Merge tag 'kvm-for-lsk-v3.10-v1' of git://git.linaro.org/people/christoffer.dall...
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned long offset);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139                 struct inode *inode, struct page *page, loff_t from,
140                 loff_t length, int flags);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218                 ext4_ioend_shutdown(inode);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228         ext4_ioend_shutdown(inode);
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357                         "with only %d reserved metadata blocks "
358                         "(releasing %d blocks with reserved %d data blocks)",
359                         inode->i_ino, ei->i_allocated_meta_blocks,
360                              ei->i_reserved_meta_blocks, used,
361                              ei->i_reserved_data_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488                                        struct inode *inode,
489                                        struct ext4_map_blocks *es_map,
490                                        struct ext4_map_blocks *map,
491                                        int flags)
492 {
493         int retval;
494
495         map->m_flags = 0;
496         /*
497          * There is a race window that the result is not the same.
498          * e.g. xfstests #223 when dioread_nolock enables.  The reason
499          * is that we lookup a block mapping in extent status tree with
500          * out taking i_data_sem.  So at the time the unwritten extent
501          * could be converted.
502          */
503         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504                 down_read((&EXT4_I(inode)->i_data_sem));
505         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507                                              EXT4_GET_BLOCKS_KEEP_SIZE);
508         } else {
509                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510                                              EXT4_GET_BLOCKS_KEEP_SIZE);
511         }
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 up_read((&EXT4_I(inode)->i_data_sem));
514         /*
515          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516          * because it shouldn't be marked in es_map->m_flags.
517          */
518         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520         /*
521          * We don't check m_len because extent will be collpased in status
522          * tree.  So the m_len might not equal.
523          */
524         if (es_map->m_lblk != map->m_lblk ||
525             es_map->m_flags != map->m_flags ||
526             es_map->m_pblk != map->m_pblk) {
527                 printk("ES cache assertation failed for inode: %lu "
528                        "es_cached ex [%d/%d/%llu/%x] != "
529                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530                        inode->i_ino, es_map->m_lblk, es_map->m_len,
531                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
532                        map->m_len, map->m_pblk, map->m_flags,
533                        retval, flags);
534         }
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561                     struct ext4_map_blocks *map, int flags)
562 {
563         struct extent_status es;
564         int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566         struct ext4_map_blocks orig_map;
567
568         memcpy(&orig_map, map, sizeof(*map));
569 #endif
570
571         map->m_flags = 0;
572         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
574                   (unsigned long) map->m_lblk);
575
576         /* Lookup extent status tree firstly */
577         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579                         map->m_pblk = ext4_es_pblock(&es) +
580                                         map->m_lblk - es.es_lblk;
581                         map->m_flags |= ext4_es_is_written(&es) ?
582                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583                         retval = es.es_len - (map->m_lblk - es.es_lblk);
584                         if (retval > map->m_len)
585                                 retval = map->m_len;
586                         map->m_len = retval;
587                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588                         retval = 0;
589                 } else {
590                         BUG_ON(1);
591                 }
592 #ifdef ES_AGGRESSIVE_TEST
593                 ext4_map_blocks_es_recheck(handle, inode, map,
594                                            &orig_map, flags);
595 #endif
596                 goto found;
597         }
598
599         /*
600          * Try to see if we can get the block without requesting a new
601          * file system block.
602          */
603         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604                 down_read((&EXT4_I(inode)->i_data_sem));
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607                                              EXT4_GET_BLOCKS_KEEP_SIZE);
608         } else {
609                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610                                              EXT4_GET_BLOCKS_KEEP_SIZE);
611         }
612         if (retval > 0) {
613                 int ret;
614                 unsigned long long status;
615
616 #ifdef ES_AGGRESSIVE_TEST
617                 if (retval != map->m_len) {
618                         printk("ES len assertation failed for inode: %lu "
619                                "retval %d != map->m_len %d "
620                                "in %s (lookup)\n", inode->i_ino, retval,
621                                map->m_len, __func__);
622                 }
623 #endif
624
625                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628                     ext4_find_delalloc_range(inode, map->m_lblk,
629                                              map->m_lblk + map->m_len - 1))
630                         status |= EXTENT_STATUS_DELAYED;
631                 ret = ext4_es_insert_extent(inode, map->m_lblk,
632                                             map->m_len, map->m_pblk, status);
633                 if (ret < 0)
634                         retval = ret;
635         }
636         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637                 up_read((&EXT4_I(inode)->i_data_sem));
638
639 found:
640         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641                 int ret = check_block_validity(inode, map);
642                 if (ret != 0)
643                         return ret;
644         }
645
646         /* If it is only a block(s) look up */
647         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648                 return retval;
649
650         /*
651          * Returns if the blocks have already allocated
652          *
653          * Note that if blocks have been preallocated
654          * ext4_ext_get_block() returns the create = 0
655          * with buffer head unmapped.
656          */
657         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658                 return retval;
659
660         /*
661          * Here we clear m_flags because after allocating an new extent,
662          * it will be set again.
663          */
664         map->m_flags &= ~EXT4_MAP_FLAGS;
665
666         /*
667          * New blocks allocate and/or writing to uninitialized extent
668          * will possibly result in updating i_data, so we take
669          * the write lock of i_data_sem, and call get_blocks()
670          * with create == 1 flag.
671          */
672         down_write((&EXT4_I(inode)->i_data_sem));
673
674         /*
675          * if the caller is from delayed allocation writeout path
676          * we have already reserved fs blocks for allocation
677          * let the underlying get_block() function know to
678          * avoid double accounting
679          */
680         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682         /*
683          * We need to check for EXT4 here because migrate
684          * could have changed the inode type in between
685          */
686         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
688         } else {
689                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690
691                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692                         /*
693                          * We allocated new blocks which will result in
694                          * i_data's format changing.  Force the migrate
695                          * to fail by clearing migrate flags
696                          */
697                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698                 }
699
700                 /*
701                  * Update reserved blocks/metadata blocks after successful
702                  * block allocation which had been deferred till now. We don't
703                  * support fallocate for non extent files. So we can update
704                  * reserve space here.
705                  */
706                 if ((retval > 0) &&
707                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708                         ext4_da_update_reserve_space(inode, retval, 1);
709         }
710         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712
713         if (retval > 0) {
714                 int ret;
715                 unsigned long long status;
716
717 #ifdef ES_AGGRESSIVE_TEST
718                 if (retval != map->m_len) {
719                         printk("ES len assertation failed for inode: %lu "
720                                "retval %d != map->m_len %d "
721                                "in %s (allocation)\n", inode->i_ino, retval,
722                                map->m_len, __func__);
723                 }
724 #endif
725
726                 /*
727                  * If the extent has been zeroed out, we don't need to update
728                  * extent status tree.
729                  */
730                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732                         if (ext4_es_is_written(&es))
733                                 goto has_zeroout;
734                 }
735                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738                     ext4_find_delalloc_range(inode, map->m_lblk,
739                                              map->m_lblk + map->m_len - 1))
740                         status |= EXTENT_STATUS_DELAYED;
741                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742                                             map->m_pblk, status);
743                 if (ret < 0)
744                         retval = ret;
745         }
746
747 has_zeroout:
748         up_write((&EXT4_I(inode)->i_data_sem));
749         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750                 int ret = check_block_validity(inode, map);
751                 if (ret != 0)
752                         return ret;
753         }
754         return retval;
755 }
756
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         handle_t *handle = ext4_journal_current_handle();
764         struct ext4_map_blocks map;
765         int ret = 0, started = 0;
766         int dio_credits;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775                 /* Direct IO write... */
776                 if (map.m_len > DIO_MAX_BLOCKS)
777                         map.m_len = DIO_MAX_BLOCKS;
778                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780                                             dio_credits);
781                 if (IS_ERR(handle)) {
782                         ret = PTR_ERR(handle);
783                         return ret;
784                 }
785                 started = 1;
786         }
787
788         ret = ext4_map_blocks(handle, inode, &map, flags);
789         if (ret > 0) {
790                 map_bh(bh, inode->i_sb, map.m_pblk);
791                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793                 ret = 0;
794         }
795         if (started)
796                 ext4_journal_stop(handle);
797         return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801                    struct buffer_head *bh, int create)
802 {
803         return _ext4_get_block(inode, iblock, bh,
804                                create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811                                 ext4_lblk_t block, int create, int *errp)
812 {
813         struct ext4_map_blocks map;
814         struct buffer_head *bh;
815         int fatal = 0, err;
816
817         J_ASSERT(handle != NULL || create == 0);
818
819         map.m_lblk = block;
820         map.m_len = 1;
821         err = ext4_map_blocks(handle, inode, &map,
822                               create ? EXT4_GET_BLOCKS_CREATE : 0);
823
824         /* ensure we send some value back into *errp */
825         *errp = 0;
826
827         if (create && err == 0)
828                 err = -ENOSPC;  /* should never happen */
829         if (err < 0)
830                 *errp = err;
831         if (err <= 0)
832                 return NULL;
833
834         bh = sb_getblk(inode->i_sb, map.m_pblk);
835         if (unlikely(!bh)) {
836                 *errp = -ENOMEM;
837                 return NULL;
838         }
839         if (map.m_flags & EXT4_MAP_NEW) {
840                 J_ASSERT(create != 0);
841                 J_ASSERT(handle != NULL);
842
843                 /*
844                  * Now that we do not always journal data, we should
845                  * keep in mind whether this should always journal the
846                  * new buffer as metadata.  For now, regular file
847                  * writes use ext4_get_block instead, so it's not a
848                  * problem.
849                  */
850                 lock_buffer(bh);
851                 BUFFER_TRACE(bh, "call get_create_access");
852                 fatal = ext4_journal_get_create_access(handle, bh);
853                 if (!fatal && !buffer_uptodate(bh)) {
854                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855                         set_buffer_uptodate(bh);
856                 }
857                 unlock_buffer(bh);
858                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859                 err = ext4_handle_dirty_metadata(handle, inode, bh);
860                 if (!fatal)
861                         fatal = err;
862         } else {
863                 BUFFER_TRACE(bh, "not a new buffer");
864         }
865         if (fatal) {
866                 *errp = fatal;
867                 brelse(bh);
868                 bh = NULL;
869         }
870         return bh;
871 }
872
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874                                ext4_lblk_t block, int create, int *err)
875 {
876         struct buffer_head *bh;
877
878         bh = ext4_getblk(handle, inode, block, create, err);
879         if (!bh)
880                 return bh;
881         if (buffer_uptodate(bh))
882                 return bh;
883         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884         wait_on_buffer(bh);
885         if (buffer_uptodate(bh))
886                 return bh;
887         put_bh(bh);
888         *err = -EIO;
889         return NULL;
890 }
891
892 int ext4_walk_page_buffers(handle_t *handle,
893                            struct buffer_head *head,
894                            unsigned from,
895                            unsigned to,
896                            int *partial,
897                            int (*fn)(handle_t *handle,
898                                      struct buffer_head *bh))
899 {
900         struct buffer_head *bh;
901         unsigned block_start, block_end;
902         unsigned blocksize = head->b_size;
903         int err, ret = 0;
904         struct buffer_head *next;
905
906         for (bh = head, block_start = 0;
907              ret == 0 && (bh != head || !block_start);
908              block_start = block_end, bh = next) {
909                 next = bh->b_this_page;
910                 block_end = block_start + blocksize;
911                 if (block_end <= from || block_start >= to) {
912                         if (partial && !buffer_uptodate(bh))
913                                 *partial = 1;
914                         continue;
915                 }
916                 err = (*fn)(handle, bh);
917                 if (!ret)
918                         ret = err;
919         }
920         return ret;
921 }
922
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948                                 struct buffer_head *bh)
949 {
950         int dirty = buffer_dirty(bh);
951         int ret;
952
953         if (!buffer_mapped(bh) || buffer_freed(bh))
954                 return 0;
955         /*
956          * __block_write_begin() could have dirtied some buffers. Clean
957          * the dirty bit as jbd2_journal_get_write_access() could complain
958          * otherwise about fs integrity issues. Setting of the dirty bit
959          * by __block_write_begin() isn't a real problem here as we clear
960          * the bit before releasing a page lock and thus writeback cannot
961          * ever write the buffer.
962          */
963         if (dirty)
964                 clear_buffer_dirty(bh);
965         ret = ext4_journal_get_write_access(handle, bh);
966         if (!ret && dirty)
967                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968         return ret;
969 }
970
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972                    struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974                             loff_t pos, unsigned len, unsigned flags,
975                             struct page **pagep, void **fsdata)
976 {
977         struct inode *inode = mapping->host;
978         int ret, needed_blocks;
979         handle_t *handle;
980         int retries = 0;
981         struct page *page;
982         pgoff_t index;
983         unsigned from, to;
984
985         trace_ext4_write_begin(inode, pos, len, flags);
986         /*
987          * Reserve one block more for addition to orphan list in case
988          * we allocate blocks but write fails for some reason
989          */
990         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991         index = pos >> PAGE_CACHE_SHIFT;
992         from = pos & (PAGE_CACHE_SIZE - 1);
993         to = from + len;
994
995         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997                                                     flags, pagep);
998                 if (ret < 0)
999                         return ret;
1000                 if (ret == 1)
1001                         return 0;
1002         }
1003
1004         /*
1005          * grab_cache_page_write_begin() can take a long time if the
1006          * system is thrashing due to memory pressure, or if the page
1007          * is being written back.  So grab it first before we start
1008          * the transaction handle.  This also allows us to allocate
1009          * the page (if needed) without using GFP_NOFS.
1010          */
1011 retry_grab:
1012         page = grab_cache_page_write_begin(mapping, index, flags);
1013         if (!page)
1014                 return -ENOMEM;
1015         unlock_page(page);
1016
1017 retry_journal:
1018         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019         if (IS_ERR(handle)) {
1020                 page_cache_release(page);
1021                 return PTR_ERR(handle);
1022         }
1023
1024         lock_page(page);
1025         if (page->mapping != mapping) {
1026                 /* The page got truncated from under us */
1027                 unlock_page(page);
1028                 page_cache_release(page);
1029                 ext4_journal_stop(handle);
1030                 goto retry_grab;
1031         }
1032         wait_on_page_writeback(page);
1033
1034         if (ext4_should_dioread_nolock(inode))
1035                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036         else
1037                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038
1039         if (!ret && ext4_should_journal_data(inode)) {
1040                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041                                              from, to, NULL,
1042                                              do_journal_get_write_access);
1043         }
1044
1045         if (ret) {
1046                 unlock_page(page);
1047                 /*
1048                  * __block_write_begin may have instantiated a few blocks
1049                  * outside i_size.  Trim these off again. Don't need
1050                  * i_size_read because we hold i_mutex.
1051                  *
1052                  * Add inode to orphan list in case we crash before
1053                  * truncate finishes
1054                  */
1055                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056                         ext4_orphan_add(handle, inode);
1057
1058                 ext4_journal_stop(handle);
1059                 if (pos + len > inode->i_size) {
1060                         ext4_truncate_failed_write(inode);
1061                         /*
1062                          * If truncate failed early the inode might
1063                          * still be on the orphan list; we need to
1064                          * make sure the inode is removed from the
1065                          * orphan list in that case.
1066                          */
1067                         if (inode->i_nlink)
1068                                 ext4_orphan_del(NULL, inode);
1069                 }
1070
1071                 if (ret == -ENOSPC &&
1072                     ext4_should_retry_alloc(inode->i_sb, &retries))
1073                         goto retry_journal;
1074                 page_cache_release(page);
1075                 return ret;
1076         }
1077         *pagep = page;
1078         return ret;
1079 }
1080
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084         int ret;
1085         if (!buffer_mapped(bh) || buffer_freed(bh))
1086                 return 0;
1087         set_buffer_uptodate(bh);
1088         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089         clear_buffer_meta(bh);
1090         clear_buffer_prio(bh);
1091         return ret;
1092 }
1093
1094 /*
1095  * We need to pick up the new inode size which generic_commit_write gave us
1096  * `file' can be NULL - eg, when called from page_symlink().
1097  *
1098  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1099  * buffers are managed internally.
1100  */
1101 static int ext4_write_end(struct file *file,
1102                           struct address_space *mapping,
1103                           loff_t pos, unsigned len, unsigned copied,
1104                           struct page *page, void *fsdata)
1105 {
1106         handle_t *handle = ext4_journal_current_handle();
1107         struct inode *inode = mapping->host;
1108         int ret = 0, ret2;
1109         int i_size_changed = 0;
1110
1111         trace_ext4_write_end(inode, pos, len, copied);
1112         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113                 ret = ext4_jbd2_file_inode(handle, inode);
1114                 if (ret) {
1115                         unlock_page(page);
1116                         page_cache_release(page);
1117                         goto errout;
1118                 }
1119         }
1120
1121         if (ext4_has_inline_data(inode)) {
1122                 ret = ext4_write_inline_data_end(inode, pos, len,
1123                                                  copied, page);
1124                 if (ret < 0)
1125                         goto errout;
1126                 copied = ret;
1127         } else
1128                 copied = block_write_end(file, mapping, pos,
1129                                          len, copied, page, fsdata);
1130
1131         /*
1132          * No need to use i_size_read() here, the i_size
1133          * cannot change under us because we hole i_mutex.
1134          *
1135          * But it's important to update i_size while still holding page lock:
1136          * page writeout could otherwise come in and zero beyond i_size.
1137          */
1138         if (pos + copied > inode->i_size) {
1139                 i_size_write(inode, pos + copied);
1140                 i_size_changed = 1;
1141         }
1142
1143         if (pos + copied > EXT4_I(inode)->i_disksize) {
1144                 /* We need to mark inode dirty even if
1145                  * new_i_size is less that inode->i_size
1146                  * but greater than i_disksize. (hint delalloc)
1147                  */
1148                 ext4_update_i_disksize(inode, (pos + copied));
1149                 i_size_changed = 1;
1150         }
1151         unlock_page(page);
1152         page_cache_release(page);
1153
1154         /*
1155          * Don't mark the inode dirty under page lock. First, it unnecessarily
1156          * makes the holding time of page lock longer. Second, it forces lock
1157          * ordering of page lock and transaction start for journaling
1158          * filesystems.
1159          */
1160         if (i_size_changed)
1161                 ext4_mark_inode_dirty(handle, inode);
1162
1163         if (copied < 0)
1164                 ret = copied;
1165         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166                 /* if we have allocated more blocks and copied
1167                  * less. We will have blocks allocated outside
1168                  * inode->i_size. So truncate them
1169                  */
1170                 ext4_orphan_add(handle, inode);
1171 errout:
1172         ret2 = ext4_journal_stop(handle);
1173         if (!ret)
1174                 ret = ret2;
1175
1176         if (pos + len > inode->i_size) {
1177                 ext4_truncate_failed_write(inode);
1178                 /*
1179                  * If truncate failed early the inode might still be
1180                  * on the orphan list; we need to make sure the inode
1181                  * is removed from the orphan list in that case.
