Merge branch 'linaro-android-3.10-lsk' of git://android.git.linaro.org/kernel/linaro...
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned long offset);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
140                 struct inode *inode, struct page *page, loff_t from,
141                 loff_t length, int flags);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 (inode->i_sb->s_blocksize >> 9) : 0;
150
151         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155  * Restart the transaction associated with *handle.  This does a commit,
156  * so before we call here everything must be consistently dirtied against
157  * this transaction.
158  */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160                                  int nblocks)
161 {
162         int ret;
163
164         /*
165          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
166          * moment, get_block can be called only for blocks inside i_size since
167          * page cache has been already dropped and writes are blocked by
168          * i_mutex. So we can safely drop the i_data_sem here.
169          */
170         BUG_ON(EXT4_JOURNAL(inode) == NULL);
171         jbd_debug(2, "restarting handle %p\n", handle);
172         up_write(&EXT4_I(inode)->i_data_sem);
173         ret = ext4_journal_restart(handle, nblocks);
174         down_write(&EXT4_I(inode)->i_data_sem);
175         ext4_discard_preallocations(inode);
176
177         return ret;
178 }
179
180 /*
181  * Called at the last iput() if i_nlink is zero.
182  */
183 void ext4_evict_inode(struct inode *inode)
184 {
185         handle_t *handle;
186         int err;
187
188         trace_ext4_evict_inode(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211                     inode->i_ino != EXT4_JOURNAL_INO) {
212                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215                         jbd2_complete_transaction(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 ext4_ioend_shutdown(inode);
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229         ext4_ioend_shutdown(inode);
230
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 /*
428  * Return the number of contiguous dirty pages in a given inode
429  * starting at page frame idx.
430  */
431 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
432                                     unsigned int max_pages)
433 {
434         struct address_space *mapping = inode->i_mapping;
435         pgoff_t index;
436         struct pagevec pvec;
437         pgoff_t num = 0;
438         int i, nr_pages, done = 0;
439
440         if (max_pages == 0)
441                 return 0;
442         pagevec_init(&pvec, 0);
443         while (!done) {
444                 index = idx;
445                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
446                                               PAGECACHE_TAG_DIRTY,
447                                               (pgoff_t)PAGEVEC_SIZE);
448                 if (nr_pages == 0)
449                         break;
450                 for (i = 0; i < nr_pages; i++) {
451                         struct page *page = pvec.pages[i];
452                         struct buffer_head *bh, *head;
453
454                         lock_page(page);
455                         if (unlikely(page->mapping != mapping) ||
456                             !PageDirty(page) ||
457                             PageWriteback(page) ||
458                             page->index != idx) {
459                                 done = 1;
460                                 unlock_page(page);
461                                 break;
462                         }
463                         if (page_has_buffers(page)) {
464                                 bh = head = page_buffers(page);
465                                 do {
466                                         if (!buffer_delay(bh) &&
467                                             !buffer_unwritten(bh))
468                                                 done = 1;
469                                         bh = bh->b_this_page;
470                                 } while (!done && (bh != head));
471                         }
472                         unlock_page(page);
473                         if (done)
474                                 break;
475                         idx++;
476                         num++;
477                         if (num >= max_pages) {
478                                 done = 1;
479                                 break;
480                         }
481                 }
482                 pagevec_release(&pvec);
483         }
484         return num;
485 }
486
487 #ifdef ES_AGGRESSIVE_TEST
488 static void ext4_map_blocks_es_recheck(handle_t *handle,
489                                        struct inode *inode,
490                                        struct ext4_map_blocks *es_map,
491                                        struct ext4_map_blocks *map,
492                                        int flags)
493 {
494         int retval;
495
496         map->m_flags = 0;
497         /*
498          * There is a race window that the result is not the same.
499          * e.g. xfstests #223 when dioread_nolock enables.  The reason
500          * is that we lookup a block mapping in extent status tree with
501          * out taking i_data_sem.  So at the time the unwritten extent
502          * could be converted.
503          */
504         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
505                 down_read((&EXT4_I(inode)->i_data_sem));
506         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
507                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
508                                              EXT4_GET_BLOCKS_KEEP_SIZE);
509         } else {
510                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
511                                              EXT4_GET_BLOCKS_KEEP_SIZE);
512         }
513         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
514                 up_read((&EXT4_I(inode)->i_data_sem));
515         /*
516          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
517          * because it shouldn't be marked in es_map->m_flags.
518          */
519         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
520
521         /*
522          * We don't check m_len because extent will be collpased in status
523          * tree.  So the m_len might not equal.
524          */
525         if (es_map->m_lblk != map->m_lblk ||
526             es_map->m_flags != map->m_flags ||
527             es_map->m_pblk != map->m_pblk) {
528                 printk("ES cache assertation failed for inode: %lu "
529                        "es_cached ex [%d/%d/%llu/%x] != "
530                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
531                        inode->i_ino, es_map->m_lblk, es_map->m_len,
532                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
533                        map->m_len, map->m_pblk, map->m_flags,
534                        retval, flags);
535         }
536 }
537 #endif /* ES_AGGRESSIVE_TEST */
538
539 /*
540  * The ext4_map_blocks() function tries to look up the requested blocks,
541  * and returns if the blocks are already mapped.
542  *
543  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
544  * and store the allocated blocks in the result buffer head and mark it
545  * mapped.
546  *
547  * If file type is extents based, it will call ext4_ext_map_blocks(),
548  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
549  * based files
550  *
551  * On success, it returns the number of blocks being mapped or allocate.
552  * if create==0 and the blocks are pre-allocated and uninitialized block,
553  * the result buffer head is unmapped. If the create ==1, it will make sure
554  * the buffer head is mapped.
555  *
556  * It returns 0 if plain look up failed (blocks have not been allocated), in
557  * that case, buffer head is unmapped
558  *
559  * It returns the error in case of allocation failure.
560  */
561 int ext4_map_blocks(handle_t *handle, struct inode *inode,
562                     struct ext4_map_blocks *map, int flags)
563 {
564         struct extent_status es;
565         int retval;
566 #ifdef ES_AGGRESSIVE_TEST
567         struct ext4_map_blocks orig_map;
568
569         memcpy(&orig_map, map, sizeof(*map));
570 #endif
571
572         map->m_flags = 0;
573         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
574                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
575                   (unsigned long) map->m_lblk);
576
577         /* Lookup extent status tree firstly */
578         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
579                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
580                         map->m_pblk = ext4_es_pblock(&es) +
581                                         map->m_lblk - es.es_lblk;
582                         map->m_flags |= ext4_es_is_written(&es) ?
583                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
584                         retval = es.es_len - (map->m_lblk - es.es_lblk);
585                         if (retval > map->m_len)
586                                 retval = map->m_len;
587                         map->m_len = retval;
588                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
589                         retval = 0;
590                 } else {
591                         BUG_ON(1);
592                 }
593 #ifdef ES_AGGRESSIVE_TEST
594                 ext4_map_blocks_es_recheck(handle, inode, map,
595                                            &orig_map, flags);
596 #endif
597                 goto found;
598         }
599
600         /*
601          * Try to see if we can get the block without requesting a new
602          * file system block.
603          */
604         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
605                 down_read((&EXT4_I(inode)->i_data_sem));
606         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
607                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
608                                              EXT4_GET_BLOCKS_KEEP_SIZE);
609         } else {
610                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
611                                              EXT4_GET_BLOCKS_KEEP_SIZE);
612         }
613         if (retval > 0) {
614                 int ret;
615                 unsigned long long status;
616
617 #ifdef ES_AGGRESSIVE_TEST
618                 if (retval != map->m_len) {
619                         printk("ES len assertation failed for inode: %lu "
620                                "retval %d != map->m_len %d "
621                                "in %s (lookup)\n", inode->i_ino, retval,
622                                map->m_len, __func__);
623                 }
624 #endif
625
626                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
627                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
628                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
629                     ext4_find_delalloc_range(inode, map->m_lblk,
630                                              map->m_lblk + map->m_len - 1))
631                         status |= EXTENT_STATUS_DELAYED;
632                 ret = ext4_es_insert_extent(inode, map->m_lblk,
633                                             map->m_len, map->m_pblk, status);
634                 if (ret < 0)
635                         retval = ret;
636         }
637         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
638                 up_read((&EXT4_I(inode)->i_data_sem));
639
640 found:
641         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
642                 int ret = check_block_validity(inode, map);
643                 if (ret != 0)
644                         return ret;
645         }
646
647         /* If it is only a block(s) look up */
648         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
649                 return retval;
650
651         /*
652          * Returns if the blocks have already allocated
653          *
654          * Note that if blocks have been preallocated
655          * ext4_ext_get_block() returns the create = 0
656          * with buffer head unmapped.
657          */
658         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
659                 return retval;
660
661         /*
662          * Here we clear m_flags because after allocating an new extent,
663          * it will be set again.
664          */
665         map->m_flags &= ~EXT4_MAP_FLAGS;
666
667         /*
668          * New blocks allocate and/or writing to uninitialized extent
669          * will possibly result in updating i_data, so we take
670          * the write lock of i_data_sem, and call get_blocks()
671          * with create == 1 flag.
672          */
673         down_write((&EXT4_I(inode)->i_data_sem));
674
675         /*
676          * if the caller is from delayed allocation writeout path
677          * we have already reserved fs blocks for allocation
678          * let the underlying get_block() function know to
679          * avoid double accounting
680          */
681         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
682                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
683         /*
684          * We need to check for EXT4 here because migrate
685          * could have changed the inode type in between
686          */
687         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
688                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
689         } else {
690                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
691
692                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
693                         /*
694                          * We allocated new blocks which will result in
695                          * i_data's format changing.  Force the migrate
696                          * to fail by clearing migrate flags
697                          */
698                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
699                 }
700
701                 /*
702                  * Update reserved blocks/metadata blocks after successful
703                  * block allocation which had been deferred till now. We don't
704                  * support fallocate for non extent files. So we can update
705                  * reserve space here.
706                  */
707                 if ((retval > 0) &&
708                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
709                         ext4_da_update_reserve_space(inode, retval, 1);
710         }
711         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
712                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
713
714         if (retval > 0) {
715                 int ret;
716                 unsigned long long status;
717
718 #ifdef ES_AGGRESSIVE_TEST
719                 if (retval != map->m_len) {
720                         printk("ES len assertation failed for inode: %lu "
721                                "retval %d != map->m_len %d "
722                                "in %s (allocation)\n", inode->i_ino, retval,
723                                map->m_len, __func__);
724                 }
725 #endif
726
727                 /*
728                  * If the extent has been zeroed out, we don't need to update
729                  * extent status tree.
730                  */
731                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
732                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
733                         if (ext4_es_is_written(&es))
734                                 goto has_zeroout;
735                 }
736                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
737                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
738                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
739                     ext4_find_delalloc_range(inode, map->m_lblk,
740                                              map->m_lblk + map->m_len - 1))
741                         status |= EXTENT_STATUS_DELAYED;
742                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
743                                             map->m_pblk, status);
744                 if (ret < 0)
745                         retval = ret;
746         }
747
748 has_zeroout:
749         up_write((&EXT4_I(inode)->i_data_sem));
750         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
751                 int ret = check_block_validity(inode, map);
752                 if (ret != 0)
753                         return ret;
754         }
755         return retval;
756 }
757
758 /* Maximum number of blocks we map for direct IO at once. */
759 #define DIO_MAX_BLOCKS 4096
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762                            struct buffer_head *bh, int flags)
763 {
764         handle_t *handle = ext4_journal_current_handle();
765         struct ext4_map_blocks map;
766         int ret = 0, started = 0;
767         int dio_credits;
768
769         if (ext4_has_inline_data(inode))
770                 return -ERANGE;
771
772         map.m_lblk = iblock;
773         map.m_len = bh->b_size >> inode->i_blkbits;
774
775         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
776                 /* Direct IO write... */
777                 if (map.m_len > DIO_MAX_BLOCKS)
778                         map.m_len = DIO_MAX_BLOCKS;
779                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
780                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
781                                             dio_credits);
782                 if (IS_ERR(handle)) {
783                         ret = PTR_ERR(handle);
784                         return ret;
785                 }
786                 started = 1;
787         }
788
789         ret = ext4_map_blocks(handle, inode, &map, flags);
790         if (ret > 0) {
791                 map_bh(bh, inode->i_sb, map.m_pblk);
792                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
793                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
794                 ret = 0;
795         }
796         if (started)
797                 ext4_journal_stop(handle);
798         return ret;
799 }
800
801 int ext4_get_block(struct inode *inode, sector_t iblock,
802                    struct buffer_head *bh, int create)
803 {
804         return _ext4_get_block(inode, iblock, bh,
805                                create ? EXT4_GET_BLOCKS_CREATE : 0);
806 }
807
808 /*
809  * `handle' can be NULL if create is zero
810  */
811 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
812                                 ext4_lblk_t block, int create, int *errp)
813 {
814         struct ext4_map_blocks map;
815         struct buffer_head *bh;
816         int fatal = 0, err;
817
818         J_ASSERT(handle != NULL || create == 0);
819
820         map.m_lblk = block;
821         map.m_len = 1;
822         err = ext4_map_blocks(handle, inode, &map,
823                               create ? EXT4_GET_BLOCKS_CREATE : 0);
824
825         /* ensure we send some value back into *errp */
826         *errp = 0;
827
828         if (create && err == 0)
829                 err = -ENOSPC;  /* should never happen */
830         if (err < 0)
831                 *errp = err;
832         if (err <= 0)
833                 return NULL;
834
835         bh = sb_getblk(inode->i_sb, map.m_pblk);
836         if (unlikely(!bh)) {
837                 *errp = -ENOMEM;
838                 return NULL;
839         }
840         if (map.m_flags & EXT4_MAP_NEW) {
841                 J_ASSERT(create != 0);
842                 J_ASSERT(handle != NULL);
843
844                 /*
845                  * Now that we do not always journal data, we should
846                  * keep in mind whether this should always journal the
847                  * new buffer as metadata.  For now, regular file
848                  * writes use ext4_get_block instead, so it's not a
849                  * problem.
850                  */
851                 lock_buffer(bh);
852                 BUFFER_TRACE(bh, "call get_create_access");
853                 fatal = ext4_journal_get_create_access(handle, bh);
854                 if (!fatal && !buffer_uptodate(bh)) {
855                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
856                         set_buffer_uptodate(bh);
857                 }
858                 unlock_buffer(bh);
859                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
860                 err = ext4_handle_dirty_metadata(handle, inode, bh);
861                 if (!fatal)
862                         fatal = err;
863         } else {
864                 BUFFER_TRACE(bh, "not a new buffer");
865         }
866         if (fatal) {
867                 *errp = fatal;
868                 brelse(bh);
869                 bh = NULL;
870         }
871         return bh;
872 }
873
874 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
875                                ext4_lblk_t block, int create, int *err)
876 {
877         struct buffer_head *bh;
878
879         bh = ext4_getblk(handle, inode, block, create, err);
880         if (!bh)
881                 return bh;
882         if (buffer_uptodate(bh))
883                 return bh;
884         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
885         wait_on_buffer(bh);
886         if (buffer_uptodate(bh))
887                 return bh;
888         put_bh(bh);
889         *err = -EIO;
890         return NULL;
891 }
892
893 int ext4_walk_page_buffers(handle_t *handle,
894                            struct buffer_head *head,
895                            unsigned from,
896                            unsigned to,
897                            int *partial,
898                            int (*fn)(handle_t *handle,
899                                      struct buffer_head *bh))
900 {
901         struct buffer_head *bh;
902         unsigned block_start, block_end;
903         unsigned blocksize = head->b_size;
904         int err, ret = 0;
905         struct buffer_head *next;
906
907         for (bh = head, block_start = 0;
908              ret == 0 && (bh != head || !block_start);
909              block_start = block_end, bh = next) {
910                 next = bh->b_this_page;
911                 block_end = block_start + blocksize;
912                 if (block_end <= from || block_start >= to) {
913                         if (partial && !buffer_uptodate(bh))
914                                 *partial = 1;
915                         continue;
916                 }
917                 err = (*fn)(handle, bh);
918                 if (!ret)
919                         ret = err;
920         }
921         return ret;
922 }
923
924 /*
925  * To preserve ordering, it is essential that the hole instantiation and
926  * the data write be encapsulated in a single transaction.  We cannot
927  * close off a transaction and start a new one between the ext4_get_block()
928  * and the commit_write().  So doing the jbd2_journal_start at the start of
929  * prepare_write() is the right place.
930  *
931  * Also, this function can nest inside ext4_writepage().  In that case, we
932  * *know* that ext4_writepage() has generated enough buffer credits to do the
933  * whole page.  So we won't block on the journal in that case, which is good,
934  * because the caller may be PF_MEMALLOC.
935  *
936  * By accident, ext4 can be reentered when a transaction is open via
937  * quota file writes.  If we were to commit the transaction while thus
938  * reentered, there can be a deadlock - we would be holding a quota
939  * lock, and the commit would never complete if another thread had a
940  * transaction open and was blocking on the quota lock - a ranking
941  * violation.
942  *
943  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
944  * will _not_ run commit under these circumstances because handle->h_ref
945  * is elevated.  We'll still have enough credits for the tiny quotafile
946  * write.
947  */
948 int do_journal_get_write_access(handle_t *handle,
949                                 struct buffer_head *bh)
950 {
951         int dirty = buffer_dirty(bh);
952         int ret;
953
954         if (!buffer_mapped(bh) || buffer_freed(bh))
955                 return 0;
956         /*
957          * __block_write_begin() could have dirtied some buffers. Clean
958          * the dirty bit as jbd2_journal_get_write_access() could complain
959          * otherwise about fs integrity issues. Setting of the dirty bit
960          * by __block_write_begin() isn't a real problem here as we clear
961          * the bit before releasing a page lock and thus writeback cannot
962          * ever write the buffer.
963          */
964         if (dirty)
965                 clear_buffer_dirty(bh);
966         ret = ext4_journal_get_write_access(handle, bh);
967         if (!ret && dirty)
968                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
969         return ret;
970 }
971
972 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
973                    struct buffer_head *bh_result, int create);
974 static int ext4_write_begin(struct file *file, struct address_space *mapping,
975                             loff_t pos, unsigned len, unsigned flags,
976                             struct page **pagep, void **fsdata)
977 {
978         struct inode *inode = mapping->host;
979         int ret, needed_blocks;
980         handle_t *handle;
981         int retries = 0;
982         struct page *page;
983         pgoff_t index;
984         unsigned from, to;
985
986         trace_ext4_write_begin(inode, pos, len, flags);
987         /*
988          * Reserve one block more for addition to orphan list in case
989          * we allocate blocks but write fails for some reason
990          */
991         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
992         index = pos >> PAGE_CACHE_SHIFT;
993         from = pos & (PAGE_CACHE_SIZE - 1);
994         to = from + len;
995
996         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
997                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
998                                                     flags, pagep);
999                 if (ret < 0)
1000                         return ret;
1001                 if (ret == 1)
1002                         return 0;
1003         }
1004
1005         /*
1006          * grab_cache_page_write_begin() can take a long time if the
1007          * system is thrashing due to memory pressure, or if the page
1008          * is being written back.  So grab it first before we start
1009          * the transaction handle.  This also allows us to allocate
1010          * the page (if needed) without using GFP_NOFS.
