ext4: move setup of the mpd structure to write_cache_pages_da()
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50
51 #include <trace/events/ext4.h>
52
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56                                               loff_t new_size)
57 {
58         trace_ext4_begin_ordered_truncate(inode, new_size);
59         /*
60          * If jinode is zero, then we never opened the file for
61          * writing, so there's no need to call
62          * jbd2_journal_begin_ordered_truncate() since there's no
63          * outstanding writes we need to flush.
64          */
65         if (!EXT4_I(inode)->jinode)
66                 return 0;
67         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68                                                    EXT4_I(inode)->jinode,
69                                                    new_size);
70 }
71
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74                                    struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85         int ea_blocks = EXT4_I(inode)->i_file_acl ?
86                 (inode->i_sb->s_blocksize >> 9) : 0;
87
88         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97         ext4_lblk_t needed;
98
99         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101         /* Give ourselves just enough room to cope with inodes in which
102          * i_blocks is corrupt: we've seen disk corruptions in the past
103          * which resulted in random data in an inode which looked enough
104          * like a regular file for ext4 to try to delete it.  Things
105          * will go a bit crazy if that happens, but at least we should
106          * try not to panic the whole kernel. */
107         if (needed < 2)
108                 needed = 2;
109
110         /* But we need to bound the transaction so we don't overflow the
111          * journal. */
112         if (needed > EXT4_MAX_TRANS_DATA)
113                 needed = EXT4_MAX_TRANS_DATA;
114
115         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130         handle_t *result;
131
132         result = ext4_journal_start(inode, blocks_for_truncate(inode));
133         if (!IS_ERR(result))
134                 return result;
135
136         ext4_std_error(inode->i_sb, PTR_ERR(result));
137         return result;
138 }
139
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148         if (!ext4_handle_valid(handle))
149                 return 0;
150         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151                 return 0;
152         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153                 return 0;
154         return 1;
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192         if (inode->i_nlink) {
193                 truncate_inode_pages(&inode->i_data, 0);
194                 goto no_delete;
195         }
196
197         if (!is_bad_inode(inode))
198                 dquot_initialize(inode);
199
200         if (ext4_should_order_data(inode))
201                 ext4_begin_ordered_truncate(inode, 0);
202         truncate_inode_pages(&inode->i_data, 0);
203
204         if (is_bad_inode(inode))
205                 goto no_delete;
206
207         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208         if (IS_ERR(handle)) {
209                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210                 /*
211                  * If we're going to skip the normal cleanup, we still need to
212                  * make sure that the in-core orphan linked list is properly
213                  * cleaned up.
214                  */
215                 ext4_orphan_del(NULL, inode);
216                 goto no_delete;
217         }
218
219         if (IS_SYNC(inode))
220                 ext4_handle_sync(handle);
221         inode->i_size = 0;
222         err = ext4_mark_inode_dirty(handle, inode);
223         if (err) {
224                 ext4_warning(inode->i_sb,
225                              "couldn't mark inode dirty (err %d)", err);
226                 goto stop_handle;
227         }
228         if (inode->i_blocks)
229                 ext4_truncate(inode);
230
231         /*
232          * ext4_ext_truncate() doesn't reserve any slop when it
233          * restarts journal transactions; therefore there may not be
234          * enough credits left in the handle to remove the inode from
235          * the orphan list and set the dtime field.
236          */
237         if (!ext4_handle_has_enough_credits(handle, 3)) {
238                 err = ext4_journal_extend(handle, 3);
239                 if (err > 0)
240                         err = ext4_journal_restart(handle, 3);
241                 if (err != 0) {
242                         ext4_warning(inode->i_sb,
243                                      "couldn't extend journal (err %d)", err);
244                 stop_handle:
245                         ext4_journal_stop(handle);
246                         ext4_orphan_del(NULL, inode);
247                         goto no_delete;
248                 }
249         }
250
251         /*
252          * Kill off the orphan record which ext4_truncate created.
253          * AKPM: I think this can be inside the above `if'.
254          * Note that ext4_orphan_del() has to be able to cope with the
255          * deletion of a non-existent orphan - this is because we don't
256          * know if ext4_truncate() actually created an orphan record.
257          * (Well, we could do this if we need to, but heck - it works)
258          */
259         ext4_orphan_del(handle, inode);
260         EXT4_I(inode)->i_dtime  = get_seconds();
261
262         /*
263          * One subtle ordering requirement: if anything has gone wrong
264          * (transaction abort, IO errors, whatever), then we can still
265          * do these next steps (the fs will already have been marked as
266          * having errors), but we can't free the inode if the mark_dirty
267          * fails.
268          */
269         if (ext4_mark_inode_dirty(handle, inode))
270                 /* If that failed, just do the required in-core inode clear. */
271                 ext4_clear_inode(inode);
272         else
273                 ext4_free_inode(handle, inode);
274         ext4_journal_stop(handle);
275         return;
276 no_delete:
277         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
278 }
279
280 typedef struct {
281         __le32  *p;
282         __le32  key;
283         struct buffer_head *bh;
284 } Indirect;
285
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288         p->key = *(p->p = v);
289         p->bh = bh;
290 }
291
292 /**
293  *      ext4_block_to_path - parse the block number into array of offsets
294  *      @inode: inode in question (we are only interested in its superblock)
295  *      @i_block: block number to be parsed
296  *      @offsets: array to store the offsets in
297  *      @boundary: set this non-zero if the referred-to block is likely to be
298  *             followed (on disk) by an indirect block.
299  *
300  *      To store the locations of file's data ext4 uses a data structure common
301  *      for UNIX filesystems - tree of pointers anchored in the inode, with
302  *      data blocks at leaves and indirect blocks in intermediate nodes.
303  *      This function translates the block number into path in that tree -
304  *      return value is the path length and @offsets[n] is the offset of
305  *      pointer to (n+1)th node in the nth one. If @block is out of range
306  *      (negative or too large) warning is printed and zero returned.
307  *
308  *      Note: function doesn't find node addresses, so no IO is needed. All
309  *      we need to know is the capacity of indirect blocks (taken from the
310  *      inode->i_sb).
311  */
312
313 /*
314  * Portability note: the last comparison (check that we fit into triple
315  * indirect block) is spelled differently, because otherwise on an
316  * architecture with 32-bit longs and 8Kb pages we might get into trouble
317  * if our filesystem had 8Kb blocks. We might use long long, but that would
318  * kill us on x86. Oh, well, at least the sign propagation does not matter -
319  * i_block would have to be negative in the very beginning, so we would not
320  * get there at all.
321  */
322
323 static int ext4_block_to_path(struct inode *inode,
324                               ext4_lblk_t i_block,
325                               ext4_lblk_t offsets[4], int *boundary)
326 {
327         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329         const long direct_blocks = EXT4_NDIR_BLOCKS,
330                 indirect_blocks = ptrs,
331                 double_blocks = (1 << (ptrs_bits * 2));
332         int n = 0;
333         int final = 0;
334
335         if (i_block < direct_blocks) {
336                 offsets[n++] = i_block;
337                 final = direct_blocks;
338         } else if ((i_block -= direct_blocks) < indirect_blocks) {
339                 offsets[n++] = EXT4_IND_BLOCK;
340                 offsets[n++] = i_block;
341                 final = ptrs;
342         } else if ((i_block -= indirect_blocks) < double_blocks) {
343                 offsets[n++] = EXT4_DIND_BLOCK;
344                 offsets[n++] = i_block >> ptrs_bits;
345                 offsets[n++] = i_block & (ptrs - 1);
346                 final = ptrs;
347         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348                 offsets[n++] = EXT4_TIND_BLOCK;
349                 offsets[n++] = i_block >> (ptrs_bits * 2);
350                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351                 offsets[n++] = i_block & (ptrs - 1);
352                 final = ptrs;
353         } else {
354                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355                              i_block + direct_blocks +
356                              indirect_blocks + double_blocks, inode->i_ino);
357         }
358         if (boundary)
359                 *boundary = final - 1 - (i_block & (ptrs - 1));
360         return n;
361 }
362
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364                                  struct inode *inode,
365                                  __le32 *p, unsigned int max)
366 {
367         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368         __le32 *bref = p;
369         unsigned int blk;
370
371         while (bref < p+max) {
372                 blk = le32_to_cpu(*bref++);
373                 if (blk &&
374                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375                                                     blk, 1))) {
376                         es->s_last_error_block = cpu_to_le64(blk);
377                         ext4_error_inode(inode, function, line, blk,
378                                          "invalid block");
379                         return -EIO;
380                 }
381         }
382         return 0;
383 }
384
385
386 #define ext4_check_indirect_blockref(inode, bh)                         \
387         __ext4_check_blockref(__func__, __LINE__, inode,                \
388                               (__le32 *)(bh)->b_data,                   \
389                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390
391 #define ext4_check_inode_blockref(inode)                                \
392         __ext4_check_blockref(__func__, __LINE__, inode,                \
393                               EXT4_I(inode)->i_data,                    \
394                               EXT4_NDIR_BLOCKS)
395
396 /**
397  *      ext4_get_branch - read the chain of indirect blocks leading to data
398  *      @inode: inode in question
399  *      @depth: depth of the chain (1 - direct pointer, etc.)
400  *      @offsets: offsets of pointers in inode/indirect blocks
401  *      @chain: place to store the result
402  *      @err: here we store the error value
403  *
404  *      Function fills the array of triples <key, p, bh> and returns %NULL
405  *      if everything went OK or the pointer to the last filled triple
406  *      (incomplete one) otherwise. Upon the return chain[i].key contains
407  *      the number of (i+1)-th block in the chain (as it is stored in memory,
408  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
409  *      number (it points into struct inode for i==0 and into the bh->b_data
410  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411  *      block for i>0 and NULL for i==0. In other words, it holds the block
412  *      numbers of the chain, addresses they were taken from (and where we can
413  *      verify that chain did not change) and buffer_heads hosting these
414  *      numbers.
415  *
416  *      Function stops when it stumbles upon zero pointer (absent block)
417  *              (pointer to last triple returned, *@err == 0)
418  *      or when it gets an IO error reading an indirect block
419  *              (ditto, *@err == -EIO)
420  *      or when it reads all @depth-1 indirect blocks successfully and finds
421  *      the whole chain, all way to the data (returns %NULL, *err == 0).
422  *
423  *      Need to be called with
424  *      down_read(&EXT4_I(inode)->i_data_sem)
425  */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427                                  ext4_lblk_t  *offsets,
428                                  Indirect chain[4], int *err)
429 {
430         struct super_block *sb = inode->i_sb;
431         Indirect *p = chain;
432         struct buffer_head *bh;
433
434         *err = 0;
435         /* i_data is not going away, no lock needed */
436         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437         if (!p->key)
438                 goto no_block;
439         while (--depth) {
440                 bh = sb_getblk(sb, le32_to_cpu(p->key));
441                 if (unlikely(!bh))
442                         goto failure;
443
444                 if (!bh_uptodate_or_lock(bh)) {
445                         if (bh_submit_read(bh) < 0) {
446                                 put_bh(bh);
447                                 goto failure;
448                         }
449                         /* validate block references */
450                         if (ext4_check_indirect_blockref(inode, bh)) {
451                                 put_bh(bh);
452                                 goto failure;
453                         }
454                 }
455
456                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457                 /* Reader: end */
458                 if (!p->key)
459                         goto no_block;
460         }
461         return NULL;
462
463 failure:
464         *err = -EIO;
465 no_block:
466         return p;
467 }
468
469 /**
470  *      ext4_find_near - find a place for allocation with sufficient locality
471  *      @inode: owner
472  *      @ind: descriptor of indirect block.
473  *
474  *      This function returns the preferred place for block allocation.
475  *      It is used when heuristic for sequential allocation fails.
476  *      Rules are:
477  *        + if there is a block to the left of our position - allocate near it.
478  *        + if pointer will live in indirect block - allocate near that block.
479  *        + if pointer will live in inode - allocate in the same
480  *          cylinder group.
481  *
482  * In the latter case we colour the starting block by the callers PID to
483  * prevent it from clashing with concurrent allocations for a different inode
484  * in the same block group.   The PID is used here so that functionally related
485  * files will be close-by on-disk.
486  *
487  *      Caller must make sure that @ind is valid and will stay that way.
488  */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491         struct ext4_inode_info *ei = EXT4_I(inode);
492         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493         __le32 *p;
494         ext4_fsblk_t bg_start;
495         ext4_fsblk_t last_block;
496         ext4_grpblk_t colour;
497         ext4_group_t block_group;
498         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499
500         /* Try to find previous block */
501         for (p = ind->p - 1; p >= start; p--) {
502                 if (*p)
503                         return le32_to_cpu(*p);
504         }
505
506         /* No such thing, so let's try location of indirect block */
507         if (ind->bh)
508                 return ind->bh->b_blocknr;
509
510         /*
511          * It is going to be referred to from the inode itself? OK, just put it
512          * into the same cylinder group then.
513          */
514         block_group = ei->i_block_group;
515         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516                 block_group &= ~(flex_size-1);
517                 if (S_ISREG(inode->i_mode))
518                         block_group++;
519         }
520         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522
523         /*
524          * If we are doing delayed allocation, we don't need take
525          * colour into account.
526          */
527         if (test_opt(inode->i_sb, DELALLOC))
528                 return bg_start;
529
530         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531                 colour = (current->pid % 16) *
532                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533         else
534                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535         return bg_start + colour;
536 }
537
538 /**
539  *      ext4_find_goal - find a preferred place for allocation.
540  *      @inode: owner
541  *      @block:  block we want
542  *      @partial: pointer to the last triple within a chain
543  *
544  *      Normally this function find the preferred place for block allocation,
545  *      returns it.
546  *      Because this is only used for non-extent files, we limit the block nr
547  *      to 32 bits.
548  */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550                                    Indirect *partial)
551 {
552         ext4_fsblk_t goal;
553
554         /*
555          * XXX need to get goal block from mballoc's data structures
556          */
557
558         goal = ext4_find_near(inode, partial);
559         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560         return goal;
561 }
562
563 /**
564  *      ext4_blks_to_allocate - Look up the block map and count the number
565  *      of direct blocks need to be allocated for the given branch.
566  *
567  *      @branch: chain of indirect blocks
568  *      @k: number of blocks need for indirect blocks
569  *      @blks: number of data blocks to be mapped.
570  *      @blocks_to_boundary:  the offset in the indirect block
571  *
572  *      return the total number of blocks to be allocate, including the
573  *      direct and indirect blocks.
574  */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576                                  int blocks_to_boundary)
577 {
578         unsigned int count = 0;
579
580         /*
581          * Simple case, [t,d]Indirect block(s) has not allocated yet
582          * then it's clear blocks on that path have not allocated
583          */
584         if (k > 0) {
585                 /* right now we don't handle cross boundary allocation */
586                 if (blks < blocks_to_boundary + 1)
587                         count += blks;
588                 else
589                         count += blocks_to_boundary + 1;
590                 return count;
591         }
592
593         count++;
594         while (count < blks && count <= blocks_to_boundary &&
595                 le32_to_cpu(*(branch[0].p + count)) == 0) {
596                 count++;
597         }
598         return count;
599 }
600
601 /**
602  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
603  *      @handle: handle for this transaction
604  *      @inode: inode which needs allocated blocks
605  *      @iblock: the logical block to start allocated at
606  *      @goal: preferred physical block of allocation
607  *      @indirect_blks: the number of blocks need to allocate for indirect
608  *                      blocks
609  *      @blks: number of desired blocks
610  *      @new_blocks: on return it will store the new block numbers for
611  *      the indirect blocks(if needed) and the first direct block,
612  *      @err: on return it will store the error code
613  *
614  *      This function will return the number of blocks allocated as
615  *      requested by the passed-in parameters.
616  */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618                              ext4_lblk_t iblock, ext4_fsblk_t goal,
619                              int indirect_blks, int blks,
620                              ext4_fsblk_t new_blocks[4], int *err)
621 {
622         struct ext4_allocation_request ar;
623         int target, i;
624         unsigned long count = 0, blk_allocated = 0;
625         int index = 0;
626         ext4_fsblk_t current_block = 0;
627         int ret = 0;
628
629         /*
630          * Here we try to allocate the requested multiple blocks at once,
631          * on a best-effort basis.
632          * To build a branch, we should allocate blocks for
633          * the indirect blocks(if not allocated yet), and at least
634          * the first direct block of this branch.  That's the
635          * minimum number of blocks need to allocate(required)
636          */
637         /* first we try to allocate the indirect blocks */
638         target = indirect_blks;
639         while (target > 0) {
640                 count = target;
641                 /* allocating blocks for indirect blocks and direct blocks */
642                 current_block = ext4_new_meta_blocks(handle, inode,
643                                                         goal, &count, err);
644                 if (*err)
645                         goto failed_out;
646
647                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648                         EXT4_ERROR_INODE(inode,
649                                          "current_block %llu + count %lu > %d!",
650                                          current_block, count,
651                                          EXT4_MAX_BLOCK_FILE_PHYS);
652                         *err = -EIO;
653                         goto failed_out;
654                 }
655
656                 target -= count;
657                 /* allocate blocks for indirect blocks */
658                 while (index < indirect_blks && count) {
659                         new_blocks[index++] = current_block++;
660                         count--;
661                 }
662                 if (count > 0) {
663                         /*
664                          * save the new block number
665                          * for the first direct block
666                          */
667                         new_blocks[index] = current_block;
668                         printk(KERN_INFO "%s returned more blocks than "
669                                                 "requested\n", __func__);
670                         WARN_ON(1);
671                         break;
672                 }
673         }
674
675         target = blks - count ;
676         blk_allocated = count;
677         if (!target)
678                 goto allocated;
679         /* Now allocate data blocks */
680         memset(&ar, 0, sizeof(ar));
681         ar.inode = inode;
682         ar.goal = goal;
683         ar.len = target;
684         ar.logical = iblock;
685         if (S_ISREG(inode->i_mode))
686                 /* enable in-core preallocation only for regular files */
687                 ar.flags = EXT4_MB_HINT_DATA;
688
689         current_block = ext4_mb_new_blocks(handle, &ar, err);
690         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691                 EXT4_ERROR_INODE(inode,
692                                  "current_block %llu + ar.len %d > %d!",
693                                  current_block, ar.len,
694                                  EXT4_MAX_BLOCK_FILE_PHYS);
695                 *err = -EIO;
696                 goto failed_out;
697         }
698
699         if (*err && (target == blks)) {
700                 /*
701                  * if the allocation failed and we didn't allocate
702                  * any blocks before
703                  */
704                 goto failed_out;
705         }
706         if (!*err) {
707                 if (target == blks) {
708                         /*
709                          * save the new block number
710                          * for the first direct block
711                          */
712                         new_blocks[index] = current_block;
713                 }
714                 blk_allocated += ar.len;
715         }
716 allocated:
717         /* total number of blocks allocated for direct blocks */
718         ret = blk_allocated;
719         *err = 0;
720         return ret;
721 failed_out:
722         for (i = 0; i < index; i++)
723                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724         return ret;
725 }
726
727 /**
728  *      ext4_alloc_branch - allocate and set up a chain of blocks.
729  *      @handle: handle for this transaction
730  *      @inode: owner
731  *      @indirect_blks: number of allocated indirect blocks
732  *      @blks: number of allocated direct blocks
733  *      @goal: preferred place for allocation
734  *      @offsets: offsets (in the blocks) to store the pointers to next.
735  *      @branch: place to store the chain in.
736  *
737  *      This function allocates blocks, zeroes out all but the last one,
738  *      links them into chain and (if we are synchronous) writes them to disk.
739  *      In other words, it prepares a branch that can be spliced onto the
740  *      inode. It stores the information about that chain in the branch[], in
741  *      the same format as ext4_get_branch() would do. We are calling it after
742  *      we had read the existing part of chain and partial points to the last
743  *      triple of that (one with zero ->key). Upon the exit we have the same
744  *      picture as after the successful ext4_get_block(), except that in one
745  *      place chain is disconnected - *branch->p is still zero (we did not
746  *      set the last link), but branch->key contains the number that should
747  *      be placed into *branch->p to fill that gap.
748  *
749  *      If allocation fails we free all blocks we've allocated (and forget
750  *      their buffer_heads) and return the error value the from failed
751  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752  *      as described above and return 0.
753  */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755                              ext4_lblk_t iblock, int indirect_blks,
756                              int *blks, ext4_fsblk_t goal,
757                              ext4_lblk_t *offsets, Indirect *branch)
758 {
759         int blocksize = inode->i_sb->s_blocksize;
760         int i, n = 0;
761         int err = 0;
762         struct buffer_head *bh;
763         int num;
764         ext4_fsblk_t new_blocks[4];
765         ext4_fsblk_t current_block;
766
767         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768                                 *blks, new_blocks, &err);
769         if (err)
770                 return err;
771
772         branch[0].key = cpu_to_le32(new_blocks[0]);
773         /*
774          * metadata blocks and data blocks are allocated.
775          */
776         for (n = 1; n <= indirect_blks;  n++) {
777                 /*
778                  * Get buffer_head for parent block, zero it out
779                  * and set the pointer to new one, then send
780                  * parent to disk.
781                  */
782                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783                 if (unlikely(!bh)) {
784                         err = -EIO;
785                         goto failed;
786                 }
787
788                 branch[n].bh = bh;
789                 lock_buffer(bh);
790                 BUFFER_TRACE(bh, "call get_create_access");
791                 err = ext4_journal_get_create_access(handle, bh);
792                 if (err) {
793                         /* Don't brelse(bh) here; it's done in
794                          * ext4_journal_forget() below */
795                         unlock_buffer(bh);
796                         goto failed;
797                 }
798
799                 memset(bh->b_data, 0, blocksize);
800                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
801                 branch[n].key = cpu_to_le32(new_blocks[n]);
802                 *branch[n].p = branch[n].key;
803                 if (n == indirect_blks) {
804                         current_block = new_blocks[n];
805                         /*
806                          * End of chain, update the last new metablock of
807                          * the chain to point to the new allocated
808                          * data blocks numbers
809                          */
810                         for (i = 1; i < num; i++)
811                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
812                 }
813                 BUFFER_TRACE(bh, "marking uptodate");
814                 set_buffer_uptodate(bh);
815                 unlock_buffer(bh);
816
817                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818                 err = ext4_handle_dirty_metadata(handle, inode, bh);
819                 if (err)
820                         goto failed;
821         }
822         *blks = num;
823         return err;
824 failed:
825         /* Allocation failed, free what we already allocated */
826         ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827         for (i = 1; i <= n ; i++) {
828                 /*
829                  * branch[i].bh is newly allocated, so there is no
830                  * need to revoke the block, which is why we don't
831                  * need to set EXT4_FREE_BLOCKS_METADATA.
832                  */
833                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834                                  EXT4_FREE_BLOCKS_FORGET);
835         }
836         for (i = n+1; i < indirect_blks; i++)
837                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838
839         ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840
841         return err;
842 }
843
844 /**
845  * ext4_splice_branch - splice the allocated branch onto inode.