1182                  */
1183                 if (inode->i_nlink)
1184                         ext4_orphan_del(NULL, inode);
1185         }
1186
1187         return ret ? ret : copied;
1188 }
1189
1190 static int ext4_journalled_write_end(struct file *file,
1191                                      struct address_space *mapping,
1192                                      loff_t pos, unsigned len, unsigned copied,
1193                                      struct page *page, void *fsdata)
1194 {
1195         handle_t *handle = ext4_journal_current_handle();
1196         struct inode *inode = mapping->host;
1197         int ret = 0, ret2;
1198         int partial = 0;
1199         unsigned from, to;
1200         loff_t new_i_size;
1201
1202         trace_ext4_journalled_write_end(inode, pos, len, copied);
1203         from = pos & (PAGE_CACHE_SIZE - 1);
1204         to = from + len;
1205
1206         BUG_ON(!ext4_handle_valid(handle));
1207
1208         if (ext4_has_inline_data(inode))
1209                 copied = ext4_write_inline_data_end(inode, pos, len,
1210                                                     copied, page);
1211         else {
1212                 if (copied < len) {
1213                         if (!PageUptodate(page))
1214                                 copied = 0;
1215                         page_zero_new_buffers(page, from+copied, to);
1216                 }
1217
1218                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1219                                              to, &partial, write_end_fn);
1220                 if (!partial)
1221                         SetPageUptodate(page);
1222         }
1223         new_i_size = pos + copied;
1224         if (new_i_size > inode->i_size)
1225                 i_size_write(inode, pos+copied);
1226         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1227         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1228         if (new_i_size > EXT4_I(inode)->i_disksize) {
1229                 ext4_update_i_disksize(inode, new_i_size);
1230                 ret2 = ext4_mark_inode_dirty(handle, inode);
1231                 if (!ret)
1232                         ret = ret2;
1233         }
1234
1235         unlock_page(page);
1236         page_cache_release(page);
1237         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1238                 /* if we have allocated more blocks and copied
1239                  * less. We will have blocks allocated outside
1240                  * inode->i_size. So truncate them
1241                  */
1242                 ext4_orphan_add(handle, inode);
1243
1244         ret2 = ext4_journal_stop(handle);
1245         if (!ret)
1246                 ret = ret2;
1247         if (pos + len > inode->i_size) {
1248                 ext4_truncate_failed_write(inode);
1249                 /*
1250                  * If truncate failed early the inode might still be
1251                  * on the orphan list; we need to make sure the inode
1252                  * is removed from the orphan list in that case.
1253                  */
1254                 if (inode->i_nlink)
1255                         ext4_orphan_del(NULL, inode);
1256         }
1257
1258         return ret ? ret : copied;
1259 }
1260
1261 /*
1262  * Reserve a metadata for a single block located at lblock
1263  */
1264 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1265 {
1266         int retries = 0;
1267         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1268         struct ext4_inode_info *ei = EXT4_I(inode);
1269         unsigned int md_needed;
1270         ext4_lblk_t save_last_lblock;
1271         int save_len;
1272
1273         /*
1274          * recalculate the amount of metadata blocks to reserve
1275          * in order to allocate nrblocks
1276          * worse case is one extent per block
1277          */
1278 repeat:
1279         spin_lock(&ei->i_block_reservation_lock);
1280         /*
1281          * ext4_calc_metadata_amount() has side effects, which we have
1282          * to be prepared undo if we fail to claim space.
1283          */
1284         save_len = ei->i_da_metadata_calc_len;
1285         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1286         md_needed = EXT4_NUM_B2C(sbi,
1287                                  ext4_calc_metadata_amount(inode, lblock));
1288         trace_ext4_da_reserve_space(inode, md_needed);
1289
1290         /*
1291          * We do still charge estimated metadata to the sb though;
1292          * we cannot afford to run out of free blocks.
1293          */
1294         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1295                 ei->i_da_metadata_calc_len = save_len;
1296                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1297                 spin_unlock(&ei->i_block_reservation_lock);
1298                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1299                         cond_resched();
1300                         goto repeat;
1301                 }
1302                 return -ENOSPC;
1303         }
1304         ei->i_reserved_meta_blocks += md_needed;
1305         spin_unlock(&ei->i_block_reservation_lock);
1306
1307         return 0;       /* success */
1308 }
1309
1310 /*
1311  * Reserve a single cluster located at lblock
1312  */
1313 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1314 {
1315         int retries = 0;
1316         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1317         struct ext4_inode_info *ei = EXT4_I(inode);
1318         unsigned int md_needed;
1319         int ret;
1320         ext4_lblk_t save_last_lblock;
1321         int save_len;
1322
1323         /*
1324          * We will charge metadata quota at writeout time; this saves
1325          * us from metadata over-estimation, though we may go over by
1326          * a small amount in the end.  Here we just reserve for data.
1327          */
1328         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1329         if (ret)
1330                 return ret;
1331
1332         /*
1333          * recalculate the amount of metadata blocks to reserve
1334          * in order to allocate nrblocks
1335          * worse case is one extent per block
1336          */
1337 repeat:
1338         spin_lock(&ei->i_block_reservation_lock);
1339         /*
1340          * ext4_calc_metadata_amount() has side effects, which we have
1341          * to be prepared undo if we fail to claim space.
1342          */
1343         save_len = ei->i_da_metadata_calc_len;
1344         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1345         md_needed = EXT4_NUM_B2C(sbi,
1346                                  ext4_calc_metadata_amount(inode, lblock));
1347         trace_ext4_da_reserve_space(inode, md_needed);
1348
1349         /*
1350          * We do still charge estimated metadata to the sb though;
1351          * we cannot afford to run out of free blocks.
1352          */
1353         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1354                 ei->i_da_metadata_calc_len = save_len;
1355                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1356                 spin_unlock(&ei->i_block_reservation_lock);
1357                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1358                         cond_resched();
1359                         goto repeat;
1360                 }
1361                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1362                 return -ENOSPC;
1363         }
1364         ei->i_reserved_data_blocks++;
1365         ei->i_reserved_meta_blocks += md_needed;
1366         spin_unlock(&ei->i_block_reservation_lock);
1367
1368         return 0;       /* success */
1369 }
1370
1371 static void ext4_da_release_space(struct inode *inode, int to_free)
1372 {
1373         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1374         struct ext4_inode_info *ei = EXT4_I(inode);
1375
1376         if (!to_free)
1377                 return;         /* Nothing to release, exit */
1378
1379         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1380
1381         trace_ext4_da_release_space(inode, to_free);
1382         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1383                 /*
1384                  * if there aren't enough reserved blocks, then the
1385                  * counter is messed up somewhere.  Since this
1386                  * function is called from invalidate page, it's
1387                  * harmless to return without any action.
1388                  */
1389                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1390                          "ino %lu, to_free %d with only %d reserved "
1391                          "data blocks", inode->i_ino, to_free,
1392                          ei->i_reserved_data_blocks);
1393                 WARN_ON(1);
1394                 to_free = ei->i_reserved_data_blocks;
1395         }
1396         ei->i_reserved_data_blocks -= to_free;
1397
1398         if (ei->i_reserved_data_blocks == 0) {
1399                 /*
1400                  * We can release all of the reserved metadata blocks
1401                  * only when we have written all of the delayed
1402                  * allocation blocks.
1403                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1404                  * i_reserved_data_blocks, etc. refer to number of clusters.
1405                  */
1406                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1407                                    ei->i_reserved_meta_blocks);
1408                 ei->i_reserved_meta_blocks = 0;
1409                 ei->i_da_metadata_calc_len = 0;
1410         }
1411
1412         /* update fs dirty data blocks counter */
1413         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1414
1415         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1416
1417         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1418 }
1419
1420 static void ext4_da_page_release_reservation(struct page *page,
1421                                              unsigned long offset)
1422 {
1423         int to_release = 0;
1424         struct buffer_head *head, *bh;
1425         unsigned int curr_off = 0;
1426         struct inode *inode = page->mapping->host;
1427         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1428         int num_clusters;
1429         ext4_fsblk_t lblk;
1430
1431         head = page_buffers(page);
1432         bh = head;
1433         do {
1434                 unsigned int next_off = curr_off + bh->b_size;
1435
1436                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1437                         to_release++;
1438                         clear_buffer_delay(bh);
1439                 }
1440                 curr_off = next_off;
1441         } while ((bh = bh->b_this_page) != head);
1442
1443         if (to_release) {
1444                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445                 ext4_es_remove_extent(inode, lblk, to_release);
1446         }
1447
1448         /* If we have released all the blocks belonging to a cluster, then we
1449          * need to release the reserved space for that cluster. */
1450         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1451         while (num_clusters > 0) {
1452                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1453                         ((num_clusters - 1) << sbi->s_cluster_bits);
1454                 if (sbi->s_cluster_ratio == 1 ||
1455                     !ext4_find_delalloc_cluster(inode, lblk))
1456                         ext4_da_release_space(inode, 1);
1457
1458                 num_clusters--;
1459         }
1460 }
1461
1462 /*
1463  * Delayed allocation stuff
1464  */
1465
1466 /*
1467  * mpage_da_submit_io - walks through extent of pages and try to write
1468  * them with writepage() call back
1469  *
1470  * @mpd->inode: inode
1471  * @mpd->first_page: first page of the extent
1472  * @mpd->next_page: page after the last page of the extent
1473  *
1474  * By the time mpage_da_submit_io() is called we expect all blocks
1475  * to be allocated. this may be wrong if allocation failed.
1476  *
1477  * As pages are already locked by write_cache_pages(), we can't use it
1478  */
1479 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1480                               struct ext4_map_blocks *map)
1481 {
1482         struct pagevec pvec;
1483         unsigned long index, end;
1484         int ret = 0, err, nr_pages, i;
1485         struct inode *inode = mpd->inode;
1486         struct address_space *mapping = inode->i_mapping;
1487         loff_t size = i_size_read(inode);
1488         unsigned int len, block_start;
1489         struct buffer_head *bh, *page_bufs = NULL;
1490         sector_t pblock = 0, cur_logical = 0;
1491         struct ext4_io_submit io_submit;
1492
1493         BUG_ON(mpd->next_page <= mpd->first_page);
1494         memset(&io_submit, 0, sizeof(io_submit));
1495         /*
1496          * We need to start from the first_page to the next_page - 1
1497          * to make sure we also write the mapped dirty buffer_heads.
1498          * If we look at mpd->b_blocknr we would only be looking
1499          * at the currently mapped buffer_heads.
1500          */
1501         index = mpd->first_page;
1502         end = mpd->next_page - 1;
1503
1504         pagevec_init(&pvec, 0);
1505         while (index <= end) {
1506                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1507                 if (nr_pages == 0)
1508                         break;
1509                 for (i = 0; i < nr_pages; i++) {
1510                         int skip_page = 0;
1511                         struct page *page = pvec.pages[i];
1512
1513                         index = page->index;
1514                         if (index > end)
1515                                 break;
1516
1517                         if (index == size >> PAGE_CACHE_SHIFT)
1518                                 len = size & ~PAGE_CACHE_MASK;
1519                         else
1520                                 len = PAGE_CACHE_SIZE;
1521                         if (map) {
1522                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1523                                                         inode->i_blkbits);
1524                                 pblock = map->m_pblk + (cur_logical -
1525                                                         map->m_lblk);
1526                         }
1527                         index++;
1528
1529                         BUG_ON(!PageLocked(page));
1530                         BUG_ON(PageWriteback(page));
1531
1532                         bh = page_bufs = page_buffers(page);
1533                         block_start = 0;
1534                         do {
1535                                 if (map && (cur_logical >= map->m_lblk) &&
1536                                     (cur_logical <= (map->m_lblk +
1537                                                      (map->m_len - 1)))) {
1538                                         if (buffer_delay(bh)) {
1539                                                 clear_buffer_delay(bh);
1540                                                 bh->b_blocknr = pblock;
1541                                         }
1542                                         if (buffer_unwritten(bh) ||
1543                                             buffer_mapped(bh))
1544                                                 BUG_ON(bh->b_blocknr != pblock);
1545                                         if (map->m_flags & EXT4_MAP_UNINIT)
1546                                                 set_buffer_uninit(bh);
1547                                         clear_buffer_unwritten(bh);
1548                                 }
1549
1550                                 /*
1551                                  * skip page if block allocation undone and
1552                                  * block is dirty
1553                                  */
1554                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1555                                         skip_page = 1;
1556                                 bh = bh->b_this_page;
1557                                 block_start += bh->b_size;
1558                                 cur_logical++;
1559                                 pblock++;
1560                         } while (bh != page_bufs);
1561
1562                         if (skip_page) {
1563                                 unlock_page(page);
1564                                 continue;
1565                         }
1566
1567                         clear_page_dirty_for_io(page);
1568                         err = ext4_bio_write_page(&io_submit, page, len,
1569                                                   mpd->wbc);
1570                         if (!err)
1571                                 mpd->pages_written++;
1572                         /*
1573                          * In error case, we have to continue because
1574                          * remaining pages are still locked
1575                          */
1576                         if (ret == 0)
1577                                 ret = err;
1578                 }
1579                 pagevec_release(&pvec);
1580         }
1581         ext4_io_submit(&io_submit);
1582         return ret;
1583 }
1584
1585 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1586 {
1587         int nr_pages, i;
1588         pgoff_t index, end;
1589         struct pagevec pvec;
1590         struct inode *inode = mpd->inode;
1591         struct address_space *mapping = inode->i_mapping;
1592         ext4_lblk_t start, last;
1593
1594         index = mpd->first_page;
1595         end   = mpd->next_page - 1;
1596
1597         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1598         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1599         ext4_es_remove_extent(inode, start, last - start + 1);
1600
1601         pagevec_init(&pvec, 0);
1602         while (index <= end) {
1603                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1604                 if (nr_pages == 0)
1605                         break;
1606                 for (i = 0; i < nr_pages; i++) {
1607                         struct page *page = pvec.pages[i];
1608                         if (page->index > end)
1609                                 break;
1610                         BUG_ON(!PageLocked(page));
1611                         BUG_ON(PageWriteback(page));
1612                         block_invalidatepage(page, 0);
1613                         ClearPageUptodate(page);
1614                         unlock_page(page);
1615                 }
1616                 index = pvec.pages[nr_pages - 1]->index + 1;
1617                 pagevec_release(&pvec);
1618         }
1619         return;
1620 }
1621
1622 static void ext4_print_free_blocks(struct inode *inode)
1623 {
1624         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1625         struct super_block *sb = inode->i_sb;
1626         struct ext4_inode_info *ei = EXT4_I(inode);
1627
1628         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1629                EXT4_C2B(EXT4_SB(inode->i_sb),
1630                         ext4_count_free_clusters(sb)));
1631         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1632         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1633                (long long) EXT4_C2B(EXT4_SB(sb),
1634                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1635         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1636                (long long) EXT4_C2B(EXT4_SB(sb),
1637                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1638         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1639         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1640                  ei->i_reserved_data_blocks);
1641         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1642                ei->i_reserved_meta_blocks);
1643         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1644                ei->i_allocated_meta_blocks);
1645         return;
1646 }
1647
1648 /*
1649  * mpage_da_map_and_submit - go through given space, map them
1650  *       if necessary, and then submit them for I/O
1651  *
1652  * @mpd - bh describing space
1653  *
1654  * The function skips space we know is already mapped to disk blocks.
1655  *
1656  */
1657 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1658 {
1659         int err, blks, get_blocks_flags;
1660         struct ext4_map_blocks map, *mapp = NULL;
1661         sector_t next = mpd->b_blocknr;
1662         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1663         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1664         handle_t *handle = NULL;
1665
1666         /*
1667          * If the blocks are mapped already, or we couldn't accumulate
1668          * any blocks, then proceed immediately to the submission stage.
1669          */
1670         if ((mpd->b_size == 0) ||
1671             ((mpd->b_state  & (1 << BH_Mapped)) &&
1672              !(mpd->b_state & (1 << BH_Delay)) &&
1673              !(mpd->b_state & (1 << BH_Unwritten))))
1674                 goto submit_io;
1675
1676         handle = ext4_journal_current_handle();
1677         BUG_ON(!handle);
1678
1679         /*
1680          * Call ext4_map_blocks() to allocate any delayed allocation
1681          * blocks, or to convert an uninitialized extent to be
1682          * initialized (in the case where we have written into
1683          * one or more preallocated blocks).
1684          *
1685          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1686          * indicate that we are on the delayed allocation path.  This
1687          * affects functions in many different parts of the allocation
1688          * call path.  This flag exists primarily because we don't
1689          * want to change *many* call functions, so ext4_map_blocks()
1690          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1691          * inode's allocation semaphore is taken.
1692          *
1693          * If the blocks in questions were delalloc blocks, set
1694          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1695          * variables are updated after the blocks have been allocated.
1696          */
1697         map.m_lblk = next;
1698         map.m_len = max_blocks;
1699         /*
1700          * We're in delalloc path and it is possible that we're going to
1701          * need more metadata blocks than previously reserved. However
1702          * we must not fail because we're in writeback and there is
1703          * nothing we can do about it so it might result in data loss.
1704          * So use reserved blocks to allocate metadata if possible.
1705          */
1706         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1707                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1708         if (ext4_should_dioread_nolock(mpd->inode))
1709                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1710         if (mpd->b_state & (1 << BH_Delay))
1711                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1712
1713
1714         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1715         if (blks < 0) {
1716                 struct super_block *sb = mpd->inode->i_sb;
1717
1718                 err = blks;
1719                 /*
1720                  * If get block returns EAGAIN or ENOSPC and there
1721                  * appears to be free blocks we will just let
1722                  * mpage_da_submit_io() unlock all of the pages.
1723                  */
1724                 if (err == -EAGAIN)
1725                         goto submit_io;
1726
1727                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1728                         mpd->retval = err;
1729                         goto submit_io;
1730                 }
1731
1732                 /*
1733                  * get block failure will cause us to loop in
1734                  * writepages, because a_ops->writepage won't be able
1735                  * to make progress. The page will be redirtied by
1736                  * writepage and writepages will again try to write
1737                  * the same.
1738                  */
1739                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1740                         ext4_msg(sb, KERN_CRIT,
1741                                  "delayed block allocation failed for inode %lu "
1742                                  "at logical offset %llu with max blocks %zd "
1743                                  "with error %d", mpd->inode->i_ino,
1744                                  (unsigned long long) next,
1745                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1746                         ext4_msg(sb, KERN_CRIT,
1747                                 "This should not happen!! Data will be lost");
1748                         if (err == -ENOSPC)
1749                                 ext4_print_free_blocks(mpd->inode);
1750                 }
1751                 /* invalidate all the pages */
1752                 ext4_da_block_invalidatepages(mpd);
1753
1754                 /* Mark this page range as having been completed */
1755                 mpd->io_done = 1;
1756                 return;
1757         }
1758         BUG_ON(blks == 0);
1759
1760         mapp = &map;
1761         if (map.m_flags & EXT4_MAP_NEW) {
1762                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1763                 int i;
1764
1765                 for (i = 0; i < map.m_len; i++)
1766                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1767         }
1768
1769         /*
1770          * Update on-disk size along with block allocation.
