911  * data getting swapped to that swapfile suddenly gets overwritten by
2912  * the original zero's written out previously to the journal and
2913  * awaiting writeback in the kernel's buffer cache.
2914  *
2915  * So, if we see any bmap calls here on a modified, data-journaled file,
2916  * take extra steps to flush any blocks which might be in the cache.
2917  */
2918 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2919 {
2920         struct inode *inode = mapping->host;
2921         journal_t *journal;
2922         int err;
2923
2924         /*
2925          * We can get here for an inline file via the FIBMAP ioctl
2926          */
2927         if (ext4_has_inline_data(inode))
2928                 return 0;
2929
2930         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2931                         test_opt(inode->i_sb, DELALLOC)) {
2932                 /*
2933                  * With delalloc we want to sync the file
2934                  * so that we can make sure we allocate
2935                  * blocks for file
2936                  */
2937                 filemap_write_and_wait(mapping);
2938         }
2939
2940         if (EXT4_JOURNAL(inode) &&
2941             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2942                 /*
2943                  * This is a REALLY heavyweight approach, but the use of
2944                  * bmap on dirty files is expected to be extremely rare:
2945                  * only if we run lilo or swapon on a freshly made file
2946                  * do we expect this to happen.
2947                  *
2948                  * (bmap requires CAP_SYS_RAWIO so this does not
2949                  * represent an unprivileged user DOS attack --- we'd be
2950                  * in trouble if mortal users could trigger this path at
2951                  * will.)
2952                  *
2953                  * NB. EXT4_STATE_JDATA is not set on files other than
2954                  * regular files.  If somebody wants to bmap a directory
2955                  * or symlink and gets confused because the buffer
2956                  * hasn't yet been flushed to disk, they deserve
2957                  * everything they get.
2958                  */
2959
2960                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2961                 journal = EXT4_JOURNAL(inode);
2962                 jbd2_journal_lock_updates(journal);
2963                 err = jbd2_journal_flush(journal);
2964                 jbd2_journal_unlock_updates(journal);
2965
2966                 if (err)
2967                         return 0;
2968         }
2969
2970         return generic_block_bmap(mapping, block, ext4_get_block);
2971 }
2972
2973 static int ext4_readpage(struct file *file, struct page *page)
2974 {
2975         int ret = -EAGAIN;
2976         struct inode *inode = page->mapping->host;
2977
2978         trace_ext4_readpage(page);
2979
2980         if (ext4_has_inline_data(inode))
2981                 ret = ext4_readpage_inline(inode, page);
2982
2983         if (ret == -EAGAIN)
2984                 return mpage_readpage(page, ext4_get_block);
2985
2986         return ret;
2987 }
2988
2989 static int
2990 ext4_readpages(struct file *file, struct address_space *mapping,
2991                 struct list_head *pages, unsigned nr_pages)
2992 {
2993         struct inode *inode = mapping->host;
2994
2995         /* If the file has inline data, no need to do readpages. */
2996         if (ext4_has_inline_data(inode))
2997                 return 0;
2998
2999         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3000 }
3001
3002 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3003 {
3004         trace_ext4_invalidatepage(page, offset);
3005
3006         /* No journalling happens on data buffers when this function is used */
3007         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3008
3009         block_invalidatepage(page, offset);
3010 }
3011
3012 static int __ext4_journalled_invalidatepage(struct page *page,
3013                                             unsigned long offset)
3014 {
3015         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3016
3017         trace_ext4_journalled_invalidatepage(page, offset);
3018
3019         /*
3020          * If it's a full truncate we just forget about the pending dirtying
3021          */
3022         if (offset == 0)
3023                 ClearPageChecked(page);
3024
3025         return jbd2_journal_invalidatepage(journal, page, offset);
3026 }
3027
3028 /* Wrapper for aops... */
3029 static void ext4_journalled_invalidatepage(struct page *page,
3030                                            unsigned long offset)
3031 {
3032         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3033 }
3034
3035 static int ext4_releasepage(struct page *page, gfp_t wait)
3036 {
3037         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3038
3039         trace_ext4_releasepage(page);
3040
3041         /* Page has dirty journalled data -> cannot release */
3042         if (PageChecked(page))
3043                 return 0;
3044         if (journal)
3045                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3046         else
3047                 return try_to_free_buffers(page);
3048 }
3049
3050 /*
3051  * ext4_get_block used when preparing for a DIO write or buffer write.
3052  * We allocate an uinitialized extent if blocks haven't been allocated.
3053  * The extent will be converted to initialized after the IO is complete.
3054  */
3055 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3056                    struct buffer_head *bh_result, int create)
3057 {
3058         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3059                    inode->i_ino, create);
3060         return _ext4_get_block(inode, iblock, bh_result,
3061                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3062 }
3063
3064 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3065                    struct buffer_head *bh_result, int create)
3066 {
3067         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3068                    inode->i_ino, create);
3069         return _ext4_get_block(inode, iblock, bh_result,
3070                                EXT4_GET_BLOCKS_NO_LOCK);
3071 }
3072
3073 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3074                             ssize_t size, void *private, int ret,
3075                             bool is_async)
3076 {
3077         struct inode *inode = file_inode(iocb->ki_filp);
3078         ext4_io_end_t *io_end = iocb->private;
3079
3080         /* if not async direct IO or dio with 0 bytes write, just return */
3081         if (!io_end || !size)
3082                 goto out;
3083
3084         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3085                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3086                   iocb->private, io_end->inode->i_ino, iocb, offset,
3087                   size);
3088
3089         iocb->private = NULL;
3090
3091         /* if not aio dio with unwritten extents, just free io and return */
3092         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3093                 ext4_free_io_end(io_end);
3094 out:
3095                 inode_dio_done(inode);
3096                 if (is_async)
3097                         aio_complete(iocb, ret, 0);
3098                 return;
3099         }
3100
3101         io_end->offset = offset;
3102         io_end->size = size;
3103         if (is_async) {
3104                 io_end->iocb = iocb;
3105                 io_end->result = ret;
3106         }
3107
3108         ext4_add_complete_io(io_end);
3109 }
3110
3111 /*
3112  * For ext4 extent files, ext4 will do direct-io write to holes,
3113  * preallocated extents, and those write extend the file, no need to
3114  * fall back to buffered IO.
3115  *
3116  * For holes, we fallocate those blocks, mark them as uninitialized
3117  * If those blocks were preallocated, we mark sure they are split, but
3118  * still keep the range to write as uninitialized.
3119  *
3120  * The unwritten extents will be converted to written when DIO is completed.
3121  * For async direct IO, since the IO may still pending when return, we
3122  * set up an end_io call back function, which will do the conversion
3123  * when async direct IO completed.
3124  *
3125  * If the O_DIRECT write will extend the file then add this inode to the
3126  * orphan list.  So recovery will truncate it back to the original size
3127  * if the machine crashes during the write.
3128  *
3129  */
3130 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3131                               const struct iovec *iov, loff_t offset,
3132                               unsigned long nr_segs)
3133 {
3134         struct file *file = iocb->ki_filp;
3135         struct inode *inode = file->f_mapping->host;
3136         ssize_t ret;
3137         size_t count = iov_length(iov, nr_segs);
3138         int overwrite = 0;
3139         get_block_t *get_block_func = NULL;
3140         int dio_flags = 0;
3141         loff_t final_size = offset + count;
3142
3143         /* Use the old path for reads and writes beyond i_size. */
3144         if (rw != WRITE || final_size > inode->i_size)
3145                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3146
3147         BUG_ON(iocb->private == NULL);
3148
3149         /* If we do a overwrite dio, i_mutex locking can be released */
3150         overwrite = *((int *)iocb->private);
3151
3152         if (overwrite) {
3153                 atomic_inc(&inode->i_dio_count);
3154                 down_read(&EXT4_I(inode)->i_data_sem);
3155                 mutex_unlock(&inode->i_mutex);
3156         }
3157
3158         /*
3159          * We could direct write to holes and fallocate.
3160          *
3161          * Allocated blocks to fill the hole are marked as
3162          * uninitialized to prevent parallel buffered read to expose
3163          * the stale data before DIO complete the data IO.
3164          *
3165          * As to previously fallocated extents, ext4 get_block will
3166          * just simply mark the buffer mapped but still keep the
3167          * extents uninitialized.
3168          *
3169          * For non AIO case, we will convert those unwritten extents
3170          * to written after return back from blockdev_direct_IO.
3171          *
3172          * For async DIO, the conversion needs to be deferred when the
3173          * IO is completed. The ext4 end_io callback function will be
3174          * called to take care of the conversion work.  Here for async
3175          * case, we allocate an io_end structure to hook to the iocb.
3176          */
3177         iocb->private = NULL;
3178         ext4_inode_aio_set(inode, NULL);
3179         if (!is_sync_kiocb(iocb)) {
3180                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3181                 if (!io_end) {
3182                         ret = -ENOMEM;
3183                         goto retake_lock;
3184                 }
3185                 io_end->flag |= EXT4_IO_END_DIRECT;
3186                 iocb->private = io_end;
3187                 /*
3188                  * we save the io structure for current async direct
3189                  * IO, so that later ext4_map_blocks() could flag the
3190                  * io structure whether there is a unwritten extents
3191                  * needs to be converted when IO is completed.
3192                  */
3193                 ext4_inode_aio_set(inode, io_end);
3194         }
3195
3196         if (overwrite) {
3197                 get_block_func = ext4_get_block_write_nolock;
3198         } else {
3199                 get_block_func = ext4_get_block_write;
3200                 dio_flags = DIO_LOCKING;
3201         }
3202         ret = __blockdev_direct_IO(rw, iocb, inode,
3203                                    inode->i_sb->s_bdev, iov,
3204                                    offset, nr_segs,
3205                                    get_block_func,
3206                                    ext4_end_io_dio,
3207                                    NULL,
3208                                    dio_flags);
3209
3210         if (iocb->private)
3211                 ext4_inode_aio_set(inode, NULL);
3212         /*
3213          * The io_end structure takes a reference to the inode, that
3214          * structure needs to be destroyed and the reference to the
3215          * inode need to be dropped, when IO is complete, even with 0
3216          * byte write, or failed.