846  * @handle: handle for this transaction
847  * @inode: owner
848  * @block: (logical) number of block we are adding
849  * @chain: chain of indirect blocks (with a missing link - see
850  *      ext4_alloc_branch)
851  * @where: location of missing link
852  * @num:   number of indirect blocks we are adding
853  * @blks:  number of direct blocks we are adding
854  *
855  * This function fills the missing link and does all housekeeping needed in
856  * inode (->i_blocks, etc.). In case of success we end up with the full
857  * chain to new block and return 0.
858  */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860                               ext4_lblk_t block, Indirect *where, int num,
861                               int blks)
862 {
863         int i;
864         int err = 0;
865         ext4_fsblk_t current_block;
866
867         /*
868          * If we're splicing into a [td]indirect block (as opposed to the
869          * inode) then we need to get write access to the [td]indirect block
870          * before the splice.
871          */
872         if (where->bh) {
873                 BUFFER_TRACE(where->bh, "get_write_access");
874                 err = ext4_journal_get_write_access(handle, where->bh);
875                 if (err)
876                         goto err_out;
877         }
878         /* That's it */
879
880         *where->p = where->key;
881
882         /*
883          * Update the host buffer_head or inode to point to more just allocated
884          * direct blocks blocks
885          */
886         if (num == 0 && blks > 1) {
887                 current_block = le32_to_cpu(where->key) + 1;
888                 for (i = 1; i < blks; i++)
889                         *(where->p + i) = cpu_to_le32(current_block++);
890         }
891
892         /* We are done with atomic stuff, now do the rest of housekeeping */
893         /* had we spliced it onto indirect block? */
894         if (where->bh) {
895                 /*
896                  * If we spliced it onto an indirect block, we haven't
897                  * altered the inode.  Note however that if it is being spliced
898                  * onto an indirect block at the very end of the file (the
899                  * file is growing) then we *will* alter the inode to reflect
900                  * the new i_size.  But that is not done here - it is done in
901                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902                  */
903                 jbd_debug(5, "splicing indirect only\n");
904                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906                 if (err)
907                         goto err_out;
908         } else {
909                 /*
910                  * OK, we spliced it into the inode itself on a direct block.
911                  */
912                 ext4_mark_inode_dirty(handle, inode);
913                 jbd_debug(5, "splicing direct\n");
914         }
915         return err;
916
917 err_out:
918         for (i = 1; i <= num; i++) {
919                 /*
920                  * branch[i].bh is newly allocated, so there is no
921                  * need to revoke the block, which is why we don't
922                  * need to set EXT4_FREE_BLOCKS_METADATA.
923                  */
924                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925                                  EXT4_FREE_BLOCKS_FORGET);
926         }
927         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928                          blks, 0);
929
930         return err;
931 }
932
933 /*
934  * The ext4_ind_map_blocks() function handles non-extents inodes
935  * (i.e., using the traditional indirect/double-indirect i_blocks
936  * scheme) for ext4_map_blocks().
937  *
938  * Allocation strategy is simple: if we have to allocate something, we will
939  * have to go the whole way to leaf. So let's do it before attaching anything
940  * to tree, set linkage between the newborn blocks, write them if sync is
941  * required, recheck the path, free and repeat if check fails, otherwise
942  * set the last missing link (that will protect us from any truncate-generated
943  * removals - all blocks on the path are immune now) and possibly force the
944  * write on the parent block.
945  * That has a nice additional property: no special recovery from the failed
946  * allocations is needed - we simply release blocks and do not touch anything
947  * reachable from inode.
948  *
949  * `handle' can be NULL if create == 0.
950  *
951  * return > 0, # of blocks mapped or allocated.
952  * return = 0, if plain lookup failed.
953  * return < 0, error case.
954  *
955  * The ext4_ind_get_blocks() function should be called with
956  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959  * blocks.
960  */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962                                struct ext4_map_blocks *map,
963                                int flags)
964 {
965         int err = -EIO;
966         ext4_lblk_t offsets[4];
967         Indirect chain[4];
968         Indirect *partial;
969         ext4_fsblk_t goal;
970         int indirect_blks;
971         int blocks_to_boundary = 0;
972         int depth;
973         int count = 0;
974         ext4_fsblk_t first_block = 0;
975
976         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
977         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
978         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
979                                    &blocks_to_boundary);
980
981         if (depth == 0)
982                 goto out;
983
984         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
985
986         /* Simplest case - block found, no allocation needed */
987         if (!partial) {
988                 first_block = le32_to_cpu(chain[depth - 1].key);
989                 count++;
990                 /*map more blocks*/
991                 while (count < map->m_len && count <= blocks_to_boundary) {
992                         ext4_fsblk_t blk;
993
994                         blk = le32_to_cpu(*(chain[depth-1].p + count));
995
996                         if (blk == first_block + count)
997                                 count++;
998                         else
999                                 break;
1000                 }
1001                 goto got_it;
1002         }
1003
1004         /* Next simple case - plain lookup or failed read of indirect block */
1005         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1006                 goto cleanup;
1007
1008         /*
1009          * Okay, we need to do block allocation.
1010         */
1011         goal = ext4_find_goal(inode, map->m_lblk, partial);
1012
1013         /* the number of blocks need to allocate for [d,t]indirect blocks */
1014         indirect_blks = (chain + depth) - partial - 1;
1015
1016         /*
1017          * Next look up the indirect map to count the totoal number of
1018          * direct blocks to allocate for this branch.
1019          */
1020         count = ext4_blks_to_allocate(partial, indirect_blks,
1021                                       map->m_len, blocks_to_boundary);
1022         /*
1023          * Block out ext4_truncate while we alter the tree
1024          */
1025         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1026                                 &count, goal,
1027                                 offsets + (partial - chain), partial);
1028
1029         /*
1030          * The ext4_splice_branch call will free and forget any buffers
1031          * on the new chain if there is a failure, but that risks using
1032          * up transaction credits, especially for bitmaps where the
1033          * credits cannot be returned.  Can we handle this somehow?  We
1034          * may need to return -EAGAIN upwards in the worst case.  --sct
1035          */
1036         if (!err)
1037                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1038                                          partial, indirect_blks, count);
1039         if (err)
1040                 goto cleanup;
1041
1042         map->m_flags |= EXT4_MAP_NEW;
1043
1044         ext4_update_inode_fsync_trans(handle, inode, 1);
1045 got_it:
1046         map->m_flags |= EXT4_MAP_MAPPED;
1047         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1048         map->m_len = count;
1049         if (count > blocks_to_boundary)
1050                 map->m_flags |= EXT4_MAP_BOUNDARY;
1051         err = count;
1052         /* Clean up and exit */
1053         partial = chain + depth - 1;    /* the whole chain */
1054 cleanup:
1055         while (partial > chain) {
1056                 BUFFER_TRACE(partial->bh, "call brelse");
1057                 brelse(partial->bh);
1058                 partial--;
1059         }
1060 out:
1061         return err;
1062 }
1063
1064 #ifdef CONFIG_QUOTA
1065 qsize_t *ext4_get_reserved_space(struct inode *inode)
1066 {
1067         return &EXT4_I(inode)->i_reserved_quota;
1068 }
1069 #endif
1070
1071 /*
1072  * Calculate the number of metadata blocks need to reserve
1073  * to allocate a new block at @lblocks for non extent file based file
1074  */
1075 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1076                                               sector_t lblock)
1077 {
1078         struct ext4_inode_info *ei = EXT4_I(inode);
1079         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1080         int blk_bits;
1081
1082         if (lblock < EXT4_NDIR_BLOCKS)
1083                 return 0;
1084
1085         lblock -= EXT4_NDIR_BLOCKS;
1086
1087         if (ei->i_da_metadata_calc_len &&
1088             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1089                 ei->i_da_metadata_calc_len++;
1090                 return 0;
1091         }
1092         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1093         ei->i_da_metadata_calc_len = 1;
1094         blk_bits = order_base_2(lblock);
1095         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1096 }
1097
1098 /*
1099  * Calculate the number of metadata blocks need to reserve
1100  * to allocate a block located at @lblock
1101  */
1102 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1103 {
1104         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1105                 return ext4_ext_calc_metadata_amount(inode, lblock);
1106
1107         return ext4_indirect_calc_metadata_amount(inode, lblock);
1108 }
1109
1110 /*
1111  * Called with i_data_sem down, which is important since we can call
1112  * ext4_discard_preallocations() from here.
1113  */
1114 void ext4_da_update_reserve_space(struct inode *inode,
1115                                         int used, int quota_claim)
1116 {
1117         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118         struct ext4_inode_info *ei = EXT4_I(inode);
1119
1120         spin_lock(&ei->i_block_reservation_lock);
1121         trace_ext4_da_update_reserve_space(inode, used);
1122         if (unlikely(used > ei->i_reserved_data_blocks)) {
1123                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1124                          "with only %d reserved data blocks\n",
1125                          __func__, inode->i_ino, used,
1126                          ei->i_reserved_data_blocks);
1127                 WARN_ON(1);
1128                 used = ei->i_reserved_data_blocks;
1129         }
1130
1131         /* Update per-inode reservations */
1132         ei->i_reserved_data_blocks -= used;
1133         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1134         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1135                            used + ei->i_allocated_meta_blocks);
1136         ei->i_allocated_meta_blocks = 0;
1137
1138         if (ei->i_reserved_data_blocks == 0) {
1139                 /*
1140                  * We can release all of the reserved metadata blocks
1141                  * only when we have written all of the delayed
1142                  * allocation blocks.
1143                  */
1144                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1145                                    ei->i_reserved_meta_blocks);
1146                 ei->i_reserved_meta_blocks = 0;
1147                 ei->i_da_metadata_calc_len = 0;
1148         }
1149         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1150
1151         /* Update quota subsystem for data blocks */
1152         if (quota_claim)
1153                 dquot_claim_block(inode, used);
1154         else {
1155                 /*
1156                  * We did fallocate with an offset that is already delayed
1157                  * allocated. So on delayed allocated writeback we should
1158                  * not re-claim the quota for fallocated blocks.
1159                  */
1160                 dquot_release_reservation_block(inode, used);
1161         }
1162
1163         /*
1164          * If we have done all the pending block allocations and if
1165          * there aren't any writers on the inode, we can discard the
1166          * inode's preallocations.
1167          */
1168         if ((ei->i_reserved_data_blocks == 0) &&
1169             (atomic_read(&inode->i_writecount) == 0))
1170                 ext4_discard_preallocations(inode);
1171 }
1172
1173 static int __check_block_validity(struct inode *inode, const char *func,
1174                                 unsigned int line,
1175                                 struct ext4_map_blocks *map)
1176 {
1177         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1178                                    map->m_len)) {
1179                 ext4_error_inode(inode, func, line, map->m_pblk,
1180                                  "lblock %lu mapped to illegal pblock "
1181                                  "(length %d)", (unsigned long) map->m_lblk,
1182                                  map->m_len);
1183                 return -EIO;
1184         }
1185         return 0;
1186 }
1187
1188 #define check_block_validity(inode, map)        \
1189         __check_block_validity((inode), __func__, __LINE__, (map))
1190
1191 /*
1192  * Return the number of contiguous dirty pages in a given inode
1193  * starting at page frame idx.
1194  */
1195 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1196                                     unsigned int max_pages)
1197 {
1198         struct address_space *mapping = inode->i_mapping;
1199         pgoff_t index;
1200         struct pagevec pvec;
1201         pgoff_t num = 0;
1202         int i, nr_pages, done = 0;
1203
1204         if (max_pages == 0)
1205                 return 0;
1206         pagevec_init(&pvec, 0);
1207         while (!done) {
1208                 index = idx;
1209                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1210                                               PAGECACHE_TAG_DIRTY,
1211                                               (pgoff_t)PAGEVEC_SIZE);
1212                 if (nr_pages == 0)
1213                         break;
1214                 for (i = 0; i < nr_pages; i++) {
1215                         struct page *page = pvec.pages[i];
1216                         struct buffer_head *bh, *head;
1217
1218                         lock_page(page);
1219                         if (unlikely(page->mapping != mapping) ||
1220                             !PageDirty(page) ||
1221                             PageWriteback(page) ||
1222                             page->index != idx) {
1223                                 done = 1;
1224                                 unlock_page(page);
1225                                 break;
1226                         }
1227                         if (page_has_buffers(page)) {
1228                                 bh = head = page_buffers(page);
1229                                 do {
1230                                         if (!buffer_delay(bh) &&
1231                                             !buffer_unwritten(bh))
1232                                                 done = 1;
1233                                         bh = bh->b_this_page;
1234                                 } while (!done && (bh != head));
1235                         }
1236                         unlock_page(page);
1237                         if (done)
1238                                 break;
1239                         idx++;
1240                         num++;
1241                         if (num >= max_pages) {
1242                                 done = 1;
1243                                 break;
1244                         }
1245                 }
1246                 pagevec_release(&pvec);
1247         }
1248         return num;
1249 }
1250
1251 /*
1252  * The ext4_map_blocks() function tries to look up the requested blocks,
1253  * and returns if the blocks are already mapped.
1254  *
1255  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1256  * and store the allocated blocks in the result buffer head and mark it
1257  * mapped.
1258  *
1259  * If file type is extents based, it will call ext4_ext_map_blocks(),
1260  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1261  * based files
1262  *
1263  * On success, it returns the number of blocks being mapped or allocate.
1264  * if create==0 and the blocks are pre-allocated and uninitialized block,
1265  * the result buffer head is unmapped. If the create ==1, it will make sure
1266  * the buffer head is mapped.
1267  *
1268  * It returns 0 if plain look up failed (blocks have not been allocated), in
1269  * that casem, buffer head is unmapped
1270  *
1271  * It returns the error in case of allocation failure.
1272  */
1273 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1274                     struct ext4_map_blocks *map, int flags)
1275 {
1276         int retval;
1277
1278         map->m_flags = 0;
1279         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1280                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1281                   (unsigned long) map->m_lblk);
1282         /*
1283          * Try to see if we can get the block without requesting a new
1284          * file system block.
1285          */
1286         down_read((&EXT4_I(inode)->i_data_sem));
1287         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1288                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1289         } else {
1290                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1291         }
1292         up_read((&EXT4_I(inode)->i_data_sem));
1293
1294         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1295                 int ret = check_block_validity(inode, map);
1296                 if (ret != 0)
1297                         return ret;
1298         }
1299
1300         /* If it is only a block(s) look up */
1301         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1302                 return retval;
1303
1304         /*
1305          * Returns if the blocks have already allocated
1306          *
1307          * Note that if blocks have been preallocated
1308          * ext4_ext_get_block() returns th create = 0
1309          * with buffer head unmapped.
1310          */
1311         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1312                 return retval;
1313
1314         /*
1315          * When we call get_blocks without the create flag, the
1316          * BH_Unwritten flag could have gotten set if the blocks
1317          * requested were part of a uninitialized extent.  We need to
1318          * clear this flag now that we are committed to convert all or
1319          * part of the uninitialized extent to be an initialized
1320          * extent.  This is because we need to avoid the combination
1321          * of BH_Unwritten and BH_Mapped flags being simultaneously
1322          * set on the buffer_head.
1323          */
1324         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1325
1326         /*
1327          * New blocks allocate and/or writing to uninitialized extent
1328          * will possibly result in updating i_data, so we take
1329          * the write lock of i_data_sem, and call get_blocks()
1330          * with create == 1 flag.
1331          */
1332         down_write((&EXT4_I(inode)->i_data_sem));
1333
1334         /*
1335          * if the caller is from delayed allocation writeout path
1336          * we have already reserved fs blocks for allocation
1337          * let the underlying get_block() function know to
1338          * avoid double accounting
1339          */
1340         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1342         /*
1343          * We need to check for EXT4 here because migrate
1344          * could have changed the inode type in between
1345          */
1346         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1347                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1348         } else {
1349                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1350
1351                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1352                         /*
1353                          * We allocated new blocks which will result in
1354                          * i_data's format changing.  Force the migrate
1355                          * to fail by clearing migrate flags
1356                          */
1357                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1358                 }
1359
1360                 /*
1361                  * Update reserved blocks/metadata blocks after successful
1362                  * block allocation which had been deferred till now. We don't
1363                  * support fallocate for non extent files. So we can update
1364                  * reserve space here.
1365                  */
1366                 if ((retval > 0) &&
1367                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1368                         ext4_da_update_reserve_space(inode, retval, 1);
1369         }
1370         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1371                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1372
1373         up_write((&EXT4_I(inode)->i_data_sem));
1374         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1375                 int ret = check_block_validity(inode, map);
1376                 if (ret != 0)
1377                         return ret;
1378         }
1379         return retval;
1380 }
1381
1382 /* Maximum number of blocks we map for direct IO at once. */
1383 #define DIO_MAX_BLOCKS 4096
1384
1385 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1386                            struct buffer_head *bh, int flags)
1387 {
1388         handle_t *handle = ext4_journal_current_handle();
1389         struct ext4_map_blocks map;
1390         int ret = 0, started = 0;
1391         int dio_credits;
1392
1393         map.m_lblk = iblock;
1394         map.m_len = bh->b_size >> inode->i_blkbits;
1395
1396         if (flags && !handle) {
1397                 /* Direct IO write... */
1398                 if (map.m_len > DIO_MAX_BLOCKS)
1399                         map.m_len = DIO_MAX_BLOCKS;
1400                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1401                 handle = ext4_journal_start(inode, dio_credits);
1402                 if (IS_ERR(handle)) {
1403                         ret = PTR_ERR(handle);
1404                         return ret;
1405                 }
1406                 started = 1;
1407         }
1408
1409         ret = ext4_map_blocks(handle, inode, &map, flags);
1410         if (ret > 0) {
1411                 map_bh(bh, inode->i_sb, map.m_pblk);
1412                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1413                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1414                 ret = 0;
1415         }
1416         if (started)
1417                 ext4_journal_stop(handle);
1418         return ret;
1419 }
1420
1421 int ext4_get_block(struct inode *inode, sector_t iblock,
1422                    struct buffer_head *bh, int create)
1423 {
1424         return _ext4_get_block(inode, iblock, bh,
1425                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1426 }
1427
1428 /*
1429  * `handle' can be NULL if create is zero
1430  */
1431 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1432                                 ext4_lblk_t block, int create, int *errp)
1433 {
1434         struct ext4_map_blocks map;
1435         struct buffer_head *bh;
1436         int fatal = 0, err;
1437
1438         J_ASSERT(handle != NULL || create == 0);
1439
1440         map.m_lblk = block;
1441         map.m_len = 1;
1442         err = ext4_map_blocks(handle, inode, &map,
1443                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1444
1445         if (err < 0)
1446                 *errp = err;
1447         if (err <= 0)
1448                 return NULL;
1449         *errp = 0;
1450
1451         bh = sb_getblk(inode->i_sb, map.m_pblk);
1452         if (!bh) {
1453                 *errp = -EIO;
1454                 return NULL;
1455         }
1456         if (map.m_flags & EXT4_MAP_NEW) {
1457                 J_ASSERT(create != 0);
1458                 J_ASSERT(handle != NULL);
1459
1460                 /*
1461                  * Now that we do not always journal data, we should
1462                  * keep in mind whether this should always journal the
1463                  * new buffer as metadata.  For now, regular file
1464                  * writes use ext4_get_block instead, so it's not a
1465                  * problem.
1466                  */
1467                 lock_buffer(bh);
1468                 BUFFER_TRACE(bh, "call get_create_access");
1469                 fatal = ext4_journal_get_create_access(handle, bh);
1470                 if (!fatal && !buffer_uptodate(bh)) {
1471                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1472                         set_buffer_uptodate(bh);
1473                 }
1474                 unlock_buffer(bh);
1475                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1476                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1477                 if (!fatal)
1478                         fatal = err;
1479         } else {
1480                 BUFFER_TRACE(bh, "not a new buffer");
1481         }
1482         if (fatal) {
1483                 *errp = fatal;
1484                 brelse(bh);
1485                 bh = NULL;
1486         }
1487         return bh;
1488 }
1489
1490 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1491                                ext4_lblk_t block, int create, int *err)
1492 {
1493         struct buffer_head *bh;
1494
1495         bh = ext4_getblk(handle, inode, block, create, err);
1496         if (!bh)
1497                 return bh;
1498         if (buffer_uptodate(bh))
1499                 return bh;
1500         ll_rw_block(READ_META, 1, &bh);
1501         wait_on_buffer(bh);
1502         if (buffer_uptodate(bh))
1503                 return bh;
1504         put_bh(bh);
1505         *err = -EIO;
1506         return NULL;
1507 }
1508
1509 static int walk_page_buffers(handle_t *handle,
1510                              struct buffer_head *head,
1511                              unsigned from,
1512                              unsigned to,
1513                              int *partial,
1514                              int (*fn)(handle_t *handle,
1515                                        struct buffer_head *bh))
1516 {
1517         struct buffer_head *bh;
1518         unsigned block_start, block_end;
1519         unsigned blocksize = head->b_size;
1520         int err, ret = 0;
1521         struct buffer_head *next;
1522
1523         for (bh = head, block_start = 0;
1524              ret == 0 && (bh != head || !block_start);
1525              block_start = block_end, bh = next) {
1526                 next = bh->b_this_page;
1527                 block_end = block_start + blocksize;
1528                 if (block_end <= from || block_start >= to) {
1529                         if (partial && !buffer_uptodate(bh))
1530                                 *partial = 1;
1531                         continue;
1532                 }
1533                 err = (*fn)(handle, bh);
1534                 if (!ret)
1535                         ret = err;
1536         }
1537         return ret;
1538 }
1539
1540 /*
1541  * To preserve ordering, it is essential that the hole instantiation and
1542  * the data write be encapsulated in a single transaction.  We cannot
1543  * close off a transaction and start a new one between the ext4_get_block()
1544  * and the commit_write().  So doing the jbd2_journal_start at the start of
1545  * prepare_write() is the right place.
1546  *
1547  * Also, this function can nest inside ext4_writepage() ->
1548  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1549  * has generated enough buffer credits to do the whole page.  So we won't
1550  * block on the journal in that case, which is good, because the caller may
1551  * be PF_MEMALLOC.
1552  *
1553  * By accident, ext4 can be reentered when a transaction is open via
1554  * quota file writes.  If we were to commit the transaction while thus
1555  * reentered, there can be a deadlock - we would be holding a quota
1556  * lock, and the commit would never complete if another thread had a
1557  * transaction open and was blocking on the quota lock - a ranking
1558  * violation.
1559  *
1560  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1561  * will _not_ run commit under these circumstances because handle->h_ref
1562  * is elevated.  We'll still have enough credits for the tiny quotafile
1563  * write.