1771          */
1772         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1773         if (disksize > i_size_read(mpd->inode))
1774                 disksize = i_size_read(mpd->inode);
1775         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1776                 ext4_update_i_disksize(mpd->inode, disksize);
1777                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1778                 if (err)
1779                         ext4_error(mpd->inode->i_sb,
1780                                    "Failed to mark inode %lu dirty",
1781                                    mpd->inode->i_ino);
1782         }
1783
1784 submit_io:
1785         mpage_da_submit_io(mpd, mapp);
1786         mpd->io_done = 1;
1787 }
1788
1789 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1790                 (1 << BH_Delay) | (1 << BH_Unwritten))
1791
1792 /*
1793  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1794  *
1795  * @mpd->lbh - extent of blocks
1796  * @logical - logical number of the block in the file
1797  * @b_state - b_state of the buffer head added
1798  *
1799  * the function is used to collect contig. blocks in same state
1800  */
1801 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1802                                    unsigned long b_state)
1803 {
1804         sector_t next;
1805         int blkbits = mpd->inode->i_blkbits;
1806         int nrblocks = mpd->b_size >> blkbits;
1807
1808         /*
1809          * XXX Don't go larger than mballoc is willing to allocate
1810          * This is a stopgap solution.  We eventually need to fold
1811          * mpage_da_submit_io() into this function and then call
1812          * ext4_map_blocks() multiple times in a loop
1813          */
1814         if (nrblocks >= (8*1024*1024 >> blkbits))
1815                 goto flush_it;
1816
1817         /* check if the reserved journal credits might overflow */
1818         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1819                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1820                         /*
1821                          * With non-extent format we are limited by the journal
1822                          * credit available.  Total credit needed to insert
1823                          * nrblocks contiguous blocks is dependent on the
1824                          * nrblocks.  So limit nrblocks.
1825                          */
1826                         goto flush_it;
1827                 }
1828         }
1829         /*
1830          * First block in the extent
1831          */
1832         if (mpd->b_size == 0) {
1833                 mpd->b_blocknr = logical;
1834                 mpd->b_size = 1 << blkbits;
1835                 mpd->b_state = b_state & BH_FLAGS;
1836                 return;
1837         }
1838
1839         next = mpd->b_blocknr + nrblocks;
1840         /*
1841          * Can we merge the block to our big extent?
1842          */
1843         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1844                 mpd->b_size += 1 << blkbits;
1845                 return;
1846         }
1847
1848 flush_it:
1849         /*
1850          * We couldn't merge the block to our extent, so we
1851          * need to flush current  extent and start new one
1852          */
1853         mpage_da_map_and_submit(mpd);
1854         return;
1855 }
1856
1857 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1858 {
1859         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1860 }
1861
1862 /*
1863  * This function is grabs code from the very beginning of
1864  * ext4_map_blocks, but assumes that the caller is from delayed write
1865  * time. This function looks up the requested blocks and sets the
1866  * buffer delay bit under the protection of i_data_sem.
1867  */
1868 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1869                               struct ext4_map_blocks *map,
1870                               struct buffer_head *bh)
1871 {
1872         struct extent_status es;
1873         int retval;
1874         sector_t invalid_block = ~((sector_t) 0xffff);
1875 #ifdef ES_AGGRESSIVE_TEST
1876         struct ext4_map_blocks orig_map;
1877
1878         memcpy(&orig_map, map, sizeof(*map));
1879 #endif
1880
1881         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1882                 invalid_block = ~0;
1883
1884         map->m_flags = 0;
1885         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1886                   "logical block %lu\n", inode->i_ino, map->m_len,
1887                   (unsigned long) map->m_lblk);
1888
1889         /* Lookup extent status tree firstly */
1890         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1891
1892                 if (ext4_es_is_hole(&es)) {
1893                         retval = 0;
1894                         down_read((&EXT4_I(inode)->i_data_sem));
1895                         goto add_delayed;
1896                 }
1897
1898                 /*
1899                  * Delayed extent could be allocated by fallocate.
1900                  * So we need to check it.
1901                  */
1902                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1903                         map_bh(bh, inode->i_sb, invalid_block);
1904                         set_buffer_new(bh);
1905                         set_buffer_delay(bh);
1906                         return 0;
1907                 }
1908
1909                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1910                 retval = es.es_len - (iblock - es.es_lblk);
1911                 if (retval > map->m_len)
1912                         retval = map->m_len;
1913                 map->m_len = retval;
1914                 if (ext4_es_is_written(&es))
1915                         map->m_flags |= EXT4_MAP_MAPPED;
1916                 else if (ext4_es_is_unwritten(&es))
1917                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1918                 else
1919                         BUG_ON(1);
1920
1921 #ifdef ES_AGGRESSIVE_TEST
1922                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1923 #endif
1924                 return retval;
1925         }
1926
1927         /*
1928          * Try to see if we can get the block without requesting a new
1929          * file system block.
1930          */
1931         down_read((&EXT4_I(inode)->i_data_sem));
1932         if (ext4_has_inline_data(inode)) {
1933                 /*
1934                  * We will soon create blocks for this page, and let
1935                  * us pretend as if the blocks aren't allocated yet.
1936                  * In case of clusters, we have to handle the work
1937                  * of mapping from cluster so that the reserved space
1938                  * is calculated properly.
1939                  */
1940                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1941                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1942                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1943                 retval = 0;
1944         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1945                 retval = ext4_ext_map_blocks(NULL, inode, map,
1946                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1947         else
1948                 retval = ext4_ind_map_blocks(NULL, inode, map,
1949                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1950
1951 add_delayed:
1952         if (retval == 0) {
1953                 int ret;
1954                 /*
1955                  * XXX: __block_prepare_write() unmaps passed block,
1956                  * is it OK?
1957                  */
1958                 /*
1959                  * If the block was allocated from previously allocated cluster,
1960                  * then we don't need to reserve it again. However we still need
1961                  * to reserve metadata for every block we're going to write.
1962                  */
1963                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1964                         ret = ext4_da_reserve_space(inode, iblock);
1965                         if (ret) {
1966                                 /* not enough space to reserve */
1967                                 retval = ret;
1968                                 goto out_unlock;
1969                         }
1970                 } else {
1971                         ret = ext4_da_reserve_metadata(inode, iblock);
1972                         if (ret) {
1973                                 /* not enough space to reserve */
1974                                 retval = ret;
1975                                 goto out_unlock;
1976                         }
1977                 }
1978
1979                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1980                                             ~0, EXTENT_STATUS_DELAYED);
1981                 if (ret) {
1982                         retval = ret;
1983                         goto out_unlock;
1984                 }
1985
1986                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1987                  * and it should not appear on the bh->b_state.
1988                  */
1989                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1990
1991                 map_bh(bh, inode->i_sb, invalid_block);
1992                 set_buffer_new(bh);
1993                 set_buffer_delay(bh);
1994         } else if (retval > 0) {
1995                 int ret;
1996                 unsigned long long status;
1997
1998 #ifdef ES_AGGRESSIVE_TEST
1999                 if (retval != map->m_len) {
2000                         printk("ES len assertation failed for inode: %lu "
2001                                "retval %d != map->m_len %d "
2002                                "in %s (lookup)\n", inode->i_ino, retval,
2003                                map->m_len, __func__);
2004                 }
2005 #endif
2006
2007                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2008                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2009                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2010                                             map->m_pblk, status);
2011                 if (ret != 0)
2012                         retval = ret;
2013         }
2014
2015 out_unlock:
2016         up_read((&EXT4_I(inode)->i_data_sem));
2017
2018         return retval;
2019 }
2020
2021 /*
2022  * This is a special get_blocks_t callback which is used by
2023  * ext4_da_write_begin().  It will either return mapped block or
2024  * reserve space for a single block.
2025  *
2026  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2027  * We also have b_blocknr = -1 and b_bdev initialized properly
2028  *
2029  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2030  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2031  * initialized properly.
2032  */
2033 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2034                            struct buffer_head *bh, int create)
2035 {
2036         struct ext4_map_blocks map;
2037         int ret = 0;
2038
2039         BUG_ON(create == 0);
2040         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2041
2042         map.m_lblk = iblock;
2043         map.m_len = 1;
2044
2045         /*
2046          * first, we need to know whether the block is allocated already
2047          * preallocated blocks are unmapped but should treated
2048          * the same as allocated blocks.
2049          */
2050         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2051         if (ret <= 0)
2052                 return ret;
2053
2054         map_bh(bh, inode->i_sb, map.m_pblk);
2055         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2056
2057         if (buffer_unwritten(bh)) {
2058                 /* A delayed write to unwritten bh should be marked
2059                  * new and mapped.  Mapped ensures that we don't do
2060                  * get_block multiple times when we write to the same
2061                  * offset and new ensures that we do proper zero out
2062                  * for partial write.
2063                  */
2064                 set_buffer_new(bh);
2065                 set_buffer_mapped(bh);
2066         }
2067         return 0;
2068 }
2069
2070 static int bget_one(handle_t *handle, struct buffer_head *bh)
2071 {
2072         get_bh(bh);
2073         return 0;
2074 }
2075
2076 static int bput_one(handle_t *handle, struct buffer_head *bh)
2077 {
2078         put_bh(bh);
2079         return 0;
2080 }
2081
2082 static int __ext4_journalled_writepage(struct page *page,
2083                                        unsigned int len)
2084 {
2085         struct address_space *mapping = page->mapping;
2086         struct inode *inode = mapping->host;
2087         struct buffer_head *page_bufs = NULL;
2088         handle_t *handle = NULL;
2089         int ret = 0, err = 0;
2090         int inline_data = ext4_has_inline_data(inode);
2091         struct buffer_head *inode_bh = NULL;
2092
2093         ClearPageChecked(page);
2094
2095         if (inline_data) {
2096                 BUG_ON(page->index != 0);
2097                 BUG_ON(len > ext4_get_max_inline_size(inode));
2098                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2099                 if (inode_bh == NULL)
2100                         goto out;
2101         } else {
2102                 page_bufs = page_buffers(page);
2103                 if (!page_bufs) {
2104                         BUG();
2105                         goto out;
2106                 }
2107                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2108                                        NULL, bget_one);
2109         }
2110         /* As soon as we unlock the page, it can go away, but we have
2111          * references to buffers so we are safe */
2112         unlock_page(page);
2113
2114         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2115                                     ext4_writepage_trans_blocks(inode));
2116         if (IS_ERR(handle)) {
2117                 ret = PTR_ERR(handle);
2118                 goto out;
2119         }
2120
2121         BUG_ON(!ext4_handle_valid(handle));
2122
2123         if (inline_data) {
2124                 ret = ext4_journal_get_write_access(handle, inode_bh);
2125
2126                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2127
2128         } else {
2129                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2130                                              do_journal_get_write_access);
2131
2132                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2133                                              write_end_fn);
2134         }
2135         if (ret == 0)
2136                 ret = err;
2137         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2138         err = ext4_journal_stop(handle);
2139         if (!ret)
2140                 ret = err;
2141
2142         if (!ext4_has_inline_data(inode))
2143                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2144                                        NULL, bput_one);
2145         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2146 out:
2147         brelse(inode_bh);
2148         return ret;
2149 }
2150
2151 /*
2152  * Note that we don't need to start a transaction unless we're journaling data
2153  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2154  * need to file the inode to the transaction's list in ordered mode because if
2155  * we are writing back data added by write(), the inode is already there and if
2156  * we are writing back data modified via mmap(), no one guarantees in which
2157  * transaction the data will hit the disk. In case we are journaling data, we
2158  * cannot start transaction directly because transaction start ranks above page
2159  * lock so we have to do some magic.
2160  *
2161  * This function can get called via...
2162  *   - ext4_da_writepages after taking page lock (have journal handle)
2163  *   - journal_submit_inode_data_buffers (no journal handle)
2164  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2165  *   - grab_page_cache when doing write_begin (have journal handle)
2166  *
2167  * We don't do any block allocation in this function. If we have page with
2168  * multiple blocks we need to write those buffer_heads that are mapped. This
2169  * is important for mmaped based write. So if we do with blocksize 1K
2170  * truncate(f, 1024);
2171  * a = mmap(f, 0, 4096);
2172  * a[0] = 'a';
2173  * truncate(f, 4096);
2174  * we have in the page first buffer_head mapped via page_mkwrite call back
2175  * but other buffer_heads would be unmapped but dirty (dirty done via the
2176  * do_wp_page). So writepage should write the first block. If we modify
2177  * the mmap area beyond 1024 we will again get a page_fault and the
2178  * page_mkwrite callback will do the block allocation and mark the
2179  * buffer_heads mapped.
2180  *
2181  * We redirty the page if we have any buffer_heads that is either delay or
2182  * unwritten in the page.
2183  *
2184  * We can get recursively called as show below.
2185  *
2186  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2187  *              ext4_writepage()
2188  *
2189  * But since we don't do any block allocation we should not deadlock.
2190  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2191  */
2192 static int ext4_writepage(struct page *page,
2193                           struct writeback_control *wbc)
2194 {
2195         int ret = 0;
2196         loff_t size;
2197         unsigned int len;
2198         struct buffer_head *page_bufs = NULL;
2199         struct inode *inode = page->mapping->host;
2200         struct ext4_io_submit io_submit;
2201
2202         trace_ext4_writepage(page);
2203         size = i_size_read(inode);
2204         if (page->index == size >> PAGE_CACHE_SHIFT)
2205                 len = size & ~PAGE_CACHE_MASK;
2206         else
2207                 len = PAGE_CACHE_SIZE;
2208
2209         page_bufs = page_buffers(page);
2210         /*
2211          * We cannot do block allocation or other extent handling in this
2212          * function. If there are buffers needing that, we have to redirty
2213          * the page. But we may reach here when we do a journal commit via
2214          * journal_submit_inode_data_buffers() and in that case we must write
2215          * allocated buffers to achieve data=ordered mode guarantees.
2216          */
2217         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2218                                    ext4_bh_delay_or_unwritten)) {
2219                 redirty_page_for_writepage(wbc, page);
2220                 if (current->flags & PF_MEMALLOC) {
2221                         /*
2222                          * For memory cleaning there's no point in writing only
2223                          * some buffers. So just bail out. Warn if we came here
2224                          * from direct reclaim.
2225                          */
2226                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2227                                                         == PF_MEMALLOC);
2228                         unlock_page(page);
2229                         return 0;
2230                 }
2231         }
2232
2233         if (PageChecked(page) && ext4_should_journal_data(inode))
2234                 /*
2235                  * It's mmapped pagecache.  Add buffers and journal it.  There
2236                  * doesn't seem much point in redirtying the page here.
2237                  */
2238                 return __ext4_journalled_writepage(page, len);
2239
2240         memset(&io_submit, 0, sizeof(io_submit));
2241         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2242         ext4_io_submit(&io_submit);
2243         return ret;
2244 }
2245
2246 /*
2247  * This is called via ext4_da_writepages() to
2248  * calculate the total number of credits to reserve to fit
2249  * a single extent allocation into a single transaction,
2250  * ext4_da_writpeages() will loop calling this before
2251  * the block allocation.
2252  */
2253
2254 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2255 {
2256         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2257
2258         /*
2259          * With non-extent format the journal credit needed to
2260          * insert nrblocks contiguous block is dependent on
2261          * number of contiguous block. So we will limit
2262          * number of contiguous block to a sane value
2263          */
2264         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2265             (max_blocks > EXT4_MAX_TRANS_DATA))
2266                 max_blocks = EXT4_MAX_TRANS_DATA;
2267
2268         return ext4_chunk_trans_blocks(inode, max_blocks);
2269 }
2270
2271 /*
2272  * write_cache_pages_da - walk the list of dirty pages of the given
2273  * address space and accumulate pages that need writing, and call
2274  * mpage_da_map_and_submit to map a single contiguous memory region
2275  * and then write them.
2276  */
2277 static int write_cache_pages_da(handle_t *handle,
2278                                 struct address_space *mapping,
2279                                 struct writeback_control *wbc,
2280                                 struct mpage_da_data *mpd,
2281                                 pgoff_t *done_index)
2282 {
2283         struct buffer_head      *bh, *head;
2284         struct inode            *inode = mapping->host;
2285         struct pagevec          pvec;
2286         unsigned int            nr_pages;
2287         sector_t                logical;
2288         pgoff_t                 index, end;
2289         long                    nr_to_write = wbc->nr_to_write;
2290         int                     i, tag, ret = 0;
2291
2292         memset(mpd, 0, sizeof(struct mpage_da_data));
2293         mpd->wbc = wbc;
2294         mpd->inode = inode;
2295         pagevec_init(&pvec, 0);
2296         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2297         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2298
2299         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2300                 tag = PAGECACHE_TAG_TOWRITE;
2301         else
2302                 tag = PAGECACHE_TAG_DIRTY;
2303
2304         *done_index = index;
2305         while (index <= end) {
2306                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2307                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2308                 if (nr_pages == 0)
2309                         return 0;
2310
2311                 for (i = 0; i < nr_pages; i++) {
2312                         struct page *page = pvec.pages[i];
2313
2314                         /*
2315                          * At this point, the page may be truncated or
2316                          * invalidated (changing page->mapping to NULL), or
2317                          * even swizzled back from swapper_space to tmpfs file
2318                          * mapping. However, page->index will not change
2319                          * because we have a reference on the page.
2320                          */
2321                         if (page->index > end)
2322                                 goto out;
2323
2324                         *done_index = page->index + 1;
2325
2326                         /*
2327                          * If we can't merge this page, and we have
2328                          * accumulated an contiguous region, write it
2329                          */
2330                         if ((mpd->next_page != page->index) &&
2331                             (mpd->next_page != mpd->first_page)) {
2332                                 mpage_da_map_and_submit(mpd);
2333                                 goto ret_extent_tail;
2334                         }
2335
2336                         lock_page(page);
2337
2338                         /*
2339                          * If the page is no longer dirty, or its
2340                          * mapping no longer corresponds to inode we
2341                          * are writing (which means it has been
2342                          * truncated or invalidated), or the page is
2343                          * already under writeback and we are not
2344                          * doing a data integrity writeback, skip the page
2345                          */
2346                         if (!PageDirty(page) ||
2347                             (PageWriteback(page) &&
2348                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2349                             unlikely(page->mapping != mapping)) {
2350                                 unlock_page(page);
2351                                 continue;
2352                         }
2353
2354                         wait_on_page_writeback(page);
2355                         BUG_ON(PageWriteback(page));
2356
2357                         /*
2358                          * If we have inline data and arrive here, it means that
2359                          * we will soon create the block for the 1st page, so
2360                          * we'd better clear the inline data here.