3217          *
3218          * In the successful AIO DIO case, the io_end structure will
3219          * be destroyed and the reference to the inode will be dropped
3220          * after the end_io call back function is called.
3221          *
3222          * In the case there is 0 byte write, or error case, since VFS
3223          * direct IO won't invoke the end_io call back function, we
3224          * need to free the end_io structure here.
3225          */
3226         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3227                 ext4_free_io_end(iocb->private);
3228                 iocb->private = NULL;
3229         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3230                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3231                 int err;
3232                 /*
3233                  * for non AIO case, since the IO is already
3234                  * completed, we could do the conversion right here
3235                  */
3236                 err = ext4_convert_unwritten_extents(inode,
3237                                                      offset, ret);
3238                 if (err < 0)
3239                         ret = err;
3240                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3241         }
3242
3243 retake_lock:
3244         /* take i_mutex locking again if we do a ovewrite dio */
3245         if (overwrite) {
3246                 inode_dio_done(inode);
3247                 up_read(&EXT4_I(inode)->i_data_sem);
3248                 mutex_lock(&inode->i_mutex);
3249         }
3250
3251         return ret;
3252 }
3253
3254 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3255                               const struct iovec *iov, loff_t offset,
3256                               unsigned long nr_segs)
3257 {
3258         struct file *file = iocb->ki_filp;
3259         struct inode *inode = file->f_mapping->host;
3260         ssize_t ret;
3261
3262         /*
3263          * If we are doing data journalling we don't support O_DIRECT
3264          */
3265         if (ext4_should_journal_data(inode))
3266                 return 0;
3267
3268         /* Let buffer I/O handle the inline data case. */
3269         if (ext4_has_inline_data(inode))
3270                 return 0;
3271
3272         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3273         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3274                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3275         else
3276                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3277         trace_ext4_direct_IO_exit(inode, offset,
3278                                 iov_length(iov, nr_segs), rw, ret);
3279         return ret;
3280 }
3281
3282 /*
3283  * Pages can be marked dirty completely asynchronously from ext4's journalling
3284  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3285  * much here because ->set_page_dirty is called under VFS locks.  The page is
3286  * not necessarily locked.
3287  *
3288  * We cannot just dirty the page and leave attached buffers clean, because the
3289  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3290  * or jbddirty because all the journalling code will explode.
3291  *
3292  * So what we do is to mark the page "pending dirty" and next time writepage
3293  * is called, propagate that into the buffers appropriately.
3294  */
3295 static int ext4_journalled_set_page_dirty(struct page *page)
3296 {
3297         SetPageChecked(page);
3298         return __set_page_dirty_nobuffers(page);
3299 }
3300
3301 static const struct address_space_operations ext4_aops = {
3302         .readpage               = ext4_readpage,
3303         .readpages              = ext4_readpages,
3304         .writepage              = ext4_writepage,
3305         .write_begin            = ext4_write_begin,
3306         .write_end              = ext4_write_end,
3307         .bmap                   = ext4_bmap,
3308         .invalidatepage         = ext4_invalidatepage,
3309         .releasepage            = ext4_releasepage,
3310         .direct_IO              = ext4_direct_IO,
3311         .migratepage            = buffer_migrate_page,
3312         .is_partially_uptodate  = block_is_partially_uptodate,
3313         .error_remove_page      = generic_error_remove_page,
3314 };
3315
3316 static const struct address_space_operations ext4_journalled_aops = {
3317         .readpage               = ext4_readpage,
3318         .readpages              = ext4_readpages,
3319         .writepage              = ext4_writepage,
3320         .write_begin            = ext4_write_begin,
3321         .write_end              = ext4_journalled_write_end,
3322         .set_page_dirty         = ext4_journalled_set_page_dirty,
3323         .bmap                   = ext4_bmap,
3324         .invalidatepage         = ext4_journalled_invalidatepage,
3325         .releasepage            = ext4_releasepage,
3326         .direct_IO              = ext4_direct_IO,
3327         .is_partially_uptodate  = block_is_partially_uptodate,
3328         .error_remove_page      = generic_error_remove_page,
3329 };
3330
3331 static const struct address_space_operations ext4_da_aops = {
3332         .readpage               = ext4_readpage,
3333         .readpages              = ext4_readpages,
3334         .writepage              = ext4_writepage,
3335         .writepages             = ext4_da_writepages,
3336         .write_begin            = ext4_da_write_begin,
3337         .write_end              = ext4_da_write_end,
3338         .bmap                   = ext4_bmap,
3339         .invalidatepage         = ext4_da_invalidatepage,
3340         .releasepage            = ext4_releasepage,
3341         .direct_IO              = ext4_direct_IO,
3342         .migratepage            = buffer_migrate_page,
3343         .is_partially_uptodate  = block_is_partially_uptodate,
3344         .error_remove_page      = generic_error_remove_page,
3345 };
3346
3347 void ext4_set_aops(struct inode *inode)
3348 {
3349         switch (ext4_inode_journal_mode(inode)) {
3350         case EXT4_INODE_ORDERED_DATA_MODE:
3351                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3352                 break;
3353         case EXT4_INODE_WRITEBACK_DATA_MODE:
3354                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3355                 break;
3356         case EXT4_INODE_JOURNAL_DATA_MODE:
3357                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3358                 return;
3359         default:
3360                 BUG();
3361         }
3362         if (test_opt(inode->i_sb, DELALLOC))
3363                 inode->i_mapping->a_ops = &ext4_da_aops;
3364         else
3365                 inode->i_mapping->a_ops = &ext4_aops;
3366 }
3367
3368
3369 /*
3370  * ext4_discard_partial_page_buffers()
3371  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3372  * This function finds and locks the page containing the offset
3373  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3374  * Calling functions that already have the page locked should call
3375  * ext4_discard_partial_page_buffers_no_lock directly.
3376  */
3377 int ext4_discard_partial_page_buffers(handle_t *handle,
3378                 struct address_space *mapping, loff_t from,
3379                 loff_t length, int flags)
3380 {
3381         struct inode *inode = mapping->host;
3382         struct page *page;
3383         int err = 0;
3384
3385         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3386                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3387         if (!page)
3388                 return -ENOMEM;
3389
3390         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3391                 from, length, flags);
3392
3393         unlock_page(page);
3394         page_cache_release(page);
3395         return err;
3396 }
3397
3398 /*
3399  * ext4_discard_partial_page_buffers_no_lock()
3400  * Zeros a page range of length 'length' starting from offset 'from'.
3401  * Buffer heads that correspond to the block aligned regions of the
3402  * zeroed range will be unmapped.  Unblock aligned regions
3403  * will have the corresponding buffer head mapped if needed so that
3404  * that region of the page can be updated with the partial zero out.
3405  *
3406  * This function assumes that the page has already been  locked.  The
3407  * The range to be discarded must be contained with in the given page.
3408  * If the specified range exceeds the end of the page it will be shortened
3409  * to the end of the page that corresponds to 'from'.  This function is
3410  * appropriate for updating a page and it buffer heads to be unmapped and
3411  * zeroed for blocks that have been either released, or are going to be
3412  * released.
3413  *
3414  * handle: The journal handle
3415  * inode:  The files inode
3416  * page:   A locked page that contains the offset "from"
3417  * from:   The starting byte offset (from the beginning of the file)
3418  *         to begin discarding
3419  * len:    The length of bytes to discard
3420  * flags:  Optional flags that may be used:
3421  *
3422  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3423  *         Only zero the regions of the page whose buffer heads
3424  *         have already been unmapped.  This flag is appropriate
3425  *         for updating the contents of a page whose blocks may
3426  *         have already been released, and we only want to zero
3427  *         out the regions that correspond to those released blocks.
3428  *
3429  * Returns zero on success or negative on failure.
3430  */
3431 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3432                 struct inode *inode, struct page *page, loff_t from,
3433                 loff_t length, int flags)
3434 {
3435         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3436         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3437         unsigned int blocksize, max, pos;
3438         ext4_lblk_t iblock;
3439         struct buffer_head *bh;
3440         int err = 0;
3441
3442         blocksize = inode->i_sb->s_blocksize;
3443         max = PAGE_CACHE_SIZE - offset;
3444
3445         if (index != page->index)
3446                 return -EINVAL;
3447
3448         /*
3449          * correct length if it does not fall between
3450          * 'from' and the end of the page
3451          */
3452         if (length > max || length < 0)
3453                 length = max;
3454
3455         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3456
3457         if (!page_has_buffers(page))
3458                 create_empty_buffers(page, blocksize, 0);
3459
3460         /* Find the buffer that contains "offset" */
3461         bh = page_buffers(page);
3462         pos = blocksize;
3463         while (offset >= pos) {
3464                 bh = bh->b_this_page;
3465                 iblock++;
3466                 pos += blocksize;
3467         }
3468
3469         pos = offset;
3470         while (pos < offset + length) {
3471                 unsigned int end_of_block, range_to_discard;
3472
3473                 err = 0;
3474
3475                 /* The length of space left to zero and unmap */
3476                 range_to_discard = offset + length - pos;
3477
3478                 /* The length of space until the end of the block */
3479                 end_of_block = blocksize - (pos & (blocksize-1));
3480
3481                 /*
3482                  * Do not unmap or zero past end of block
3483                  * for this buffer head
3484                  */
3485                 if (range_to_discard > end_of_block)
3486                         range_to_discard = end_of_block;
3487
3488
3489                 /*
3490                  * Skip this buffer head if we are only zeroing unampped
3491                  * regions of the page
3492                  */
3493                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3494                         buffer_mapped(bh))
3495                                 goto next;
3496
3497                 /* If the range is block aligned, unmap */
3498                 if (range_to_discard == blocksize) {
3499                         clear_buffer_dirty(bh);
3500                         bh->b_bdev = NULL;
3501                         clear_buffer_mapped(bh);
3502                         clear_buffer_req(bh);
3503                         clear_buffer_new(bh);
3504                         clear_buffer_delay(bh);
3505                         clear_buffer_unwritten(bh);
3506                         clear_buffer_uptodate(bh);
3507                         zero_user(page, pos, range_to_discard);
3508                         BUFFER_TRACE(bh, "Buffer discarded");
3509                         goto next;
3510                 }
3511
3512                 /*
3513                  * If this block is not completely contained in the range
3514                  * to be discarded, then it is not going to be released. Because
3515                  * we need to keep this block, we need to make sure this part
3516                  * of the page is uptodate before we modify it by writeing
3517                  * partial zeros on it.