1564  */
1565 static int do_journal_get_write_access(handle_t *handle,
1566                                        struct buffer_head *bh)
1567 {
1568         int dirty = buffer_dirty(bh);
1569         int ret;
1570
1571         if (!buffer_mapped(bh) || buffer_freed(bh))
1572                 return 0;
1573         /*
1574          * __block_write_begin() could have dirtied some buffers. Clean
1575          * the dirty bit as jbd2_journal_get_write_access() could complain
1576          * otherwise about fs integrity issues. Setting of the dirty bit
1577          * by __block_write_begin() isn't a real problem here as we clear
1578          * the bit before releasing a page lock and thus writeback cannot
1579          * ever write the buffer.
1580          */
1581         if (dirty)
1582                 clear_buffer_dirty(bh);
1583         ret = ext4_journal_get_write_access(handle, bh);
1584         if (!ret && dirty)
1585                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1586         return ret;
1587 }
1588
1589 /*
1590  * Truncate blocks that were not used by write. We have to truncate the
1591  * pagecache as well so that corresponding buffers get properly unmapped.
1592  */
1593 static void ext4_truncate_failed_write(struct inode *inode)
1594 {
1595         truncate_inode_pages(inode->i_mapping, inode->i_size);
1596         ext4_truncate(inode);
1597 }
1598
1599 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1600                    struct buffer_head *bh_result, int create);
1601 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1602                             loff_t pos, unsigned len, unsigned flags,
1603                             struct page **pagep, void **fsdata)
1604 {
1605         struct inode *inode = mapping->host;
1606         int ret, needed_blocks;
1607         handle_t *handle;
1608         int retries = 0;
1609         struct page *page;
1610         pgoff_t index;
1611         unsigned from, to;
1612
1613         trace_ext4_write_begin(inode, pos, len, flags);
1614         /*
1615          * Reserve one block more for addition to orphan list in case
1616          * we allocate blocks but write fails for some reason
1617          */
1618         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1619         index = pos >> PAGE_CACHE_SHIFT;
1620         from = pos & (PAGE_CACHE_SIZE - 1);
1621         to = from + len;
1622
1623 retry:
1624         handle = ext4_journal_start(inode, needed_blocks);
1625         if (IS_ERR(handle)) {
1626                 ret = PTR_ERR(handle);
1627                 goto out;
1628         }
1629
1630         /* We cannot recurse into the filesystem as the transaction is already
1631          * started */
1632         flags |= AOP_FLAG_NOFS;
1633
1634         page = grab_cache_page_write_begin(mapping, index, flags);
1635         if (!page) {
1636                 ext4_journal_stop(handle);
1637                 ret = -ENOMEM;
1638                 goto out;
1639         }
1640         *pagep = page;
1641
1642         if (ext4_should_dioread_nolock(inode))
1643                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1644         else
1645                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1646
1647         if (!ret && ext4_should_journal_data(inode)) {
1648                 ret = walk_page_buffers(handle, page_buffers(page),
1649                                 from, to, NULL, do_journal_get_write_access);
1650         }
1651
1652         if (ret) {
1653                 unlock_page(page);
1654                 page_cache_release(page);
1655                 /*
1656                  * __block_write_begin may have instantiated a few blocks
1657                  * outside i_size.  Trim these off again. Don't need
1658                  * i_size_read because we hold i_mutex.
1659                  *
1660                  * Add inode to orphan list in case we crash before
1661                  * truncate finishes
1662                  */
1663                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1664                         ext4_orphan_add(handle, inode);
1665
1666                 ext4_journal_stop(handle);
1667                 if (pos + len > inode->i_size) {
1668                         ext4_truncate_failed_write(inode);
1669                         /*
1670                          * If truncate failed early the inode might
1671                          * still be on the orphan list; we need to
1672                          * make sure the inode is removed from the
1673                          * orphan list in that case.
1674                          */
1675                         if (inode->i_nlink)
1676                                 ext4_orphan_del(NULL, inode);
1677                 }
1678         }
1679
1680         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1681                 goto retry;
1682 out:
1683         return ret;
1684 }
1685
1686 /* For write_end() in data=journal mode */
1687 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1688 {
1689         if (!buffer_mapped(bh) || buffer_freed(bh))
1690                 return 0;
1691         set_buffer_uptodate(bh);
1692         return ext4_handle_dirty_metadata(handle, NULL, bh);
1693 }
1694
1695 static int ext4_generic_write_end(struct file *file,
1696                                   struct address_space *mapping,
1697                                   loff_t pos, unsigned len, unsigned copied,
1698                                   struct page *page, void *fsdata)
1699 {
1700         int i_size_changed = 0;
1701         struct inode *inode = mapping->host;
1702         handle_t *handle = ext4_journal_current_handle();
1703
1704         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1705
1706         /*
1707          * No need to use i_size_read() here, the i_size
1708          * cannot change under us because we hold i_mutex.
1709          *
1710          * But it's important to update i_size while still holding page lock:
1711          * page writeout could otherwise come in and zero beyond i_size.
1712          */
1713         if (pos + copied > inode->i_size) {
1714                 i_size_write(inode, pos + copied);
1715                 i_size_changed = 1;
1716         }
1717
1718         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1719                 /* We need to mark inode dirty even if
1720                  * new_i_size is less that inode->i_size
1721                  * bu greater than i_disksize.(hint delalloc)
1722                  */
1723                 ext4_update_i_disksize(inode, (pos + copied));
1724                 i_size_changed = 1;
1725         }
1726         unlock_page(page);
1727         page_cache_release(page);
1728
1729         /*
1730          * Don't mark the inode dirty under page lock. First, it unnecessarily
1731          * makes the holding time of page lock longer. Second, it forces lock
1732          * ordering of page lock and transaction start for journaling
1733          * filesystems.
1734          */
1735         if (i_size_changed)
1736                 ext4_mark_inode_dirty(handle, inode);
1737
1738         return copied;
1739 }
1740
1741 /*
1742  * We need to pick up the new inode size which generic_commit_write gave us
1743  * `file' can be NULL - eg, when called from page_symlink().
1744  *
1745  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1746  * buffers are managed internally.
1747  */
1748 static int ext4_ordered_write_end(struct file *file,
1749                                   struct address_space *mapping,
1750                                   loff_t pos, unsigned len, unsigned copied,
1751                                   struct page *page, void *fsdata)
1752 {
1753         handle_t *handle = ext4_journal_current_handle();
1754         struct inode *inode = mapping->host;
1755         int ret = 0, ret2;
1756
1757         trace_ext4_ordered_write_end(inode, pos, len, copied);
1758         ret = ext4_jbd2_file_inode(handle, inode);
1759
1760         if (ret == 0) {
1761                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1762                                                         page, fsdata);
1763                 copied = ret2;
1764                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765                         /* if we have allocated more blocks and copied
1766                          * less. We will have blocks allocated outside
1767                          * inode->i_size. So truncate them
1768                          */
1769                         ext4_orphan_add(handle, inode);
1770                 if (ret2 < 0)
1771                         ret = ret2;
1772         }
1773         ret2 = ext4_journal_stop(handle);
1774         if (!ret)
1775                 ret = ret2;
1776
1777         if (pos + len > inode->i_size) {
1778                 ext4_truncate_failed_write(inode);
1779                 /*
1780                  * If truncate failed early the inode might still be
1781                  * on the orphan list; we need to make sure the inode
1782                  * is removed from the orphan list in that case.
1783                  */
1784                 if (inode->i_nlink)
1785                         ext4_orphan_del(NULL, inode);
1786         }
1787
1788
1789         return ret ? ret : copied;
1790 }
1791
1792 static int ext4_writeback_write_end(struct file *file,
1793                                     struct address_space *mapping,
1794                                     loff_t pos, unsigned len, unsigned copied,
1795                                     struct page *page, void *fsdata)
1796 {
1797         handle_t *handle = ext4_journal_current_handle();
1798         struct inode *inode = mapping->host;
1799         int ret = 0, ret2;
1800
1801         trace_ext4_writeback_write_end(inode, pos, len, copied);
1802         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1803                                                         page, fsdata);
1804         copied = ret2;
1805         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806                 /* if we have allocated more blocks and copied
1807                  * less. We will have blocks allocated outside
1808                  * inode->i_size. So truncate them
1809                  */
1810                 ext4_orphan_add(handle, inode);
1811
1812         if (ret2 < 0)
1813                 ret = ret2;
1814
1815         ret2 = ext4_journal_stop(handle);
1816         if (!ret)
1817                 ret = ret2;
1818
1819         if (pos + len > inode->i_size) {
1820                 ext4_truncate_failed_write(inode);
1821                 /*
1822                  * If truncate failed early the inode might still be
1823                  * on the orphan list; we need to make sure the inode
1824                  * is removed from the orphan list in that case.
1825                  */
1826                 if (inode->i_nlink)
1827                         ext4_orphan_del(NULL, inode);
1828         }
1829
1830         return ret ? ret : copied;
1831 }
1832
1833 static int ext4_journalled_write_end(struct file *file,
1834                                      struct address_space *mapping,
1835                                      loff_t pos, unsigned len, unsigned copied,
1836                                      struct page *page, void *fsdata)
1837 {
1838         handle_t *handle = ext4_journal_current_handle();
1839         struct inode *inode = mapping->host;
1840         int ret = 0, ret2;
1841         int partial = 0;
1842         unsigned from, to;
1843         loff_t new_i_size;
1844
1845         trace_ext4_journalled_write_end(inode, pos, len, copied);
1846         from = pos & (PAGE_CACHE_SIZE - 1);
1847         to = from + len;
1848
1849         if (copied < len) {
1850                 if (!PageUptodate(page))
1851                         copied = 0;
1852                 page_zero_new_buffers(page, from+copied, to);
1853         }
1854
1855         ret = walk_page_buffers(handle, page_buffers(page), from,
1856                                 to, &partial, write_end_fn);
1857         if (!partial)
1858                 SetPageUptodate(page);
1859         new_i_size = pos + copied;
1860         if (new_i_size > inode->i_size)
1861                 i_size_write(inode, pos+copied);
1862         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1863         if (new_i_size > EXT4_I(inode)->i_disksize) {
1864                 ext4_update_i_disksize(inode, new_i_size);
1865                 ret2 = ext4_mark_inode_dirty(handle, inode);
1866                 if (!ret)
1867                         ret = ret2;
1868         }
1869
1870         unlock_page(page);
1871         page_cache_release(page);
1872         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1873                 /* if we have allocated more blocks and copied
1874                  * less. We will have blocks allocated outside
1875                  * inode->i_size. So truncate them
1876                  */
1877                 ext4_orphan_add(handle, inode);
1878
1879         ret2 = ext4_journal_stop(handle);
1880         if (!ret)
1881                 ret = ret2;
1882         if (pos + len > inode->i_size) {
1883                 ext4_truncate_failed_write(inode);
1884                 /*
1885                  * If truncate failed early the inode might still be
1886                  * on the orphan list; we need to make sure the inode
1887                  * is removed from the orphan list in that case.
1888                  */
1889                 if (inode->i_nlink)
1890                         ext4_orphan_del(NULL, inode);
1891         }
1892
1893         return ret ? ret : copied;
1894 }
1895
1896 /*
1897  * Reserve a single block located at lblock
1898  */
1899 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1900 {
1901         int retries = 0;
1902         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1903         struct ext4_inode_info *ei = EXT4_I(inode);
1904         unsigned long md_needed;
1905         int ret;
1906
1907         /*
1908          * recalculate the amount of metadata blocks to reserve
1909          * in order to allocate nrblocks
1910          * worse case is one extent per block
1911          */
1912 repeat:
1913         spin_lock(&ei->i_block_reservation_lock);
1914         md_needed = ext4_calc_metadata_amount(inode, lblock);
1915         trace_ext4_da_reserve_space(inode, md_needed);
1916         spin_unlock(&ei->i_block_reservation_lock);
1917
1918         /*
1919          * We will charge metadata quota at writeout time; this saves
1920          * us from metadata over-estimation, though we may go over by
1921          * a small amount in the end.  Here we just reserve for data.
1922          */
1923         ret = dquot_reserve_block(inode, 1);
1924         if (ret)
1925                 return ret;
1926         /*
1927          * We do still charge estimated metadata to the sb though;
1928          * we cannot afford to run out of free blocks.
1929          */
1930         if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1931                 dquot_release_reservation_block(inode, 1);
1932                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1933                         yield();
1934                         goto repeat;
1935                 }
1936                 return -ENOSPC;
1937         }
1938         spin_lock(&ei->i_block_reservation_lock);
1939         ei->i_reserved_data_blocks++;
1940         ei->i_reserved_meta_blocks += md_needed;
1941         spin_unlock(&ei->i_block_reservation_lock);
1942
1943         return 0;       /* success */
1944 }
1945
1946 static void ext4_da_release_space(struct inode *inode, int to_free)
1947 {
1948         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949         struct ext4_inode_info *ei = EXT4_I(inode);
1950
1951         if (!to_free)
1952                 return;         /* Nothing to release, exit */
1953
1954         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955
1956         trace_ext4_da_release_space(inode, to_free);
1957         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1958                 /*
1959                  * if there aren't enough reserved blocks, then the
1960                  * counter is messed up somewhere.  Since this
1961                  * function is called from invalidate page, it's
1962                  * harmless to return without any action.
1963                  */
1964                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1965                          "ino %lu, to_free %d with only %d reserved "
1966                          "data blocks\n", inode->i_ino, to_free,
1967                          ei->i_reserved_data_blocks);
1968                 WARN_ON(1);
1969                 to_free = ei->i_reserved_data_blocks;
1970         }
1971         ei->i_reserved_data_blocks -= to_free;
1972
1973         if (ei->i_reserved_data_blocks == 0) {
1974                 /*
1975                  * We can release all of the reserved metadata blocks
1976                  * only when we have written all of the delayed
1977                  * allocation blocks.
1978                  */
1979                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1980                                    ei->i_reserved_meta_blocks);
1981                 ei->i_reserved_meta_blocks = 0;
1982                 ei->i_da_metadata_calc_len = 0;
1983         }
1984
1985         /* update fs dirty data blocks counter */
1986         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1987
1988         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1989
1990         dquot_release_reservation_block(inode, to_free);
1991 }
1992
1993 static void ext4_da_page_release_reservation(struct page *page,
1994                                              unsigned long offset)
1995 {
1996         int to_release = 0;
1997         struct buffer_head *head, *bh;
1998         unsigned int curr_off = 0;
1999
2000         head = page_buffers(page);
2001         bh = head;
2002         do {
2003                 unsigned int next_off = curr_off + bh->b_size;
2004
2005                 if ((offset <= curr_off) && (buffer_delay(bh))) {
2006                         to_release++;
2007                         clear_buffer_delay(bh);
2008                 }
2009                 curr_off = next_off;
2010         } while ((bh = bh->b_this_page) != head);
2011         ext4_da_release_space(page->mapping->host, to_release);
2012 }
2013
2014 /*
2015  * Delayed allocation stuff
2016  */
2017
2018 /*
2019  * mpage_da_submit_io - walks through extent of pages and try to write
2020  * them with writepage() call back
2021  *
2022  * @mpd->inode: inode
2023  * @mpd->first_page: first page of the extent
2024  * @mpd->next_page: page after the last page of the extent
2025  *
2026  * By the time mpage_da_submit_io() is called we expect all blocks
2027  * to be allocated. this may be wrong if allocation failed.
2028  *
2029  * As pages are already locked by write_cache_pages(), we can't use it
2030  */
2031 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2032                               struct ext4_map_blocks *map)
2033 {
2034         struct pagevec pvec;
2035         unsigned long index, end;
2036         int ret = 0, err, nr_pages, i;
2037         struct inode *inode = mpd->inode;
2038         struct address_space *mapping = inode->i_mapping;
2039         loff_t size = i_size_read(inode);
2040         unsigned int len, block_start;
2041         struct buffer_head *bh, *page_bufs = NULL;
2042         int journal_data = ext4_should_journal_data(inode);
2043         sector_t pblock = 0, cur_logical = 0;
2044         struct ext4_io_submit io_submit;
2045
2046         BUG_ON(mpd->next_page <= mpd->first_page);
2047         memset(&io_submit, 0, sizeof(io_submit));
2048         /*
2049          * We need to start from the first_page to the next_page - 1
2050          * to make sure we also write the mapped dirty buffer_heads.
2051          * If we look at mpd->b_blocknr we would only be looking
2052          * at the currently mapped buffer_heads.
2053          */
2054         index = mpd->first_page;
2055         end = mpd->next_page - 1;
2056
2057         pagevec_init(&pvec, 0);
2058         while (index <= end) {
2059                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060                 if (nr_pages == 0)
2061                         break;
2062                 for (i = 0; i < nr_pages; i++) {
2063                         int commit_write = 0, skip_page = 0;
2064                         struct page *page = pvec.pages[i];
2065
2066                         index = page->index;
2067                         if (index > end)
2068                                 break;
2069
2070                         if (index == size >> PAGE_CACHE_SHIFT)
2071                                 len = size & ~PAGE_CACHE_MASK;
2072                         else
2073                                 len = PAGE_CACHE_SIZE;
2074                         if (map) {
2075                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2076                                                         inode->i_blkbits);
2077                                 pblock = map->m_pblk + (cur_logical -
2078                                                         map->m_lblk);
2079                         }
2080                         index++;
2081
2082                         BUG_ON(!PageLocked(page));
2083                         BUG_ON(PageWriteback(page));
2084
2085                         /*
2086                          * If the page does not have buffers (for
2087                          * whatever reason), try to create them using
2088                          * __block_write_begin.  If this fails,
2089                          * skip the page and move on.
2090                          */
2091                         if (!page_has_buffers(page)) {
2092                                 if (__block_write_begin(page, 0, len,
2093                                                 noalloc_get_block_write)) {
2094                                 skip_page:
2095                                         unlock_page(page);
2096                                         continue;
2097                                 }
2098                                 commit_write = 1;
2099                         }
2100
2101                         bh = page_bufs = page_buffers(page);
2102                         block_start = 0;
2103                         do {
2104                                 if (!bh)
2105                                         goto skip_page;
2106                                 if (map && (cur_logical >= map->m_lblk) &&
2107                                     (cur_logical <= (map->m_lblk +
2108                                                      (map->m_len - 1)))) {
2109                                         if (buffer_delay(bh)) {
2110                                                 clear_buffer_delay(bh);
2111                                                 bh->b_blocknr = pblock;
2112                                         }
2113                                         if (buffer_unwritten(bh) ||
2114                                             buffer_mapped(bh))
2115                                                 BUG_ON(bh->b_blocknr != pblock);
2116                                         if (map->m_flags & EXT4_MAP_UNINIT)
2117                                                 set_buffer_uninit(bh);
2118                                         clear_buffer_unwritten(bh);
2119                                 }
2120
2121                                 /* skip page if block allocation undone */
2122                                 if (buffer_delay(bh) || buffer_unwritten(bh))
2123                                         skip_page = 1;
2124                                 bh = bh->b_this_page;
2125                                 block_start += bh->b_size;
2126                                 cur_logical++;
2127                                 pblock++;
2128                         } while (bh != page_bufs);
2129
2130                         if (skip_page)
2131                                 goto skip_page;
2132
2133                         if (commit_write)
2134                                 /* mark the buffer_heads as dirty & uptodate */
2135                                 block_commit_write(page, 0, len);
2136
2137                         clear_page_dirty_for_io(page);
2138                         /*
2139                          * Delalloc doesn't support data journalling,
2140                          * but eventually maybe we'll lift this
2141                          * restriction.
2142                          */
2143                         if (unlikely(journal_data && PageChecked(page)))
2144                                 err = __ext4_journalled_writepage(page, len);
2145                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2146                                 err = ext4_bio_write_page(&io_submit, page,
2147                                                           len, mpd->wbc);
2148                         else
2149                                 err = block_write_full_page(page,
2150                                         noalloc_get_block_write, mpd->wbc);
2151
2152                         if (!err)
2153                                 mpd->pages_written++;
2154                         /*
2155                          * In error case, we have to continue because
2156                          * remaining pages are still locked
2157                          */
2158                         if (ret == 0)
2159                                 ret = err;
2160                 }
2161                 pagevec_release(&pvec);
2162         }
2163         ext4_io_submit(&io_submit);
2164         return ret;
2165 }
2166
2167 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2168 {
2169         int nr_pages, i;
2170         pgoff_t index, end;
2171         struct pagevec pvec;
2172         struct inode *inode = mpd->inode;
2173         struct address_space *mapping = inode->i_mapping;
2174
2175         index = mpd->first_page;
2176         end   = mpd->next_page - 1;
2177         while (index <= end) {
2178                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2179                 if (nr_pages == 0)
2180                         break;
2181                 for (i = 0; i < nr_pages; i++) {
2182                         struct page *page = pvec.pages[i];
2183                         if (page->index > end)
2184                                 break;
2185                         BUG_ON(!PageLocked(page));
2186                         BUG_ON(PageWriteback(page));
2187                         block_invalidatepage(page, 0);
2188                         ClearPageUptodate(page);
2189                         unlock_page(page);
2190                 }
2191                 index = pvec.pages[nr_pages - 1]->index + 1;
2192                 pagevec_release(&pvec);
2193         }
2194         return;
2195 }
2196
2197 static void ext4_print_free_blocks(struct inode *inode)
2198 {
2199         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2200         printk(KERN_CRIT "Total free blocks count %lld\n",
2201                ext4_count_free_blocks(inode->i_sb));
2202         printk(KERN_CRIT "Free/Dirty block details\n");
2203         printk(KERN_CRIT "free_blocks=%lld\n",
2204                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2205         printk(KERN_CRIT "dirty_blocks=%lld\n",
2206                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2207         printk(KERN_CRIT "Block reservation details\n");
2208         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2209                EXT4_I(inode)->i_reserved_data_blocks);
2210         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2211                EXT4_I(inode)->i_reserved_meta_blocks);
2212         return;
2213 }
2214
2215 /*
2216  * mpage_da_map_and_submit - go through given space, map them
2217  *       if necessary, and then submit them for I/O
2218  *
2219  * @mpd - bh describing space
2220  *
2221  * The function skips space we know is already mapped to disk blocks.
2222  *
2223  */
2224 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2225 {
2226         int err, blks, get_blocks_flags;
2227         struct ext4_map_blocks map, *mapp = NULL;
2228         sector_t next = mpd->b_blocknr;
2229         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2230         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2231         handle_t *handle = NULL;
2232
2233         /*
2234          * If the blocks are mapped already, or we couldn't accumulate
2235          * any blocks, then proceed immediately to the submission stage.
2236          */
2237         if ((mpd->b_size == 0) ||
2238             ((mpd->b_state  & (1 << BH_Mapped)) &&
2239              !(mpd->b_state & (1 << BH_Delay)) &&
2240              !(mpd->b_state & (1 << BH_Unwritten))))
2241                 goto submit_io;
2242
2243         handle = ext4_journal_current_handle();
2244         BUG_ON(!handle);
2245
2246         /*
2247          * Call ext4_map_blocks() to allocate any delayed allocation
2248          * blocks, or to convert an uninitialized extent to be
2249          * initialized (in the case where we have written into
2250          * one or more preallocated blocks).