2361                          */
2362                         if (ext4_has_inline_data(inode)) {
2363                                 BUG_ON(ext4_test_inode_state(inode,
2364                                                 EXT4_STATE_MAY_INLINE_DATA));
2365                                 ext4_destroy_inline_data(handle, inode);
2366                         }
2367
2368                         if (mpd->next_page != page->index)
2369                                 mpd->first_page = page->index;
2370                         mpd->next_page = page->index + 1;
2371                         logical = (sector_t) page->index <<
2372                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2373
2374                         /* Add all dirty buffers to mpd */
2375                         head = page_buffers(page);
2376                         bh = head;
2377                         do {
2378                                 BUG_ON(buffer_locked(bh));
2379                                 /*
2380                                  * We need to try to allocate unmapped blocks
2381                                  * in the same page.  Otherwise we won't make
2382                                  * progress with the page in ext4_writepage
2383                                  */
2384                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2385                                         mpage_add_bh_to_extent(mpd, logical,
2386                                                                bh->b_state);
2387                                         if (mpd->io_done)
2388                                                 goto ret_extent_tail;
2389                                 } else if (buffer_dirty(bh) &&
2390                                            buffer_mapped(bh)) {
2391                                         /*
2392                                          * mapped dirty buffer. We need to
2393                                          * update the b_state because we look
2394                                          * at b_state in mpage_da_map_blocks.
2395                                          * We don't update b_size because if we
2396                                          * find an unmapped buffer_head later
2397                                          * we need to use the b_state flag of
2398                                          * that buffer_head.
2399                                          */
2400                                         if (mpd->b_size == 0)
2401                                                 mpd->b_state =
2402                                                         bh->b_state & BH_FLAGS;
2403                                 }
2404                                 logical++;
2405                         } while ((bh = bh->b_this_page) != head);
2406
2407                         if (nr_to_write > 0) {
2408                                 nr_to_write--;
2409                                 if (nr_to_write == 0 &&
2410                                     wbc->sync_mode == WB_SYNC_NONE)
2411                                         /*
2412                                          * We stop writing back only if we are
2413                                          * not doing integrity sync. In case of
2414                                          * integrity sync we have to keep going
2415                                          * because someone may be concurrently
2416                                          * dirtying pages, and we might have
2417                                          * synced a lot of newly appeared dirty
2418                                          * pages, but have not synced all of the
2419                                          * old dirty pages.
2420                                          */
2421                                         goto out;
2422                         }
2423                 }
2424                 pagevec_release(&pvec);
2425                 cond_resched();
2426         }
2427         return 0;
2428 ret_extent_tail:
2429         ret = MPAGE_DA_EXTENT_TAIL;
2430 out:
2431         pagevec_release(&pvec);
2432         cond_resched();
2433         return ret;
2434 }
2435
2436
2437 static int ext4_da_writepages(struct address_space *mapping,
2438                               struct writeback_control *wbc)
2439 {
2440         pgoff_t index;
2441         int range_whole = 0;
2442         handle_t *handle = NULL;
2443         struct mpage_da_data mpd;
2444         struct inode *inode = mapping->host;
2445         int pages_written = 0;
2446         unsigned int max_pages;
2447         int range_cyclic, cycled = 1, io_done = 0;
2448         int needed_blocks, ret = 0;
2449         long desired_nr_to_write, nr_to_writebump = 0;
2450         loff_t range_start = wbc->range_start;
2451         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2452         pgoff_t done_index = 0;
2453         pgoff_t end;
2454         struct blk_plug plug;
2455
2456         trace_ext4_da_writepages(inode, wbc);
2457
2458         /*
2459          * No pages to write? This is mainly a kludge to avoid starting
2460          * a transaction for special inodes like journal inode on last iput()
2461          * because that could violate lock ordering on umount
2462          */
2463         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2464                 return 0;
2465
2466         /*
2467          * If the filesystem has aborted, it is read-only, so return
2468          * right away instead of dumping stack traces later on that
2469          * will obscure the real source of the problem.  We test
2470          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2471          * the latter could be true if the filesystem is mounted
2472          * read-only, and in that case, ext4_da_writepages should
2473          * *never* be called, so if that ever happens, we would want
2474          * the stack trace.
2475          */
2476         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2477                 return -EROFS;
2478
2479         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2480                 range_whole = 1;
2481
2482         range_cyclic = wbc->range_cyclic;
2483         if (wbc->range_cyclic) {
2484                 index = mapping->writeback_index;
2485                 if (index)
2486                         cycled = 0;
2487                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2488                 wbc->range_end  = LLONG_MAX;
2489                 wbc->range_cyclic = 0;
2490                 end = -1;
2491         } else {
2492                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2493                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2494         }
2495
2496         /*
2497          * This works around two forms of stupidity.  The first is in
2498          * the writeback code, which caps the maximum number of pages
2499          * written to be 1024 pages.  This is wrong on multiple
2500          * levels; different architectues have a different page size,
2501          * which changes the maximum amount of data which gets
2502          * written.  Secondly, 4 megabytes is way too small.  XFS
2503          * forces this value to be 16 megabytes by multiplying
2504          * nr_to_write parameter by four, and then relies on its
2505          * allocator to allocate larger extents to make them
2506          * contiguous.  Unfortunately this brings us to the second
2507          * stupidity, which is that ext4's mballoc code only allocates
2508          * at most 2048 blocks.  So we force contiguous writes up to
2509          * the number of dirty blocks in the inode, or
2510          * sbi->max_writeback_mb_bump whichever is smaller.
2511          */
2512         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2513         if (!range_cyclic && range_whole) {
2514                 if (wbc->nr_to_write == LONG_MAX)
2515                         desired_nr_to_write = wbc->nr_to_write;
2516                 else
2517                         desired_nr_to_write = wbc->nr_to_write * 8;
2518         } else
2519                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2520                                                            max_pages);
2521         if (desired_nr_to_write > max_pages)
2522                 desired_nr_to_write = max_pages;
2523
2524         if (wbc->nr_to_write < desired_nr_to_write) {
2525                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2526                 wbc->nr_to_write = desired_nr_to_write;
2527         }
2528
2529 retry:
2530         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2531                 tag_pages_for_writeback(mapping, index, end);
2532
2533         blk_start_plug(&plug);
2534         while (!ret && wbc->nr_to_write > 0) {
2535
2536                 /*
2537                  * we  insert one extent at a time. So we need
2538                  * credit needed for single extent allocation.
2539                  * journalled mode is currently not supported
2540                  * by delalloc
2541                  */
2542                 BUG_ON(ext4_should_journal_data(inode));
2543                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2544
2545                 /* start a new transaction*/
2546                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2547                                             needed_blocks);
2548                 if (IS_ERR(handle)) {
2549                         ret = PTR_ERR(handle);
2550                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2551                                "%ld pages, ino %lu; err %d", __func__,
2552                                 wbc->nr_to_write, inode->i_ino, ret);
2553                         blk_finish_plug(&plug);
2554                         goto out_writepages;
2555                 }
2556
2557                 /*
2558                  * Now call write_cache_pages_da() to find the next
2559                  * contiguous region of logical blocks that need
2560                  * blocks to be allocated by ext4 and submit them.
2561                  */
2562                 ret = write_cache_pages_da(handle, mapping,
2563                                            wbc, &mpd, &done_index);
2564                 /*
2565                  * If we have a contiguous extent of pages and we
2566                  * haven't done the I/O yet, map the blocks and submit
2567                  * them for I/O.
2568                  */
2569                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2570                         mpage_da_map_and_submit(&mpd);
2571                         ret = MPAGE_DA_EXTENT_TAIL;
2572                 }
2573                 trace_ext4_da_write_pages(inode, &mpd);
2574                 wbc->nr_to_write -= mpd.pages_written;
2575
2576                 ext4_journal_stop(handle);
2577
2578                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2579                         /* commit the transaction which would
2580                          * free blocks released in the transaction
2581                          * and try again
2582                          */
2583                         jbd2_journal_force_commit_nested(sbi->s_journal);
2584                         ret = 0;
2585                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2586                         /*
2587                          * Got one extent now try with rest of the pages.
2588                          * If mpd.retval is set -EIO, journal is aborted.
2589                          * So we don't need to write any more.
2590                          */
2591                         pages_written += mpd.pages_written;
2592                         ret = mpd.retval;
2593                         io_done = 1;
2594                 } else if (wbc->nr_to_write)
2595                         /*
2596                          * There is no more writeout needed
2597                          * or we requested for a noblocking writeout
2598                          * and we found the device congested
2599                          */
2600                         break;
2601         }
2602         blk_finish_plug(&plug);
2603         if (!io_done && !cycled) {
2604                 cycled = 1;
2605                 index = 0;
2606                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2607                 wbc->range_end  = mapping->writeback_index - 1;
2608                 goto retry;
2609         }
2610
2611         /* Update index */
2612         wbc->range_cyclic = range_cyclic;
2613         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2614                 /*
2615                  * set the writeback_index so that range_cyclic
2616                  * mode will write it back later
2617                  */
2618                 mapping->writeback_index = done_index;
2619
2620 out_writepages:
2621         wbc->nr_to_write -= nr_to_writebump;
2622         wbc->range_start = range_start;
2623         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2624         return ret;
2625 }
2626
2627 static int ext4_nonda_switch(struct super_block *sb)
2628 {
2629         s64 free_clusters, dirty_clusters;
2630         struct ext4_sb_info *sbi = EXT4_SB(sb);
2631
2632         /*
2633          * switch to non delalloc mode if we are running low
2634          * on free block. The free block accounting via percpu
2635          * counters can get slightly wrong with percpu_counter_batch getting
2636          * accumulated on each CPU without updating global counters
2637          * Delalloc need an accurate free block accounting. So switch
2638          * to non delalloc when we are near to error range.
2639          */
2640         free_clusters =
2641                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2642         dirty_clusters =
2643                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2644         /*
2645          * Start pushing delalloc when 1/2 of free blocks are dirty.
2646          */
2647         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2648                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2649
2650         if (2 * free_clusters < 3 * dirty_clusters ||
2651             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2652                 /*
2653                  * free block count is less than 150% of dirty blocks
2654                  * or free blocks is less than watermark
2655                  */
2656                 return 1;
2657         }
2658         return 0;
2659 }
2660
2661 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2662                                loff_t pos, unsigned len, unsigned flags,
2663                                struct page **pagep, void **fsdata)
2664 {
2665         int ret, retries = 0;
2666         struct page *page;
2667         pgoff_t index;
2668         struct inode *inode = mapping->host;
2669         handle_t *handle;
2670
2671         index = pos >> PAGE_CACHE_SHIFT;
2672
2673         if (ext4_nonda_switch(inode->i_sb)) {
2674                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2675                 return ext4_write_begin(file, mapping, pos,
2676                                         len, flags, pagep, fsdata);
2677         }
2678         *fsdata = (void *)0;
2679         trace_ext4_da_write_begin(inode, pos, len, flags);
2680
2681         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2682                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2683                                                       pos, len, flags,
2684                                                       pagep, fsdata);
2685                 if (ret < 0)
2686                         return ret;
2687                 if (ret == 1)
2688                         return 0;
2689         }
2690
2691         /*
2692          * grab_cache_page_write_begin() can take a long time if the
2693          * system is thrashing due to memory pressure, or if the page
2694          * is being written back.  So grab it first before we start
2695          * the transaction handle.  This also allows us to allocate
2696          * the page (if needed) without using GFP_NOFS.
2697          */
2698 retry_grab:
2699         page = grab_cache_page_write_begin(mapping, index, flags);
2700         if (!page)
2701                 return -ENOMEM;
2702         unlock_page(page);
2703
2704         /*
2705          * With delayed allocation, we don't log the i_disksize update
2706          * if there is delayed block allocation. But we still need
2707          * to journalling the i_disksize update if writes to the end
2708          * of file which has an already mapped buffer.
2709          */
2710 retry_journal:
2711         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2712         if (IS_ERR(handle)) {
2713                 page_cache_release(page);
2714                 return PTR_ERR(handle);
2715         }
2716
2717         lock_page(page);
2718         if (page->mapping != mapping) {
2719                 /* The page got truncated from under us */
2720                 unlock_page(page);
2721                 page_cache_release(page);
2722                 ext4_journal_stop(handle);
2723                 goto retry_grab;
2724         }
2725         /* In case writeback began while the page was unlocked */
2726         wait_on_page_writeback(page);
2727
2728         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2729         if (ret < 0) {
2730                 unlock_page(page);
2731                 ext4_journal_stop(handle);
2732                 /*
2733                  * block_write_begin may have instantiated a few blocks
2734                  * outside i_size.  Trim these off again. Don't need
2735                  * i_size_read because we hold i_mutex.
2736                  */
2737                 if (pos + len > inode->i_size)
2738                         ext4_truncate_failed_write(inode);
2739
2740                 if (ret == -ENOSPC &&
2741                     ext4_should_retry_alloc(inode->i_sb, &retries))
2742                         goto retry_journal;
2743
2744                 page_cache_release(page);
2745                 return ret;
2746         }
2747
2748         *pagep = page;
2749         return ret;
2750 }
2751
2752 /*
2753  * Check if we should update i_disksize
2754  * when write to the end of file but not require block allocation
2755  */
2756 static int ext4_da_should_update_i_disksize(struct page *page,
2757                                             unsigned long offset)
2758 {
2759         struct buffer_head *bh;
2760         struct inode *inode = page->mapping->host;
2761         unsigned int idx;
2762         int i;
2763
2764         bh = page_buffers(page);
2765         idx = offset >> inode->i_blkbits;
2766
2767         for (i = 0; i < idx; i++)
2768                 bh = bh->b_this_page;
2769
2770         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2771                 return 0;
2772         return 1;
2773 }
2774
2775 static int ext4_da_write_end(struct file *file,
2776                              struct address_space *mapping,
2777                              loff_t pos, unsigned len, unsigned copied,
2778                              struct page *page, void *fsdata)
2779 {
2780         struct inode *inode = mapping->host;
2781         int ret = 0, ret2;
2782         handle_t *handle = ext4_journal_current_handle();
2783         loff_t new_i_size;
2784         unsigned long start, end;
2785         int write_mode = (int)(unsigned long)fsdata;
2786
2787         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2788                 return ext4_write_end(file, mapping, pos,
2789                                       len, copied, page, fsdata);
2790
2791         trace_ext4_da_write_end(inode, pos, len, copied);
2792         start = pos & (PAGE_CACHE_SIZE - 1);
2793         end = start + copied - 1;
2794
2795         /*
2796          * generic_write_end() will run mark_inode_dirty() if i_size
2797          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2798          * into that.
2799          */
2800         new_i_size = pos + copied;
2801         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2802                 if (ext4_has_inline_data(inode) ||
2803                     ext4_da_should_update_i_disksize(page, end)) {
2804                         down_write(&EXT4_I(inode)->i_data_sem);
2805                         if (new_i_size > EXT4_I(inode)->i_disksize)
2806                                 EXT4_I(inode)->i_disksize = new_i_size;
2807                         up_write(&EXT4_I(inode)->i_data_sem);
2808                         /* We need to mark inode dirty even if
2809                          * new_i_size is less that inode->i_size
2810                          * bu greater than i_disksize.(hint delalloc)
2811                          */
2812                         ext4_mark_inode_dirty(handle, inode);
2813                 }
2814         }
2815
2816         if (write_mode != CONVERT_INLINE_DATA &&
2817             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2818             ext4_has_inline_data(inode))
2819                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2820                                                      page);
2821         else
2822                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2823                                                         page, fsdata);
2824
2825         copied = ret2;
2826         if (ret2 < 0)
2827                 ret = ret2;
2828         ret2 = ext4_journal_stop(handle);
2829         if (!ret)
2830                 ret = ret2;
2831
2832         return ret ? ret : copied;
2833 }
2834
2835 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2836 {
2837         /*
2838          * Drop reserved blocks
2839          */
2840         BUG_ON(!PageLocked(page));
2841         if (!page_has_buffers(page))
2842                 goto out;
2843
2844         ext4_da_page_release_reservation(page, offset);
2845
2846 out:
2847         ext4_invalidatepage(page, offset);
2848
2849         return;
2850 }
2851
2852 /*
2853  * Force all delayed allocation blocks to be allocated for a given inode.
2854  */
2855 int ext4_alloc_da_blocks(struct inode *inode)
2856 {
2857         trace_ext4_alloc_da_blocks(inode);
2858
2859         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2860             !EXT4_I(inode)->i_reserved_meta_blocks)
2861                 return 0;
2862
2863         /*
2864          * We do something simple for now.  The filemap_flush() will
2865          * also start triggering a write of the data blocks, which is
2866          * not strictly speaking necessary (and for users of
2867          * laptop_mode, not even desirable).  However, to do otherwise
2868          * would require replicating code paths in:
2869          *
2870          * ext4_da_writepages() ->
2871          *    write_cache_pages() ---> (via passed in callback function)
2872          *        __mpage_da_writepage() -->
2873          *           mpage_add_bh_to_extent()
2874          *           mpage_da_map_blocks()
2875          *
2876          * The problem is that write_cache_pages(), located in
2877          * mm/page-writeback.c, marks pages clean in preparation for
2878          * doing I/O, which is not desirable if we're not planning on
2879          * doing I/O at all.
2880          *
2881          * We could call write_cache_pages(), and then redirty all of
2882          * the pages by calling redirty_page_for_writepage() but that
2883          * would be ugly in the extreme.  So instead we would need to
2884          * replicate parts of the code in the above functions,
2885          * simplifying them because we wouldn't actually intend to
2886          * write out the pages, but rather only collect contiguous
2887          * logical block extents, call the multi-block allocator, and
2888          * then update the buffer heads with the block allocations.
2889          *
2890          * For now, though, we'll cheat by calling filemap_flush(),
2891          * which will map the blocks, and start the I/O, but not
2892          * actually wait for the I/O to complete.
2893          */
2894         return filemap_flush(inode->i_mapping);
2895 }
2896
2897 /*
2898  * bmap() is special.  It gets used by applications such as lilo and by
2899  * the swapper to find the on-disk block of a specific piece of data.
2900  *
2901  * Naturally, this is dangerous if the block concerned is still in the
2902  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2903  * filesystem and enables swap, then they may get a nasty shock when the
2904  * data getting swapped to that swapfile suddenly gets overwritten by
2905  * the original zero's written out previously to the journal and
2906  * awaiting writeback in the kernel's buffer cache.
2907  *
2908  * So, if we see any bmap calls here on a modified, data-journaled file,
2909  * take extra steps to flush any blocks which might be in the cache.
2910  */
2911 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2912 {
2913         struct inode *inode = mapping->host;
2914         journal_t *journal;
2915         int err;
2916
2917         /*
2918          * We can get here for an inline file via the FIBMAP ioctl
2919          */
2920         if (ext4_has_inline_data(inode))
2921                 return 0;
2922
2923         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2924                         test_opt(inode->i_sb, DELALLOC)) {
2925                 /*
2926                  * With delalloc we want to sync the file
2927                  * so that we can make sure we allocate
2928                  * blocks for file
2929                  */
2930                 filemap_write_and_wait(mapping);
2931         }
2932
2933         if (EXT4_JOURNAL(inode) &&
2934             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2935                 /*
2936                  * This is a REALLY heavyweight approach, but the use of
2937                  * bmap on dirty files is expected to be extremely rare:
2938                  * only if we run lilo or swapon on a freshly made file
2939                  * do we expect this to happen.
