Merge branch 'linux-linaro-lsk-v4.4' into linux-linaro-lsk-v4.4-android
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47 #include <trace/events/android_fs.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u32 csum;
56         __u16 dummy_csum = 0;
57         int offset = offsetof(struct ext4_inode, i_checksum_lo);
58         unsigned int csum_size = sizeof(dummy_csum);
59
60         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62         offset += csum_size;
63         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64                            EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67                 offset = offsetof(struct ext4_inode, i_checksum_hi);
68                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69                                    EXT4_GOOD_OLD_INODE_SIZE,
70                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
71                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73                                            csum_size);
74                         offset += csum_size;
75                         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76                                            EXT4_INODE_SIZE(inode->i_sb) -
77                                            offset);
78                 }
79         }
80
81         return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85                                   struct ext4_inode_info *ei)
86 {
87         __u32 provided, calculated;
88
89         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90             cpu_to_le32(EXT4_OS_LINUX) ||
91             !ext4_has_metadata_csum(inode->i_sb))
92                 return 1;
93
94         provided = le16_to_cpu(raw->i_checksum_lo);
95         calculated = ext4_inode_csum(inode, raw, ei);
96         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99         else
100                 calculated &= 0xFFFF;
101
102         return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106                                 struct ext4_inode_info *ei)
107 {
108         __u32 csum;
109
110         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111             cpu_to_le32(EXT4_OS_LINUX) ||
112             !ext4_has_metadata_csum(inode->i_sb))
113                 return;
114
115         csum = ext4_inode_csum(inode, raw, ei);
116         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123                                               loff_t new_size)
124 {
125         trace_ext4_begin_ordered_truncate(inode, new_size);
126         /*
127          * If jinode is zero, then we never opened the file for
128          * writing, so there's no need to call
129          * jbd2_journal_begin_ordered_truncate() since there's no
130          * outstanding writes we need to flush.
131          */
132         if (!EXT4_I(inode)->jinode)
133                 return 0;
134         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135                                                    EXT4_I(inode)->jinode,
136                                                    new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140                                 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144                                   int pextents);
145
146 /*
147  * Test whether an inode is a fast symlink.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151         int ea_blocks = EXT4_I(inode)->i_file_acl ?
152                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
153
154         if (ext4_has_inline_data(inode))
155                 return 0;
156
157         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158 }
159
160 /*
161  * Restart the transaction associated with *handle.  This does a commit,
162  * so before we call here everything must be consistently dirtied against
163  * this transaction.
164  */
165 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
166                                  int nblocks)
167 {
168         int ret;
169
170         /*
171          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
172          * moment, get_block can be called only for blocks inside i_size since
173          * page cache has been already dropped and writes are blocked by
174          * i_mutex. So we can safely drop the i_data_sem here.
175          */
176         BUG_ON(EXT4_JOURNAL(inode) == NULL);
177         jbd_debug(2, "restarting handle %p\n", handle);
178         up_write(&EXT4_I(inode)->i_data_sem);
179         ret = ext4_journal_restart(handle, nblocks);
180         down_write(&EXT4_I(inode)->i_data_sem);
181         ext4_discard_preallocations(inode);
182
183         return ret;
184 }
185
186 /*
187  * Called at the last iput() if i_nlink is zero.
188  */
189 void ext4_evict_inode(struct inode *inode)
190 {
191         handle_t *handle;
192         int err;
193
194         trace_ext4_evict_inode(inode);
195
196         if (inode->i_nlink) {
197                 /*
198                  * When journalling data dirty buffers are tracked only in the
199                  * journal. So although mm thinks everything is clean and
200                  * ready for reaping the inode might still have some pages to
201                  * write in the running transaction or waiting to be
202                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
203                  * (via truncate_inode_pages()) to discard these buffers can
204                  * cause data loss. Also even if we did not discard these
205                  * buffers, we would have no way to find them after the inode
206                  * is reaped and thus user could see stale data if he tries to
207                  * read them before the transaction is checkpointed. So be
208                  * careful and force everything to disk here... We use
209                  * ei->i_datasync_tid to store the newest transaction
210                  * containing inode's data.
211                  *
212                  * Note that directories do not have this problem because they
213                  * don't use page cache.
214                  */
215                 if (inode->i_ino != EXT4_JOURNAL_INO &&
216                     ext4_should_journal_data(inode) &&
217                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
218                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
219                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
220
221                         jbd2_complete_transaction(journal, commit_tid);
222                         filemap_write_and_wait(&inode->i_data);
223                 }
224                 truncate_inode_pages_final(&inode->i_data);
225
226                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
227                 goto no_delete;
228         }
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232         dquot_initialize(inode);
233
234         if (ext4_should_order_data(inode))
235                 ext4_begin_ordered_truncate(inode, 0);
236         truncate_inode_pages_final(&inode->i_data);
237
238         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
239
240         /*
241          * Protect us against freezing - iput() caller didn't have to have any
242          * protection against it
243          */
244         sb_start_intwrite(inode->i_sb);
245         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
246                                     ext4_blocks_for_truncate(inode)+3);
247         if (IS_ERR(handle)) {
248                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
249                 /*
250                  * If we're going to skip the normal cleanup, we still need to
251                  * make sure that the in-core orphan linked list is properly
252                  * cleaned up.
253                  */
254                 ext4_orphan_del(NULL, inode);
255                 sb_end_intwrite(inode->i_sb);
256                 goto no_delete;
257         }
258
259         if (IS_SYNC(inode))
260                 ext4_handle_sync(handle);
261         inode->i_size = 0;
262         err = ext4_mark_inode_dirty(handle, inode);
263         if (err) {
264                 ext4_warning(inode->i_sb,
265                              "couldn't mark inode dirty (err %d)", err);
266                 goto stop_handle;
267         }
268         if (inode->i_blocks)
269                 ext4_truncate(inode);
270
271         /*
272          * ext4_ext_truncate() doesn't reserve any slop when it
273          * restarts journal transactions; therefore there may not be
274          * enough credits left in the handle to remove the inode from
275          * the orphan list and set the dtime field.
276          */
277         if (!ext4_handle_has_enough_credits(handle, 3)) {
278                 err = ext4_journal_extend(handle, 3);
279                 if (err > 0)
280                         err = ext4_journal_restart(handle, 3);
281                 if (err != 0) {
282                         ext4_warning(inode->i_sb,
283                                      "couldn't extend journal (err %d)", err);
284                 stop_handle:
285                         ext4_journal_stop(handle);
286                         ext4_orphan_del(NULL, inode);
287                         sb_end_intwrite(inode->i_sb);
288                         goto no_delete;
289                 }
290         }
291
292         /*
293          * Kill off the orphan record which ext4_truncate created.
294          * AKPM: I think this can be inside the above `if'.
295          * Note that ext4_orphan_del() has to be able to cope with the
296          * deletion of a non-existent orphan - this is because we don't
297          * know if ext4_truncate() actually created an orphan record.
298          * (Well, we could do this if we need to, but heck - it works)
299          */
300         ext4_orphan_del(handle, inode);
301         EXT4_I(inode)->i_dtime  = get_seconds();
302
303         /*
304          * One subtle ordering requirement: if anything has gone wrong
305          * (transaction abort, IO errors, whatever), then we can still
306          * do these next steps (the fs will already have been marked as
307          * having errors), but we can't free the inode if the mark_dirty
308          * fails.
309          */
310         if (ext4_mark_inode_dirty(handle, inode))
311                 /* If that failed, just do the required in-core inode clear. */
312                 ext4_clear_inode(inode);
313         else
314                 ext4_free_inode(handle, inode);
315         ext4_journal_stop(handle);
316         sb_end_intwrite(inode->i_sb);
317         return;
318 no_delete:
319         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
320 }
321
322 #ifdef CONFIG_QUOTA
323 qsize_t *ext4_get_reserved_space(struct inode *inode)
324 {
325         return &EXT4_I(inode)->i_reserved_quota;
326 }
327 #endif
328
329 /*
330  * Called with i_data_sem down, which is important since we can call
331  * ext4_discard_preallocations() from here.
332  */
333 void ext4_da_update_reserve_space(struct inode *inode,
334                                         int used, int quota_claim)
335 {
336         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
337         struct ext4_inode_info *ei = EXT4_I(inode);
338
339         spin_lock(&ei->i_block_reservation_lock);
340         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
341         if (unlikely(used > ei->i_reserved_data_blocks)) {
342                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
343                          "with only %d reserved data blocks",
344                          __func__, inode->i_ino, used,
345                          ei->i_reserved_data_blocks);
346                 WARN_ON(1);
347                 used = ei->i_reserved_data_blocks;
348         }
349
350         /* Update per-inode reservations */
351         ei->i_reserved_data_blocks -= used;
352         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
353
354         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
355
356         /* Update quota subsystem for data blocks */
357         if (quota_claim)
358                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
359         else {
360                 /*
361                  * We did fallocate with an offset that is already delayed
362                  * allocated. So on delayed allocated writeback we should
363                  * not re-claim the quota for fallocated blocks.
364                  */
365                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
366         }
367
368         /*
369          * If we have done all the pending block allocations and if
370          * there aren't any writers on the inode, we can discard the
371          * inode's preallocations.
372          */
373         if ((ei->i_reserved_data_blocks == 0) &&
374             (atomic_read(&inode->i_writecount) == 0))
375                 ext4_discard_preallocations(inode);
376 }
377
378 static int __check_block_validity(struct inode *inode, const char *func,
379                                 unsigned int line,
380                                 struct ext4_map_blocks *map)
381 {
382         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
383                                    map->m_len)) {
384                 ext4_error_inode(inode, func, line, map->m_pblk,
385                                  "lblock %lu mapped to illegal pblock "
386                                  "(length %d)", (unsigned long) map->m_lblk,
387                                  map->m_len);
388                 return -EFSCORRUPTED;
389         }
390         return 0;
391 }
392
393 #define check_block_validity(inode, map)        \
394         __check_block_validity((inode), __func__, __LINE__, (map))
395
396 #ifdef ES_AGGRESSIVE_TEST
397 static void ext4_map_blocks_es_recheck(handle_t *handle,
398                                        struct inode *inode,
399                                        struct ext4_map_blocks *es_map,
400                                        struct ext4_map_blocks *map,
401                                        int flags)
402 {
403         int retval;
404
405         map->m_flags = 0;
406         /*
407          * There is a race window that the result is not the same.
408          * e.g. xfstests #223 when dioread_nolock enables.  The reason
409          * is that we lookup a block mapping in extent status tree with
410          * out taking i_data_sem.  So at the time the unwritten extent
411          * could be converted.
412          */
413         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
414                 down_read(&EXT4_I(inode)->i_data_sem);
415         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
416                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
417                                              EXT4_GET_BLOCKS_KEEP_SIZE);
418         } else {
419                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
420                                              EXT4_GET_BLOCKS_KEEP_SIZE);
421         }
422         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
423                 up_read((&EXT4_I(inode)->i_data_sem));
424
425         /*
426          * We don't check m_len because extent will be collpased in status
427          * tree.  So the m_len might not equal.
428          */
429         if (es_map->m_lblk != map->m_lblk ||
430             es_map->m_flags != map->m_flags ||
431             es_map->m_pblk != map->m_pblk) {
432                 printk("ES cache assertion failed for inode: %lu "
433                        "es_cached ex [%d/%d/%llu/%x] != "
434                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
435                        inode->i_ino, es_map->m_lblk, es_map->m_len,
436                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
437                        map->m_len, map->m_pblk, map->m_flags,
438                        retval, flags);
439         }
440 }
441 #endif /* ES_AGGRESSIVE_TEST */
442
443 /*
444  * The ext4_map_blocks() function tries to look up the requested blocks,
445  * and returns if the blocks are already mapped.
446  *
447  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448  * and store the allocated blocks in the result buffer head and mark it
449  * mapped.
450  *
451  * If file type is extents based, it will call ext4_ext_map_blocks(),
452  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453  * based files
454  *
455  * On success, it returns the number of blocks being mapped or allocated.
456  * if create==0 and the blocks are pre-allocated and unwritten block,
457  * the result buffer head is unmapped. If the create ==1, it will make sure
458  * the buffer head is mapped.
459  *
460  * It returns 0 if plain look up failed (blocks have not been allocated), in
461  * that case, buffer head is unmapped
462  *
463  * It returns the error in case of allocation failure.
464  */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466                     struct ext4_map_blocks *map, int flags)
467 {
468         struct extent_status es;
469         int retval;
470         int ret = 0;
471 #ifdef ES_AGGRESSIVE_TEST
472         struct ext4_map_blocks orig_map;
473
474         memcpy(&orig_map, map, sizeof(*map));
475 #endif
476
477         map->m_flags = 0;
478         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
479                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
480                   (unsigned long) map->m_lblk);
481
482         /*
483          * ext4_map_blocks returns an int, and m_len is an unsigned int
484          */
485         if (unlikely(map->m_len > INT_MAX))
486                 map->m_len = INT_MAX;
487
488         /* We can handle the block number less than EXT_MAX_BLOCKS */
489         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
490                 return -EFSCORRUPTED;
491
492         /* Lookup extent status tree firstly */
493         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
494                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
495                         map->m_pblk = ext4_es_pblock(&es) +
496                                         map->m_lblk - es.es_lblk;
497                         map->m_flags |= ext4_es_is_written(&es) ?
498                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
499                         retval = es.es_len - (map->m_lblk - es.es_lblk);
500                         if (retval > map->m_len)
501                                 retval = map->m_len;
502                         map->m_len = retval;
503                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
504                         retval = 0;
505                 } else {
506                         BUG_ON(1);
507                 }
508 #ifdef ES_AGGRESSIVE_TEST
509                 ext4_map_blocks_es_recheck(handle, inode, map,
510                                            &orig_map, flags);
511 #endif
512                 goto found;
513         }
514
515         /*
516          * Try to see if we can get the block without requesting a new
517          * file system block.
518          */
519         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
520                 down_read(&EXT4_I(inode)->i_data_sem);
521         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
522                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
523                                              EXT4_GET_BLOCKS_KEEP_SIZE);
524         } else {
525                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
526                                              EXT4_GET_BLOCKS_KEEP_SIZE);
527         }
528         if (retval > 0) {
529                 unsigned int status;
530
531                 if (unlikely(retval != map->m_len)) {
532                         ext4_warning(inode->i_sb,
533                                      "ES len assertion failed for inode "
534                                      "%lu: retval %d != map->m_len %d",
535                                      inode->i_ino, retval, map->m_len);
536                         WARN_ON(1);
537                 }
538
539                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
540                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
541                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
542                     !(status & EXTENT_STATUS_WRITTEN) &&
543                     ext4_find_delalloc_range(inode, map->m_lblk,
544                                              map->m_lblk + map->m_len - 1))
545                         status |= EXTENT_STATUS_DELAYED;
546                 ret = ext4_es_insert_extent(inode, map->m_lblk,
547                                             map->m_len, map->m_pblk, status);
548                 if (ret < 0)
549                         retval = ret;
550         }
551         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
552                 up_read((&EXT4_I(inode)->i_data_sem));
553
554 found:
555         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
556                 ret = check_block_validity(inode, map);
557                 if (ret != 0)
558                         return ret;
559         }
560
561         /* If it is only a block(s) look up */
562         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
563                 return retval;
564
565         /*
566          * Returns if the blocks have already allocated
567          *
568          * Note that if blocks have been preallocated
569          * ext4_ext_get_block() returns the create = 0
570          * with buffer head unmapped.
571          */
572         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
573                 /*
574                  * If we need to convert extent to unwritten
575                  * we continue and do the actual work in
576                  * ext4_ext_map_blocks()
577                  */
578                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
579                         return retval;
580
581         /*
582          * Here we clear m_flags because after allocating an new extent,
583          * it will be set again.
584          */
585         map->m_flags &= ~EXT4_MAP_FLAGS;
586
587         /*
588          * New blocks allocate and/or writing to unwritten extent
589          * will possibly result in updating i_data, so we take
590          * the write lock of i_data_sem, and call get_block()
591          * with create == 1 flag.
592          */
593         down_write(&EXT4_I(inode)->i_data_sem);
594
595         /*
596          * We need to check for EXT4 here because migrate
597          * could have changed the inode type in between
598          */
599         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
600                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
601         } else {
602                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
603
604                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
605                         /*
606                          * We allocated new blocks which will result in
607                          * i_data's format changing.  Force the migrate
608                          * to fail by clearing migrate flags
609                          */
610                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
611                 }
612
613                 /*
614                  * Update reserved blocks/metadata blocks after successful
615                  * block allocation which had been deferred till now. We don't
616                  * support fallocate for non extent files. So we can update
617                  * reserve space here.
618                  */
619                 if ((retval > 0) &&
620                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
621                         ext4_da_update_reserve_space(inode, retval, 1);
622         }
623
624         if (retval > 0) {
625                 unsigned int status;
626
627                 if (unlikely(retval != map->m_len)) {
628                         ext4_warning(inode->i_sb,
629                                      "ES len assertion failed for inode "
630                                      "%lu: retval %d != map->m_len %d",
631                                      inode->i_ino, retval, map->m_len);
632                         WARN_ON(1);
633                 }
634
635                 /*
636                  * If the extent has been zeroed out, we don't need to update
637                  * extent status tree.
638                  */
639                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
640                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
641                         if (ext4_es_is_written(&es))
642                                 goto has_zeroout;
643                 }
644                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
645                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
646                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
647                     !(status & EXTENT_STATUS_WRITTEN) &&
648                     ext4_find_delalloc_range(inode, map->m_lblk,
649                                              map->m_lblk + map->m_len - 1))
650                         status |= EXTENT_STATUS_DELAYED;
651                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
652                                             map->m_pblk, status);
653                 if (ret < 0)
654                         retval = ret;
655         }
656
657 has_zeroout:
658         up_write((&EXT4_I(inode)->i_data_sem));
659         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
660                 ret = check_block_validity(inode, map);
661                 if (ret != 0)
662                         return ret;
663         }
664         return retval;
665 }
666
667 /*
668  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
669  * we have to be careful as someone else may be manipulating b_state as well.
670  */
671 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
672 {
673         unsigned long old_state;
674         unsigned long new_state;
675
676         flags &= EXT4_MAP_FLAGS;
677
678         /* Dummy buffer_head? Set non-atomically. */
679         if (!bh->b_page) {
680                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
681                 return;
682         }
683         /*
684          * Someone else may be modifying b_state. Be careful! This is ugly but
685          * once we get rid of using bh as a container for mapping information
686          * to pass to / from get_block functions, this can go away.
687          */
688         do {
689                 old_state = READ_ONCE(bh->b_state);
690                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
691         } while (unlikely(
692                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
693 }
694
695 /* Maximum number of blocks we map for direct IO at once. */
696 #define DIO_MAX_BLOCKS 4096
697
698 static int _ext4_get_block(struct inode *inode, sector_t iblock,
699                            struct buffer_head *bh, int flags)
700 {
701         handle_t *handle = ext4_journal_current_handle();
702         struct ext4_map_blocks map;
703         int ret = 0, started = 0;
704         int dio_credits;
705
706         if (ext4_has_inline_data(inode))
707                 return -ERANGE;
708
709         map.m_lblk = iblock;
710         map.m_len = bh->b_size >> inode->i_blkbits;
711
712         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
713                 /* Direct IO write... */
714                 if (map.m_len > DIO_MAX_BLOCKS)
715                         map.m_len = DIO_MAX_BLOCKS;
716                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
717                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
718                                             dio_credits);
719                 if (IS_ERR(handle)) {
720                         ret = PTR_ERR(handle);
721                         return ret;
722                 }
723                 started = 1;
724         }
725
726         ret = ext4_map_blocks(handle, inode, &map, flags);
727         if (ret > 0) {
728                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
729
730                 map_bh(bh, inode->i_sb, map.m_pblk);
731                 ext4_update_bh_state(bh, map.m_flags);
732                 if (IS_DAX(inode) && buffer_unwritten(bh)) {
733                         /*
734                          * dgc: I suspect unwritten conversion on ext4+DAX is
735                          * fundamentally broken here when there are concurrent
736                          * read/write in progress on this inode.
737                          */
738                         WARN_ON_ONCE(io_end);
739                         bh->b_assoc_map = inode->i_mapping;
740                         bh->b_private = (void *)(unsigned long)iblock;
741                 }
742                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
743                         set_buffer_defer_completion(bh);
744                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
745                 ret = 0;
746         }
747         if (started)
748                 ext4_journal_stop(handle);
749         return ret;
750 }
751
752 int ext4_get_block(struct inode *inode, sector_t iblock,
753                    struct buffer_head *bh, int create)
754 {
755         return _ext4_get_block(inode, iblock, bh,
756                                create ? EXT4_GET_BLOCKS_CREATE : 0);
757 }
758
759 /*
760  * `handle' can be NULL if create is zero
761  */
762 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
763                                 ext4_lblk_t block, int map_flags)
764 {
765         struct ext4_map_blocks map;
766         struct buffer_head *bh;
767         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
768         int err;
769
770         J_ASSERT(handle != NULL || create == 0);
771
772         map.m_lblk = block;
773         map.m_len = 1;
774         err = ext4_map_blocks(handle, inode, &map, map_flags);
775
776         if (err == 0)
777                 return create ? ERR_PTR(-ENOSPC) : NULL;
778         if (err < 0)
779                 return ERR_PTR(err);
780
781         bh = sb_getblk(inode->i_sb, map.m_pblk);
782         if (unlikely(!bh))
783                 return ERR_PTR(-ENOMEM);
784         if (map.m_flags & EXT4_MAP_NEW) {
785                 J_ASSERT(create != 0);
786                 J_ASSERT(handle != NULL);
787
788                 /*
789                  * Now that we do not always journal data, we should
790                  * keep in mind whether this should always journal the
791                  * new buffer as metadata.  For now, regular file
792                  * writes use ext4_get_block instead, so it's not a
793                  * problem.