2251          *
2252          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2253          * indicate that we are on the delayed allocation path.  This
2254          * affects functions in many different parts of the allocation
2255          * call path.  This flag exists primarily because we don't
2256          * want to change *many* call functions, so ext4_map_blocks()
2257          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2258          * inode's allocation semaphore is taken.
2259          *
2260          * If the blocks in questions were delalloc blocks, set
2261          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2262          * variables are updated after the blocks have been allocated.
2263          */
2264         map.m_lblk = next;
2265         map.m_len = max_blocks;
2266         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2267         if (ext4_should_dioread_nolock(mpd->inode))
2268                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2269         if (mpd->b_state & (1 << BH_Delay))
2270                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2271
2272         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2273         if (blks < 0) {
2274                 struct super_block *sb = mpd->inode->i_sb;
2275
2276                 err = blks;
2277                 /*
2278                  * If get block returns EAGAIN or ENOSPC and there
2279                  * appears to be free blocks we will just let
2280                  * mpage_da_submit_io() unlock all of the pages.
2281                  */
2282                 if (err == -EAGAIN)
2283                         goto submit_io;
2284
2285                 if (err == -ENOSPC &&
2286                     ext4_count_free_blocks(sb)) {
2287                         mpd->retval = err;
2288                         goto submit_io;
2289                 }
2290
2291                 /*
2292                  * get block failure will cause us to loop in
2293                  * writepages, because a_ops->writepage won't be able
2294                  * to make progress. The page will be redirtied by
2295                  * writepage and writepages will again try to write
2296                  * the same.
2297                  */
2298                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2299                         ext4_msg(sb, KERN_CRIT,
2300                                  "delayed block allocation failed for inode %lu "
2301                                  "at logical offset %llu with max blocks %zd "
2302                                  "with error %d", mpd->inode->i_ino,
2303                                  (unsigned long long) next,
2304                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2305                         ext4_msg(sb, KERN_CRIT,
2306                                 "This should not happen!! Data will be lost\n");
2307                         if (err == -ENOSPC)
2308                                 ext4_print_free_blocks(mpd->inode);
2309                 }
2310                 /* invalidate all the pages */
2311                 ext4_da_block_invalidatepages(mpd);
2312
2313                 /* Mark this page range as having been completed */
2314                 mpd->io_done = 1;
2315                 return;
2316         }
2317         BUG_ON(blks == 0);
2318
2319         mapp = &map;
2320         if (map.m_flags & EXT4_MAP_NEW) {
2321                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2322                 int i;
2323
2324                 for (i = 0; i < map.m_len; i++)
2325                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2326         }
2327
2328         if (ext4_should_order_data(mpd->inode)) {
2329                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2330                 if (err)
2331                         /* This only happens if the journal is aborted */
2332                         return;
2333         }
2334
2335         /*
2336          * Update on-disk size along with block allocation.
2337          */
2338         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2339         if (disksize > i_size_read(mpd->inode))
2340                 disksize = i_size_read(mpd->inode);
2341         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2342                 ext4_update_i_disksize(mpd->inode, disksize);
2343                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2344                 if (err)
2345                         ext4_error(mpd->inode->i_sb,
2346                                    "Failed to mark inode %lu dirty",
2347                                    mpd->inode->i_ino);
2348         }
2349
2350 submit_io:
2351         mpage_da_submit_io(mpd, mapp);
2352         mpd->io_done = 1;
2353 }
2354
2355 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2356                 (1 << BH_Delay) | (1 << BH_Unwritten))
2357
2358 /*
2359  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2360  *
2361  * @mpd->lbh - extent of blocks
2362  * @logical - logical number of the block in the file
2363  * @bh - bh of the block (used to access block's state)
2364  *
2365  * the function is used to collect contig. blocks in same state
2366  */
2367 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2368                                    sector_t logical, size_t b_size,
2369                                    unsigned long b_state)
2370 {
2371         sector_t next;
2372         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2373
2374         /*
2375          * XXX Don't go larger than mballoc is willing to allocate
2376          * This is a stopgap solution.  We eventually need to fold
2377          * mpage_da_submit_io() into this function and then call
2378          * ext4_map_blocks() multiple times in a loop
2379          */
2380         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2381                 goto flush_it;
2382
2383         /* check if thereserved journal credits might overflow */
2384         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2385                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2386                         /*
2387                          * With non-extent format we are limited by the journal
2388                          * credit available.  Total credit needed to insert
2389                          * nrblocks contiguous blocks is dependent on the
2390                          * nrblocks.  So limit nrblocks.
2391                          */
2392                         goto flush_it;
2393                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2394                                 EXT4_MAX_TRANS_DATA) {
2395                         /*
2396                          * Adding the new buffer_head would make it cross the
2397                          * allowed limit for which we have journal credit
2398                          * reserved. So limit the new bh->b_size
2399                          */
2400                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2401                                                 mpd->inode->i_blkbits;
2402                         /* we will do mpage_da_submit_io in the next loop */
2403                 }
2404         }
2405         /*
2406          * First block in the extent
2407          */
2408         if (mpd->b_size == 0) {
2409                 mpd->b_blocknr = logical;
2410                 mpd->b_size = b_size;
2411                 mpd->b_state = b_state & BH_FLAGS;
2412                 return;
2413         }
2414
2415         next = mpd->b_blocknr + nrblocks;
2416         /*
2417          * Can we merge the block to our big extent?
2418          */
2419         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2420                 mpd->b_size += b_size;
2421                 return;
2422         }
2423
2424 flush_it:
2425         /*
2426          * We couldn't merge the block to our extent, so we
2427          * need to flush current  extent and start new one
2428          */
2429         mpage_da_map_and_submit(mpd);
2430         return;
2431 }
2432
2433 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2434 {
2435         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2436 }
2437
2438 /*
2439  * This is a special get_blocks_t callback which is used by
2440  * ext4_da_write_begin().  It will either return mapped block or
2441  * reserve space for a single block.
2442  *
2443  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2444  * We also have b_blocknr = -1 and b_bdev initialized properly
2445  *
2446  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2447  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2448  * initialized properly.
2449  */
2450 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2451                                   struct buffer_head *bh, int create)
2452 {
2453         struct ext4_map_blocks map;
2454         int ret = 0;
2455         sector_t invalid_block = ~((sector_t) 0xffff);
2456
2457         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2458                 invalid_block = ~0;
2459
2460         BUG_ON(create == 0);
2461         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2462
2463         map.m_lblk = iblock;
2464         map.m_len = 1;
2465
2466         /*
2467          * first, we need to know whether the block is allocated already
2468          * preallocated blocks are unmapped but should treated
2469          * the same as allocated blocks.
2470          */
2471         ret = ext4_map_blocks(NULL, inode, &map, 0);
2472         if (ret < 0)
2473                 return ret;
2474         if (ret == 0) {
2475                 if (buffer_delay(bh))
2476                         return 0; /* Not sure this could or should happen */
2477                 /*
2478                  * XXX: __block_write_begin() unmaps passed block, is it OK?
2479                  */
2480                 ret = ext4_da_reserve_space(inode, iblock);
2481                 if (ret)
2482                         /* not enough space to reserve */
2483                         return ret;
2484
2485                 map_bh(bh, inode->i_sb, invalid_block);
2486                 set_buffer_new(bh);
2487                 set_buffer_delay(bh);
2488                 return 0;
2489         }
2490
2491         map_bh(bh, inode->i_sb, map.m_pblk);
2492         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2493
2494         if (buffer_unwritten(bh)) {
2495                 /* A delayed write to unwritten bh should be marked
2496                  * new and mapped.  Mapped ensures that we don't do
2497                  * get_block multiple times when we write to the same
2498                  * offset and new ensures that we do proper zero out
2499                  * for partial write.
2500                  */
2501                 set_buffer_new(bh);
2502                 set_buffer_mapped(bh);
2503         }
2504         return 0;
2505 }
2506
2507 /*
2508  * This function is used as a standard get_block_t calback function
2509  * when there is no desire to allocate any blocks.  It is used as a
2510  * callback function for block_write_begin() and block_write_full_page().
2511  * These functions should only try to map a single block at a time.
2512  *
2513  * Since this function doesn't do block allocations even if the caller
2514  * requests it by passing in create=1, it is critically important that
2515  * any caller checks to make sure that any buffer heads are returned
2516  * by this function are either all already mapped or marked for
2517  * delayed allocation before calling  block_write_full_page().  Otherwise,
2518  * b_blocknr could be left unitialized, and the page write functions will
2519  * be taken by surprise.
2520  */
2521 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2522                                    struct buffer_head *bh_result, int create)
2523 {
2524         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2525         return _ext4_get_block(inode, iblock, bh_result, 0);
2526 }
2527
2528 static int bget_one(handle_t *handle, struct buffer_head *bh)
2529 {
2530         get_bh(bh);
2531         return 0;
2532 }
2533
2534 static int bput_one(handle_t *handle, struct buffer_head *bh)
2535 {
2536         put_bh(bh);
2537         return 0;
2538 }
2539
2540 static int __ext4_journalled_writepage(struct page *page,
2541                                        unsigned int len)
2542 {
2543         struct address_space *mapping = page->mapping;
2544         struct inode *inode = mapping->host;
2545         struct buffer_head *page_bufs;
2546         handle_t *handle = NULL;
2547         int ret = 0;
2548         int err;
2549
2550         ClearPageChecked(page);
2551         page_bufs = page_buffers(page);
2552         BUG_ON(!page_bufs);
2553         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2554         /* As soon as we unlock the page, it can go away, but we have
2555          * references to buffers so we are safe */
2556         unlock_page(page);
2557
2558         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2559         if (IS_ERR(handle)) {
2560                 ret = PTR_ERR(handle);
2561                 goto out;
2562         }
2563
2564         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2565                                 do_journal_get_write_access);
2566
2567         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2568                                 write_end_fn);
2569         if (ret == 0)
2570                 ret = err;
2571         err = ext4_journal_stop(handle);
2572         if (!ret)
2573                 ret = err;
2574
2575         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2576         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2577 out:
2578         return ret;
2579 }
2580
2581 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2582 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2583
2584 /*
2585  * Note that we don't need to start a transaction unless we're journaling data
2586  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2587  * need to file the inode to the transaction's list in ordered mode because if
2588  * we are writing back data added by write(), the inode is already there and if
2589  * we are writing back data modified via mmap(), noone guarantees in which
2590  * transaction the data will hit the disk. In case we are journaling data, we
2591  * cannot start transaction directly because transaction start ranks above page
2592  * lock so we have to do some magic.
2593  *
2594  * This function can get called via...
2595  *   - ext4_da_writepages after taking page lock (have journal handle)
2596  *   - journal_submit_inode_data_buffers (no journal handle)
2597  *   - shrink_page_list via pdflush (no journal handle)
2598  *   - grab_page_cache when doing write_begin (have journal handle)
2599  *
2600  * We don't do any block allocation in this function. If we have page with
2601  * multiple blocks we need to write those buffer_heads that are mapped. This
2602  * is important for mmaped based write. So if we do with blocksize 1K
2603  * truncate(f, 1024);
2604  * a = mmap(f, 0, 4096);
2605  * a[0] = 'a';
2606  * truncate(f, 4096);
2607  * we have in the page first buffer_head mapped via page_mkwrite call back
2608  * but other bufer_heads would be unmapped but dirty(dirty done via the
2609  * do_wp_page). So writepage should write the first block. If we modify
2610  * the mmap area beyond 1024 we will again get a page_fault and the
2611  * page_mkwrite callback will do the block allocation and mark the
2612  * buffer_heads mapped.
2613  *
2614  * We redirty the page if we have any buffer_heads that is either delay or
2615  * unwritten in the page.
2616  *
2617  * We can get recursively called as show below.
2618  *
2619  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2620  *              ext4_writepage()
2621  *
2622  * But since we don't do any block allocation we should not deadlock.
2623  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2624  */
2625 static int ext4_writepage(struct page *page,
2626                           struct writeback_control *wbc)
2627 {
2628         int ret = 0, commit_write = 0;
2629         loff_t size;
2630         unsigned int len;
2631         struct buffer_head *page_bufs = NULL;
2632         struct inode *inode = page->mapping->host;
2633
2634         trace_ext4_writepage(inode, page);
2635         size = i_size_read(inode);
2636         if (page->index == size >> PAGE_CACHE_SHIFT)
2637                 len = size & ~PAGE_CACHE_MASK;
2638         else
2639                 len = PAGE_CACHE_SIZE;
2640
2641         /*
2642          * If the page does not have buffers (for whatever reason),
2643          * try to create them using __block_write_begin.  If this
2644          * fails, redirty the page and move on.
2645          */
2646         if (!page_has_buffers(page)) {
2647                 if (__block_write_begin(page, 0, len,
2648                                         noalloc_get_block_write)) {
2649                 redirty_page:
2650                         redirty_page_for_writepage(wbc, page);
2651                         unlock_page(page);
2652                         return 0;
2653                 }
2654                 commit_write = 1;
2655         }
2656         page_bufs = page_buffers(page);
2657         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2658                               ext4_bh_delay_or_unwritten)) {
2659                 /*
2660                  * We don't want to do block allocation, so redirty
2661                  * the page and return.  We may reach here when we do
2662                  * a journal commit via journal_submit_inode_data_buffers.
2663                  * We can also reach here via shrink_page_list
2664                  */
2665                 goto redirty_page;
2666         }
2667         if (commit_write)
2668                 /* now mark the buffer_heads as dirty and uptodate */
2669                 block_commit_write(page, 0, len);
2670
2671         if (PageChecked(page) && ext4_should_journal_data(inode))
2672                 /*
2673                  * It's mmapped pagecache.  Add buffers and journal it.  There
2674                  * doesn't seem much point in redirtying the page here.
2675                  */
2676                 return __ext4_journalled_writepage(page, len);
2677
2678         if (buffer_uninit(page_bufs)) {
2679                 ext4_set_bh_endio(page_bufs, inode);
2680                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2681                                             wbc, ext4_end_io_buffer_write);
2682         } else
2683                 ret = block_write_full_page(page, noalloc_get_block_write,
2684                                             wbc);
2685
2686         return ret;
2687 }
2688
2689 /*
2690  * This is called via ext4_da_writepages() to
2691  * calulate the total number of credits to reserve to fit
2692  * a single extent allocation into a single transaction,
2693  * ext4_da_writpeages() will loop calling this before
2694  * the block allocation.
2695  */
2696
2697 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2698 {
2699         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2700
2701         /*
2702          * With non-extent format the journal credit needed to
2703          * insert nrblocks contiguous block is dependent on
2704          * number of contiguous block. So we will limit
2705          * number of contiguous block to a sane value
2706          */
2707         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2708             (max_blocks > EXT4_MAX_TRANS_DATA))
2709                 max_blocks = EXT4_MAX_TRANS_DATA;
2710
2711         return ext4_chunk_trans_blocks(inode, max_blocks);
2712 }
2713
2714 /*
2715  * write_cache_pages_da - walk the list of dirty pages of the given
2716  * address space and accumulate pages that need writing, and call
2717  * mpage_da_map_and_submit to map a single contiguous memory region
2718  * and then write them.
2719  */
2720 static int write_cache_pages_da(struct address_space *mapping,
2721                                 struct writeback_control *wbc,
2722                                 struct mpage_da_data *mpd,
2723                                 pgoff_t *done_index)
2724 {
2725         struct buffer_head      *bh, *head;
2726         struct inode            *inode = mapping->host;
2727         struct pagevec          pvec;
2728         unsigned int            nr_pages;
2729         sector_t                logical;
2730         pgoff_t                 index, end;
2731         long                    nr_to_write = wbc->nr_to_write;
2732         int                     i, tag, ret = 0;
2733
2734         memset(mpd, 0, sizeof(struct mpage_da_data));
2735         mpd->wbc = wbc;
2736         mpd->inode = inode;
2737         pagevec_init(&pvec, 0);
2738         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2739         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2740
2741         if (wbc->sync_mode == WB_SYNC_ALL)
2742                 tag = PAGECACHE_TAG_TOWRITE;
2743         else
2744                 tag = PAGECACHE_TAG_DIRTY;
2745
2746         *done_index = index;
2747         while (index <= end) {
2748                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2749                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2750                 if (nr_pages == 0)
2751                         return 0;
2752
2753                 for (i = 0; i < nr_pages; i++) {
2754                         struct page *page = pvec.pages[i];
2755
2756                         /*
2757                          * At this point, the page may be truncated or
2758                          * invalidated (changing page->mapping to NULL), or
2759                          * even swizzled back from swapper_space to tmpfs file
2760                          * mapping. However, page->index will not change
2761                          * because we have a reference on the page.
2762                          */
2763                         if (page->index > end)
2764                                 goto out;
2765
2766                         *done_index = page->index + 1;
2767
2768                         /*
2769                          * If we can't merge this page, and we have
2770                          * accumulated an contiguous region, write it
2771                          */
2772                         if ((mpd->next_page != page->index) &&
2773                             (mpd->next_page != mpd->first_page)) {
2774                                 mpage_da_map_and_submit(mpd);
2775                                 goto ret_extent_tail;
2776                         }
2777
2778                         lock_page(page);
2779
2780                         /*
2781                          * If the page is no longer dirty, or its
2782                          * mapping no longer corresponds to inode we
2783                          * are writing (which means it has been
2784                          * truncated or invalidated), or the page is
2785                          * already under writeback and we are not
2786                          * doing a data integrity writeback, skip the page
2787                          */
2788                         if (!PageDirty(page) ||
2789                             (PageWriteback(page) &&
2790                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2791                             unlikely(page->mapping != mapping)) {
2792                                 unlock_page(page);
2793                                 continue;
2794                         }
2795
2796                         if (PageWriteback(page))
2797                                 wait_on_page_writeback(page);
2798
2799                         BUG_ON(PageWriteback(page));
2800
2801                         if (mpd->next_page != page->index)
2802                                 mpd->first_page = page->index;
2803                         mpd->next_page = page->index + 1;
2804                         logical = (sector_t) page->index <<
2805                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2806
2807                         if (!page_has_buffers(page)) {
2808                                 mpage_add_bh_to_extent(mpd, logical,
2809                                                        PAGE_CACHE_SIZE,
2810                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2811                                 if (mpd->io_done)
2812                                         goto ret_extent_tail;
2813                         } else {
2814                                 /*
2815                                  * Page with regular buffer heads,
2816                                  * just add all dirty ones
2817                                  */
2818                                 head = page_buffers(page);
2819                                 bh = head;
2820                                 do {
2821                                         BUG_ON(buffer_locked(bh));
2822                                         /*
2823                                          * We need to try to allocate
2824                                          * unmapped blocks in the same page.
2825                                          * Otherwise we won't make progress
2826                                          * with the page in ext4_writepage
2827                                          */
2828                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2829                                                 mpage_add_bh_to_extent(mpd, logical,
2830                                                                        bh->b_size,
2831                                                                        bh->b_state);
2832                                                 if (mpd->io_done)
2833                                                         goto ret_extent_tail;
2834                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2835                                                 /*
2836                                                  * mapped dirty buffer. We need
2837                                                  * to update the b_state
2838                                                  * because we look at b_state
2839                                                  * in mpage_da_map_blocks.  We
2840                                                  * don't update b_size because
2841                                                  * if we find an unmapped
2842                                                  * buffer_head later we need to
2843                                                  * use the b_state flag of that
2844                                                  * buffer_head.
2845                                                  */
2846                                                 if (mpd->b_size == 0)
2847                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2848                                         }
2849                                         logical++;
2850                                 } while ((bh = bh->b_this_page) != head);
2851                         }
2852
2853                         if (nr_to_write > 0) {
2854                                 nr_to_write--;
2855                                 if (nr_to_write == 0 &&
2856                                     wbc->sync_mode == WB_SYNC_NONE)
2857                                         /*
2858                                          * We stop writing back only if we are
2859                                          * not doing integrity sync. In case of
2860                                          * integrity sync we have to keep going
2861                                          * because someone may be concurrently
2862                                          * dirtying pages, and we might have
2863                                          * synced a lot of newly appeared dirty
2864                                          * pages, but have not synced all of the
2865                                          * old dirty pages.
2866                                          */
2867                                         goto out;
2868                         }
2869                 }
2870                 pagevec_release(&pvec);
2871                 cond_resched();
2872         }
2873         return 0;
2874 ret_extent_tail:
2875         ret = MPAGE_DA_EXTENT_TAIL;
2876 out:
2877         pagevec_release(&pvec);
2878         cond_resched();
2879         return ret;
2880 }
2881
2882
2883 static int ext4_da_writepages(struct address_space *mapping,
2884                               struct writeback_control *wbc)
2885 {
2886         pgoff_t index;
2887         int range_whole = 0;
2888         handle_t *handle = NULL;
2889         struct mpage_da_data mpd;
2890         struct inode *inode = mapping->host;
2891         int pages_written = 0;
2892         unsigned int max_pages;
2893         int range_cyclic, cycled = 1, io_done = 0;
2894         int needed_blocks, ret = 0;
2895         long desired_nr_to_write, nr_to_writebump = 0;
2896         loff_t range_start = wbc->range_start;
2897         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2898         pgoff_t done_index = 0;
2899         pgoff_t end;
2900
2901         trace_ext4_da_writepages(inode, wbc);
2902
2903         /*
2904          * No pages to write? This is mainly a kludge to avoid starting
2905          * a transaction for special inodes like journal inode on last iput()
2906          * because that could violate lock ordering on umount
2907          */
2908         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2909                 return 0;
2910
2911         /*
2912          * If the filesystem has aborted, it is read-only, so return
2913          * right away instead of dumping stack traces later on that
2914          * will obscure the real source of the problem.  We test
2915          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2916          * the latter could be true if the filesystem is mounted
2917          * read-only, and in that case, ext4_da_writepages should
2918          * *never* be called, so if that ever happens, we would want
2919          * the stack trace.
2920          */
2921         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2922                 return -EROFS;
2923
2924         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2925                 range_whole = 1;
2926
2927         range_cyclic = wbc->range_cyclic;
2928         if (wbc->range_cyclic) {
2929                 index = mapping->writeback_index;
2930                 if (index)
2931                         cycled = 0;
2932                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2933                 wbc->range_end  = LLONG_MAX;
2934                 wbc->range_cyclic = 0;
2935                 end = -1;
2936         } else {
2937                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2938                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2939         }
2940
2941         /*
2942          * This works around two forms of stupidity.  The first is in
2943          * the writeback code, which caps the maximum number of pages
2944          * written to be 1024 pages.  This is wrong on multiple
2945          * levels; different architectues have a different page size,
2946          * which changes the maximum amount of data which gets
2947          * written.  Secondly, 4 megabytes is way too small.  XFS
2948          * forces this value to be 16 megabytes by multiplying
2949          * nr_to_write parameter by four, and then relies on its
2950          * allocator to allocate larger extents to make them
2951          * contiguous.  Unfortunately this brings us to the second
2952          * stupidity, which is that ext4's mballoc code only allocates
2953          * at most 2048 blocks.  So we force contiguous writes up to
2954          * the number of dirty blocks in the inode, or
2955          * sbi->max_writeback_mb_bump whichever is smaller.