2940                  *
2941                  * (bmap requires CAP_SYS_RAWIO so this does not
2942                  * represent an unprivileged user DOS attack --- we'd be
2943                  * in trouble if mortal users could trigger this path at
2944                  * will.)
2945                  *
2946                  * NB. EXT4_STATE_JDATA is not set on files other than
2947                  * regular files.  If somebody wants to bmap a directory
2948                  * or symlink and gets confused because the buffer
2949                  * hasn't yet been flushed to disk, they deserve
2950                  * everything they get.
2951                  */
2952
2953                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2954                 journal = EXT4_JOURNAL(inode);
2955                 jbd2_journal_lock_updates(journal);
2956                 err = jbd2_journal_flush(journal);
2957                 jbd2_journal_unlock_updates(journal);
2958
2959                 if (err)
2960                         return 0;
2961         }
2962
2963         return generic_block_bmap(mapping, block, ext4_get_block);
2964 }
2965
2966 static int ext4_readpage(struct file *file, struct page *page)
2967 {
2968         int ret = -EAGAIN;
2969         struct inode *inode = page->mapping->host;
2970
2971         trace_ext4_readpage(page);
2972
2973         if (ext4_has_inline_data(inode))
2974                 ret = ext4_readpage_inline(inode, page);
2975
2976         if (ret == -EAGAIN)
2977                 return mpage_readpage(page, ext4_get_block);
2978
2979         return ret;
2980 }
2981
2982 static int
2983 ext4_readpages(struct file *file, struct address_space *mapping,
2984                 struct list_head *pages, unsigned nr_pages)
2985 {
2986         struct inode *inode = mapping->host;
2987
2988         /* If the file has inline data, no need to do readpages. */
2989         if (ext4_has_inline_data(inode))
2990                 return 0;
2991
2992         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2993 }
2994
2995 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2996 {
2997         trace_ext4_invalidatepage(page, offset);
2998
2999         /* No journalling happens on data buffers when this function is used */
3000         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3001
3002         block_invalidatepage(page, offset);
3003 }
3004
3005 static int __ext4_journalled_invalidatepage(struct page *page,
3006                                             unsigned long offset)
3007 {
3008         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3009
3010         trace_ext4_journalled_invalidatepage(page, offset);
3011
3012         /*
3013          * If it's a full truncate we just forget about the pending dirtying
3014          */
3015         if (offset == 0)
3016                 ClearPageChecked(page);
3017
3018         return jbd2_journal_invalidatepage(journal, page, offset);
3019 }
3020
3021 /* Wrapper for aops... */
3022 static void ext4_journalled_invalidatepage(struct page *page,
3023                                            unsigned long offset)
3024 {
3025         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3026 }
3027
3028 static int ext4_releasepage(struct page *page, gfp_t wait)
3029 {
3030         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3031
3032         trace_ext4_releasepage(page);
3033
3034         /* Page has dirty journalled data -> cannot release */
3035         if (PageChecked(page))
3036                 return 0;
3037         if (journal)
3038                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3039         else
3040                 return try_to_free_buffers(page);
3041 }
3042
3043 /*
3044  * ext4_get_block used when preparing for a DIO write or buffer write.
3045  * We allocate an uinitialized extent if blocks haven't been allocated.
3046  * The extent will be converted to initialized after the IO is complete.
3047  */
3048 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3049                    struct buffer_head *bh_result, int create)
3050 {
3051         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3052                    inode->i_ino, create);
3053         return _ext4_get_block(inode, iblock, bh_result,
3054                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3055 }
3056
3057 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3058                    struct buffer_head *bh_result, int create)
3059 {
3060         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3061                    inode->i_ino, create);
3062         return _ext4_get_block(inode, iblock, bh_result,
3063                                EXT4_GET_BLOCKS_NO_LOCK);
3064 }
3065
3066 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3067                             ssize_t size, void *private, int ret,
3068                             bool is_async)
3069 {
3070         struct inode *inode = file_inode(iocb->ki_filp);
3071         ext4_io_end_t *io_end = iocb->private;
3072
3073         /* if not async direct IO or dio with 0 bytes write, just return */
3074         if (!io_end || !size)
3075                 goto out;
3076
3077         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3078                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3079                   iocb->private, io_end->inode->i_ino, iocb, offset,
3080                   size);
3081
3082         iocb->private = NULL;
3083
3084         /* if not aio dio with unwritten extents, just free io and return */
3085         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3086                 ext4_free_io_end(io_end);
3087 out:
3088                 inode_dio_done(inode);
3089                 if (is_async)
3090                         aio_complete(iocb, ret, 0);
3091                 return;
3092         }
3093
3094         io_end->offset = offset;
3095         io_end->size = size;
3096         if (is_async) {
3097                 io_end->iocb = iocb;
3098                 io_end->result = ret;
3099         }
3100
3101         ext4_add_complete_io(io_end);
3102 }
3103
3104 /*
3105  * For ext4 extent files, ext4 will do direct-io write to holes,
3106  * preallocated extents, and those write extend the file, no need to
3107  * fall back to buffered IO.
3108  *
3109  * For holes, we fallocate those blocks, mark them as uninitialized
3110  * If those blocks were preallocated, we mark sure they are split, but
3111  * still keep the range to write as uninitialized.
3112  *
3113  * The unwritten extents will be converted to written when DIO is completed.
3114  * For async direct IO, since the IO may still pending when return, we
3115  * set up an end_io call back function, which will do the conversion
3116  * when async direct IO completed.
3117  *
3118  * If the O_DIRECT write will extend the file then add this inode to the
3119  * orphan list.  So recovery will truncate it back to the original size
3120  * if the machine crashes during the write.
3121  *
3122  */
3123 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3124                               const struct iovec *iov, loff_t offset,
3125                               unsigned long nr_segs)
3126 {
3127         struct file *file = iocb->ki_filp;
3128         struct inode *inode = file->f_mapping->host;
3129         ssize_t ret;
3130         size_t count = iov_length(iov, nr_segs);
3131         int overwrite = 0;
3132         get_block_t *get_block_func = NULL;
3133         int dio_flags = 0;
3134         loff_t final_size = offset + count;
3135
3136         /* Use the old path for reads and writes beyond i_size. */
3137         if (rw != WRITE || final_size > inode->i_size)
3138                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3139
3140         BUG_ON(iocb->private == NULL);
3141
3142         /* If we do a overwrite dio, i_mutex locking can be released */
3143         overwrite = *((int *)iocb->private);
3144
3145         if (overwrite) {
3146                 atomic_inc(&inode->i_dio_count);
3147                 down_read(&EXT4_I(inode)->i_data_sem);
3148                 mutex_unlock(&inode->i_mutex);
3149         }
3150
3151         /*
3152          * We could direct write to holes and fallocate.
3153          *
3154          * Allocated blocks to fill the hole are marked as
3155          * uninitialized to prevent parallel buffered read to expose
3156          * the stale data before DIO complete the data IO.
3157          *
3158          * As to previously fallocated extents, ext4 get_block will
3159          * just simply mark the buffer mapped but still keep the
3160          * extents uninitialized.
3161          *
3162          * For non AIO case, we will convert those unwritten extents
3163          * to written after return back from blockdev_direct_IO.
3164          *
3165          * For async DIO, the conversion needs to be deferred when the
3166          * IO is completed. The ext4 end_io callback function will be
3167          * called to take care of the conversion work.  Here for async
3168          * case, we allocate an io_end structure to hook to the iocb.
3169          */
3170         iocb->private = NULL;
3171         ext4_inode_aio_set(inode, NULL);
3172         if (!is_sync_kiocb(iocb)) {
3173                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3174                 if (!io_end) {
3175                         ret = -ENOMEM;
3176                         goto retake_lock;
3177                 }
3178                 io_end->flag |= EXT4_IO_END_DIRECT;
3179                 iocb->private = io_end;
3180                 /*
3181                  * we save the io structure for current async direct
3182                  * IO, so that later ext4_map_blocks() could flag the
3183                  * io structure whether there is a unwritten extents
3184                  * needs to be converted when IO is completed.
3185                  */
3186                 ext4_inode_aio_set(inode, io_end);
3187         }
3188
3189         if (overwrite) {
3190                 get_block_func = ext4_get_block_write_nolock;
3191         } else {
3192                 get_block_func = ext4_get_block_write;
3193                 dio_flags = DIO_LOCKING;
3194         }
3195         ret = __blockdev_direct_IO(rw, iocb, inode,
3196                                    inode->i_sb->s_bdev, iov,
3197                                    offset, nr_segs,
3198                                    get_block_func,
3199                                    ext4_end_io_dio,
3200                                    NULL,
3201                                    dio_flags);
3202
3203         if (iocb->private)
3204                 ext4_inode_aio_set(inode, NULL);
3205         /*
3206          * The io_end structure takes a reference to the inode, that
3207          * structure needs to be destroyed and the reference to the
3208          * inode need to be dropped, when IO is complete, even with 0
3209          * byte write, or failed.
3210          *
3211          * In the successful AIO DIO case, the io_end structure will
3212          * be destroyed and the reference to the inode will be dropped
3213          * after the end_io call back function is called.
3214          *
3215          * In the case there is 0 byte write, or error case, since VFS
3216          * direct IO won't invoke the end_io call back function, we
3217          * need to free the end_io structure here.
3218          */
3219         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3220                 ext4_free_io_end(iocb->private);
3221                 iocb->private = NULL;
3222         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3223                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3224                 int err;
3225                 /*
3226                  * for non AIO case, since the IO is already
3227                  * completed, we could do the conversion right here
3228                  */
3229                 err = ext4_convert_unwritten_extents(inode,
3230                                                      offset, ret);
3231                 if (err < 0)
3232                         ret = err;
3233                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3234         }
3235
3236 retake_lock:
3237         /* take i_mutex locking again if we do a ovewrite dio */
3238         if (overwrite) {
3239                 inode_dio_done(inode);
3240                 up_read(&EXT4_I(inode)->i_data_sem);
3241                 mutex_lock(&inode->i_mutex);
3242         }
3243
3244         return ret;
3245 }
3246
3247 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3248                               const struct iovec *iov, loff_t offset,
3249                               unsigned long nr_segs)
3250 {
3251         struct file *file = iocb->ki_filp;
3252         struct inode *inode = file->f_mapping->host;
3253         ssize_t ret;
3254
3255         /*
3256          * If we are doing data journalling we don't support O_DIRECT
3257          */
3258         if (ext4_should_journal_data(inode))
3259                 return 0;
3260
3261         /* Let buffer I/O handle the inline data case. */
3262         if (ext4_has_inline_data(inode))
3263                 return 0;
3264
3265         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3266         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3267                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3268         else
3269                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3270         trace_ext4_direct_IO_exit(inode, offset,
3271                                 iov_length(iov, nr_segs), rw, ret);
3272         return ret;
3273 }
3274
3275 /*
3276  * Pages can be marked dirty completely asynchronously from ext4's journalling
3277  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3278  * much here because ->set_page_dirty is called under VFS locks.  The page is
3279  * not necessarily locked.
3280  *
3281  * We cannot just dirty the page and leave attached buffers clean, because the
3282  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3283  * or jbddirty because all the journalling code will explode.
3284  *
3285  * So what we do is to mark the page "pending dirty" and next time writepage
3286  * is called, propagate that into the buffers appropriately.
3287  */
3288 static int ext4_journalled_set_page_dirty(struct page *page)
3289 {
3290         SetPageChecked(page);
3291         return __set_page_dirty_nobuffers(page);
3292 }
3293
3294 static const struct address_space_operations ext4_aops = {
3295         .readpage               = ext4_readpage,
3296         .readpages              = ext4_readpages,
3297         .writepage              = ext4_writepage,
3298         .write_begin            = ext4_write_begin,
3299         .write_end              = ext4_write_end,
3300         .bmap                   = ext4_bmap,
3301         .invalidatepage         = ext4_invalidatepage,
3302         .releasepage            = ext4_releasepage,
3303         .direct_IO              = ext4_direct_IO,
3304         .migratepage            = buffer_migrate_page,
3305         .is_partially_uptodate  = block_is_partially_uptodate,
3306         .error_remove_page      = generic_error_remove_page,
3307 };
3308
3309 static const struct address_space_operations ext4_journalled_aops = {
3310         .readpage               = ext4_readpage,
3311         .readpages              = ext4_readpages,
3312         .writepage              = ext4_writepage,
3313         .write_begin            = ext4_write_begin,
3314         .write_end              = ext4_journalled_write_end,
3315         .set_page_dirty         = ext4_journalled_set_page_dirty,
3316         .bmap                   = ext4_bmap,
3317         .invalidatepage         = ext4_journalled_invalidatepage,
3318         .releasepage            = ext4_releasepage,
3319         .direct_IO              = ext4_direct_IO,
3320         .is_partially_uptodate  = block_is_partially_uptodate,
3321         .error_remove_page      = generic_error_remove_page,
3322 };
3323
3324 static const struct address_space_operations ext4_da_aops = {
3325         .readpage               = ext4_readpage,
3326         .readpages              = ext4_readpages,
3327         .writepage              = ext4_writepage,
3328         .writepages             = ext4_da_writepages,
3329         .write_begin            = ext4_da_write_begin,
3330         .write_end              = ext4_da_write_end,
3331         .bmap                   = ext4_bmap,
3332         .invalidatepage         = ext4_da_invalidatepage,
3333         .releasepage            = ext4_releasepage,
3334         .direct_IO              = ext4_direct_IO,
3335         .migratepage            = buffer_migrate_page,
3336         .is_partially_uptodate  = block_is_partially_uptodate,
3337         .error_remove_page      = generic_error_remove_page,
3338 };
3339
3340 void ext4_set_aops(struct inode *inode)
3341 {
3342         switch (ext4_inode_journal_mode(inode)) {
3343         case EXT4_INODE_ORDERED_DATA_MODE:
3344                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3345                 break;
3346         case EXT4_INODE_WRITEBACK_DATA_MODE:
3347                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3348                 break;
3349         case EXT4_INODE_JOURNAL_DATA_MODE:
3350                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3351                 return;
3352         default:
3353                 BUG();
3354         }
3355         if (test_opt(inode->i_sb, DELALLOC))
3356                 inode->i_mapping->a_ops = &ext4_da_aops;
3357         else
3358                 inode->i_mapping->a_ops = &ext4_aops;
3359 }
3360
3361
3362 /*
3363  * ext4_discard_partial_page_buffers()
3364  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3365  * This function finds and locks the page containing the offset
3366  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3367  * Calling functions that already have the page locked should call
3368  * ext4_discard_partial_page_buffers_no_lock directly.
3369  */
3370 int ext4_discard_partial_page_buffers(handle_t *handle,
3371                 struct address_space *mapping, loff_t from,
3372                 loff_t length, int flags)
3373 {
3374         struct inode *inode = mapping->host;
3375         struct page *page;
3376         int err = 0;
3377
3378         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3379                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3380         if (!page)
3381                 return -ENOMEM;
3382
3383         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3384                 from, length, flags);
3385
3386         unlock_page(page);
3387         page_cache_release(page);
3388         return err;
3389 }
3390
3391 /*
3392  * ext4_discard_partial_page_buffers_no_lock()
3393  * Zeros a page range of length 'length' starting from offset 'from'.
3394  * Buffer heads that correspond to the block aligned regions of the
3395  * zeroed range will be unmapped.  Unblock aligned regions
3396  * will have the corresponding buffer head mapped if needed so that
3397  * that region of the page can be updated with the partial zero out.
3398  *
3399  * This function assumes that the page has already been  locked.  The
3400  * The range to be discarded must be contained with in the given page.
3401  * If the specified range exceeds the end of the page it will be shortened
3402  * to the end of the page that corresponds to 'from'.  This function is
3403  * appropriate for updating a page and it buffer heads to be unmapped and
3404  * zeroed for blocks that have been either released, or are going to be
3405  * released.
3406  *
3407  * handle: The journal handle
3408  * inode:  The files inode
3409  * page:   A locked page that contains the offset "from"
3410  * from:   The starting byte offset (from the beginning of the file)
3411  *         to begin discarding
3412  * len:    The length of bytes to discard
3413  * flags:  Optional flags that may be used:
3414  *
3415  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3416  *         Only zero the regions of the page whose buffer heads
3417  *         have already been unmapped.  This flag is appropriate
3418  *         for updating the contents of a page whose blocks may
3419  *         have already been released, and we only want to zero
3420  *         out the regions that correspond to those released blocks.
3421  *
3422  * Returns zero on success or negative on failure.
3423  */
3424 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3425                 struct inode *inode, struct page *page, loff_t from,
3426                 loff_t length, int flags)
3427 {
3428         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3429         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3430         unsigned int blocksize, max, pos;
3431         ext4_lblk_t iblock;
3432         struct buffer_head *bh;
3433         int err = 0;
3434
3435         blocksize = inode->i_sb->s_blocksize;
3436         max = PAGE_CACHE_SIZE - offset;
3437
3438         if (index != page->index)
3439                 return -EINVAL;
3440
3441         /*
3442          * correct length if it does not fall between
3443          * 'from' and the end of the page
3444          */
3445         if (length > max || length < 0)
3446                 length = max;
3447
3448         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3449
3450         if (!page_has_buffers(page))
3451                 create_empty_buffers(page, blocksize, 0);
3452
3453         /* Find the buffer that contains "offset" */
3454         bh = page_buffers(page);
3455         pos = blocksize;
3456         while (offset >= pos) {
3457                 bh = bh->b_this_page;
3458                 iblock++;
3459                 pos += blocksize;
3460         }
3461
3462         pos = offset;
3463         while (pos < offset + length) {
3464                 unsigned int end_of_block, range_to_discard;
3465
3466                 err = 0;
3467
3468                 /* The length of space left to zero and unmap */
3469                 range_to_discard = offset + length - pos;
3470
3471                 /* The length of space until the end of the block */
3472                 end_of_block = blocksize - (pos & (blocksize-1));
3473
3474                 /*
3475                  * Do not unmap or zero past end of block
3476                  * for this buffer head
3477                  */
3478                 if (range_to_discard > end_of_block)
3479                         range_to_discard = end_of_block;
3480
3481
3482                 /*
3483                  * Skip this buffer head if we are only zeroing unampped
3484                  * regions of the page
3485                  */
3486                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3487                         buffer_mapped(bh))
3488                                 goto next;
3489
3490                 /* If the range is block aligned, unmap */
3491                 if (range_to_discard == blocksize) {
3492                         clear_buffer_dirty(bh);
3493                         bh->b_bdev = NULL;
3494                         clear_buffer_mapped(bh);
3495                         clear_buffer_req(bh);
3496                         clear_buffer_new(bh);
3497                         clear_buffer_delay(bh);
3498                         clear_buffer_unwritten(bh);
3499                         clear_buffer_uptodate(bh);
3500                         zero_user(page, pos, range_to_discard);
3501                         BUFFER_TRACE(bh, "Buffer discarded");
3502                         goto next;
3503                 }
3504
3505                 /*
3506                  * If this block is not completely contained in the range
3507                  * to be discarded, then it is not going to be released. Because
3508                  * we need to keep this block, we need to make sure this part
3509                  * of the page is uptodate before we modify it by writeing
3510                  * partial zeros on it.