1011          */
1012 retry_grab:
1013         page = grab_cache_page_write_begin(mapping, index, flags);
1014         if (!page)
1015                 return -ENOMEM;
1016         unlock_page(page);
1017
1018 retry_journal:
1019         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1020         if (IS_ERR(handle)) {
1021                 page_cache_release(page);
1022                 return PTR_ERR(handle);
1023         }
1024
1025         lock_page(page);
1026         if (page->mapping != mapping) {
1027                 /* The page got truncated from under us */
1028                 unlock_page(page);
1029                 page_cache_release(page);
1030                 ext4_journal_stop(handle);
1031                 goto retry_grab;
1032         }
1033         wait_on_page_writeback(page);
1034
1035         if (ext4_should_dioread_nolock(inode))
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1037         else
1038                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1039
1040         if (!ret && ext4_should_journal_data(inode)) {
1041                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1042                                              from, to, NULL,
1043                                              do_journal_get_write_access);
1044         }
1045
1046         if (ret) {
1047                 unlock_page(page);
1048                 /*
1049                  * __block_write_begin may have instantiated a few blocks
1050                  * outside i_size.  Trim these off again. Don't need
1051                  * i_size_read because we hold i_mutex.
1052                  *
1053                  * Add inode to orphan list in case we crash before
1054                  * truncate finishes
1055                  */
1056                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1057                         ext4_orphan_add(handle, inode);
1058
1059                 ext4_journal_stop(handle);
1060                 if (pos + len > inode->i_size) {
1061                         ext4_truncate_failed_write(inode);
1062                         /*
1063                          * If truncate failed early the inode might
1064                          * still be on the orphan list; we need to
1065                          * make sure the inode is removed from the
1066                          * orphan list in that case.
1067                          */
1068                         if (inode->i_nlink)
1069                                 ext4_orphan_del(NULL, inode);
1070                 }
1071
1072                 if (ret == -ENOSPC &&
1073                     ext4_should_retry_alloc(inode->i_sb, &retries))
1074                         goto retry_journal;
1075                 page_cache_release(page);
1076                 return ret;
1077         }
1078         *pagep = page;
1079         return ret;
1080 }
1081
1082 /* For write_end() in data=journal mode */
1083 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1084 {
1085         int ret;
1086         if (!buffer_mapped(bh) || buffer_freed(bh))
1087                 return 0;
1088         set_buffer_uptodate(bh);
1089         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1090         clear_buffer_meta(bh);
1091         clear_buffer_prio(bh);
1092         return ret;
1093 }
1094
1095 /*
1096  * We need to pick up the new inode size which generic_commit_write gave us
1097  * `file' can be NULL - eg, when called from page_symlink().
1098  *
1099  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1100  * buffers are managed internally.
1101  */
1102 static int ext4_write_end(struct file *file,
1103                           struct address_space *mapping,
1104                           loff_t pos, unsigned len, unsigned copied,
1105                           struct page *page, void *fsdata)
1106 {
1107         handle_t *handle = ext4_journal_current_handle();
1108         struct inode *inode = mapping->host;
1109         int ret = 0, ret2;
1110         int i_size_changed = 0;
1111
1112         trace_ext4_write_end(inode, pos, len, copied);
1113         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1114                 ret = ext4_jbd2_file_inode(handle, inode);
1115                 if (ret) {
1116                         unlock_page(page);
1117                         page_cache_release(page);
1118                         goto errout;
1119                 }
1120         }
1121
1122         if (ext4_has_inline_data(inode)) {
1123                 ret = ext4_write_inline_data_end(inode, pos, len,
1124                                                  copied, page);
1125                 if (ret < 0)
1126                         goto errout;
1127                 copied = ret;
1128         } else
1129                 copied = block_write_end(file, mapping, pos,
1130                                          len, copied, page, fsdata);
1131
1132         /*
1133          * No need to use i_size_read() here, the i_size
1134          * cannot change under us because we hole i_mutex.
1135          *
1136          * But it's important to update i_size while still holding page lock:
1137          * page writeout could otherwise come in and zero beyond i_size.
1138          */
1139         if (pos + copied > inode->i_size) {
1140                 i_size_write(inode, pos + copied);
1141                 i_size_changed = 1;
1142         }
1143
1144         if (pos + copied > EXT4_I(inode)->i_disksize) {
1145                 /* We need to mark inode dirty even if
1146                  * new_i_size is less that inode->i_size
1147                  * but greater than i_disksize. (hint delalloc)
1148                  */
1149                 ext4_update_i_disksize(inode, (pos + copied));
1150                 i_size_changed = 1;
1151         }
1152         unlock_page(page);
1153         page_cache_release(page);
1154
1155         /*
1156          * Don't mark the inode dirty under page lock. First, it unnecessarily
1157          * makes the holding time of page lock longer. Second, it forces lock
1158          * ordering of page lock and transaction start for journaling
1159          * filesystems.
1160          */
1161         if (i_size_changed)
1162                 ext4_mark_inode_dirty(handle, inode);
1163
1164         if (copied < 0)
1165                 ret = copied;
1166         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1167                 /* if we have allocated more blocks and copied
1168                  * less. We will have blocks allocated outside
1169                  * inode->i_size. So truncate them
1170                  */
1171                 ext4_orphan_add(handle, inode);
1172 errout:
1173         ret2 = ext4_journal_stop(handle);
1174         if (!ret)
1175                 ret = ret2;
1176
1177         if (pos + len > inode->i_size) {
1178                 ext4_truncate_failed_write(inode);
1179                 /*
1180                  * If truncate failed early the inode might still be
1181                  * on the orphan list; we need to make sure the inode
1182                  * is removed from the orphan list in that case.
1183                  */
1184                 if (inode->i_nlink)
1185                         ext4_orphan_del(NULL, inode);
1186         }
1187
1188         return ret ? ret : copied;
1189 }
1190
1191 static int ext4_journalled_write_end(struct file *file,
1192                                      struct address_space *mapping,
1193                                      loff_t pos, unsigned len, unsigned copied,
1194                                      struct page *page, void *fsdata)
1195 {
1196         handle_t *handle = ext4_journal_current_handle();
1197         struct inode *inode = mapping->host;
1198         int ret = 0, ret2;
1199         int partial = 0;
1200         unsigned from, to;
1201         loff_t new_i_size;
1202
1203         trace_ext4_journalled_write_end(inode, pos, len, copied);
1204         from = pos & (PAGE_CACHE_SIZE - 1);
1205         to = from + len;
1206
1207         BUG_ON(!ext4_handle_valid(handle));
1208
1209         if (ext4_has_inline_data(inode))
1210                 copied = ext4_write_inline_data_end(inode, pos, len,
1211                                                     copied, page);
1212         else {
1213                 if (copied < len) {
1214                         if (!PageUptodate(page))
1215                                 copied = 0;
1216                         page_zero_new_buffers(page, from+copied, to);
1217                 }
1218
1219                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220                                              to, &partial, write_end_fn);
1221                 if (!partial)
1222                         SetPageUptodate(page);
1223         }
1224         new_i_size = pos + copied;
1225         if (new_i_size > inode->i_size)
1226                 i_size_write(inode, pos+copied);
1227         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1228         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1229         if (new_i_size > EXT4_I(inode)->i_disksize) {
1230                 ext4_update_i_disksize(inode, new_i_size);
1231                 ret2 = ext4_mark_inode_dirty(handle, inode);
1232                 if (!ret)
1233                         ret = ret2;
1234         }
1235
1236         unlock_page(page);
1237         page_cache_release(page);
1238         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1239                 /* if we have allocated more blocks and copied
1240                  * less. We will have blocks allocated outside
1241                  * inode->i_size. So truncate them
1242                  */
1243                 ext4_orphan_add(handle, inode);
1244
1245         ret2 = ext4_journal_stop(handle);
1246         if (!ret)
1247                 ret = ret2;
1248         if (pos + len > inode->i_size) {
1249                 ext4_truncate_failed_write(inode);
1250                 /*
1251                  * If truncate failed early the inode might still be
1252                  * on the orphan list; we need to make sure the inode
1253                  * is removed from the orphan list in that case.
1254                  */
1255                 if (inode->i_nlink)
1256                         ext4_orphan_del(NULL, inode);
1257         }
1258
1259         return ret ? ret : copied;
1260 }
1261
1262 /*
1263  * Reserve a metadata for a single block located at lblock
1264  */
1265 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1266 {
1267         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1268         struct ext4_inode_info *ei = EXT4_I(inode);
1269         unsigned int md_needed;
1270         ext4_lblk_t save_last_lblock;
1271         int save_len;
1272
1273         /*
1274          * recalculate the amount of metadata blocks to reserve
1275          * in order to allocate nrblocks
1276          * worse case is one extent per block
1277          */
1278         spin_lock(&ei->i_block_reservation_lock);
1279         /*
1280          * ext4_calc_metadata_amount() has side effects, which we have
1281          * to be prepared undo if we fail to claim space.
1282          */
1283         save_len = ei->i_da_metadata_calc_len;
1284         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1285         md_needed = EXT4_NUM_B2C(sbi,
1286                                  ext4_calc_metadata_amount(inode, lblock));
1287         trace_ext4_da_reserve_space(inode, md_needed);
1288
1289         /*
1290          * We do still charge estimated metadata to the sb though;
1291          * we cannot afford to run out of free blocks.
1292          */
1293         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1294                 ei->i_da_metadata_calc_len = save_len;
1295                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1296                 spin_unlock(&ei->i_block_reservation_lock);
1297                 return -ENOSPC;
1298         }
1299         ei->i_reserved_meta_blocks += md_needed;
1300         spin_unlock(&ei->i_block_reservation_lock);
1301
1302         return 0;       /* success */
1303 }
1304
1305 /*
1306  * Reserve a single cluster located at lblock
1307  */
1308 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1309 {
1310         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1311         struct ext4_inode_info *ei = EXT4_I(inode);
1312         unsigned int md_needed;
1313         int ret;
1314         ext4_lblk_t save_last_lblock;
1315         int save_len;
1316
1317         /*
1318          * We will charge metadata quota at writeout time; this saves
1319          * us from metadata over-estimation, though we may go over by
1320          * a small amount in the end.  Here we just reserve for data.
1321          */
1322         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1323         if (ret)
1324                 return ret;
1325
1326         /*
1327          * recalculate the amount of metadata blocks to reserve
1328          * in order to allocate nrblocks
1329          * worse case is one extent per block
1330          */
1331         spin_lock(&ei->i_block_reservation_lock);
1332         /*
1333          * ext4_calc_metadata_amount() has side effects, which we have
1334          * to be prepared undo if we fail to claim space.
1335          */
1336         save_len = ei->i_da_metadata_calc_len;
1337         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1338         md_needed = EXT4_NUM_B2C(sbi,
1339                                  ext4_calc_metadata_amount(inode, lblock));
1340         trace_ext4_da_reserve_space(inode, md_needed);
1341
1342         /*
1343          * We do still charge estimated metadata to the sb though;
1344          * we cannot afford to run out of free blocks.
1345          */
1346         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1347                 ei->i_da_metadata_calc_len = save_len;
1348                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1349                 spin_unlock(&ei->i_block_reservation_lock);
1350                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1351                 return -ENOSPC;
1352         }
1353         ei->i_reserved_data_blocks++;
1354         ei->i_reserved_meta_blocks += md_needed;
1355         spin_unlock(&ei->i_block_reservation_lock);
1356
1357         return 0;       /* success */
1358 }
1359
1360 static void ext4_da_release_space(struct inode *inode, int to_free)
1361 {
1362         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1363         struct ext4_inode_info *ei = EXT4_I(inode);
1364
1365         if (!to_free)
1366                 return;         /* Nothing to release, exit */
1367
1368         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1369
1370         trace_ext4_da_release_space(inode, to_free);
1371         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1372                 /*
1373                  * if there aren't enough reserved blocks, then the
1374                  * counter is messed up somewhere.  Since this
1375                  * function is called from invalidate page, it's
1376                  * harmless to return without any action.
1377                  */
1378                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1379                          "ino %lu, to_free %d with only %d reserved "
1380                          "data blocks", inode->i_ino, to_free,
1381                          ei->i_reserved_data_blocks);
1382                 WARN_ON(1);
1383                 to_free = ei->i_reserved_data_blocks;
1384         }
1385         ei->i_reserved_data_blocks -= to_free;
1386
1387         if (ei->i_reserved_data_blocks == 0) {
1388                 /*
1389                  * We can release all of the reserved metadata blocks
1390                  * only when we have written all of the delayed
1391                  * allocation blocks.
1392                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1393                  * i_reserved_data_blocks, etc. refer to number of clusters.
1394                  */
1395                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1396                                    ei->i_reserved_meta_blocks);
1397                 ei->i_reserved_meta_blocks = 0;
1398                 ei->i_da_metadata_calc_len = 0;
1399         }
1400
1401         /* update fs dirty data blocks counter */
1402         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1403
1404         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1405
1406         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1407 }
1408
1409 static void ext4_da_page_release_reservation(struct page *page,
1410                                              unsigned long offset)
1411 {
1412         int to_release = 0;
1413         struct buffer_head *head, *bh;
1414         unsigned int curr_off = 0;
1415         struct inode *inode = page->mapping->host;
1416         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1417         int num_clusters;
1418         ext4_fsblk_t lblk;
1419
1420         head = page_buffers(page);
1421         bh = head;
1422         do {
1423                 unsigned int next_off = curr_off + bh->b_size;
1424
1425                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1426                         to_release++;
1427                         clear_buffer_delay(bh);
1428                 }
1429                 curr_off = next_off;
1430         } while ((bh = bh->b_this_page) != head);
1431
1432         if (to_release) {
1433                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1434                 ext4_es_remove_extent(inode, lblk, to_release);
1435         }
1436
1437         /* If we have released all the blocks belonging to a cluster, then we
1438          * need to release the reserved space for that cluster. */
1439         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1440         while (num_clusters > 0) {
1441                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1442                         ((num_clusters - 1) << sbi->s_cluster_bits);
1443                 if (sbi->s_cluster_ratio == 1 ||
1444                     !ext4_find_delalloc_cluster(inode, lblk))
1445                         ext4_da_release_space(inode, 1);
1446
1447                 num_clusters--;
1448         }
1449 }
1450
1451 /*
1452  * Delayed allocation stuff
1453  */
1454
1455 /*
1456  * mpage_da_submit_io - walks through extent of pages and try to write
1457  * them with writepage() call back
1458  *
1459  * @mpd->inode: inode
1460  * @mpd->first_page: first page of the extent
1461  * @mpd->next_page: page after the last page of the extent
1462  *
1463  * By the time mpage_da_submit_io() is called we expect all blocks
1464  * to be allocated. this may be wrong if allocation failed.
1465  *
1466  * As pages are already locked by write_cache_pages(), we can't use it
1467  */
1468 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1469                               struct ext4_map_blocks *map)
1470 {
1471         struct pagevec pvec;
1472         unsigned long index, end;
1473         int ret = 0, err, nr_pages, i;
1474         struct inode *inode = mpd->inode;
1475         struct address_space *mapping = inode->i_mapping;
1476         loff_t size = i_size_read(inode);
1477         unsigned int len, block_start;
1478         struct buffer_head *bh, *page_bufs = NULL;
1479         sector_t pblock = 0, cur_logical = 0;
1480         struct ext4_io_submit io_submit;
1481
1482         BUG_ON(mpd->next_page <= mpd->first_page);
1483         memset(&io_submit, 0, sizeof(io_submit));
1484         /*
1485          * We need to start from the first_page to the next_page - 1
1486          * to make sure we also write the mapped dirty buffer_heads.
1487          * If we look at mpd->b_blocknr we would only be looking
1488          * at the currently mapped buffer_heads.
1489          */
1490         index = mpd->first_page;
1491         end = mpd->next_page - 1;
1492
1493         pagevec_init(&pvec, 0);
1494         while (index <= end) {
1495                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1496                 if (nr_pages == 0)
1497                         break;
1498                 for (i = 0; i < nr_pages; i++) {
1499                         int skip_page = 0;
1500                         struct page *page = pvec.pages[i];
1501
1502                         index = page->index;
1503                         if (index > end)
1504                                 break;
1505
1506                         if (index == size >> PAGE_CACHE_SHIFT)
1507                                 len = size & ~PAGE_CACHE_MASK;
1508                         else
1509                                 len = PAGE_CACHE_SIZE;
1510                         if (map) {
1511                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1512                                                         inode->i_blkbits);
1513                                 pblock = map->m_pblk + (cur_logical -
1514                                                         map->m_lblk);
1515                         }
1516                         index++;
1517
1518                         BUG_ON(!PageLocked(page));
1519                         BUG_ON(PageWriteback(page));
1520
1521                         bh = page_bufs = page_buffers(page);
1522                         block_start = 0;
1523                         do {
1524                                 if (map && (cur_logical >= map->m_lblk) &&
1525                                     (cur_logical <= (map->m_lblk +
1526                                                      (map->m_len - 1)))) {
1527                                         if (buffer_delay(bh)) {
1528                                                 clear_buffer_delay(bh);
1529                                                 bh->b_blocknr = pblock;
1530                                         }
1531                                         if (buffer_unwritten(bh) ||
1532                                             buffer_mapped(bh))
1533                                                 BUG_ON(bh->b_blocknr != pblock);
1534                                         if (map->m_flags & EXT4_MAP_UNINIT)
1535                                                 set_buffer_uninit(bh);
1536                                         clear_buffer_unwritten(bh);
1537                                 }
1538
1539                                 /*
1540                                  * skip page if block allocation undone and
1541                                  * block is dirty
1542                                  */
1543                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1544                                         skip_page = 1;
1545                                 bh = bh->b_this_page;
1546                                 block_start += bh->b_size;
1547                                 cur_logical++;
1548                                 pblock++;
1549                         } while (bh != page_bufs);
1550
1551                         if (skip_page) {
1552                                 unlock_page(page);
1553                                 continue;
1554                         }
1555
1556                         clear_page_dirty_for_io(page);
1557                         err = ext4_bio_write_page(&io_submit, page, len,
1558                                                   mpd->wbc);
1559                         if (!err)
1560                                 mpd->pages_written++;
1561                         /*
1562                          * In error case, we have to continue because
1563                          * remaining pages are still locked
1564                          */
1565                         if (ret == 0)
1566                                 ret = err;
1567                 }
1568                 pagevec_release(&pvec);
1569         }
1570         ext4_io_submit(&io_submit);
1571         return ret;
1572 }
1573
1574 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1575 {
1576         int nr_pages, i;
1577         pgoff_t index, end;
1578         struct pagevec pvec;
1579         struct inode *inode = mpd->inode;
1580         struct address_space *mapping = inode->i_mapping;
1581         ext4_lblk_t start, last;
1582
1583         index = mpd->first_page;
1584         end   = mpd->next_page - 1;
1585
1586         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1587         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1588         ext4_es_remove_extent(inode, start, last - start + 1);
1589
1590         pagevec_init(&pvec, 0);
1591         while (index <= end) {
1592                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1593                 if (nr_pages == 0)
1594                         break;
1595                 for (i = 0; i < nr_pages; i++) {
1596                         struct page *page = pvec.pages[i];
1597                         if (page->index > end)
1598                                 break;
1599                         BUG_ON(!PageLocked(page));
1600                         BUG_ON(PageWriteback(page));
1601                         block_invalidatepage(page, 0);
1602                         ClearPageUptodate(page);
1603                         unlock_page(page);
1604                 }
1605                 index = pvec.pages[nr_pages - 1]->index + 1;
1606                 pagevec_release(&pvec);
1607         }
1608         return;
1609 }
1610
1611 static void ext4_print_free_blocks(struct inode *inode)
1612 {
1613         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1614         struct super_block *sb = inode->i_sb;
1615         struct ext4_inode_info *ei = EXT4_I(inode);
1616
1617         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1618                EXT4_C2B(EXT4_SB(inode->i_sb),
1619                         ext4_count_free_clusters(sb)));
1620         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1621         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1622                (long long) EXT4_C2B(EXT4_SB(sb),
1623                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1624         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1625                (long long) EXT4_C2B(EXT4_SB(sb),
1626                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1627         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1628         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1629                  ei->i_reserved_data_blocks);
1630         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1631                ei->i_reserved_meta_blocks);
1632         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1633                ei->i_allocated_meta_blocks);
1634         return;
1635 }
1636
1637 /*
1638  * mpage_da_map_and_submit - go through given space, map them
1639  *       if necessary, and then submit them for I/O
1640  *
1641  * @mpd - bh describing space
1642  *
1643  * The function skips space we know is already mapped to disk blocks.