2956          */
2957         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2958         if (!range_cyclic && range_whole) {
2959                 if (wbc->nr_to_write == LONG_MAX)
2960                         desired_nr_to_write = wbc->nr_to_write;
2961                 else
2962                         desired_nr_to_write = wbc->nr_to_write * 8;
2963         } else
2964                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2965                                                            max_pages);
2966         if (desired_nr_to_write > max_pages)
2967                 desired_nr_to_write = max_pages;
2968
2969         if (wbc->nr_to_write < desired_nr_to_write) {
2970                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2971                 wbc->nr_to_write = desired_nr_to_write;
2972         }
2973
2974 retry:
2975         if (wbc->sync_mode == WB_SYNC_ALL)
2976                 tag_pages_for_writeback(mapping, index, end);
2977
2978         while (!ret && wbc->nr_to_write > 0) {
2979
2980                 /*
2981                  * we  insert one extent at a time. So we need
2982                  * credit needed for single extent allocation.
2983                  * journalled mode is currently not supported
2984                  * by delalloc
2985                  */
2986                 BUG_ON(ext4_should_journal_data(inode));
2987                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2988
2989                 /* start a new transaction*/
2990                 handle = ext4_journal_start(inode, needed_blocks);
2991                 if (IS_ERR(handle)) {
2992                         ret = PTR_ERR(handle);
2993                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2994                                "%ld pages, ino %lu; err %d", __func__,
2995                                 wbc->nr_to_write, inode->i_ino, ret);
2996                         goto out_writepages;
2997                 }
2998
2999                 /*
3000                  * Now call write_cache_pages_da() to find the next
3001                  * contiguous region of logical blocks that need
3002                  * blocks to be allocated by ext4 and submit them.
3003                  */
3004                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3005                 /*
3006                  * If we have a contiguous extent of pages and we
3007                  * haven't done the I/O yet, map the blocks and submit
3008                  * them for I/O.
3009                  */
3010                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3011                         mpage_da_map_and_submit(&mpd);
3012                         ret = MPAGE_DA_EXTENT_TAIL;
3013                 }
3014                 trace_ext4_da_write_pages(inode, &mpd);
3015                 wbc->nr_to_write -= mpd.pages_written;
3016
3017                 ext4_journal_stop(handle);
3018
3019                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3020                         /* commit the transaction which would
3021                          * free blocks released in the transaction
3022                          * and try again
3023                          */
3024                         jbd2_journal_force_commit_nested(sbi->s_journal);
3025                         ret = 0;
3026                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3027                         /*
3028                          * got one extent now try with
3029                          * rest of the pages
3030                          */
3031                         pages_written += mpd.pages_written;
3032                         ret = 0;
3033                         io_done = 1;
3034                 } else if (wbc->nr_to_write)
3035                         /*
3036                          * There is no more writeout needed
3037                          * or we requested for a noblocking writeout
3038                          * and we found the device congested
3039                          */
3040                         break;
3041         }
3042         if (!io_done && !cycled) {
3043                 cycled = 1;
3044                 index = 0;
3045                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3046                 wbc->range_end  = mapping->writeback_index - 1;
3047                 goto retry;
3048         }
3049
3050         /* Update index */
3051         wbc->range_cyclic = range_cyclic;
3052         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3053                 /*
3054                  * set the writeback_index so that range_cyclic
3055                  * mode will write it back later
3056                  */
3057                 mapping->writeback_index = done_index;
3058
3059 out_writepages:
3060         wbc->nr_to_write -= nr_to_writebump;
3061         wbc->range_start = range_start;
3062         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3063         return ret;
3064 }
3065
3066 #define FALL_BACK_TO_NONDELALLOC 1
3067 static int ext4_nonda_switch(struct super_block *sb)
3068 {
3069         s64 free_blocks, dirty_blocks;
3070         struct ext4_sb_info *sbi = EXT4_SB(sb);
3071
3072         /*
3073          * switch to non delalloc mode if we are running low
3074          * on free block. The free block accounting via percpu
3075          * counters can get slightly wrong with percpu_counter_batch getting
3076          * accumulated on each CPU without updating global counters
3077          * Delalloc need an accurate free block accounting. So switch
3078          * to non delalloc when we are near to error range.
3079          */
3080         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3081         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3082         if (2 * free_blocks < 3 * dirty_blocks ||
3083                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3084                 /*
3085                  * free block count is less than 150% of dirty blocks
3086                  * or free blocks is less than watermark
3087                  */
3088                 return 1;
3089         }
3090         /*
3091          * Even if we don't switch but are nearing capacity,
3092          * start pushing delalloc when 1/2 of free blocks are dirty.
3093          */
3094         if (free_blocks < 2 * dirty_blocks)
3095                 writeback_inodes_sb_if_idle(sb);
3096
3097         return 0;
3098 }
3099
3100 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3101                                loff_t pos, unsigned len, unsigned flags,
3102                                struct page **pagep, void **fsdata)
3103 {
3104         int ret, retries = 0;
3105         struct page *page;
3106         pgoff_t index;
3107         struct inode *inode = mapping->host;
3108         handle_t *handle;
3109
3110         index = pos >> PAGE_CACHE_SHIFT;
3111
3112         if (ext4_nonda_switch(inode->i_sb)) {
3113                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3114                 return ext4_write_begin(file, mapping, pos,
3115                                         len, flags, pagep, fsdata);
3116         }
3117         *fsdata = (void *)0;
3118         trace_ext4_da_write_begin(inode, pos, len, flags);
3119 retry:
3120         /*
3121          * With delayed allocation, we don't log the i_disksize update
3122          * if there is delayed block allocation. But we still need
3123          * to journalling the i_disksize update if writes to the end
3124          * of file which has an already mapped buffer.
3125          */
3126         handle = ext4_journal_start(inode, 1);
3127         if (IS_ERR(handle)) {
3128                 ret = PTR_ERR(handle);
3129                 goto out;
3130         }
3131         /* We cannot recurse into the filesystem as the transaction is already
3132          * started */
3133         flags |= AOP_FLAG_NOFS;
3134
3135         page = grab_cache_page_write_begin(mapping, index, flags);
3136         if (!page) {
3137                 ext4_journal_stop(handle);
3138                 ret = -ENOMEM;
3139                 goto out;
3140         }
3141         *pagep = page;
3142
3143         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3144         if (ret < 0) {
3145                 unlock_page(page);
3146                 ext4_journal_stop(handle);
3147                 page_cache_release(page);
3148                 /*
3149                  * block_write_begin may have instantiated a few blocks
3150                  * outside i_size.  Trim these off again. Don't need
3151                  * i_size_read because we hold i_mutex.
3152                  */
3153                 if (pos + len > inode->i_size)
3154                         ext4_truncate_failed_write(inode);
3155         }
3156
3157         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3158                 goto retry;
3159 out:
3160         return ret;
3161 }
3162
3163 /*
3164  * Check if we should update i_disksize
3165  * when write to the end of file but not require block allocation
3166  */
3167 static int ext4_da_should_update_i_disksize(struct page *page,
3168                                             unsigned long offset)
3169 {
3170         struct buffer_head *bh;
3171         struct inode *inode = page->mapping->host;
3172         unsigned int idx;
3173         int i;
3174
3175         bh = page_buffers(page);
3176         idx = offset >> inode->i_blkbits;
3177
3178         for (i = 0; i < idx; i++)
3179                 bh = bh->b_this_page;
3180
3181         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3182                 return 0;
3183         return 1;
3184 }
3185
3186 static int ext4_da_write_end(struct file *file,
3187                              struct address_space *mapping,
3188                              loff_t pos, unsigned len, unsigned copied,
3189                              struct page *page, void *fsdata)
3190 {
3191         struct inode *inode = mapping->host;
3192         int ret = 0, ret2;
3193         handle_t *handle = ext4_journal_current_handle();
3194         loff_t new_i_size;
3195         unsigned long start, end;
3196         int write_mode = (int)(unsigned long)fsdata;
3197
3198         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3199                 if (ext4_should_order_data(inode)) {
3200                         return ext4_ordered_write_end(file, mapping, pos,
3201                                         len, copied, page, fsdata);
3202                 } else if (ext4_should_writeback_data(inode)) {
3203                         return ext4_writeback_write_end(file, mapping, pos,
3204                                         len, copied, page, fsdata);
3205                 } else {
3206                         BUG();
3207                 }
3208         }
3209
3210         trace_ext4_da_write_end(inode, pos, len, copied);
3211         start = pos & (PAGE_CACHE_SIZE - 1);
3212         end = start + copied - 1;
3213
3214         /*
3215          * generic_write_end() will run mark_inode_dirty() if i_size
3216          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3217          * into that.
3218          */
3219
3220         new_i_size = pos + copied;
3221         if (new_i_size > EXT4_I(inode)->i_disksize) {
3222                 if (ext4_da_should_update_i_disksize(page, end)) {
3223                         down_write(&EXT4_I(inode)->i_data_sem);
3224                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3225                                 /*
3226                                  * Updating i_disksize when extending file
3227                                  * without needing block allocation
3228                                  */
3229                                 if (ext4_should_order_data(inode))
3230                                         ret = ext4_jbd2_file_inode(handle,
3231                                                                    inode);
3232
3233                                 EXT4_I(inode)->i_disksize = new_i_size;
3234                         }
3235                         up_write(&EXT4_I(inode)->i_data_sem);
3236                         /* We need to mark inode dirty even if
3237                          * new_i_size is less that inode->i_size
3238                          * bu greater than i_disksize.(hint delalloc)
3239                          */
3240                         ext4_mark_inode_dirty(handle, inode);
3241                 }
3242         }
3243         ret2 = generic_write_end(file, mapping, pos, len, copied,
3244                                                         page, fsdata);
3245         copied = ret2;
3246         if (ret2 < 0)
3247                 ret = ret2;
3248         ret2 = ext4_journal_stop(handle);
3249         if (!ret)
3250                 ret = ret2;
3251
3252         return ret ? ret : copied;
3253 }
3254
3255 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3256 {
3257         /*
3258          * Drop reserved blocks
3259          */
3260         BUG_ON(!PageLocked(page));
3261         if (!page_has_buffers(page))
3262                 goto out;
3263
3264         ext4_da_page_release_reservation(page, offset);
3265
3266 out:
3267         ext4_invalidatepage(page, offset);
3268
3269         return;
3270 }
3271
3272 /*
3273  * Force all delayed allocation blocks to be allocated for a given inode.
3274  */
3275 int ext4_alloc_da_blocks(struct inode *inode)
3276 {
3277         trace_ext4_alloc_da_blocks(inode);
3278
3279         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3280             !EXT4_I(inode)->i_reserved_meta_blocks)
3281                 return 0;
3282
3283         /*
3284          * We do something simple for now.  The filemap_flush() will
3285          * also start triggering a write of the data blocks, which is
3286          * not strictly speaking necessary (and for users of
3287          * laptop_mode, not even desirable).  However, to do otherwise
3288          * would require replicating code paths in:
3289          *
3290          * ext4_da_writepages() ->
3291          *    write_cache_pages() ---> (via passed in callback function)
3292          *        __mpage_da_writepage() -->
3293          *           mpage_add_bh_to_extent()
3294          *           mpage_da_map_blocks()
3295          *
3296          * The problem is that write_cache_pages(), located in
3297          * mm/page-writeback.c, marks pages clean in preparation for
3298          * doing I/O, which is not desirable if we're not planning on
3299          * doing I/O at all.
3300          *
3301          * We could call write_cache_pages(), and then redirty all of
3302          * the pages by calling redirty_page_for_writepage() but that
3303          * would be ugly in the extreme.  So instead we would need to
3304          * replicate parts of the code in the above functions,
3305          * simplifying them becuase we wouldn't actually intend to
3306          * write out the pages, but rather only collect contiguous
3307          * logical block extents, call the multi-block allocator, and
3308          * then update the buffer heads with the block allocations.
3309          *
3310          * For now, though, we'll cheat by calling filemap_flush(),
3311          * which will map the blocks, and start the I/O, but not
3312          * actually wait for the I/O to complete.
3313          */
3314         return filemap_flush(inode->i_mapping);
3315 }
3316
3317 /*
3318  * bmap() is special.  It gets used by applications such as lilo and by
3319  * the swapper to find the on-disk block of a specific piece of data.
3320  *
3321  * Naturally, this is dangerous if the block concerned is still in the
3322  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3323  * filesystem and enables swap, then they may get a nasty shock when the
3324  * data getting swapped to that swapfile suddenly gets overwritten by
3325  * the original zero's written out previously to the journal and
3326  * awaiting writeback in the kernel's buffer cache.
3327  *
3328  * So, if we see any bmap calls here on a modified, data-journaled file,
3329  * take extra steps to flush any blocks which might be in the cache.
3330  */
3331 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3332 {
3333         struct inode *inode = mapping->host;
3334         journal_t *journal;
3335         int err;
3336
3337         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3338                         test_opt(inode->i_sb, DELALLOC)) {
3339                 /*
3340                  * With delalloc we want to sync the file
3341                  * so that we can make sure we allocate
3342                  * blocks for file
3343                  */
3344                 filemap_write_and_wait(mapping);
3345         }
3346
3347         if (EXT4_JOURNAL(inode) &&
3348             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3349                 /*
3350                  * This is a REALLY heavyweight approach, but the use of
3351                  * bmap on dirty files is expected to be extremely rare:
3352                  * only if we run lilo or swapon on a freshly made file
3353                  * do we expect this to happen.
3354                  *
3355                  * (bmap requires CAP_SYS_RAWIO so this does not
3356                  * represent an unprivileged user DOS attack --- we'd be
3357                  * in trouble if mortal users could trigger this path at
3358                  * will.)
3359                  *
3360                  * NB. EXT4_STATE_JDATA is not set on files other than
3361                  * regular files.  If somebody wants to bmap a directory
3362                  * or symlink and gets confused because the buffer
3363                  * hasn't yet been flushed to disk, they deserve
3364                  * everything they get.
3365                  */
3366
3367                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3368                 journal = EXT4_JOURNAL(inode);
3369                 jbd2_journal_lock_updates(journal);
3370                 err = jbd2_journal_flush(journal);
3371                 jbd2_journal_unlock_updates(journal);
3372
3373                 if (err)
3374                         return 0;
3375         }
3376
3377         return generic_block_bmap(mapping, block, ext4_get_block);
3378 }
3379
3380 static int ext4_readpage(struct file *file, struct page *page)
3381 {
3382         return mpage_readpage(page, ext4_get_block);
3383 }
3384
3385 static int
3386 ext4_readpages(struct file *file, struct address_space *mapping,
3387                 struct list_head *pages, unsigned nr_pages)
3388 {
3389         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3390 }
3391
3392 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3393 {
3394         struct buffer_head *head, *bh;
3395         unsigned int curr_off = 0;
3396
3397         if (!page_has_buffers(page))
3398                 return;
3399         head = bh = page_buffers(page);
3400         do {
3401                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3402                                         && bh->b_private) {
3403                         ext4_free_io_end(bh->b_private);
3404                         bh->b_private = NULL;
3405                         bh->b_end_io = NULL;
3406                 }
3407                 curr_off = curr_off + bh->b_size;
3408                 bh = bh->b_this_page;
3409         } while (bh != head);
3410 }
3411
3412 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3413 {
3414         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3415
3416         /*
3417          * free any io_end structure allocated for buffers to be discarded
3418          */
3419         if (ext4_should_dioread_nolock(page->mapping->host))
3420                 ext4_invalidatepage_free_endio(page, offset);
3421         /*
3422          * If it's a full truncate we just forget about the pending dirtying
3423          */
3424         if (offset == 0)
3425                 ClearPageChecked(page);
3426
3427         if (journal)
3428                 jbd2_journal_invalidatepage(journal, page, offset);
3429         else
3430                 block_invalidatepage(page, offset);
3431 }
3432
3433 static int ext4_releasepage(struct page *page, gfp_t wait)
3434 {
3435         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3436
3437         WARN_ON(PageChecked(page));
3438         if (!page_has_buffers(page))
3439                 return 0;
3440         if (journal)
3441                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3442         else
3443                 return try_to_free_buffers(page);
3444 }
3445
3446 /*
3447  * O_DIRECT for ext3 (or indirect map) based files
3448  *
3449  * If the O_DIRECT write will extend the file then add this inode to the
3450  * orphan list.  So recovery will truncate it back to the original size
3451  * if the machine crashes during the write.
3452  *
3453  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3454  * crashes then stale disk data _may_ be exposed inside the file. But current
3455  * VFS code falls back into buffered path in that case so we are safe.
3456  */
3457 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3458                               const struct iovec *iov, loff_t offset,
3459                               unsigned long nr_segs)
3460 {
3461         struct file *file = iocb->ki_filp;
3462         struct inode *inode = file->f_mapping->host;
3463         struct ext4_inode_info *ei = EXT4_I(inode);
3464         handle_t *handle;
3465         ssize_t ret;
3466         int orphan = 0;
3467         size_t count = iov_length(iov, nr_segs);
3468         int retries = 0;
3469
3470         if (rw == WRITE) {
3471                 loff_t final_size = offset + count;
3472
3473                 if (final_size > inode->i_size) {
3474                         /* Credits for sb + inode write */
3475                         handle = ext4_journal_start(inode, 2);
3476                         if (IS_ERR(handle)) {
3477                                 ret = PTR_ERR(handle);
3478                                 goto out;
3479                         }
3480                         ret = ext4_orphan_add(handle, inode);
3481                         if (ret) {
3482                                 ext4_journal_stop(handle);
3483                                 goto out;
3484                         }
3485                         orphan = 1;
3486                         ei->i_disksize = inode->i_size;
3487                         ext4_journal_stop(handle);
3488                 }
3489         }
3490
3491 retry:
3492         if (rw == READ && ext4_should_dioread_nolock(inode))
3493                 ret = __blockdev_direct_IO(rw, iocb, inode,
3494                                  inode->i_sb->s_bdev, iov,
3495                                  offset, nr_segs,
3496                                  ext4_get_block, NULL, NULL, 0);
3497         else {
3498                 ret = blockdev_direct_IO(rw, iocb, inode,
3499                                  inode->i_sb->s_bdev, iov,
3500                                  offset, nr_segs,
3501                                  ext4_get_block, NULL);
3502
3503                 if (unlikely((rw & WRITE) && ret < 0)) {
3504                         loff_t isize = i_size_read(inode);
3505                         loff_t end = offset + iov_length(iov, nr_segs);
3506
3507                         if (end > isize)
3508                                 vmtruncate(inode, isize);
3509                 }
3510         }
3511         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3512                 goto retry;
3513
3514         if (orphan) {
3515                 int err;
3516
3517                 /* Credits for sb + inode write */
3518                 handle = ext4_journal_start(inode, 2);
3519                 if (IS_ERR(handle)) {
3520                         /* This is really bad luck. We've written the data
3521                          * but cannot extend i_size. Bail out and pretend
3522                          * the write failed... */
3523                         ret = PTR_ERR(handle);
3524                         if (inode->i_nlink)
3525                                 ext4_orphan_del(NULL, inode);
3526
3527                         goto out;
3528                 }
3529                 if (inode->i_nlink)
3530                         ext4_orphan_del(handle, inode);
3531                 if (ret > 0) {
3532                         loff_t end = offset + ret;
3533                         if (end > inode->i_size) {
3534                                 ei->i_disksize = end;
3535                                 i_size_write(inode, end);
3536                                 /*
3537                                  * We're going to return a positive `ret'
3538                                  * here due to non-zero-length I/O, so there's
3539                                  * no way of reporting error returns from
3540                                  * ext4_mark_inode_dirty() to userspace.  So
3541                                  * ignore it.
3542                                  */
3543                                 ext4_mark_inode_dirty(handle, inode);
3544                         }
3545                 }
3546                 err = ext4_journal_stop(handle);
3547                 if (ret == 0)
3548                         ret = err;
3549         }
3550 out:
3551         return ret;
3552 }
3553
3554 /*
3555  * ext4_get_block used when preparing for a DIO write or buffer write.
3556  * We allocate an uinitialized extent if blocks haven't been allocated.
3557  * The extent will be converted to initialized after the IO is complete.
3558  */
3559 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3560                    struct buffer_head *bh_result, int create)
3561 {
3562         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3563                    inode->i_ino, create);
3564         return _ext4_get_block(inode, iblock, bh_result,
3565                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3566 }
3567
3568 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3569                             ssize_t size, void *private, int ret,
3570                             bool is_async)
3571 {
3572         ext4_io_end_t *io_end = iocb->private;
3573         struct workqueue_struct *wq;
3574         unsigned long flags;
3575         struct ext4_inode_info *ei;
3576
3577         /* if not async direct IO or dio with 0 bytes write, just return */
3578         if (!io_end || !size)
3579                 goto out;
3580
3581         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3582                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3583                   iocb->private, io_end->inode->i_ino, iocb, offset,
3584                   size);
3585
3586         /* if not aio dio with unwritten extents, just free io and return */
3587         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3588                 ext4_free_io_end(io_end);
3589                 iocb->private = NULL;
3590 out:
3591                 if (is_async)
3592                         aio_complete(iocb, ret, 0);
3593                 return;
3594         }
3595
3596         io_end->offset = offset;
3597         io_end->size = size;
3598         if (is_async) {
3599                 io_end->iocb = iocb;
3600                 io_end->result = ret;
3601         }
3602         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3603
3604         /* Add the io_end to per-inode completed aio dio list*/
3605         ei = EXT4_I(io_end->inode);
3606         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3607         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3608         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3609
3610         /* queue the work to convert unwritten extents to written */
3611         queue_work(wq, &io_end->work);
3612         iocb->private = NULL;
3613 }
3614
3615 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3616 {
3617         ext4_io_end_t *io_end = bh->b_private;
3618         struct workqueue_struct *wq;
3619         struct inode *inode;
3620         unsigned long flags;
3621
3622         if (!test_clear_buffer_uninit(bh) || !io_end)
3623                 goto out;
3624
3625         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3626                 printk("sb umounted, discard end_io request for inode %lu\n",
3627                         io_end->inode->i_ino);
3628                 ext4_free_io_end(io_end);
3629                 goto out;
3630         }
3631
3632         io_end->flag = EXT4_IO_END_UNWRITTEN;
3633         inode = io_end->inode;
3634
3635         /* Add the io_end to per-inode completed io list*/
3636         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3637         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3638         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3639
3640         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3641         /* queue the work to convert unwritten extents to written */
3642         queue_work(wq, &io_end->work);
3643 out:
3644         bh->b_private = NULL;
3645         bh->b_end_io = NULL;
3646         clear_buffer_uninit(bh);
3647         end_buffer_async_write(bh, uptodate);
3648 }
3649
3650 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3651 {
3652         ext4_io_end_t *io_end;
3653         struct page *page = bh->b_page;
3654         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3655         size_t size = bh->b_size;
3656
3657 retry:
3658         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3659         if (!io_end) {
3660                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3661                 schedule();
3662                 goto retry;
3663         }
3664         io_end->offset = offset;
3665         io_end->size = size;
3666         /*
3667          * We need to hold a reference to the page to make sure it
3668          * doesn't get evicted before ext4_end_io_work() has a chance
3669          * to convert the extent from written to unwritten.