3518                  */
3519                 if (!buffer_mapped(bh)) {
3520                         /*
3521                          * Buffer head must be mapped before we can read
3522                          * from the block
3523                          */
3524                         BUFFER_TRACE(bh, "unmapped");
3525                         ext4_get_block(inode, iblock, bh, 0);
3526                         /* unmapped? It's a hole - nothing to do */
3527                         if (!buffer_mapped(bh)) {
3528                                 BUFFER_TRACE(bh, "still unmapped");
3529                                 goto next;
3530                         }
3531                 }
3532
3533                 /* Ok, it's mapped. Make sure it's up-to-date */
3534                 if (PageUptodate(page))
3535                         set_buffer_uptodate(bh);
3536
3537                 if (!buffer_uptodate(bh)) {
3538                         err = -EIO;
3539                         ll_rw_block(READ, 1, &bh);
3540                         wait_on_buffer(bh);
3541                         /* Uhhuh. Read error. Complain and punt.*/
3542                         if (!buffer_uptodate(bh))
3543                                 goto next;
3544                 }
3545
3546                 if (ext4_should_journal_data(inode)) {
3547                         BUFFER_TRACE(bh, "get write access");
3548                         err = ext4_journal_get_write_access(handle, bh);
3549                         if (err)
3550                                 goto next;
3551                 }
3552
3553                 zero_user(page, pos, range_to_discard);
3554
3555                 err = 0;
3556                 if (ext4_should_journal_data(inode)) {
3557                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3558                 } else
3559                         mark_buffer_dirty(bh);
3560
3561                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3562 next:
3563                 bh = bh->b_this_page;
3564                 iblock++;
3565                 pos += range_to_discard;
3566         }
3567
3568         return err;
3569 }
3570
3571 int ext4_can_truncate(struct inode *inode)
3572 {
3573         if (S_ISREG(inode->i_mode))
3574                 return 1;
3575         if (S_ISDIR(inode->i_mode))
3576                 return 1;
3577         if (S_ISLNK(inode->i_mode))
3578                 return !ext4_inode_is_fast_symlink(inode);
3579         return 0;
3580 }
3581
3582 /*
3583  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3584  * associated with the given offset and length
3585  *
3586  * @inode:  File inode
3587  * @offset: The offset where the hole will begin
3588  * @len:    The length of the hole
3589  *
3590  * Returns: 0 on success or negative on failure
3591  */
3592
3593 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3594 {
3595         struct inode *inode = file_inode(file);
3596         struct super_block *sb = inode->i_sb;
3597         ext4_lblk_t first_block, stop_block;
3598         struct address_space *mapping = inode->i_mapping;
3599         loff_t first_page, last_page, page_len;
3600         loff_t first_page_offset, last_page_offset;
3601         handle_t *handle;
3602         unsigned int credits;
3603         int ret = 0;
3604
3605         if (!S_ISREG(inode->i_mode))
3606                 return -EOPNOTSUPP;
3607
3608         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3609                 /* TODO: Add support for bigalloc file systems */
3610                 return -EOPNOTSUPP;
3611         }
3612
3613         trace_ext4_punch_hole(inode, offset, length);
3614
3615         /*
3616          * Write out all dirty pages to avoid race conditions
3617          * Then release them.
3618          */
3619         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3620                 ret = filemap_write_and_wait_range(mapping, offset,
3621                                                    offset + length - 1);
3622                 if (ret)
3623                         return ret;
3624         }
3625
3626         mutex_lock(&inode->i_mutex);
3627         /* It's not possible punch hole on append only file */
3628         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3629                 ret = -EPERM;
3630                 goto out_mutex;
3631         }
3632         if (IS_SWAPFILE(inode)) {
3633                 ret = -ETXTBSY;
3634                 goto out_mutex;
3635         }
3636
3637         /* No need to punch hole beyond i_size */
3638         if (offset >= inode->i_size)
3639                 goto out_mutex;
3640
3641         /*
3642          * If the hole extends beyond i_size, set the hole
3643          * to end after the page that contains i_size
3644          */
3645         if (offset + length > inode->i_size) {
3646                 length = inode->i_size +
3647                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3648                    offset;
3649         }
3650
3651         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3652         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3653
3654         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3655         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3656
3657         /* Now release the pages */
3658         if (last_page_offset > first_page_offset) {
3659                 truncate_pagecache_range(inode, first_page_offset,
3660                                          last_page_offset - 1);
3661         }
3662
3663         /* Wait all existing dio workers, newcomers will block on i_mutex */
3664         ext4_inode_block_unlocked_dio(inode);
3665         ret = ext4_flush_unwritten_io(inode);
3666         if (ret)
3667                 goto out_dio;
3668         inode_dio_wait(inode);
3669
3670         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3671                 credits = ext4_writepage_trans_blocks(inode);
3672         else
3673                 credits = ext4_blocks_for_truncate(inode);
3674         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3675         if (IS_ERR(handle)) {
3676                 ret = PTR_ERR(handle);
3677                 ext4_std_error(sb, ret);
3678                 goto out_dio;
3679         }
3680
3681         /*
3682          * Now we need to zero out the non-page-aligned data in the
3683          * pages at the start and tail of the hole, and unmap the
3684          * buffer heads for the block aligned regions of the page that
3685          * were completely zeroed.
3686          */
3687         if (first_page > last_page) {
3688                 /*
3689                  * If the file space being truncated is contained
3690                  * within a page just zero out and unmap the middle of
3691                  * that page
3692                  */
3693                 ret = ext4_discard_partial_page_buffers(handle,
3694                         mapping, offset, length, 0);
3695
3696                 if (ret)
3697                         goto out_stop;
3698         } else {
3699                 /*
3700                  * zero out and unmap the partial page that contains
3701                  * the start of the hole
3702                  */
3703                 page_len = first_page_offset - offset;
3704                 if (page_len > 0) {
3705                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3706                                                 offset, page_len, 0);
3707                         if (ret)
3708                                 goto out_stop;
3709                 }
3710
3711                 /*
3712                  * zero out and unmap the partial page that contains
3713                  * the end of the hole
3714                  */
3715                 page_len = offset + length - last_page_offset;
3716                 if (page_len > 0) {
3717                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3718                                         last_page_offset, page_len, 0);
3719                         if (ret)
3720                                 goto out_stop;
3721                 }
3722         }
3723
3724         /*
3725          * If i_size is contained in the last page, we need to
3726          * unmap and zero the partial page after i_size
3727          */
3728         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3729            inode->i_size % PAGE_CACHE_SIZE != 0) {
3730                 page_len = PAGE_CACHE_SIZE -
3731                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3732
3733                 if (page_len > 0) {
3734                         ret = ext4_discard_partial_page_buffers(handle,
3735                                         mapping, inode->i_size, page_len, 0);
3736
3737                         if (ret)
3738                                 goto out_stop;
3739                 }
3740         }
3741
3742         first_block = (offset + sb->s_blocksize - 1) >>
3743                 EXT4_BLOCK_SIZE_BITS(sb);
3744         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3745
3746         /* If there are no blocks to remove, return now */
3747         if (first_block >= stop_block)
3748                 goto out_stop;
3749
3750         down_write(&EXT4_I(inode)->i_data_sem);
3751         ext4_discard_preallocations(inode);
3752
3753         ret = ext4_es_remove_extent(inode, first_block,
3754                                     stop_block - first_block);
3755         if (ret) {
3756                 up_write(&EXT4_I(inode)->i_data_sem);
3757                 goto out_stop;
3758         }
3759
3760         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3761                 ret = ext4_ext_remove_space(inode, first_block,
3762                                             stop_block - 1);
3763         else
3764                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3765                                             stop_block);
3766
3767         ext4_discard_preallocations(inode);
3768         up_write(&EXT4_I(inode)->i_data_sem);
3769         if (IS_SYNC(inode))
3770                 ext4_handle_sync(handle);
3771         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3772         ext4_mark_inode_dirty(handle, inode);
3773 out_stop:
3774         ext4_journal_stop(handle);
3775 out_dio:
3776         ext4_inode_resume_unlocked_dio(inode);
3777 out_mutex:
3778         mutex_unlock(&inode->i_mutex);
3779         return ret;
3780 }
3781
3782 /*
3783  * ext4_truncate()
3784  *
3785  * We block out ext4_get_block() block instantiations across the entire
3786  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3787  * simultaneously on behalf of the same inode.
3788  *
3789  * As we work through the truncate and commit bits of it to the journal there
3790  * is one core, guiding principle: the file's tree must always be consistent on
3791  * disk.  We must be able to restart the truncate after a crash.