1644  *
1645  */
1646 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1647 {
1648         int err, blks, get_blocks_flags;
1649         struct ext4_map_blocks map, *mapp = NULL;
1650         sector_t next = mpd->b_blocknr;
1651         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1652         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1653         handle_t *handle = NULL;
1654
1655         /*
1656          * If the blocks are mapped already, or we couldn't accumulate
1657          * any blocks, then proceed immediately to the submission stage.
1658          */
1659         if ((mpd->b_size == 0) ||
1660             ((mpd->b_state  & (1 << BH_Mapped)) &&
1661              !(mpd->b_state & (1 << BH_Delay)) &&
1662              !(mpd->b_state & (1 << BH_Unwritten))))
1663                 goto submit_io;
1664
1665         handle = ext4_journal_current_handle();
1666         BUG_ON(!handle);
1667
1668         /*
1669          * Call ext4_map_blocks() to allocate any delayed allocation
1670          * blocks, or to convert an uninitialized extent to be
1671          * initialized (in the case where we have written into
1672          * one or more preallocated blocks).
1673          *
1674          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1675          * indicate that we are on the delayed allocation path.  This
1676          * affects functions in many different parts of the allocation
1677          * call path.  This flag exists primarily because we don't
1678          * want to change *many* call functions, so ext4_map_blocks()
1679          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1680          * inode's allocation semaphore is taken.
1681          *
1682          * If the blocks in questions were delalloc blocks, set
1683          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1684          * variables are updated after the blocks have been allocated.
1685          */
1686         map.m_lblk = next;
1687         map.m_len = max_blocks;
1688         /*
1689          * We're in delalloc path and it is possible that we're going to
1690          * need more metadata blocks than previously reserved. However
1691          * we must not fail because we're in writeback and there is
1692          * nothing we can do about it so it might result in data loss.
1693          * So use reserved blocks to allocate metadata if possible.
1694          */
1695         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1696                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1697         if (ext4_should_dioread_nolock(mpd->inode))
1698                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1699         if (mpd->b_state & (1 << BH_Delay))
1700                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1701
1702
1703         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1704         if (blks < 0) {
1705                 struct super_block *sb = mpd->inode->i_sb;
1706
1707                 err = blks;
1708                 /*
1709                  * If get block returns EAGAIN or ENOSPC and there
1710                  * appears to be free blocks we will just let
1711                  * mpage_da_submit_io() unlock all of the pages.
1712                  */
1713                 if (err == -EAGAIN)
1714                         goto submit_io;
1715
1716                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1717                         mpd->retval = err;
1718                         goto submit_io;
1719                 }
1720
1721                 /*
1722                  * get block failure will cause us to loop in
1723                  * writepages, because a_ops->writepage won't be able
1724                  * to make progress. The page will be redirtied by
1725                  * writepage and writepages will again try to write
1726                  * the same.
1727                  */
1728                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1729                         ext4_msg(sb, KERN_CRIT,
1730                                  "delayed block allocation failed for inode %lu "
1731                                  "at logical offset %llu with max blocks %zd "
1732                                  "with error %d", mpd->inode->i_ino,
1733                                  (unsigned long long) next,
1734                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1735                         ext4_msg(sb, KERN_CRIT,
1736                                 "This should not happen!! Data will be lost");
1737                         if (err == -ENOSPC)
1738                                 ext4_print_free_blocks(mpd->inode);
1739                 }
1740                 /* invalidate all the pages */
1741                 ext4_da_block_invalidatepages(mpd);
1742
1743                 /* Mark this page range as having been completed */
1744                 mpd->io_done = 1;
1745                 return;
1746         }
1747         BUG_ON(blks == 0);
1748
1749         mapp = &map;
1750         if (map.m_flags & EXT4_MAP_NEW) {
1751                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1752                 int i;
1753
1754                 for (i = 0; i < map.m_len; i++)
1755                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1756         }
1757
1758         /*
1759          * Update on-disk size along with block allocation.
1760          */
1761         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1762         if (disksize > i_size_read(mpd->inode))
1763                 disksize = i_size_read(mpd->inode);
1764         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1765                 ext4_update_i_disksize(mpd->inode, disksize);
1766                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1767                 if (err)
1768                         ext4_error(mpd->inode->i_sb,
1769                                    "Failed to mark inode %lu dirty",
1770                                    mpd->inode->i_ino);
1771         }
1772
1773 submit_io:
1774         mpage_da_submit_io(mpd, mapp);
1775         mpd->io_done = 1;
1776 }
1777
1778 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1779                 (1 << BH_Delay) | (1 << BH_Unwritten))
1780
1781 /*
1782  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1783  *
1784  * @mpd->lbh - extent of blocks
1785  * @logical - logical number of the block in the file
1786  * @b_state - b_state of the buffer head added
1787  *
1788  * the function is used to collect contig. blocks in same state
1789  */
1790 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1791                                    unsigned long b_state)
1792 {
1793         sector_t next;
1794         int blkbits = mpd->inode->i_blkbits;
1795         int nrblocks = mpd->b_size >> blkbits;
1796
1797         /*
1798          * XXX Don't go larger than mballoc is willing to allocate
1799          * This is a stopgap solution.  We eventually need to fold
1800          * mpage_da_submit_io() into this function and then call
1801          * ext4_map_blocks() multiple times in a loop
1802          */
1803         if (nrblocks >= (8*1024*1024 >> blkbits))
1804                 goto flush_it;
1805
1806         /* check if the reserved journal credits might overflow */
1807         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1808                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1809                         /*
1810                          * With non-extent format we are limited by the journal
1811                          * credit available.  Total credit needed to insert
1812                          * nrblocks contiguous blocks is dependent on the
1813                          * nrblocks.  So limit nrblocks.
1814                          */
1815                         goto flush_it;
1816                 }
1817         }
1818         /*
1819          * First block in the extent
1820          */
1821         if (mpd->b_size == 0) {
1822                 mpd->b_blocknr = logical;
1823                 mpd->b_size = 1 << blkbits;
1824                 mpd->b_state = b_state & BH_FLAGS;
1825                 return;
1826         }
1827
1828         next = mpd->b_blocknr + nrblocks;
1829         /*
1830          * Can we merge the block to our big extent?
1831          */
1832         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1833                 mpd->b_size += 1 << blkbits;
1834                 return;
1835         }
1836
1837 flush_it:
1838         /*
1839          * We couldn't merge the block to our extent, so we
1840          * need to flush current  extent and start new one
1841          */
1842         mpage_da_map_and_submit(mpd);
1843         return;
1844 }
1845
1846 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1847 {
1848         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1849 }
1850
1851 /*
1852  * This function is grabs code from the very beginning of
1853  * ext4_map_blocks, but assumes that the caller is from delayed write
1854  * time. This function looks up the requested blocks and sets the
1855  * buffer delay bit under the protection of i_data_sem.
1856  */
1857 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1858                               struct ext4_map_blocks *map,
1859                               struct buffer_head *bh)
1860 {
1861         struct extent_status es;
1862         int retval;
1863         sector_t invalid_block = ~((sector_t) 0xffff);
1864 #ifdef ES_AGGRESSIVE_TEST
1865         struct ext4_map_blocks orig_map;
1866
1867         memcpy(&orig_map, map, sizeof(*map));
1868 #endif
1869
1870         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1871                 invalid_block = ~0;
1872
1873         map->m_flags = 0;
1874         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1875                   "logical block %lu\n", inode->i_ino, map->m_len,
1876                   (unsigned long) map->m_lblk);
1877
1878         /* Lookup extent status tree firstly */
1879         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1880
1881                 if (ext4_es_is_hole(&es)) {
1882                         retval = 0;
1883                         down_read((&EXT4_I(inode)->i_data_sem));
1884                         goto add_delayed;
1885                 }
1886
1887                 /*
1888                  * Delayed extent could be allocated by fallocate.
1889                  * So we need to check it.
1890                  */
1891                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1892                         map_bh(bh, inode->i_sb, invalid_block);
1893                         set_buffer_new(bh);
1894                         set_buffer_delay(bh);
1895                         return 0;
1896                 }
1897
1898                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1899                 retval = es.es_len - (iblock - es.es_lblk);
1900                 if (retval > map->m_len)
1901                         retval = map->m_len;
1902                 map->m_len = retval;
1903                 if (ext4_es_is_written(&es))
1904                         map->m_flags |= EXT4_MAP_MAPPED;
1905                 else if (ext4_es_is_unwritten(&es))
1906                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1907                 else
1908                         BUG_ON(1);
1909
1910 #ifdef ES_AGGRESSIVE_TEST
1911                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1912 #endif
1913                 return retval;
1914         }
1915
1916         /*
1917          * Try to see if we can get the block without requesting a new
1918          * file system block.
1919          */
1920         down_read((&EXT4_I(inode)->i_data_sem));
1921         if (ext4_has_inline_data(inode)) {
1922                 /*
1923                  * We will soon create blocks for this page, and let
1924                  * us pretend as if the blocks aren't allocated yet.
1925                  * In case of clusters, we have to handle the work
1926                  * of mapping from cluster so that the reserved space
1927                  * is calculated properly.
1928                  */
1929                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1930                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1931                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1932                 retval = 0;
1933         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1934                 retval = ext4_ext_map_blocks(NULL, inode, map,
1935                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1936         else
1937                 retval = ext4_ind_map_blocks(NULL, inode, map,
1938                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1939
1940 add_delayed:
1941         if (retval == 0) {
1942                 int ret;
1943                 /*
1944                  * XXX: __block_prepare_write() unmaps passed block,
1945                  * is it OK?
1946                  */
1947                 /*
1948                  * If the block was allocated from previously allocated cluster,
1949                  * then we don't need to reserve it again. However we still need
1950                  * to reserve metadata for every block we're going to write.
1951                  */
1952                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1953                         ret = ext4_da_reserve_space(inode, iblock);
1954                         if (ret) {
1955                                 /* not enough space to reserve */
1956                                 retval = ret;
1957                                 goto out_unlock;
1958                         }
1959                 } else {
1960                         ret = ext4_da_reserve_metadata(inode, iblock);
1961                         if (ret) {
1962                                 /* not enough space to reserve */
1963                                 retval = ret;
1964                                 goto out_unlock;
1965                         }
1966                 }
1967
1968                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1969                                             ~0, EXTENT_STATUS_DELAYED);
1970                 if (ret) {
1971                         retval = ret;
1972                         goto out_unlock;
1973                 }
1974
1975                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1976                  * and it should not appear on the bh->b_state.
1977                  */
1978                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1979
1980                 map_bh(bh, inode->i_sb, invalid_block);
1981                 set_buffer_new(bh);
1982                 set_buffer_delay(bh);
1983         } else if (retval > 0) {
1984                 int ret;
1985                 unsigned long long status;
1986
1987 #ifdef ES_AGGRESSIVE_TEST
1988                 if (retval != map->m_len) {
1989                         printk("ES len assertation failed for inode: %lu "
1990                                "retval %d != map->m_len %d "
1991                                "in %s (lookup)\n", inode->i_ino, retval,
1992                                map->m_len, __func__);
1993                 }
1994 #endif
1995
1996                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1997                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1998                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1999                                             map->m_pblk, status);
2000                 if (ret != 0)
2001                         retval = ret;
2002         }
2003
2004 out_unlock:
2005         up_read((&EXT4_I(inode)->i_data_sem));
2006
2007         return retval;
2008 }
2009
2010 /*
2011  * This is a special get_blocks_t callback which is used by
2012  * ext4_da_write_begin().  It will either return mapped block or
2013  * reserve space for a single block.
2014  *
2015  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2016  * We also have b_blocknr = -1 and b_bdev initialized properly
2017  *
2018  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2019  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2020  * initialized properly.
2021  */
2022 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2023                            struct buffer_head *bh, int create)
2024 {
2025         struct ext4_map_blocks map;
2026         int ret = 0;
2027
2028         BUG_ON(create == 0);
2029         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2030
2031         map.m_lblk = iblock;
2032         map.m_len = 1;
2033
2034         /*
2035          * first, we need to know whether the block is allocated already
2036          * preallocated blocks are unmapped but should treated
2037          * the same as allocated blocks.
2038          */
2039         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2040         if (ret <= 0)
2041                 return ret;
2042
2043         map_bh(bh, inode->i_sb, map.m_pblk);
2044         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2045
2046         if (buffer_unwritten(bh)) {
2047                 /* A delayed write to unwritten bh should be marked
2048                  * new and mapped.  Mapped ensures that we don't do
2049                  * get_block multiple times when we write to the same
2050                  * offset and new ensures that we do proper zero out
2051                  * for partial write.
2052                  */
2053                 set_buffer_new(bh);
2054                 set_buffer_mapped(bh);
2055         }
2056         return 0;
2057 }
2058
2059 static int bget_one(handle_t *handle, struct buffer_head *bh)
2060 {
2061         get_bh(bh);
2062         return 0;
2063 }
2064
2065 static int bput_one(handle_t *handle, struct buffer_head *bh)
2066 {
2067         put_bh(bh);
2068         return 0;
2069 }
2070
2071 static int __ext4_journalled_writepage(struct page *page,
2072                                        unsigned int len)
2073 {
2074         struct address_space *mapping = page->mapping;
2075         struct inode *inode = mapping->host;
2076         struct buffer_head *page_bufs = NULL;
2077         handle_t *handle = NULL;
2078         int ret = 0, err = 0;
2079         int inline_data = ext4_has_inline_data(inode);
2080         struct buffer_head *inode_bh = NULL;
2081
2082         ClearPageChecked(page);
2083
2084         if (inline_data) {
2085                 BUG_ON(page->index != 0);
2086                 BUG_ON(len > ext4_get_max_inline_size(inode));
2087                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2088                 if (inode_bh == NULL)
2089                         goto out;
2090         } else {
2091                 page_bufs = page_buffers(page);
2092                 if (!page_bufs) {
2093                         BUG();
2094                         goto out;
2095                 }
2096                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2097                                        NULL, bget_one);
2098         }
2099         /* As soon as we unlock the page, it can go away, but we have
2100          * references to buffers so we are safe */
2101         unlock_page(page);
2102
2103         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2104                                     ext4_writepage_trans_blocks(inode));
2105         if (IS_ERR(handle)) {
2106                 ret = PTR_ERR(handle);
2107                 goto out;
2108         }
2109
2110         BUG_ON(!ext4_handle_valid(handle));
2111
2112         if (inline_data) {
2113                 ret = ext4_journal_get_write_access(handle, inode_bh);
2114
2115                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2116
2117         } else {
2118                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2119                                              do_journal_get_write_access);
2120
2121                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2122                                              write_end_fn);
2123         }
2124         if (ret == 0)
2125                 ret = err;
2126         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2127         err = ext4_journal_stop(handle);
2128         if (!ret)
2129                 ret = err;
2130
2131         if (!ext4_has_inline_data(inode))
2132                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2133                                        NULL, bput_one);
2134         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2135 out:
2136         brelse(inode_bh);
2137         return ret;
2138 }
2139
2140 /*
2141  * Note that we don't need to start a transaction unless we're journaling data
2142  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2143  * need to file the inode to the transaction's list in ordered mode because if
2144  * we are writing back data added by write(), the inode is already there and if
2145  * we are writing back data modified via mmap(), no one guarantees in which
2146  * transaction the data will hit the disk. In case we are journaling data, we
2147  * cannot start transaction directly because transaction start ranks above page
2148  * lock so we have to do some magic.
2149  *
2150  * This function can get called via...
2151  *   - ext4_da_writepages after taking page lock (have journal handle)
2152  *   - journal_submit_inode_data_buffers (no journal handle)
2153  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2154  *   - grab_page_cache when doing write_begin (have journal handle)
2155  *
2156  * We don't do any block allocation in this function. If we have page with
2157  * multiple blocks we need to write those buffer_heads that are mapped. This
2158  * is important for mmaped based write. So if we do with blocksize 1K
2159  * truncate(f, 1024);
2160  * a = mmap(f, 0, 4096);
2161  * a[0] = 'a';
2162  * truncate(f, 4096);
2163  * we have in the page first buffer_head mapped via page_mkwrite call back
2164  * but other buffer_heads would be unmapped but dirty (dirty done via the
2165  * do_wp_page). So writepage should write the first block. If we modify
2166  * the mmap area beyond 1024 we will again get a page_fault and the
2167  * page_mkwrite callback will do the block allocation and mark the
2168  * buffer_heads mapped.
2169  *
2170  * We redirty the page if we have any buffer_heads that is either delay or
2171  * unwritten in the page.
2172  *
2173  * We can get recursively called as show below.
2174  *
2175  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2176  *              ext4_writepage()
2177  *
2178  * But since we don't do any block allocation we should not deadlock.
2179  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2180  */
2181 static int ext4_writepage(struct page *page,
2182                           struct writeback_control *wbc)
2183 {
2184         int ret = 0;
2185         loff_t size;
2186         unsigned int len;
2187         struct buffer_head *page_bufs = NULL;
2188         struct inode *inode = page->mapping->host;
2189         struct ext4_io_submit io_submit;
2190
2191         trace_ext4_writepage(page);
2192         size = i_size_read(inode);
2193         if (page->index == size >> PAGE_CACHE_SHIFT)
2194                 len = size & ~PAGE_CACHE_MASK;
2195         else
2196                 len = PAGE_CACHE_SIZE;
2197
2198         page_bufs = page_buffers(page);
2199         /*
2200          * We cannot do block allocation or other extent handling in this
2201          * function. If there are buffers needing that, we have to redirty
2202          * the page. But we may reach here when we do a journal commit via
2203          * journal_submit_inode_data_buffers() and in that case we must write
2204          * allocated buffers to achieve data=ordered mode guarantees.
2205          */
2206         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2207                                    ext4_bh_delay_or_unwritten)) {
2208                 redirty_page_for_writepage(wbc, page);
2209                 if (current->flags & PF_MEMALLOC) {
2210                         /*
2211                          * For memory cleaning there's no point in writing only
2212                          * some buffers. So just bail out. Warn if we came here
2213                          * from direct reclaim.
2214                          */
2215                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2216                                                         == PF_MEMALLOC);
2217                         unlock_page(page);
2218                         return 0;
2219                 }
2220         }
2221
2222         if (PageChecked(page) && ext4_should_journal_data(inode))
2223                 /*
2224                  * It's mmapped pagecache.  Add buffers and journal it.  There
2225                  * doesn't seem much point in redirtying the page here.
2226                  */
2227                 return __ext4_journalled_writepage(page, len);
2228
2229         memset(&io_submit, 0, sizeof(io_submit));
2230         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2231         ext4_io_submit(&io_submit);
2232         return ret;
2233 }
2234
2235 /*
2236  * This is called via ext4_da_writepages() to
2237  * calculate the total number of credits to reserve to fit
2238  * a single extent allocation into a single transaction,
2239  * ext4_da_writpeages() will loop calling this before
2240  * the block allocation.
2241  */
2242
2243 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2244 {
2245         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2246
2247         /*
2248          * With non-extent format the journal credit needed to
2249          * insert nrblocks contiguous block is dependent on
2250          * number of contiguous block. So we will limit
2251          * number of contiguous block to a sane value
2252          */
2253         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2254             (max_blocks > EXT4_MAX_TRANS_DATA))
2255                 max_blocks = EXT4_MAX_TRANS_DATA;
2256
2257         return ext4_chunk_trans_blocks(inode, max_blocks);
2258 }
2259
2260 /*
2261  * write_cache_pages_da - walk the list of dirty pages of the given
2262  * address space and accumulate pages that need writing, and call
2263  * mpage_da_map_and_submit to map a single contiguous memory region
2264  * and then write them.