3670          */
3671         io_end->page = page;
3672         get_page(io_end->page);
3673
3674         bh->b_private = io_end;
3675         bh->b_end_io = ext4_end_io_buffer_write;
3676         return 0;
3677 }
3678
3679 /*
3680  * For ext4 extent files, ext4 will do direct-io write to holes,
3681  * preallocated extents, and those write extend the file, no need to
3682  * fall back to buffered IO.
3683  *
3684  * For holes, we fallocate those blocks, mark them as uninitialized
3685  * If those blocks were preallocated, we mark sure they are splited, but
3686  * still keep the range to write as uninitialized.
3687  *
3688  * The unwrritten extents will be converted to written when DIO is completed.
3689  * For async direct IO, since the IO may still pending when return, we
3690  * set up an end_io call back function, which will do the convertion
3691  * when async direct IO completed.
3692  *
3693  * If the O_DIRECT write will extend the file then add this inode to the
3694  * orphan list.  So recovery will truncate it back to the original size
3695  * if the machine crashes during the write.
3696  *
3697  */
3698 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3699                               const struct iovec *iov, loff_t offset,
3700                               unsigned long nr_segs)
3701 {
3702         struct file *file = iocb->ki_filp;
3703         struct inode *inode = file->f_mapping->host;
3704         ssize_t ret;
3705         size_t count = iov_length(iov, nr_segs);
3706
3707         loff_t final_size = offset + count;
3708         if (rw == WRITE && final_size <= inode->i_size) {
3709                 /*
3710                  * We could direct write to holes and fallocate.
3711                  *
3712                  * Allocated blocks to fill the hole are marked as uninitialized
3713                  * to prevent paralel buffered read to expose the stale data
3714                  * before DIO complete the data IO.
3715                  *
3716                  * As to previously fallocated extents, ext4 get_block
3717                  * will just simply mark the buffer mapped but still
3718                  * keep the extents uninitialized.
3719                  *
3720                  * for non AIO case, we will convert those unwritten extents
3721                  * to written after return back from blockdev_direct_IO.
3722                  *
3723                  * for async DIO, the conversion needs to be defered when
3724                  * the IO is completed. The ext4 end_io callback function
3725                  * will be called to take care of the conversion work.
3726                  * Here for async case, we allocate an io_end structure to
3727                  * hook to the iocb.
3728                  */
3729                 iocb->private = NULL;
3730                 EXT4_I(inode)->cur_aio_dio = NULL;
3731                 if (!is_sync_kiocb(iocb)) {
3732                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3733                         if (!iocb->private)
3734                                 return -ENOMEM;
3735                         /*
3736                          * we save the io structure for current async
3737                          * direct IO, so that later ext4_map_blocks()
3738                          * could flag the io structure whether there
3739                          * is a unwritten extents needs to be converted
3740                          * when IO is completed.
3741                          */
3742                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3743                 }
3744
3745                 ret = blockdev_direct_IO(rw, iocb, inode,
3746                                          inode->i_sb->s_bdev, iov,
3747                                          offset, nr_segs,
3748                                          ext4_get_block_write,
3749                                          ext4_end_io_dio);
3750                 if (iocb->private)
3751                         EXT4_I(inode)->cur_aio_dio = NULL;
3752                 /*
3753                  * The io_end structure takes a reference to the inode,
3754                  * that structure needs to be destroyed and the
3755                  * reference to the inode need to be dropped, when IO is
3756                  * complete, even with 0 byte write, or failed.
3757                  *
3758                  * In the successful AIO DIO case, the io_end structure will be
3759                  * desctroyed and the reference to the inode will be dropped
3760                  * after the end_io call back function is called.
3761                  *
3762                  * In the case there is 0 byte write, or error case, since
3763                  * VFS direct IO won't invoke the end_io call back function,
3764                  * we need to free the end_io structure here.
3765                  */
3766                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3767                         ext4_free_io_end(iocb->private);
3768                         iocb->private = NULL;
3769                 } else if (ret > 0 && ext4_test_inode_state(inode,
3770                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3771                         int err;
3772                         /*
3773                          * for non AIO case, since the IO is already
3774                          * completed, we could do the convertion right here
3775                          */
3776                         err = ext4_convert_unwritten_extents(inode,
3777                                                              offset, ret);
3778                         if (err < 0)
3779                                 ret = err;
3780                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3781                 }
3782                 return ret;
3783         }
3784
3785         /* for write the the end of file case, we fall back to old way */
3786         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3787 }
3788
3789 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3790                               const struct iovec *iov, loff_t offset,
3791                               unsigned long nr_segs)
3792 {
3793         struct file *file = iocb->ki_filp;
3794         struct inode *inode = file->f_mapping->host;
3795
3796         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3797                 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3798
3799         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3800 }
3801
3802 /*
3803  * Pages can be marked dirty completely asynchronously from ext4's journalling
3804  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3805  * much here because ->set_page_dirty is called under VFS locks.  The page is
3806  * not necessarily locked.
3807  *
3808  * We cannot just dirty the page and leave attached buffers clean, because the
3809  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3810  * or jbddirty because all the journalling code will explode.
3811  *
3812  * So what we do is to mark the page "pending dirty" and next time writepage
3813  * is called, propagate that into the buffers appropriately.
3814  */
3815 static int ext4_journalled_set_page_dirty(struct page *page)
3816 {
3817         SetPageChecked(page);
3818         return __set_page_dirty_nobuffers(page);
3819 }
3820
3821 static const struct address_space_operations ext4_ordered_aops = {
3822         .readpage               = ext4_readpage,
3823         .readpages              = ext4_readpages,
3824         .writepage              = ext4_writepage,
3825         .sync_page              = block_sync_page,
3826         .write_begin            = ext4_write_begin,
3827         .write_end              = ext4_ordered_write_end,
3828         .bmap                   = ext4_bmap,
3829         .invalidatepage         = ext4_invalidatepage,
3830         .releasepage            = ext4_releasepage,
3831         .direct_IO              = ext4_direct_IO,
3832         .migratepage            = buffer_migrate_page,
3833         .is_partially_uptodate  = block_is_partially_uptodate,
3834         .error_remove_page      = generic_error_remove_page,
3835 };
3836
3837 static const struct address_space_operations ext4_writeback_aops = {
3838         .readpage               = ext4_readpage,
3839         .readpages              = ext4_readpages,
3840         .writepage              = ext4_writepage,
3841         .sync_page              = block_sync_page,
3842         .write_begin            = ext4_write_begin,
3843         .write_end              = ext4_writeback_write_end,
3844         .bmap                   = ext4_bmap,
3845         .invalidatepage         = ext4_invalidatepage,
3846         .releasepage            = ext4_releasepage,
3847         .direct_IO              = ext4_direct_IO,
3848         .migratepage            = buffer_migrate_page,
3849         .is_partially_uptodate  = block_is_partially_uptodate,
3850         .error_remove_page      = generic_error_remove_page,
3851 };
3852
3853 static const struct address_space_operations ext4_journalled_aops = {
3854         .readpage               = ext4_readpage,
3855         .readpages              = ext4_readpages,
3856         .writepage              = ext4_writepage,
3857         .sync_page              = block_sync_page,
3858         .write_begin            = ext4_write_begin,
3859         .write_end              = ext4_journalled_write_end,
3860         .set_page_dirty         = ext4_journalled_set_page_dirty,
3861         .bmap                   = ext4_bmap,
3862         .invalidatepage         = ext4_invalidatepage,
3863         .releasepage            = ext4_releasepage,
3864         .is_partially_uptodate  = block_is_partially_uptodate,
3865         .error_remove_page      = generic_error_remove_page,
3866 };
3867
3868 static const struct address_space_operations ext4_da_aops = {
3869         .readpage               = ext4_readpage,
3870         .readpages              = ext4_readpages,
3871         .writepage              = ext4_writepage,
3872         .writepages             = ext4_da_writepages,
3873         .sync_page              = block_sync_page,
3874         .write_begin            = ext4_da_write_begin,
3875         .write_end              = ext4_da_write_end,
3876         .bmap                   = ext4_bmap,
3877         .invalidatepage         = ext4_da_invalidatepage,
3878         .releasepage            = ext4_releasepage,
3879         .direct_IO              = ext4_direct_IO,
3880         .migratepage            = buffer_migrate_page,
3881         .is_partially_uptodate  = block_is_partially_uptodate,
3882         .error_remove_page      = generic_error_remove_page,
3883 };
3884
3885 void ext4_set_aops(struct inode *inode)
3886 {
3887         if (ext4_should_order_data(inode) &&
3888                 test_opt(inode->i_sb, DELALLOC))
3889                 inode->i_mapping->a_ops = &ext4_da_aops;
3890         else if (ext4_should_order_data(inode))
3891                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3892         else if (ext4_should_writeback_data(inode) &&
3893                  test_opt(inode->i_sb, DELALLOC))
3894                 inode->i_mapping->a_ops = &ext4_da_aops;
3895         else if (ext4_should_writeback_data(inode))
3896                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3897         else
3898                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3899 }
3900
3901 /*
3902  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3903  * up to the end of the block which corresponds to `from'.
3904  * This required during truncate. We need to physically zero the tail end
3905  * of that block so it doesn't yield old data if the file is later grown.
3906  */
3907 int ext4_block_truncate_page(handle_t *handle,
3908                 struct address_space *mapping, loff_t from)
3909 {
3910         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3911         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3912         unsigned blocksize, length, pos;
3913         ext4_lblk_t iblock;
3914         struct inode *inode = mapping->host;
3915         struct buffer_head *bh;
3916         struct page *page;
3917         int err = 0;
3918
3919         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3920                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3921         if (!page)
3922                 return -EINVAL;
3923
3924         blocksize = inode->i_sb->s_blocksize;
3925         length = blocksize - (offset & (blocksize - 1));
3926         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3927
3928         if (!page_has_buffers(page))
3929                 create_empty_buffers(page, blocksize, 0);
3930
3931         /* Find the buffer that contains "offset" */
3932         bh = page_buffers(page);
3933         pos = blocksize;
3934         while (offset >= pos) {
3935                 bh = bh->b_this_page;
3936                 iblock++;
3937                 pos += blocksize;
3938         }
3939
3940         err = 0;
3941         if (buffer_freed(bh)) {
3942                 BUFFER_TRACE(bh, "freed: skip");
3943                 goto unlock;
3944         }
3945
3946         if (!buffer_mapped(bh)) {
3947                 BUFFER_TRACE(bh, "unmapped");
3948                 ext4_get_block(inode, iblock, bh, 0);
3949                 /* unmapped? It's a hole - nothing to do */
3950                 if (!buffer_mapped(bh)) {
3951                         BUFFER_TRACE(bh, "still unmapped");
3952                         goto unlock;
3953                 }
3954         }
3955
3956         /* Ok, it's mapped. Make sure it's up-to-date */
3957         if (PageUptodate(page))
3958                 set_buffer_uptodate(bh);
3959
3960         if (!buffer_uptodate(bh)) {
3961                 err = -EIO;
3962                 ll_rw_block(READ, 1, &bh);
3963                 wait_on_buffer(bh);
3964                 /* Uhhuh. Read error. Complain and punt. */
3965                 if (!buffer_uptodate(bh))
3966                         goto unlock;
3967         }
3968
3969         if (ext4_should_journal_data(inode)) {
3970                 BUFFER_TRACE(bh, "get write access");
3971                 err = ext4_journal_get_write_access(handle, bh);
3972                 if (err)
3973                         goto unlock;
3974         }
3975
3976         zero_user(page, offset, length);
3977
3978         BUFFER_TRACE(bh, "zeroed end of block");
3979
3980         err = 0;
3981         if (ext4_should_journal_data(inode)) {
3982                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3983         } else {
3984                 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
3985                         err = ext4_jbd2_file_inode(handle, inode);
3986                 mark_buffer_dirty(bh);
3987         }
3988
3989 unlock:
3990         unlock_page(page);
3991         page_cache_release(page);
3992         return err;
3993 }
3994
3995 /*
3996  * Probably it should be a library function... search for first non-zero word
3997  * or memcmp with zero_page, whatever is better for particular architecture.
3998  * Linus?
3999  */
4000 static inline int all_zeroes(__le32 *p, __le32 *q)
4001 {
4002         while (p < q)
4003                 if (*p++)
4004                         return 0;
4005         return 1;
4006 }
4007
4008 /**
4009  *      ext4_find_shared - find the indirect blocks for partial truncation.
4010  *      @inode:   inode in question
4011  *      @depth:   depth of the affected branch
4012  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4013  *      @chain:   place to store the pointers to partial indirect blocks
4014  *      @top:     place to the (detached) top of branch
4015  *
4016  *      This is a helper function used by ext4_truncate().
4017  *
4018  *      When we do truncate() we may have to clean the ends of several
4019  *      indirect blocks but leave the blocks themselves alive. Block is
4020  *      partially truncated if some data below the new i_size is refered
4021  *      from it (and it is on the path to the first completely truncated
4022  *      data block, indeed).  We have to free the top of that path along
4023  *      with everything to the right of the path. Since no allocation
4024  *      past the truncation point is possible until ext4_truncate()
4025  *      finishes, we may safely do the latter, but top of branch may
4026  *      require special attention - pageout below the truncation point
4027  *      might try to populate it.
4028  *
4029  *      We atomically detach the top of branch from the tree, store the
4030  *      block number of its root in *@top, pointers to buffer_heads of
4031  *      partially truncated blocks - in @chain[].bh and pointers to
4032  *      their last elements that should not be removed - in
4033  *      @chain[].p. Return value is the pointer to last filled element
4034  *      of @chain.
4035  *
4036  *      The work left to caller to do the actual freeing of subtrees:
4037  *              a) free the subtree starting from *@top
4038  *              b) free the subtrees whose roots are stored in
4039  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4040  *              c) free the subtrees growing from the inode past the @chain[0].
4041  *                      (no partially truncated stuff there).  */
4042
4043 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4044                                   ext4_lblk_t offsets[4], Indirect chain[4],
4045                                   __le32 *top)
4046 {
4047         Indirect *partial, *p;
4048         int k, err;
4049
4050         *top = 0;
4051         /* Make k index the deepest non-null offset + 1 */
4052         for (k = depth; k > 1 && !offsets[k-1]; k--)
4053                 ;
4054         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4055         /* Writer: pointers */
4056         if (!partial)
4057                 partial = chain + k-1;
4058         /*
4059          * If the branch acquired continuation since we've looked at it -
4060          * fine, it should all survive and (new) top doesn't belong to us.
4061          */
4062         if (!partial->key && *partial->p)
4063                 /* Writer: end */
4064                 goto no_top;
4065         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4066                 ;
4067         /*
4068          * OK, we've found the last block that must survive. The rest of our
4069          * branch should be detached before unlocking. However, if that rest
4070          * of branch is all ours and does not grow immediately from the inode
4071          * it's easier to cheat and just decrement partial->p.
4072          */
4073         if (p == chain + k - 1 && p > chain) {
4074                 p->p--;
4075         } else {
4076                 *top = *p->p;
4077                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4078 #if 0
4079                 *p->p = 0;
4080 #endif
4081         }
4082         /* Writer: end */
4083
4084         while (partial > p) {
4085                 brelse(partial->bh);
4086                 partial--;
4087         }
4088 no_top:
4089         return partial;
4090 }
4091
4092 /*
4093  * Zero a number of block pointers in either an inode or an indirect block.
4094  * If we restart the transaction we must again get write access to the
4095  * indirect block for further modification.
4096  *
4097  * We release `count' blocks on disk, but (last - first) may be greater
4098  * than `count' because there can be holes in there.
4099  */
4100 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4101                              struct buffer_head *bh,
4102                              ext4_fsblk_t block_to_free,
4103                              unsigned long count, __le32 *first,
4104                              __le32 *last)
4105 {
4106         __le32 *p;
4107         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4108         int     err;
4109
4110         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4111                 flags |= EXT4_FREE_BLOCKS_METADATA;
4112
4113         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4114                                    count)) {
4115                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4116                                  "blocks %llu len %lu",
4117                                  (unsigned long long) block_to_free, count);
4118                 return 1;
4119         }
4120
4121         if (try_to_extend_transaction(handle, inode)) {
4122                 if (bh) {
4123                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4124                         err = ext4_handle_dirty_metadata(handle, inode, bh);
4125                         if (unlikely(err)) {
4126                                 ext4_std_error(inode->i_sb, err);
4127                                 return 1;
4128                         }
4129                 }
4130                 err = ext4_mark_inode_dirty(handle, inode);
4131                 if (unlikely(err)) {
4132                         ext4_std_error(inode->i_sb, err);
4133                         return 1;
4134                 }
4135                 err = ext4_truncate_restart_trans(handle, inode,
4136                                                   blocks_for_truncate(inode));
4137                 if (unlikely(err)) {
4138                         ext4_std_error(inode->i_sb, err);
4139                         return 1;
4140                 }
4141                 if (bh) {
4142                         BUFFER_TRACE(bh, "retaking write access");
4143                         ext4_journal_get_write_access(handle, bh);
4144                 }
4145         }
4146
4147         for (p = first; p < last; p++)
4148                 *p = 0;
4149
4150         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4151         return 0;
4152 }
4153
4154 /**
4155  * ext4_free_data - free a list of data blocks
4156  * @handle:     handle for this transaction
4157  * @inode:      inode we are dealing with
4158  * @this_bh:    indirect buffer_head which contains *@first and *@last
4159  * @first:      array of block numbers
4160  * @last:       points immediately past the end of array
4161  *
4162  * We are freeing all blocks refered from that array (numbers are stored as
4163  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4164  *
4165  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4166  * blocks are contiguous then releasing them at one time will only affect one
4167  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4168  * actually use a lot of journal space.
4169  *
4170  * @this_bh will be %NULL if @first and @last point into the inode's direct
4171  * block pointers.
4172  */
4173 static void ext4_free_data(handle_t *handle, struct inode *inode,
4174                            struct buffer_head *this_bh,
4175                            __le32 *first, __le32 *last)
4176 {
4177         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4178         unsigned long count = 0;            /* Number of blocks in the run */
4179         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4180                                                corresponding to
4181                                                block_to_free */
4182         ext4_fsblk_t nr;                    /* Current block # */
4183         __le32 *p;                          /* Pointer into inode/ind
4184                                                for current block */
4185         int err;
4186
4187         if (this_bh) {                          /* For indirect block */
4188                 BUFFER_TRACE(this_bh, "get_write_access");
4189                 err = ext4_journal_get_write_access(handle, this_bh);
4190                 /* Important: if we can't update the indirect pointers
4191                  * to the blocks, we can't free them. */
4192                 if (err)
4193                         return;
4194         }
4195
4196         for (p = first; p < last; p++) {
4197                 nr = le32_to_cpu(*p);
4198                 if (nr) {
4199                         /* accumulate blocks to free if they're contiguous */
4200                         if (count == 0) {
4201                                 block_to_free = nr;
4202                                 block_to_free_p = p;
4203                                 count = 1;
4204                         } else if (nr == block_to_free + count) {
4205                                 count++;
4206                         } else {
4207                                 if (ext4_clear_blocks(handle, inode, this_bh,
4208                                                       block_to_free, count,
4209                                                       block_to_free_p, p))
4210                                         break;
4211                                 block_to_free = nr;
4212                                 block_to_free_p = p;
4213                                 count = 1;
4214                         }
4215                 }
4216         }
4217
4218         if (count > 0)
4219                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4220                                   count, block_to_free_p, p);
4221
4222         if (this_bh) {
4223                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4224
4225                 /*
4226                  * The buffer head should have an attached journal head at this
4227                  * point. However, if the data is corrupted and an indirect
4228                  * block pointed to itself, it would have been detached when
4229                  * the block was cleared. Check for this instead of OOPSing.
4230                  */
4231                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4232                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4233                 else
4234                         EXT4_ERROR_INODE(inode,
4235                                          "circular indirect block detected at "
4236                                          "block %llu",
4237                                 (unsigned long long) this_bh->b_blocknr);
4238         }
4239 }
4240
4241 /**
4242  *      ext4_free_branches - free an array of branches
4243  *      @handle: JBD handle for this transaction
4244  *      @inode: inode we are dealing with
4245  *      @parent_bh: the buffer_head which contains *@first and *@last
4246  *      @first: array of block numbers
4247  *      @last:  pointer immediately past the end of array
4248  *      @depth: depth of the branches to free
4249  *
4250  *      We are freeing all blocks refered from these branches (numbers are
4251  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4252  *      appropriately.
4253  */
4254 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4255                                struct buffer_head *parent_bh,
4256                                __le32 *first, __le32 *last, int depth)
4257 {
4258         ext4_fsblk_t nr;
4259         __le32 *p;
4260
4261         if (ext4_handle_is_aborted(handle))
4262                 return;
4263
4264         if (depth--) {
4265                 struct buffer_head *bh;
4266                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4267                 p = last;
4268                 while (--p >= first) {
4269                         nr = le32_to_cpu(*p);
4270                         if (!nr)
4271                                 continue;               /* A hole */
4272
4273                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4274                                                    nr, 1)) {
4275                                 EXT4_ERROR_INODE(inode,
4276                                                  "invalid indirect mapped "
4277                                                  "block %lu (level %d)",
4278                                                  (unsigned long) nr, depth);
4279                                 break;
4280                         }
4281
4282                         /* Go read the buffer for the next level down */
4283                         bh = sb_bread(inode->i_sb, nr);
4284
4285                         /*
4286                          * A read failure? Report error and clear slot
4287                          * (should be rare).
4288                          */
4289                         if (!bh) {
4290                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4291                                                        "Read failure");
4292                                 continue;
4293                         }
4294
4295                         /* This zaps the entire block.  Bottom up. */
4296                         BUFFER_TRACE(bh, "free child branches");
4297                         ext4_free_branches(handle, inode, bh,
4298                                         (__le32 *) bh->b_data,
4299                                         (__le32 *) bh->b_data + addr_per_block,
4300                                         depth);
4301                         brelse(bh);
4302
4303                         /*
4304                          * Everything below this this pointer has been
4305                          * released.  Now let this top-of-subtree go.
4306                          *
4307                          * We want the freeing of this indirect block to be
4308                          * atomic in the journal with the updating of the
4309                          * bitmap block which owns it.  So make some room in
4310                          * the journal.