3792  *
3793  * The file's tree may be transiently inconsistent in memory (although it
3794  * probably isn't), but whenever we close off and commit a journal transaction,
3795  * the contents of (the filesystem + the journal) must be consistent and
3796  * restartable.  It's pretty simple, really: bottom up, right to left (although
3797  * left-to-right works OK too).
3798  *
3799  * Note that at recovery time, journal replay occurs *before* the restart of
3800  * truncate against the orphan inode list.
3801  *
3802  * The committed inode has the new, desired i_size (which is the same as
3803  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3804  * that this inode's truncate did not complete and it will again call
3805  * ext4_truncate() to have another go.  So there will be instantiated blocks
3806  * to the right of the truncation point in a crashed ext4 filesystem.  But
3807  * that's fine - as long as they are linked from the inode, the post-crash
3808  * ext4_truncate() run will find them and release them.
3809  */
3810 void ext4_truncate(struct inode *inode)
3811 {
3812         struct ext4_inode_info *ei = EXT4_I(inode);
3813         unsigned int credits;
3814         handle_t *handle;
3815         struct address_space *mapping = inode->i_mapping;
3816         loff_t page_len;
3817
3818         /*
3819          * There is a possibility that we're either freeing the inode
3820          * or it completely new indode. In those cases we might not
3821          * have i_mutex locked because it's not necessary.
3822          */
3823         if (!(inode->i_state & (I_NEW|I_FREEING)))
3824                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3825         trace_ext4_truncate_enter(inode);
3826
3827         if (!ext4_can_truncate(inode))
3828                 return;
3829
3830         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3831
3832         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3833                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3834
3835         if (ext4_has_inline_data(inode)) {
3836                 int has_inline = 1;
3837
3838                 ext4_inline_data_truncate(inode, &has_inline);
3839                 if (has_inline)
3840                         return;
3841         }
3842
3843         /*
3844          * finish any pending end_io work so we won't run the risk of
3845          * converting any truncated blocks to initialized later
3846          */
3847         ext4_flush_unwritten_io(inode);
3848
3849         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3850                 credits = ext4_writepage_trans_blocks(inode);
3851         else
3852                 credits = ext4_blocks_for_truncate(inode);
3853
3854         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3855         if (IS_ERR(handle)) {
3856                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3857                 return;
3858         }
3859
3860         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3861                 page_len = PAGE_CACHE_SIZE -
3862                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3863
3864                 if (ext4_discard_partial_page_buffers(handle,
3865                                 mapping, inode->i_size, page_len, 0))
3866                         goto out_stop;
3867         }
3868
3869         /*
3870          * We add the inode to the orphan list, so that if this
3871          * truncate spans multiple transactions, and we crash, we will
3872          * resume the truncate when the filesystem recovers.  It also
3873          * marks the inode dirty, to catch the new size.
3874          *
3875          * Implication: the file must always be in a sane, consistent
3876          * truncatable state while each transaction commits.
3877          */
3878         if (ext4_orphan_add(handle, inode))
3879                 goto out_stop;
3880
3881         down_write(&EXT4_I(inode)->i_data_sem);
3882
3883         ext4_discard_preallocations(inode);
3884
3885         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3886                 ext4_ext_truncate(handle, inode);
3887         else
3888                 ext4_ind_truncate(handle, inode);
3889
3890         up_write(&ei->i_data_sem);
3891
3892         if (IS_SYNC(inode))
3893                 ext4_handle_sync(handle);
3894
3895 out_stop:
3896         /*
3897          * If this was a simple ftruncate() and the file will remain alive,
3898          * then we need to clear up the orphan record which we created above.
3899          * However, if this was a real unlink then we were called by
3900          * ext4_delete_inode(), and we allow that function to clean up the
3901          * orphan info for us.
3902          */
3903         if (inode->i_nlink)
3904                 ext4_orphan_del(handle, inode);
3905
3906         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3907         ext4_mark_inode_dirty(handle, inode);
3908         ext4_journal_stop(handle);
3909
3910         trace_ext4_truncate_exit(inode);
3911 }
3912
3913 /*
3914  * ext4_get_inode_loc returns with an extra refcount against the inode's
3915  * underlying buffer_head on success. If 'in_mem' is true, we have all
3916  * data in memory that is needed to recreate the on-disk version of this
3917  * inode.
3918  */
3919 static int __ext4_get_inode_loc(struct inode *inode,
3920                                 struct ext4_iloc *iloc, int in_mem)
3921 {
3922         struct ext4_group_desc  *gdp;
3923         struct buffer_head      *bh;
3924         struct super_block      *sb = inode->i_sb;
3925         ext4_fsblk_t            block;
3926         int                     inodes_per_block, inode_offset;
3927
3928         iloc->bh = NULL;
3929         if (!ext4_valid_inum(sb, inode->i_ino))
3930                 return -EIO;
3931
3932         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3933         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3934         if (!gdp)
3935                 return -EIO;
3936
3937         /*
3938          * Figure out the offset within the block group inode table
3939          */
3940         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3941         inode_offset = ((inode->i_ino - 1) %
3942                         EXT4_INODES_PER_GROUP(sb));
3943         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3944         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3945
3946         bh = sb_getblk(sb, block);
3947         if (unlikely(!bh))
3948                 return -ENOMEM;
3949         if (!buffer_uptodate(bh)) {
3950                 lock_buffer(bh);
3951
3952                 /*
3953                  * If the buffer has the write error flag, we have failed
3954                  * to write out another inode in the same block.  In this
3955                  * case, we don't have to read the block because we may
3956                  * read the old inode data successfully.
3957                  */
3958                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3959                         set_buffer_uptodate(bh);
3960
3961                 if (buffer_uptodate(bh)) {
3962                         /* someone brought it uptodate while we waited */
3963                         unlock_buffer(bh);
3964                         goto has_buffer;
3965                 }
3966
3967                 /*
3968                  * If we have all information of the inode in memory and this
3969                  * is the only valid inode in the block, we need not read the
3970                  * block.
3971                  */
3972                 if (in_mem) {
3973                         struct buffer_head *bitmap_bh;
3974                         int i, start;
3975
3976                         start = inode_offset & ~(inodes_per_block - 1);
3977
3978                         /* Is the inode bitmap in cache? */
3979                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3980                         if (unlikely(!bitmap_bh))
3981                                 goto make_io;
3982
3983                         /*
3984                          * If the inode bitmap isn't in cache then the
3985                          * optimisation may end up performing two reads instead
3986                          * of one, so skip it.
3987                          */
3988                         if (!buffer_uptodate(bitmap_bh)) {
3989                                 brelse(bitmap_bh);
3990                                 goto make_io;
3991                         }
3992                         for (i = start; i < start + inodes_per_block; i++) {
3993                                 if (i == inode_offset)
3994                                         continue;
3995                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3996                                         break;
3997                         }
3998                         brelse(bitmap_bh);
3999                         if (i == start + inodes_per_block) {
4000                                 /* all other inodes are free, so skip I/O */
4001                                 memset(bh->b_data, 0, bh->b_size);
4002                                 set_buffer_uptodate(bh);
4003                                 unlock_buffer(bh);
4004                                 goto has_buffer;
4005                         }
4006                 }
4007
4008 make_io:
4009                 /*
4010                  * If we need to do any I/O, try to pre-readahead extra
4011                  * blocks from the inode table.
4012                  */
4013                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4014                         ext4_fsblk_t b, end, table;
4015                         unsigned num;
4016                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4017
4018                         table = ext4_inode_table(sb, gdp);
4019                         /* s_inode_readahead_blks is always a power of 2 */
4020                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4021                         if (table > b)
4022                                 b = table;
4023                         end = b + ra_blks;
4024                         num = EXT4_INODES_PER_GROUP(sb);
4025                         if (ext4_has_group_desc_csum(sb))
4026                                 num -= ext4_itable_unused_count(sb, gdp);
4027                         table += num / inodes_per_block;
4028                         if (end > table)
4029                                 end = table;
4030                         while (b <= end)
4031                                 sb_breadahead(sb, b++);
4032                 }
4033
4034                 /*
4035                  * There are other valid inodes in the buffer, this inode
4036                  * has in-inode xattrs, or we don't have this inode in memory.
4037                  * Read the block from disk.