794                  */
795                 lock_buffer(bh);
796                 BUFFER_TRACE(bh, "call get_create_access");
797                 err = ext4_journal_get_create_access(handle, bh);
798                 if (unlikely(err)) {
799                         unlock_buffer(bh);
800                         goto errout;
801                 }
802                 if (!buffer_uptodate(bh)) {
803                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
804                         set_buffer_uptodate(bh);
805                 }
806                 unlock_buffer(bh);
807                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
808                 err = ext4_handle_dirty_metadata(handle, inode, bh);
809                 if (unlikely(err))
810                         goto errout;
811         } else
812                 BUFFER_TRACE(bh, "not a new buffer");
813         return bh;
814 errout:
815         brelse(bh);
816         return ERR_PTR(err);
817 }
818
819 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
820                                ext4_lblk_t block, int map_flags)
821 {
822         struct buffer_head *bh;
823
824         bh = ext4_getblk(handle, inode, block, map_flags);
825         if (IS_ERR(bh))
826                 return bh;
827         if (!bh || buffer_uptodate(bh))
828                 return bh;
829         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
830         wait_on_buffer(bh);
831         if (buffer_uptodate(bh))
832                 return bh;
833         put_bh(bh);
834         return ERR_PTR(-EIO);
835 }
836
837 int ext4_walk_page_buffers(handle_t *handle,
838                            struct buffer_head *head,
839                            unsigned from,
840                            unsigned to,
841                            int *partial,
842                            int (*fn)(handle_t *handle,
843                                      struct buffer_head *bh))
844 {
845         struct buffer_head *bh;
846         unsigned block_start, block_end;
847         unsigned blocksize = head->b_size;
848         int err, ret = 0;
849         struct buffer_head *next;
850
851         for (bh = head, block_start = 0;
852              ret == 0 && (bh != head || !block_start);
853              block_start = block_end, bh = next) {
854                 next = bh->b_this_page;
855                 block_end = block_start + blocksize;
856                 if (block_end <= from || block_start >= to) {
857                         if (partial && !buffer_uptodate(bh))
858                                 *partial = 1;
859                         continue;
860                 }
861                 err = (*fn)(handle, bh);
862                 if (!ret)
863                         ret = err;
864         }
865         return ret;
866 }
867
868 /*
869  * To preserve ordering, it is essential that the hole instantiation and
870  * the data write be encapsulated in a single transaction.  We cannot
871  * close off a transaction and start a new one between the ext4_get_block()
872  * and the commit_write().  So doing the jbd2_journal_start at the start of
873  * prepare_write() is the right place.
874  *
875  * Also, this function can nest inside ext4_writepage().  In that case, we
876  * *know* that ext4_writepage() has generated enough buffer credits to do the
877  * whole page.  So we won't block on the journal in that case, which is good,
878  * because the caller may be PF_MEMALLOC.
879  *
880  * By accident, ext4 can be reentered when a transaction is open via
881  * quota file writes.  If we were to commit the transaction while thus
882  * reentered, there can be a deadlock - we would be holding a quota
883  * lock, and the commit would never complete if another thread had a
884  * transaction open and was blocking on the quota lock - a ranking
885  * violation.
886  *
887  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
888  * will _not_ run commit under these circumstances because handle->h_ref
889  * is elevated.  We'll still have enough credits for the tiny quotafile
890  * write.
891  */
892 int do_journal_get_write_access(handle_t *handle,
893                                 struct buffer_head *bh)
894 {
895         int dirty = buffer_dirty(bh);
896         int ret;
897
898         if (!buffer_mapped(bh) || buffer_freed(bh))
899                 return 0;
900         /*
901          * __block_write_begin() could have dirtied some buffers. Clean
902          * the dirty bit as jbd2_journal_get_write_access() could complain
903          * otherwise about fs integrity issues. Setting of the dirty bit
904          * by __block_write_begin() isn't a real problem here as we clear
905          * the bit before releasing a page lock and thus writeback cannot
906          * ever write the buffer.
907          */
908         if (dirty)
909                 clear_buffer_dirty(bh);
910         BUFFER_TRACE(bh, "get write access");
911         ret = ext4_journal_get_write_access(handle, bh);
912         if (!ret && dirty)
913                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
914         return ret;
915 }
916
917 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
918                    struct buffer_head *bh_result, int create);
919
920 #ifdef CONFIG_EXT4_FS_ENCRYPTION
921 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
922                                   get_block_t *get_block)
923 {
924         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
925         unsigned to = from + len;
926         struct inode *inode = page->mapping->host;
927         unsigned block_start, block_end;
928         sector_t block;
929         int err = 0;
930         unsigned blocksize = inode->i_sb->s_blocksize;
931         unsigned bbits;
932         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
933         bool decrypt = false;
934
935         BUG_ON(!PageLocked(page));
936         BUG_ON(from > PAGE_CACHE_SIZE);
937         BUG_ON(to > PAGE_CACHE_SIZE);
938         BUG_ON(from > to);
939
940         if (!page_has_buffers(page))
941                 create_empty_buffers(page, blocksize, 0);
942         head = page_buffers(page);
943         bbits = ilog2(blocksize);
944         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
945
946         for (bh = head, block_start = 0; bh != head || !block_start;
947             block++, block_start = block_end, bh = bh->b_this_page) {
948                 block_end = block_start + blocksize;
949                 if (block_end <= from || block_start >= to) {
950                         if (PageUptodate(page)) {
951                                 if (!buffer_uptodate(bh))
952                                         set_buffer_uptodate(bh);
953                         }
954                         continue;
955                 }
956                 if (buffer_new(bh))
957                         clear_buffer_new(bh);
958                 if (!buffer_mapped(bh)) {
959                         WARN_ON(bh->b_size != blocksize);
960                         err = get_block(inode, block, bh, 1);
961                         if (err)
962                                 break;
963                         if (buffer_new(bh)) {
964                                 unmap_underlying_metadata(bh->b_bdev,
965                                                           bh->b_blocknr);
966                                 if (PageUptodate(page)) {
967                                         clear_buffer_new(bh);
968                                         set_buffer_uptodate(bh);
969                                         mark_buffer_dirty(bh);
970                                         continue;
971                                 }
972                                 if (block_end > to || block_start < from)
973                                         zero_user_segments(page, to, block_end,
974                                                            block_start, from);
975                                 continue;
976                         }
977                 }
978                 if (PageUptodate(page)) {
979                         if (!buffer_uptodate(bh))
980                                 set_buffer_uptodate(bh);
981                         continue;
982                 }
983                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
984                     !buffer_unwritten(bh) &&
985                     (block_start < from || block_end > to)) {
986                         ll_rw_block(READ, 1, &bh);
987                         *wait_bh++ = bh;
988                         decrypt = ext4_encrypted_inode(inode) &&
989                                 S_ISREG(inode->i_mode);
990                 }
991         }
992         /*
993          * If we issued read requests, let them complete.
994          */
995         while (wait_bh > wait) {
996                 wait_on_buffer(*--wait_bh);
997                 if (!buffer_uptodate(*wait_bh))
998                         err = -EIO;
999         }
1000         if (unlikely(err))
1001                 page_zero_new_buffers(page, from, to);
1002         else if (decrypt)
1003                 err = ext4_decrypt(page);
1004         return err;
1005 }
1006 #endif
1007
1008 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1009                             loff_t pos, unsigned len, unsigned flags,
1010                             struct page **pagep, void **fsdata)
1011 {
1012         struct inode *inode = mapping->host;
1013         int ret, needed_blocks;
1014         handle_t *handle;
1015         int retries = 0;
1016         struct page *page;
1017         pgoff_t index;
1018         unsigned from, to;
1019
1020         trace_android_fs_datawrite_start(inode, pos, len,
1021                                          current->pid, current->comm);
1022         trace_ext4_write_begin(inode, pos, len, flags);
1023         /*
1024          * Reserve one block more for addition to orphan list in case
1025          * we allocate blocks but write fails for some reason
1026          */
1027         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1028         index = pos >> PAGE_CACHE_SHIFT;
1029         from = pos & (PAGE_CACHE_SIZE - 1);
1030         to = from + len;
1031
1032         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1033                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1034                                                     flags, pagep);
1035                 if (ret < 0)
1036                         return ret;
1037                 if (ret == 1)
1038                         return 0;
1039         }
1040
1041         /*
1042          * grab_cache_page_write_begin() can take a long time if the
1043          * system is thrashing due to memory pressure, or if the page
1044          * is being written back.  So grab it first before we start
1045          * the transaction handle.  This also allows us to allocate
1046          * the page (if needed) without using GFP_NOFS.
1047          */
1048 retry_grab:
1049         page = grab_cache_page_write_begin(mapping, index, flags);
1050         if (!page)
1051                 return -ENOMEM;
1052         unlock_page(page);
1053
1054 retry_journal:
1055         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1056         if (IS_ERR(handle)) {
1057                 page_cache_release(page);
1058                 return PTR_ERR(handle);
1059         }
1060
1061         lock_page(page);
1062         if (page->mapping != mapping) {
1063                 /* The page got truncated from under us */
1064                 unlock_page(page);
1065                 page_cache_release(page);
1066                 ext4_journal_stop(handle);
1067                 goto retry_grab;
1068         }
1069         /* In case writeback began while the page was unlocked */
1070         wait_for_stable_page(page);
1071
1072 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1073         if (ext4_should_dioread_nolock(inode))
1074                 ret = ext4_block_write_begin(page, pos, len,
1075                                              ext4_get_block_write);
1076         else
1077                 ret = ext4_block_write_begin(page, pos, len,
1078                                              ext4_get_block);
1079 #else
1080         if (ext4_should_dioread_nolock(inode))
1081                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1082         else
1083                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1084 #endif
1085         if (!ret && ext4_should_journal_data(inode)) {
1086                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1087                                              from, to, NULL,
1088                                              do_journal_get_write_access);
1089         }
1090
1091         if (ret) {
1092                 unlock_page(page);
1093                 /*
1094                  * __block_write_begin may have instantiated a few blocks
1095                  * outside i_size.  Trim these off again. Don't need
1096                  * i_size_read because we hold i_mutex.
1097                  *
1098                  * Add inode to orphan list in case we crash before
1099                  * truncate finishes
1100                  */
1101                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1102                         ext4_orphan_add(handle, inode);
1103
1104                 ext4_journal_stop(handle);
1105                 if (pos + len > inode->i_size) {
1106                         ext4_truncate_failed_write(inode);
1107                         /*
1108                          * If truncate failed early the inode might
1109                          * still be on the orphan list; we need to
1110                          * make sure the inode is removed from the
1111                          * orphan list in that case.
1112                          */
1113                         if (inode->i_nlink)
1114                                 ext4_orphan_del(NULL, inode);
1115                 }
1116
1117                 if (ret == -ENOSPC &&
1118                     ext4_should_retry_alloc(inode->i_sb, &retries))
1119                         goto retry_journal;
1120                 page_cache_release(page);
1121                 return ret;
1122         }
1123         *pagep = page;
1124         return ret;
1125 }
1126
1127 /* For write_end() in data=journal mode */
1128 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1129 {
1130         int ret;
1131         if (!buffer_mapped(bh) || buffer_freed(bh))
1132                 return 0;
1133         set_buffer_uptodate(bh);
1134         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1135         clear_buffer_meta(bh);
1136         clear_buffer_prio(bh);
1137         return ret;
1138 }
1139
1140 /*
1141  * We need to pick up the new inode size which generic_commit_write gave us
1142  * `file' can be NULL - eg, when called from page_symlink().
1143  *
1144  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1145  * buffers are managed internally.
1146  */
1147 static int ext4_write_end(struct file *file,
1148                           struct address_space *mapping,
1149                           loff_t pos, unsigned len, unsigned copied,
1150                           struct page *page, void *fsdata)
1151 {
1152         handle_t *handle = ext4_journal_current_handle();
1153         struct inode *inode = mapping->host;
1154         loff_t old_size = inode->i_size;
1155         int ret = 0, ret2;
1156         int i_size_changed = 0;
1157
1158         trace_android_fs_datawrite_end(inode, pos, len);
1159         trace_ext4_write_end(inode, pos, len, copied);
1160         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1161                 ret = ext4_jbd2_file_inode(handle, inode);
1162                 if (ret) {
1163                         unlock_page(page);
1164                         page_cache_release(page);
1165                         goto errout;
1166                 }
1167         }
1168
1169         if (ext4_has_inline_data(inode)) {
1170                 ret = ext4_write_inline_data_end(inode, pos, len,
1171                                                  copied, page);
1172                 if (ret < 0)
1173                         goto errout;
1174                 copied = ret;
1175         } else
1176                 copied = block_write_end(file, mapping, pos,
1177                                          len, copied, page, fsdata);
1178         /*
1179          * it's important to update i_size while still holding page lock:
1180          * page writeout could otherwise come in and zero beyond i_size.
1181          */
1182         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1183         unlock_page(page);
1184         page_cache_release(page);
1185
1186         if (old_size < pos)
1187                 pagecache_isize_extended(inode, old_size, pos);
1188         /*
1189          * Don't mark the inode dirty under page lock. First, it unnecessarily
1190          * makes the holding time of page lock longer. Second, it forces lock
1191          * ordering of page lock and transaction start for journaling
1192          * filesystems.
1193          */
1194         if (i_size_changed)
1195                 ext4_mark_inode_dirty(handle, inode);
1196
1197         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1198                 /* if we have allocated more blocks and copied
1199                  * less. We will have blocks allocated outside
1200                  * inode->i_size. So truncate them
1201                  */
1202                 ext4_orphan_add(handle, inode);
1203 errout:
1204         ret2 = ext4_journal_stop(handle);
1205         if (!ret)
1206                 ret = ret2;
1207
1208         if (pos + len > inode->i_size) {
1209                 ext4_truncate_failed_write(inode);
1210                 /*
1211                  * If truncate failed early the inode might still be
1212                  * on the orphan list; we need to make sure the inode
1213                  * is removed from the orphan list in that case.
1214                  */
1215                 if (inode->i_nlink)
1216                         ext4_orphan_del(NULL, inode);
1217         }
1218
1219         return ret ? ret : copied;
1220 }
1221
1222 /*
1223  * This is a private version of page_zero_new_buffers() which doesn't
1224  * set the buffer to be dirty, since in data=journalled mode we need
1225  * to call ext4_handle_dirty_metadata() instead.
1226  */
1227 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1228 {
1229         unsigned int block_start = 0, block_end;
1230         struct buffer_head *head, *bh;
1231
1232         bh = head = page_buffers(page);
1233         do {
1234                 block_end = block_start + bh->b_size;
1235                 if (buffer_new(bh)) {
1236                         if (block_end > from && block_start < to) {
1237                                 if (!PageUptodate(page)) {
1238                                         unsigned start, size;
1239
1240                                         start = max(from, block_start);
1241                                         size = min(to, block_end) - start;
1242
1243                                         zero_user(page, start, size);
1244                                         set_buffer_uptodate(bh);
1245                                 }
1246                                 clear_buffer_new(bh);
1247                         }
1248                 }
1249                 block_start = block_end;
1250                 bh = bh->b_this_page;
1251         } while (bh != head);
1252 }
1253
1254 static int ext4_journalled_write_end(struct file *file,
1255                                      struct address_space *mapping,
1256                                      loff_t pos, unsigned len, unsigned copied,
1257                                      struct page *page, void *fsdata)
1258 {
1259         handle_t *handle = ext4_journal_current_handle();
1260         struct inode *inode = mapping->host;
1261         loff_t old_size = inode->i_size;
1262         int ret = 0, ret2;
1263         int partial = 0;
1264         unsigned from, to;
1265         int size_changed = 0;
1266
1267         trace_android_fs_datawrite_end(inode, pos, len);
1268         trace_ext4_journalled_write_end(inode, pos, len, copied);
1269         from = pos & (PAGE_CACHE_SIZE - 1);
1270         to = from + len;
1271
1272         BUG_ON(!ext4_handle_valid(handle));
1273
1274         if (ext4_has_inline_data(inode))
1275                 copied = ext4_write_inline_data_end(inode, pos, len,
1276                                                     copied, page);
1277         else {
1278                 if (copied < len) {
1279                         if (!PageUptodate(page))
1280                                 copied = 0;
1281                         zero_new_buffers(page, from+copied, to);
1282                 }
1283
1284                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1285                                              to, &partial, write_end_fn);
1286                 if (!partial)
1287                         SetPageUptodate(page);
1288         }
1289         size_changed = ext4_update_inode_size(inode, pos + copied);
1290         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1291         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1292         unlock_page(page);
1293         page_cache_release(page);
1294
1295         if (old_size < pos)
1296                 pagecache_isize_extended(inode, old_size, pos);
1297
1298         if (size_changed) {
1299                 ret2 = ext4_mark_inode_dirty(handle, inode);
1300                 if (!ret)
1301                         ret = ret2;
1302         }
1303
1304         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1305                 /* if we have allocated more blocks and copied
1306                  * less. We will have blocks allocated outside
1307                  * inode->i_size. So truncate them
1308                  */
1309                 ext4_orphan_add(handle, inode);
1310
1311         ret2 = ext4_journal_stop(handle);
1312         if (!ret)
1313                 ret = ret2;
1314         if (pos + len > inode->i_size) {
1315                 ext4_truncate_failed_write(inode);
1316                 /*
1317                  * If truncate failed early the inode might still be
1318                  * on the orphan list; we need to make sure the inode
1319                  * is removed from the orphan list in that case.
1320                  */
1321                 if (inode->i_nlink)
1322                         ext4_orphan_del(NULL, inode);
1323         }
1324
1325         return ret ? ret : copied;
1326 }
1327
1328 /*
1329  * Reserve space for a single cluster
1330  */
1331 static int ext4_da_reserve_space(struct inode *inode)
1332 {
1333         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1334         struct ext4_inode_info *ei = EXT4_I(inode);
1335         int ret;
1336
1337         /*
1338          * We will charge metadata quota at writeout time; this saves
1339          * us from metadata over-estimation, though we may go over by
1340          * a small amount in the end.  Here we just reserve for data.
1341          */
1342         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1343         if (ret)
1344                 return ret;
1345
1346         spin_lock(&ei->i_block_reservation_lock);
1347         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1348                 spin_unlock(&ei->i_block_reservation_lock);
1349                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1350                 return -ENOSPC;
1351         }
1352         ei->i_reserved_data_blocks++;
1353         trace_ext4_da_reserve_space(inode);
1354         spin_unlock(&ei->i_block_reservation_lock);
1355
1356         return 0;       /* success */
1357 }
1358
1359 static void ext4_da_release_space(struct inode *inode, int to_free)
1360 {
1361         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1362         struct ext4_inode_info *ei = EXT4_I(inode);
1363
1364         if (!to_free)
1365                 return;         /* Nothing to release, exit */
1366
1367         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1368
1369         trace_ext4_da_release_space(inode, to_free);
1370         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1371                 /*
1372                  * if there aren't enough reserved blocks, then the
1373                  * counter is messed up somewhere.  Since this
1374                  * function is called from invalidate page, it's
1375                  * harmless to return without any action.
1376                  */
1377                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1378                          "ino %lu, to_free %d with only %d reserved "
1379                          "data blocks", inode->i_ino, to_free,
1380                          ei->i_reserved_data_blocks);
1381                 WARN_ON(1);
1382                 to_free = ei->i_reserved_data_blocks;
1383         }
1384         ei->i_reserved_data_blocks -= to_free;
1385
1386         /* update fs dirty data blocks counter */
1387         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1388
1389         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1390
1391         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1392 }
1393
1394 static void ext4_da_page_release_reservation(struct page *page,
1395                                              unsigned int offset,
1396                                              unsigned int length)
1397 {
1398         int to_release = 0, contiguous_blks = 0;
1399         struct buffer_head *head, *bh;
1400         unsigned int curr_off = 0;
1401         struct inode *inode = page->mapping->host;
1402         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1403         unsigned int stop = offset + length;
1404         int num_clusters;
1405         ext4_fsblk_t lblk;
1406
1407         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1408
1409         head = page_buffers(page);
1410         bh = head;
1411         do {
1412                 unsigned int next_off = curr_off + bh->b_size;
1413
1414                 if (next_off > stop)
1415                         break;
1416
1417                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1418                         to_release++;
1419                         contiguous_blks++;
1420                         clear_buffer_delay(bh);
1421                 } else if (contiguous_blks) {
1422                         lblk = page->index <<
1423                                (PAGE_CACHE_SHIFT - inode->i_blkbits);
1424                         lblk += (curr_off >> inode->i_blkbits) -
1425                                 contiguous_blks;
1426                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1427                         contiguous_blks = 0;
1428                 }
1429                 curr_off = next_off;
1430         } while ((bh = bh->b_this_page) != head);
1431
1432         if (contiguous_blks) {
1433                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1434                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1435                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1436         }
1437
1438         /* If we have released all the blocks belonging to a cluster, then we
1439          * need to release the reserved space for that cluster. */
1440         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1441         while (num_clusters > 0) {
1442                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1443                         ((num_clusters - 1) << sbi->s_cluster_bits);
1444                 if (sbi->s_cluster_ratio == 1 ||
1445                     !ext4_find_delalloc_cluster(inode, lblk))
1446                         ext4_da_release_space(inode, 1);
1447
1448                 num_clusters--;
1449         }
1450 }
1451
1452 /*
1453  * Delayed allocation stuff
1454  */
1455
1456 struct mpage_da_data {
1457         struct inode *inode;
1458         struct writeback_control *wbc;
1459
1460         pgoff_t first_page;     /* The first page to write */
1461         pgoff_t next_page;      /* Current page to examine */
1462         pgoff_t last_page;      /* Last page to examine */
1463         /*
1464          * Extent to map - this can be after first_page because that can be
1465          * fully mapped. We somewhat abuse m_flags to store whether the extent
1466          * is delalloc or unwritten.