4311                          *
4312                          * We zero the parent pointer *after* freeing its
4313                          * pointee in the bitmaps, so if extend_transaction()
4314                          * for some reason fails to put the bitmap changes and
4315                          * the release into the same transaction, recovery
4316                          * will merely complain about releasing a free block,
4317                          * rather than leaking blocks.
4318                          */
4319                         if (ext4_handle_is_aborted(handle))
4320                                 return;
4321                         if (try_to_extend_transaction(handle, inode)) {
4322                                 ext4_mark_inode_dirty(handle, inode);
4323                                 ext4_truncate_restart_trans(handle, inode,
4324                                             blocks_for_truncate(inode));
4325                         }
4326
4327                         /*
4328                          * The forget flag here is critical because if
4329                          * we are journaling (and not doing data
4330                          * journaling), we have to make sure a revoke
4331                          * record is written to prevent the journal
4332                          * replay from overwriting the (former)
4333                          * indirect block if it gets reallocated as a
4334                          * data block.  This must happen in the same
4335                          * transaction where the data blocks are
4336                          * actually freed.
4337                          */
4338                         ext4_free_blocks(handle, inode, NULL, nr, 1,
4339                                          EXT4_FREE_BLOCKS_METADATA|
4340                                          EXT4_FREE_BLOCKS_FORGET);
4341
4342                         if (parent_bh) {
4343                                 /*
4344                                  * The block which we have just freed is
4345                                  * pointed to by an indirect block: journal it
4346                                  */
4347                                 BUFFER_TRACE(parent_bh, "get_write_access");
4348                                 if (!ext4_journal_get_write_access(handle,
4349                                                                    parent_bh)){
4350                                         *p = 0;
4351                                         BUFFER_TRACE(parent_bh,
4352                                         "call ext4_handle_dirty_metadata");
4353                                         ext4_handle_dirty_metadata(handle,
4354                                                                    inode,
4355                                                                    parent_bh);
4356                                 }
4357                         }
4358                 }
4359         } else {
4360                 /* We have reached the bottom of the tree. */
4361                 BUFFER_TRACE(parent_bh, "free data blocks");
4362                 ext4_free_data(handle, inode, parent_bh, first, last);
4363         }
4364 }
4365
4366 int ext4_can_truncate(struct inode *inode)
4367 {
4368         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4369                 return 0;
4370         if (S_ISREG(inode->i_mode))
4371                 return 1;
4372         if (S_ISDIR(inode->i_mode))
4373                 return 1;
4374         if (S_ISLNK(inode->i_mode))
4375                 return !ext4_inode_is_fast_symlink(inode);
4376         return 0;
4377 }
4378
4379 /*
4380  * ext4_truncate()
4381  *
4382  * We block out ext4_get_block() block instantiations across the entire
4383  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4384  * simultaneously on behalf of the same inode.
4385  *
4386  * As we work through the truncate and commmit bits of it to the journal there
4387  * is one core, guiding principle: the file's tree must always be consistent on
4388  * disk.  We must be able to restart the truncate after a crash.
4389  *
4390  * The file's tree may be transiently inconsistent in memory (although it
4391  * probably isn't), but whenever we close off and commit a journal transaction,
4392  * the contents of (the filesystem + the journal) must be consistent and
4393  * restartable.  It's pretty simple, really: bottom up, right to left (although
4394  * left-to-right works OK too).
4395  *
4396  * Note that at recovery time, journal replay occurs *before* the restart of
4397  * truncate against the orphan inode list.
4398  *
4399  * The committed inode has the new, desired i_size (which is the same as
4400  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4401  * that this inode's truncate did not complete and it will again call
4402  * ext4_truncate() to have another go.  So there will be instantiated blocks
4403  * to the right of the truncation point in a crashed ext4 filesystem.  But
4404  * that's fine - as long as they are linked from the inode, the post-crash
4405  * ext4_truncate() run will find them and release them.
4406  */
4407 void ext4_truncate(struct inode *inode)
4408 {
4409         handle_t *handle;
4410         struct ext4_inode_info *ei = EXT4_I(inode);
4411         __le32 *i_data = ei->i_data;
4412         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4413         struct address_space *mapping = inode->i_mapping;
4414         ext4_lblk_t offsets[4];
4415         Indirect chain[4];
4416         Indirect *partial;
4417         __le32 nr = 0;
4418         int n;
4419         ext4_lblk_t last_block;
4420         unsigned blocksize = inode->i_sb->s_blocksize;
4421
4422         if (!ext4_can_truncate(inode))
4423                 return;
4424
4425         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4426
4427         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4428                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4429
4430         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4431                 ext4_ext_truncate(inode);
4432                 return;
4433         }
4434
4435         handle = start_transaction(inode);
4436         if (IS_ERR(handle))
4437                 return;         /* AKPM: return what? */
4438
4439         last_block = (inode->i_size + blocksize-1)
4440                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4441
4442         if (inode->i_size & (blocksize - 1))
4443                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4444                         goto out_stop;
4445
4446         n = ext4_block_to_path(inode, last_block, offsets, NULL);
4447         if (n == 0)
4448                 goto out_stop;  /* error */
4449
4450         /*
4451          * OK.  This truncate is going to happen.  We add the inode to the
4452          * orphan list, so that if this truncate spans multiple transactions,
4453          * and we crash, we will resume the truncate when the filesystem
4454          * recovers.  It also marks the inode dirty, to catch the new size.
4455          *
4456          * Implication: the file must always be in a sane, consistent
4457          * truncatable state while each transaction commits.
4458          */
4459         if (ext4_orphan_add(handle, inode))
4460                 goto out_stop;
4461
4462         /*
4463          * From here we block out all ext4_get_block() callers who want to
4464          * modify the block allocation tree.
4465          */
4466         down_write(&ei->i_data_sem);
4467
4468         ext4_discard_preallocations(inode);
4469
4470         /*
4471          * The orphan list entry will now protect us from any crash which
4472          * occurs before the truncate completes, so it is now safe to propagate
4473          * the new, shorter inode size (held for now in i_size) into the
4474          * on-disk inode. We do this via i_disksize, which is the value which
4475          * ext4 *really* writes onto the disk inode.
4476          */
4477         ei->i_disksize = inode->i_size;
4478
4479         if (n == 1) {           /* direct blocks */
4480                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4481                                i_data + EXT4_NDIR_BLOCKS);
4482                 goto do_indirects;
4483         }
4484
4485         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4486         /* Kill the top of shared branch (not detached) */
4487         if (nr) {
4488                 if (partial == chain) {
4489                         /* Shared branch grows from the inode */
4490                         ext4_free_branches(handle, inode, NULL,
4491                                            &nr, &nr+1, (chain+n-1) - partial);
4492                         *partial->p = 0;
4493                         /*
4494                          * We mark the inode dirty prior to restart,
4495                          * and prior to stop.  No need for it here.
4496                          */
4497                 } else {
4498                         /* Shared branch grows from an indirect block */
4499                         BUFFER_TRACE(partial->bh, "get_write_access");
4500                         ext4_free_branches(handle, inode, partial->bh,
4501                                         partial->p,
4502                                         partial->p+1, (chain+n-1) - partial);
4503                 }
4504         }
4505         /* Clear the ends of indirect blocks on the shared branch */
4506         while (partial > chain) {
4507                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4508                                    (__le32*)partial->bh->b_data+addr_per_block,
4509                                    (chain+n-1) - partial);
4510                 BUFFER_TRACE(partial->bh, "call brelse");
4511                 brelse(partial->bh);
4512                 partial--;
4513         }
4514 do_indirects:
4515         /* Kill the remaining (whole) subtrees */
4516         switch (offsets[0]) {
4517         default:
4518                 nr = i_data[EXT4_IND_BLOCK];
4519                 if (nr) {
4520                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4521                         i_data[EXT4_IND_BLOCK] = 0;
4522                 }
4523         case EXT4_IND_BLOCK:
4524                 nr = i_data[EXT4_DIND_BLOCK];
4525                 if (nr) {
4526                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4527                         i_data[EXT4_DIND_BLOCK] = 0;
4528                 }
4529         case EXT4_DIND_BLOCK:
4530                 nr = i_data[EXT4_TIND_BLOCK];
4531                 if (nr) {
4532                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4533                         i_data[EXT4_TIND_BLOCK] = 0;
4534                 }
4535         case EXT4_TIND_BLOCK:
4536                 ;
4537         }
4538
4539         up_write(&ei->i_data_sem);
4540         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4541         ext4_mark_inode_dirty(handle, inode);
4542
4543         /*
4544          * In a multi-transaction truncate, we only make the final transaction
4545          * synchronous
4546          */
4547         if (IS_SYNC(inode))
4548                 ext4_handle_sync(handle);
4549 out_stop:
4550         /*
4551          * If this was a simple ftruncate(), and the file will remain alive
4552          * then we need to clear up the orphan record which we created above.
4553          * However, if this was a real unlink then we were called by
4554          * ext4_delete_inode(), and we allow that function to clean up the
4555          * orphan info for us.
4556          */
4557         if (inode->i_nlink)
4558                 ext4_orphan_del(handle, inode);
4559
4560         ext4_journal_stop(handle);
4561 }
4562
4563 /*
4564  * ext4_get_inode_loc returns with an extra refcount against the inode's
4565  * underlying buffer_head on success. If 'in_mem' is true, we have all
4566  * data in memory that is needed to recreate the on-disk version of this
4567  * inode.
4568  */
4569 static int __ext4_get_inode_loc(struct inode *inode,
4570                                 struct ext4_iloc *iloc, int in_mem)
4571 {
4572         struct ext4_group_desc  *gdp;
4573         struct buffer_head      *bh;
4574         struct super_block      *sb = inode->i_sb;
4575         ext4_fsblk_t            block;
4576         int                     inodes_per_block, inode_offset;
4577
4578         iloc->bh = NULL;
4579         if (!ext4_valid_inum(sb, inode->i_ino))
4580                 return -EIO;
4581
4582         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4583         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4584         if (!gdp)
4585                 return -EIO;
4586
4587         /*
4588          * Figure out the offset within the block group inode table
4589          */
4590         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4591         inode_offset = ((inode->i_ino - 1) %
4592                         EXT4_INODES_PER_GROUP(sb));
4593         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4594         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4595
4596         bh = sb_getblk(sb, block);
4597         if (!bh) {
4598                 EXT4_ERROR_INODE_BLOCK(inode, block,
4599                                        "unable to read itable block");
4600                 return -EIO;
4601         }
4602         if (!buffer_uptodate(bh)) {
4603                 lock_buffer(bh);
4604
4605                 /*
4606                  * If the buffer has the write error flag, we have failed
4607                  * to write out another inode in the same block.  In this
4608                  * case, we don't have to read the block because we may
4609                  * read the old inode data successfully.
4610                  */
4611                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4612                         set_buffer_uptodate(bh);
4613
4614                 if (buffer_uptodate(bh)) {
4615                         /* someone brought it uptodate while we waited */
4616                         unlock_buffer(bh);
4617                         goto has_buffer;
4618                 }
4619
4620                 /*
4621                  * If we have all information of the inode in memory and this
4622                  * is the only valid inode in the block, we need not read the
4623                  * block.
4624                  */
4625                 if (in_mem) {
4626                         struct buffer_head *bitmap_bh;
4627                         int i, start;
4628
4629                         start = inode_offset & ~(inodes_per_block - 1);
4630
4631                         /* Is the inode bitmap in cache? */
4632                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4633                         if (!bitmap_bh)
4634                                 goto make_io;
4635
4636                         /*
4637                          * If the inode bitmap isn't in cache then the
4638                          * optimisation may end up performing two reads instead
4639                          * of one, so skip it.
4640                          */
4641                         if (!buffer_uptodate(bitmap_bh)) {
4642                                 brelse(bitmap_bh);
4643                                 goto make_io;
4644                         }
4645                         for (i = start; i < start + inodes_per_block; i++) {
4646                                 if (i == inode_offset)
4647                                         continue;
4648                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4649                                         break;
4650                         }
4651                         brelse(bitmap_bh);
4652                         if (i == start + inodes_per_block) {
4653                                 /* all other inodes are free, so skip I/O */
4654                                 memset(bh->b_data, 0, bh->b_size);
4655                                 set_buffer_uptodate(bh);
4656                                 unlock_buffer(bh);
4657                                 goto has_buffer;
4658                         }
4659                 }
4660
4661 make_io:
4662                 /*
4663                  * If we need to do any I/O, try to pre-readahead extra
4664                  * blocks from the inode table.
4665                  */
4666                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4667                         ext4_fsblk_t b, end, table;
4668                         unsigned num;
4669
4670                         table = ext4_inode_table(sb, gdp);
4671                         /* s_inode_readahead_blks is always a power of 2 */
4672                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4673                         if (table > b)
4674                                 b = table;
4675                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4676                         num = EXT4_INODES_PER_GROUP(sb);
4677                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4678                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4679                                 num -= ext4_itable_unused_count(sb, gdp);
4680                         table += num / inodes_per_block;
4681                         if (end > table)
4682                                 end = table;
4683                         while (b <= end)
4684                                 sb_breadahead(sb, b++);
4685                 }
4686
4687                 /*
4688                  * There are other valid inodes in the buffer, this inode
4689                  * has in-inode xattrs, or we don't have this inode in memory.
4690                  * Read the block from disk.
4691                  */
4692                 get_bh(bh);
4693                 bh->b_end_io = end_buffer_read_sync;
4694                 submit_bh(READ_META, bh);
4695                 wait_on_buffer(bh);
4696                 if (!buffer_uptodate(bh)) {
4697                         EXT4_ERROR_INODE_BLOCK(inode, block,
4698                                                "unable to read itable block");
4699                         brelse(bh);
4700                         return -EIO;
4701                 }
4702         }
4703 has_buffer:
4704         iloc->bh = bh;
4705         return 0;
4706 }
4707
4708 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4709 {
4710         /* We have all inode data except xattrs in memory here. */
4711         return __ext4_get_inode_loc(inode, iloc,
4712                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4713 }
4714
4715 void ext4_set_inode_flags(struct inode *inode)
4716 {
4717         unsigned int flags = EXT4_I(inode)->i_flags;
4718
4719         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4720         if (flags & EXT4_SYNC_FL)
4721                 inode->i_flags |= S_SYNC;
4722         if (flags & EXT4_APPEND_FL)
4723                 inode->i_flags |= S_APPEND;
4724         if (flags & EXT4_IMMUTABLE_FL)
4725                 inode->i_flags |= S_IMMUTABLE;
4726         if (flags & EXT4_NOATIME_FL)
4727                 inode->i_flags |= S_NOATIME;
4728         if (flags & EXT4_DIRSYNC_FL)
4729                 inode->i_flags |= S_DIRSYNC;
4730 }
4731
4732 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4733 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4734 {
4735         unsigned int vfs_fl;
4736         unsigned long old_fl, new_fl;
4737
4738         do {
4739                 vfs_fl = ei->vfs_inode.i_flags;
4740                 old_fl = ei->i_flags;
4741                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4742                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4743                                 EXT4_DIRSYNC_FL);
4744                 if (vfs_fl & S_SYNC)
4745                         new_fl |= EXT4_SYNC_FL;
4746                 if (vfs_fl & S_APPEND)
4747                         new_fl |= EXT4_APPEND_FL;
4748                 if (vfs_fl & S_IMMUTABLE)
4749                         new_fl |= EXT4_IMMUTABLE_FL;
4750                 if (vfs_fl & S_NOATIME)
4751                         new_fl |= EXT4_NOATIME_FL;
4752                 if (vfs_fl & S_DIRSYNC)
4753                         new_fl |= EXT4_DIRSYNC_FL;
4754         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4755 }
4756
4757 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4758                                   struct ext4_inode_info *ei)
4759 {
4760         blkcnt_t i_blocks ;
4761         struct inode *inode = &(ei->vfs_inode);
4762         struct super_block *sb = inode->i_sb;
4763
4764         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4765                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4766                 /* we are using combined 48 bit field */
4767                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4768                                         le32_to_cpu(raw_inode->i_blocks_lo);
4769                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4770                         /* i_blocks represent file system block size */
4771                         return i_blocks  << (inode->i_blkbits - 9);
4772                 } else {
4773                         return i_blocks;
4774                 }
4775         } else {
4776                 return le32_to_cpu(raw_inode->i_blocks_lo);
4777         }
4778 }
4779
4780 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4781 {
4782         struct ext4_iloc iloc;
4783         struct ext4_inode *raw_inode;
4784         struct ext4_inode_info *ei;
4785         struct inode *inode;
4786         journal_t *journal = EXT4_SB(sb)->s_journal;
4787         long ret;
4788         int block;
4789
4790         inode = iget_locked(sb, ino);
4791         if (!inode)
4792                 return ERR_PTR(-ENOMEM);
4793         if (!(inode->i_state & I_NEW))
4794                 return inode;
4795
4796         ei = EXT4_I(inode);
4797         iloc.bh = NULL;
4798
4799         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4800         if (ret < 0)
4801                 goto bad_inode;
4802         raw_inode = ext4_raw_inode(&iloc);
4803         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4804         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4805         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4806         if (!(test_opt(inode->i_sb, NO_UID32))) {
4807                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4808                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4809         }
4810         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4811
4812         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4813         ei->i_dir_start_lookup = 0;
4814         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4815         /* We now have enough fields to check if the inode was active or not.
4816          * This is needed because nfsd might try to access dead inodes
4817          * the test is that same one that e2fsck uses
4818          * NeilBrown 1999oct15
4819          */
4820         if (inode->i_nlink == 0) {
4821                 if (inode->i_mode == 0 ||
4822                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4823                         /* this inode is deleted */
4824                         ret = -ESTALE;
4825                         goto bad_inode;
4826                 }
4827                 /* The only unlinked inodes we let through here have
4828                  * valid i_mode and are being read by the orphan
4829                  * recovery code: that's fine, we're about to complete
4830                  * the process of deleting those. */
4831         }
4832         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4833         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4834         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4835         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4836                 ei->i_file_acl |=
4837                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4838         inode->i_size = ext4_isize(raw_inode);
4839         ei->i_disksize = inode->i_size;
4840 #ifdef CONFIG_QUOTA
4841         ei->i_reserved_quota = 0;
4842 #endif
4843         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4844         ei->i_block_group = iloc.block_group;
4845         ei->i_last_alloc_group = ~0;
4846         /*
4847          * NOTE! The in-memory inode i_data array is in little-endian order
4848          * even on big-endian machines: we do NOT byteswap the block numbers!
4849          */
4850         for (block = 0; block < EXT4_N_BLOCKS; block++)
4851                 ei->i_data[block] = raw_inode->i_block[block];
4852         INIT_LIST_HEAD(&ei->i_orphan);
4853
4854         /*
4855          * Set transaction id's of transactions that have to be committed
4856          * to finish f[data]sync. We set them to currently running transaction
4857          * as we cannot be sure that the inode or some of its metadata isn't
4858          * part of the transaction - the inode could have been reclaimed and
4859          * now it is reread from disk.
4860          */
4861         if (journal) {
4862                 transaction_t *transaction;
4863                 tid_t tid;
4864
4865                 read_lock(&journal->j_state_lock);
4866                 if (journal->j_running_transaction)
4867                         transaction = journal->j_running_transaction;
4868                 else
4869                         transaction = journal->j_committing_transaction;
4870                 if (transaction)
4871                         tid = transaction->t_tid;
4872                 else
4873                         tid = journal->j_commit_sequence;
4874                 read_unlock(&journal->j_state_lock);
4875                 ei->i_sync_tid = tid;
4876                 ei->i_datasync_tid = tid;
4877         }
4878
4879         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4880                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4881                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4882                     EXT4_INODE_SIZE(inode->i_sb)) {
4883                         ret = -EIO;
4884                         goto bad_inode;
4885                 }
4886                 if (ei->i_extra_isize == 0) {
4887                         /* The extra space is currently unused. Use it. */
4888                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4889                                             EXT4_GOOD_OLD_INODE_SIZE;
4890                 } else {
4891                         __le32 *magic = (void *)raw_inode +
4892                                         EXT4_GOOD_OLD_INODE_SIZE +
4893                                         ei->i_extra_isize;
4894                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4895                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4896                 }
4897         } else
4898                 ei->i_extra_isize = 0;
4899
4900         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4901         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4902         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4903         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4904
4905         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4906         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4907                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4908                         inode->i_version |=
4909                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4910         }
4911
4912         ret = 0;
4913         if (ei->i_file_acl &&
4914             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4915                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4916                                  ei->i_file_acl);
4917                 ret = -EIO;
4918                 goto bad_inode;
4919         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4920                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4921                     (S_ISLNK(inode->i_mode) &&
4922                      !ext4_inode_is_fast_symlink(inode)))
4923                         /* Validate extent which is part of inode */
4924                         ret = ext4_ext_check_inode(inode);
4925         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4926                    (S_ISLNK(inode->i_mode) &&
4927                     !ext4_inode_is_fast_symlink(inode))) {
4928                 /* Validate block references which are part of inode */
4929                 ret = ext4_check_inode_blockref(inode);
4930         }
4931         if (ret)
4932                 goto bad_inode;
4933
4934         if (S_ISREG(inode->i_mode)) {
4935                 inode->i_op = &ext4_file_inode_operations;
4936                 inode->i_fop = &ext4_file_operations;
4937                 ext4_set_aops(inode);
4938         } else if (S_ISDIR(inode->i_mode)) {
4939                 inode->i_op = &ext4_dir_inode_operations;
4940                 inode->i_fop = &ext4_dir_operations;
4941         } else if (S_ISLNK(inode->i_mode)) {
4942                 if (ext4_inode_is_fast_symlink(inode)) {
4943                         inode->i_op = &ext4_fast_symlink_inode_operations;
4944                         nd_terminate_link(ei->i_data, inode->i_size,
4945                                 sizeof(ei->i_data) - 1);
4946                 } else {
4947                         inode->i_op = &ext4_symlink_inode_operations;
4948                         ext4_set_aops(inode);
4949                 }
4950         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4951               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4952                 inode->i_op = &ext4_special_inode_operations;
4953                 if (raw_inode->i_block[0])
4954                         init_special_inode(inode, inode->i_mode,
4955                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4956                 else
4957                         init_special_inode(inode, inode->i_mode,
4958                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4959         } else {
4960                 ret = -EIO;
4961                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4962                 goto bad_inode;
4963         }
4964         brelse(iloc.bh);
4965         ext4_set_inode_flags(inode);
4966         unlock_new_inode(inode);
4967         return inode;
4968
4969 bad_inode:
4970         brelse(iloc.bh);
4971         iget_failed(inode);
4972         return ERR_PTR(ret);
4973 }
4974
4975 static int ext4_inode_blocks_set(handle_t *handle,
4976                                 struct ext4_inode *raw_inode,
4977                                 struct ext4_inode_info *ei)
4978 {
4979         struct inode *inode = &(ei->vfs_inode);
4980         u64 i_blocks = inode->i_blocks;
4981         struct super_block *sb = inode->i_sb;
4982
4983         if (i_blocks <= ~0U) {
4984                 /*
4985                  * i_blocks can be represnted in a 32 bit variable
4986                  * as multiple of 512 bytes
4987                  */
4988                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4989                 raw_inode->i_blocks_high = 0;
4990                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4991                 return 0;
4992         }
4993         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4994                 return -EFBIG;
4995
4996         if (i_blocks <= 0xffffffffffffULL) {
4997                 /*
4998                  * i_blocks can be represented in a 48 bit variable
4999                  * as multiple of 512 bytes
5000                  */
5001                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5002                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5003                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5004         } else {
5005                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5006                 /* i_block is stored in file system block size */
5007                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5008                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5009                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5010         }
5011         return 0;
5012 }
5013
5014 /*
5015  * Post the struct inode info into an on-disk inode location in the
5016  * buffer-cache.  This gobbles the caller's reference to the
5017  * buffer_head in the inode location struct.