3511                  */
3512                 if (!buffer_mapped(bh)) {
3513                         /*
3514                          * Buffer head must be mapped before we can read
3515                          * from the block
3516                          */
3517                         BUFFER_TRACE(bh, "unmapped");
3518                         ext4_get_block(inode, iblock, bh, 0);
3519                         /* unmapped? It's a hole - nothing to do */
3520                         if (!buffer_mapped(bh)) {
3521                                 BUFFER_TRACE(bh, "still unmapped");
3522                                 goto next;
3523                         }
3524                 }
3525
3526                 /* Ok, it's mapped. Make sure it's up-to-date */
3527                 if (PageUptodate(page))
3528                         set_buffer_uptodate(bh);
3529
3530                 if (!buffer_uptodate(bh)) {
3531                         err = -EIO;
3532                         ll_rw_block(READ, 1, &bh);
3533                         wait_on_buffer(bh);
3534                         /* Uhhuh. Read error. Complain and punt.*/
3535                         if (!buffer_uptodate(bh))
3536                                 goto next;
3537                 }
3538
3539                 if (ext4_should_journal_data(inode)) {
3540                         BUFFER_TRACE(bh, "get write access");
3541                         err = ext4_journal_get_write_access(handle, bh);
3542                         if (err)
3543                                 goto next;
3544                 }
3545
3546                 zero_user(page, pos, range_to_discard);
3547
3548                 err = 0;
3549                 if (ext4_should_journal_data(inode)) {
3550                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3551                 } else
3552                         mark_buffer_dirty(bh);
3553
3554                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3555 next:
3556                 bh = bh->b_this_page;
3557                 iblock++;
3558                 pos += range_to_discard;
3559         }
3560
3561         return err;
3562 }
3563
3564 int ext4_can_truncate(struct inode *inode)
3565 {
3566         if (S_ISREG(inode->i_mode))
3567                 return 1;
3568         if (S_ISDIR(inode->i_mode))
3569                 return 1;
3570         if (S_ISLNK(inode->i_mode))
3571                 return !ext4_inode_is_fast_symlink(inode);
3572         return 0;
3573 }
3574
3575 /*
3576  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3577  * associated with the given offset and length
3578  *
3579  * @inode:  File inode
3580  * @offset: The offset where the hole will begin
3581  * @len:    The length of the hole
3582  *
3583  * Returns: 0 on success or negative on failure
3584  */
3585
3586 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3587 {
3588         struct inode *inode = file_inode(file);
3589         struct super_block *sb = inode->i_sb;
3590         ext4_lblk_t first_block, stop_block;
3591         struct address_space *mapping = inode->i_mapping;
3592         loff_t first_page, last_page, page_len;
3593         loff_t first_page_offset, last_page_offset;
3594         handle_t *handle;
3595         unsigned int credits;
3596         int ret = 0;
3597
3598         if (!S_ISREG(inode->i_mode))
3599                 return -EOPNOTSUPP;
3600
3601         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3602                 /* TODO: Add support for bigalloc file systems */
3603                 return -EOPNOTSUPP;
3604         }
3605
3606         trace_ext4_punch_hole(inode, offset, length);
3607
3608         /*
3609          * Write out all dirty pages to avoid race conditions
3610          * Then release them.
3611          */
3612         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3613                 ret = filemap_write_and_wait_range(mapping, offset,
3614                                                    offset + length - 1);
3615                 if (ret)
3616                         return ret;
3617         }
3618
3619         mutex_lock(&inode->i_mutex);
3620         /* It's not possible punch hole on append only file */
3621         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3622                 ret = -EPERM;
3623                 goto out_mutex;
3624         }
3625         if (IS_SWAPFILE(inode)) {
3626                 ret = -ETXTBSY;
3627                 goto out_mutex;
3628         }
3629
3630         /* No need to punch hole beyond i_size */
3631         if (offset >= inode->i_size)
3632                 goto out_mutex;
3633
3634         /*
3635          * If the hole extends beyond i_size, set the hole
3636          * to end after the page that contains i_size
3637          */
3638         if (offset + length > inode->i_size) {
3639                 length = inode->i_size +
3640                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3641                    offset;
3642         }
3643
3644         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3645         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3646
3647         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3648         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3649
3650         /* Now release the pages */
3651         if (last_page_offset > first_page_offset) {
3652                 truncate_pagecache_range(inode, first_page_offset,
3653                                          last_page_offset - 1);
3654         }
3655
3656         /* Wait all existing dio workers, newcomers will block on i_mutex */
3657         ext4_inode_block_unlocked_dio(inode);
3658         ret = ext4_flush_unwritten_io(inode);
3659         if (ret)
3660                 goto out_dio;
3661         inode_dio_wait(inode);
3662
3663         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3664                 credits = ext4_writepage_trans_blocks(inode);
3665         else
3666                 credits = ext4_blocks_for_truncate(inode);
3667         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3668         if (IS_ERR(handle)) {
3669                 ret = PTR_ERR(handle);
3670                 ext4_std_error(sb, ret);
3671                 goto out_dio;
3672         }
3673
3674         /*
3675          * Now we need to zero out the non-page-aligned data in the
3676          * pages at the start and tail of the hole, and unmap the
3677          * buffer heads for the block aligned regions of the page that
3678          * were completely zeroed.
3679          */
3680         if (first_page > last_page) {
3681                 /*
3682                  * If the file space being truncated is contained
3683                  * within a page just zero out and unmap the middle of
3684                  * that page
3685                  */
3686                 ret = ext4_discard_partial_page_buffers(handle,
3687                         mapping, offset, length, 0);
3688
3689                 if (ret)
3690                         goto out_stop;
3691         } else {
3692                 /*
3693                  * zero out and unmap the partial page that contains
3694                  * the start of the hole
3695                  */
3696                 page_len = first_page_offset - offset;
3697                 if (page_len > 0) {
3698                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3699                                                 offset, page_len, 0);
3700                         if (ret)
3701                                 goto out_stop;
3702                 }
3703
3704                 /*
3705                  * zero out and unmap the partial page that contains
3706                  * the end of the hole
3707                  */
3708                 page_len = offset + length - last_page_offset;
3709                 if (page_len > 0) {
3710                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3711                                         last_page_offset, page_len, 0);
3712                         if (ret)
3713                                 goto out_stop;
3714                 }
3715         }
3716
3717         /*
3718          * If i_size is contained in the last page, we need to
3719          * unmap and zero the partial page after i_size
3720          */
3721         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3722            inode->i_size % PAGE_CACHE_SIZE != 0) {
3723                 page_len = PAGE_CACHE_SIZE -
3724                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3725
3726                 if (page_len > 0) {
3727                         ret = ext4_discard_partial_page_buffers(handle,
3728                                         mapping, inode->i_size, page_len, 0);
3729
3730                         if (ret)
3731                                 goto out_stop;
3732                 }
3733         }
3734
3735         first_block = (offset + sb->s_blocksize - 1) >>
3736                 EXT4_BLOCK_SIZE_BITS(sb);
3737         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3738
3739         /* If there are no blocks to remove, return now */
3740         if (first_block >= stop_block)
3741                 goto out_stop;
3742
3743         down_write(&EXT4_I(inode)->i_data_sem);
3744         ext4_discard_preallocations(inode);
3745
3746         ret = ext4_es_remove_extent(inode, first_block,
3747                                     stop_block - first_block);
3748         if (ret) {
3749                 up_write(&EXT4_I(inode)->i_data_sem);
3750                 goto out_stop;
3751         }
3752
3753         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3754                 ret = ext4_ext_remove_space(inode, first_block,
3755                                             stop_block - 1);
3756         else
3757                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3758                                             stop_block);
3759
3760         ext4_discard_preallocations(inode);
3761         up_write(&EXT4_I(inode)->i_data_sem);
3762         if (IS_SYNC(inode))
3763                 ext4_handle_sync(handle);
3764         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3765         ext4_mark_inode_dirty(handle, inode);
3766 out_stop:
3767         ext4_journal_stop(handle);
3768 out_dio:
3769         ext4_inode_resume_unlocked_dio(inode);
3770 out_mutex:
3771         mutex_unlock(&inode->i_mutex);
3772         return ret;
3773 }
3774
3775 /*
3776  * ext4_truncate()
3777  *
3778  * We block out ext4_get_block() block instantiations across the entire
3779  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3780  * simultaneously on behalf of the same inode.
3781  *
3782  * As we work through the truncate and commit bits of it to the journal there
3783  * is one core, guiding principle: the file's tree must always be consistent on
3784  * disk.  We must be able to restart the truncate after a crash.
3785  *
3786  * The file's tree may be transiently inconsistent in memory (although it
3787  * probably isn't), but whenever we close off and commit a journal transaction,
3788  * the contents of (the filesystem + the journal) must be consistent and
3789  * restartable.  It's pretty simple, really: bottom up, right to left (although
3790  * left-to-right works OK too).
3791  *
3792  * Note that at recovery time, journal replay occurs *before* the restart of
3793  * truncate against the orphan inode list.
3794  *
3795  * The committed inode has the new, desired i_size (which is the same as
3796  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3797  * that this inode's truncate did not complete and it will again call
3798  * ext4_truncate() to have another go.  So there will be instantiated blocks
3799  * to the right of the truncation point in a crashed ext4 filesystem.  But
3800  * that's fine - as long as they are linked from the inode, the post-crash
3801  * ext4_truncate() run will find them and release them.
3802  */
3803 void ext4_truncate(struct inode *inode)
3804 {
3805         struct ext4_inode_info *ei = EXT4_I(inode);
3806         unsigned int credits;
3807         handle_t *handle;
3808         struct address_space *mapping = inode->i_mapping;
3809         loff_t page_len;
3810
3811         /*
3812          * There is a possibility that we're either freeing the inode
3813          * or it completely new indode. In those cases we might not
3814          * have i_mutex locked because it's not necessary.
3815          */
3816         if (!(inode->i_state & (I_NEW|I_FREEING)))
3817                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3818         trace_ext4_truncate_enter(inode);
3819
3820         if (!ext4_can_truncate(inode))
3821                 return;
3822
3823         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3824
3825         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3826                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3827
3828         if (ext4_has_inline_data(inode)) {
3829                 int has_inline = 1;
3830
3831                 ext4_inline_data_truncate(inode, &has_inline);
3832                 if (has_inline)
3833                         return;
3834         }
3835
3836         /*
3837          * finish any pending end_io work so we won't run the risk of
3838          * converting any truncated blocks to initialized later
3839          */
3840         ext4_flush_unwritten_io(inode);
3841
3842         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3843                 credits = ext4_writepage_trans_blocks(inode);
3844         else
3845                 credits = ext4_blocks_for_truncate(inode);
3846
3847         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3848         if (IS_ERR(handle)) {
3849                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3850                 return;
3851         }
3852
3853         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3854                 page_len = PAGE_CACHE_SIZE -
3855                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3856
3857                 if (ext4_discard_partial_page_buffers(handle,
3858                                 mapping, inode->i_size, page_len, 0))
3859                         goto out_stop;
3860         }
3861
3862         /*
3863          * We add the inode to the orphan list, so that if this
3864          * truncate spans multiple transactions, and we crash, we will
3865          * resume the truncate when the filesystem recovers.  It also
3866          * marks the inode dirty, to catch the new size.
3867          *
3868          * Implication: the file must always be in a sane, consistent
3869          * truncatable state while each transaction commits.
3870          */
3871         if (ext4_orphan_add(handle, inode))
3872                 goto out_stop;
3873
3874         down_write(&EXT4_I(inode)->i_data_sem);
3875
3876         ext4_discard_preallocations(inode);
3877
3878         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3879                 ext4_ext_truncate(handle, inode);
3880         else
3881                 ext4_ind_truncate(handle, inode);
3882
3883         up_write(&ei->i_data_sem);
3884
3885         if (IS_SYNC(inode))
3886                 ext4_handle_sync(handle);
3887
3888 out_stop:
3889         /*
3890          * If this was a simple ftruncate() and the file will remain alive,
3891          * then we need to clear up the orphan record which we created above.
3892          * However, if this was a real unlink then we were called by
3893          * ext4_delete_inode(), and we allow that function to clean up the
3894          * orphan info for us.
3895          */
3896         if (inode->i_nlink)
3897                 ext4_orphan_del(handle, inode);
3898
3899         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900         ext4_mark_inode_dirty(handle, inode);
3901         ext4_journal_stop(handle);
3902
3903         trace_ext4_truncate_exit(inode);
3904 }
3905
3906 /*
3907  * ext4_get_inode_loc returns with an extra refcount against the inode's
3908  * underlying buffer_head on success. If 'in_mem' is true, we have all
3909  * data in memory that is needed to recreate the on-disk version of this
3910  * inode.
3911  */
3912 static int __ext4_get_inode_loc(struct inode *inode,
3913                                 struct ext4_iloc *iloc, int in_mem)
3914 {
3915         struct ext4_group_desc  *gdp;
3916         struct buffer_head      *bh;
3917         struct super_block      *sb = inode->i_sb;
3918         ext4_fsblk_t            block;
3919         int                     inodes_per_block, inode_offset;
3920
3921         iloc->bh = NULL;
3922         if (!ext4_valid_inum(sb, inode->i_ino))
3923                 return -EIO;
3924
3925         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3926         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3927         if (!gdp)
3928                 return -EIO;
3929
3930         /*
3931          * Figure out the offset within the block group inode table
3932          */
3933         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3934         inode_offset = ((inode->i_ino - 1) %
3935                         EXT4_INODES_PER_GROUP(sb));
3936         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3937         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3938
3939         bh = sb_getblk(sb, block);
3940         if (unlikely(!bh))
3941                 return -ENOMEM;
3942         if (!buffer_uptodate(bh)) {
3943                 lock_buffer(bh);
3944
3945                 /*
3946                  * If the buffer has the write error flag, we have failed
3947                  * to write out another inode in the same block.  In this
3948                  * case, we don't have to read the block because we may
3949                  * read the old inode data successfully.
3950                  */
3951                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3952                         set_buffer_uptodate(bh);
3953
3954                 if (buffer_uptodate(bh)) {
3955                         /* someone brought it uptodate while we waited */
3956                         unlock_buffer(bh);
3957                         goto has_buffer;
3958                 }
3959
3960                 /*
3961                  * If we have all information of the inode in memory and this
3962                  * is the only valid inode in the block, we need not read the
3963                  * block.
3964                  */
3965                 if (in_mem) {
3966                         struct buffer_head *bitmap_bh;
3967                         int i, start;
3968
3969                         start = inode_offset & ~(inodes_per_block - 1);
3970
3971                         /* Is the inode bitmap in cache? */
3972                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3973                         if (unlikely(!bitmap_bh))
3974                                 goto make_io;
3975
3976                         /*
3977                          * If the inode bitmap isn't in cache then the
3978                          * optimisation may end up performing two reads instead
3979                          * of one, so skip it.
3980                          */
3981                         if (!buffer_uptodate(bitmap_bh)) {
3982                                 brelse(bitmap_bh);
3983                                 goto make_io;
3984                         }
3985                         for (i = start; i < start + inodes_per_block; i++) {
3986                                 if (i == inode_offset)
3987                                         continue;
3988                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3989                                         break;
3990                         }
3991                         brelse(bitmap_bh);
3992                         if (i == start + inodes_per_block) {
3993                                 /* all other inodes are free, so skip I/O */
3994                                 memset(bh->b_data, 0, bh->b_size);
3995                                 set_buffer_uptodate(bh);
3996                                 unlock_buffer(bh);
3997                                 goto has_buffer;
3998                         }
3999                 }
4000
4001 make_io:
4002                 /*
4003                  * If we need to do any I/O, try to pre-readahead extra
4004                  * blocks from the inode table.
4005                  */
4006                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4007                         ext4_fsblk_t b, end, table;
4008                         unsigned num;
4009                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4010
4011                         table = ext4_inode_table(sb, gdp);
4012                         /* s_inode_readahead_blks is always a power of 2 */
4013                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4014                         if (table > b)
4015                                 b = table;
4016                         end = b + ra_blks;
4017                         num = EXT4_INODES_PER_GROUP(sb);
4018                         if (ext4_has_group_desc_csum(sb))
4019                                 num -= ext4_itable_unused_count(sb, gdp);
4020                         table += num / inodes_per_block;
4021                         if (end > table)
4022                                 end = table;
4023                         while (b <= end)
4024                                 sb_breadahead(sb, b++);
4025                 }
4026
4027                 /*
4028                  * There are other valid inodes in the buffer, this inode
4029                  * has in-inode xattrs, or we don't have this inode in memory.
4030                  * Read the block from disk.