2265  */
2266 static int write_cache_pages_da(handle_t *handle,
2267                                 struct address_space *mapping,
2268                                 struct writeback_control *wbc,
2269                                 struct mpage_da_data *mpd,
2270                                 pgoff_t *done_index)
2271 {
2272         struct buffer_head      *bh, *head;
2273         struct inode            *inode = mapping->host;
2274         struct pagevec          pvec;
2275         unsigned int            nr_pages;
2276         sector_t                logical;
2277         pgoff_t                 index, end;
2278         long                    nr_to_write = wbc->nr_to_write;
2279         int                     i, tag, ret = 0;
2280
2281         memset(mpd, 0, sizeof(struct mpage_da_data));
2282         mpd->wbc = wbc;
2283         mpd->inode = inode;
2284         pagevec_init(&pvec, 0);
2285         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2286         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2287
2288         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2289                 tag = PAGECACHE_TAG_TOWRITE;
2290         else
2291                 tag = PAGECACHE_TAG_DIRTY;
2292
2293         *done_index = index;
2294         while (index <= end) {
2295                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2296                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2297                 if (nr_pages == 0)
2298                         return 0;
2299
2300                 for (i = 0; i < nr_pages; i++) {
2301                         struct page *page = pvec.pages[i];
2302
2303                         /*
2304                          * At this point, the page may be truncated or
2305                          * invalidated (changing page->mapping to NULL), or
2306                          * even swizzled back from swapper_space to tmpfs file
2307                          * mapping. However, page->index will not change
2308                          * because we have a reference on the page.
2309                          */
2310                         if (page->index > end)
2311                                 goto out;
2312
2313                         *done_index = page->index + 1;
2314
2315                         /*
2316                          * If we can't merge this page, and we have
2317                          * accumulated an contiguous region, write it
2318                          */
2319                         if ((mpd->next_page != page->index) &&
2320                             (mpd->next_page != mpd->first_page)) {
2321                                 mpage_da_map_and_submit(mpd);
2322                                 goto ret_extent_tail;
2323                         }
2324
2325                         lock_page(page);
2326
2327                         /*
2328                          * If the page is no longer dirty, or its
2329                          * mapping no longer corresponds to inode we
2330                          * are writing (which means it has been
2331                          * truncated or invalidated), or the page is
2332                          * already under writeback and we are not
2333                          * doing a data integrity writeback, skip the page
2334                          */
2335                         if (!PageDirty(page) ||
2336                             (PageWriteback(page) &&
2337                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2338                             unlikely(page->mapping != mapping)) {
2339                                 unlock_page(page);
2340                                 continue;
2341                         }
2342
2343                         wait_on_page_writeback(page);
2344                         BUG_ON(PageWriteback(page));
2345
2346                         /*
2347                          * If we have inline data and arrive here, it means that
2348                          * we will soon create the block for the 1st page, so
2349                          * we'd better clear the inline data here.
2350                          */
2351                         if (ext4_has_inline_data(inode)) {
2352                                 BUG_ON(ext4_test_inode_state(inode,
2353                                                 EXT4_STATE_MAY_INLINE_DATA));
2354                                 ext4_destroy_inline_data(handle, inode);
2355                         }
2356
2357                         if (mpd->next_page != page->index)
2358                                 mpd->first_page = page->index;
2359                         mpd->next_page = page->index + 1;
2360                         logical = (sector_t) page->index <<
2361                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2362
2363                         /* Add all dirty buffers to mpd */
2364                         head = page_buffers(page);
2365                         bh = head;
2366                         do {
2367                                 BUG_ON(buffer_locked(bh));
2368                                 /*
2369                                  * We need to try to allocate unmapped blocks
2370                                  * in the same page.  Otherwise we won't make
2371                                  * progress with the page in ext4_writepage
2372                                  */
2373                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2374                                         mpage_add_bh_to_extent(mpd, logical,
2375                                                                bh->b_state);
2376                                         if (mpd->io_done)
2377                                                 goto ret_extent_tail;
2378                                 } else if (buffer_dirty(bh) &&
2379                                            buffer_mapped(bh)) {
2380                                         /*
2381                                          * mapped dirty buffer. We need to
2382                                          * update the b_state because we look
2383                                          * at b_state in mpage_da_map_blocks.
2384                                          * We don't update b_size because if we
2385                                          * find an unmapped buffer_head later
2386                                          * we need to use the b_state flag of
2387                                          * that buffer_head.
2388                                          */
2389                                         if (mpd->b_size == 0)
2390                                                 mpd->b_state =
2391                                                         bh->b_state & BH_FLAGS;
2392                                 }
2393                                 logical++;
2394                         } while ((bh = bh->b_this_page) != head);
2395
2396                         if (nr_to_write > 0) {
2397                                 nr_to_write--;
2398                                 if (nr_to_write == 0 &&
2399                                     wbc->sync_mode == WB_SYNC_NONE)
2400                                         /*
2401                                          * We stop writing back only if we are
2402                                          * not doing integrity sync. In case of
2403                                          * integrity sync we have to keep going
2404                                          * because someone may be concurrently
2405                                          * dirtying pages, and we might have
2406                                          * synced a lot of newly appeared dirty
2407                                          * pages, but have not synced all of the
2408                                          * old dirty pages.
2409                                          */
2410                                         goto out;
2411                         }
2412                 }
2413                 pagevec_release(&pvec);
2414                 cond_resched();
2415         }
2416         return 0;
2417 ret_extent_tail:
2418         ret = MPAGE_DA_EXTENT_TAIL;
2419 out:
2420         pagevec_release(&pvec);
2421         cond_resched();
2422         return ret;
2423 }
2424
2425
2426 static int ext4_da_writepages(struct address_space *mapping,
2427                               struct writeback_control *wbc)
2428 {
2429         pgoff_t index;
2430         int range_whole = 0;
2431         handle_t *handle = NULL;
2432         struct mpage_da_data mpd;
2433         struct inode *inode = mapping->host;
2434         int pages_written = 0;
2435         unsigned int max_pages;
2436         int range_cyclic, cycled = 1, io_done = 0;
2437         int needed_blocks, ret = 0;
2438         long desired_nr_to_write, nr_to_writebump = 0;
2439         loff_t range_start = wbc->range_start;
2440         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2441         pgoff_t done_index = 0;
2442         pgoff_t end;
2443         struct blk_plug plug;
2444
2445         trace_ext4_da_writepages(inode, wbc);
2446
2447         /*
2448          * No pages to write? This is mainly a kludge to avoid starting
2449          * a transaction for special inodes like journal inode on last iput()
2450          * because that could violate lock ordering on umount
2451          */
2452         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2453                 return 0;
2454
2455         /*
2456          * If the filesystem has aborted, it is read-only, so return
2457          * right away instead of dumping stack traces later on that
2458          * will obscure the real source of the problem.  We test
2459          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2460          * the latter could be true if the filesystem is mounted
2461          * read-only, and in that case, ext4_da_writepages should
2462          * *never* be called, so if that ever happens, we would want
2463          * the stack trace.
2464          */
2465         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2466                 return -EROFS;
2467
2468         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2469                 range_whole = 1;
2470
2471         range_cyclic = wbc->range_cyclic;
2472         if (wbc->range_cyclic) {
2473                 index = mapping->writeback_index;
2474                 if (index)
2475                         cycled = 0;
2476                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2477                 wbc->range_end  = LLONG_MAX;
2478                 wbc->range_cyclic = 0;
2479                 end = -1;
2480         } else {
2481                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2482                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2483         }
2484
2485         /*
2486          * This works around two forms of stupidity.  The first is in
2487          * the writeback code, which caps the maximum number of pages
2488          * written to be 1024 pages.  This is wrong on multiple
2489          * levels; different architectues have a different page size,
2490          * which changes the maximum amount of data which gets
2491          * written.  Secondly, 4 megabytes is way too small.  XFS
2492          * forces this value to be 16 megabytes by multiplying
2493          * nr_to_write parameter by four, and then relies on its
2494          * allocator to allocate larger extents to make them
2495          * contiguous.  Unfortunately this brings us to the second
2496          * stupidity, which is that ext4's mballoc code only allocates
2497          * at most 2048 blocks.  So we force contiguous writes up to
2498          * the number of dirty blocks in the inode, or
2499          * sbi->max_writeback_mb_bump whichever is smaller.
2500          */
2501         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2502         if (!range_cyclic && range_whole) {
2503                 if (wbc->nr_to_write == LONG_MAX)
2504                         desired_nr_to_write = wbc->nr_to_write;
2505                 else
2506                         desired_nr_to_write = wbc->nr_to_write * 8;
2507         } else
2508                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2509                                                            max_pages);
2510         if (desired_nr_to_write > max_pages)
2511                 desired_nr_to_write = max_pages;
2512
2513         if (wbc->nr_to_write < desired_nr_to_write) {
2514                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2515                 wbc->nr_to_write = desired_nr_to_write;
2516         }
2517
2518 retry:
2519         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2520                 tag_pages_for_writeback(mapping, index, end);
2521
2522         blk_start_plug(&plug);
2523         while (!ret && wbc->nr_to_write > 0) {
2524
2525                 /*
2526                  * we  insert one extent at a time. So we need
2527                  * credit needed for single extent allocation.
2528                  * journalled mode is currently not supported
2529                  * by delalloc
2530                  */
2531                 BUG_ON(ext4_should_journal_data(inode));
2532                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2533
2534                 /* start a new transaction*/
2535                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2536                                             needed_blocks);
2537                 if (IS_ERR(handle)) {
2538                         ret = PTR_ERR(handle);
2539                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2540                                "%ld pages, ino %lu; err %d", __func__,
2541                                 wbc->nr_to_write, inode->i_ino, ret);
2542                         blk_finish_plug(&plug);
2543                         goto out_writepages;
2544                 }
2545
2546                 /*
2547                  * Now call write_cache_pages_da() to find the next
2548                  * contiguous region of logical blocks that need
2549                  * blocks to be allocated by ext4 and submit them.
2550                  */
2551                 ret = write_cache_pages_da(handle, mapping,
2552                                            wbc, &mpd, &done_index);
2553                 /*
2554                  * If we have a contiguous extent of pages and we
2555                  * haven't done the I/O yet, map the blocks and submit
2556                  * them for I/O.
2557                  */
2558                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2559                         mpage_da_map_and_submit(&mpd);
2560                         ret = MPAGE_DA_EXTENT_TAIL;
2561                 }
2562                 trace_ext4_da_write_pages(inode, &mpd);
2563                 wbc->nr_to_write -= mpd.pages_written;
2564
2565                 ext4_journal_stop(handle);
2566
2567                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2568                         /* commit the transaction which would
2569                          * free blocks released in the transaction
2570                          * and try again
2571                          */
2572                         jbd2_journal_force_commit_nested(sbi->s_journal);
2573                         ret = 0;
2574                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2575                         /*
2576                          * Got one extent now try with rest of the pages.
2577                          * If mpd.retval is set -EIO, journal is aborted.
2578                          * So we don't need to write any more.
2579                          */
2580                         pages_written += mpd.pages_written;
2581                         ret = mpd.retval;
2582                         io_done = 1;
2583                 } else if (wbc->nr_to_write)
2584                         /*
2585                          * There is no more writeout needed
2586                          * or we requested for a noblocking writeout
2587                          * and we found the device congested
2588                          */
2589                         break;
2590         }
2591         blk_finish_plug(&plug);
2592         if (!io_done && !cycled) {
2593                 cycled = 1;
2594                 index = 0;
2595                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2596                 wbc->range_end  = mapping->writeback_index - 1;
2597                 goto retry;
2598         }
2599
2600         /* Update index */
2601         wbc->range_cyclic = range_cyclic;
2602         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2603                 /*
2604                  * set the writeback_index so that range_cyclic
2605                  * mode will write it back later
2606                  */
2607                 mapping->writeback_index = done_index;
2608
2609 out_writepages:
2610         wbc->nr_to_write -= nr_to_writebump;
2611         wbc->range_start = range_start;
2612         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2613         return ret;
2614 }
2615
2616 static int ext4_nonda_switch(struct super_block *sb)
2617 {
2618         s64 free_clusters, dirty_clusters;
2619         struct ext4_sb_info *sbi = EXT4_SB(sb);
2620
2621         /*
2622          * switch to non delalloc mode if we are running low
2623          * on free block. The free block accounting via percpu
2624          * counters can get slightly wrong with percpu_counter_batch getting
2625          * accumulated on each CPU without updating global counters
2626          * Delalloc need an accurate free block accounting. So switch
2627          * to non delalloc when we are near to error range.
2628          */
2629         free_clusters =
2630                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2631         dirty_clusters =
2632                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2633         /*
2634          * Start pushing delalloc when 1/2 of free blocks are dirty.
2635          */
2636         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2637                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2638
2639         if (2 * free_clusters < 3 * dirty_clusters ||
2640             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2641                 /*
2642                  * free block count is less than 150% of dirty blocks
2643                  * or free blocks is less than watermark
2644                  */
2645                 return 1;
2646         }
2647         return 0;
2648 }
2649
2650 /* We always reserve for an inode update; the superblock could be there too */
2651 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2652 {
2653         if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2654                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2655                 return 1;
2656
2657         if (pos + len <= 0x7fffffffULL)
2658                 return 1;
2659
2660         /* We might need to update the superblock to set LARGE_FILE */
2661         return 2;
2662 }
2663
2664 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2665                                loff_t pos, unsigned len, unsigned flags,
2666                                struct page **pagep, void **fsdata)
2667 {
2668         int ret, retries = 0;
2669         struct page *page;
2670         pgoff_t index;
2671         struct inode *inode = mapping->host;
2672         handle_t *handle;
2673
2674         index = pos >> PAGE_CACHE_SHIFT;
2675
2676         if (ext4_nonda_switch(inode->i_sb)) {
2677                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2678                 return ext4_write_begin(file, mapping, pos,
2679                                         len, flags, pagep, fsdata);
2680         }
2681         *fsdata = (void *)0;
2682         trace_ext4_da_write_begin(inode, pos, len, flags);
2683
2684         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2685                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2686                                                       pos, len, flags,
2687                                                       pagep, fsdata);
2688                 if (ret < 0)
2689                         return ret;
2690                 if (ret == 1)
2691                         return 0;
2692         }
2693
2694         /*
2695          * grab_cache_page_write_begin() can take a long time if the
2696          * system is thrashing due to memory pressure, or if the page
2697          * is being written back.  So grab it first before we start
2698          * the transaction handle.  This also allows us to allocate
2699          * the page (if needed) without using GFP_NOFS.
2700          */
2701 retry_grab:
2702         page = grab_cache_page_write_begin(mapping, index, flags);
2703         if (!page)
2704                 return -ENOMEM;
2705         unlock_page(page);
2706
2707         /*
2708          * With delayed allocation, we don't log the i_disksize update
2709          * if there is delayed block allocation. But we still need
2710          * to journalling the i_disksize update if writes to the end
2711          * of file which has an already mapped buffer.
2712          */
2713 retry_journal:
2714         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2715                                 ext4_da_write_credits(inode, pos, len));
2716         if (IS_ERR(handle)) {
2717                 page_cache_release(page);
2718                 return PTR_ERR(handle);
2719         }
2720
2721         lock_page(page);
2722         if (page->mapping != mapping) {
2723                 /* The page got truncated from under us */
2724                 unlock_page(page);
2725                 page_cache_release(page);
2726                 ext4_journal_stop(handle);
2727                 goto retry_grab;
2728         }
2729         /* In case writeback began while the page was unlocked */
2730         wait_on_page_writeback(page);
2731
2732         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2733         if (ret < 0) {
2734                 unlock_page(page);
2735                 ext4_journal_stop(handle);
2736                 /*
2737                  * block_write_begin may have instantiated a few blocks
2738                  * outside i_size.  Trim these off again. Don't need
2739                  * i_size_read because we hold i_mutex.
2740                  */
2741                 if (pos + len > inode->i_size)
2742                         ext4_truncate_failed_write(inode);
2743
2744                 if (ret == -ENOSPC &&
2745                     ext4_should_retry_alloc(inode->i_sb, &retries))
2746                         goto retry_journal;
2747
2748                 page_cache_release(page);
2749                 return ret;
2750         }
2751
2752         *pagep = page;
2753         return ret;
2754 }
2755
2756 /*
2757  * Check if we should update i_disksize
2758  * when write to the end of file but not require block allocation
2759  */
2760 static int ext4_da_should_update_i_disksize(struct page *page,
2761                                             unsigned long offset)
2762 {
2763         struct buffer_head *bh;
2764         struct inode *inode = page->mapping->host;
2765         unsigned int idx;
2766         int i;
2767
2768         bh = page_buffers(page);
2769         idx = offset >> inode->i_blkbits;
2770
2771         for (i = 0; i < idx; i++)
2772                 bh = bh->b_this_page;
2773
2774         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2775                 return 0;
2776         return 1;
2777 }
2778
2779 static int ext4_da_write_end(struct file *file,
2780                              struct address_space *mapping,
2781                              loff_t pos, unsigned len, unsigned copied,
2782                              struct page *page, void *fsdata)
2783 {
2784         struct inode *inode = mapping->host;
2785         int ret = 0, ret2;
2786         handle_t *handle = ext4_journal_current_handle();
2787         loff_t new_i_size;
2788         unsigned long start, end;
2789         int write_mode = (int)(unsigned long)fsdata;
2790
2791         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2792                 return ext4_write_end(file, mapping, pos,
2793                                       len, copied, page, fsdata);
2794
2795         trace_ext4_da_write_end(inode, pos, len, copied);
2796         start = pos & (PAGE_CACHE_SIZE - 1);
2797         end = start + copied - 1;
2798
2799         /*
2800          * generic_write_end() will run mark_inode_dirty() if i_size
2801          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2802          * into that.
2803          */
2804         new_i_size = pos + copied;
2805         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2806                 if (ext4_has_inline_data(inode) ||
2807                     ext4_da_should_update_i_disksize(page, end)) {
2808                         down_write(&EXT4_I(inode)->i_data_sem);
2809                         if (new_i_size > EXT4_I(inode)->i_disksize)
2810                                 EXT4_I(inode)->i_disksize = new_i_size;
2811                         up_write(&EXT4_I(inode)->i_data_sem);
2812                         /* We need to mark inode dirty even if
2813                          * new_i_size is less that inode->i_size
2814                          * bu greater than i_disksize.(hint delalloc)
2815                          */
2816                         ext4_mark_inode_dirty(handle, inode);
2817                 }
2818         }
2819
2820         if (write_mode != CONVERT_INLINE_DATA &&
2821             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2822             ext4_has_inline_data(inode))
2823                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2824                                                      page);
2825         else
2826                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2827                                                         page, fsdata);
2828
2829         copied = ret2;
2830         if (ret2 < 0)
2831                 ret = ret2;
2832         ret2 = ext4_journal_stop(handle);
2833         if (!ret)
2834                 ret = ret2;
2835
2836         return ret ? ret : copied;
2837 }
2838
2839 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2840 {
2841         /*
2842          * Drop reserved blocks
2843          */
2844         BUG_ON(!PageLocked(page));
2845         if (!page_has_buffers(page))
2846                 goto out;
2847
2848         ext4_da_page_release_reservation(page, offset);
2849
2850 out:
2851         ext4_invalidatepage(page, offset);
2852
2853         return;
2854 }
2855
2856 /*
2857  * Force all delayed allocation blocks to be allocated for a given inode.