1467          */
1468         struct ext4_map_blocks map;
1469         struct ext4_io_submit io_submit;        /* IO submission data */
1470 };
1471
1472 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1473                                        bool invalidate)
1474 {
1475         int nr_pages, i;
1476         pgoff_t index, end;
1477         struct pagevec pvec;
1478         struct inode *inode = mpd->inode;
1479         struct address_space *mapping = inode->i_mapping;
1480
1481         /* This is necessary when next_page == 0. */
1482         if (mpd->first_page >= mpd->next_page)
1483                 return;
1484
1485         index = mpd->first_page;
1486         end   = mpd->next_page - 1;
1487         if (invalidate) {
1488                 ext4_lblk_t start, last;
1489                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1490                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1491                 ext4_es_remove_extent(inode, start, last - start + 1);
1492         }
1493
1494         pagevec_init(&pvec, 0);
1495         while (index <= end) {
1496                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1497                 if (nr_pages == 0)
1498                         break;
1499                 for (i = 0; i < nr_pages; i++) {
1500                         struct page *page = pvec.pages[i];
1501                         if (page->index > end)
1502                                 break;
1503                         BUG_ON(!PageLocked(page));
1504                         BUG_ON(PageWriteback(page));
1505                         if (invalidate) {
1506                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1507                                 ClearPageUptodate(page);
1508                         }
1509                         unlock_page(page);
1510                 }
1511                 index = pvec.pages[nr_pages - 1]->index + 1;
1512                 pagevec_release(&pvec);
1513         }
1514 }
1515
1516 static void ext4_print_free_blocks(struct inode *inode)
1517 {
1518         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519         struct super_block *sb = inode->i_sb;
1520         struct ext4_inode_info *ei = EXT4_I(inode);
1521
1522         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1523                EXT4_C2B(EXT4_SB(inode->i_sb),
1524                         ext4_count_free_clusters(sb)));
1525         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1526         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1527                (long long) EXT4_C2B(EXT4_SB(sb),
1528                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1529         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1530                (long long) EXT4_C2B(EXT4_SB(sb),
1531                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1532         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1533         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1534                  ei->i_reserved_data_blocks);
1535         return;
1536 }
1537
1538 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1539 {
1540         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1541 }
1542
1543 /*
1544  * This function is grabs code from the very beginning of
1545  * ext4_map_blocks, but assumes that the caller is from delayed write
1546  * time. This function looks up the requested blocks and sets the
1547  * buffer delay bit under the protection of i_data_sem.
1548  */
1549 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1550                               struct ext4_map_blocks *map,
1551                               struct buffer_head *bh)
1552 {
1553         struct extent_status es;
1554         int retval;
1555         sector_t invalid_block = ~((sector_t) 0xffff);
1556 #ifdef ES_AGGRESSIVE_TEST
1557         struct ext4_map_blocks orig_map;
1558
1559         memcpy(&orig_map, map, sizeof(*map));
1560 #endif
1561
1562         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1563                 invalid_block = ~0;
1564
1565         map->m_flags = 0;
1566         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1567                   "logical block %lu\n", inode->i_ino, map->m_len,
1568                   (unsigned long) map->m_lblk);
1569
1570         /* Lookup extent status tree firstly */
1571         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1572                 if (ext4_es_is_hole(&es)) {
1573                         retval = 0;
1574                         down_read(&EXT4_I(inode)->i_data_sem);
1575                         goto add_delayed;
1576                 }
1577
1578                 /*
1579                  * Delayed extent could be allocated by fallocate.
1580                  * So we need to check it.
1581                  */
1582                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1583                         map_bh(bh, inode->i_sb, invalid_block);
1584                         set_buffer_new(bh);
1585                         set_buffer_delay(bh);
1586                         return 0;
1587                 }
1588
1589                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1590                 retval = es.es_len - (iblock - es.es_lblk);
1591                 if (retval > map->m_len)
1592                         retval = map->m_len;
1593                 map->m_len = retval;
1594                 if (ext4_es_is_written(&es))
1595                         map->m_flags |= EXT4_MAP_MAPPED;
1596                 else if (ext4_es_is_unwritten(&es))
1597                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1598                 else
1599                         BUG_ON(1);
1600
1601 #ifdef ES_AGGRESSIVE_TEST
1602                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1603 #endif
1604                 return retval;
1605         }
1606
1607         /*
1608          * Try to see if we can get the block without requesting a new
1609          * file system block.
1610          */
1611         down_read(&EXT4_I(inode)->i_data_sem);
1612         if (ext4_has_inline_data(inode))
1613                 retval = 0;
1614         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1615                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1616         else
1617                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1618
1619 add_delayed:
1620         if (retval == 0) {
1621                 int ret;
1622                 /*
1623                  * XXX: __block_prepare_write() unmaps passed block,
1624                  * is it OK?
1625                  */
1626                 /*
1627                  * If the block was allocated from previously allocated cluster,
1628                  * then we don't need to reserve it again. However we still need
1629                  * to reserve metadata for every block we're going to write.
1630                  */
1631                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1632                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1633                         ret = ext4_da_reserve_space(inode);
1634                         if (ret) {
1635                                 /* not enough space to reserve */
1636                                 retval = ret;
1637                                 goto out_unlock;
1638                         }
1639                 }
1640
1641                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1642                                             ~0, EXTENT_STATUS_DELAYED);
1643                 if (ret) {
1644                         retval = ret;
1645                         goto out_unlock;
1646                 }
1647
1648                 map_bh(bh, inode->i_sb, invalid_block);
1649                 set_buffer_new(bh);
1650                 set_buffer_delay(bh);
1651         } else if (retval > 0) {
1652                 int ret;
1653                 unsigned int status;
1654
1655                 if (unlikely(retval != map->m_len)) {
1656                         ext4_warning(inode->i_sb,
1657                                      "ES len assertion failed for inode "
1658                                      "%lu: retval %d != map->m_len %d",
1659                                      inode->i_ino, retval, map->m_len);
1660                         WARN_ON(1);
1661                 }
1662
1663                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1664                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1665                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1666                                             map->m_pblk, status);
1667                 if (ret != 0)
1668                         retval = ret;
1669         }
1670
1671 out_unlock:
1672         up_read((&EXT4_I(inode)->i_data_sem));
1673
1674         return retval;
1675 }
1676
1677 /*
1678  * This is a special get_block_t callback which is used by
1679  * ext4_da_write_begin().  It will either return mapped block or
1680  * reserve space for a single block.
1681  *
1682  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1683  * We also have b_blocknr = -1 and b_bdev initialized properly
1684  *
1685  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1686  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1687  * initialized properly.
1688  */
1689 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1690                            struct buffer_head *bh, int create)
1691 {
1692         struct ext4_map_blocks map;
1693         int ret = 0;
1694
1695         BUG_ON(create == 0);
1696         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1697
1698         map.m_lblk = iblock;
1699         map.m_len = 1;
1700
1701         /*
1702          * first, we need to know whether the block is allocated already
1703          * preallocated blocks are unmapped but should treated
1704          * the same as allocated blocks.
1705          */
1706         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1707         if (ret <= 0)
1708                 return ret;
1709
1710         map_bh(bh, inode->i_sb, map.m_pblk);
1711         ext4_update_bh_state(bh, map.m_flags);
1712
1713         if (buffer_unwritten(bh)) {
1714                 /* A delayed write to unwritten bh should be marked
1715                  * new and mapped.  Mapped ensures that we don't do
1716                  * get_block multiple times when we write to the same
1717                  * offset and new ensures that we do proper zero out
1718                  * for partial write.
1719                  */
1720                 set_buffer_new(bh);
1721                 set_buffer_mapped(bh);
1722         }
1723         return 0;
1724 }
1725
1726 static int bget_one(handle_t *handle, struct buffer_head *bh)
1727 {
1728         get_bh(bh);
1729         return 0;
1730 }
1731
1732 static int bput_one(handle_t *handle, struct buffer_head *bh)
1733 {
1734         put_bh(bh);
1735         return 0;
1736 }
1737
1738 static int __ext4_journalled_writepage(struct page *page,
1739                                        unsigned int len)
1740 {
1741         struct address_space *mapping = page->mapping;
1742         struct inode *inode = mapping->host;
1743         struct buffer_head *page_bufs = NULL;
1744         handle_t *handle = NULL;
1745         int ret = 0, err = 0;
1746         int inline_data = ext4_has_inline_data(inode);
1747         struct buffer_head *inode_bh = NULL;
1748
1749         ClearPageChecked(page);
1750
1751         if (inline_data) {
1752                 BUG_ON(page->index != 0);
1753                 BUG_ON(len > ext4_get_max_inline_size(inode));
1754                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1755                 if (inode_bh == NULL)
1756                         goto out;
1757         } else {
1758                 page_bufs = page_buffers(page);
1759                 if (!page_bufs) {
1760                         BUG();
1761                         goto out;
1762                 }
1763                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1764                                        NULL, bget_one);
1765         }
1766         /*
1767          * We need to release the page lock before we start the
1768          * journal, so grab a reference so the page won't disappear
1769          * out from under us.
1770          */
1771         get_page(page);
1772         unlock_page(page);
1773
1774         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1775                                     ext4_writepage_trans_blocks(inode));
1776         if (IS_ERR(handle)) {
1777                 ret = PTR_ERR(handle);
1778                 put_page(page);
1779                 goto out_no_pagelock;
1780         }
1781         BUG_ON(!ext4_handle_valid(handle));
1782
1783         lock_page(page);
1784         put_page(page);
1785         if (page->mapping != mapping) {
1786                 /* The page got truncated from under us */
1787                 ext4_journal_stop(handle);
1788                 ret = 0;
1789                 goto out;
1790         }
1791
1792         if (inline_data) {
1793                 BUFFER_TRACE(inode_bh, "get write access");
1794                 ret = ext4_journal_get_write_access(handle, inode_bh);
1795
1796                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1797
1798         } else {
1799                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1800                                              do_journal_get_write_access);
1801
1802                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1803                                              write_end_fn);
1804         }
1805         if (ret == 0)
1806                 ret = err;
1807         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1808         err = ext4_journal_stop(handle);
1809         if (!ret)
1810                 ret = err;
1811
1812         if (!ext4_has_inline_data(inode))
1813                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1814                                        NULL, bput_one);
1815         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1816 out:
1817         unlock_page(page);
1818 out_no_pagelock:
1819         brelse(inode_bh);
1820         return ret;
1821 }
1822
1823 /*
1824  * Note that we don't need to start a transaction unless we're journaling data
1825  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1826  * need to file the inode to the transaction's list in ordered mode because if
1827  * we are writing back data added by write(), the inode is already there and if
1828  * we are writing back data modified via mmap(), no one guarantees in which
1829  * transaction the data will hit the disk. In case we are journaling data, we
1830  * cannot start transaction directly because transaction start ranks above page
1831  * lock so we have to do some magic.
1832  *
1833  * This function can get called via...
1834  *   - ext4_writepages after taking page lock (have journal handle)
1835  *   - journal_submit_inode_data_buffers (no journal handle)
1836  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1837  *   - grab_page_cache when doing write_begin (have journal handle)
1838  *
1839  * We don't do any block allocation in this function. If we have page with
1840  * multiple blocks we need to write those buffer_heads that are mapped. This
1841  * is important for mmaped based write. So if we do with blocksize 1K
1842  * truncate(f, 1024);
1843  * a = mmap(f, 0, 4096);
1844  * a[0] = 'a';
1845  * truncate(f, 4096);
1846  * we have in the page first buffer_head mapped via page_mkwrite call back
1847  * but other buffer_heads would be unmapped but dirty (dirty done via the
1848  * do_wp_page). So writepage should write the first block. If we modify
1849  * the mmap area beyond 1024 we will again get a page_fault and the
1850  * page_mkwrite callback will do the block allocation and mark the
1851  * buffer_heads mapped.
1852  *
1853  * We redirty the page if we have any buffer_heads that is either delay or
1854  * unwritten in the page.
1855  *
1856  * We can get recursively called as show below.
1857  *
1858  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1859  *              ext4_writepage()
1860  *
1861  * But since we don't do any block allocation we should not deadlock.
1862  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1863  */
1864 static int ext4_writepage(struct page *page,
1865                           struct writeback_control *wbc)
1866 {
1867         int ret = 0;
1868         loff_t size;
1869         unsigned int len;
1870         struct buffer_head *page_bufs = NULL;
1871         struct inode *inode = page->mapping->host;
1872         struct ext4_io_submit io_submit;
1873         bool keep_towrite = false;
1874
1875         trace_ext4_writepage(page);
1876         size = i_size_read(inode);
1877         if (page->index == size >> PAGE_CACHE_SHIFT)
1878                 len = size & ~PAGE_CACHE_MASK;
1879         else
1880                 len = PAGE_CACHE_SIZE;
1881
1882         page_bufs = page_buffers(page);
1883         /*
1884          * We cannot do block allocation or other extent handling in this
1885          * function. If there are buffers needing that, we have to redirty
1886          * the page. But we may reach here when we do a journal commit via
1887          * journal_submit_inode_data_buffers() and in that case we must write
1888          * allocated buffers to achieve data=ordered mode guarantees.
1889          *
1890          * Also, if there is only one buffer per page (the fs block
1891          * size == the page size), if one buffer needs block
1892          * allocation or needs to modify the extent tree to clear the
1893          * unwritten flag, we know that the page can't be written at
1894          * all, so we might as well refuse the write immediately.
1895          * Unfortunately if the block size != page size, we can't as
1896          * easily detect this case using ext4_walk_page_buffers(), but
1897          * for the extremely common case, this is an optimization that
1898          * skips a useless round trip through ext4_bio_write_page().
1899          */
1900         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1901                                    ext4_bh_delay_or_unwritten)) {
1902                 redirty_page_for_writepage(wbc, page);
1903                 if ((current->flags & PF_MEMALLOC) ||
1904                     (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1905                         /*
1906                          * For memory cleaning there's no point in writing only
1907                          * some buffers. So just bail out. Warn if we came here
1908                          * from direct reclaim.
1909                          */
1910                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1911                                                         == PF_MEMALLOC);
1912                         unlock_page(page);
1913                         return 0;
1914                 }
1915                 keep_towrite = true;
1916         }
1917
1918         if (PageChecked(page) && ext4_should_journal_data(inode))
1919                 /*
1920                  * It's mmapped pagecache.  Add buffers and journal it.  There
1921                  * doesn't seem much point in redirtying the page here.
1922                  */
1923                 return __ext4_journalled_writepage(page, len);
1924
1925         ext4_io_submit_init(&io_submit, wbc);
1926         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1927         if (!io_submit.io_end) {
1928                 redirty_page_for_writepage(wbc, page);
1929                 unlock_page(page);
1930                 return -ENOMEM;
1931         }
1932         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1933         ext4_io_submit(&io_submit);
1934         /* Drop io_end reference we got from init */
1935         ext4_put_io_end_defer(io_submit.io_end);
1936         return ret;
1937 }
1938
1939 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1940 {
1941         int len;
1942         loff_t size = i_size_read(mpd->inode);
1943         int err;
1944
1945         BUG_ON(page->index != mpd->first_page);
1946         if (page->index == size >> PAGE_CACHE_SHIFT)
1947                 len = size & ~PAGE_CACHE_MASK;
1948         else
1949                 len = PAGE_CACHE_SIZE;
1950         clear_page_dirty_for_io(page);
1951         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1952         if (!err)
1953                 mpd->wbc->nr_to_write--;
1954         mpd->first_page++;
1955
1956         return err;
1957 }
1958
1959 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1960
1961 /*
1962  * mballoc gives us at most this number of blocks...
1963  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1964  * The rest of mballoc seems to handle chunks up to full group size.
1965  */
1966 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1967
1968 /*
1969  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1970  *
1971  * @mpd - extent of blocks
1972  * @lblk - logical number of the block in the file
1973  * @bh - buffer head we want to add to the extent
1974  *
1975  * The function is used to collect contig. blocks in the same state. If the
1976  * buffer doesn't require mapping for writeback and we haven't started the
1977  * extent of buffers to map yet, the function returns 'true' immediately - the
1978  * caller can write the buffer right away. Otherwise the function returns true
1979  * if the block has been added to the extent, false if the block couldn't be
1980  * added.
1981  */
1982 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1983                                    struct buffer_head *bh)
1984 {
1985         struct ext4_map_blocks *map = &mpd->map;
1986
1987         /* Buffer that doesn't need mapping for writeback? */
1988         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1989             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1990                 /* So far no extent to map => we write the buffer right away */
1991                 if (map->m_len == 0)
1992                         return true;
1993                 return false;
1994         }
1995
1996         /* First block in the extent? */
1997         if (map->m_len == 0) {
1998                 map->m_lblk = lblk;
1999                 map->m_len = 1;
2000                 map->m_flags = bh->b_state & BH_FLAGS;
2001                 return true;
2002         }
2003
2004         /* Don't go larger than mballoc is willing to allocate */
2005         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2006                 return false;
2007
2008         /* Can we merge the block to our big extent? */
2009         if (lblk == map->m_lblk + map->m_len &&
2010             (bh->b_state & BH_FLAGS) == map->m_flags) {
2011                 map->m_len++;
2012                 return true;
2013         }
2014         return false;
2015 }
2016
2017 /*
2018  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2019  *
2020  * @mpd - extent of blocks for mapping
2021  * @head - the first buffer in the page
2022  * @bh - buffer we should start processing from
2023  * @lblk - logical number of the block in the file corresponding to @bh
2024  *
2025  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2026  * the page for IO if all buffers in this page were mapped and there's no
2027  * accumulated extent of buffers to map or add buffers in the page to the
2028  * extent of buffers to map. The function returns 1 if the caller can continue
2029  * by processing the next page, 0 if it should stop adding buffers to the
2030  * extent to map because we cannot extend it anymore. It can also return value
2031  * < 0 in case of error during IO submission.
2032  */
2033 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2034                                    struct buffer_head *head,
2035                                    struct buffer_head *bh,
2036                                    ext4_lblk_t lblk)
2037 {
2038         struct inode *inode = mpd->inode;
2039         int err;
2040         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2041                                                         >> inode->i_blkbits;
2042
2043         do {
2044                 BUG_ON(buffer_locked(bh));
2045
2046                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2047                         /* Found extent to map? */
2048                         if (mpd->map.m_len)
2049                                 return 0;
2050                         /* Everything mapped so far and we hit EOF */
2051                         break;
2052                 }
2053         } while (lblk++, (bh = bh->b_this_page) != head);
2054         /* So far everything mapped? Submit the page for IO. */
2055         if (mpd->map.m_len == 0) {
2056                 err = mpage_submit_page(mpd, head->b_page);
2057                 if (err < 0)
2058                         return err;
2059         }
2060         return lblk < blocks;
2061 }
2062
2063 /*
2064  * mpage_map_buffers - update buffers corresponding to changed extent and
2065  *                     submit fully mapped pages for IO
2066  *
2067  * @mpd - description of extent to map, on return next extent to map
2068  *
2069  * Scan buffers corresponding to changed extent (we expect corresponding pages
2070  * to be already locked) and update buffer state according to new extent state.
2071  * We map delalloc buffers to their physical location, clear unwritten bits,
2072  * and mark buffers as uninit when we perform writes to unwritten extents
2073  * and do extent conversion after IO is finished. If the last page is not fully
2074  * mapped, we update @map to the next extent in the last page that needs
2075  * mapping. Otherwise we submit the page for IO.
2076  */
2077 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2078 {
2079         struct pagevec pvec;
2080         int nr_pages, i;
2081         struct inode *inode = mpd->inode;
2082         struct buffer_head *head, *bh;
2083         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2084         pgoff_t start, end;
2085         ext4_lblk_t lblk;
2086         sector_t pblock;
2087         int err;
2088
2089         start = mpd->map.m_lblk >> bpp_bits;
2090         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2091         lblk = start << bpp_bits;
2092         pblock = mpd->map.m_pblk;
2093
2094         pagevec_init(&pvec, 0);
2095         while (start <= end) {
2096                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2097                                           PAGEVEC_SIZE);
2098                 if (nr_pages == 0)
2099                         break;
2100                 for (i = 0; i < nr_pages; i++) {
2101                         struct page *page = pvec.pages[i];
2102
2103                         if (page->index > end)
2104                                 break;
2105                         /* Up to 'end' pages must be contiguous */
2106                         BUG_ON(page->index != start);
2107                         bh = head = page_buffers(page);
2108                         do {
2109                                 if (lblk < mpd->map.m_lblk)
2110                                         continue;
2111                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2112                                         /*
2113                                          * Buffer after end of mapped extent.
2114                                          * Find next buffer in the page to map.
2115                                          */
2116                                         mpd->map.m_len = 0;
2117                                         mpd->map.m_flags = 0;
2118                                         /*
2119                                          * FIXME: If dioread_nolock supports
2120                                          * blocksize < pagesize, we need to make
2121                                          * sure we add size mapped so far to
2122                                          * io_end->size as the following call
2123                                          * can submit the page for IO.
2124                                          */
2125                                         err = mpage_process_page_bufs(mpd, head,
2126                                                                       bh, lblk);
2127                                         pagevec_release(&pvec);
2128                                         if (err > 0)
2129                                                 err = 0;
2130                                         return err;
2131                                 }
2132                                 if (buffer_delay(bh)) {
2133                                         clear_buffer_delay(bh);
2134                                         bh->b_blocknr = pblock++;
2135                                 }
2136                                 clear_buffer_unwritten(bh);
2137                         } while (lblk++, (bh = bh->b_this_page) != head);
2138
2139                         /*
2140                          * FIXME: This is going to break if dioread_nolock
2141                          * supports blocksize < pagesize as we will try to
2142                          * convert potentially unmapped parts of inode.