4038                  */
4039                 trace_ext4_load_inode(inode);
4040                 get_bh(bh);
4041                 bh->b_end_io = end_buffer_read_sync;
4042                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4043                 wait_on_buffer(bh);
4044                 if (!buffer_uptodate(bh)) {
4045                         EXT4_ERROR_INODE_BLOCK(inode, block,
4046                                                "unable to read itable block");
4047                         brelse(bh);
4048                         return -EIO;
4049                 }
4050         }
4051 has_buffer:
4052         iloc->bh = bh;
4053         return 0;
4054 }
4055
4056 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4057 {
4058         /* We have all inode data except xattrs in memory here. */
4059         return __ext4_get_inode_loc(inode, iloc,
4060                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4061 }
4062
4063 void ext4_set_inode_flags(struct inode *inode)
4064 {
4065         unsigned int flags = EXT4_I(inode)->i_flags;
4066         unsigned int new_fl = 0;
4067
4068         if (flags & EXT4_SYNC_FL)
4069                 new_fl |= S_SYNC;
4070         if (flags & EXT4_APPEND_FL)
4071                 new_fl |= S_APPEND;
4072         if (flags & EXT4_IMMUTABLE_FL)
4073                 new_fl |= S_IMMUTABLE;
4074         if (flags & EXT4_NOATIME_FL)
4075                 new_fl |= S_NOATIME;
4076         if (flags & EXT4_DIRSYNC_FL)
4077                 new_fl |= S_DIRSYNC;
4078         set_mask_bits(&inode->i_flags,
4079                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4080 }
4081
4082 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4083 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4084 {
4085         unsigned int vfs_fl;
4086         unsigned long old_fl, new_fl;
4087
4088         do {
4089                 vfs_fl = ei->vfs_inode.i_flags;
4090                 old_fl = ei->i_flags;
4091                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4092                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4093                                 EXT4_DIRSYNC_FL);
4094                 if (vfs_fl & S_SYNC)
4095                         new_fl |= EXT4_SYNC_FL;
4096                 if (vfs_fl & S_APPEND)
4097                         new_fl |= EXT4_APPEND_FL;
4098                 if (vfs_fl & S_IMMUTABLE)
4099                         new_fl |= EXT4_IMMUTABLE_FL;
4100                 if (vfs_fl & S_NOATIME)
4101                         new_fl |= EXT4_NOATIME_FL;
4102                 if (vfs_fl & S_DIRSYNC)
4103                         new_fl |= EXT4_DIRSYNC_FL;
4104         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4105 }
4106
4107 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4108                                   struct ext4_inode_info *ei)
4109 {
4110         blkcnt_t i_blocks ;
4111         struct inode *inode = &(ei->vfs_inode);
4112         struct super_block *sb = inode->i_sb;
4113
4114         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4115                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4116                 /* we are using combined 48 bit field */
4117                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4118                                         le32_to_cpu(raw_inode->i_blocks_lo);
4119                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4120                         /* i_blocks represent file system block size */
4121                         return i_blocks  << (inode->i_blkbits - 9);
4122                 } else {
4123                         return i_blocks;
4124                 }
4125         } else {
4126                 return le32_to_cpu(raw_inode->i_blocks_lo);
4127         }
4128 }
4129
4130 static inline void ext4_iget_extra_inode(struct inode *inode,
4131                                          struct ext4_inode *raw_inode,
4132                                          struct ext4_inode_info *ei)
4133 {
4134         __le32 *magic = (void *)raw_inode +
4135                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4136         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4137                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4138                 ext4_find_inline_data_nolock(inode);
4139         } else
4140                 EXT4_I(inode)->i_inline_off = 0;
4141 }
4142
4143 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4144 {
4145         struct ext4_iloc iloc;
4146         struct ext4_inode *raw_inode;
4147         struct ext4_inode_info *ei;
4148         struct inode *inode;
4149         journal_t *journal = EXT4_SB(sb)->s_journal;
4150         long ret;
4151         int block;
4152         uid_t i_uid;
4153         gid_t i_gid;
4154
4155         inode = iget_locked(sb, ino);
4156         if (!inode)
4157                 return ERR_PTR(-ENOMEM);
4158         if (!(inode->i_state & I_NEW))
4159                 return inode;
4160
4161         ei = EXT4_I(inode);
4162         iloc.bh = NULL;
4163
4164         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4165         if (ret < 0)
4166                 goto bad_inode;
4167         raw_inode = ext4_raw_inode(&iloc);
4168
4169         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4170                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4171                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4172                     EXT4_INODE_SIZE(inode->i_sb)) {
4173                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4174                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4175                                 EXT4_INODE_SIZE(inode->i_sb));
4176                         ret = -EIO;
4177                         goto bad_inode;
4178                 }
4179         } else
4180                 ei->i_extra_isize = 0;
4181
4182         /* Precompute checksum seed for inode metadata */
4183         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4184                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4185                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4186                 __u32 csum;
4187                 __le32 inum = cpu_to_le32(inode->i_ino);
4188                 __le32 gen = raw_inode->i_generation;
4189                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4190                                    sizeof(inum));
4191                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4192                                               sizeof(gen));
4193         }
4194
4195         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4196                 EXT4_ERROR_INODE(inode, "checksum invalid");
4197                 ret = -EIO;
4198                 goto bad_inode;
4199         }
4200
4201         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4202         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4203         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4204         if (!(test_opt(inode->i_sb, NO_UID32))) {
4205                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4206                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4207         }
4208         i_uid_write(inode, i_uid);
4209         i_gid_write(inode, i_gid);
4210         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4211
4212         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4213         ei->i_inline_off = 0;
4214         ei->i_dir_start_lookup = 0;
4215         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4216         /* We now have enough fields to check if the inode was active or not.
4217          * This is needed because nfsd might try to access dead inodes
4218          * the test is that same one that e2fsck uses
4219          * NeilBrown 1999oct15
4220          */
4221         if (inode->i_nlink == 0) {
4222                 if ((inode->i_mode == 0 ||
4223                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4224                     ino != EXT4_BOOT_LOADER_INO) {
4225                         /* this inode is deleted */
4226                         ret = -ESTALE;
4227                         goto bad_inode;
4228                 }
4229                 /* The only unlinked inodes we let through here have
4230                  * valid i_mode and are being read by the orphan
4231                  * recovery code: that's fine, we're about to complete
4232                  * the process of deleting those.
4233                  * OR it is the EXT4_BOOT_LOADER_INO which is
4234                  * not initialized on a new filesystem. */
4235         }
4236         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4237         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4238         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4239         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4240                 ei->i_file_acl |=
4241                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4242         inode->i_size = ext4_isize(raw_inode);
4243         ei->i_disksize = inode->i_size;
4244 #ifdef CONFIG_QUOTA
4245         ei->i_reserved_quota = 0;
4246 #endif
4247         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4248         ei->i_block_group = iloc.block_group;
4249         ei->i_last_alloc_group = ~0;
4250         /*
4251          * NOTE! The in-memory inode i_data array is in little-endian order
4252          * even on big-endian machines: we do NOT byteswap the block numbers!
4253          */
4254         for (block = 0; block < EXT4_N_BLOCKS; block++)
4255                 ei->i_data[block] = raw_inode->i_block[block];
4256         INIT_LIST_HEAD(&ei->i_orphan);
4257
4258         /*
4259          * Set transaction id's of transactions that have to be committed
4260          * to finish f[data]sync. We set them to currently running transaction
4261          * as we cannot be sure that the inode or some of its metadata isn't
4262          * part of the transaction - the inode could have been reclaimed and
4263          * now it is reread from disk.
4264          */
4265         if (journal) {
4266                 transaction_t *transaction;
4267                 tid_t tid;
4268
4269                 read_lock(&journal->j_state_lock);
4270                 if (journal->j_running_transaction)
4271                         transaction = journal->j_running_transaction;
4272                 else
4273                         transaction = journal->j_committing_transaction;
4274                 if (transaction)
4275                         tid = transaction->t_tid;
4276                 else
4277                         tid = journal->j_commit_sequence;
4278                 read_unlock(&journal->j_state_lock);
4279                 ei->i_sync_tid = tid;
4280                 ei->i_datasync_tid = tid;
4281         }
4282
4283         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4284                 if (ei->i_extra_isize == 0) {
4285                         /* The extra space is currently unused. Use it. */
4286                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4287                                             EXT4_GOOD_OLD_INODE_SIZE;
4288                 } else {
4289                         ext4_iget_extra_inode(inode, raw_inode, ei);
4290                 }
4291         }
4292
4293         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4294         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4295         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4296         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4297
4298         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4299         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4300                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4301                         inode->i_version |=
4302                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4303         }
4304
4305         ret = 0;
4306         if (ei->i_file_acl &&
4307             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4308                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4309                                  ei->i_file_acl);
4310                 ret = -EIO;
4311                 goto bad_inode;
4312         } else if (!ext4_has_inline_data(inode)) {
4313                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4314                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4315                             (S_ISLNK(inode->i_mode) &&
4316                              !ext4_inode_is_fast_symlink(inode))))
4317                                 /* Validate extent which is part of inode */
4318                                 ret = ext4_ext_check_inode(inode);
4319                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4320                            (S_ISLNK(inode->i_mode) &&
4321                             !ext4_inode_is_fast_symlink(inode))) {
4322                         /* Validate block references which are part of inode */
4323                         ret = ext4_ind_check_inode(inode);
4324                 }
4325         }
4326         if (ret)
4327                 goto bad_inode;
4328
4329         if (S_ISREG(inode->i_mode)) {
4330                 inode->i_op = &ext4_file_inode_operations;
4331                 inode->i_fop = &ext4_file_operations;
4332                 ext4_set_aops(inode);
4333         } else if (S_ISDIR(inode->i_mode)) {
4334                 inode->i_op = &ext4_dir_inode_operations;
4335                 inode->i_fop = &ext4_dir_operations;
4336         } else if (S_ISLNK(inode->i_mode)) {
4337                 if (ext4_inode_is_fast_symlink(inode)) {
4338                         inode->i_op = &ext4_fast_symlink_inode_operations;
4339                         nd_terminate_link(ei->i_data, inode->i_size,
4340                                 sizeof(ei->i_data) - 1);
4341                 } else {
4342                         inode->i_op = &ext4_symlink_inode_operations;
4343                         ext4_set_aops(inode);
4344                 }
4345         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4346               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4347                 inode->i_op = &ext4_special_inode_operations;
4348                 if (raw_inode->i_block[0])
4349                         init_special_inode(inode, inode->i_mode,
4350                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4351                 else
4352                         init_special_inode(inode, inode->i_mode,
4353                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4354         } else if (ino == EXT4_BOOT_LOADER_INO) {
4355                 make_bad_inode(inode);
4356         } else {
4357                 ret = -EIO;
4358                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4359                 goto bad_inode;
4360         }
4361         brelse(iloc.bh);
4362         ext4_set_inode_flags(inode);
4363         unlock_new_inode(inode);
4364         return inode;
4365
4366 bad_inode:
4367         brelse(iloc.bh);
4368         iget_failed(inode);
4369         return ERR_PTR(ret);
4370 }
4371
4372 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4373 {
4374         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4375                 return ERR_PTR(-EIO);
4376         return ext4_iget(sb, ino);
4377 }
4378
4379 static int ext4_inode_blocks_set(handle_t *handle,
4380                                 struct ext4_inode *raw_inode,
4381                                 struct ext4_inode_info *ei)
4382 {
4383         struct inode *inode = &(ei->vfs_inode);
4384         u64 i_blocks = inode->i_blocks;
4385         struct super_block *sb = inode->i_sb;
4386
4387         if (i_blocks <= ~0U) {
4388                 /*
4389                  * i_blocks can be represented in a 32 bit variable
4390                  * as multiple of 512 bytes
4391                  */
4392                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4393                 raw_inode->i_blocks_high = 0;
4394                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4395                 return 0;
4396         }
4397         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4398                 return -EFBIG;
4399
4400         if (i_blocks <= 0xffffffffffffULL) {
4401                 /*
4402                  * i_blocks can be represented in a 48 bit variable
4403                  * as multiple of 512 bytes
4404                  */
4405                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4406                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4407                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4408         } else {
4409                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4410                 /* i_block is stored in file system block size */
4411                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4412                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4413                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4414         }
4415         return 0;
4416 }
4417
4418 /*
4419  * Post the struct inode info into an on-disk inode location in the
4420  * buffer-cache.  This gobbles the caller's reference to the
4421  * buffer_head in the inode location struct.