2858  */
2859 int ext4_alloc_da_blocks(struct inode *inode)
2860 {
2861         trace_ext4_alloc_da_blocks(inode);
2862
2863         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2864             !EXT4_I(inode)->i_reserved_meta_blocks)
2865                 return 0;
2866
2867         /*
2868          * We do something simple for now.  The filemap_flush() will
2869          * also start triggering a write of the data blocks, which is
2870          * not strictly speaking necessary (and for users of
2871          * laptop_mode, not even desirable).  However, to do otherwise
2872          * would require replicating code paths in:
2873          *
2874          * ext4_da_writepages() ->
2875          *    write_cache_pages() ---> (via passed in callback function)
2876          *        __mpage_da_writepage() -->
2877          *           mpage_add_bh_to_extent()
2878          *           mpage_da_map_blocks()
2879          *
2880          * The problem is that write_cache_pages(), located in
2881          * mm/page-writeback.c, marks pages clean in preparation for
2882          * doing I/O, which is not desirable if we're not planning on
2883          * doing I/O at all.
2884          *
2885          * We could call write_cache_pages(), and then redirty all of
2886          * the pages by calling redirty_page_for_writepage() but that
2887          * would be ugly in the extreme.  So instead we would need to
2888          * replicate parts of the code in the above functions,
2889          * simplifying them because we wouldn't actually intend to
2890          * write out the pages, but rather only collect contiguous
2891          * logical block extents, call the multi-block allocator, and
2892          * then update the buffer heads with the block allocations.
2893          *
2894          * For now, though, we'll cheat by calling filemap_flush(),
2895          * which will map the blocks, and start the I/O, but not
2896          * actually wait for the I/O to complete.
2897          */
2898         return filemap_flush(inode->i_mapping);
2899 }
2900
2901 /*
2902  * bmap() is special.  It gets used by applications such as lilo and by
2903  * the swapper to find the on-disk block of a specific piece of data.
2904  *
2905  * Naturally, this is dangerous if the block concerned is still in the
2906  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2907  * filesystem and enables swap, then they may get a nasty shock when the
2908  * data getting swapped to that swapfile suddenly gets overwritten by
2909  * the original zero's written out previously to the journal and
2910  * awaiting writeback in the kernel's buffer cache.
2911  *
2912  * So, if we see any bmap calls here on a modified, data-journaled file,
2913  * take extra steps to flush any blocks which might be in the cache.
2914  */
2915 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2916 {
2917         struct inode *inode = mapping->host;
2918         journal_t *journal;
2919         int err;
2920
2921         /*
2922          * We can get here for an inline file via the FIBMAP ioctl
2923          */
2924         if (ext4_has_inline_data(inode))
2925                 return 0;
2926
2927         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2928                         test_opt(inode->i_sb, DELALLOC)) {
2929                 /*
2930                  * With delalloc we want to sync the file
2931                  * so that we can make sure we allocate
2932                  * blocks for file
2933                  */
2934                 filemap_write_and_wait(mapping);
2935         }
2936
2937         if (EXT4_JOURNAL(inode) &&
2938             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2939                 /*
2940                  * This is a REALLY heavyweight approach, but the use of
2941                  * bmap on dirty files is expected to be extremely rare:
2942                  * only if we run lilo or swapon on a freshly made file
2943                  * do we expect this to happen.
2944                  *
2945                  * (bmap requires CAP_SYS_RAWIO so this does not
2946                  * represent an unprivileged user DOS attack --- we'd be
2947                  * in trouble if mortal users could trigger this path at
2948                  * will.)
2949                  *
2950                  * NB. EXT4_STATE_JDATA is not set on files other than
2951                  * regular files.  If somebody wants to bmap a directory
2952                  * or symlink and gets confused because the buffer
2953                  * hasn't yet been flushed to disk, they deserve
2954                  * everything they get.
2955                  */
2956
2957                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2958                 journal = EXT4_JOURNAL(inode);
2959                 jbd2_journal_lock_updates(journal);
2960                 err = jbd2_journal_flush(journal);
2961                 jbd2_journal_unlock_updates(journal);
2962
2963                 if (err)
2964                         return 0;
2965         }
2966
2967         return generic_block_bmap(mapping, block, ext4_get_block);
2968 }
2969
2970 static int ext4_readpage(struct file *file, struct page *page)
2971 {
2972         int ret = -EAGAIN;
2973         struct inode *inode = page->mapping->host;
2974
2975         trace_ext4_readpage(page);
2976
2977         if (ext4_has_inline_data(inode))
2978                 ret = ext4_readpage_inline(inode, page);
2979
2980         if (ret == -EAGAIN)
2981                 return mpage_readpage(page, ext4_get_block);
2982
2983         return ret;
2984 }
2985
2986 static int
2987 ext4_readpages(struct file *file, struct address_space *mapping,
2988                 struct list_head *pages, unsigned nr_pages)
2989 {
2990         struct inode *inode = mapping->host;
2991
2992         /* If the file has inline data, no need to do readpages. */
2993         if (ext4_has_inline_data(inode))
2994                 return 0;
2995
2996         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2997 }
2998
2999 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3000 {
3001         trace_ext4_invalidatepage(page, offset);
3002
3003         /* No journalling happens on data buffers when this function is used */
3004         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3005
3006         block_invalidatepage(page, offset);
3007 }
3008
3009 static int __ext4_journalled_invalidatepage(struct page *page,
3010                                             unsigned long offset)
3011 {
3012         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3013
3014         trace_ext4_journalled_invalidatepage(page, offset);
3015
3016         /*
3017          * If it's a full truncate we just forget about the pending dirtying
3018          */
3019         if (offset == 0)
3020                 ClearPageChecked(page);
3021
3022         return jbd2_journal_invalidatepage(journal, page, offset);
3023 }
3024
3025 /* Wrapper for aops... */
3026 static void ext4_journalled_invalidatepage(struct page *page,
3027                                            unsigned long offset)
3028 {
3029         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3030 }
3031
3032 static int ext4_releasepage(struct page *page, gfp_t wait)
3033 {
3034         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3035
3036         trace_ext4_releasepage(page);
3037
3038         /* Page has dirty journalled data -> cannot release */
3039         if (PageChecked(page))
3040                 return 0;
3041         if (journal)
3042                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3043         else
3044                 return try_to_free_buffers(page);
3045 }
3046
3047 /*
3048  * ext4_get_block used when preparing for a DIO write or buffer write.
3049  * We allocate an uinitialized extent if blocks haven't been allocated.
3050  * The extent will be converted to initialized after the IO is complete.
3051  */
3052 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3053                    struct buffer_head *bh_result, int create)
3054 {
3055         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3056                    inode->i_ino, create);
3057         return _ext4_get_block(inode, iblock, bh_result,
3058                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3059 }
3060
3061 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3062                    struct buffer_head *bh_result, int create)
3063 {
3064         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3065                    inode->i_ino, create);
3066         return _ext4_get_block(inode, iblock, bh_result,
3067                                EXT4_GET_BLOCKS_NO_LOCK);
3068 }
3069
3070 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3071                             ssize_t size, void *private, int ret,
3072                             bool is_async)
3073 {
3074         struct inode *inode = file_inode(iocb->ki_filp);
3075         ext4_io_end_t *io_end = iocb->private;
3076
3077         /* if not async direct IO or dio with 0 bytes write, just return */
3078         if (!io_end || !size)
3079                 goto out;
3080
3081         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3082                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3083                   iocb->private, io_end->inode->i_ino, iocb, offset,
3084                   size);
3085
3086         iocb->private = NULL;
3087
3088         /* if not aio dio with unwritten extents, just free io and return */
3089         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3090                 ext4_free_io_end(io_end);
3091 out:
3092                 inode_dio_done(inode);
3093                 if (is_async)
3094                         aio_complete(iocb, ret, 0);
3095                 return;
3096         }
3097
3098         io_end->offset = offset;
3099         io_end->size = size;
3100         if (is_async) {
3101                 io_end->iocb = iocb;
3102                 io_end->result = ret;
3103         }
3104
3105         ext4_add_complete_io(io_end);
3106 }
3107
3108 /*
3109  * For ext4 extent files, ext4 will do direct-io write to holes,
3110  * preallocated extents, and those write extend the file, no need to
3111  * fall back to buffered IO.
3112  *
3113  * For holes, we fallocate those blocks, mark them as uninitialized
3114  * If those blocks were preallocated, we mark sure they are split, but
3115  * still keep the range to write as uninitialized.
3116  *
3117  * The unwritten extents will be converted to written when DIO is completed.
3118  * For async direct IO, since the IO may still pending when return, we
3119  * set up an end_io call back function, which will do the conversion
3120  * when async direct IO completed.
3121  *
3122  * If the O_DIRECT write will extend the file then add this inode to the
3123  * orphan list.  So recovery will truncate it back to the original size
3124  * if the machine crashes during the write.
3125  *
3126  */
3127 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3128                               const struct iovec *iov, loff_t offset,
3129                               unsigned long nr_segs)
3130 {
3131         struct file *file = iocb->ki_filp;
3132         struct inode *inode = file->f_mapping->host;
3133         ssize_t ret;
3134         size_t count = iov_length(iov, nr_segs);
3135         int overwrite = 0;
3136         get_block_t *get_block_func = NULL;
3137         int dio_flags = 0;
3138         loff_t final_size = offset + count;
3139
3140         /* Use the old path for reads and writes beyond i_size. */
3141         if (rw != WRITE || final_size > inode->i_size)
3142                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3143
3144         BUG_ON(iocb->private == NULL);
3145
3146         /* If we do a overwrite dio, i_mutex locking can be released */
3147         overwrite = *((int *)iocb->private);
3148
3149         if (overwrite) {
3150                 atomic_inc(&inode->i_dio_count);
3151                 down_read(&EXT4_I(inode)->i_data_sem);
3152                 mutex_unlock(&inode->i_mutex);
3153         }
3154
3155         /*
3156          * We could direct write to holes and fallocate.
3157          *
3158          * Allocated blocks to fill the hole are marked as
3159          * uninitialized to prevent parallel buffered read to expose
3160          * the stale data before DIO complete the data IO.
3161          *
3162          * As to previously fallocated extents, ext4 get_block will
3163          * just simply mark the buffer mapped but still keep the
3164          * extents uninitialized.
3165          *
3166          * For non AIO case, we will convert those unwritten extents
3167          * to written after return back from blockdev_direct_IO.
3168          *
3169          * For async DIO, the conversion needs to be deferred when the
3170          * IO is completed. The ext4 end_io callback function will be
3171          * called to take care of the conversion work.  Here for async
3172          * case, we allocate an io_end structure to hook to the iocb.
3173          */
3174         iocb->private = NULL;
3175         ext4_inode_aio_set(inode, NULL);
3176         if (!is_sync_kiocb(iocb)) {
3177                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3178                 if (!io_end) {
3179                         ret = -ENOMEM;
3180                         goto retake_lock;
3181                 }
3182                 io_end->flag |= EXT4_IO_END_DIRECT;
3183                 iocb->private = io_end;
3184                 /*
3185                  * we save the io structure for current async direct
3186                  * IO, so that later ext4_map_blocks() could flag the
3187                  * io structure whether there is a unwritten extents
3188                  * needs to be converted when IO is completed.
3189                  */
3190                 ext4_inode_aio_set(inode, io_end);
3191         }
3192
3193         if (overwrite) {
3194                 get_block_func = ext4_get_block_write_nolock;
3195         } else {
3196                 get_block_func = ext4_get_block_write;
3197                 dio_flags = DIO_LOCKING;
3198         }
3199         ret = __blockdev_direct_IO(rw, iocb, inode,
3200                                    inode->i_sb->s_bdev, iov,
3201                                    offset, nr_segs,
3202                                    get_block_func,
3203                                    ext4_end_io_dio,
3204                                    NULL,
3205                                    dio_flags);
3206
3207         if (iocb->private)
3208                 ext4_inode_aio_set(inode, NULL);
3209         /*
3210          * The io_end structure takes a reference to the inode, that
3211          * structure needs to be destroyed and the reference to the
3212          * inode need to be dropped, when IO is complete, even with 0
3213          * byte write, or failed.
3214          *
3215          * In the successful AIO DIO case, the io_end structure will
3216          * be destroyed and the reference to the inode will be dropped
3217          * after the end_io call back function is called.
3218          *
3219          * In the case there is 0 byte write, or error case, since VFS
3220          * direct IO won't invoke the end_io call back function, we
3221          * need to free the end_io structure here.
3222          */
3223         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3224                 ext4_free_io_end(iocb->private);
3225                 iocb->private = NULL;
3226         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3227                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3228                 int err;
3229                 /*
3230                  * for non AIO case, since the IO is already
3231                  * completed, we could do the conversion right here
3232                  */
3233                 err = ext4_convert_unwritten_extents(inode,
3234                                                      offset, ret);
3235                 if (err < 0)
3236                         ret = err;
3237                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3238         }
3239
3240 retake_lock:
3241         /* take i_mutex locking again if we do a ovewrite dio */
3242         if (overwrite) {
3243                 inode_dio_done(inode);
3244                 up_read(&EXT4_I(inode)->i_data_sem);
3245                 mutex_lock(&inode->i_mutex);
3246         }
3247
3248         return ret;
3249 }
3250
3251 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3252                               const struct iovec *iov, loff_t offset,
3253                               unsigned long nr_segs)
3254 {
3255         struct file *file = iocb->ki_filp;
3256         struct inode *inode = file->f_mapping->host;
3257         ssize_t ret;
3258
3259         /*
3260          * If we are doing data journalling we don't support O_DIRECT
3261          */
3262         if (ext4_should_journal_data(inode))
3263                 return 0;
3264
3265         /* Let buffer I/O handle the inline data case. */
3266         if (ext4_has_inline_data(inode))
3267                 return 0;
3268
3269         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3270         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3271                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3272         else
3273                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3274         trace_ext4_direct_IO_exit(inode, offset,
3275                                 iov_length(iov, nr_segs), rw, ret);
3276         return ret;
3277 }
3278
3279 /*
3280  * Pages can be marked dirty completely asynchronously from ext4's journalling
3281  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3282  * much here because ->set_page_dirty is called under VFS locks.  The page is
3283  * not necessarily locked.
3284  *
3285  * We cannot just dirty the page and leave attached buffers clean, because the
3286  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3287  * or jbddirty because all the journalling code will explode.
3288  *
3289  * So what we do is to mark the page "pending dirty" and next time writepage
3290  * is called, propagate that into the buffers appropriately.
3291  */
3292 static int ext4_journalled_set_page_dirty(struct page *page)
3293 {
3294         SetPageChecked(page);
3295         return __set_page_dirty_nobuffers(page);
3296 }
3297
3298 static const struct address_space_operations ext4_aops = {
3299         .readpage               = ext4_readpage,
3300         .readpages              = ext4_readpages,
3301         .writepage              = ext4_writepage,
3302         .write_begin            = ext4_write_begin,
3303         .write_end              = ext4_write_end,
3304         .bmap                   = ext4_bmap,
3305         .invalidatepage         = ext4_invalidatepage,
3306         .releasepage            = ext4_releasepage,
3307         .direct_IO              = ext4_direct_IO,
3308         .migratepage            = buffer_migrate_page,
3309         .is_partially_uptodate  = block_is_partially_uptodate,
3310         .error_remove_page      = generic_error_remove_page,
3311 };
3312
3313 static const struct address_space_operations ext4_journalled_aops = {
3314         .readpage               = ext4_readpage,
3315         .readpages              = ext4_readpages,
3316         .writepage              = ext4_writepage,
3317         .write_begin            = ext4_write_begin,
3318         .write_end              = ext4_journalled_write_end,
3319         .set_page_dirty         = ext4_journalled_set_page_dirty,
3320         .bmap                   = ext4_bmap,
3321         .invalidatepage         = ext4_journalled_invalidatepage,
3322         .releasepage            = ext4_releasepage,
3323         .direct_IO              = ext4_direct_IO,
3324         .is_partially_uptodate  = block_is_partially_uptodate,
3325         .error_remove_page      = generic_error_remove_page,
3326 };
3327
3328 static const struct address_space_operations ext4_da_aops = {
3329         .readpage               = ext4_readpage,
3330         .readpages              = ext4_readpages,
3331         .writepage              = ext4_writepage,
3332         .writepages             = ext4_da_writepages,
3333         .write_begin            = ext4_da_write_begin,
3334         .write_end              = ext4_da_write_end,
3335         .bmap                   = ext4_bmap,
3336         .invalidatepage         = ext4_da_invalidatepage,
3337         .releasepage            = ext4_releasepage,
3338         .direct_IO              = ext4_direct_IO,
3339         .migratepage            = buffer_migrate_page,
3340         .is_partially_uptodate  = block_is_partially_uptodate,
3341         .error_remove_page      = generic_error_remove_page,
3342 };
3343
3344 void ext4_set_aops(struct inode *inode)
3345 {
3346         switch (ext4_inode_journal_mode(inode)) {
3347         case EXT4_INODE_ORDERED_DATA_MODE:
3348                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3349                 break;
3350         case EXT4_INODE_WRITEBACK_DATA_MODE:
3351                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3352                 break;
3353         case EXT4_INODE_JOURNAL_DATA_MODE:
3354                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3355                 return;
3356         default:
3357                 BUG();
3358         }
3359         if (test_opt(inode->i_sb, DELALLOC))
3360                 inode->i_mapping->a_ops = &ext4_da_aops;
3361         else
3362                 inode->i_mapping->a_ops = &ext4_aops;
3363 }
3364
3365
3366 /*
3367  * ext4_discard_partial_page_buffers()
3368  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3369  * This function finds and locks the page containing the offset
3370  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3371  * Calling functions that already have the page locked should call
3372  * ext4_discard_partial_page_buffers_no_lock directly.
3373  */
3374 int ext4_discard_partial_page_buffers(handle_t *handle,
3375                 struct address_space *mapping, loff_t from,
3376                 loff_t length, int flags)
3377 {
3378         struct inode *inode = mapping->host;
3379         struct page *page;
3380         int err = 0;
3381
3382         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3383                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3384         if (!page)
3385                 return -ENOMEM;
3386
3387         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3388                 from, length, flags);
3389
3390         unlock_page(page);
3391         page_cache_release(page);
3392         return err;
3393 }
3394
3395 /*
3396  * ext4_discard_partial_page_buffers_no_lock()
3397  * Zeros a page range of length 'length' starting from offset 'from'.
3398  * Buffer heads that correspond to the block aligned regions of the
3399  * zeroed range will be unmapped.  Unblock aligned regions
3400  * will have the corresponding buffer head mapped if needed so that
3401  * that region of the page can be updated with the partial zero out.
3402  *
3403  * This function assumes that the page has already been  locked.  The
3404  * The range to be discarded must be contained with in the given page.
3405  * If the specified range exceeds the end of the page it will be shortened
3406  * to the end of the page that corresponds to 'from'.  This function is
3407  * appropriate for updating a page and it buffer heads to be unmapped and
3408  * zeroed for blocks that have been either released, or are going to be
3409  * released.
3410  *
3411  * handle: The journal handle
3412  * inode:  The files inode
3413  * page:   A locked page that contains the offset "from"
3414  * from:   The starting byte offset (from the beginning of the file)
3415  *         to begin discarding
3416  * len:    The length of bytes to discard
3417  * flags:  Optional flags that may be used:
3418  *
3419  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3420  *         Only zero the regions of the page whose buffer heads
3421  *         have already been unmapped.  This flag is appropriate
3422  *         for updating the contents of a page whose blocks may
3423  *         have already been released, and we only want to zero
3424  *         out the regions that correspond to those released blocks.
3425  *
3426  * Returns zero on success or negative on failure.