2143                          */
2144                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2145                         /* Page fully mapped - let IO run! */
2146                         err = mpage_submit_page(mpd, page);
2147                         if (err < 0) {
2148                                 pagevec_release(&pvec);
2149                                 return err;
2150                         }
2151                         start++;
2152                 }
2153                 pagevec_release(&pvec);
2154         }
2155         /* Extent fully mapped and matches with page boundary. We are done. */
2156         mpd->map.m_len = 0;
2157         mpd->map.m_flags = 0;
2158         return 0;
2159 }
2160
2161 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2162 {
2163         struct inode *inode = mpd->inode;
2164         struct ext4_map_blocks *map = &mpd->map;
2165         int get_blocks_flags;
2166         int err, dioread_nolock;
2167
2168         trace_ext4_da_write_pages_extent(inode, map);
2169         /*
2170          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2171          * to convert an unwritten extent to be initialized (in the case
2172          * where we have written into one or more preallocated blocks).  It is
2173          * possible that we're going to need more metadata blocks than
2174          * previously reserved. However we must not fail because we're in
2175          * writeback and there is nothing we can do about it so it might result
2176          * in data loss.  So use reserved blocks to allocate metadata if
2177          * possible.
2178          *
2179          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2180          * the blocks in question are delalloc blocks.  This indicates
2181          * that the blocks and quotas has already been checked when
2182          * the data was copied into the page cache.
2183          */
2184         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2185                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2186         dioread_nolock = ext4_should_dioread_nolock(inode);
2187         if (dioread_nolock)
2188                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2189         if (map->m_flags & (1 << BH_Delay))
2190                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2191
2192         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2193         if (err < 0)
2194                 return err;
2195         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2196                 if (!mpd->io_submit.io_end->handle &&
2197                     ext4_handle_valid(handle)) {
2198                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2199                         handle->h_rsv_handle = NULL;
2200                 }
2201                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2202         }
2203
2204         BUG_ON(map->m_len == 0);
2205         if (map->m_flags & EXT4_MAP_NEW) {
2206                 struct block_device *bdev = inode->i_sb->s_bdev;
2207                 int i;
2208
2209                 for (i = 0; i < map->m_len; i++)
2210                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2211         }
2212         return 0;
2213 }
2214
2215 /*
2216  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2217  *                               mpd->len and submit pages underlying it for IO
2218  *
2219  * @handle - handle for journal operations
2220  * @mpd - extent to map
2221  * @give_up_on_write - we set this to true iff there is a fatal error and there
2222  *                     is no hope of writing the data. The caller should discard
2223  *                     dirty pages to avoid infinite loops.
2224  *
2225  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2226  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2227  * them to initialized or split the described range from larger unwritten
2228  * extent. Note that we need not map all the described range since allocation
2229  * can return less blocks or the range is covered by more unwritten extents. We
2230  * cannot map more because we are limited by reserved transaction credits. On
2231  * the other hand we always make sure that the last touched page is fully
2232  * mapped so that it can be written out (and thus forward progress is
2233  * guaranteed). After mapping we submit all mapped pages for IO.
2234  */
2235 static int mpage_map_and_submit_extent(handle_t *handle,
2236                                        struct mpage_da_data *mpd,
2237                                        bool *give_up_on_write)
2238 {
2239         struct inode *inode = mpd->inode;
2240         struct ext4_map_blocks *map = &mpd->map;
2241         int err;
2242         loff_t disksize;
2243         int progress = 0;
2244
2245         mpd->io_submit.io_end->offset =
2246                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2247         do {
2248                 err = mpage_map_one_extent(handle, mpd);
2249                 if (err < 0) {
2250                         struct super_block *sb = inode->i_sb;
2251
2252                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2253                                 goto invalidate_dirty_pages;
2254                         /*
2255                          * Let the uper layers retry transient errors.
2256                          * In the case of ENOSPC, if ext4_count_free_blocks()
2257                          * is non-zero, a commit should free up blocks.
2258                          */
2259                         if ((err == -ENOMEM) ||
2260                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2261                                 if (progress)
2262                                         goto update_disksize;
2263                                 return err;
2264                         }
2265                         ext4_msg(sb, KERN_CRIT,
2266                                  "Delayed block allocation failed for "
2267                                  "inode %lu at logical offset %llu with"
2268                                  " max blocks %u with error %d",
2269                                  inode->i_ino,
2270                                  (unsigned long long)map->m_lblk,
2271                                  (unsigned)map->m_len, -err);
2272                         ext4_msg(sb, KERN_CRIT,
2273                                  "This should not happen!! Data will "
2274                                  "be lost\n");
2275                         if (err == -ENOSPC)
2276                                 ext4_print_free_blocks(inode);
2277                 invalidate_dirty_pages:
2278                         *give_up_on_write = true;
2279                         return err;
2280                 }
2281                 progress = 1;
2282                 /*
2283                  * Update buffer state, submit mapped pages, and get us new
2284                  * extent to map
2285                  */
2286                 err = mpage_map_and_submit_buffers(mpd);
2287                 if (err < 0)
2288                         goto update_disksize;
2289         } while (map->m_len);
2290
2291 update_disksize:
2292         /*
2293          * Update on-disk size after IO is submitted.  Races with
2294          * truncate are avoided by checking i_size under i_data_sem.
2295          */
2296         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2297         if (disksize > EXT4_I(inode)->i_disksize) {
2298                 int err2;
2299                 loff_t i_size;
2300
2301                 down_write(&EXT4_I(inode)->i_data_sem);
2302                 i_size = i_size_read(inode);
2303                 if (disksize > i_size)
2304                         disksize = i_size;
2305                 if (disksize > EXT4_I(inode)->i_disksize)
2306                         EXT4_I(inode)->i_disksize = disksize;
2307                 err2 = ext4_mark_inode_dirty(handle, inode);
2308                 up_write(&EXT4_I(inode)->i_data_sem);
2309                 if (err2)
2310                         ext4_error(inode->i_sb,
2311                                    "Failed to mark inode %lu dirty",
2312                                    inode->i_ino);
2313                 if (!err)
2314                         err = err2;
2315         }
2316         return err;
2317 }
2318
2319 /*
2320  * Calculate the total number of credits to reserve for one writepages
2321  * iteration. This is called from ext4_writepages(). We map an extent of
2322  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2323  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2324  * bpp - 1 blocks in bpp different extents.
2325  */
2326 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2327 {
2328         int bpp = ext4_journal_blocks_per_page(inode);
2329
2330         return ext4_meta_trans_blocks(inode,
2331                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2332 }
2333
2334 /*
2335  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2336  *                               and underlying extent to map
2337  *
2338  * @mpd - where to look for pages
2339  *
2340  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2341  * IO immediately. When we find a page which isn't mapped we start accumulating
2342  * extent of buffers underlying these pages that needs mapping (formed by
2343  * either delayed or unwritten buffers). We also lock the pages containing
2344  * these buffers. The extent found is returned in @mpd structure (starting at
2345  * mpd->lblk with length mpd->len blocks).
2346  *
2347  * Note that this function can attach bios to one io_end structure which are
2348  * neither logically nor physically contiguous. Although it may seem as an
2349  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2350  * case as we need to track IO to all buffers underlying a page in one io_end.
2351  */
2352 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2353 {
2354         struct address_space *mapping = mpd->inode->i_mapping;
2355         struct pagevec pvec;
2356         unsigned int nr_pages;
2357         long left = mpd->wbc->nr_to_write;
2358         pgoff_t index = mpd->first_page;
2359         pgoff_t end = mpd->last_page;
2360         int tag;
2361         int i, err = 0;
2362         int blkbits = mpd->inode->i_blkbits;
2363         ext4_lblk_t lblk;
2364         struct buffer_head *head;
2365
2366         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2367                 tag = PAGECACHE_TAG_TOWRITE;
2368         else
2369                 tag = PAGECACHE_TAG_DIRTY;
2370
2371         pagevec_init(&pvec, 0);
2372         mpd->map.m_len = 0;
2373         mpd->next_page = index;
2374         while (index <= end) {
2375                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2376                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2377                 if (nr_pages == 0)
2378                         goto out;
2379
2380                 for (i = 0; i < nr_pages; i++) {
2381                         struct page *page = pvec.pages[i];
2382
2383                         /*
2384                          * At this point, the page may be truncated or
2385                          * invalidated (changing page->mapping to NULL), or
2386                          * even swizzled back from swapper_space to tmpfs file
2387                          * mapping. However, page->index will not change
2388                          * because we have a reference on the page.
2389                          */
2390                         if (page->index > end)
2391                                 goto out;
2392
2393                         /*
2394                          * Accumulated enough dirty pages? This doesn't apply
2395                          * to WB_SYNC_ALL mode. For integrity sync we have to
2396                          * keep going because someone may be concurrently
2397                          * dirtying pages, and we might have synced a lot of
2398                          * newly appeared dirty pages, but have not synced all
2399                          * of the old dirty pages.
2400                          */
2401                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2402                                 goto out;
2403
2404                         /* If we can't merge this page, we are done. */
2405                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2406                                 goto out;
2407
2408                         lock_page(page);
2409                         /*
2410                          * If the page is no longer dirty, or its mapping no
2411                          * longer corresponds to inode we are writing (which
2412                          * means it has been truncated or invalidated), or the
2413                          * page is already under writeback and we are not doing
2414                          * a data integrity writeback, skip the page
2415                          */
2416                         if (!PageDirty(page) ||
2417                             (PageWriteback(page) &&
2418                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2419                             unlikely(page->mapping != mapping)) {
2420                                 unlock_page(page);
2421                                 continue;
2422                         }
2423
2424                         wait_on_page_writeback(page);
2425                         BUG_ON(PageWriteback(page));
2426
2427                         if (mpd->map.m_len == 0)
2428                                 mpd->first_page = page->index;
2429                         mpd->next_page = page->index + 1;
2430                         /* Add all dirty buffers to mpd */
2431                         lblk = ((ext4_lblk_t)page->index) <<
2432                                 (PAGE_CACHE_SHIFT - blkbits);
2433                         head = page_buffers(page);
2434                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2435                         if (err <= 0)
2436                                 goto out;
2437                         err = 0;
2438                         left--;
2439                 }
2440                 pagevec_release(&pvec);
2441                 cond_resched();
2442         }
2443         return 0;
2444 out:
2445         pagevec_release(&pvec);
2446         return err;
2447 }
2448
2449 static int __writepage(struct page *page, struct writeback_control *wbc,
2450                        void *data)
2451 {
2452         struct address_space *mapping = data;
2453         int ret = ext4_writepage(page, wbc);
2454         mapping_set_error(mapping, ret);
2455         return ret;
2456 }
2457
2458 static int ext4_writepages(struct address_space *mapping,
2459                            struct writeback_control *wbc)
2460 {
2461         pgoff_t writeback_index = 0;
2462         long nr_to_write = wbc->nr_to_write;
2463         int range_whole = 0;
2464         int cycled = 1;
2465         handle_t *handle = NULL;
2466         struct mpage_da_data mpd;
2467         struct inode *inode = mapping->host;
2468         int needed_blocks, rsv_blocks = 0, ret = 0;
2469         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2470         bool done;
2471         struct blk_plug plug;
2472         bool give_up_on_write = false;
2473
2474         trace_ext4_writepages(inode, wbc);
2475
2476         /*
2477          * No pages to write? This is mainly a kludge to avoid starting
2478          * a transaction for special inodes like journal inode on last iput()
2479          * because that could violate lock ordering on umount
2480          */
2481         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2482                 goto out_writepages;
2483
2484         if (ext4_should_journal_data(inode)) {
2485                 struct blk_plug plug;
2486
2487                 blk_start_plug(&plug);
2488                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2489                 blk_finish_plug(&plug);
2490                 goto out_writepages;
2491         }
2492
2493         /*
2494          * If the filesystem has aborted, it is read-only, so return
2495          * right away instead of dumping stack traces later on that
2496          * will obscure the real source of the problem.  We test
2497          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2498          * the latter could be true if the filesystem is mounted
2499          * read-only, and in that case, ext4_writepages should
2500          * *never* be called, so if that ever happens, we would want
2501          * the stack trace.
2502          */
2503         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2504                 ret = -EROFS;
2505                 goto out_writepages;
2506         }
2507
2508         if (ext4_should_dioread_nolock(inode)) {
2509                 /*
2510                  * We may need to convert up to one extent per block in
2511                  * the page and we may dirty the inode.
2512                  */
2513                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2514         }
2515
2516         /*
2517          * If we have inline data and arrive here, it means that
2518          * we will soon create the block for the 1st page, so
2519          * we'd better clear the inline data here.
2520          */
2521         if (ext4_has_inline_data(inode)) {
2522                 /* Just inode will be modified... */
2523                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2524                 if (IS_ERR(handle)) {
2525                         ret = PTR_ERR(handle);
2526                         goto out_writepages;
2527                 }
2528                 BUG_ON(ext4_test_inode_state(inode,
2529                                 EXT4_STATE_MAY_INLINE_DATA));
2530                 ext4_destroy_inline_data(handle, inode);
2531                 ext4_journal_stop(handle);
2532         }
2533
2534         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2535                 range_whole = 1;
2536
2537         if (wbc->range_cyclic) {
2538                 writeback_index = mapping->writeback_index;
2539                 if (writeback_index)
2540                         cycled = 0;
2541                 mpd.first_page = writeback_index;
2542                 mpd.last_page = -1;
2543         } else {
2544                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2545                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2546         }
2547
2548         mpd.inode = inode;
2549         mpd.wbc = wbc;
2550         ext4_io_submit_init(&mpd.io_submit, wbc);
2551 retry:
2552         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2553                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2554         done = false;
2555         blk_start_plug(&plug);
2556         while (!done && mpd.first_page <= mpd.last_page) {
2557                 /* For each extent of pages we use new io_end */
2558                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2559                 if (!mpd.io_submit.io_end) {
2560                         ret = -ENOMEM;
2561                         break;
2562                 }
2563
2564                 /*
2565                  * We have two constraints: We find one extent to map and we
2566                  * must always write out whole page (makes a difference when
2567                  * blocksize < pagesize) so that we don't block on IO when we
2568                  * try to write out the rest of the page. Journalled mode is
2569                  * not supported by delalloc.
2570                  */
2571                 BUG_ON(ext4_should_journal_data(inode));
2572                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2573
2574                 /* start a new transaction */
2575                 handle = ext4_journal_start_with_reserve(inode,
2576                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2577                 if (IS_ERR(handle)) {
2578                         ret = PTR_ERR(handle);
2579                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2580                                "%ld pages, ino %lu; err %d", __func__,
2581                                 wbc->nr_to_write, inode->i_ino, ret);
2582                         /* Release allocated io_end */
2583                         ext4_put_io_end(mpd.io_submit.io_end);
2584                         break;
2585                 }
2586
2587                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2588                 ret = mpage_prepare_extent_to_map(&mpd);
2589                 if (!ret) {
2590                         if (mpd.map.m_len)
2591                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2592                                         &give_up_on_write);
2593                         else {
2594                                 /*
2595                                  * We scanned the whole range (or exhausted
2596                                  * nr_to_write), submitted what was mapped and
2597                                  * didn't find anything needing mapping. We are
2598                                  * done.
2599                                  */
2600                                 done = true;
2601                         }
2602                 }
2603                 /*
2604                  * Caution: If the handle is synchronous,
2605                  * ext4_journal_stop() can wait for transaction commit
2606                  * to finish which may depend on writeback of pages to
2607                  * complete or on page lock to be released.  In that
2608                  * case, we have to wait until after after we have
2609                  * submitted all the IO, released page locks we hold,
2610                  * and dropped io_end reference (for extent conversion
2611                  * to be able to complete) before stopping the handle.
2612                  */
2613                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2614                         ext4_journal_stop(handle);
2615                         handle = NULL;
2616                 }
2617                 /* Submit prepared bio */
2618                 ext4_io_submit(&mpd.io_submit);
2619                 /* Unlock pages we didn't use */
2620                 mpage_release_unused_pages(&mpd, give_up_on_write);
2621                 /*
2622                  * Drop our io_end reference we got from init. We have
2623                  * to be careful and use deferred io_end finishing if
2624                  * we are still holding the transaction as we can
2625                  * release the last reference to io_end which may end
2626                  * up doing unwritten extent conversion.
2627                  */
2628                 if (handle) {
2629                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2630                         ext4_journal_stop(handle);
2631                 } else
2632                         ext4_put_io_end(mpd.io_submit.io_end);
2633
2634                 if (ret == -ENOSPC && sbi->s_journal) {
2635                         /*
2636                          * Commit the transaction which would
2637                          * free blocks released in the transaction
2638                          * and try again
2639                          */
2640                         jbd2_journal_force_commit_nested(sbi->s_journal);
2641                         ret = 0;
2642                         continue;
2643                 }
2644                 /* Fatal error - ENOMEM, EIO... */
2645                 if (ret)
2646                         break;
2647         }
2648         blk_finish_plug(&plug);
2649         if (!ret && !cycled && wbc->nr_to_write > 0) {
2650                 cycled = 1;
2651                 mpd.last_page = writeback_index - 1;
2652                 mpd.first_page = 0;
2653                 goto retry;
2654         }
2655
2656         /* Update index */
2657         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2658                 /*
2659                  * Set the writeback_index so that range_cyclic
2660                  * mode will write it back later
2661                  */
2662                 mapping->writeback_index = mpd.first_page;
2663
2664 out_writepages:
2665         trace_ext4_writepages_result(inode, wbc, ret,
2666                                      nr_to_write - wbc->nr_to_write);
2667         return ret;
2668 }
2669
2670 static int ext4_nonda_switch(struct super_block *sb)
2671 {
2672         s64 free_clusters, dirty_clusters;
2673         struct ext4_sb_info *sbi = EXT4_SB(sb);
2674
2675         /*
2676          * switch to non delalloc mode if we are running low
2677          * on free block. The free block accounting via percpu
2678          * counters can get slightly wrong with percpu_counter_batch getting
2679          * accumulated on each CPU without updating global counters
2680          * Delalloc need an accurate free block accounting. So switch
2681          * to non delalloc when we are near to error range.
2682          */
2683         free_clusters =
2684                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2685         dirty_clusters =
2686                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2687         /*
2688          * Start pushing delalloc when 1/2 of free blocks are dirty.
2689          */
2690         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2691                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2692
2693         if (2 * free_clusters < 3 * dirty_clusters ||
2694             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2695                 /*
2696                  * free block count is less than 150% of dirty blocks
2697                  * or free blocks is less than watermark
2698                  */
2699                 return 1;
2700         }
2701         return 0;
2702 }
2703
2704 /* We always reserve for an inode update; the superblock could be there too */
2705 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2706 {
2707         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2708                 return 1;
2709
2710         if (pos + len <= 0x7fffffffULL)
2711                 return 1;
2712
2713         /* We might need to update the superblock to set LARGE_FILE */
2714         return 2;
2715 }
2716
2717 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2718                                loff_t pos, unsigned len, unsigned flags,
2719                                struct page **pagep, void **fsdata)
2720 {
2721         int ret, retries = 0;
2722         struct page *page;
2723         pgoff_t index;
2724         struct inode *inode = mapping->host;
2725         handle_t *handle;
2726
2727         index = pos >> PAGE_CACHE_SHIFT;
2728
2729         if (ext4_nonda_switch(inode->i_sb)) {
2730                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2731                 return ext4_write_begin(file, mapping, pos,
2732                                         len, flags, pagep, fsdata);
2733         }
2734         *fsdata = (void *)0;
2735         trace_android_fs_datawrite_start(inode, pos, len,
2736                                          current->pid, current->comm);
2737         trace_ext4_da_write_begin(inode, pos, len, flags);
2738
2739         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2740                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2741                                                       pos, len, flags,
2742                                                       pagep, fsdata);
2743                 if (ret < 0)
2744                         return ret;
2745                 if (ret == 1)
2746                         return 0;
2747         }
2748
2749         /*
2750          * grab_cache_page_write_begin() can take a long time if the
2751          * system is thrashing due to memory pressure, or if the page
2752          * is being written back.  So grab it first before we start
2753          * the transaction handle.  This also allows us to allocate
2754          * the page (if needed) without using GFP_NOFS.
2755          */
2756 retry_grab:
2757         page = grab_cache_page_write_begin(mapping, index, flags);
2758         if (!page)
2759                 return -ENOMEM;
2760         unlock_page(page);
2761
2762         /*
2763          * With delayed allocation, we don't log the i_disksize update
2764          * if there is delayed block allocation. But we still need
2765          * to journalling the i_disksize update if writes to the end
2766          * of file which has an already mapped buffer.
2767          */
2768 retry_journal:
2769         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2770                                 ext4_da_write_credits(inode, pos, len));
2771         if (IS_ERR(handle)) {
2772                 page_cache_release(page);
2773                 return PTR_ERR(handle);
2774         }
2775
2776         lock_page(page);
2777         if (page->mapping != mapping) {
2778                 /* The page got truncated from under us */
2779                 unlock_page(page);
2780                 page_cache_release(page);
2781                 ext4_journal_stop(handle);
2782                 goto retry_grab;
2783         }
2784         /* In case writeback began while the page was unlocked */
2785         wait_for_stable_page(page);
2786
2787 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2788         ret = ext4_block_write_begin(page, pos, len,
2789                                      ext4_da_get_block_prep);
2790 #else
2791         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2792 #endif
2793         if (ret < 0) {
2794                 unlock_page(page);
2795                 ext4_journal_stop(handle);
2796                 /*
2797                  * block_write_begin may have instantiated a few blocks
2798                  * outside i_size.  Trim these off again. Don't need
2799                  * i_size_read because we hold i_mutex.