4422  *
4423  * The caller must have write access to iloc->bh.
4424  */
4425 static int ext4_do_update_inode(handle_t *handle,
4426                                 struct inode *inode,
4427                                 struct ext4_iloc *iloc)
4428 {
4429         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4430         struct ext4_inode_info *ei = EXT4_I(inode);
4431         struct buffer_head *bh = iloc->bh;
4432         int err = 0, rc, block;
4433         int need_datasync = 0;
4434         uid_t i_uid;
4435         gid_t i_gid;
4436
4437         /* For fields not not tracking in the in-memory inode,
4438          * initialise them to zero for new inodes. */
4439         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4440                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4441
4442         ext4_get_inode_flags(ei);
4443         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4444         i_uid = i_uid_read(inode);
4445         i_gid = i_gid_read(inode);
4446         if (!(test_opt(inode->i_sb, NO_UID32))) {
4447                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4448                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4449 /*
4450  * Fix up interoperability with old kernels. Otherwise, old inodes get
4451  * re-used with the upper 16 bits of the uid/gid intact
4452  */
4453                 if (!ei->i_dtime) {
4454                         raw_inode->i_uid_high =
4455                                 cpu_to_le16(high_16_bits(i_uid));
4456                         raw_inode->i_gid_high =
4457                                 cpu_to_le16(high_16_bits(i_gid));
4458                 } else {
4459                         raw_inode->i_uid_high = 0;
4460                         raw_inode->i_gid_high = 0;
4461                 }
4462         } else {
4463                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4464                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4465                 raw_inode->i_uid_high = 0;
4466                 raw_inode->i_gid_high = 0;
4467         }
4468         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4469
4470         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4471         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4472         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4473         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4474
4475         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4476                 goto out_brelse;
4477         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4478         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4479         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4480             cpu_to_le32(EXT4_OS_HURD))
4481                 raw_inode->i_file_acl_high =
4482                         cpu_to_le16(ei->i_file_acl >> 32);
4483         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4484         if (ei->i_disksize != ext4_isize(raw_inode)) {
4485                 ext4_isize_set(raw_inode, ei->i_disksize);
4486                 need_datasync = 1;
4487         }
4488         if (ei->i_disksize > 0x7fffffffULL) {
4489                 struct super_block *sb = inode->i_sb;
4490                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4491                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4492                                 EXT4_SB(sb)->s_es->s_rev_level ==
4493                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4494                         /* If this is the first large file
4495                          * created, add a flag to the superblock.
4496                          */
4497                         err = ext4_journal_get_write_access(handle,
4498                                         EXT4_SB(sb)->s_sbh);
4499                         if (err)
4500                                 goto out_brelse;
4501                         ext4_update_dynamic_rev(sb);
4502                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4503                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4504                         ext4_handle_sync(handle);
4505                         err = ext4_handle_dirty_super(handle, sb);
4506                 }
4507         }
4508         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4509         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4510                 if (old_valid_dev(inode->i_rdev)) {
4511                         raw_inode->i_block[0] =
4512                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4513                         raw_inode->i_block[1] = 0;
4514                 } else {
4515                         raw_inode->i_block[0] = 0;
4516                         raw_inode->i_block[1] =
4517                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4518                         raw_inode->i_block[2] = 0;
4519                 }
4520         } else if (!ext4_has_inline_data(inode)) {
4521                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4522                         raw_inode->i_block[block] = ei->i_data[block];
4523         }
4524
4525         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4526         if (ei->i_extra_isize) {
4527                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4528                         raw_inode->i_version_hi =
4529                         cpu_to_le32(inode->i_version >> 32);
4530                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4531         }
4532
4533         ext4_inode_csum_set(inode, raw_inode, ei);
4534
4535         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4536         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4537         if (!err)
4538                 err = rc;
4539         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4540
4541         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4542 out_brelse:
4543         brelse(bh);
4544         ext4_std_error(inode->i_sb, err);
4545         return err;
4546 }
4547
4548 /*
4549  * ext4_write_inode()
4550  *
4551  * We are called from a few places:
4552  *
4553  * - Within generic_file_write() for O_SYNC files.
4554  *   Here, there will be no transaction running. We wait for any running
4555  *   transaction to commit.
4556  *
4557  * - Within sys_sync(), kupdate and such.
4558  *   We wait on commit, if tol to.
4559  *
4560  * - Within prune_icache() (PF_MEMALLOC == true)
4561  *   Here we simply return.  We can't afford to block kswapd on the
4562  *   journal commit.
4563  *
4564  * In all cases it is actually safe for us to return without doing anything,
4565  * because the inode has been copied into a raw inode buffer in
4566  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4567  * knfsd.
4568  *
4569  * Note that we are absolutely dependent upon all inode dirtiers doing the
4570  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4571  * which we are interested.
4572  *
4573  * It would be a bug for them to not do this.  The code:
4574  *
4575  *      mark_inode_dirty(inode)
4576  *      stuff();
4577  *      inode->i_size = expr;
4578  *
4579  * is in error because a kswapd-driven write_inode() could occur while
4580  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4581  * will no longer be on the superblock's dirty inode list.
4582  */
4583 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4584 {
4585         int err;
4586
4587         if (current->flags & PF_MEMALLOC)
4588                 return 0;
4589
4590         if (EXT4_SB(inode->i_sb)->s_journal) {
4591                 if (ext4_journal_current_handle()) {
4592                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4593                         dump_stack();
4594                         return -EIO;
4595                 }
4596
4597                 if (wbc->sync_mode != WB_SYNC_ALL)
4598                         return 0;
4599
4600                 err = ext4_force_commit(inode->i_sb);
4601         } else {
4602                 struct ext4_iloc iloc;
4603
4604                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4605                 if (err)
4606                         return err;
4607                 if (wbc->sync_mode == WB_SYNC_ALL)
4608                         sync_dirty_buffer(iloc.bh);
4609                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4610                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4611                                          "IO error syncing inode");
4612                         err = -EIO;
4613                 }
4614                 brelse(iloc.bh);
4615         }
4616         return err;
4617 }
4618
4619 /*
4620  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4621  * buffers that are attached to a page stradding i_size and are undergoing
4622  * commit. In that case we have to wait for commit to finish and try again.
4623  */
4624 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4625 {
4626         struct page *page;
4627         unsigned offset;
4628         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4629         tid_t commit_tid = 0;
4630         int ret;
4631
4632         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4633         /*
4634          * All buffers in the last page remain valid? Then there's nothing to
4635          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4636          * blocksize case
4637          */
4638         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4639                 return;
4640         while (1) {
4641                 page = find_lock_page(inode->i_mapping,
4642                                       inode->i_size >> PAGE_CACHE_SHIFT);
4643                 if (!page)
4644                         return;
4645                 ret = __ext4_journalled_invalidatepage(page, offset);
4646                 unlock_page(page);
4647                 page_cache_release(page);
4648                 if (ret != -EBUSY)
4649                         return;
4650                 commit_tid = 0;
4651                 read_lock(&journal->j_state_lock);
4652                 if (journal->j_committing_transaction)
4653                         commit_tid = journal->j_committing_transaction->t_tid;
4654                 read_unlock(&journal->j_state_lock);
4655                 if (commit_tid)
4656                         jbd2_log_wait_commit(journal, commit_tid);
4657         }
4658 }
4659
4660 /*
4661  * ext4_setattr()
4662  *
4663  * Called from notify_change.
4664  *
4665  * We want to trap VFS attempts to truncate the file as soon as
4666  * possible.  In particular, we want to make sure that when the VFS
4667  * shrinks i_size, we put the inode on the orphan list and modify
4668  * i_disksize immediately, so that during the subsequent flushing of
4669  * dirty pages and freeing of disk blocks, we can guarantee that any
4670  * commit will leave the blocks being flushed in an unused state on
4671  * disk.  (On recovery, the inode will get truncated and the blocks will
4672  * be freed, so we have a strong guarantee that no future commit will
4673  * leave these blocks visible to the user.)
4674  *
4675  * Another thing we have to assure is that if we are in ordered mode
4676  * and inode is still attached to the committing transaction, we must
4677  * we start writeout of all the dirty pages which are being truncated.
4678  * This way we are sure that all the data written in the previous
4679  * transaction are already on disk (truncate waits for pages under
4680  * writeback).
4681  *
4682  * Called with inode->i_mutex down.