3427  */
3428 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3429                 struct inode *inode, struct page *page, loff_t from,
3430                 loff_t length, int flags)
3431 {
3432         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3433         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3434         unsigned int blocksize, max, pos;
3435         ext4_lblk_t iblock;
3436         struct buffer_head *bh;
3437         int err = 0;
3438
3439         blocksize = inode->i_sb->s_blocksize;
3440         max = PAGE_CACHE_SIZE - offset;
3441
3442         if (index != page->index)
3443                 return -EINVAL;
3444
3445         /*
3446          * correct length if it does not fall between
3447          * 'from' and the end of the page
3448          */
3449         if (length > max || length < 0)
3450                 length = max;
3451
3452         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3453
3454         if (!page_has_buffers(page))
3455                 create_empty_buffers(page, blocksize, 0);
3456
3457         /* Find the buffer that contains "offset" */
3458         bh = page_buffers(page);
3459         pos = blocksize;
3460         while (offset >= pos) {
3461                 bh = bh->b_this_page;
3462                 iblock++;
3463                 pos += blocksize;
3464         }
3465
3466         pos = offset;
3467         while (pos < offset + length) {
3468                 unsigned int end_of_block, range_to_discard;
3469
3470                 err = 0;
3471
3472                 /* The length of space left to zero and unmap */
3473                 range_to_discard = offset + length - pos;
3474
3475                 /* The length of space until the end of the block */
3476                 end_of_block = blocksize - (pos & (blocksize-1));
3477
3478                 /*
3479                  * Do not unmap or zero past end of block
3480                  * for this buffer head
3481                  */
3482                 if (range_to_discard > end_of_block)
3483                         range_to_discard = end_of_block;
3484
3485
3486                 /*
3487                  * Skip this buffer head if we are only zeroing unampped
3488                  * regions of the page
3489                  */
3490                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3491                         buffer_mapped(bh))
3492                                 goto next;
3493
3494                 /* If the range is block aligned, unmap */
3495                 if (range_to_discard == blocksize) {
3496                         clear_buffer_dirty(bh);
3497                         bh->b_bdev = NULL;
3498                         clear_buffer_mapped(bh);
3499                         clear_buffer_req(bh);
3500                         clear_buffer_new(bh);
3501                         clear_buffer_delay(bh);
3502                         clear_buffer_unwritten(bh);
3503                         clear_buffer_uptodate(bh);
3504                         zero_user(page, pos, range_to_discard);
3505                         BUFFER_TRACE(bh, "Buffer discarded");
3506                         goto next;
3507                 }
3508
3509                 /*
3510                  * If this block is not completely contained in the range
3511                  * to be discarded, then it is not going to be released. Because
3512                  * we need to keep this block, we need to make sure this part
3513                  * of the page is uptodate before we modify it by writeing
3514                  * partial zeros on it.
3515                  */
3516                 if (!buffer_mapped(bh)) {
3517                         /*
3518                          * Buffer head must be mapped before we can read
3519                          * from the block
3520                          */
3521                         BUFFER_TRACE(bh, "unmapped");
3522                         ext4_get_block(inode, iblock, bh, 0);
3523                         /* unmapped? It's a hole - nothing to do */
3524                         if (!buffer_mapped(bh)) {
3525                                 BUFFER_TRACE(bh, "still unmapped");
3526                                 goto next;
3527                         }
3528                 }
3529
3530                 /* Ok, it's mapped. Make sure it's up-to-date */
3531                 if (PageUptodate(page))
3532                         set_buffer_uptodate(bh);
3533
3534                 if (!buffer_uptodate(bh)) {
3535                         err = -EIO;
3536                         ll_rw_block(READ, 1, &bh);
3537                         wait_on_buffer(bh);
3538                         /* Uhhuh. Read error. Complain and punt.*/
3539                         if (!buffer_uptodate(bh))
3540                                 goto next;
3541                 }
3542
3543                 if (ext4_should_journal_data(inode)) {
3544                         BUFFER_TRACE(bh, "get write access");
3545                         err = ext4_journal_get_write_access(handle, bh);
3546                         if (err)
3547                                 goto next;
3548                 }
3549
3550                 zero_user(page, pos, range_to_discard);
3551
3552                 err = 0;
3553                 if (ext4_should_journal_data(inode)) {
3554                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3555                 } else
3556                         mark_buffer_dirty(bh);
3557
3558                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3559 next:
3560                 bh = bh->b_this_page;
3561                 iblock++;
3562                 pos += range_to_discard;
3563         }
3564
3565         return err;
3566 }
3567
3568 int ext4_can_truncate(struct inode *inode)
3569 {
3570         if (S_ISREG(inode->i_mode))
3571                 return 1;
3572         if (S_ISDIR(inode->i_mode))
3573                 return 1;
3574         if (S_ISLNK(inode->i_mode))
3575                 return !ext4_inode_is_fast_symlink(inode);
3576         return 0;
3577 }
3578
3579 /*
3580  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3581  * associated with the given offset and length
3582  *
3583  * @inode:  File inode
3584  * @offset: The offset where the hole will begin
3585  * @len:    The length of the hole
3586  *
3587  * Returns: 0 on success or negative on failure
3588  */
3589
3590 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3591 {
3592         struct inode *inode = file_inode(file);
3593         struct super_block *sb = inode->i_sb;
3594         ext4_lblk_t first_block, stop_block;
3595         struct address_space *mapping = inode->i_mapping;
3596         loff_t first_page, last_page, page_len;
3597         loff_t first_page_offset, last_page_offset;
3598         handle_t *handle;
3599         unsigned int credits;
3600         int ret = 0;
3601
3602         if (!S_ISREG(inode->i_mode))
3603                 return -EOPNOTSUPP;
3604
3605         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3606                 /* TODO: Add support for bigalloc file systems */
3607                 return -EOPNOTSUPP;
3608         }
3609
3610         trace_ext4_punch_hole(inode, offset, length);
3611
3612         /*
3613          * Write out all dirty pages to avoid race conditions
3614          * Then release them.
3615          */
3616         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3617                 ret = filemap_write_and_wait_range(mapping, offset,
3618                                                    offset + length - 1);
3619                 if (ret)
3620                         return ret;
3621         }
3622
3623         mutex_lock(&inode->i_mutex);
3624         /* It's not possible punch hole on append only file */
3625         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3626                 ret = -EPERM;
3627                 goto out_mutex;
3628         }
3629         if (IS_SWAPFILE(inode)) {
3630                 ret = -ETXTBSY;
3631                 goto out_mutex;
3632         }
3633
3634         /* No need to punch hole beyond i_size */
3635         if (offset >= inode->i_size)
3636                 goto out_mutex;
3637
3638         /*
3639          * If the hole extends beyond i_size, set the hole
3640          * to end after the page that contains i_size
3641          */
3642         if (offset + length > inode->i_size) {
3643                 length = inode->i_size +
3644                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3645                    offset;
3646         }
3647
3648         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3649         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3650
3651         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3652         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3653
3654         /* Now release the pages */
3655         if (last_page_offset > first_page_offset) {
3656                 truncate_pagecache_range(inode, first_page_offset,
3657                                          last_page_offset - 1);
3658         }
3659
3660         /* Wait all existing dio workers, newcomers will block on i_mutex */
3661         ext4_inode_block_unlocked_dio(inode);
3662         ret = ext4_flush_unwritten_io(inode);
3663         if (ret)
3664                 goto out_dio;
3665         inode_dio_wait(inode);
3666
3667         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3668                 credits = ext4_writepage_trans_blocks(inode);
3669         else
3670                 credits = ext4_blocks_for_truncate(inode);
3671         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3672         if (IS_ERR(handle)) {
3673                 ret = PTR_ERR(handle);
3674                 ext4_std_error(sb, ret);
3675                 goto out_dio;
3676         }
3677
3678         /*
3679          * Now we need to zero out the non-page-aligned data in the
3680          * pages at the start and tail of the hole, and unmap the
3681          * buffer heads for the block aligned regions of the page that
3682          * were completely zeroed.
3683          */
3684         if (first_page > last_page) {
3685                 /*
3686                  * If the file space being truncated is contained
3687                  * within a page just zero out and unmap the middle of
3688                  * that page
3689                  */
3690                 ret = ext4_discard_partial_page_buffers(handle,
3691                         mapping, offset, length, 0);
3692
3693                 if (ret)
3694                         goto out_stop;
3695         } else {
3696                 /*
3697                  * zero out and unmap the partial page that contains
3698                  * the start of the hole
3699                  */
3700                 page_len = first_page_offset - offset;
3701                 if (page_len > 0) {
3702                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3703                                                 offset, page_len, 0);
3704                         if (ret)
3705                                 goto out_stop;
3706                 }
3707
3708                 /*
3709                  * zero out and unmap the partial page that contains
3710                  * the end of the hole
3711                  */
3712                 page_len = offset + length - last_page_offset;
3713                 if (page_len > 0) {
3714                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3715                                         last_page_offset, page_len, 0);
3716                         if (ret)
3717                                 goto out_stop;
3718                 }
3719         }
3720
3721         /*
3722          * If i_size is contained in the last page, we need to
3723          * unmap and zero the partial page after i_size
3724          */
3725         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3726            inode->i_size % PAGE_CACHE_SIZE != 0) {
3727                 page_len = PAGE_CACHE_SIZE -
3728                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3729
3730                 if (page_len > 0) {
3731                         ret = ext4_discard_partial_page_buffers(handle,
3732                                         mapping, inode->i_size, page_len, 0);
3733
3734                         if (ret)
3735                                 goto out_stop;
3736                 }
3737         }
3738
3739         first_block = (offset + sb->s_blocksize - 1) >>
3740                 EXT4_BLOCK_SIZE_BITS(sb);
3741         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3742
3743         /* If there are no blocks to remove, return now */
3744         if (first_block >= stop_block)
3745                 goto out_stop;
3746
3747         down_write(&EXT4_I(inode)->i_data_sem);
3748         ext4_discard_preallocations(inode);
3749
3750         ret = ext4_es_remove_extent(inode, first_block,
3751                                     stop_block - first_block);
3752         if (ret) {
3753                 up_write(&EXT4_I(inode)->i_data_sem);
3754                 goto out_stop;
3755         }
3756
3757         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3758                 ret = ext4_ext_remove_space(inode, first_block,
3759                                             stop_block - 1);
3760         else
3761                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3762                                             stop_block);
3763
3764         ext4_discard_preallocations(inode);
3765         up_write(&EXT4_I(inode)->i_data_sem);
3766         if (IS_SYNC(inode))
3767                 ext4_handle_sync(handle);
3768         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3769         ext4_mark_inode_dirty(handle, inode);
3770 out_stop:
3771         ext4_journal_stop(handle);
3772 out_dio:
3773         ext4_inode_resume_unlocked_dio(inode);
3774 out_mutex:
3775         mutex_unlock(&inode->i_mutex);
3776         return ret;
3777 }
3778
3779 /*
3780  * ext4_truncate()
3781  *
3782  * We block out ext4_get_block() block instantiations across the entire
3783  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3784  * simultaneously on behalf of the same inode.
3785  *
3786  * As we work through the truncate and commit bits of it to the journal there
3787  * is one core, guiding principle: the file's tree must always be consistent on
3788  * disk.  We must be able to restart the truncate after a crash.
3789  *
3790  * The file's tree may be transiently inconsistent in memory (although it
3791  * probably isn't), but whenever we close off and commit a journal transaction,
3792  * the contents of (the filesystem + the journal) must be consistent and
3793  * restartable.  It's pretty simple, really: bottom up, right to left (although
3794  * left-to-right works OK too).
3795  *
3796  * Note that at recovery time, journal replay occurs *before* the restart of
3797  * truncate against the orphan inode list.
3798  *
3799  * The committed inode has the new, desired i_size (which is the same as
3800  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3801  * that this inode's truncate did not complete and it will again call
3802  * ext4_truncate() to have another go.  So there will be instantiated blocks
3803  * to the right of the truncation point in a crashed ext4 filesystem.  But
3804  * that's fine - as long as they are linked from the inode, the post-crash
3805  * ext4_truncate() run will find them and release them.
3806  */
3807 void ext4_truncate(struct inode *inode)
3808 {
3809         struct ext4_inode_info *ei = EXT4_I(inode);
3810         unsigned int credits;
3811         handle_t *handle;
3812         struct address_space *mapping = inode->i_mapping;
3813         loff_t page_len;
3814
3815         /*
3816          * There is a possibility that we're either freeing the inode
3817          * or it completely new indode. In those cases we might not
3818          * have i_mutex locked because it's not necessary.
3819          */
3820         if (!(inode->i_state & (I_NEW|I_FREEING)))
3821                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3822         trace_ext4_truncate_enter(inode);
3823
3824         if (!ext4_can_truncate(inode))
3825                 return;
3826
3827         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3828
3829         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3830                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3831
3832         if (ext4_has_inline_data(inode)) {
3833                 int has_inline = 1;
3834
3835                 ext4_inline_data_truncate(inode, &has_inline);
3836                 if (has_inline)
3837                         return;
3838         }
3839
3840         /*
3841          * finish any pending end_io work so we won't run the risk of
3842          * converting any truncated blocks to initialized later
3843          */
3844         ext4_flush_unwritten_io(inode);
3845
3846         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3847                 credits = ext4_writepage_trans_blocks(inode);
3848         else
3849                 credits = ext4_blocks_for_truncate(inode);
3850
3851         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3852         if (IS_ERR(handle)) {
3853                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3854                 return;
3855         }
3856
3857         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3858                 page_len = PAGE_CACHE_SIZE -
3859                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3860
3861                 if (ext4_discard_partial_page_buffers(handle,
3862                                 mapping, inode->i_size, page_len, 0))
3863                         goto out_stop;
3864         }
3865
3866         /*
3867          * We add the inode to the orphan list, so that if this
3868          * truncate spans multiple transactions, and we crash, we will
3869          * resume the truncate when the filesystem recovers.  It also
3870          * marks the inode dirty, to catch the new size.
3871          *
3872          * Implication: the file must always be in a sane, consistent
3873          * truncatable state while each transaction commits.
3874          */
3875         if (ext4_orphan_add(handle, inode))
3876                 goto out_stop;
3877
3878         down_write(&EXT4_I(inode)->i_data_sem);
3879
3880         ext4_discard_preallocations(inode);
3881
3882         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3883                 ext4_ext_truncate(handle, inode);
3884         else
3885                 ext4_ind_truncate(handle, inode);
3886
3887         up_write(&ei->i_data_sem);
3888
3889         if (IS_SYNC(inode))
3890                 ext4_handle_sync(handle);
3891
3892 out_stop:
3893         /*
3894          * If this was a simple ftruncate() and the file will remain alive,
3895          * then we need to clear up the orphan record which we created above.
3896          * However, if this was a real unlink then we were called by
3897          * ext4_delete_inode(), and we allow that function to clean up the
3898          * orphan info for us.
3899          */
3900         if (inode->i_nlink)
3901                 ext4_orphan_del(handle, inode);
3902
3903         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3904         ext4_mark_inode_dirty(handle, inode);
3905         ext4_journal_stop(handle);
3906
3907         trace_ext4_truncate_exit(inode);
3908 }
3909
3910 /*
3911  * ext4_get_inode_loc returns with an extra refcount against the inode's
3912  * underlying buffer_head on success. If 'in_mem' is true, we have all
3913  * data in memory that is needed to recreate the on-disk version of this
3914  * inode.
3915  */
3916 static int __ext4_get_inode_loc(struct inode *inode,
3917                                 struct ext4_iloc *iloc, int in_mem)
3918 {
3919         struct ext4_group_desc  *gdp;
3920         struct buffer_head      *bh;
3921         struct super_block      *sb = inode->i_sb;
3922         ext4_fsblk_t            block;
3923         int                     inodes_per_block, inode_offset;
3924
3925         iloc->bh = NULL;
3926         if (!ext4_valid_inum(sb, inode->i_ino))
3927                 return -EIO;
3928
3929         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3930         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3931         if (!gdp)
3932                 return -EIO;
3933
3934         /*
3935          * Figure out the offset within the block group inode table
3936          */
3937         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3938         inode_offset = ((inode->i_ino - 1) %
3939                         EXT4_INODES_PER_GROUP(sb));
3940         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3941         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3942
3943         bh = sb_getblk(sb, block);
3944         if (unlikely(!bh))
3945                 return -ENOMEM;
3946         if (!buffer_uptodate(bh)) {
3947                 lock_buffer(bh);
3948
3949                 /*
3950                  * If the buffer has the write error flag, we have failed
3951                  * to write out another inode in the same block.  In this
3952                  * case, we don't have to read the block because we may
3953                  * read the old inode data successfully.
3954                  */
3955                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3956                         set_buffer_uptodate(bh);
3957
3958                 if (buffer_uptodate(bh)) {
3959                         /* someone brought it uptodate while we waited */
3960                         unlock_buffer(bh);
3961                         goto has_buffer;
3962                 }
3963
3964                 /*
3965                  * If we have all information of the inode in memory and this
3966                  * is the only valid inode in the block, we need not read the
3967                  * block.
3968                  */
3969                 if (in_mem) {
3970                         struct buffer_head *bitmap_bh;
3971                         int i, start;
3972
3973                         start = inode_offset & ~(inodes_per_block - 1);
3974
3975                         /* Is the inode bitmap in cache? */
3976                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3977                         if (unlikely(!bitmap_bh))
3978                                 goto make_io;
3979
3980                         /*
3981                          * If the inode bitmap isn't in cache then the
3982                          * optimisation may end up performing two reads instead
3983                          * of one, so skip it.
3984                          */
3985                         if (!buffer_uptodate(bitmap_bh)) {
3986                                 brelse(bitmap_bh);
3987                                 goto make_io;
3988                         }
3989                         for (i = start; i < start + inodes_per_block; i++) {
3990                                 if (i == inode_offset)
3991                                         continue;
3992                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3993                                         break;
3994                         }
3995                         brelse(bitmap_bh);
3996                         if (i == start + inodes_per_block) {
3997                                 /* all other inodes are free, so skip I/O */
3998                                 memset(bh->b_data, 0, bh->b_size);
3999                                 set_buffer_uptodate(bh);
4000                                 unlock_buffer(bh);
4001                                 goto has_buffer;
4002                         }
4003                 }
4004
4005 make_io:
4006                 /*
4007                  * If we need to do any I/O, try to pre-readahead extra
4008                  * blocks from the inode table.
4009                  */
4010                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4011                         ext4_fsblk_t b, end, table;
4012                         unsigned num;
4013                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4014
4015                         table = ext4_inode_table(sb, gdp);
4016                         /* s_inode_readahead_blks is always a power of 2 */
4017                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4018                         if (table > b)
4019                                 b = table;
4020                         end = b + ra_blks;
4021                         num = EXT4_INODES_PER_GROUP(sb);
4022                         if (ext4_has_group_desc_csum(sb))
4023                                 num -= ext4_itable_unused_count(sb, gdp);
4024                         table += num / inodes_per_block;
4025                         if (end > table)
4026                                 end = table;
4027                         while (b <= end)
4028                                 sb_breadahead(sb, b++);
4029                 }
4030
4031                 /*
4032                  * There are other valid inodes in the buffer, this inode
4033                  * has in-inode xattrs, or we don't have this inode in memory.
4034                  * Read the block from disk.