2800                  */
2801                 if (pos + len > inode->i_size)
2802                         ext4_truncate_failed_write(inode);
2803
2804                 if (ret == -ENOSPC &&
2805                     ext4_should_retry_alloc(inode->i_sb, &retries))
2806                         goto retry_journal;
2807
2808                 page_cache_release(page);
2809                 return ret;
2810         }
2811
2812         *pagep = page;
2813         return ret;
2814 }
2815
2816 /*
2817  * Check if we should update i_disksize
2818  * when write to the end of file but not require block allocation
2819  */
2820 static int ext4_da_should_update_i_disksize(struct page *page,
2821                                             unsigned long offset)
2822 {
2823         struct buffer_head *bh;
2824         struct inode *inode = page->mapping->host;
2825         unsigned int idx;
2826         int i;
2827
2828         bh = page_buffers(page);
2829         idx = offset >> inode->i_blkbits;
2830
2831         for (i = 0; i < idx; i++)
2832                 bh = bh->b_this_page;
2833
2834         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2835                 return 0;
2836         return 1;
2837 }
2838
2839 static int ext4_da_write_end(struct file *file,
2840                              struct address_space *mapping,
2841                              loff_t pos, unsigned len, unsigned copied,
2842                              struct page *page, void *fsdata)
2843 {
2844         struct inode *inode = mapping->host;
2845         int ret = 0, ret2;
2846         handle_t *handle = ext4_journal_current_handle();
2847         loff_t new_i_size;
2848         unsigned long start, end;
2849         int write_mode = (int)(unsigned long)fsdata;
2850
2851         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2852                 return ext4_write_end(file, mapping, pos,
2853                                       len, copied, page, fsdata);
2854
2855         trace_android_fs_datawrite_end(inode, pos, len);
2856         trace_ext4_da_write_end(inode, pos, len, copied);
2857         start = pos & (PAGE_CACHE_SIZE - 1);
2858         end = start + copied - 1;
2859
2860         /*
2861          * generic_write_end() will run mark_inode_dirty() if i_size
2862          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2863          * into that.
2864          */
2865         new_i_size = pos + copied;
2866         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2867                 if (ext4_has_inline_data(inode) ||
2868                     ext4_da_should_update_i_disksize(page, end)) {
2869                         ext4_update_i_disksize(inode, new_i_size);
2870                         /* We need to mark inode dirty even if
2871                          * new_i_size is less that inode->i_size
2872                          * bu greater than i_disksize.(hint delalloc)
2873                          */
2874                         ext4_mark_inode_dirty(handle, inode);
2875                 }
2876         }
2877
2878         if (write_mode != CONVERT_INLINE_DATA &&
2879             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2880             ext4_has_inline_data(inode))
2881                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2882                                                      page);
2883         else
2884                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2885                                                         page, fsdata);
2886
2887         copied = ret2;
2888         if (ret2 < 0)
2889                 ret = ret2;
2890         ret2 = ext4_journal_stop(handle);
2891         if (!ret)
2892                 ret = ret2;
2893
2894         return ret ? ret : copied;
2895 }
2896
2897 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2898                                    unsigned int length)
2899 {
2900         /*
2901          * Drop reserved blocks
2902          */
2903         BUG_ON(!PageLocked(page));
2904         if (!page_has_buffers(page))
2905                 goto out;
2906
2907         ext4_da_page_release_reservation(page, offset, length);
2908
2909 out:
2910         ext4_invalidatepage(page, offset, length);
2911
2912         return;
2913 }
2914
2915 /*
2916  * Force all delayed allocation blocks to be allocated for a given inode.
2917  */
2918 int ext4_alloc_da_blocks(struct inode *inode)
2919 {
2920         trace_ext4_alloc_da_blocks(inode);
2921
2922         if (!EXT4_I(inode)->i_reserved_data_blocks)
2923                 return 0;
2924
2925         /*
2926          * We do something simple for now.  The filemap_flush() will
2927          * also start triggering a write of the data blocks, which is
2928          * not strictly speaking necessary (and for users of
2929          * laptop_mode, not even desirable).  However, to do otherwise
2930          * would require replicating code paths in:
2931          *
2932          * ext4_writepages() ->
2933          *    write_cache_pages() ---> (via passed in callback function)
2934          *        __mpage_da_writepage() -->
2935          *           mpage_add_bh_to_extent()
2936          *           mpage_da_map_blocks()
2937          *
2938          * The problem is that write_cache_pages(), located in
2939          * mm/page-writeback.c, marks pages clean in preparation for
2940          * doing I/O, which is not desirable if we're not planning on
2941          * doing I/O at all.
2942          *
2943          * We could call write_cache_pages(), and then redirty all of
2944          * the pages by calling redirty_page_for_writepage() but that
2945          * would be ugly in the extreme.  So instead we would need to
2946          * replicate parts of the code in the above functions,
2947          * simplifying them because we wouldn't actually intend to
2948          * write out the pages, but rather only collect contiguous
2949          * logical block extents, call the multi-block allocator, and
2950          * then update the buffer heads with the block allocations.
2951          *
2952          * For now, though, we'll cheat by calling filemap_flush(),
2953          * which will map the blocks, and start the I/O, but not
2954          * actually wait for the I/O to complete.
2955          */
2956         return filemap_flush(inode->i_mapping);
2957 }
2958
2959 /*
2960  * bmap() is special.  It gets used by applications such as lilo and by
2961  * the swapper to find the on-disk block of a specific piece of data.
2962  *
2963  * Naturally, this is dangerous if the block concerned is still in the
2964  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2965  * filesystem and enables swap, then they may get a nasty shock when the
2966  * data getting swapped to that swapfile suddenly gets overwritten by
2967  * the original zero's written out previously to the journal and
2968  * awaiting writeback in the kernel's buffer cache.
2969  *
2970  * So, if we see any bmap calls here on a modified, data-journaled file,
2971  * take extra steps to flush any blocks which might be in the cache.
2972  */
2973 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2974 {
2975         struct inode *inode = mapping->host;
2976         journal_t *journal;
2977         int err;
2978
2979         /*
2980          * We can get here for an inline file via the FIBMAP ioctl
2981          */
2982         if (ext4_has_inline_data(inode))
2983                 return 0;
2984
2985         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2986                         test_opt(inode->i_sb, DELALLOC)) {
2987                 /*
2988                  * With delalloc we want to sync the file
2989                  * so that we can make sure we allocate
2990                  * blocks for file
2991                  */
2992                 filemap_write_and_wait(mapping);
2993         }
2994
2995         if (EXT4_JOURNAL(inode) &&
2996             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2997                 /*
2998                  * This is a REALLY heavyweight approach, but the use of
2999                  * bmap on dirty files is expected to be extremely rare:
3000                  * only if we run lilo or swapon on a freshly made file
3001                  * do we expect this to happen.
3002                  *
3003                  * (bmap requires CAP_SYS_RAWIO so this does not
3004                  * represent an unprivileged user DOS attack --- we'd be
3005                  * in trouble if mortal users could trigger this path at
3006                  * will.)
3007                  *
3008                  * NB. EXT4_STATE_JDATA is not set on files other than
3009                  * regular files.  If somebody wants to bmap a directory
3010                  * or symlink and gets confused because the buffer
3011                  * hasn't yet been flushed to disk, they deserve
3012                  * everything they get.
3013                  */
3014
3015                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3016                 journal = EXT4_JOURNAL(inode);
3017                 jbd2_journal_lock_updates(journal);
3018                 err = jbd2_journal_flush(journal);
3019                 jbd2_journal_unlock_updates(journal);
3020
3021                 if (err)
3022                         return 0;
3023         }
3024
3025         return generic_block_bmap(mapping, block, ext4_get_block);
3026 }
3027
3028 static int ext4_readpage(struct file *file, struct page *page)
3029 {
3030         int ret = -EAGAIN;
3031         struct inode *inode = page->mapping->host;
3032
3033         trace_ext4_readpage(page);
3034
3035         if (ext4_has_inline_data(inode))
3036                 ret = ext4_readpage_inline(inode, page);
3037
3038         if (ret == -EAGAIN)
3039                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3040
3041         return ret;
3042 }
3043
3044 static int
3045 ext4_readpages(struct file *file, struct address_space *mapping,
3046                 struct list_head *pages, unsigned nr_pages)
3047 {
3048         struct inode *inode = mapping->host;
3049
3050         /* If the file has inline data, no need to do readpages. */
3051         if (ext4_has_inline_data(inode))
3052                 return 0;
3053
3054         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3055 }
3056
3057 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3058                                 unsigned int length)
3059 {
3060         trace_ext4_invalidatepage(page, offset, length);
3061
3062         /* No journalling happens on data buffers when this function is used */
3063         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3064
3065         block_invalidatepage(page, offset, length);
3066 }
3067
3068 static int __ext4_journalled_invalidatepage(struct page *page,
3069                                             unsigned int offset,
3070                                             unsigned int length)
3071 {
3072         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3073
3074         trace_ext4_journalled_invalidatepage(page, offset, length);
3075
3076         /*
3077          * If it's a full truncate we just forget about the pending dirtying
3078          */
3079         if (offset == 0 && length == PAGE_CACHE_SIZE)
3080                 ClearPageChecked(page);
3081
3082         return jbd2_journal_invalidatepage(journal, page, offset, length);
3083 }
3084
3085 /* Wrapper for aops... */
3086 static void ext4_journalled_invalidatepage(struct page *page,
3087                                            unsigned int offset,
3088                                            unsigned int length)
3089 {
3090         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3091 }
3092
3093 static int ext4_releasepage(struct page *page, gfp_t wait)
3094 {
3095         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3096
3097         trace_ext4_releasepage(page);
3098
3099         /* Page has dirty journalled data -> cannot release */
3100         if (PageChecked(page))
3101                 return 0;
3102         if (journal)
3103                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3104         else
3105                 return try_to_free_buffers(page);
3106 }
3107
3108 /*
3109  * ext4_get_block used when preparing for a DIO write or buffer write.
3110  * We allocate an uinitialized extent if blocks haven't been allocated.
3111  * The extent will be converted to initialized after the IO is complete.
3112  */
3113 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3114                    struct buffer_head *bh_result, int create)
3115 {
3116         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3117                    inode->i_ino, create);
3118         return _ext4_get_block(inode, iblock, bh_result,
3119                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3120 }
3121
3122 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3123                    struct buffer_head *bh_result, int create)
3124 {
3125         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3126                    inode->i_ino, create);
3127         return _ext4_get_block(inode, iblock, bh_result,
3128                                EXT4_GET_BLOCKS_NO_LOCK);
3129 }
3130
3131 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3132                    struct buffer_head *bh_result, int create)
3133 {
3134         int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3135         if (create)
3136                 flags |= EXT4_GET_BLOCKS_CREATE;
3137         ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3138                    inode->i_ino, create);
3139         return _ext4_get_block(inode, iblock, bh_result, flags);
3140 }
3141
3142 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3143                             ssize_t size, void *private)
3144 {
3145         ext4_io_end_t *io_end = iocb->private;
3146
3147         /* if not async direct IO just return */
3148         if (!io_end)
3149                 return;
3150
3151         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3152                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3153                   iocb->private, io_end->inode->i_ino, iocb, offset,
3154                   size);
3155
3156         iocb->private = NULL;
3157         io_end->offset = offset;
3158         io_end->size = size;
3159         ext4_put_io_end(io_end);
3160 }
3161
3162 /*
3163  * For ext4 extent files, ext4 will do direct-io write to holes,
3164  * preallocated extents, and those write extend the file, no need to
3165  * fall back to buffered IO.
3166  *
3167  * For holes, we fallocate those blocks, mark them as unwritten
3168  * If those blocks were preallocated, we mark sure they are split, but
3169  * still keep the range to write as unwritten.
3170  *
3171  * The unwritten extents will be converted to written when DIO is completed.
3172  * For async direct IO, since the IO may still pending when return, we
3173  * set up an end_io call back function, which will do the conversion
3174  * when async direct IO completed.
3175  *
3176  * If the O_DIRECT write will extend the file then add this inode to the
3177  * orphan list.  So recovery will truncate it back to the original size
3178  * if the machine crashes during the write.
3179  *
3180  */
3181 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3182                                   loff_t offset)
3183 {
3184         struct file *file = iocb->ki_filp;
3185         struct inode *inode = file->f_mapping->host;
3186         ssize_t ret;
3187         size_t count = iov_iter_count(iter);
3188         int overwrite = 0;
3189         get_block_t *get_block_func = NULL;
3190         int dio_flags = 0;
3191         loff_t final_size = offset + count;
3192         ext4_io_end_t *io_end = NULL;
3193
3194         /* Use the old path for reads and writes beyond i_size. */
3195         if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3196                 return ext4_ind_direct_IO(iocb, iter, offset);
3197
3198         BUG_ON(iocb->private == NULL);
3199
3200         /*
3201          * Make all waiters for direct IO properly wait also for extent
3202          * conversion. This also disallows race between truncate() and
3203          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3204          */
3205         if (iov_iter_rw(iter) == WRITE)
3206                 inode_dio_begin(inode);
3207
3208         /* If we do a overwrite dio, i_mutex locking can be released */
3209         overwrite = *((int *)iocb->private);
3210
3211         if (overwrite) {
3212                 down_read(&EXT4_I(inode)->i_data_sem);
3213                 mutex_unlock(&inode->i_mutex);
3214         }
3215
3216         /*
3217          * We could direct write to holes and fallocate.
3218          *
3219          * Allocated blocks to fill the hole are marked as
3220          * unwritten to prevent parallel buffered read to expose
3221          * the stale data before DIO complete the data IO.
3222          *
3223          * As to previously fallocated extents, ext4 get_block will
3224          * just simply mark the buffer mapped but still keep the
3225          * extents unwritten.
3226          *
3227          * For non AIO case, we will convert those unwritten extents
3228          * to written after return back from blockdev_direct_IO.
3229          *
3230          * For async DIO, the conversion needs to be deferred when the
3231          * IO is completed. The ext4 end_io callback function will be
3232          * called to take care of the conversion work.  Here for async
3233          * case, we allocate an io_end structure to hook to the iocb.
3234          */
3235         iocb->private = NULL;
3236         ext4_inode_aio_set(inode, NULL);
3237         if (!is_sync_kiocb(iocb)) {
3238                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3239                 if (!io_end) {
3240                         ret = -ENOMEM;
3241                         goto retake_lock;
3242                 }
3243                 /*
3244                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3245                  */
3246                 iocb->private = ext4_get_io_end(io_end);
3247                 /*
3248                  * we save the io structure for current async direct
3249                  * IO, so that later ext4_map_blocks() could flag the
3250                  * io structure whether there is a unwritten extents
3251                  * needs to be converted when IO is completed.
3252                  */
3253                 ext4_inode_aio_set(inode, io_end);
3254         }
3255
3256         if (overwrite) {
3257                 get_block_func = ext4_get_block_write_nolock;
3258         } else {
3259                 get_block_func = ext4_get_block_write;
3260                 dio_flags = DIO_LOCKING;
3261         }
3262 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3263         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3264 #endif
3265         if (IS_DAX(inode))
3266                 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3267                                 ext4_end_io_dio, dio_flags);
3268         else
3269                 ret = __blockdev_direct_IO(iocb, inode,
3270                                            inode->i_sb->s_bdev, iter, offset,
3271                                            get_block_func,
3272                                            ext4_end_io_dio, NULL, dio_flags);
3273
3274         /*
3275          * Put our reference to io_end. This can free the io_end structure e.g.
3276          * in sync IO case or in case of error. It can even perform extent
3277          * conversion if all bios we submitted finished before we got here.
3278          * Note that in that case iocb->private can be already set to NULL
3279          * here.
3280          */
3281         if (io_end) {
3282                 ext4_inode_aio_set(inode, NULL);
3283                 ext4_put_io_end(io_end);
3284                 /*
3285                  * When no IO was submitted ext4_end_io_dio() was not
3286                  * called so we have to put iocb's reference.
3287                  */
3288                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3289                         WARN_ON(iocb->private != io_end);
3290                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3291                         ext4_put_io_end(io_end);
3292                         iocb->private = NULL;
3293                 }
3294         }
3295         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3296                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3297                 int err;
3298                 /*
3299                  * for non AIO case, since the IO is already
3300                  * completed, we could do the conversion right here
3301                  */
3302                 err = ext4_convert_unwritten_extents(NULL, inode,
3303                                                      offset, ret);
3304                 if (err < 0)
3305                         ret = err;
3306                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3307         }
3308
3309 retake_lock:
3310         if (iov_iter_rw(iter) == WRITE)
3311                 inode_dio_end(inode);
3312         /* take i_mutex locking again if we do a ovewrite dio */
3313         if (overwrite) {
3314                 up_read(&EXT4_I(inode)->i_data_sem);
3315                 mutex_lock(&inode->i_mutex);
3316         }
3317
3318         return ret;
3319 }
3320
3321 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3322                               loff_t offset)
3323 {
3324         struct file *file = iocb->ki_filp;
3325         struct inode *inode = file->f_mapping->host;
3326         size_t count = iov_iter_count(iter);
3327         ssize_t ret;
3328
3329 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3330         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3331                 return 0;
3332 #endif
3333
3334         /*
3335          * If we are doing data journalling we don't support O_DIRECT
3336          */
3337         if (ext4_should_journal_data(inode))
3338                 return 0;
3339
3340         /* Let buffer I/O handle the inline data case. */
3341         if (ext4_has_inline_data(inode))
3342                 return 0;
3343
3344         if (trace_android_fs_dataread_start_enabled() &&
3345             (iov_iter_rw(iter) == READ))
3346                 trace_android_fs_dataread_start(inode, offset, count,
3347                                                 current->pid,
3348                                                 current->comm);
3349         if (trace_android_fs_datawrite_start_enabled() &&
3350             (iov_iter_rw(iter) == WRITE))
3351                 trace_android_fs_datawrite_start(inode, offset, count,
3352                                                  current->pid,
3353                                                  current->comm);
3354
3355         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3356         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3357                 ret = ext4_ext_direct_IO(iocb, iter, offset);
3358         else
3359                 ret = ext4_ind_direct_IO(iocb, iter, offset);
3360         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3361
3362         if (trace_android_fs_dataread_start_enabled() &&
3363             (iov_iter_rw(iter) == READ))
3364                 trace_android_fs_dataread_end(inode, offset, count);
3365         if (trace_android_fs_datawrite_start_enabled() &&
3366             (iov_iter_rw(iter) == WRITE))
3367                 trace_android_fs_datawrite_end(inode, offset, count);
3368
3369         return ret;
3370 }
3371
3372 /*
3373  * Pages can be marked dirty completely asynchronously from ext4's journalling
3374  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3375  * much here because ->set_page_dirty is called under VFS locks.  The page is
3376  * not necessarily locked.
3377  *
3378  * We cannot just dirty the page and leave attached buffers clean, because the
3379  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3380  * or jbddirty because all the journalling code will explode.
3381  *
3382  * So what we do is to mark the page "pending dirty" and next time writepage
3383  * is called, propagate that into the buffers appropriately.