4031                  */
4032                 trace_ext4_load_inode(inode);
4033                 get_bh(bh);
4034                 bh->b_end_io = end_buffer_read_sync;
4035                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4036                 wait_on_buffer(bh);
4037                 if (!buffer_uptodate(bh)) {
4038                         EXT4_ERROR_INODE_BLOCK(inode, block,
4039                                                "unable to read itable block");
4040                         brelse(bh);
4041                         return -EIO;
4042                 }
4043         }
4044 has_buffer:
4045         iloc->bh = bh;
4046         return 0;
4047 }
4048
4049 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4050 {
4051         /* We have all inode data except xattrs in memory here. */
4052         return __ext4_get_inode_loc(inode, iloc,
4053                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4054 }
4055
4056 void ext4_set_inode_flags(struct inode *inode)
4057 {
4058         unsigned int flags = EXT4_I(inode)->i_flags;
4059
4060         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4061         if (flags & EXT4_SYNC_FL)
4062                 inode->i_flags |= S_SYNC;
4063         if (flags & EXT4_APPEND_FL)
4064                 inode->i_flags |= S_APPEND;
4065         if (flags & EXT4_IMMUTABLE_FL)
4066                 inode->i_flags |= S_IMMUTABLE;
4067         if (flags & EXT4_NOATIME_FL)
4068                 inode->i_flags |= S_NOATIME;
4069         if (flags & EXT4_DIRSYNC_FL)
4070                 inode->i_flags |= S_DIRSYNC;
4071 }
4072
4073 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4074 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4075 {
4076         unsigned int vfs_fl;
4077         unsigned long old_fl, new_fl;
4078
4079         do {
4080                 vfs_fl = ei->vfs_inode.i_flags;
4081                 old_fl = ei->i_flags;
4082                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4083                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4084                                 EXT4_DIRSYNC_FL);
4085                 if (vfs_fl & S_SYNC)
4086                         new_fl |= EXT4_SYNC_FL;
4087                 if (vfs_fl & S_APPEND)
4088                         new_fl |= EXT4_APPEND_FL;
4089                 if (vfs_fl & S_IMMUTABLE)
4090                         new_fl |= EXT4_IMMUTABLE_FL;
4091                 if (vfs_fl & S_NOATIME)
4092                         new_fl |= EXT4_NOATIME_FL;
4093                 if (vfs_fl & S_DIRSYNC)
4094                         new_fl |= EXT4_DIRSYNC_FL;
4095         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4096 }
4097
4098 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4099                                   struct ext4_inode_info *ei)
4100 {
4101         blkcnt_t i_blocks ;
4102         struct inode *inode = &(ei->vfs_inode);
4103         struct super_block *sb = inode->i_sb;
4104
4105         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4106                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4107                 /* we are using combined 48 bit field */
4108                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4109                                         le32_to_cpu(raw_inode->i_blocks_lo);
4110                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4111                         /* i_blocks represent file system block size */
4112                         return i_blocks  << (inode->i_blkbits - 9);
4113                 } else {
4114                         return i_blocks;
4115                 }
4116         } else {
4117                 return le32_to_cpu(raw_inode->i_blocks_lo);
4118         }
4119 }
4120
4121 static inline void ext4_iget_extra_inode(struct inode *inode,
4122                                          struct ext4_inode *raw_inode,
4123                                          struct ext4_inode_info *ei)
4124 {
4125         __le32 *magic = (void *)raw_inode +
4126                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4127         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4128                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4129                 ext4_find_inline_data_nolock(inode);
4130         } else
4131                 EXT4_I(inode)->i_inline_off = 0;
4132 }
4133
4134 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4135 {
4136         struct ext4_iloc iloc;
4137         struct ext4_inode *raw_inode;
4138         struct ext4_inode_info *ei;
4139         struct inode *inode;
4140         journal_t *journal = EXT4_SB(sb)->s_journal;
4141         long ret;
4142         int block;
4143         uid_t i_uid;
4144         gid_t i_gid;
4145
4146         inode = iget_locked(sb, ino);
4147         if (!inode)
4148                 return ERR_PTR(-ENOMEM);
4149         if (!(inode->i_state & I_NEW))
4150                 return inode;
4151
4152         ei = EXT4_I(inode);
4153         iloc.bh = NULL;
4154
4155         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4156         if (ret < 0)
4157                 goto bad_inode;
4158         raw_inode = ext4_raw_inode(&iloc);
4159
4160         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4161                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4162                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4163                     EXT4_INODE_SIZE(inode->i_sb)) {
4164                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4165                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4166                                 EXT4_INODE_SIZE(inode->i_sb));
4167                         ret = -EIO;
4168                         goto bad_inode;
4169                 }
4170         } else
4171                 ei->i_extra_isize = 0;
4172
4173         /* Precompute checksum seed for inode metadata */
4174         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4175                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4176                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4177                 __u32 csum;
4178                 __le32 inum = cpu_to_le32(inode->i_ino);
4179                 __le32 gen = raw_inode->i_generation;
4180                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4181                                    sizeof(inum));
4182                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4183                                               sizeof(gen));
4184         }
4185
4186         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4187                 EXT4_ERROR_INODE(inode, "checksum invalid");
4188                 ret = -EIO;
4189                 goto bad_inode;
4190         }
4191
4192         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4193         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4194         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4195         if (!(test_opt(inode->i_sb, NO_UID32))) {
4196                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4197                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4198         }
4199         i_uid_write(inode, i_uid);
4200         i_gid_write(inode, i_gid);
4201         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4202
4203         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4204         ei->i_inline_off = 0;
4205         ei->i_dir_start_lookup = 0;
4206         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4207         /* We now have enough fields to check if the inode was active or not.
4208          * This is needed because nfsd might try to access dead inodes
4209          * the test is that same one that e2fsck uses
4210          * NeilBrown 1999oct15
4211          */
4212         if (inode->i_nlink == 0) {
4213                 if ((inode->i_mode == 0 ||
4214                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4215                     ino != EXT4_BOOT_LOADER_INO) {
4216                         /* this inode is deleted */
4217                         ret = -ESTALE;
4218                         goto bad_inode;
4219                 }
4220                 /* The only unlinked inodes we let through here have
4221                  * valid i_mode and are being read by the orphan
4222                  * recovery code: that's fine, we're about to complete
4223                  * the process of deleting those.
4224                  * OR it is the EXT4_BOOT_LOADER_INO which is
4225                  * not initialized on a new filesystem. */
4226         }
4227         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4228         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4229         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4230         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4231                 ei->i_file_acl |=
4232                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4233         inode->i_size = ext4_isize(raw_inode);
4234         ei->i_disksize = inode->i_size;
4235 #ifdef CONFIG_QUOTA
4236         ei->i_reserved_quota = 0;
4237 #endif
4238         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4239         ei->i_block_group = iloc.block_group;
4240         ei->i_last_alloc_group = ~0;
4241         /*
4242          * NOTE! The in-memory inode i_data array is in little-endian order
4243          * even on big-endian machines: we do NOT byteswap the block numbers!
4244          */
4245         for (block = 0; block < EXT4_N_BLOCKS; block++)
4246                 ei->i_data[block] = raw_inode->i_block[block];
4247         INIT_LIST_HEAD(&ei->i_orphan);
4248
4249         /*
4250          * Set transaction id's of transactions that have to be committed
4251          * to finish f[data]sync. We set them to currently running transaction
4252          * as we cannot be sure that the inode or some of its metadata isn't
4253          * part of the transaction - the inode could have been reclaimed and
4254          * now it is reread from disk.
4255          */
4256         if (journal) {
4257                 transaction_t *transaction;
4258                 tid_t tid;
4259
4260                 read_lock(&journal->j_state_lock);
4261                 if (journal->j_running_transaction)
4262                         transaction = journal->j_running_transaction;
4263                 else
4264                         transaction = journal->j_committing_transaction;
4265                 if (transaction)
4266                         tid = transaction->t_tid;
4267                 else
4268                         tid = journal->j_commit_sequence;
4269                 read_unlock(&journal->j_state_lock);
4270                 ei->i_sync_tid = tid;
4271                 ei->i_datasync_tid = tid;
4272         }
4273
4274         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4275                 if (ei->i_extra_isize == 0) {
4276                         /* The extra space is currently unused. Use it. */
4277                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4278                                             EXT4_GOOD_OLD_INODE_SIZE;
4279                 } else {
4280                         ext4_iget_extra_inode(inode, raw_inode, ei);
4281                 }
4282         }
4283
4284         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4285         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4286         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4287         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4288
4289         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4290         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4291                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4292                         inode->i_version |=
4293                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4294         }
4295
4296         ret = 0;
4297         if (ei->i_file_acl &&
4298             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4299                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4300                                  ei->i_file_acl);
4301                 ret = -EIO;
4302                 goto bad_inode;
4303         } else if (!ext4_has_inline_data(inode)) {
4304                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4305                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4306                             (S_ISLNK(inode->i_mode) &&
4307                              !ext4_inode_is_fast_symlink(inode))))
4308                                 /* Validate extent which is part of inode */
4309                                 ret = ext4_ext_check_inode(inode);
4310                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4311                            (S_ISLNK(inode->i_mode) &&
4312                             !ext4_inode_is_fast_symlink(inode))) {
4313                         /* Validate block references which are part of inode */
4314                         ret = ext4_ind_check_inode(inode);
4315                 }
4316         }
4317         if (ret)
4318                 goto bad_inode;
4319
4320         if (S_ISREG(inode->i_mode)) {
4321                 inode->i_op = &ext4_file_inode_operations;
4322                 inode->i_fop = &ext4_file_operations;
4323                 ext4_set_aops(inode);
4324         } else if (S_ISDIR(inode->i_mode)) {
4325                 inode->i_op = &ext4_dir_inode_operations;
4326                 inode->i_fop = &ext4_dir_operations;
4327         } else if (S_ISLNK(inode->i_mode)) {
4328                 if (ext4_inode_is_fast_symlink(inode)) {
4329                         inode->i_op = &ext4_fast_symlink_inode_operations;
4330                         nd_terminate_link(ei->i_data, inode->i_size,
4331                                 sizeof(ei->i_data) - 1);
4332                 } else {
4333                         inode->i_op = &ext4_symlink_inode_operations;
4334                         ext4_set_aops(inode);
4335                 }
4336         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4337               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4338                 inode->i_op = &ext4_special_inode_operations;
4339                 if (raw_inode->i_block[0])
4340                         init_special_inode(inode, inode->i_mode,
4341                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4342                 else
4343                         init_special_inode(inode, inode->i_mode,
4344                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4345         } else if (ino == EXT4_BOOT_LOADER_INO) {
4346                 make_bad_inode(inode);
4347         } else {
4348                 ret = -EIO;
4349                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4350                 goto bad_inode;
4351         }
4352         brelse(iloc.bh);
4353         ext4_set_inode_flags(inode);
4354         unlock_new_inode(inode);
4355         return inode;
4356
4357 bad_inode:
4358         brelse(iloc.bh);
4359         iget_failed(inode);
4360         return ERR_PTR(ret);
4361 }
4362
4363 static int ext4_inode_blocks_set(handle_t *handle,
4364                                 struct ext4_inode *raw_inode,
4365                                 struct ext4_inode_info *ei)
4366 {
4367         struct inode *inode = &(ei->vfs_inode);
4368         u64 i_blocks = inode->i_blocks;
4369         struct super_block *sb = inode->i_sb;
4370
4371         if (i_blocks <= ~0U) {
4372                 /*
4373                  * i_blocks can be represented in a 32 bit variable
4374                  * as multiple of 512 bytes
4375                  */
4376                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4377                 raw_inode->i_blocks_high = 0;
4378                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4379                 return 0;
4380         }
4381         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4382                 return -EFBIG;
4383
4384         if (i_blocks <= 0xffffffffffffULL) {
4385                 /*
4386                  * i_blocks can be represented in a 48 bit variable
4387                  * as multiple of 512 bytes
4388                  */
4389                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4390                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4391                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4392         } else {
4393                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4394                 /* i_block is stored in file system block size */
4395                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4396                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4397                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4398         }
4399         return 0;
4400 }
4401
4402 /*
4403  * Post the struct inode info into an on-disk inode location in the
4404  * buffer-cache.  This gobbles the caller's reference to the
4405  * buffer_head in the inode location struct.
4406  *
4407  * The caller must have write access to iloc->bh.
4408  */
4409 static int ext4_do_update_inode(handle_t *handle,
4410                                 struct inode *inode,
4411                                 struct ext4_iloc *iloc)
4412 {
4413         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4414         struct ext4_inode_info *ei = EXT4_I(inode);
4415         struct buffer_head *bh = iloc->bh;
4416         int err = 0, rc, block;
4417         int need_datasync = 0;
4418         uid_t i_uid;
4419         gid_t i_gid;
4420
4421         /* For fields not not tracking in the in-memory inode,
4422          * initialise them to zero for new inodes. */
4423         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4424                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4425
4426         ext4_get_inode_flags(ei);
4427         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4428         i_uid = i_uid_read(inode);
4429         i_gid = i_gid_read(inode);
4430         if (!(test_opt(inode->i_sb, NO_UID32))) {
4431                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4432                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4433 /*
4434  * Fix up interoperability with old kernels. Otherwise, old inodes get
4435  * re-used with the upper 16 bits of the uid/gid intact
4436  */
4437                 if (!ei->i_dtime) {
4438                         raw_inode->i_uid_high =
4439                                 cpu_to_le16(high_16_bits(i_uid));
4440                         raw_inode->i_gid_high =
4441                                 cpu_to_le16(high_16_bits(i_gid));
4442                 } else {
4443                         raw_inode->i_uid_high = 0;
4444                         raw_inode->i_gid_high = 0;
4445                 }
4446         } else {
4447                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4448                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4449                 raw_inode->i_uid_high = 0;
4450                 raw_inode->i_gid_high = 0;
4451         }
4452         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4453
4454         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4455         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4456         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4457         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4458
4459         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4460                 goto out_brelse;
4461         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4462         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4463         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4464             cpu_to_le32(EXT4_OS_HURD))
4465                 raw_inode->i_file_acl_high =
4466                         cpu_to_le16(ei->i_file_acl >> 32);
4467         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4468         if (ei->i_disksize != ext4_isize(raw_inode)) {
4469                 ext4_isize_set(raw_inode, ei->i_disksize);
4470                 need_datasync = 1;
4471         }
4472         if (ei->i_disksize > 0x7fffffffULL) {
4473                 struct super_block *sb = inode->i_sb;
4474                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4475                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4476                                 EXT4_SB(sb)->s_es->s_rev_level ==
4477                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4478                         /* If this is the first large file
4479                          * created, add a flag to the superblock.
4480                          */
4481                         err = ext4_journal_get_write_access(handle,
4482                                         EXT4_SB(sb)->s_sbh);
4483                         if (err)
4484                                 goto out_brelse;
4485                         ext4_update_dynamic_rev(sb);
4486                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4487                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4488                         ext4_handle_sync(handle);
4489                         err = ext4_handle_dirty_super(handle, sb);
4490                 }
4491         }
4492         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4493         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4494                 if (old_valid_dev(inode->i_rdev)) {
4495                         raw_inode->i_block[0] =
4496                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4497                         raw_inode->i_block[1] = 0;
4498                 } else {
4499                         raw_inode->i_block[0] = 0;
4500                         raw_inode->i_block[1] =
4501                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4502                         raw_inode->i_block[2] = 0;
4503                 }
4504         } else if (!ext4_has_inline_data(inode)) {
4505                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4506                         raw_inode->i_block[block] = ei->i_data[block];
4507         }
4508
4509         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4510         if (ei->i_extra_isize) {
4511                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4512                         raw_inode->i_version_hi =
4513                         cpu_to_le32(inode->i_version >> 32);
4514                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4515         }
4516
4517         ext4_inode_csum_set(inode, raw_inode, ei);
4518
4519         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4520         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4521         if (!err)
4522                 err = rc;
4523         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4524
4525         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4526 out_brelse:
4527         brelse(bh);
4528         ext4_std_error(inode->i_sb, err);
4529         return err;
4530 }
4531
4532 /*
4533  * ext4_write_inode()
4534  *
4535  * We are called from a few places:
4536  *
4537  * - Within generic_file_write() for O_SYNC files.
4538  *   Here, there will be no transaction running. We wait for any running
4539  *   transaction to commit.
4540  *
4541  * - Within sys_sync(), kupdate and such.
4542  *   We wait on commit, if tol to.
4543  *
4544  * - Within prune_icache() (PF_MEMALLOC == true)
4545  *   Here we simply return.  We can't afford to block kswapd on the
4546  *   journal commit.
4547  *
4548  * In all cases it is actually safe for us to return without doing anything,
4549  * because the inode has been copied into a raw inode buffer in
4550  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4551  * knfsd.
4552  *
4553  * Note that we are absolutely dependent upon all inode dirtiers doing the
4554  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4555  * which we are interested.
4556  *
4557  * It would be a bug for them to not do this.  The code:
4558  *
4559  *      mark_inode_dirty(inode)
4560  *      stuff();
4561  *      inode->i_size = expr;
4562  *
4563  * is in error because a kswapd-driven write_inode() could occur while
4564  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4565  * will no longer be on the superblock's dirty inode list.
4566  */
4567 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4568 {
4569         int err;
4570
4571         if (current->flags & PF_MEMALLOC)
4572                 return 0;
4573
4574         if (EXT4_SB(inode->i_sb)->s_journal) {
4575                 if (ext4_journal_current_handle()) {
4576                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4577                         dump_stack();
4578                         return -EIO;
4579                 }
4580
4581                 if (wbc->sync_mode != WB_SYNC_ALL)
4582                         return 0;
4583
4584                 err = ext4_force_commit(inode->i_sb);
4585         } else {
4586                 struct ext4_iloc iloc;
4587
4588                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4589                 if (err)
4590                         return err;
4591                 if (wbc->sync_mode == WB_SYNC_ALL)
4592                         sync_dirty_buffer(iloc.bh);
4593                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4594                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4595                                          "IO error syncing inode");
4596                         err = -EIO;
4597                 }
4598                 brelse(iloc.bh);
4599         }
4600         return err;
4601 }
4602
4603 /*
4604  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4605  * buffers that are attached to a page stradding i_size and are undergoing
4606  * commit. In that case we have to wait for commit to finish and try again.
4607  */
4608 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4609 {
4610         struct page *page;
4611         unsigned offset;
4612         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4613         tid_t commit_tid = 0;
4614         int ret;
4615
4616         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4617         /*
4618          * All buffers in the last page remain valid? Then there's nothing to
4619          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4620          * blocksize case
4621          */
4622         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4623                 return;
4624         while (1) {
4625                 page = find_lock_page(inode->i_mapping,
4626                                       inode->i_size >> PAGE_CACHE_SHIFT);
4627                 if (!page)
4628                         return;
4629                 ret = __ext4_journalled_invalidatepage(page, offset);
4630                 unlock_page(page);
4631                 page_cache_release(page);
4632                 if (ret != -EBUSY)
4633                         return;
4634                 commit_tid = 0;
4635                 read_lock(&journal->j_state_lock);
4636                 if (journal->j_committing_transaction)
4637                         commit_tid = journal->j_committing_transaction->t_tid;
4638                 read_unlock(&journal->j_state_lock);
4639                 if (commit_tid)
4640                         jbd2_log_wait_commit(journal, commit_tid);
4641         }
4642 }
4643
4644 /*
4645  * ext4_setattr()
4646  *
4647  * Called from notify_change.
4648  *
4649  * We want to trap VFS attempts to truncate the file as soon as
4650  * possible.  In particular, we want to make sure that when the VFS
4651  * shrinks i_size, we put the inode on the orphan list and modify
4652  * i_disksize immediately, so that during the subsequent flushing of
4653  * dirty pages and freeing of disk blocks, we can guarantee that any
4654  * commit will leave the blocks being flushed in an unused state on
4655  * disk.  (On recovery, the inode will get truncated and the blocks will
4656  * be freed, so we have a strong guarantee that no future commit will
4657  * leave these blocks visible to the user.)
4658  *
4659  * Another thing we have to assure is that if we are in ordered mode
4660  * and inode is still attached to the committing transaction, we must
4661  * we start writeout of all the dirty pages which are being truncated.
4662  * This way we are sure that all the data written in the previous
4663  * transaction are already on disk (truncate waits for pages under
4664  * writeback).
4665  *
4666  * Called with inode->i_mutex down.