4035                  */
4036                 trace_ext4_load_inode(inode);
4037                 get_bh(bh);
4038                 bh->b_end_io = end_buffer_read_sync;
4039                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4040                 wait_on_buffer(bh);
4041                 if (!buffer_uptodate(bh)) {
4042                         EXT4_ERROR_INODE_BLOCK(inode, block,
4043                                                "unable to read itable block");
4044                         brelse(bh);
4045                         return -EIO;
4046                 }
4047         }
4048 has_buffer:
4049         iloc->bh = bh;
4050         return 0;
4051 }
4052
4053 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4054 {
4055         /* We have all inode data except xattrs in memory here. */
4056         return __ext4_get_inode_loc(inode, iloc,
4057                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4058 }
4059
4060 void ext4_set_inode_flags(struct inode *inode)
4061 {
4062         unsigned int flags = EXT4_I(inode)->i_flags;
4063         unsigned int new_fl = 0;
4064
4065         if (flags & EXT4_SYNC_FL)
4066                 new_fl |= S_SYNC;
4067         if (flags & EXT4_APPEND_FL)
4068                 new_fl |= S_APPEND;
4069         if (flags & EXT4_IMMUTABLE_FL)
4070                 new_fl |= S_IMMUTABLE;
4071         if (flags & EXT4_NOATIME_FL)
4072                 new_fl |= S_NOATIME;
4073         if (flags & EXT4_DIRSYNC_FL)
4074                 new_fl |= S_DIRSYNC;
4075         set_mask_bits(&inode->i_flags,
4076                       S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC, new_fl);
4077 }
4078
4079 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4080 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4081 {
4082         unsigned int vfs_fl;
4083         unsigned long old_fl, new_fl;
4084
4085         do {
4086                 vfs_fl = ei->vfs_inode.i_flags;
4087                 old_fl = ei->i_flags;
4088                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4089                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4090                                 EXT4_DIRSYNC_FL);
4091                 if (vfs_fl & S_SYNC)
4092                         new_fl |= EXT4_SYNC_FL;
4093                 if (vfs_fl & S_APPEND)
4094                         new_fl |= EXT4_APPEND_FL;
4095                 if (vfs_fl & S_IMMUTABLE)
4096                         new_fl |= EXT4_IMMUTABLE_FL;
4097                 if (vfs_fl & S_NOATIME)
4098                         new_fl |= EXT4_NOATIME_FL;
4099                 if (vfs_fl & S_DIRSYNC)
4100                         new_fl |= EXT4_DIRSYNC_FL;
4101         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4102 }
4103
4104 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4105                                   struct ext4_inode_info *ei)
4106 {
4107         blkcnt_t i_blocks ;
4108         struct inode *inode = &(ei->vfs_inode);
4109         struct super_block *sb = inode->i_sb;
4110
4111         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4112                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4113                 /* we are using combined 48 bit field */
4114                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4115                                         le32_to_cpu(raw_inode->i_blocks_lo);
4116                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4117                         /* i_blocks represent file system block size */
4118                         return i_blocks  << (inode->i_blkbits - 9);
4119                 } else {
4120                         return i_blocks;
4121                 }
4122         } else {
4123                 return le32_to_cpu(raw_inode->i_blocks_lo);
4124         }
4125 }
4126
4127 static inline void ext4_iget_extra_inode(struct inode *inode,
4128                                          struct ext4_inode *raw_inode,
4129                                          struct ext4_inode_info *ei)
4130 {
4131         __le32 *magic = (void *)raw_inode +
4132                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4133         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4134                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4135                 ext4_find_inline_data_nolock(inode);
4136         } else
4137                 EXT4_I(inode)->i_inline_off = 0;
4138 }
4139
4140 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4141 {
4142         struct ext4_iloc iloc;
4143         struct ext4_inode *raw_inode;
4144         struct ext4_inode_info *ei;
4145         struct inode *inode;
4146         journal_t *journal = EXT4_SB(sb)->s_journal;
4147         long ret;
4148         int block;
4149         uid_t i_uid;
4150         gid_t i_gid;
4151
4152         inode = iget_locked(sb, ino);
4153         if (!inode)
4154                 return ERR_PTR(-ENOMEM);
4155         if (!(inode->i_state & I_NEW))
4156                 return inode;
4157
4158         ei = EXT4_I(inode);
4159         iloc.bh = NULL;
4160
4161         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4162         if (ret < 0)
4163                 goto bad_inode;
4164         raw_inode = ext4_raw_inode(&iloc);
4165
4166         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4167                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4168                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4169                     EXT4_INODE_SIZE(inode->i_sb)) {
4170                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4171                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4172                                 EXT4_INODE_SIZE(inode->i_sb));
4173                         ret = -EIO;
4174                         goto bad_inode;
4175                 }
4176         } else
4177                 ei->i_extra_isize = 0;
4178
4179         /* Precompute checksum seed for inode metadata */
4180         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4181                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4182                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4183                 __u32 csum;
4184                 __le32 inum = cpu_to_le32(inode->i_ino);
4185                 __le32 gen = raw_inode->i_generation;
4186                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4187                                    sizeof(inum));
4188                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4189                                               sizeof(gen));
4190         }
4191
4192         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4193                 EXT4_ERROR_INODE(inode, "checksum invalid");
4194                 ret = -EIO;
4195                 goto bad_inode;
4196         }
4197
4198         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4199         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4200         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4201         if (!(test_opt(inode->i_sb, NO_UID32))) {
4202                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4203                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4204         }
4205         i_uid_write(inode, i_uid);
4206         i_gid_write(inode, i_gid);
4207         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4208
4209         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4210         ei->i_inline_off = 0;
4211         ei->i_dir_start_lookup = 0;
4212         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4213         /* We now have enough fields to check if the inode was active or not.
4214          * This is needed because nfsd might try to access dead inodes
4215          * the test is that same one that e2fsck uses
4216          * NeilBrown 1999oct15
4217          */
4218         if (inode->i_nlink == 0) {
4219                 if ((inode->i_mode == 0 ||
4220                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4221                     ino != EXT4_BOOT_LOADER_INO) {
4222                         /* this inode is deleted */
4223                         ret = -ESTALE;
4224                         goto bad_inode;
4225                 }
4226                 /* The only unlinked inodes we let through here have
4227                  * valid i_mode and are being read by the orphan
4228                  * recovery code: that's fine, we're about to complete
4229                  * the process of deleting those.
4230                  * OR it is the EXT4_BOOT_LOADER_INO which is
4231                  * not initialized on a new filesystem. */
4232         }
4233         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4234         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4235         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4236         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4237                 ei->i_file_acl |=
4238                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4239         inode->i_size = ext4_isize(raw_inode);
4240         ei->i_disksize = inode->i_size;
4241 #ifdef CONFIG_QUOTA
4242         ei->i_reserved_quota = 0;
4243 #endif
4244         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4245         ei->i_block_group = iloc.block_group;
4246         ei->i_last_alloc_group = ~0;
4247         /*
4248          * NOTE! The in-memory inode i_data array is in little-endian order
4249          * even on big-endian machines: we do NOT byteswap the block numbers!
4250          */
4251         for (block = 0; block < EXT4_N_BLOCKS; block++)
4252                 ei->i_data[block] = raw_inode->i_block[block];
4253         INIT_LIST_HEAD(&ei->i_orphan);
4254
4255         /*
4256          * Set transaction id's of transactions that have to be committed
4257          * to finish f[data]sync. We set them to currently running transaction
4258          * as we cannot be sure that the inode or some of its metadata isn't
4259          * part of the transaction - the inode could have been reclaimed and
4260          * now it is reread from disk.
4261          */
4262         if (journal) {
4263                 transaction_t *transaction;
4264                 tid_t tid;
4265
4266                 read_lock(&journal->j_state_lock);
4267                 if (journal->j_running_transaction)
4268                         transaction = journal->j_running_transaction;
4269                 else
4270                         transaction = journal->j_committing_transaction;
4271                 if (transaction)
4272                         tid = transaction->t_tid;
4273                 else
4274                         tid = journal->j_commit_sequence;
4275                 read_unlock(&journal->j_state_lock);
4276                 ei->i_sync_tid = tid;
4277                 ei->i_datasync_tid = tid;
4278         }
4279
4280         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4281                 if (ei->i_extra_isize == 0) {
4282                         /* The extra space is currently unused. Use it. */
4283                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4284                                             EXT4_GOOD_OLD_INODE_SIZE;
4285                 } else {
4286                         ext4_iget_extra_inode(inode, raw_inode, ei);
4287                 }
4288         }
4289
4290         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4291         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4292         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4293         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4294
4295         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4296         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4297                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4298                         inode->i_version |=
4299                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4300         }
4301
4302         ret = 0;
4303         if (ei->i_file_acl &&
4304             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4305                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4306                                  ei->i_file_acl);
4307                 ret = -EIO;
4308                 goto bad_inode;
4309         } else if (!ext4_has_inline_data(inode)) {
4310                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4311                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4312                             (S_ISLNK(inode->i_mode) &&
4313                              !ext4_inode_is_fast_symlink(inode))))
4314                                 /* Validate extent which is part of inode */
4315                                 ret = ext4_ext_check_inode(inode);
4316                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4317                            (S_ISLNK(inode->i_mode) &&
4318                             !ext4_inode_is_fast_symlink(inode))) {
4319                         /* Validate block references which are part of inode */
4320                         ret = ext4_ind_check_inode(inode);
4321                 }
4322         }
4323         if (ret)
4324                 goto bad_inode;
4325
4326         if (S_ISREG(inode->i_mode)) {
4327                 inode->i_op = &ext4_file_inode_operations;
4328                 inode->i_fop = &ext4_file_operations;
4329                 ext4_set_aops(inode);
4330         } else if (S_ISDIR(inode->i_mode)) {
4331                 inode->i_op = &ext4_dir_inode_operations;
4332                 inode->i_fop = &ext4_dir_operations;
4333         } else if (S_ISLNK(inode->i_mode)) {
4334                 if (ext4_inode_is_fast_symlink(inode)) {
4335                         inode->i_op = &ext4_fast_symlink_inode_operations;
4336                         nd_terminate_link(ei->i_data, inode->i_size,
4337                                 sizeof(ei->i_data) - 1);
4338                 } else {
4339                         inode->i_op = &ext4_symlink_inode_operations;
4340                         ext4_set_aops(inode);
4341                 }
4342         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4343               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4344                 inode->i_op = &ext4_special_inode_operations;
4345                 if (raw_inode->i_block[0])
4346                         init_special_inode(inode, inode->i_mode,
4347                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4348                 else
4349                         init_special_inode(inode, inode->i_mode,
4350                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4351         } else if (ino == EXT4_BOOT_LOADER_INO) {
4352                 make_bad_inode(inode);
4353         } else {
4354                 ret = -EIO;
4355                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4356                 goto bad_inode;
4357         }
4358         brelse(iloc.bh);
4359         ext4_set_inode_flags(inode);
4360         unlock_new_inode(inode);
4361         return inode;
4362
4363 bad_inode:
4364         brelse(iloc.bh);
4365         iget_failed(inode);
4366         return ERR_PTR(ret);
4367 }
4368
4369 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4370 {
4371         if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4372                 return ERR_PTR(-EIO);
4373         return ext4_iget(sb, ino);
4374 }
4375
4376 static int ext4_inode_blocks_set(handle_t *handle,
4377                                 struct ext4_inode *raw_inode,
4378                                 struct ext4_inode_info *ei)
4379 {
4380         struct inode *inode = &(ei->vfs_inode);
4381         u64 i_blocks = inode->i_blocks;
4382         struct super_block *sb = inode->i_sb;
4383
4384         if (i_blocks <= ~0U) {
4385                 /*
4386                  * i_blocks can be represented in a 32 bit variable
4387                  * as multiple of 512 bytes
4388                  */
4389                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4390                 raw_inode->i_blocks_high = 0;
4391                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4392                 return 0;
4393         }
4394         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4395                 return -EFBIG;
4396
4397         if (i_blocks <= 0xffffffffffffULL) {
4398                 /*
4399                  * i_blocks can be represented in a 48 bit variable
4400                  * as multiple of 512 bytes
4401                  */
4402                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4403                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4404                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4405         } else {
4406                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4407                 /* i_block is stored in file system block size */
4408                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4409                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4410                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4411         }
4412         return 0;
4413 }
4414
4415 /*
4416  * Post the struct inode info into an on-disk inode location in the
4417  * buffer-cache.  This gobbles the caller's reference to the
4418  * buffer_head in the inode location struct.
4419  *
4420  * The caller must have write access to iloc->bh.
4421  */
4422 static int ext4_do_update_inode(handle_t *handle,
4423                                 struct inode *inode,
4424                                 struct ext4_iloc *iloc)
4425 {
4426         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4427         struct ext4_inode_info *ei = EXT4_I(inode);
4428         struct buffer_head *bh = iloc->bh;
4429         int err = 0, rc, block;
4430         int need_datasync = 0;
4431         uid_t i_uid;
4432         gid_t i_gid;
4433
4434         /* For fields not not tracking in the in-memory inode,
4435          * initialise them to zero for new inodes. */
4436         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4437                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4438
4439         ext4_get_inode_flags(ei);
4440         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4441         i_uid = i_uid_read(inode);
4442         i_gid = i_gid_read(inode);
4443         if (!(test_opt(inode->i_sb, NO_UID32))) {
4444                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4445                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4446 /*
4447  * Fix up interoperability with old kernels. Otherwise, old inodes get
4448  * re-used with the upper 16 bits of the uid/gid intact
4449  */
4450                 if (!ei->i_dtime) {
4451                         raw_inode->i_uid_high =
4452                                 cpu_to_le16(high_16_bits(i_uid));
4453                         raw_inode->i_gid_high =
4454                                 cpu_to_le16(high_16_bits(i_gid));
4455                 } else {
4456                         raw_inode->i_uid_high = 0;
4457                         raw_inode->i_gid_high = 0;
4458                 }
4459         } else {
4460                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4461                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4462                 raw_inode->i_uid_high = 0;
4463                 raw_inode->i_gid_high = 0;
4464         }
4465         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4466
4467         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4468         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4469         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4470         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4471
4472         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4473                 goto out_brelse;
4474         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4475         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4476         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4477             cpu_to_le32(EXT4_OS_HURD))
4478                 raw_inode->i_file_acl_high =
4479                         cpu_to_le16(ei->i_file_acl >> 32);
4480         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4481         if (ei->i_disksize != ext4_isize(raw_inode)) {
4482                 ext4_isize_set(raw_inode, ei->i_disksize);
4483                 need_datasync = 1;
4484         }
4485         if (ei->i_disksize > 0x7fffffffULL) {
4486                 struct super_block *sb = inode->i_sb;
4487                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4488                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4489                                 EXT4_SB(sb)->s_es->s_rev_level ==
4490                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4491                         /* If this is the first large file
4492                          * created, add a flag to the superblock.
4493                          */
4494                         err = ext4_journal_get_write_access(handle,
4495                                         EXT4_SB(sb)->s_sbh);
4496                         if (err)
4497                                 goto out_brelse;
4498                         ext4_update_dynamic_rev(sb);
4499                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4500                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4501                         ext4_handle_sync(handle);
4502                         err = ext4_handle_dirty_super(handle, sb);
4503                 }
4504         }
4505         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4506         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4507                 if (old_valid_dev(inode->i_rdev)) {
4508                         raw_inode->i_block[0] =
4509                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4510                         raw_inode->i_block[1] = 0;
4511                 } else {
4512                         raw_inode->i_block[0] = 0;
4513                         raw_inode->i_block[1] =
4514                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4515                         raw_inode->i_block[2] = 0;
4516                 }
4517         } else if (!ext4_has_inline_data(inode)) {
4518                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4519                         raw_inode->i_block[block] = ei->i_data[block];
4520         }
4521
4522         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4523         if (ei->i_extra_isize) {
4524                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4525                         raw_inode->i_version_hi =
4526                         cpu_to_le32(inode->i_version >> 32);
4527                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4528         }
4529
4530         ext4_inode_csum_set(inode, raw_inode, ei);
4531
4532         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4533         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4534         if (!err)
4535                 err = rc;
4536         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4537
4538         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4539 out_brelse:
4540         brelse(bh);
4541         ext4_std_error(inode->i_sb, err);
4542         return err;
4543 }
4544
4545 /*
4546  * ext4_write_inode()
4547  *
4548  * We are called from a few places:
4549  *
4550  * - Within generic_file_write() for O_SYNC files.
4551  *   Here, there will be no transaction running. We wait for any running
4552  *   transaction to commit.
4553  *
4554  * - Within sys_sync(), kupdate and such.
4555  *   We wait on commit, if tol to.
4556  *
4557  * - Within prune_icache() (PF_MEMALLOC == true)
4558  *   Here we simply return.  We can't afford to block kswapd on the
4559  *   journal commit.
4560  *
4561  * In all cases it is actually safe for us to return without doing anything,
4562  * because the inode has been copied into a raw inode buffer in
4563  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4564  * knfsd.
4565  *
4566  * Note that we are absolutely dependent upon all inode dirtiers doing the
4567  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4568  * which we are interested.
4569  *
4570  * It would be a bug for them to not do this.  The code:
4571  *
4572  *      mark_inode_dirty(inode)
4573  *      stuff();
4574  *      inode->i_size = expr;
4575  *
4576  * is in error because a kswapd-driven write_inode() could occur while
4577  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4578  * will no longer be on the superblock's dirty inode list.
4579  */
4580 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4581 {
4582         int err;
4583
4584         if (current->flags & PF_MEMALLOC)
4585                 return 0;
4586
4587         if (EXT4_SB(inode->i_sb)->s_journal) {
4588                 if (ext4_journal_current_handle()) {
4589                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4590                         dump_stack();
4591                         return -EIO;
4592                 }
4593
4594                 if (wbc->sync_mode != WB_SYNC_ALL)
4595                         return 0;
4596
4597                 err = ext4_force_commit(inode->i_sb);
4598         } else {
4599                 struct ext4_iloc iloc;
4600
4601                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4602                 if (err)
4603                         return err;
4604                 if (wbc->sync_mode == WB_SYNC_ALL)
4605                         sync_dirty_buffer(iloc.bh);
4606                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4607                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4608                                          "IO error syncing inode");
4609                         err = -EIO;
4610                 }
4611                 brelse(iloc.bh);
4612         }
4613         return err;
4614 }
4615
4616 /*
4617  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4618  * buffers that are attached to a page stradding i_size and are undergoing
4619  * commit. In that case we have to wait for commit to finish and try again.
4620  */
4621 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4622 {
4623         struct page *page;
4624         unsigned offset;
4625         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4626         tid_t commit_tid = 0;
4627         int ret;
4628
4629         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4630         /*
4631          * All buffers in the last page remain valid? Then there's nothing to
4632          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4633          * blocksize case
4634          */
4635         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4636                 return;
4637         while (1) {
4638                 page = find_lock_page(inode->i_mapping,
4639                                       inode->i_size >> PAGE_CACHE_SHIFT);
4640                 if (!page)
4641                         return;
4642                 ret = __ext4_journalled_invalidatepage(page, offset);
4643                 unlock_page(page);
4644                 page_cache_release(page);
4645                 if (ret != -EBUSY)
4646                         return;
4647                 commit_tid = 0;
4648                 read_lock(&journal->j_state_lock);
4649                 if (journal->j_committing_transaction)
4650                         commit_tid = journal->j_committing_transaction->t_tid;
4651                 read_unlock(&journal->j_state_lock);
4652                 if (commit_tid)
4653                         jbd2_log_wait_commit(journal, commit_tid);
4654         }
4655 }
4656
4657 /*
4658  * ext4_setattr()
4659  *
4660  * Called from notify_change.
4661  *
4662  * We want to trap VFS attempts to truncate the file as soon as
4663  * possible.  In particular, we want to make sure that when the VFS
4664  * shrinks i_size, we put the inode on the orphan list and modify
4665  * i_disksize immediately, so that during the subsequent flushing of
4666  * dirty pages and freeing of disk blocks, we can guarantee that any
4667  * commit will leave the blocks being flushed in an unused state on
4668  * disk.  (On recovery, the inode will get truncated and the blocks will
4669  * be freed, so we have a strong guarantee that no future commit will
4670  * leave these blocks visible to the user.)