3384  */
3385 static int ext4_journalled_set_page_dirty(struct page *page)
3386 {
3387         SetPageChecked(page);
3388         return __set_page_dirty_nobuffers(page);
3389 }
3390
3391 static const struct address_space_operations ext4_aops = {
3392         .readpage               = ext4_readpage,
3393         .readpages              = ext4_readpages,
3394         .writepage              = ext4_writepage,
3395         .writepages             = ext4_writepages,
3396         .write_begin            = ext4_write_begin,
3397         .write_end              = ext4_write_end,
3398         .bmap                   = ext4_bmap,
3399         .invalidatepage         = ext4_invalidatepage,
3400         .releasepage            = ext4_releasepage,
3401         .direct_IO              = ext4_direct_IO,
3402         .migratepage            = buffer_migrate_page,
3403         .is_partially_uptodate  = block_is_partially_uptodate,
3404         .error_remove_page      = generic_error_remove_page,
3405 };
3406
3407 static const struct address_space_operations ext4_journalled_aops = {
3408         .readpage               = ext4_readpage,
3409         .readpages              = ext4_readpages,
3410         .writepage              = ext4_writepage,
3411         .writepages             = ext4_writepages,
3412         .write_begin            = ext4_write_begin,
3413         .write_end              = ext4_journalled_write_end,
3414         .set_page_dirty         = ext4_journalled_set_page_dirty,
3415         .bmap                   = ext4_bmap,
3416         .invalidatepage         = ext4_journalled_invalidatepage,
3417         .releasepage            = ext4_releasepage,
3418         .direct_IO              = ext4_direct_IO,
3419         .is_partially_uptodate  = block_is_partially_uptodate,
3420         .error_remove_page      = generic_error_remove_page,
3421 };
3422
3423 static const struct address_space_operations ext4_da_aops = {
3424         .readpage               = ext4_readpage,
3425         .readpages              = ext4_readpages,
3426         .writepage              = ext4_writepage,
3427         .writepages             = ext4_writepages,
3428         .write_begin            = ext4_da_write_begin,
3429         .write_end              = ext4_da_write_end,
3430         .bmap                   = ext4_bmap,
3431         .invalidatepage         = ext4_da_invalidatepage,
3432         .releasepage            = ext4_releasepage,
3433         .direct_IO              = ext4_direct_IO,
3434         .migratepage            = buffer_migrate_page,
3435         .is_partially_uptodate  = block_is_partially_uptodate,
3436         .error_remove_page      = generic_error_remove_page,
3437 };
3438
3439 void ext4_set_aops(struct inode *inode)
3440 {
3441         switch (ext4_inode_journal_mode(inode)) {
3442         case EXT4_INODE_ORDERED_DATA_MODE:
3443                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3444                 break;
3445         case EXT4_INODE_WRITEBACK_DATA_MODE:
3446                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3447                 break;
3448         case EXT4_INODE_JOURNAL_DATA_MODE:
3449                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3450                 return;
3451         default:
3452                 BUG();
3453         }
3454         if (test_opt(inode->i_sb, DELALLOC))
3455                 inode->i_mapping->a_ops = &ext4_da_aops;
3456         else
3457                 inode->i_mapping->a_ops = &ext4_aops;
3458 }
3459
3460 static int __ext4_block_zero_page_range(handle_t *handle,
3461                 struct address_space *mapping, loff_t from, loff_t length)
3462 {
3463         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3464         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3465         unsigned blocksize, pos;
3466         ext4_lblk_t iblock;
3467         struct inode *inode = mapping->host;
3468         struct buffer_head *bh;
3469         struct page *page;
3470         int err = 0;
3471
3472         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3473                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3474         if (!page)
3475                 return -ENOMEM;
3476
3477         blocksize = inode->i_sb->s_blocksize;
3478
3479         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3480
3481         if (!page_has_buffers(page))
3482                 create_empty_buffers(page, blocksize, 0);
3483
3484         /* Find the buffer that contains "offset" */
3485         bh = page_buffers(page);
3486         pos = blocksize;
3487         while (offset >= pos) {
3488                 bh = bh->b_this_page;
3489                 iblock++;
3490                 pos += blocksize;
3491         }
3492         if (buffer_freed(bh)) {
3493                 BUFFER_TRACE(bh, "freed: skip");
3494                 goto unlock;
3495         }
3496         if (!buffer_mapped(bh)) {
3497                 BUFFER_TRACE(bh, "unmapped");
3498                 ext4_get_block(inode, iblock, bh, 0);
3499                 /* unmapped? It's a hole - nothing to do */
3500                 if (!buffer_mapped(bh)) {
3501                         BUFFER_TRACE(bh, "still unmapped");
3502                         goto unlock;
3503                 }
3504         }
3505
3506         /* Ok, it's mapped. Make sure it's up-to-date */
3507         if (PageUptodate(page))
3508                 set_buffer_uptodate(bh);
3509
3510         if (!buffer_uptodate(bh)) {
3511                 err = -EIO;
3512                 ll_rw_block(READ, 1, &bh);
3513                 wait_on_buffer(bh);
3514                 /* Uhhuh. Read error. Complain and punt. */
3515                 if (!buffer_uptodate(bh))
3516                         goto unlock;
3517                 if (S_ISREG(inode->i_mode) &&
3518                     ext4_encrypted_inode(inode)) {
3519                         /* We expect the key to be set. */
3520                         BUG_ON(!ext4_has_encryption_key(inode));
3521                         BUG_ON(blocksize != PAGE_CACHE_SIZE);
3522                         WARN_ON_ONCE(ext4_decrypt(page));
3523                 }
3524         }
3525         if (ext4_should_journal_data(inode)) {
3526                 BUFFER_TRACE(bh, "get write access");
3527                 err = ext4_journal_get_write_access(handle, bh);
3528                 if (err)
3529                         goto unlock;
3530         }
3531         zero_user(page, offset, length);
3532         BUFFER_TRACE(bh, "zeroed end of block");
3533
3534         if (ext4_should_journal_data(inode)) {
3535                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3536         } else {
3537                 err = 0;
3538                 mark_buffer_dirty(bh);
3539                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3540                         err = ext4_jbd2_file_inode(handle, inode);
3541         }
3542
3543 unlock:
3544         unlock_page(page);
3545         page_cache_release(page);
3546         return err;
3547 }
3548
3549 /*
3550  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3551  * starting from file offset 'from'.  The range to be zero'd must
3552  * be contained with in one block.  If the specified range exceeds
3553  * the end of the block it will be shortened to end of the block
3554  * that cooresponds to 'from'
3555  */
3556 static int ext4_block_zero_page_range(handle_t *handle,
3557                 struct address_space *mapping, loff_t from, loff_t length)
3558 {
3559         struct inode *inode = mapping->host;
3560         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3561         unsigned blocksize = inode->i_sb->s_blocksize;
3562         unsigned max = blocksize - (offset & (blocksize - 1));
3563
3564         /*
3565          * correct length if it does not fall between
3566          * 'from' and the end of the block
3567          */
3568         if (length > max || length < 0)
3569                 length = max;
3570
3571         if (IS_DAX(inode))
3572                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3573         return __ext4_block_zero_page_range(handle, mapping, from, length);
3574 }
3575
3576 /*
3577  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3578  * up to the end of the block which corresponds to `from'.
3579  * This required during truncate. We need to physically zero the tail end
3580  * of that block so it doesn't yield old data if the file is later grown.
3581  */
3582 static int ext4_block_truncate_page(handle_t *handle,
3583                 struct address_space *mapping, loff_t from)
3584 {
3585         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3586         unsigned length;
3587         unsigned blocksize;
3588         struct inode *inode = mapping->host;
3589
3590         blocksize = inode->i_sb->s_blocksize;
3591         length = blocksize - (offset & (blocksize - 1));
3592
3593         return ext4_block_zero_page_range(handle, mapping, from, length);
3594 }
3595
3596 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3597                              loff_t lstart, loff_t length)
3598 {
3599         struct super_block *sb = inode->i_sb;
3600         struct address_space *mapping = inode->i_mapping;
3601         unsigned partial_start, partial_end;
3602         ext4_fsblk_t start, end;
3603         loff_t byte_end = (lstart + length - 1);
3604         int err = 0;
3605
3606         partial_start = lstart & (sb->s_blocksize - 1);
3607         partial_end = byte_end & (sb->s_blocksize - 1);
3608
3609         start = lstart >> sb->s_blocksize_bits;
3610         end = byte_end >> sb->s_blocksize_bits;
3611
3612         /* Handle partial zero within the single block */
3613         if (start == end &&
3614             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3615                 err = ext4_block_zero_page_range(handle, mapping,
3616                                                  lstart, length);
3617                 return err;
3618         }
3619         /* Handle partial zero out on the start of the range */
3620         if (partial_start) {
3621                 err = ext4_block_zero_page_range(handle, mapping,
3622                                                  lstart, sb->s_blocksize);
3623                 if (err)
3624                         return err;
3625         }
3626         /* Handle partial zero out on the end of the range */
3627         if (partial_end != sb->s_blocksize - 1)
3628                 err = ext4_block_zero_page_range(handle, mapping,
3629                                                  byte_end - partial_end,
3630                                                  partial_end + 1);
3631         return err;
3632 }
3633
3634 int ext4_can_truncate(struct inode *inode)
3635 {
3636         if (S_ISREG(inode->i_mode))
3637                 return 1;
3638         if (S_ISDIR(inode->i_mode))
3639                 return 1;
3640         if (S_ISLNK(inode->i_mode))
3641                 return !ext4_inode_is_fast_symlink(inode);
3642         return 0;
3643 }
3644
3645 /*
3646  * We have to make sure i_disksize gets properly updated before we truncate
3647  * page cache due to hole punching or zero range. Otherwise i_disksize update
3648  * can get lost as it may have been postponed to submission of writeback but
3649  * that will never happen after we truncate page cache.
3650  */
3651 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3652                                       loff_t len)
3653 {
3654         handle_t *handle;
3655         loff_t size = i_size_read(inode);
3656
3657         WARN_ON(!mutex_is_locked(&inode->i_mutex));
3658         if (offset > size || offset + len < size)
3659                 return 0;
3660
3661         if (EXT4_I(inode)->i_disksize >= size)
3662                 return 0;
3663
3664         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3665         if (IS_ERR(handle))
3666                 return PTR_ERR(handle);
3667         ext4_update_i_disksize(inode, size);
3668         ext4_mark_inode_dirty(handle, inode);
3669         ext4_journal_stop(handle);
3670
3671         return 0;
3672 }
3673
3674 /*
3675  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3676  * associated with the given offset and length
3677  *
3678  * @inode:  File inode
3679  * @offset: The offset where the hole will begin
3680  * @len:    The length of the hole
3681  *
3682  * Returns: 0 on success or negative on failure
3683  */
3684
3685 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3686 {
3687         struct super_block *sb = inode->i_sb;
3688         ext4_lblk_t first_block, stop_block;
3689         struct address_space *mapping = inode->i_mapping;
3690         loff_t first_block_offset, last_block_offset;
3691         handle_t *handle;
3692         unsigned int credits;
3693         int ret = 0;
3694
3695         if (!S_ISREG(inode->i_mode))
3696                 return -EOPNOTSUPP;
3697
3698         trace_ext4_punch_hole(inode, offset, length, 0);
3699
3700         /*
3701          * Write out all dirty pages to avoid race conditions
3702          * Then release them.
3703          */
3704         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3705                 ret = filemap_write_and_wait_range(mapping, offset,
3706                                                    offset + length - 1);
3707                 if (ret)
3708                         return ret;
3709         }
3710
3711         mutex_lock(&inode->i_mutex);
3712
3713         /* No need to punch hole beyond i_size */
3714         if (offset >= inode->i_size)
3715                 goto out_mutex;
3716
3717         /*
3718          * If the hole extends beyond i_size, set the hole
3719          * to end after the page that contains i_size
3720          */
3721         if (offset + length > inode->i_size) {
3722                 length = inode->i_size +
3723                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3724                    offset;
3725         }
3726
3727         if (offset & (sb->s_blocksize - 1) ||
3728             (offset + length) & (sb->s_blocksize - 1)) {
3729                 /*
3730                  * Attach jinode to inode for jbd2 if we do any zeroing of
3731                  * partial block
3732                  */
3733                 ret = ext4_inode_attach_jinode(inode);
3734                 if (ret < 0)
3735                         goto out_mutex;
3736
3737         }
3738
3739         /* Wait all existing dio workers, newcomers will block on i_mutex */
3740         ext4_inode_block_unlocked_dio(inode);
3741         inode_dio_wait(inode);
3742
3743         /*
3744          * Prevent page faults from reinstantiating pages we have released from
3745          * page cache.
3746          */
3747         down_write(&EXT4_I(inode)->i_mmap_sem);
3748         first_block_offset = round_up(offset, sb->s_blocksize);
3749         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3750
3751         /* Now release the pages and zero block aligned part of pages*/
3752         if (last_block_offset > first_block_offset) {
3753                 ret = ext4_update_disksize_before_punch(inode, offset, length);
3754                 if (ret)
3755                         goto out_dio;
3756                 truncate_pagecache_range(inode, first_block_offset,
3757                                          last_block_offset);
3758         }
3759
3760         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3761                 credits = ext4_writepage_trans_blocks(inode);
3762         else
3763                 credits = ext4_blocks_for_truncate(inode);
3764         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3765         if (IS_ERR(handle)) {
3766                 ret = PTR_ERR(handle);
3767                 ext4_std_error(sb, ret);
3768                 goto out_dio;
3769         }
3770
3771         ret = ext4_zero_partial_blocks(handle, inode, offset,
3772                                        length);
3773         if (ret)
3774                 goto out_stop;
3775
3776         first_block = (offset + sb->s_blocksize - 1) >>
3777                 EXT4_BLOCK_SIZE_BITS(sb);
3778         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3779
3780         /* If there are no blocks to remove, return now */
3781         if (first_block >= stop_block)
3782                 goto out_stop;
3783
3784         down_write(&EXT4_I(inode)->i_data_sem);
3785         ext4_discard_preallocations(inode);
3786
3787         ret = ext4_es_remove_extent(inode, first_block,
3788                                     stop_block - first_block);
3789         if (ret) {
3790                 up_write(&EXT4_I(inode)->i_data_sem);
3791                 goto out_stop;
3792         }
3793
3794         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3795                 ret = ext4_ext_remove_space(inode, first_block,
3796                                             stop_block - 1);
3797         else
3798                 ret = ext4_ind_remove_space(handle, inode, first_block,
3799                                             stop_block);
3800
3801         up_write(&EXT4_I(inode)->i_data_sem);
3802         if (IS_SYNC(inode))
3803                 ext4_handle_sync(handle);
3804
3805         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3806         ext4_mark_inode_dirty(handle, inode);
3807 out_stop:
3808         ext4_journal_stop(handle);
3809 out_dio:
3810         up_write(&EXT4_I(inode)->i_mmap_sem);
3811         ext4_inode_resume_unlocked_dio(inode);
3812 out_mutex:
3813         mutex_unlock(&inode->i_mutex);
3814         return ret;
3815 }
3816
3817 int ext4_inode_attach_jinode(struct inode *inode)
3818 {
3819         struct ext4_inode_info *ei = EXT4_I(inode);
3820         struct jbd2_inode *jinode;
3821
3822         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3823                 return 0;
3824
3825         jinode = jbd2_alloc_inode(GFP_KERNEL);
3826         spin_lock(&inode->i_lock);
3827         if (!ei->jinode) {
3828                 if (!jinode) {
3829                         spin_unlock(&inode->i_lock);
3830                         return -ENOMEM;
3831                 }
3832                 ei->jinode = jinode;
3833                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3834                 jinode = NULL;
3835         }
3836         spin_unlock(&inode->i_lock);
3837         if (unlikely(jinode != NULL))
3838                 jbd2_free_inode(jinode);
3839         return 0;
3840 }
3841
3842 /*
3843  * ext4_truncate()
3844  *
3845  * We block out ext4_get_block() block instantiations across the entire
3846  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3847  * simultaneously on behalf of the same inode.
3848  *
3849  * As we work through the truncate and commit bits of it to the journal there
3850  * is one core, guiding principle: the file's tree must always be consistent on
3851  * disk.  We must be able to restart the truncate after a crash.
3852  *
3853  * The file's tree may be transiently inconsistent in memory (although it
3854  * probably isn't), but whenever we close off and commit a journal transaction,
3855  * the contents of (the filesystem + the journal) must be consistent and
3856  * restartable.  It's pretty simple, really: bottom up, right to left (although
3857  * left-to-right works OK too).
3858  *
3859  * Note that at recovery time, journal replay occurs *before* the restart of
3860  * truncate against the orphan inode list.
3861  *
3862  * The committed inode has the new, desired i_size (which is the same as
3863  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3864  * that this inode's truncate did not complete and it will again call
3865  * ext4_truncate() to have another go.  So there will be instantiated blocks
3866  * to the right of the truncation point in a crashed ext4 filesystem.  But
3867  * that's fine - as long as they are linked from the inode, the post-crash
3868  * ext4_truncate() run will find them and release them.
3869  */
3870 void ext4_truncate(struct inode *inode)
3871 {
3872         struct ext4_inode_info *ei = EXT4_I(inode);
3873         unsigned int credits;
3874         handle_t *handle;
3875         struct address_space *mapping = inode->i_mapping;
3876
3877         /*
3878          * There is a possibility that we're either freeing the inode
3879          * or it's a completely new inode. In those cases we might not
3880          * have i_mutex locked because it's not necessary.
3881          */
3882         if (!(inode->i_state & (I_NEW|I_FREEING)))
3883                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3884         trace_ext4_truncate_enter(inode);
3885
3886         if (!ext4_can_truncate(inode))
3887                 return;
3888
3889         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3890
3891         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3892                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3893
3894         if (ext4_has_inline_data(inode)) {
3895                 int has_inline = 1;
3896
3897                 ext4_inline_data_truncate(inode, &has_inline);
3898                 if (has_inline)
3899                         return;
3900         }
3901
3902         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3903         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3904                 if (ext4_inode_attach_jinode(inode) < 0)
3905                         return;
3906         }
3907
3908         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3909                 credits = ext4_writepage_trans_blocks(inode);
3910         else
3911                 credits = ext4_blocks_for_truncate(inode);
3912
3913         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3914         if (IS_ERR(handle)) {
3915                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3916                 return;
3917         }
3918
3919         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3920                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3921
3922         /*
3923          * We add the inode to the orphan list, so that if this
3924          * truncate spans multiple transactions, and we crash, we will
3925          * resume the truncate when the filesystem recovers.  It also
3926          * marks the inode dirty, to catch the new size.
3927          *
3928          * Implication: the file must always be in a sane, consistent
3929          * truncatable state while each transaction commits.
3930          */
3931         if (ext4_orphan_add(handle, inode))
3932                 goto out_stop;
3933
3934         down_write(&EXT4_I(inode)->i_data_sem);
3935
3936         ext4_discard_preallocations(inode);
3937
3938         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3939                 ext4_ext_truncate(handle, inode);
3940         else
3941                 ext4_ind_truncate(handle, inode);
3942
3943         up_write(&ei->i_data_sem);
3944
3945         if (IS_SYNC(inode))
3946                 ext4_handle_sync(handle);
3947
3948 out_stop:
3949         /*
3950          * If this was a simple ftruncate() and the file will remain alive,
3951          * then we need to clear up the orphan record which we created above.
3952          * However, if this was a real unlink then we were called by
3953          * ext4_evict_inode(), and we allow that function to clean up the
3954          * orphan info for us.
3955          */
3956         if (inode->i_nlink)
3957                 ext4_orphan_del(handle, inode);
3958
3959         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3960         ext4_mark_inode_dirty(handle, inode);
3961         ext4_journal_stop(handle);
3962
3963         trace_ext4_truncate_exit(inode);
3964 }
3965
3966 /*
3967  * ext4_get_inode_loc returns with an extra refcount against the inode's
3968  * underlying buffer_head on success. If 'in_mem' is true, we have all
3969  * data in memory that is needed to recreate the on-disk version of this
3970  * inode.
3971  */
3972 static int __ext4_get_inode_loc(struct inode *inode,
3973                                 struct ext4_iloc *iloc, int in_mem)
3974 {
3975         struct ext4_group_desc  *gdp;
3976         struct buffer_head      *bh;
3977         struct super_block      *sb = inode->i_sb;
3978         ext4_fsblk_t            block;
3979         int                     inodes_per_block, inode_offset;
3980
3981         iloc->bh = NULL;
3982         if (!ext4_valid_inum(sb, inode->i_ino))
3983                 return -EFSCORRUPTED;
3984
3985         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3986         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3987         if (!gdp)
3988                 return -EIO;
3989
3990         /*
3991          * Figure out the offset within the block group inode table
3992          */
3993         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3994         inode_offset = ((inode->i_ino - 1) %
3995                         EXT4_INODES_PER_GROUP(sb));
3996         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3997         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3998
3999         bh = sb_getblk(sb, block);
4000         if (unlikely(!bh))
4001                 return -ENOMEM;
4002         if (!buffer_uptodate(bh)) {
4003                 lock_buffer(bh);
4004
4005                 /*
4006                  * If the buffer has the write error flag, we have failed
4007                  * to write out another inode in the same block.  In this
4008                  * case, we don't have to read the block because we may
4009                  * read the old inode data successfully.
4010                  */
4011                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4012                         set_buffer_uptodate(bh);
4013
4014                 if (buffer_uptodate(bh)) {
4015                         /* someone brought it uptodate while we waited */
4016                         unlock_buffer(bh);
4017                         goto has_buffer;
4018                 }
4019
4020                 /*
4021                  * If we have all information of the inode in memory and this
4022                  * is the only valid inode in the block, we need not read the
4023                  * block.
4024                  */
4025                 if (in_mem) {
4026                         struct buffer_head *bitmap_bh;
4027                         int i, start;
4028
4029                         start = inode_offset & ~(inodes_per_block - 1);
4030
4031                         /* Is the inode bitmap in cache? */
4032                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4033                         if (unlikely(!bitmap_bh))
4034                                 goto make_io;
4035
4036                         /*
4037                          * If the inode bitmap isn't in cache then the
4038                          * optimisation may end up performing two reads instead
4039                          * of one, so skip it.
4040                          */
4041                         if (!buffer_uptodate(bitmap_bh)) {
4042                                 brelse(bitmap_bh);
4043                                 goto make_io;
4044                         }
4045                         for (i = start; i < start + inodes_per_block; i++) {
4046                                 if (i == inode_offset)
4047                                         continue;
4048                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4049                                         break;
4050                         }
4051                         brelse(bitmap_bh);
4052                         if (i == start + inodes_per_block) {
4053                                 /* all other inodes are free, so skip I/O */
4054                                 memset(bh->b_data, 0, bh->b_size);
4055                                 set_buffer_uptodate(bh);
4056                                 unlock_buffer(bh);
4057                                 goto has_buffer;
4058                         }
4059                 }
4060
4061 make_io:
4062                 /*
4063                  * If we need to do any I/O, try to pre-readahead extra
4064                  * blocks from the inode table.
4065                  */
4066                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4067                         ext4_fsblk_t b, end, table;
4068                         unsigned num;
4069                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4070
4071                         table = ext4_inode_table(sb, gdp);
4072                         /* s_inode_readahead_blks is always a power of 2 */
4073                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4074                         if (table > b)
4075                                 b = table;
4076                         end = b + ra_blks;
4077                         num = EXT4_INODES_PER_GROUP(sb);
4078                         if (ext4_has_group_desc_csum(sb))
4079                                 num -= ext4_itable_unused_count(sb, gdp);
4080                         table += num / inodes_per_block;
4081                         if (end > table)
4082                                 end = table;
4083                         while (b <= end)
4084                                 sb_breadahead(sb, b++);
4085                 }
4086
4087                 /*
4088                  * There are other valid inodes in the buffer, this inode
4089                  * has in-inode xattrs, or we don't have this inode in memory.
4090                  * Read the block from disk.