4683  */
4684 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4685 {
4686         struct inode *inode = dentry->d_inode;
4687         int error, rc = 0;
4688         int orphan = 0;
4689         const unsigned int ia_valid = attr->ia_valid;
4690
4691         error = inode_change_ok(inode, attr);
4692         if (error)
4693                 return error;
4694
4695         if (is_quota_modification(inode, attr))
4696                 dquot_initialize(inode);
4697         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4698             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4699                 handle_t *handle;
4700
4701                 /* (user+group)*(old+new) structure, inode write (sb,
4702                  * inode block, ? - but truncate inode update has it) */
4703                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4704                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4705                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4706                 if (IS_ERR(handle)) {
4707                         error = PTR_ERR(handle);
4708                         goto err_out;
4709                 }
4710                 error = dquot_transfer(inode, attr);
4711                 if (error) {
4712                         ext4_journal_stop(handle);
4713                         return error;
4714                 }
4715                 /* Update corresponding info in inode so that everything is in
4716                  * one transaction */
4717                 if (attr->ia_valid & ATTR_UID)
4718                         inode->i_uid = attr->ia_uid;
4719                 if (attr->ia_valid & ATTR_GID)
4720                         inode->i_gid = attr->ia_gid;
4721                 error = ext4_mark_inode_dirty(handle, inode);
4722                 ext4_journal_stop(handle);
4723         }
4724
4725         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4726                 handle_t *handle;
4727                 loff_t oldsize = inode->i_size;
4728
4729                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4730                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4731
4732                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4733                                 return -EFBIG;
4734                 }
4735
4736                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4737                         inode_inc_iversion(inode);
4738
4739                 if (S_ISREG(inode->i_mode) &&
4740                     (attr->ia_size < inode->i_size)) {
4741                         if (ext4_should_order_data(inode)) {
4742                                 error = ext4_begin_ordered_truncate(inode,
4743                                                             attr->ia_size);
4744                                 if (error)
4745                                         goto err_out;
4746                         }
4747                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4748                         if (IS_ERR(handle)) {
4749                                 error = PTR_ERR(handle);
4750                                 goto err_out;
4751                         }
4752                         if (ext4_handle_valid(handle)) {
4753                                 error = ext4_orphan_add(handle, inode);
4754                                 orphan = 1;
4755                         }
4756                         EXT4_I(inode)->i_disksize = attr->ia_size;
4757                         rc = ext4_mark_inode_dirty(handle, inode);
4758                         if (!error)
4759                                 error = rc;
4760                         ext4_journal_stop(handle);
4761                         if (error) {
4762                                 ext4_orphan_del(NULL, inode);
4763                                 goto err_out;
4764                         }
4765                 }
4766
4767                 i_size_write(inode, attr->ia_size);
4768                 /*
4769                  * Blocks are going to be removed from the inode. Wait
4770                  * for dio in flight.  Temporarily disable
4771                  * dioread_nolock to prevent livelock.
4772                  */
4773                 if (orphan) {
4774                         if (!ext4_should_journal_data(inode)) {
4775                                 ext4_inode_block_unlocked_dio(inode);
4776                                 inode_dio_wait(inode);
4777                                 ext4_inode_resume_unlocked_dio(inode);
4778                         } else
4779                                 ext4_wait_for_tail_page_commit(inode);
4780                 }
4781                 /*
4782                  * Truncate pagecache after we've waited for commit
4783                  * in data=journal mode to make pages freeable.
4784                  */
4785                 truncate_pagecache(inode, oldsize, inode->i_size);
4786         }
4787         /*
4788          * We want to call ext4_truncate() even if attr->ia_size ==
4789          * inode->i_size for cases like truncation of fallocated space
4790          */
4791         if (attr->ia_valid & ATTR_SIZE)
4792                 ext4_truncate(inode);
4793
4794         if (!rc) {
4795                 setattr_copy(inode, attr);
4796                 mark_inode_dirty(inode);
4797         }
4798
4799         /*
4800          * If the call to ext4_truncate failed to get a transaction handle at
4801          * all, we need to clean up the in-core orphan list manually.
4802          */
4803         if (orphan && inode->i_nlink)
4804                 ext4_orphan_del(NULL, inode);
4805
4806         if (!rc && (ia_valid & ATTR_MODE))
4807                 rc = ext4_acl_chmod(inode);
4808
4809 err_out:
4810         ext4_std_error(inode->i_sb, error);
4811         if (!error)
4812                 error = rc;
4813         return error;
4814 }
4815
4816 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4817                  struct kstat *stat)
4818 {
4819         struct inode *inode;
4820         unsigned long long delalloc_blocks;
4821
4822         inode = dentry->d_inode;
4823         generic_fillattr(inode, stat);
4824
4825         /*
4826          * We can't update i_blocks if the block allocation is delayed
4827          * otherwise in the case of system crash before the real block
4828          * allocation is done, we will have i_blocks inconsistent with
4829          * on-disk file blocks.
4830          * We always keep i_blocks updated together with real
4831          * allocation. But to not confuse with user, stat
4832          * will return the blocks that include the delayed allocation
4833          * blocks for this file.
4834          */
4835         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4836                                 EXT4_I(inode)->i_reserved_data_blocks);
4837
4838         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4839         return 0;
4840 }
4841
4842 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4843 {
4844         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4845                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4846         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4847 }
4848
4849 /*
4850  * Account for index blocks, block groups bitmaps and block group
4851  * descriptor blocks if modify datablocks and index blocks
4852  * worse case, the indexs blocks spread over different block groups
4853  *
4854  * If datablocks are discontiguous, they are possible to spread over
4855  * different block groups too. If they are contiguous, with flexbg,
4856  * they could still across block group boundary.
4857  *
4858  * Also account for superblock, inode, quota and xattr blocks
4859  */
4860 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4861 {
4862         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4863         int gdpblocks;
4864         int idxblocks;
4865         int ret = 0;
4866
4867         /*
4868          * How many index blocks need to touch to modify nrblocks?
4869          * The "Chunk" flag indicating whether the nrblocks is
4870          * physically contiguous on disk
4871          *
4872          * For Direct IO and fallocate, they calls get_block to allocate
4873          * one single extent at a time, so they could set the "Chunk" flag
4874          */
4875         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4876
4877         ret = idxblocks;
4878
4879         /*
4880          * Now let's see how many group bitmaps and group descriptors need
4881          * to account
4882          */
4883         groups = idxblocks;
4884         if (chunk)
4885                 groups += 1;
4886         else
4887                 groups += nrblocks;
4888
4889         gdpblocks = groups;
4890         if (groups > ngroups)
4891                 groups = ngroups;
4892         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4893                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4894
4895         /* bitmaps and block group descriptor blocks */
4896         ret += groups + gdpblocks;
4897
4898         /* Blocks for super block, inode, quota and xattr blocks */
4899         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4900
4901         return ret;
4902 }
4903
4904 /*
4905  * Calculate the total number of credits to reserve to fit
4906  * the modification of a single pages into a single transaction,
4907  * which may include multiple chunks of block allocations.
4908  *
4909  * This could be called via ext4_write_begin()
4910  *
4911  * We need to consider the worse case, when
4912  * one new block per extent.
4913  */
4914 int ext4_writepage_trans_blocks(struct inode *inode)
4915 {
4916         int bpp = ext4_journal_blocks_per_page(inode);
4917         int ret;
4918
4919         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4920
4921         /* Account for data blocks for journalled mode */
4922         if (ext4_should_journal_data(inode))
4923                 ret += bpp;
4924         return ret;
4925 }
4926
4927 /*
4928  * Calculate the journal credits for a chunk of data modification.
4929  *
4930  * This is called from DIO, fallocate or whoever calling
4931  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4932  *
4933  * journal buffers for data blocks are not included here, as DIO
4934  * and fallocate do no need to journal data buffers.
4935  */
4936 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4937 {
4938         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4939 }
4940
4941 /*
4942  * The caller must have previously called ext4_reserve_inode_write().
4943  * Give this, we know that the caller already has write access to iloc->bh.
4944  */
4945 int ext4_mark_iloc_dirty(handle_t *handle,
4946                          struct inode *inode, struct ext4_iloc *iloc)
4947 {
4948         int err = 0;
4949
4950         if (IS_I_VERSION(inode))
4951                 inode_inc_iversion(inode);
4952
4953         /* the do_update_inode consumes one bh->b_count */
4954         get_bh(iloc->bh);
4955
4956         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4957         err = ext4_do_update_inode(handle, inode, iloc);
4958         put_bh(iloc->bh);
4959         return err;
4960 }
4961
4962 /*
4963  * On success, We end up with an outstanding reference count against
4964  * iloc->bh.  This _must_ be cleaned up later.
4965  */
4966
4967 int
4968 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4969                          struct ext4_iloc *iloc)
4970 {
4971         int err;
4972
4973         err = ext4_get_inode_loc(inode, iloc);
4974         if (!err) {
4975                 BUFFER_TRACE(iloc->bh, "get_write_access");
4976                 err = ext4_journal_get_write_access(handle, iloc->bh);
4977                 if (err) {
4978                         brelse(iloc->bh);
4979                         iloc->bh = NULL;
4980                 }
4981         }
4982         ext4_std_error(inode->i_sb, err);
4983         return err;
4984 }
4985
4986 /*
4987  * Expand an inode by new_extra_isize bytes.
4988  * Returns 0 on success or negative error number on failure.
4989  */
4990 static int ext4_expand_extra_isize(struct inode *inode,
4991                                    unsigned int new_extra_isize,
4992                                    struct ext4_iloc iloc,
4993                                    handle_t *handle)
4994 {
4995         struct ext4_inode *raw_inode;
4996         struct ext4_xattr_ibody_header *header;
4997
4998         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4999                 return 0;
5000
5001         raw_inode = ext4_raw_inode(&iloc);
5002
5003         header = IHDR(inode, raw_inode);
5004
5005         /* No extended attributes present */
5006         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5007             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5008                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5009                         new_extra_isize);
5010                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5011                 return 0;
5012         }
5013
5014         /* try to expand with EAs present */
5015         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5016                                           raw_inode, handle);
5017 }
5018
5019 /*
5020  * What we do here is to mark the in-core inode as clean with respect to inode
5021  * dirtiness (it may still be data-dirty).