4667  */
4668 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4669 {
4670         struct inode *inode = dentry->d_inode;
4671         int error, rc = 0;
4672         int orphan = 0;
4673         const unsigned int ia_valid = attr->ia_valid;
4674
4675         error = inode_change_ok(inode, attr);
4676         if (error)
4677                 return error;
4678
4679         if (is_quota_modification(inode, attr))
4680                 dquot_initialize(inode);
4681         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4682             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4683                 handle_t *handle;
4684
4685                 /* (user+group)*(old+new) structure, inode write (sb,
4686                  * inode block, ? - but truncate inode update has it) */
4687                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4688                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4689                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4690                 if (IS_ERR(handle)) {
4691                         error = PTR_ERR(handle);
4692                         goto err_out;
4693                 }
4694                 error = dquot_transfer(inode, attr);
4695                 if (error) {
4696                         ext4_journal_stop(handle);
4697                         return error;
4698                 }
4699                 /* Update corresponding info in inode so that everything is in
4700                  * one transaction */
4701                 if (attr->ia_valid & ATTR_UID)
4702                         inode->i_uid = attr->ia_uid;
4703                 if (attr->ia_valid & ATTR_GID)
4704                         inode->i_gid = attr->ia_gid;
4705                 error = ext4_mark_inode_dirty(handle, inode);
4706                 ext4_journal_stop(handle);
4707         }
4708
4709         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4710                 handle_t *handle;
4711                 loff_t oldsize = inode->i_size;
4712
4713                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4714                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4715
4716                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4717                                 return -EFBIG;
4718                 }
4719                 if (S_ISREG(inode->i_mode) &&
4720                     (attr->ia_size < inode->i_size)) {
4721                         if (ext4_should_order_data(inode)) {
4722                                 error = ext4_begin_ordered_truncate(inode,
4723                                                             attr->ia_size);
4724                                 if (error)
4725                                         goto err_out;
4726                         }
4727                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4728                         if (IS_ERR(handle)) {
4729                                 error = PTR_ERR(handle);
4730                                 goto err_out;
4731                         }
4732                         if (ext4_handle_valid(handle)) {
4733                                 error = ext4_orphan_add(handle, inode);
4734                                 orphan = 1;
4735                         }
4736                         EXT4_I(inode)->i_disksize = attr->ia_size;
4737                         rc = ext4_mark_inode_dirty(handle, inode);
4738                         if (!error)
4739                                 error = rc;
4740                         ext4_journal_stop(handle);
4741                         if (error) {
4742                                 ext4_orphan_del(NULL, inode);
4743                                 goto err_out;
4744                         }
4745                 }
4746
4747                 i_size_write(inode, attr->ia_size);
4748                 /*
4749                  * Blocks are going to be removed from the inode. Wait
4750                  * for dio in flight.  Temporarily disable
4751                  * dioread_nolock to prevent livelock.
4752                  */
4753                 if (orphan) {
4754                         if (!ext4_should_journal_data(inode)) {
4755                                 ext4_inode_block_unlocked_dio(inode);
4756                                 inode_dio_wait(inode);
4757                                 ext4_inode_resume_unlocked_dio(inode);
4758                         } else
4759                                 ext4_wait_for_tail_page_commit(inode);
4760                 }
4761                 /*
4762                  * Truncate pagecache after we've waited for commit
4763                  * in data=journal mode to make pages freeable.
4764                  */
4765                 truncate_pagecache(inode, oldsize, inode->i_size);
4766         }
4767         /*
4768          * We want to call ext4_truncate() even if attr->ia_size ==
4769          * inode->i_size for cases like truncation of fallocated space
4770          */
4771         if (attr->ia_valid & ATTR_SIZE)
4772                 ext4_truncate(inode);
4773
4774         if (!rc) {
4775                 setattr_copy(inode, attr);
4776                 mark_inode_dirty(inode);
4777         }
4778
4779         /*
4780          * If the call to ext4_truncate failed to get a transaction handle at
4781          * all, we need to clean up the in-core orphan list manually.
4782          */
4783         if (orphan && inode->i_nlink)
4784                 ext4_orphan_del(NULL, inode);
4785
4786         if (!rc && (ia_valid & ATTR_MODE))
4787                 rc = ext4_acl_chmod(inode);
4788
4789 err_out:
4790         ext4_std_error(inode->i_sb, error);
4791         if (!error)
4792                 error = rc;
4793         return error;
4794 }
4795
4796 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4797                  struct kstat *stat)
4798 {
4799         struct inode *inode;
4800         unsigned long long delalloc_blocks;
4801
4802         inode = dentry->d_inode;
4803         generic_fillattr(inode, stat);
4804
4805         /*
4806          * We can't update i_blocks if the block allocation is delayed
4807          * otherwise in the case of system crash before the real block
4808          * allocation is done, we will have i_blocks inconsistent with
4809          * on-disk file blocks.
4810          * We always keep i_blocks updated together with real
4811          * allocation. But to not confuse with user, stat
4812          * will return the blocks that include the delayed allocation
4813          * blocks for this file.
4814          */
4815         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4816                                 EXT4_I(inode)->i_reserved_data_blocks);
4817
4818         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4819         return 0;
4820 }
4821
4822 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4823 {
4824         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4825                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4826         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4827 }
4828
4829 /*
4830  * Account for index blocks, block groups bitmaps and block group
4831  * descriptor blocks if modify datablocks and index blocks
4832  * worse case, the indexs blocks spread over different block groups
4833  *
4834  * If datablocks are discontiguous, they are possible to spread over
4835  * different block groups too. If they are contiguous, with flexbg,
4836  * they could still across block group boundary.
4837  *
4838  * Also account for superblock, inode, quota and xattr blocks
4839  */
4840 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4841 {
4842         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4843         int gdpblocks;
4844         int idxblocks;
4845         int ret = 0;
4846
4847         /*
4848          * How many index blocks need to touch to modify nrblocks?
4849          * The "Chunk" flag indicating whether the nrblocks is
4850          * physically contiguous on disk
4851          *
4852          * For Direct IO and fallocate, they calls get_block to allocate
4853          * one single extent at a time, so they could set the "Chunk" flag
4854          */
4855         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4856
4857         ret = idxblocks;
4858
4859         /*
4860          * Now let's see how many group bitmaps and group descriptors need
4861          * to account
4862          */
4863         groups = idxblocks;
4864         if (chunk)
4865                 groups += 1;
4866         else
4867                 groups += nrblocks;
4868
4869         gdpblocks = groups;
4870         if (groups > ngroups)
4871                 groups = ngroups;
4872         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4873                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4874
4875         /* bitmaps and block group descriptor blocks */
4876         ret += groups + gdpblocks;
4877
4878         /* Blocks for super block, inode, quota and xattr blocks */
4879         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4880
4881         return ret;
4882 }
4883
4884 /*
4885  * Calculate the total number of credits to reserve to fit
4886  * the modification of a single pages into a single transaction,
4887  * which may include multiple chunks of block allocations.
4888  *
4889  * This could be called via ext4_write_begin()
4890  *
4891  * We need to consider the worse case, when
4892  * one new block per extent.
4893  */
4894 int ext4_writepage_trans_blocks(struct inode *inode)
4895 {
4896         int bpp = ext4_journal_blocks_per_page(inode);
4897         int ret;
4898
4899         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4900
4901         /* Account for data blocks for journalled mode */
4902         if (ext4_should_journal_data(inode))
4903                 ret += bpp;
4904         return ret;
4905 }
4906
4907 /*
4908  * Calculate the journal credits for a chunk of data modification.
4909  *
4910  * This is called from DIO, fallocate or whoever calling
4911  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4912  *
4913  * journal buffers for data blocks are not included here, as DIO
4914  * and fallocate do no need to journal data buffers.
4915  */
4916 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4917 {
4918         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4919 }
4920
4921 /*
4922  * The caller must have previously called ext4_reserve_inode_write().
4923  * Give this, we know that the caller already has write access to iloc->bh.
4924  */
4925 int ext4_mark_iloc_dirty(handle_t *handle,
4926                          struct inode *inode, struct ext4_iloc *iloc)
4927 {
4928         int err = 0;
4929
4930         if (IS_I_VERSION(inode))
4931                 inode_inc_iversion(inode);
4932
4933         /* the do_update_inode consumes one bh->b_count */
4934         get_bh(iloc->bh);
4935
4936         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4937         err = ext4_do_update_inode(handle, inode, iloc);
4938         put_bh(iloc->bh);
4939         return err;
4940 }
4941
4942 /*
4943  * On success, We end up with an outstanding reference count against
4944  * iloc->bh.  This _must_ be cleaned up later.
4945  */
4946
4947 int
4948 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4949                          struct ext4_iloc *iloc)
4950 {
4951         int err;
4952
4953         err = ext4_get_inode_loc(inode, iloc);
4954         if (!err) {
4955                 BUFFER_TRACE(iloc->bh, "get_write_access");
4956                 err = ext4_journal_get_write_access(handle, iloc->bh);
4957                 if (err) {
4958                         brelse(iloc->bh);
4959                         iloc->bh = NULL;
4960                 }
4961         }
4962         ext4_std_error(inode->i_sb, err);
4963         return err;
4964 }
4965
4966 /*
4967  * Expand an inode by new_extra_isize bytes.
4968  * Returns 0 on success or negative error number on failure.
4969  */
4970 static int ext4_expand_extra_isize(struct inode *inode,
4971                                    unsigned int new_extra_isize,
4972                                    struct ext4_iloc iloc,
4973                                    handle_t *handle)
4974 {
4975         struct ext4_inode *raw_inode;
4976         struct ext4_xattr_ibody_header *header;
4977
4978         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4979                 return 0;
4980
4981         raw_inode = ext4_raw_inode(&iloc);
4982
4983         header = IHDR(inode, raw_inode);
4984
4985         /* No extended attributes present */
4986         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4987             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4988                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4989                         new_extra_isize);
4990                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4991                 return 0;
4992         }
4993
4994         /* try to expand with EAs present */
4995         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4996                                           raw_inode, handle);
4997 }
4998
4999 /*
5000  * What we do here is to mark the in-core inode as clean with respect to inode
5001  * dirtiness (it may still be data-dirty).
5002  * This means that the in-core inode may be reaped by prune_icache
5003  * without having to perform any I/O.  This is a very good thing,
5004  * because *any* task may call prune_icache - even ones which
5005  * have a transaction open against a different journal.
5006  *
5007  * Is this cheating?  Not really.  Sure, we haven't written the
5008  * inode out, but prune_icache isn't a user-visible syncing function.
5009  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5010  * we start and wait on commits.
5011  */
5012 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5013 {
5014         struct ext4_iloc iloc;
5015         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5016         static unsigned int mnt_count;
5017         int err, ret;
5018
5019         might_sleep();
5020         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5021         err = ext4_reserve_inode_write(handle, inode, &iloc);
5022         if (ext4_handle_valid(handle) &&
5023             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5024             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5025                 /*
5026                  * We need extra buffer credits since we may write into EA block
5027                  * with this same handle. If journal_extend fails, then it will
5028                  * only result in a minor loss of functionality for that inode.
5029                  * If this is felt to be critical, then e2fsck should be run to
5030                  * force a large enough s_min_extra_isize.
5031                  */
5032                 if ((jbd2_journal_extend(handle,
5033                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5034                         ret = ext4_expand_extra_isize(inode,
5035                                                       sbi->s_want_extra_isize,
5036                                                       iloc, handle);
5037                         if (ret) {
5038                                 ext4_set_inode_state(inode,
5039                                                      EXT4_STATE_NO_EXPAND);
5040                                 if (mnt_count !=
5041                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5042                                         ext4_warning(inode->i_sb,
5043                                         "Unable to expand inode %lu. Delete"
5044                                         " some EAs or run e2fsck.",
5045                                         inode->i_ino);
5046                                         mnt_count =
5047                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5048                                 }
5049                         }
5050                 }
5051         }
5052         if (!err)
5053                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5054         return err;
5055 }
5056
5057 /*
5058  * ext4_dirty_inode() is called from __mark_inode_dirty()
5059  *
5060  * We're really interested in the case where a file is being extended.
5061  * i_size has been changed by generic_commit_write() and we thus need
5062  * to include the updated inode in the current transaction.
5063  *
5064  * Also, dquot_alloc_block() will always dirty the inode when blocks
5065  * are allocated to the file.
5066  *
5067  * If the inode is marked synchronous, we don't honour that here - doing
5068  * so would cause a commit on atime updates, which we don't bother doing.
5069  * We handle synchronous inodes at the highest possible level.
5070  */
5071 void ext4_dirty_inode(struct inode *inode, int flags)
5072 {
5073         handle_t *handle;
5074
5075         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5076         if (IS_ERR(handle))
5077                 goto out;
5078
5079         ext4_mark_inode_dirty(handle, inode);
5080
5081         ext4_journal_stop(handle);
5082 out:
5083         return;
5084 }
5085
5086 #if 0
5087 /*
5088  * Bind an inode's backing buffer_head into this transaction, to prevent
5089  * it from being flushed to disk early.  Unlike
5090  * ext4_reserve_inode_write, this leaves behind no bh reference and
5091  * returns no iloc structure, so the caller needs to repeat the iloc
5092  * lookup to mark the inode dirty later.
5093  */
5094 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5095 {
5096         struct ext4_iloc iloc;
5097
5098         int err = 0;
5099         if (handle) {
5100                 err = ext4_get_inode_loc(inode, &iloc);
5101                 if (!err) {
5102                         BUFFER_TRACE(iloc.bh, "get_write_access");
5103                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5104                         if (!err)
5105                                 err = ext4_handle_dirty_metadata(handle,
5106                                                                  NULL,
5107                                                                  iloc.bh);
5108                         brelse(iloc.bh);
5109                 }
5110         }
5111         ext4_std_error(inode->i_sb, err);
5112         return err;
5113 }
5114 #endif
5115
5116 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5117 {
5118         journal_t *journal;
5119         handle_t *handle;
5120         int err;
5121
5122         /*
5123          * We have to be very careful here: changing a data block's
5124          * journaling status dynamically is dangerous.  If we write a
5125          * data block to the journal, change the status and then delete
5126          * that block, we risk forgetting to revoke the old log record
5127          * from the journal and so a subsequent replay can corrupt data.
5128          * So, first we make sure that the journal is empty and that
5129          * nobody is changing anything.
5130          */
5131
5132         journal = EXT4_JOURNAL(inode);
5133         if (!journal)
5134                 return 0;
5135         if (is_journal_aborted(journal))
5136                 return -EROFS;
5137         /* We have to allocate physical blocks for delalloc blocks
5138          * before flushing journal. otherwise delalloc blocks can not
5139          * be allocated any more. even more truncate on delalloc blocks
5140          * could trigger BUG by flushing delalloc blocks in journal.
5141          * There is no delalloc block in non-journal data mode.
5142          */
5143         if (val && test_opt(inode->i_sb, DELALLOC)) {
5144                 err = ext4_alloc_da_blocks(inode);
5145                 if (err < 0)
5146                         return err;
5147         }
5148
5149         /* Wait for all existing dio workers */
5150         ext4_inode_block_unlocked_dio(inode);
5151         inode_dio_wait(inode);
5152
5153         jbd2_journal_lock_updates(journal);
5154
5155         /*
5156          * OK, there are no updates running now, and all cached data is
5157          * synced to disk.  We are now in a completely consistent state
5158          * which doesn't have anything in the journal, and we know that
5159          * no filesystem updates are running, so it is safe to modify
5160          * the inode's in-core data-journaling state flag now.
5161          */
5162
5163         if (val)
5164                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5165         else {
5166                 jbd2_journal_flush(journal);
5167                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5168         }
5169         ext4_set_aops(inode);
5170
5171         jbd2_journal_unlock_updates(journal);
5172         ext4_inode_resume_unlocked_dio(inode);
5173
5174         /* Finally we can mark the inode as dirty. */
5175
5176         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5177         if (IS_ERR(handle))
5178                 return PTR_ERR(handle);
5179
5180         err = ext4_mark_inode_dirty(handle, inode);
5181         ext4_handle_sync(handle);
5182         ext4_journal_stop(handle);
5183         ext4_std_error(inode->i_sb, err);
5184
5185         return err;
5186 }
5187
5188 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5189 {
5190         return !buffer_mapped(bh);
5191 }
5192
5193 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5194 {
5195         struct page *page = vmf->page;
5196         loff_t size;
5197         unsigned long len;
5198         int ret;
5199         struct file *file = vma->vm_file;
5200         struct inode *inode = file_inode(file);
5201         struct address_space *mapping = inode->i_mapping;
5202         handle_t *handle;
5203         get_block_t *get_block;
5204         int retries = 0;
5205
5206         sb_start_pagefault(inode->i_sb);
5207         file_update_time(vma->vm_file);
5208         /* Delalloc case is easy... */
5209         if (test_opt(inode->i_sb, DELALLOC) &&
5210             !ext4_should_journal_data(inode) &&
5211             !ext4_nonda_switch(inode->i_sb)) {
5212                 do {
5213                         ret = __block_page_mkwrite(vma, vmf,
5214                                                    ext4_da_get_block_prep);
5215                 } while (ret == -ENOSPC &&
5216                        ext4_should_retry_alloc(inode->i_sb, &retries));
5217                 goto out_ret;
5218         }
5219
5220         lock_page(page);
5221         size = i_size_read(inode);
5222         /* Page got truncated from under us? */
5223         if (page->mapping != mapping || page_offset(page) > size) {
5224                 unlock_page(page);
5225                 ret = VM_FAULT_NOPAGE;
5226                 goto out;
5227         }
5228
5229         if (page->index == size >> PAGE_CACHE_SHIFT)
5230                 len = size & ~PAGE_CACHE_MASK;
5231         else
5232                 len = PAGE_CACHE_SIZE;
5233         /*
5234          * Return if we have all the buffers mapped. This avoids the need to do
5235          * journal_start/journal_stop which can block and take a long time
5236          */
5237         if (page_has_buffers(page)) {
5238                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5239                                             0, len, NULL,
5240                                             ext4_bh_unmapped)) {
5241                         /* Wait so that we don't change page under IO */
5242                         wait_for_stable_page(page);
5243                         ret = VM_FAULT_LOCKED;
5244                         goto out;
5245                 }
5246         }
5247         unlock_page(page);
5248         /* OK, we need to fill the hole... */
5249         if (ext4_should_dioread_nolock(inode))
5250                 get_block = ext4_get_block_write;
5251         else
5252                 get_block = ext4_get_block;
5253 retry_alloc:
5254         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5255                                     ext4_writepage_trans_blocks(inode));
5256         if (IS_ERR(handle)) {
5257                 ret = VM_FAULT_SIGBUS;
5258                 goto out;
5259         }
5260         ret = __block_page_mkwrite(vma, vmf, get_block);
5261         if (!ret && ext4_should_journal_data(inode)) {
5262                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5263                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5264                         unlock_page(page);
5265                         ret = VM_FAULT_SIGBUS;
5266                         ext4_journal_stop(handle);
5267                         goto out;
5268                 }
5269                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5270         }
5271         ext4_journal_stop(handle);
5272         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5273                 goto retry_alloc;
5274 out_ret:
5275         ret = block_page_mkwrite_return(ret);
5276 out:
5277         sb_end_pagefault(inode->i_sb);
5278         return ret;
5279 }