4091                  */
4092                 trace_ext4_load_inode(inode);
4093                 get_bh(bh);
4094                 bh->b_end_io = end_buffer_read_sync;
4095                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4096                 wait_on_buffer(bh);
4097                 if (!buffer_uptodate(bh)) {
4098                         EXT4_ERROR_INODE_BLOCK(inode, block,
4099                                                "unable to read itable block");
4100                         brelse(bh);
4101                         return -EIO;
4102                 }
4103         }
4104 has_buffer:
4105         iloc->bh = bh;
4106         return 0;
4107 }
4108
4109 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4110 {
4111         /* We have all inode data except xattrs in memory here. */
4112         return __ext4_get_inode_loc(inode, iloc,
4113                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4114 }
4115
4116 void ext4_set_inode_flags(struct inode *inode)
4117 {
4118         unsigned int flags = EXT4_I(inode)->i_flags;
4119         unsigned int new_fl = 0;
4120
4121         if (flags & EXT4_SYNC_FL)
4122                 new_fl |= S_SYNC;
4123         if (flags & EXT4_APPEND_FL)
4124                 new_fl |= S_APPEND;
4125         if (flags & EXT4_IMMUTABLE_FL)
4126                 new_fl |= S_IMMUTABLE;
4127         if (flags & EXT4_NOATIME_FL)
4128                 new_fl |= S_NOATIME;
4129         if (flags & EXT4_DIRSYNC_FL)
4130                 new_fl |= S_DIRSYNC;
4131         if (test_opt(inode->i_sb, DAX))
4132                 new_fl |= S_DAX;
4133         inode_set_flags(inode, new_fl,
4134                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4135 }
4136
4137 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4138 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4139 {
4140         unsigned int vfs_fl;
4141         unsigned long old_fl, new_fl;
4142
4143         do {
4144                 vfs_fl = ei->vfs_inode.i_flags;
4145                 old_fl = ei->i_flags;
4146                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4147                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4148                                 EXT4_DIRSYNC_FL);
4149                 if (vfs_fl & S_SYNC)
4150                         new_fl |= EXT4_SYNC_FL;
4151                 if (vfs_fl & S_APPEND)
4152                         new_fl |= EXT4_APPEND_FL;
4153                 if (vfs_fl & S_IMMUTABLE)
4154                         new_fl |= EXT4_IMMUTABLE_FL;
4155                 if (vfs_fl & S_NOATIME)
4156                         new_fl |= EXT4_NOATIME_FL;
4157                 if (vfs_fl & S_DIRSYNC)
4158                         new_fl |= EXT4_DIRSYNC_FL;
4159         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4160 }
4161
4162 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4163                                   struct ext4_inode_info *ei)
4164 {
4165         blkcnt_t i_blocks ;
4166         struct inode *inode = &(ei->vfs_inode);
4167         struct super_block *sb = inode->i_sb;
4168
4169         if (ext4_has_feature_huge_file(sb)) {
4170                 /* we are using combined 48 bit field */
4171                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4172                                         le32_to_cpu(raw_inode->i_blocks_lo);
4173                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4174                         /* i_blocks represent file system block size */
4175                         return i_blocks  << (inode->i_blkbits - 9);
4176                 } else {
4177                         return i_blocks;
4178                 }
4179         } else {
4180                 return le32_to_cpu(raw_inode->i_blocks_lo);
4181         }
4182 }
4183
4184 static inline void ext4_iget_extra_inode(struct inode *inode,
4185                                          struct ext4_inode *raw_inode,
4186                                          struct ext4_inode_info *ei)
4187 {
4188         __le32 *magic = (void *)raw_inode +
4189                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4190         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4191                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4192                 ext4_find_inline_data_nolock(inode);
4193         } else
4194                 EXT4_I(inode)->i_inline_off = 0;
4195 }
4196
4197 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4198 {
4199         struct ext4_iloc iloc;
4200         struct ext4_inode *raw_inode;
4201         struct ext4_inode_info *ei;
4202         struct inode *inode;
4203         journal_t *journal = EXT4_SB(sb)->s_journal;
4204         long ret;
4205         int block;
4206         uid_t i_uid;
4207         gid_t i_gid;
4208
4209         inode = iget_locked(sb, ino);
4210         if (!inode)
4211                 return ERR_PTR(-ENOMEM);
4212         if (!(inode->i_state & I_NEW))
4213                 return inode;
4214
4215         ei = EXT4_I(inode);
4216         iloc.bh = NULL;
4217
4218         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4219         if (ret < 0)
4220                 goto bad_inode;
4221         raw_inode = ext4_raw_inode(&iloc);
4222
4223         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4224                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4225                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4226                     EXT4_INODE_SIZE(inode->i_sb)) {
4227                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4228                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4229                                 EXT4_INODE_SIZE(inode->i_sb));
4230                         ret = -EFSCORRUPTED;
4231                         goto bad_inode;
4232                 }
4233         } else
4234                 ei->i_extra_isize = 0;
4235
4236         /* Precompute checksum seed for inode metadata */
4237         if (ext4_has_metadata_csum(sb)) {
4238                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4239                 __u32 csum;
4240                 __le32 inum = cpu_to_le32(inode->i_ino);
4241                 __le32 gen = raw_inode->i_generation;
4242                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4243                                    sizeof(inum));
4244                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4245                                               sizeof(gen));
4246         }
4247
4248         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4249                 EXT4_ERROR_INODE(inode, "checksum invalid");
4250                 ret = -EFSBADCRC;
4251                 goto bad_inode;
4252         }
4253
4254         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4255         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4256         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4257         if (!(test_opt(inode->i_sb, NO_UID32))) {
4258                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4259                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4260         }
4261         i_uid_write(inode, i_uid);
4262         i_gid_write(inode, i_gid);
4263         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4264
4265         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4266         ei->i_inline_off = 0;
4267         ei->i_dir_start_lookup = 0;
4268         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4269         /* We now have enough fields to check if the inode was active or not.
4270          * This is needed because nfsd might try to access dead inodes
4271          * the test is that same one that e2fsck uses
4272          * NeilBrown 1999oct15
4273          */
4274         if (inode->i_nlink == 0) {
4275                 if ((inode->i_mode == 0 ||
4276                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4277                     ino != EXT4_BOOT_LOADER_INO) {
4278                         /* this inode is deleted */
4279                         ret = -ESTALE;
4280                         goto bad_inode;
4281                 }
4282                 /* The only unlinked inodes we let through here have
4283                  * valid i_mode and are being read by the orphan
4284                  * recovery code: that's fine, we're about to complete
4285                  * the process of deleting those.
4286                  * OR it is the EXT4_BOOT_LOADER_INO which is
4287                  * not initialized on a new filesystem. */
4288         }
4289         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4290         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4291         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4292         if (ext4_has_feature_64bit(sb))
4293                 ei->i_file_acl |=
4294                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4295         inode->i_size = ext4_isize(raw_inode);
4296         ei->i_disksize = inode->i_size;
4297 #ifdef CONFIG_QUOTA
4298         ei->i_reserved_quota = 0;
4299 #endif
4300         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4301         ei->i_block_group = iloc.block_group;
4302         ei->i_last_alloc_group = ~0;
4303         /*
4304          * NOTE! The in-memory inode i_data array is in little-endian order
4305          * even on big-endian machines: we do NOT byteswap the block numbers!
4306          */
4307         for (block = 0; block < EXT4_N_BLOCKS; block++)
4308                 ei->i_data[block] = raw_inode->i_block[block];
4309         INIT_LIST_HEAD(&ei->i_orphan);
4310
4311         /*
4312          * Set transaction id's of transactions that have to be committed
4313          * to finish f[data]sync. We set them to currently running transaction
4314          * as we cannot be sure that the inode or some of its metadata isn't
4315          * part of the transaction - the inode could have been reclaimed and
4316          * now it is reread from disk.
4317          */
4318         if (journal) {
4319                 transaction_t *transaction;
4320                 tid_t tid;
4321
4322                 read_lock(&journal->j_state_lock);
4323                 if (journal->j_running_transaction)
4324                         transaction = journal->j_running_transaction;
4325                 else
4326                         transaction = journal->j_committing_transaction;
4327                 if (transaction)
4328                         tid = transaction->t_tid;
4329                 else
4330                         tid = journal->j_commit_sequence;
4331                 read_unlock(&journal->j_state_lock);
4332                 ei->i_sync_tid = tid;
4333                 ei->i_datasync_tid = tid;
4334         }
4335
4336         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4337                 if (ei->i_extra_isize == 0) {
4338                         /* The extra space is currently unused. Use it. */
4339                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4340                                             EXT4_GOOD_OLD_INODE_SIZE;
4341                 } else {
4342                         ext4_iget_extra_inode(inode, raw_inode, ei);
4343                 }
4344         }
4345
4346         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4347         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4348         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4349         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4350
4351         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4352                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4353                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4354                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4355                                 inode->i_version |=
4356                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4357                 }
4358         }
4359
4360         ret = 0;
4361         if (ei->i_file_acl &&
4362             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4363                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4364                                  ei->i_file_acl);
4365                 ret = -EFSCORRUPTED;
4366                 goto bad_inode;
4367         } else if (!ext4_has_inline_data(inode)) {
4368                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4369                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4370                             (S_ISLNK(inode->i_mode) &&
4371                              !ext4_inode_is_fast_symlink(inode))))
4372                                 /* Validate extent which is part of inode */
4373                                 ret = ext4_ext_check_inode(inode);
4374                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4375                            (S_ISLNK(inode->i_mode) &&
4376                             !ext4_inode_is_fast_symlink(inode))) {
4377                         /* Validate block references which are part of inode */
4378                         ret = ext4_ind_check_inode(inode);
4379                 }
4380         }
4381         if (ret)
4382                 goto bad_inode;
4383
4384         if (S_ISREG(inode->i_mode)) {
4385                 inode->i_op = &ext4_file_inode_operations;
4386                 inode->i_fop = &ext4_file_operations;
4387                 ext4_set_aops(inode);
4388         } else if (S_ISDIR(inode->i_mode)) {
4389                 inode->i_op = &ext4_dir_inode_operations;
4390                 inode->i_fop = &ext4_dir_operations;
4391         } else if (S_ISLNK(inode->i_mode)) {
4392                 if (ext4_encrypted_inode(inode)) {
4393                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4394                         ext4_set_aops(inode);
4395                 } else if (ext4_inode_is_fast_symlink(inode)) {
4396                         inode->i_link = (char *)ei->i_data;
4397                         inode->i_op = &ext4_fast_symlink_inode_operations;
4398                         nd_terminate_link(ei->i_data, inode->i_size,
4399                                 sizeof(ei->i_data) - 1);
4400                 } else {
4401                         inode->i_op = &ext4_symlink_inode_operations;
4402                         ext4_set_aops(inode);
4403                 }
4404         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4405               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4406                 inode->i_op = &ext4_special_inode_operations;
4407                 if (raw_inode->i_block[0])
4408                         init_special_inode(inode, inode->i_mode,
4409                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4410                 else
4411                         init_special_inode(inode, inode->i_mode,
4412                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4413         } else if (ino == EXT4_BOOT_LOADER_INO) {
4414                 make_bad_inode(inode);
4415         } else {
4416                 ret = -EFSCORRUPTED;
4417                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4418                 goto bad_inode;
4419         }
4420         brelse(iloc.bh);
4421         ext4_set_inode_flags(inode);
4422         unlock_new_inode(inode);
4423         return inode;
4424
4425 bad_inode:
4426         brelse(iloc.bh);
4427         iget_failed(inode);
4428         return ERR_PTR(ret);
4429 }
4430
4431 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4432 {
4433         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4434                 return ERR_PTR(-EFSCORRUPTED);
4435         return ext4_iget(sb, ino);
4436 }
4437
4438 static int ext4_inode_blocks_set(handle_t *handle,
4439                                 struct ext4_inode *raw_inode,
4440                                 struct ext4_inode_info *ei)
4441 {
4442         struct inode *inode = &(ei->vfs_inode);
4443         u64 i_blocks = inode->i_blocks;
4444         struct super_block *sb = inode->i_sb;
4445
4446         if (i_blocks <= ~0U) {
4447                 /*
4448                  * i_blocks can be represented in a 32 bit variable
4449                  * as multiple of 512 bytes
4450                  */
4451                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4452                 raw_inode->i_blocks_high = 0;
4453                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4454                 return 0;
4455         }
4456         if (!ext4_has_feature_huge_file(sb))
4457                 return -EFBIG;
4458
4459         if (i_blocks <= 0xffffffffffffULL) {
4460                 /*
4461                  * i_blocks can be represented in a 48 bit variable
4462                  * as multiple of 512 bytes
4463                  */
4464                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4465                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4466                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4467         } else {
4468                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4469                 /* i_block is stored in file system block size */
4470                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4471                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4472                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4473         }
4474         return 0;
4475 }
4476
4477 struct other_inode {
4478         unsigned long           orig_ino;
4479         struct ext4_inode       *raw_inode;
4480 };
4481
4482 static int other_inode_match(struct inode * inode, unsigned long ino,
4483                              void *data)
4484 {
4485         struct other_inode *oi = (struct other_inode *) data;
4486
4487         if ((inode->i_ino != ino) ||
4488             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4489                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4490             ((inode->i_state & I_DIRTY_TIME) == 0))
4491                 return 0;
4492         spin_lock(&inode->i_lock);
4493         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4494                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4495             (inode->i_state & I_DIRTY_TIME)) {
4496                 struct ext4_inode_info  *ei = EXT4_I(inode);
4497
4498                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4499                 spin_unlock(&inode->i_lock);
4500
4501                 spin_lock(&ei->i_raw_lock);
4502                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4503                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4504                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4505                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4506                 spin_unlock(&ei->i_raw_lock);
4507                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4508                 return -1;
4509         }
4510         spin_unlock(&inode->i_lock);
4511         return -1;
4512 }
4513
4514 /*
4515  * Opportunistically update the other time fields for other inodes in
4516  * the same inode table block.
4517  */
4518 static void ext4_update_other_inodes_time(struct super_block *sb,
4519                                           unsigned long orig_ino, char *buf)
4520 {
4521         struct other_inode oi;
4522         unsigned long ino;
4523         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4524         int inode_size = EXT4_INODE_SIZE(sb);
4525
4526         oi.orig_ino = orig_ino;
4527         /*
4528          * Calculate the first inode in the inode table block.  Inode
4529          * numbers are one-based.  That is, the first inode in a block
4530          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4531          */
4532         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4533         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4534                 if (ino == orig_ino)
4535                         continue;
4536                 oi.raw_inode = (struct ext4_inode *) buf;
4537                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4538         }
4539 }
4540
4541 /*
4542  * Post the struct inode info into an on-disk inode location in the
4543  * buffer-cache.  This gobbles the caller's reference to the
4544  * buffer_head in the inode location struct.
4545  *
4546  * The caller must have write access to iloc->bh.
4547  */
4548 static int ext4_do_update_inode(handle_t *handle,
4549                                 struct inode *inode,
4550                                 struct ext4_iloc *iloc)
4551 {
4552         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4553         struct ext4_inode_info *ei = EXT4_I(inode);
4554         struct buffer_head *bh = iloc->bh;
4555         struct super_block *sb = inode->i_sb;
4556         int err = 0, rc, block;
4557         int need_datasync = 0, set_large_file = 0;
4558         uid_t i_uid;
4559         gid_t i_gid;
4560
4561         spin_lock(&ei->i_raw_lock);
4562
4563         /* For fields not tracked in the in-memory inode,
4564          * initialise them to zero for new inodes. */
4565         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4566                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4567
4568         ext4_get_inode_flags(ei);
4569         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4570         i_uid = i_uid_read(inode);
4571         i_gid = i_gid_read(inode);
4572         if (!(test_opt(inode->i_sb, NO_UID32))) {
4573                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4574                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4575 /*
4576  * Fix up interoperability with old kernels. Otherwise, old inodes get
4577  * re-used with the upper 16 bits of the uid/gid intact
4578  */
4579                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4580                         raw_inode->i_uid_high = 0;
4581                         raw_inode->i_gid_high = 0;
4582                 } else {
4583                         raw_inode->i_uid_high =
4584                                 cpu_to_le16(high_16_bits(i_uid));
4585                         raw_inode->i_gid_high =
4586                                 cpu_to_le16(high_16_bits(i_gid));
4587                 }
4588         } else {
4589                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4590                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4591                 raw_inode->i_uid_high = 0;
4592                 raw_inode->i_gid_high = 0;
4593         }
4594         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4595
4596         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4597         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4598         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4599         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4600
4601         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4602         if (err) {
4603                 spin_unlock(&ei->i_raw_lock);
4604                 goto out_brelse;
4605         }
4606         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4607         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4608         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4609                 raw_inode->i_file_acl_high =
4610                         cpu_to_le16(ei->i_file_acl >> 32);
4611         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4612         if (ei->i_disksize != ext4_isize(raw_inode)) {
4613                 ext4_isize_set(raw_inode, ei->i_disksize);
4614                 need_datasync = 1;
4615         }
4616         if (ei->i_disksize > 0x7fffffffULL) {
4617                 if (!ext4_has_feature_large_file(sb) ||
4618                                 EXT4_SB(sb)->s_es->s_rev_level ==
4619                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4620                         set_large_file = 1;
4621         }
4622         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4623         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4624                 if (old_valid_dev(inode->i_rdev)) {
4625                         raw_inode->i_block[0] =
4626                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4627                         raw_inode->i_block[1] = 0;
4628                 } else {
4629                         raw_inode->i_block[0] = 0;
4630                         raw_inode->i_block[1] =
4631                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4632                         raw_inode->i_block[2] = 0;
4633                 }
4634         } else if (!ext4_has_inline_data(inode)) {
4635                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4636                         raw_inode->i_block[block] = ei->i_data[block];
4637         }
4638
4639         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4640                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4641                 if (ei->i_extra_isize) {
4642                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4643                                 raw_inode->i_version_hi =
4644                                         cpu_to_le32(inode->i_version >> 32);
4645                         raw_inode->i_extra_isize =
4646                                 cpu_to_le16(ei->i_extra_isize);
4647                 }
4648         }
4649         ext4_inode_csum_set(inode, raw_inode, ei);
4650         spin_unlock(&ei->i_raw_lock);
4651         if (inode->i_sb->s_flags & MS_LAZYTIME)
4652                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4653                                               bh->b_data);
4654
4655         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4656         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4657         if (!err)
4658                 err = rc;
4659         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4660         if (set_large_file) {
4661                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4662                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4663                 if (err)
4664                         goto out_brelse;
4665                 ext4_update_dynamic_rev(sb);
4666                 ext4_set_feature_large_file(sb);
4667                 ext4_handle_sync(handle);
4668                 err = ext4_handle_dirty_super(handle, sb);
4669         }
4670         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4671 out_brelse:
4672         brelse(bh);
4673         ext4_std_error(inode->i_sb, err);
4674         return err;
4675 }
4676
4677 /*
4678  * ext4_write_inode()
4679  *
4680  * We are called from a few places:
4681  *
4682  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4683  *   Here, there will be no transaction running. We wait for any running
4684  *   transaction to commit.
4685  *
4686  * - Within flush work (sys_sync(), kupdate and such).
4687  *   We wait on commit, if told to.
4688  *
4689  * - Within iput_final() -> write_inode_now()
4690  *   We wait on commit, if told to.
4691  *
4692  * In all cases it is actually safe for us to return without doing anything,
4693  * because the inode has been copied into a raw inode buffer in
4694  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4695  * writeback.
4696  *
4697  * Note that we are absolutely dependent upon all inode dirtiers doing the
4698  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4699  * which we are interested.
4700  *
4701  * It would be a bug for them to not do this.  The code:
4702  *
4703  *      mark_inode_dirty(inode)
4704  *      stuff();
4705  *      inode->i_size = expr;
4706  *
4707  * is in error because write_inode() could occur while `stuff()' is running,
4708  * and the new i_size will be lost.  Plus the inode will no longer be on the
4709  * superblock's dirty inode list.
4710  */
4711 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4712 {
4713         int err;
4714
4715         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4716                 return 0;
4717
4718         if (EXT4_SB(inode->i_sb)->s_journal) {
4719                 if (ext4_journal_current_handle()) {
4720                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4721                         dump_stack();
4722                         return -EIO;
4723                 }
4724
4725                 /*
4726                  * No need to force transaction in WB_SYNC_NONE mode. Also
4727                  * ext4_sync_fs() will force the commit after everything is
4728                  * written.
4729                  */
4730                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4731                         return 0;
4732
4733                 err = ext4_force_commit(inode->i_sb);
4734         } else {
4735                 struct ext4_iloc iloc;
4736
4737                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4738                 if (err)
4739                         return err;
4740                 /*
4741                  * sync(2) will flush the whole buffer cache. No need to do
4742                  * it here separately for each inode.
4743                  */
4744                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4745                         sync_dirty_buffer(iloc.bh);
4746                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4747                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4748                                          "IO error syncing inode");
4749                         err = -EIO;
4750                 }
4751                 brelse(iloc.bh);
4752         }
4753         return err;
4754 }
4755
4756 /*
4757  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4758  * buffers that are attached to a page stradding i_size and are undergoing
4759  * commit. In that case we have to wait for commit to finish and try again.
4760  */
4761 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4762 {
4763         struct page *page;
4764         unsigned offset;
4765         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4766         tid_t commit_tid = 0;
4767         int ret;
4768
4769         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4770         /*
4771          * All buffers in the last page remain valid? Then there's nothing to
4772          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4773          * blocksize case
4774          */
4775         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4776                 return;
4777         while (1) {
4778                 page = find_lock_page(inode->i_mapping,
4779                                       inode->i_size >> PAGE_CACHE_SHIFT);
4780                 if (!page)
4781                         return;
4782                 ret = __ext4_journalled_invalidatepage(page, offset,
4783                                                 PAGE_CACHE_SIZE - offset);
4784                 unlock_page(page);
4785                 page_cache_release(page);
4786                 if (ret != -EBUSY)
4787                         return;
4788                 commit_tid = 0;
4789                 read_lock(&journal->j_state_lock);
4790                 if (journal->j_committing_transaction)
4791                         commit_tid = journal->j_committing_transaction->t_tid;
4792                 read_unlock(&journal->j_state_lock);
4793                 if (commit_tid)
4794                         jbd2_log_wait_commit(journal, commit_tid);
4795         }
4796 }
4797
4798 /*
4799  * ext4_setattr()
4800  *
4801  * Called from notify_change.
4802  *
4803  * We want to trap VFS attempts to truncate the file as soon as
4804  * possible.  In particular, we want to make sure that when the VFS
4805  * shrinks i_size, we put the inode on the orphan list and modify
4806  * i_disksize immediately, so that during the subsequent flushing of
4807  * dirty pages and freeing of disk blocks, we can guarantee that any
4808  * commit will leave the blocks being flushed in an unused state on
4809  * disk.  (On recovery, the inode will get truncated and the blocks will
4810  * be freed, so we have a strong guarantee that no future commit will
4811  * leave these blocks visible to the user.)