5022  * This means that the in-core inode may be reaped by prune_icache
5023  * without having to perform any I/O.  This is a very good thing,
5024  * because *any* task may call prune_icache - even ones which
5025  * have a transaction open against a different journal.
5026  *
5027  * Is this cheating?  Not really.  Sure, we haven't written the
5028  * inode out, but prune_icache isn't a user-visible syncing function.
5029  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5030  * we start and wait on commits.
5031  */
5032 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5033 {
5034         struct ext4_iloc iloc;
5035         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5036         static unsigned int mnt_count;
5037         int err, ret;
5038
5039         might_sleep();
5040         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5041         err = ext4_reserve_inode_write(handle, inode, &iloc);
5042         if (ext4_handle_valid(handle) &&
5043             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5044             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5045                 /*
5046                  * We need extra buffer credits since we may write into EA block
5047                  * with this same handle. If journal_extend fails, then it will
5048                  * only result in a minor loss of functionality for that inode.
5049                  * If this is felt to be critical, then e2fsck should be run to
5050                  * force a large enough s_min_extra_isize.
5051                  */
5052                 if ((jbd2_journal_extend(handle,
5053                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5054                         ret = ext4_expand_extra_isize(inode,
5055                                                       sbi->s_want_extra_isize,
5056                                                       iloc, handle);
5057                         if (ret) {
5058                                 ext4_set_inode_state(inode,
5059                                                      EXT4_STATE_NO_EXPAND);
5060                                 if (mnt_count !=
5061                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5062                                         ext4_warning(inode->i_sb,
5063                                         "Unable to expand inode %lu. Delete"
5064                                         " some EAs or run e2fsck.",
5065                                         inode->i_ino);
5066                                         mnt_count =
5067                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5068                                 }
5069                         }
5070                 }
5071         }
5072         if (!err)
5073                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5074         return err;
5075 }
5076
5077 /*
5078  * ext4_dirty_inode() is called from __mark_inode_dirty()
5079  *
5080  * We're really interested in the case where a file is being extended.
5081  * i_size has been changed by generic_commit_write() and we thus need
5082  * to include the updated inode in the current transaction.
5083  *
5084  * Also, dquot_alloc_block() will always dirty the inode when blocks
5085  * are allocated to the file.
5086  *
5087  * If the inode is marked synchronous, we don't honour that here - doing
5088  * so would cause a commit on atime updates, which we don't bother doing.
5089  * We handle synchronous inodes at the highest possible level.
5090  */
5091 void ext4_dirty_inode(struct inode *inode, int flags)
5092 {
5093         handle_t *handle;
5094
5095         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5096         if (IS_ERR(handle))
5097                 goto out;
5098
5099         ext4_mark_inode_dirty(handle, inode);
5100
5101         ext4_journal_stop(handle);
5102 out:
5103         return;
5104 }
5105
5106 #if 0
5107 /*
5108  * Bind an inode's backing buffer_head into this transaction, to prevent
5109  * it from being flushed to disk early.  Unlike
5110  * ext4_reserve_inode_write, this leaves behind no bh reference and
5111  * returns no iloc structure, so the caller needs to repeat the iloc
5112  * lookup to mark the inode dirty later.
5113  */
5114 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5115 {
5116         struct ext4_iloc iloc;
5117
5118         int err = 0;
5119         if (handle) {
5120                 err = ext4_get_inode_loc(inode, &iloc);
5121                 if (!err) {
5122                         BUFFER_TRACE(iloc.bh, "get_write_access");
5123                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5124                         if (!err)
5125                                 err = ext4_handle_dirty_metadata(handle,
5126                                                                  NULL,
5127                                                                  iloc.bh);
5128                         brelse(iloc.bh);
5129                 }
5130         }
5131         ext4_std_error(inode->i_sb, err);
5132         return err;
5133 }
5134 #endif
5135
5136 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5137 {
5138         journal_t *journal;
5139         handle_t *handle;
5140         int err;
5141
5142         /*
5143          * We have to be very careful here: changing a data block's
5144          * journaling status dynamically is dangerous.  If we write a
5145          * data block to the journal, change the status and then delete
5146          * that block, we risk forgetting to revoke the old log record
5147          * from the journal and so a subsequent replay can corrupt data.
5148          * So, first we make sure that the journal is empty and that
5149          * nobody is changing anything.
5150          */
5151
5152         journal = EXT4_JOURNAL(inode);
5153         if (!journal)
5154                 return 0;
5155         if (is_journal_aborted(journal))
5156                 return -EROFS;
5157         /* We have to allocate physical blocks for delalloc blocks
5158          * before flushing journal. otherwise delalloc blocks can not
5159          * be allocated any more. even more truncate on delalloc blocks
5160          * could trigger BUG by flushing delalloc blocks in journal.
5161          * There is no delalloc block in non-journal data mode.
5162          */
5163         if (val && test_opt(inode->i_sb, DELALLOC)) {
5164                 err = ext4_alloc_da_blocks(inode);
5165                 if (err < 0)
5166                         return err;
5167         }
5168
5169         /* Wait for all existing dio workers */
5170         ext4_inode_block_unlocked_dio(inode);
5171         inode_dio_wait(inode);
5172
5173         jbd2_journal_lock_updates(journal);
5174
5175         /*
5176          * OK, there are no updates running now, and all cached data is
5177          * synced to disk.  We are now in a completely consistent state
5178          * which doesn't have anything in the journal, and we know that
5179          * no filesystem updates are running, so it is safe to modify
5180          * the inode's in-core data-journaling state flag now.
5181          */
5182
5183         if (val)
5184                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5185         else {
5186                 jbd2_journal_flush(journal);
5187                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5188         }
5189         ext4_set_aops(inode);
5190
5191         jbd2_journal_unlock_updates(journal);
5192         ext4_inode_resume_unlocked_dio(inode);
5193
5194         /* Finally we can mark the inode as dirty. */
5195
5196         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5197         if (IS_ERR(handle))
5198                 return PTR_ERR(handle);
5199
5200         err = ext4_mark_inode_dirty(handle, inode);
5201         ext4_handle_sync(handle);
5202         ext4_journal_stop(handle);
5203         ext4_std_error(inode->i_sb, err);
5204
5205         return err;
5206 }
5207
5208 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5209 {
5210         return !buffer_mapped(bh);
5211 }
5212
5213 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5214 {
5215         struct page *page = vmf->page;
5216         loff_t size;
5217         unsigned long len;
5218         int ret;
5219         struct file *file = vma->vm_file;
5220         struct inode *inode = file_inode(file);
5221         struct address_space *mapping = inode->i_mapping;
5222         handle_t *handle;
5223         get_block_t *get_block;
5224         int retries = 0;
5225
5226         sb_start_pagefault(inode->i_sb);
5227         file_update_time(vma->vm_file);
5228         /* Delalloc case is easy... */
5229         if (test_opt(inode->i_sb, DELALLOC) &&
5230             !ext4_should_journal_data(inode) &&
5231             !ext4_nonda_switch(inode->i_sb)) {
5232                 do {
5233                         ret = __block_page_mkwrite(vma, vmf,
5234                                                    ext4_da_get_block_prep);
5235                 } while (ret == -ENOSPC &&
5236                        ext4_should_retry_alloc(inode->i_sb, &retries));
5237                 goto out_ret;
5238         }
5239
5240         lock_page(page);
5241         size = i_size_read(inode);
5242         /* Page got truncated from under us? */
5243         if (page->mapping != mapping || page_offset(page) > size) {
5244                 unlock_page(page);
5245                 ret = VM_FAULT_NOPAGE;
5246                 goto out;
5247         }
5248
5249         if (page->index == size >> PAGE_CACHE_SHIFT)
5250                 len = size & ~PAGE_CACHE_MASK;
5251         else
5252                 len = PAGE_CACHE_SIZE;
5253         /*
5254          * Return if we have all the buffers mapped. This avoids the need to do
5255          * journal_start/journal_stop which can block and take a long time
5256          */
5257         if (page_has_buffers(page)) {
5258                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5259                                             0, len, NULL,
5260                                             ext4_bh_unmapped)) {
5261                         /* Wait so that we don't change page under IO */
5262                         wait_for_stable_page(page);
5263                         ret = VM_FAULT_LOCKED;
5264                         goto out;
5265                 }
5266         }
5267         unlock_page(page);
5268         /* OK, we need to fill the hole... */
5269         if (ext4_should_dioread_nolock(inode))
5270                 get_block = ext4_get_block_write;
5271         else
5272                 get_block = ext4_get_block;
5273 retry_alloc:
5274         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5275                                     ext4_writepage_trans_blocks(inode));
5276         if (IS_ERR(handle)) {
5277                 ret = VM_FAULT_SIGBUS;
5278                 goto out;
5279         }
5280         ret = __block_page_mkwrite(vma, vmf, get_block);
5281         if (!ret && ext4_should_journal_data(inode)) {
5282                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5283                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5284                         unlock_page(page);
5285                         ret = VM_FAULT_SIGBUS;
5286                         ext4_journal_stop(handle);
5287                         goto out;
5288                 }
5289                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5290         }
5291         ext4_journal_stop(handle);
5292         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5293                 goto retry_alloc;
5294 out_ret:
5295         ret = block_page_mkwrite_return(ret);
5296 out:
5297         sb_end_pagefault(inode->i_sb);
5298         return ret;
5299 }