4671  *
4672  * Another thing we have to assure is that if we are in ordered mode
4673  * and inode is still attached to the committing transaction, we must
4674  * we start writeout of all the dirty pages which are being truncated.
4675  * This way we are sure that all the data written in the previous
4676  * transaction are already on disk (truncate waits for pages under
4677  * writeback).
4678  *
4679  * Called with inode->i_mutex down.
4680  */
4681 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4682 {
4683         struct inode *inode = dentry->d_inode;
4684         int error, rc = 0;
4685         int orphan = 0;
4686         const unsigned int ia_valid = attr->ia_valid;
4687
4688         error = inode_change_ok(inode, attr);
4689         if (error)
4690                 return error;
4691
4692         if (is_quota_modification(inode, attr))
4693                 dquot_initialize(inode);
4694         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4695             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4696                 handle_t *handle;
4697
4698                 /* (user+group)*(old+new) structure, inode write (sb,
4699                  * inode block, ? - but truncate inode update has it) */
4700                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4701                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4702                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4703                 if (IS_ERR(handle)) {
4704                         error = PTR_ERR(handle);
4705                         goto err_out;
4706                 }
4707                 error = dquot_transfer(inode, attr);
4708                 if (error) {
4709                         ext4_journal_stop(handle);
4710                         return error;
4711                 }
4712                 /* Update corresponding info in inode so that everything is in
4713                  * one transaction */
4714                 if (attr->ia_valid & ATTR_UID)
4715                         inode->i_uid = attr->ia_uid;
4716                 if (attr->ia_valid & ATTR_GID)
4717                         inode->i_gid = attr->ia_gid;
4718                 error = ext4_mark_inode_dirty(handle, inode);
4719                 ext4_journal_stop(handle);
4720         }
4721
4722         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4723                 handle_t *handle;
4724                 loff_t oldsize = inode->i_size;
4725
4726                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4727                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4728
4729                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4730                                 return -EFBIG;
4731                 }
4732
4733                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4734                         inode_inc_iversion(inode);
4735
4736                 if (S_ISREG(inode->i_mode) &&
4737                     (attr->ia_size < inode->i_size)) {
4738                         if (ext4_should_order_data(inode)) {
4739                                 error = ext4_begin_ordered_truncate(inode,
4740                                                             attr->ia_size);
4741                                 if (error)
4742                                         goto err_out;
4743                         }
4744                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4745                         if (IS_ERR(handle)) {
4746                                 error = PTR_ERR(handle);
4747                                 goto err_out;
4748                         }
4749                         if (ext4_handle_valid(handle)) {
4750                                 error = ext4_orphan_add(handle, inode);
4751                                 orphan = 1;
4752                         }
4753                         EXT4_I(inode)->i_disksize = attr->ia_size;
4754                         rc = ext4_mark_inode_dirty(handle, inode);
4755                         if (!error)
4756                                 error = rc;
4757                         ext4_journal_stop(handle);
4758                         if (error) {
4759                                 ext4_orphan_del(NULL, inode);
4760                                 goto err_out;
4761                         }
4762                 }
4763
4764                 i_size_write(inode, attr->ia_size);
4765                 /*
4766                  * Blocks are going to be removed from the inode. Wait
4767                  * for dio in flight.  Temporarily disable
4768                  * dioread_nolock to prevent livelock.
4769                  */
4770                 if (orphan) {
4771                         if (!ext4_should_journal_data(inode)) {
4772                                 ext4_inode_block_unlocked_dio(inode);
4773                                 inode_dio_wait(inode);
4774                                 ext4_inode_resume_unlocked_dio(inode);
4775                         } else
4776                                 ext4_wait_for_tail_page_commit(inode);
4777                 }
4778                 /*
4779                  * Truncate pagecache after we've waited for commit
4780                  * in data=journal mode to make pages freeable.
4781                  */
4782                 truncate_pagecache(inode, oldsize, inode->i_size);
4783         }
4784         /*
4785          * We want to call ext4_truncate() even if attr->ia_size ==
4786          * inode->i_size for cases like truncation of fallocated space
4787          */
4788         if (attr->ia_valid & ATTR_SIZE)
4789                 ext4_truncate(inode);
4790
4791         if (!rc) {
4792                 setattr_copy(inode, attr);
4793                 mark_inode_dirty(inode);
4794         }
4795
4796         /*
4797          * If the call to ext4_truncate failed to get a transaction handle at
4798          * all, we need to clean up the in-core orphan list manually.
4799          */
4800         if (orphan && inode->i_nlink)
4801                 ext4_orphan_del(NULL, inode);
4802
4803         if (!rc && (ia_valid & ATTR_MODE))
4804                 rc = ext4_acl_chmod(inode);
4805
4806 err_out:
4807         ext4_std_error(inode->i_sb, error);
4808         if (!error)
4809                 error = rc;
4810         return error;
4811 }
4812
4813 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4814                  struct kstat *stat)
4815 {
4816         struct inode *inode;
4817         unsigned long long delalloc_blocks;
4818
4819         inode = dentry->d_inode;
4820         generic_fillattr(inode, stat);
4821
4822         /*
4823          * We can't update i_blocks if the block allocation is delayed
4824          * otherwise in the case of system crash before the real block
4825          * allocation is done, we will have i_blocks inconsistent with
4826          * on-disk file blocks.
4827          * We always keep i_blocks updated together with real
4828          * allocation. But to not confuse with user, stat
4829          * will return the blocks that include the delayed allocation
4830          * blocks for this file.
4831          */
4832         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4833                                 EXT4_I(inode)->i_reserved_data_blocks);
4834
4835         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4836         return 0;
4837 }
4838
4839 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4840 {
4841         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4842                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4843         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4844 }
4845
4846 /*
4847  * Account for index blocks, block groups bitmaps and block group
4848  * descriptor blocks if modify datablocks and index blocks
4849  * worse case, the indexs blocks spread over different block groups
4850  *
4851  * If datablocks are discontiguous, they are possible to spread over
4852  * different block groups too. If they are contiguous, with flexbg,
4853  * they could still across block group boundary.
4854  *
4855  * Also account for superblock, inode, quota and xattr blocks
4856  */
4857 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4858 {
4859         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4860         int gdpblocks;
4861         int idxblocks;
4862         int ret = 0;
4863
4864         /*
4865          * How many index blocks need to touch to modify nrblocks?
4866          * The "Chunk" flag indicating whether the nrblocks is
4867          * physically contiguous on disk
4868          *
4869          * For Direct IO and fallocate, they calls get_block to allocate
4870          * one single extent at a time, so they could set the "Chunk" flag
4871          */
4872         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4873
4874         ret = idxblocks;
4875
4876         /*
4877          * Now let's see how many group bitmaps and group descriptors need
4878          * to account
4879          */
4880         groups = idxblocks;
4881         if (chunk)
4882                 groups += 1;
4883         else
4884                 groups += nrblocks;
4885
4886         gdpblocks = groups;
4887         if (groups > ngroups)
4888                 groups = ngroups;
4889         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4890                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4891
4892         /* bitmaps and block group descriptor blocks */
4893         ret += groups + gdpblocks;
4894
4895         /* Blocks for super block, inode, quota and xattr blocks */
4896         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4897
4898         return ret;
4899 }
4900
4901 /*
4902  * Calculate the total number of credits to reserve to fit
4903  * the modification of a single pages into a single transaction,
4904  * which may include multiple chunks of block allocations.
4905  *
4906  * This could be called via ext4_write_begin()
4907  *
4908  * We need to consider the worse case, when
4909  * one new block per extent.
4910  */
4911 int ext4_writepage_trans_blocks(struct inode *inode)
4912 {
4913         int bpp = ext4_journal_blocks_per_page(inode);
4914         int ret;
4915
4916         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4917
4918         /* Account for data blocks for journalled mode */
4919         if (ext4_should_journal_data(inode))
4920                 ret += bpp;
4921         return ret;
4922 }
4923
4924 /*
4925  * Calculate the journal credits for a chunk of data modification.
4926  *
4927  * This is called from DIO, fallocate or whoever calling
4928  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4929  *
4930  * journal buffers for data blocks are not included here, as DIO
4931  * and fallocate do no need to journal data buffers.
4932  */
4933 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4934 {
4935         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4936 }
4937
4938 /*
4939  * The caller must have previously called ext4_reserve_inode_write().
4940  * Give this, we know that the caller already has write access to iloc->bh.
4941  */
4942 int ext4_mark_iloc_dirty(handle_t *handle,
4943                          struct inode *inode, struct ext4_iloc *iloc)
4944 {
4945         int err = 0;
4946
4947         if (IS_I_VERSION(inode))
4948                 inode_inc_iversion(inode);
4949
4950         /* the do_update_inode consumes one bh->b_count */
4951         get_bh(iloc->bh);
4952
4953         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4954         err = ext4_do_update_inode(handle, inode, iloc);
4955         put_bh(iloc->bh);
4956         return err;
4957 }
4958
4959 /*
4960  * On success, We end up with an outstanding reference count against
4961  * iloc->bh.  This _must_ be cleaned up later.
4962  */
4963
4964 int
4965 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4966                          struct ext4_iloc *iloc)
4967 {
4968         int err;
4969
4970         err = ext4_get_inode_loc(inode, iloc);
4971         if (!err) {
4972                 BUFFER_TRACE(iloc->bh, "get_write_access");
4973                 err = ext4_journal_get_write_access(handle, iloc->bh);
4974                 if (err) {
4975                         brelse(iloc->bh);
4976                         iloc->bh = NULL;
4977                 }
4978         }
4979         ext4_std_error(inode->i_sb, err);
4980         return err;
4981 }
4982
4983 /*
4984  * Expand an inode by new_extra_isize bytes.
4985  * Returns 0 on success or negative error number on failure.
4986  */
4987 static int ext4_expand_extra_isize(struct inode *inode,
4988                                    unsigned int new_extra_isize,
4989                                    struct ext4_iloc iloc,
4990                                    handle_t *handle)
4991 {
4992         struct ext4_inode *raw_inode;
4993         struct ext4_xattr_ibody_header *header;
4994
4995         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4996                 return 0;
4997
4998         raw_inode = ext4_raw_inode(&iloc);
4999
5000         header = IHDR(inode, raw_inode);
5001
5002         /* No extended attributes present */
5003         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5004             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5005                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5006                         new_extra_isize);
5007                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5008                 return 0;
5009         }
5010
5011         /* try to expand with EAs present */
5012         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5013                                           raw_inode, handle);
5014 }
5015
5016 /*
5017  * What we do here is to mark the in-core inode as clean with respect to inode
5018  * dirtiness (it may still be data-dirty).
5019  * This means that the in-core inode may be reaped by prune_icache
5020  * without having to perform any I/O.  This is a very good thing,
5021  * because *any* task may call prune_icache - even ones which
5022  * have a transaction open against a different journal.
5023  *
5024  * Is this cheating?  Not really.  Sure, we haven't written the
5025  * inode out, but prune_icache isn't a user-visible syncing function.
5026  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5027  * we start and wait on commits.
5028  */
5029 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5030 {
5031         struct ext4_iloc iloc;
5032         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5033         static unsigned int mnt_count;
5034         int err, ret;
5035
5036         might_sleep();
5037         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5038         err = ext4_reserve_inode_write(handle, inode, &iloc);
5039         if (ext4_handle_valid(handle) &&
5040             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5041             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5042                 /*
5043                  * We need extra buffer credits since we may write into EA block
5044                  * with this same handle. If journal_extend fails, then it will
5045                  * only result in a minor loss of functionality for that inode.
5046                  * If this is felt to be critical, then e2fsck should be run to
5047                  * force a large enough s_min_extra_isize.
5048                  */
5049                 if ((jbd2_journal_extend(handle,
5050                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5051                         ret = ext4_expand_extra_isize(inode,
5052                                                       sbi->s_want_extra_isize,
5053                                                       iloc, handle);
5054                         if (ret) {
5055                                 ext4_set_inode_state(inode,
5056                                                      EXT4_STATE_NO_EXPAND);
5057                                 if (mnt_count !=
5058                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5059                                         ext4_warning(inode->i_sb,
5060                                         "Unable to expand inode %lu. Delete"
5061                                         " some EAs or run e2fsck.",
5062                                         inode->i_ino);
5063                                         mnt_count =
5064                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5065                                 }
5066                         }
5067                 }
5068         }
5069         if (!err)
5070                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5071         return err;
5072 }
5073
5074 /*
5075  * ext4_dirty_inode() is called from __mark_inode_dirty()
5076  *
5077  * We're really interested in the case where a file is being extended.
5078  * i_size has been changed by generic_commit_write() and we thus need
5079  * to include the updated inode in the current transaction.
5080  *
5081  * Also, dquot_alloc_block() will always dirty the inode when blocks
5082  * are allocated to the file.
5083  *
5084  * If the inode is marked synchronous, we don't honour that here - doing
5085  * so would cause a commit on atime updates, which we don't bother doing.
5086  * We handle synchronous inodes at the highest possible level.
5087  */
5088 void ext4_dirty_inode(struct inode *inode, int flags)
5089 {
5090         handle_t *handle;
5091
5092         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5093         if (IS_ERR(handle))
5094                 goto out;
5095
5096         ext4_mark_inode_dirty(handle, inode);
5097
5098         ext4_journal_stop(handle);
5099 out:
5100         return;
5101 }
5102
5103 #if 0
5104 /*
5105  * Bind an inode's backing buffer_head into this transaction, to prevent
5106  * it from being flushed to disk early.  Unlike
5107  * ext4_reserve_inode_write, this leaves behind no bh reference and
5108  * returns no iloc structure, so the caller needs to repeat the iloc
5109  * lookup to mark the inode dirty later.
5110  */
5111 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5112 {
5113         struct ext4_iloc iloc;
5114
5115         int err = 0;
5116         if (handle) {
5117                 err = ext4_get_inode_loc(inode, &iloc);
5118                 if (!err) {
5119                         BUFFER_TRACE(iloc.bh, "get_write_access");
5120                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5121                         if (!err)
5122                                 err = ext4_handle_dirty_metadata(handle,
5123                                                                  NULL,
5124                                                                  iloc.bh);
5125                         brelse(iloc.bh);
5126                 }
5127         }
5128         ext4_std_error(inode->i_sb, err);
5129         return err;
5130 }
5131 #endif
5132
5133 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5134 {
5135         journal_t *journal;
5136         handle_t *handle;
5137         int err;
5138
5139         /*
5140          * We have to be very careful here: changing a data block's
5141          * journaling status dynamically is dangerous.  If we write a
5142          * data block to the journal, change the status and then delete
5143          * that block, we risk forgetting to revoke the old log record
5144          * from the journal and so a subsequent replay can corrupt data.
5145          * So, first we make sure that the journal is empty and that
5146          * nobody is changing anything.
5147          */
5148
5149         journal = EXT4_JOURNAL(inode);
5150         if (!journal)
5151                 return 0;
5152         if (is_journal_aborted(journal))
5153                 return -EROFS;
5154         /* We have to allocate physical blocks for delalloc blocks
5155          * before flushing journal. otherwise delalloc blocks can not
5156          * be allocated any more. even more truncate on delalloc blocks
5157          * could trigger BUG by flushing delalloc blocks in journal.
5158          * There is no delalloc block in non-journal data mode.
5159          */
5160         if (val && test_opt(inode->i_sb, DELALLOC)) {
5161                 err = ext4_alloc_da_blocks(inode);
5162                 if (err < 0)
5163                         return err;
5164         }
5165
5166         /* Wait for all existing dio workers */
5167         ext4_inode_block_unlocked_dio(inode);
5168         inode_dio_wait(inode);
5169
5170         jbd2_journal_lock_updates(journal);
5171
5172         /*
5173          * OK, there are no updates running now, and all cached data is
5174          * synced to disk.  We are now in a completely consistent state
5175          * which doesn't have anything in the journal, and we know that
5176          * no filesystem updates are running, so it is safe to modify
5177          * the inode's in-core data-journaling state flag now.
5178          */
5179
5180         if (val)
5181                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5182         else {
5183                 jbd2_journal_flush(journal);
5184                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5185         }
5186         ext4_set_aops(inode);
5187
5188         jbd2_journal_unlock_updates(journal);
5189         ext4_inode_resume_unlocked_dio(inode);
5190
5191         /* Finally we can mark the inode as dirty. */
5192
5193         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5194         if (IS_ERR(handle))
5195                 return PTR_ERR(handle);
5196
5197         err = ext4_mark_inode_dirty(handle, inode);
5198         ext4_handle_sync(handle);
5199         ext4_journal_stop(handle);
5200         ext4_std_error(inode->i_sb, err);
5201
5202         return err;
5203 }
5204
5205 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5206 {
5207         return !buffer_mapped(bh);
5208 }
5209
5210 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5211 {
5212         struct page *page = vmf->page;
5213         loff_t size;
5214         unsigned long len;
5215         int ret;
5216         struct file *file = vma->vm_file;
5217         struct inode *inode = file_inode(file);
5218         struct address_space *mapping = inode->i_mapping;
5219         handle_t *handle;
5220         get_block_t *get_block;
5221         int retries = 0;
5222
5223         sb_start_pagefault(inode->i_sb);
5224         file_update_time(vma->vm_file);
5225         /* Delalloc case is easy... */
5226         if (test_opt(inode->i_sb, DELALLOC) &&
5227             !ext4_should_journal_data(inode) &&
5228             !ext4_nonda_switch(inode->i_sb)) {
5229                 do {
5230                         ret = __block_page_mkwrite(vma, vmf,
5231                                                    ext4_da_get_block_prep);
5232                 } while (ret == -ENOSPC &&
5233                        ext4_should_retry_alloc(inode->i_sb, &retries));
5234                 goto out_ret;
5235         }
5236
5237         lock_page(page);
5238         size = i_size_read(inode);
5239         /* Page got truncated from under us? */
5240         if (page->mapping != mapping || page_offset(page) > size) {
5241                 unlock_page(page);
5242                 ret = VM_FAULT_NOPAGE;
5243                 goto out;
5244         }
5245
5246         if (page->index == size >> PAGE_CACHE_SHIFT)
5247                 len = size & ~PAGE_CACHE_MASK;
5248         else
5249                 len = PAGE_CACHE_SIZE;
5250         /*
5251          * Return if we have all the buffers mapped. This avoids the need to do
5252          * journal_start/journal_stop which can block and take a long time
5253          */
5254         if (page_has_buffers(page)) {
5255                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5256                                             0, len, NULL,
5257                                             ext4_bh_unmapped)) {
5258                         /* Wait so that we don't change page under IO */
5259                         wait_for_stable_page(page);
5260                         ret = VM_FAULT_LOCKED;
5261                         goto out;
5262                 }
5263         }
5264         unlock_page(page);
5265         /* OK, we need to fill the hole... */
5266         if (ext4_should_dioread_nolock(inode))
5267                 get_block = ext4_get_block_write;
5268         else
5269                 get_block = ext4_get_block;
5270 retry_alloc:
5271         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5272                                     ext4_writepage_trans_blocks(inode));
5273         if (IS_ERR(handle)) {
5274                 ret = VM_FAULT_SIGBUS;
5275                 goto out;
5276         }
5277         ret = __block_page_mkwrite(vma, vmf, get_block);
5278         if (!ret && ext4_should_journal_data(inode)) {
5279                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5280                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5281                         unlock_page(page);
5282                         ret = VM_FAULT_SIGBUS;
5283                         ext4_journal_stop(handle);
5284                         goto out;
5285                 }
5286                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5287         }
5288         ext4_journal_stop(handle);
5289         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5290                 goto retry_alloc;
5291 out_ret:
5292         ret = block_page_mkwrite_return(ret);
5293 out:
5294         sb_end_pagefault(inode->i_sb);
5295         return ret;
5296 }