4812  *
4813  * Another thing we have to assure is that if we are in ordered mode
4814  * and inode is still attached to the committing transaction, we must
4815  * we start writeout of all the dirty pages which are being truncated.
4816  * This way we are sure that all the data written in the previous
4817  * transaction are already on disk (truncate waits for pages under
4818  * writeback).
4819  *
4820  * Called with inode->i_mutex down.
4821  */
4822 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4823 {
4824         struct inode *inode = d_inode(dentry);
4825         int error, rc = 0;
4826         int orphan = 0;
4827         const unsigned int ia_valid = attr->ia_valid;
4828
4829         error = inode_change_ok(inode, attr);
4830         if (error)
4831                 return error;
4832
4833         if (is_quota_modification(inode, attr)) {
4834                 error = dquot_initialize(inode);
4835                 if (error)
4836                         return error;
4837         }
4838         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4839             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4840                 handle_t *handle;
4841
4842                 /* (user+group)*(old+new) structure, inode write (sb,
4843                  * inode block, ? - but truncate inode update has it) */
4844                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4845                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4846                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4847                 if (IS_ERR(handle)) {
4848                         error = PTR_ERR(handle);
4849                         goto err_out;
4850                 }
4851                 error = dquot_transfer(inode, attr);
4852                 if (error) {
4853                         ext4_journal_stop(handle);
4854                         return error;
4855                 }
4856                 /* Update corresponding info in inode so that everything is in
4857                  * one transaction */
4858                 if (attr->ia_valid & ATTR_UID)
4859                         inode->i_uid = attr->ia_uid;
4860                 if (attr->ia_valid & ATTR_GID)
4861                         inode->i_gid = attr->ia_gid;
4862                 error = ext4_mark_inode_dirty(handle, inode);
4863                 ext4_journal_stop(handle);
4864         }
4865
4866         if (attr->ia_valid & ATTR_SIZE) {
4867                 handle_t *handle;
4868                 loff_t oldsize = inode->i_size;
4869                 int shrink = (attr->ia_size <= inode->i_size);
4870
4871                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4872                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4873
4874                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4875                                 return -EFBIG;
4876                 }
4877                 if (!S_ISREG(inode->i_mode))
4878                         return -EINVAL;
4879
4880                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4881                         inode_inc_iversion(inode);
4882
4883                 if (ext4_should_order_data(inode) &&
4884                     (attr->ia_size < inode->i_size)) {
4885                         error = ext4_begin_ordered_truncate(inode,
4886                                                             attr->ia_size);
4887                         if (error)
4888                                 goto err_out;
4889                 }
4890                 if (attr->ia_size != inode->i_size) {
4891                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4892                         if (IS_ERR(handle)) {
4893                                 error = PTR_ERR(handle);
4894                                 goto err_out;
4895                         }
4896                         if (ext4_handle_valid(handle) && shrink) {
4897                                 error = ext4_orphan_add(handle, inode);
4898                                 orphan = 1;
4899                         }
4900                         /*
4901                          * Update c/mtime on truncate up, ext4_truncate() will
4902                          * update c/mtime in shrink case below
4903                          */
4904                         if (!shrink) {
4905                                 inode->i_mtime = ext4_current_time(inode);
4906                                 inode->i_ctime = inode->i_mtime;
4907                         }
4908                         down_write(&EXT4_I(inode)->i_data_sem);
4909                         EXT4_I(inode)->i_disksize = attr->ia_size;
4910                         rc = ext4_mark_inode_dirty(handle, inode);
4911                         if (!error)
4912                                 error = rc;
4913                         /*
4914                          * We have to update i_size under i_data_sem together
4915                          * with i_disksize to avoid races with writeback code
4916                          * running ext4_wb_update_i_disksize().
4917                          */
4918                         if (!error)
4919                                 i_size_write(inode, attr->ia_size);
4920                         up_write(&EXT4_I(inode)->i_data_sem);
4921                         ext4_journal_stop(handle);
4922                         if (error) {
4923                                 if (orphan)
4924                                         ext4_orphan_del(NULL, inode);
4925                                 goto err_out;
4926                         }
4927                 }
4928                 if (!shrink)
4929                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4930
4931                 /*
4932                  * Blocks are going to be removed from the inode. Wait
4933                  * for dio in flight.  Temporarily disable
4934                  * dioread_nolock to prevent livelock.
4935                  */
4936                 if (orphan) {
4937                         if (!ext4_should_journal_data(inode)) {
4938                                 ext4_inode_block_unlocked_dio(inode);
4939                                 inode_dio_wait(inode);
4940                                 ext4_inode_resume_unlocked_dio(inode);
4941                         } else
4942                                 ext4_wait_for_tail_page_commit(inode);
4943                 }
4944                 down_write(&EXT4_I(inode)->i_mmap_sem);
4945                 /*
4946                  * Truncate pagecache after we've waited for commit
4947                  * in data=journal mode to make pages freeable.
4948                  */
4949                 truncate_pagecache(inode, inode->i_size);
4950                 if (shrink)
4951                         ext4_truncate(inode);
4952                 up_write(&EXT4_I(inode)->i_mmap_sem);
4953         }
4954
4955         if (!rc) {
4956                 setattr_copy(inode, attr);
4957                 mark_inode_dirty(inode);
4958         }
4959
4960         /*
4961          * If the call to ext4_truncate failed to get a transaction handle at
4962          * all, we need to clean up the in-core orphan list manually.
4963          */
4964         if (orphan && inode->i_nlink)
4965                 ext4_orphan_del(NULL, inode);
4966
4967         if (!rc && (ia_valid & ATTR_MODE))
4968                 rc = posix_acl_chmod(inode, inode->i_mode);
4969
4970 err_out:
4971         ext4_std_error(inode->i_sb, error);
4972         if (!error)
4973                 error = rc;
4974         return error;
4975 }
4976
4977 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4978                  struct kstat *stat)
4979 {
4980         struct inode *inode;
4981         unsigned long long delalloc_blocks;
4982
4983         inode = d_inode(dentry);
4984         generic_fillattr(inode, stat);
4985
4986         /*
4987          * If there is inline data in the inode, the inode will normally not
4988          * have data blocks allocated (it may have an external xattr block).
4989          * Report at least one sector for such files, so tools like tar, rsync,
4990          * others doen't incorrectly think the file is completely sparse.
4991          */
4992         if (unlikely(ext4_has_inline_data(inode)))
4993                 stat->blocks += (stat->size + 511) >> 9;
4994
4995         /*
4996          * We can't update i_blocks if the block allocation is delayed
4997          * otherwise in the case of system crash before the real block
4998          * allocation is done, we will have i_blocks inconsistent with
4999          * on-disk file blocks.
5000          * We always keep i_blocks updated together with real
5001          * allocation. But to not confuse with user, stat
5002          * will return the blocks that include the delayed allocation
5003          * blocks for this file.
5004          */
5005         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5006                                    EXT4_I(inode)->i_reserved_data_blocks);
5007         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5008         return 0;
5009 }
5010
5011 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5012                                    int pextents)
5013 {
5014         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5015                 return ext4_ind_trans_blocks(inode, lblocks);
5016         return ext4_ext_index_trans_blocks(inode, pextents);
5017 }
5018
5019 /*
5020  * Account for index blocks, block groups bitmaps and block group
5021  * descriptor blocks if modify datablocks and index blocks
5022  * worse case, the indexs blocks spread over different block groups
5023  *
5024  * If datablocks are discontiguous, they are possible to spread over
5025  * different block groups too. If they are contiguous, with flexbg,
5026  * they could still across block group boundary.
5027  *
5028  * Also account for superblock, inode, quota and xattr blocks
5029  */
5030 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5031                                   int pextents)
5032 {
5033         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5034         int gdpblocks;
5035         int idxblocks;
5036         int ret = 0;
5037
5038         /*
5039          * How many index blocks need to touch to map @lblocks logical blocks
5040          * to @pextents physical extents?
5041          */
5042         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5043
5044         ret = idxblocks;
5045
5046         /*
5047          * Now let's see how many group bitmaps and group descriptors need
5048          * to account
5049          */
5050         groups = idxblocks + pextents;
5051         gdpblocks = groups;
5052         if (groups > ngroups)
5053                 groups = ngroups;
5054         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5055                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5056
5057         /* bitmaps and block group descriptor blocks */
5058         ret += groups + gdpblocks;
5059
5060         /* Blocks for super block, inode, quota and xattr blocks */
5061         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5062
5063         return ret;
5064 }
5065
5066 /*
5067  * Calculate the total number of credits to reserve to fit
5068  * the modification of a single pages into a single transaction,
5069  * which may include multiple chunks of block allocations.
5070  *
5071  * This could be called via ext4_write_begin()
5072  *
5073  * We need to consider the worse case, when
5074  * one new block per extent.
5075  */
5076 int ext4_writepage_trans_blocks(struct inode *inode)
5077 {
5078         int bpp = ext4_journal_blocks_per_page(inode);
5079         int ret;
5080
5081         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5082
5083         /* Account for data blocks for journalled mode */
5084         if (ext4_should_journal_data(inode))
5085                 ret += bpp;
5086         return ret;
5087 }
5088
5089 /*
5090  * Calculate the journal credits for a chunk of data modification.
5091  *
5092  * This is called from DIO, fallocate or whoever calling
5093  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5094  *
5095  * journal buffers for data blocks are not included here, as DIO
5096  * and fallocate do no need to journal data buffers.
5097  */
5098 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5099 {
5100         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5101 }
5102
5103 /*
5104  * The caller must have previously called ext4_reserve_inode_write().
5105  * Give this, we know that the caller already has write access to iloc->bh.
5106  */
5107 int ext4_mark_iloc_dirty(handle_t *handle,
5108                          struct inode *inode, struct ext4_iloc *iloc)
5109 {
5110         int err = 0;
5111
5112         if (IS_I_VERSION(inode))
5113                 inode_inc_iversion(inode);
5114
5115         /* the do_update_inode consumes one bh->b_count */
5116         get_bh(iloc->bh);
5117
5118         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5119         err = ext4_do_update_inode(handle, inode, iloc);
5120         put_bh(iloc->bh);
5121         return err;
5122 }
5123
5124 /*
5125  * On success, We end up with an outstanding reference count against
5126  * iloc->bh.  This _must_ be cleaned up later.
5127  */
5128
5129 int
5130 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5131                          struct ext4_iloc *iloc)
5132 {
5133         int err;
5134
5135         err = ext4_get_inode_loc(inode, iloc);
5136         if (!err) {
5137                 BUFFER_TRACE(iloc->bh, "get_write_access");
5138                 err = ext4_journal_get_write_access(handle, iloc->bh);
5139                 if (err) {
5140                         brelse(iloc->bh);
5141                         iloc->bh = NULL;
5142                 }
5143         }
5144         ext4_std_error(inode->i_sb, err);
5145         return err;
5146 }
5147
5148 /*
5149  * Expand an inode by new_extra_isize bytes.
5150  * Returns 0 on success or negative error number on failure.
5151  */
5152 static int ext4_expand_extra_isize(struct inode *inode,
5153                                    unsigned int new_extra_isize,
5154                                    struct ext4_iloc iloc,
5155                                    handle_t *handle)
5156 {
5157         struct ext4_inode *raw_inode;
5158         struct ext4_xattr_ibody_header *header;
5159
5160         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5161                 return 0;
5162
5163         raw_inode = ext4_raw_inode(&iloc);
5164
5165         header = IHDR(inode, raw_inode);
5166
5167         /* No extended attributes present */
5168         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5169             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5170                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5171                         new_extra_isize);
5172                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5173                 return 0;
5174         }
5175
5176         /* try to expand with EAs present */
5177         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5178                                           raw_inode, handle);
5179 }
5180
5181 /*
5182  * What we do here is to mark the in-core inode as clean with respect to inode
5183  * dirtiness (it may still be data-dirty).
5184  * This means that the in-core inode may be reaped by prune_icache
5185  * without having to perform any I/O.  This is a very good thing,
5186  * because *any* task may call prune_icache - even ones which
5187  * have a transaction open against a different journal.
5188  *
5189  * Is this cheating?  Not really.  Sure, we haven't written the
5190  * inode out, but prune_icache isn't a user-visible syncing function.
5191  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5192  * we start and wait on commits.
5193  */
5194 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5195 {
5196         struct ext4_iloc iloc;
5197         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5198         static unsigned int mnt_count;
5199         int err, ret;
5200
5201         might_sleep();
5202         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5203         err = ext4_reserve_inode_write(handle, inode, &iloc);
5204         if (err)
5205                 return err;
5206         if (ext4_handle_valid(handle) &&
5207             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5208             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5209                 /*
5210                  * We need extra buffer credits since we may write into EA block
5211                  * with this same handle. If journal_extend fails, then it will
5212                  * only result in a minor loss of functionality for that inode.
5213                  * If this is felt to be critical, then e2fsck should be run to
5214                  * force a large enough s_min_extra_isize.
5215                  */
5216                 if ((jbd2_journal_extend(handle,
5217                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5218                         ret = ext4_expand_extra_isize(inode,
5219                                                       sbi->s_want_extra_isize,
5220                                                       iloc, handle);
5221                         if (ret) {
5222                                 if (mnt_count !=
5223                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5224                                         ext4_warning(inode->i_sb,
5225                                         "Unable to expand inode %lu. Delete"
5226                                         " some EAs or run e2fsck.",
5227                                         inode->i_ino);
5228                                         mnt_count =
5229                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5230                                 }
5231                         }
5232                 }
5233         }
5234         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5235 }
5236
5237 /*
5238  * ext4_dirty_inode() is called from __mark_inode_dirty()
5239  *
5240  * We're really interested in the case where a file is being extended.
5241  * i_size has been changed by generic_commit_write() and we thus need
5242  * to include the updated inode in the current transaction.
5243  *
5244  * Also, dquot_alloc_block() will always dirty the inode when blocks
5245  * are allocated to the file.
5246  *
5247  * If the inode is marked synchronous, we don't honour that here - doing
5248  * so would cause a commit on atime updates, which we don't bother doing.
5249  * We handle synchronous inodes at the highest possible level.
5250  *
5251  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5252  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5253  * to copy into the on-disk inode structure are the timestamp files.
5254  */
5255 void ext4_dirty_inode(struct inode *inode, int flags)
5256 {
5257         handle_t *handle;
5258
5259         if (flags == I_DIRTY_TIME)
5260                 return;
5261         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5262         if (IS_ERR(handle))
5263                 goto out;
5264
5265         ext4_mark_inode_dirty(handle, inode);
5266
5267         ext4_journal_stop(handle);
5268 out:
5269         return;
5270 }
5271
5272 #if 0
5273 /*
5274  * Bind an inode's backing buffer_head into this transaction, to prevent
5275  * it from being flushed to disk early.  Unlike
5276  * ext4_reserve_inode_write, this leaves behind no bh reference and
5277  * returns no iloc structure, so the caller needs to repeat the iloc
5278  * lookup to mark the inode dirty later.
5279  */
5280 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5281 {
5282         struct ext4_iloc iloc;
5283
5284         int err = 0;
5285         if (handle) {
5286                 err = ext4_get_inode_loc(inode, &iloc);
5287                 if (!err) {
5288                         BUFFER_TRACE(iloc.bh, "get_write_access");
5289                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5290                         if (!err)
5291                                 err = ext4_handle_dirty_metadata(handle,
5292                                                                  NULL,
5293                                                                  iloc.bh);
5294                         brelse(iloc.bh);
5295                 }
5296         }
5297         ext4_std_error(inode->i_sb, err);
5298         return err;
5299 }
5300 #endif
5301
5302 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5303 {
5304         journal_t *journal;
5305         handle_t *handle;
5306         int err;
5307
5308         /*
5309          * We have to be very careful here: changing a data block's
5310          * journaling status dynamically is dangerous.  If we write a
5311          * data block to the journal, change the status and then delete
5312          * that block, we risk forgetting to revoke the old log record
5313          * from the journal and so a subsequent replay can corrupt data.
5314          * So, first we make sure that the journal is empty and that
5315          * nobody is changing anything.
5316          */
5317
5318         journal = EXT4_JOURNAL(inode);
5319         if (!journal)
5320                 return 0;
5321         if (is_journal_aborted(journal))
5322                 return -EROFS;
5323         /* We have to allocate physical blocks for delalloc blocks
5324          * before flushing journal. otherwise delalloc blocks can not
5325          * be allocated any more. even more truncate on delalloc blocks
5326          * could trigger BUG by flushing delalloc blocks in journal.
5327          * There is no delalloc block in non-journal data mode.
5328          */
5329         if (val && test_opt(inode->i_sb, DELALLOC)) {
5330                 err = ext4_alloc_da_blocks(inode);
5331                 if (err < 0)
5332                         return err;
5333         }
5334
5335         /* Wait for all existing dio workers */
5336         ext4_inode_block_unlocked_dio(inode);
5337         inode_dio_wait(inode);
5338
5339         jbd2_journal_lock_updates(journal);
5340
5341         /*
5342          * OK, there are no updates running now, and all cached data is
5343          * synced to disk.  We are now in a completely consistent state
5344          * which doesn't have anything in the journal, and we know that
5345          * no filesystem updates are running, so it is safe to modify
5346          * the inode's in-core data-journaling state flag now.
5347          */
5348
5349         if (val)
5350                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5351         else {
5352                 err = jbd2_journal_flush(journal);
5353                 if (err < 0) {
5354                         jbd2_journal_unlock_updates(journal);
5355                         ext4_inode_resume_unlocked_dio(inode);
5356                         return err;
5357                 }
5358                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5359         }
5360         ext4_set_aops(inode);
5361
5362         jbd2_journal_unlock_updates(journal);
5363         ext4_inode_resume_unlocked_dio(inode);
5364
5365         /* Finally we can mark the inode as dirty. */
5366
5367         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5368         if (IS_ERR(handle))
5369                 return PTR_ERR(handle);
5370
5371         err = ext4_mark_inode_dirty(handle, inode);
5372         ext4_handle_sync(handle);
5373         ext4_journal_stop(handle);
5374         ext4_std_error(inode->i_sb, err);
5375
5376         return err;
5377 }
5378
5379 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5380 {
5381         return !buffer_mapped(bh);
5382 }
5383
5384 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5385 {
5386         struct page *page = vmf->page;
5387         loff_t size;
5388         unsigned long len;
5389         int ret;
5390         struct file *file = vma->vm_file;
5391         struct inode *inode = file_inode(file);
5392         struct address_space *mapping = inode->i_mapping;
5393         handle_t *handle;
5394         get_block_t *get_block;
5395         int retries = 0;
5396
5397         sb_start_pagefault(inode->i_sb);
5398         file_update_time(vma->vm_file);
5399
5400         down_read(&EXT4_I(inode)->i_mmap_sem);
5401         /* Delalloc case is easy... */
5402         if (test_opt(inode->i_sb, DELALLOC) &&
5403             !ext4_should_journal_data(inode) &&
5404             !ext4_nonda_switch(inode->i_sb)) {
5405                 do {
5406                         ret = block_page_mkwrite(vma, vmf,
5407                                                    ext4_da_get_block_prep);
5408                 } while (ret == -ENOSPC &&
5409                        ext4_should_retry_alloc(inode->i_sb, &retries));
5410                 goto out_ret;
5411         }
5412
5413         lock_page(page);
5414         size = i_size_read(inode);
5415         /* Page got truncated from under us? */
5416         if (page->mapping != mapping || page_offset(page) > size) {
5417                 unlock_page(page);
5418                 ret = VM_FAULT_NOPAGE;
5419                 goto out;
5420         }
5421
5422         if (page->index == size >> PAGE_CACHE_SHIFT)
5423                 len = size & ~PAGE_CACHE_MASK;
5424         else
5425                 len = PAGE_CACHE_SIZE;
5426         /*
5427          * Return if we have all the buffers mapped. This avoids the need to do
5428          * journal_start/journal_stop which can block and take a long time
5429          */
5430         if (page_has_buffers(page)) {
5431                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5432                                             0, len, NULL,
5433                                             ext4_bh_unmapped)) {
5434                         /* Wait so that we don't change page under IO */
5435                         wait_for_stable_page(page);
5436                         ret = VM_FAULT_LOCKED;
5437                         goto out;
5438                 }
5439         }
5440         unlock_page(page);
5441         /* OK, we need to fill the hole... */
5442         if (ext4_should_dioread_nolock(inode))
5443                 get_block = ext4_get_block_write;
5444         else
5445                 get_block = ext4_get_block;
5446 retry_alloc:
5447         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5448                                     ext4_writepage_trans_blocks(inode));
5449         if (IS_ERR(handle)) {
5450                 ret = VM_FAULT_SIGBUS;
5451                 goto out;
5452         }
5453         ret = block_page_mkwrite(vma, vmf, get_block);
5454         if (!ret && ext4_should_journal_data(inode)) {
5455                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5456                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5457                         unlock_page(page);
5458                         ret = VM_FAULT_SIGBUS;
5459                         ext4_journal_stop(handle);
5460                         goto out;
5461                 }
5462                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5463         }
5464         ext4_journal_stop(handle);
5465         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5466                 goto retry_alloc;
5467 out_ret:
5468         ret = block_page_mkwrite_return(ret);
5469 out:
5470         up_read(&EXT4_I(inode)->i_mmap_sem);
5471         sb_end_pagefault(inode->i_sb);
5472         return ret;
5473 }
5474
5475 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5476 {
5477         struct inode *inode = file_inode(vma->vm_file);
5478         int err;
5479
5480         down_read(&EXT4_I(inode)->i_mmap_sem);
5481         err = filemap_fault(vma, vmf);
5482         up_read(&EXT4_I(inode)->i_mmap_sem);
5483
5484         return err;
5485 }