5018  *
5019  * The caller must have write access to iloc->bh.
5020  */
5021 static int ext4_do_update_inode(handle_t *handle,
5022                                 struct inode *inode,
5023                                 struct ext4_iloc *iloc)
5024 {
5025         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5026         struct ext4_inode_info *ei = EXT4_I(inode);
5027         struct buffer_head *bh = iloc->bh;
5028         int err = 0, rc, block;
5029
5030         /* For fields not not tracking in the in-memory inode,
5031          * initialise them to zero for new inodes. */
5032         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5033                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5034
5035         ext4_get_inode_flags(ei);
5036         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5037         if (!(test_opt(inode->i_sb, NO_UID32))) {
5038                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5039                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5040 /*
5041  * Fix up interoperability with old kernels. Otherwise, old inodes get
5042  * re-used with the upper 16 bits of the uid/gid intact
5043  */
5044                 if (!ei->i_dtime) {
5045                         raw_inode->i_uid_high =
5046                                 cpu_to_le16(high_16_bits(inode->i_uid));
5047                         raw_inode->i_gid_high =
5048                                 cpu_to_le16(high_16_bits(inode->i_gid));
5049                 } else {
5050                         raw_inode->i_uid_high = 0;
5051                         raw_inode->i_gid_high = 0;
5052                 }
5053         } else {
5054                 raw_inode->i_uid_low =
5055                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5056                 raw_inode->i_gid_low =
5057                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5058                 raw_inode->i_uid_high = 0;
5059                 raw_inode->i_gid_high = 0;
5060         }
5061         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5062
5063         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5064         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5065         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5066         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5067
5068         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5069                 goto out_brelse;
5070         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5071         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5072         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5073             cpu_to_le32(EXT4_OS_HURD))
5074                 raw_inode->i_file_acl_high =
5075                         cpu_to_le16(ei->i_file_acl >> 32);
5076         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5077         ext4_isize_set(raw_inode, ei->i_disksize);
5078         if (ei->i_disksize > 0x7fffffffULL) {
5079                 struct super_block *sb = inode->i_sb;
5080                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5081                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5082                                 EXT4_SB(sb)->s_es->s_rev_level ==
5083                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5084                         /* If this is the first large file
5085                          * created, add a flag to the superblock.
5086                          */
5087                         err = ext4_journal_get_write_access(handle,
5088                                         EXT4_SB(sb)->s_sbh);
5089                         if (err)
5090                                 goto out_brelse;
5091                         ext4_update_dynamic_rev(sb);
5092                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5093                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5094                         sb->s_dirt = 1;
5095                         ext4_handle_sync(handle);
5096                         err = ext4_handle_dirty_metadata(handle, NULL,
5097                                         EXT4_SB(sb)->s_sbh);
5098                 }
5099         }
5100         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5101         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5102                 if (old_valid_dev(inode->i_rdev)) {
5103                         raw_inode->i_block[0] =
5104                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5105                         raw_inode->i_block[1] = 0;
5106                 } else {
5107                         raw_inode->i_block[0] = 0;
5108                         raw_inode->i_block[1] =
5109                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5110                         raw_inode->i_block[2] = 0;
5111                 }
5112         } else
5113                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5114                         raw_inode->i_block[block] = ei->i_data[block];
5115
5116         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5117         if (ei->i_extra_isize) {
5118                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5119                         raw_inode->i_version_hi =
5120                         cpu_to_le32(inode->i_version >> 32);
5121                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5122         }
5123
5124         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5125         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5126         if (!err)
5127                 err = rc;
5128         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5129
5130         ext4_update_inode_fsync_trans(handle, inode, 0);
5131 out_brelse:
5132         brelse(bh);
5133         ext4_std_error(inode->i_sb, err);
5134         return err;
5135 }
5136
5137 /*
5138  * ext4_write_inode()
5139  *
5140  * We are called from a few places:
5141  *
5142  * - Within generic_file_write() for O_SYNC files.
5143  *   Here, there will be no transaction running. We wait for any running
5144  *   trasnaction to commit.
5145  *
5146  * - Within sys_sync(), kupdate and such.
5147  *   We wait on commit, if tol to.
5148  *
5149  * - Within prune_icache() (PF_MEMALLOC == true)
5150  *   Here we simply return.  We can't afford to block kswapd on the
5151  *   journal commit.
5152  *
5153  * In all cases it is actually safe for us to return without doing anything,
5154  * because the inode has been copied into a raw inode buffer in
5155  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5156  * knfsd.
5157  *
5158  * Note that we are absolutely dependent upon all inode dirtiers doing the
5159  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5160  * which we are interested.
5161  *
5162  * It would be a bug for them to not do this.  The code:
5163  *
5164  *      mark_inode_dirty(inode)
5165  *      stuff();
5166  *      inode->i_size = expr;
5167  *
5168  * is in error because a kswapd-driven write_inode() could occur while
5169  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5170  * will no longer be on the superblock's dirty inode list.
5171  */
5172 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5173 {
5174         int err;
5175
5176         if (current->flags & PF_MEMALLOC)
5177                 return 0;
5178
5179         if (EXT4_SB(inode->i_sb)->s_journal) {
5180                 if (ext4_journal_current_handle()) {
5181                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5182                         dump_stack();
5183                         return -EIO;
5184                 }
5185
5186                 if (wbc->sync_mode != WB_SYNC_ALL)
5187                         return 0;
5188
5189                 err = ext4_force_commit(inode->i_sb);
5190         } else {
5191                 struct ext4_iloc iloc;
5192
5193                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5194                 if (err)
5195                         return err;
5196                 if (wbc->sync_mode == WB_SYNC_ALL)
5197                         sync_dirty_buffer(iloc.bh);
5198                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5199                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5200                                          "IO error syncing inode");
5201                         err = -EIO;
5202                 }
5203                 brelse(iloc.bh);
5204         }
5205         return err;
5206 }
5207
5208 /*
5209  * ext4_setattr()
5210  *
5211  * Called from notify_change.
5212  *
5213  * We want to trap VFS attempts to truncate the file as soon as
5214  * possible.  In particular, we want to make sure that when the VFS
5215  * shrinks i_size, we put the inode on the orphan list and modify
5216  * i_disksize immediately, so that during the subsequent flushing of
5217  * dirty pages and freeing of disk blocks, we can guarantee that any
5218  * commit will leave the blocks being flushed in an unused state on
5219  * disk.  (On recovery, the inode will get truncated and the blocks will
5220  * be freed, so we have a strong guarantee that no future commit will
5221  * leave these blocks visible to the user.)
5222  *
5223  * Another thing we have to assure is that if we are in ordered mode
5224  * and inode is still attached to the committing transaction, we must
5225  * we start writeout of all the dirty pages which are being truncated.
5226  * This way we are sure that all the data written in the previous
5227  * transaction are already on disk (truncate waits for pages under
5228  * writeback).
5229  *
5230  * Called with inode->i_mutex down.
5231  */
5232 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5233 {
5234         struct inode *inode = dentry->d_inode;
5235         int error, rc = 0;
5236         int orphan = 0;
5237         const unsigned int ia_valid = attr->ia_valid;
5238
5239         error = inode_change_ok(inode, attr);
5240         if (error)
5241                 return error;
5242
5243         if (is_quota_modification(inode, attr))
5244                 dquot_initialize(inode);
5245         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5246                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5247                 handle_t *handle;
5248
5249                 /* (user+group)*(old+new) structure, inode write (sb,
5250                  * inode block, ? - but truncate inode update has it) */
5251                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5252                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5253                 if (IS_ERR(handle)) {
5254                         error = PTR_ERR(handle);
5255                         goto err_out;
5256                 }
5257                 error = dquot_transfer(inode, attr);
5258                 if (error) {
5259                         ext4_journal_stop(handle);
5260                         return error;
5261                 }
5262                 /* Update corresponding info in inode so that everything is in
5263                  * one transaction */
5264                 if (attr->ia_valid & ATTR_UID)
5265                         inode->i_uid = attr->ia_uid;
5266                 if (attr->ia_valid & ATTR_GID)
5267                         inode->i_gid = attr->ia_gid;
5268                 error = ext4_mark_inode_dirty(handle, inode);
5269                 ext4_journal_stop(handle);
5270         }
5271
5272         if (attr->ia_valid & ATTR_SIZE) {
5273                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5274                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5275
5276                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5277                                 return -EFBIG;
5278                 }
5279         }
5280
5281         if (S_ISREG(inode->i_mode) &&
5282             attr->ia_valid & ATTR_SIZE &&
5283             (attr->ia_size < inode->i_size ||
5284              (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5285                 handle_t *handle;
5286
5287                 handle = ext4_journal_start(inode, 3);
5288                 if (IS_ERR(handle)) {
5289                         error = PTR_ERR(handle);
5290                         goto err_out;
5291                 }
5292                 if (ext4_handle_valid(handle)) {
5293                         error = ext4_orphan_add(handle, inode);
5294                         orphan = 1;
5295                 }
5296                 EXT4_I(inode)->i_disksize = attr->ia_size;
5297                 rc = ext4_mark_inode_dirty(handle, inode);
5298                 if (!error)
5299                         error = rc;
5300                 ext4_journal_stop(handle);
5301
5302                 if (ext4_should_order_data(inode)) {
5303                         error = ext4_begin_ordered_truncate(inode,
5304                                                             attr->ia_size);
5305                         if (error) {
5306                                 /* Do as much error cleanup as possible */
5307                                 handle = ext4_journal_start(inode, 3);
5308                                 if (IS_ERR(handle)) {
5309                                         ext4_orphan_del(NULL, inode);
5310                                         goto err_out;
5311                                 }
5312                                 ext4_orphan_del(handle, inode);
5313                                 orphan = 0;
5314                                 ext4_journal_stop(handle);
5315                                 goto err_out;
5316                         }
5317                 }
5318                 /* ext4_truncate will clear the flag */
5319                 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5320                         ext4_truncate(inode);
5321         }
5322
5323         if ((attr->ia_valid & ATTR_SIZE) &&
5324             attr->ia_size != i_size_read(inode))
5325                 rc = vmtruncate(inode, attr->ia_size);
5326
5327         if (!rc) {
5328                 setattr_copy(inode, attr);
5329                 mark_inode_dirty(inode);
5330         }
5331
5332         /*
5333          * If the call to ext4_truncate failed to get a transaction handle at
5334          * all, we need to clean up the in-core orphan list manually.
5335          */
5336         if (orphan && inode->i_nlink)
5337                 ext4_orphan_del(NULL, inode);
5338
5339         if (!rc && (ia_valid & ATTR_MODE))
5340                 rc = ext4_acl_chmod(inode);
5341
5342 err_out:
5343         ext4_std_error(inode->i_sb, error);
5344         if (!error)
5345                 error = rc;
5346         return error;
5347 }
5348
5349 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5350                  struct kstat *stat)
5351 {
5352         struct inode *inode;
5353         unsigned long delalloc_blocks;
5354
5355         inode = dentry->d_inode;
5356         generic_fillattr(inode, stat);
5357
5358         /*
5359          * We can't update i_blocks if the block allocation is delayed
5360          * otherwise in the case of system crash before the real block
5361          * allocation is done, we will have i_blocks inconsistent with
5362          * on-disk file blocks.
5363          * We always keep i_blocks updated together with real
5364          * allocation. But to not confuse with user, stat
5365          * will return the blocks that include the delayed allocation
5366          * blocks for this file.
5367          */
5368         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5369
5370         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5371         return 0;
5372 }
5373
5374 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5375                                       int chunk)
5376 {
5377         int indirects;
5378
5379         /* if nrblocks are contiguous */
5380         if (chunk) {
5381                 /*
5382                  * With N contiguous data blocks, it need at most
5383                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5384                  * 2 dindirect blocks
5385                  * 1 tindirect block
5386                  */
5387                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5388                 return indirects + 3;
5389         }
5390         /*
5391          * if nrblocks are not contiguous, worse case, each block touch
5392          * a indirect block, and each indirect block touch a double indirect
5393          * block, plus a triple indirect block
5394          */
5395         indirects = nrblocks * 2 + 1;
5396         return indirects;
5397 }
5398
5399 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5400 {
5401         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5402                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5403         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5404 }
5405
5406 /*
5407  * Account for index blocks, block groups bitmaps and block group
5408  * descriptor blocks if modify datablocks and index blocks
5409  * worse case, the indexs blocks spread over different block groups
5410  *
5411  * If datablocks are discontiguous, they are possible to spread over
5412  * different block groups too. If they are contiuguous, with flexbg,
5413  * they could still across block group boundary.
5414  *
5415  * Also account for superblock, inode, quota and xattr blocks
5416  */
5417 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5418 {
5419         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5420         int gdpblocks;
5421         int idxblocks;
5422         int ret = 0;
5423
5424         /*
5425          * How many index blocks need to touch to modify nrblocks?
5426          * The "Chunk" flag indicating whether the nrblocks is
5427          * physically contiguous on disk
5428          *
5429          * For Direct IO and fallocate, they calls get_block to allocate
5430          * one single extent at a time, so they could set the "Chunk" flag
5431          */
5432         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5433
5434         ret = idxblocks;
5435
5436         /*
5437          * Now let's see how many group bitmaps and group descriptors need
5438          * to account
5439          */
5440         groups = idxblocks;
5441         if (chunk)
5442                 groups += 1;
5443         else
5444                 groups += nrblocks;
5445
5446         gdpblocks = groups;
5447         if (groups > ngroups)
5448                 groups = ngroups;
5449         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5450                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5451
5452         /* bitmaps and block group descriptor blocks */
5453         ret += groups + gdpblocks;
5454
5455         /* Blocks for super block, inode, quota and xattr blocks */
5456         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5457
5458         return ret;
5459 }
5460
5461 /*
5462  * Calulate the total number of credits to reserve to fit
5463  * the modification of a single pages into a single transaction,
5464  * which may include multiple chunks of block allocations.
5465  *
5466  * This could be called via ext4_write_begin()
5467  *
5468  * We need to consider the worse case, when
5469  * one new block per extent.
5470  */
5471 int ext4_writepage_trans_blocks(struct inode *inode)
5472 {
5473         int bpp = ext4_journal_blocks_per_page(inode);
5474         int ret;
5475
5476         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5477
5478         /* Account for data blocks for journalled mode */
5479         if (ext4_should_journal_data(inode))
5480                 ret += bpp;
5481         return ret;
5482 }
5483
5484 /*
5485  * Calculate the journal credits for a chunk of data modification.
5486  *
5487  * This is called from DIO, fallocate or whoever calling
5488  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5489  *
5490  * journal buffers for data blocks are not included here, as DIO
5491  * and fallocate do no need to journal data buffers.
5492  */
5493 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5494 {
5495         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5496 }
5497
5498 /*
5499  * The caller must have previously called ext4_reserve_inode_write().
5500  * Give this, we know that the caller already has write access to iloc->bh.
5501  */
5502 int ext4_mark_iloc_dirty(handle_t *handle,
5503                          struct inode *inode, struct ext4_iloc *iloc)
5504 {
5505         int err = 0;
5506
5507         if (test_opt(inode->i_sb, I_VERSION))
5508                 inode_inc_iversion(inode);
5509
5510         /* the do_update_inode consumes one bh->b_count */
5511         get_bh(iloc->bh);
5512
5513         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5514         err = ext4_do_update_inode(handle, inode, iloc);
5515         put_bh(iloc->bh);
5516         return err;
5517 }
5518
5519 /*
5520  * On success, We end up with an outstanding reference count against
5521  * iloc->bh.  This _must_ be cleaned up later.
5522  */
5523
5524 int
5525 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5526                          struct ext4_iloc *iloc)
5527 {
5528         int err;
5529
5530         err = ext4_get_inode_loc(inode, iloc);
5531         if (!err) {
5532                 BUFFER_TRACE(iloc->bh, "get_write_access");
5533                 err = ext4_journal_get_write_access(handle, iloc->bh);
5534                 if (err) {
5535                         brelse(iloc->bh);
5536                         iloc->bh = NULL;
5537                 }
5538         }
5539         ext4_std_error(inode->i_sb, err);
5540         return err;
5541 }
5542
5543 /*
5544  * Expand an inode by new_extra_isize bytes.
5545  * Returns 0 on success or negative error number on failure.
5546  */
5547 static int ext4_expand_extra_isize(struct inode *inode,
5548                                    unsigned int new_extra_isize,
5549                                    struct ext4_iloc iloc,
5550                                    handle_t *handle)
5551 {
5552         struct ext4_inode *raw_inode;
5553         struct ext4_xattr_ibody_header *header;
5554
5555         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5556                 return 0;
5557
5558         raw_inode = ext4_raw_inode(&iloc);
5559
5560         header = IHDR(inode, raw_inode);
5561
5562         /* No extended attributes present */
5563         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5564             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5565                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5566                         new_extra_isize);
5567                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5568                 return 0;
5569         }
5570
5571         /* try to expand with EAs present */
5572         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5573                                           raw_inode, handle);
5574 }
5575
5576 /*
5577  * What we do here is to mark the in-core inode as clean with respect to inode
5578  * dirtiness (it may still be data-dirty).
5579  * This means that the in-core inode may be reaped by prune_icache
5580  * without having to perform any I/O.  This is a very good thing,
5581  * because *any* task may call prune_icache - even ones which
5582  * have a transaction open against a different journal.
5583  *
5584  * Is this cheating?  Not really.  Sure, we haven't written the
5585  * inode out, but prune_icache isn't a user-visible syncing function.
5586  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5587  * we start and wait on commits.
5588  *
5589  * Is this efficient/effective?  Well, we're being nice to the system
5590  * by cleaning up our inodes proactively so they can be reaped
5591  * without I/O.  But we are potentially leaving up to five seconds'
5592  * worth of inodes floating about which prune_icache wants us to
5593  * write out.  One way to fix that would be to get prune_icache()
5594  * to do a write_super() to free up some memory.  It has the desired
5595  * effect.
5596  */
5597 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5598 {
5599         struct ext4_iloc iloc;
5600         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5601         static unsigned int mnt_count;
5602         int err, ret;
5603
5604         might_sleep();
5605         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5606         err = ext4_reserve_inode_write(handle, inode, &iloc);
5607         if (ext4_handle_valid(handle) &&
5608             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5609             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5610                 /*
5611                  * We need extra buffer credits since we may write into EA block
5612                  * with this same handle. If journal_extend fails, then it will
5613                  * only result in a minor loss of functionality for that inode.
5614                  * If this is felt to be critical, then e2fsck should be run to
5615                  * force a large enough s_min_extra_isize.
5616                  */
5617                 if ((jbd2_journal_extend(handle,
5618                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5619                         ret = ext4_expand_extra_isize(inode,
5620                                                       sbi->s_want_extra_isize,
5621                                                       iloc, handle);
5622                         if (ret) {
5623                                 ext4_set_inode_state(inode,
5624                                                      EXT4_STATE_NO_EXPAND);
5625                                 if (mnt_count !=
5626                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5627                                         ext4_warning(inode->i_sb,
5628                                         "Unable to expand inode %lu. Delete"
5629                                         " some EAs or run e2fsck.",
5630                                         inode->i_ino);
5631                                         mnt_count =
5632                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5633                                 }
5634                         }
5635                 }
5636         }
5637         if (!err)
5638                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5639         return err;
5640 }
5641
5642 /*
5643  * ext4_dirty_inode() is called from __mark_inode_dirty()
5644  *
5645  * We're really interested in the case where a file is being extended.
5646  * i_size has been changed by generic_commit_write() and we thus need
5647  * to include the updated inode in the current transaction.
5648  *
5649  * Also, dquot_alloc_block() will always dirty the inode when blocks
5650  * are allocated to the file.
5651  *
5652  * If the inode is marked synchronous, we don't honour that here - doing
5653  * so would cause a commit on atime updates, which we don't bother doing.
5654  * We handle synchronous inodes at the highest possible level.
5655  */
5656 void ext4_dirty_inode(struct inode *inode)
5657 {
5658         handle_t *handle;
5659
5660         handle = ext4_journal_start(inode, 2);
5661         if (IS_ERR(handle))
5662                 goto out;
5663
5664         ext4_mark_inode_dirty(handle, inode);
5665
5666         ext4_journal_stop(handle);
5667 out:
5668         return;
5669 }
5670
5671 #if 0
5672 /*
5673  * Bind an inode's backing buffer_head into this transaction, to prevent
5674  * it from being flushed to disk early.  Unlike
5675  * ext4_reserve_inode_write, this leaves behind no bh reference and
5676  * returns no iloc structure, so the caller needs to repeat the iloc
5677  * lookup to mark the inode dirty later.
5678  */
5679 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5680 {
5681         struct ext4_iloc iloc;
5682
5683         int err = 0;
5684         if (handle) {
5685                 err = ext4_get_inode_loc(inode, &iloc);
5686                 if (!err) {
5687                         BUFFER_TRACE(iloc.bh, "get_write_access");
5688                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5689                         if (!err)
5690                                 err = ext4_handle_dirty_metadata(handle,
5691                                                                  NULL,
5692                                                                  iloc.bh);
5693                         brelse(iloc.bh);
5694                 }
5695         }
5696         ext4_std_error(inode->i_sb, err);
5697         return err;
5698 }
5699 #endif
5700
5701 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5702 {
5703         journal_t *journal;
5704         handle_t *handle;
5705         int err;
5706
5707         /*
5708          * We have to be very careful here: changing a data block's
5709          * journaling status dynamically is dangerous.  If we write a
5710          * data block to the journal, change the status and then delete
5711          * that block, we risk forgetting to revoke the old log record
5712          * from the journal and so a subsequent replay can corrupt data.
5713          * So, first we make sure that the journal is empty and that
5714          * nobody is changing anything.
5715          */
5716
5717         journal = EXT4_JOURNAL(inode);
5718         if (!journal)
5719                 return 0;
5720         if (is_journal_aborted(journal))
5721                 return -EROFS;
5722
5723         jbd2_journal_lock_updates(journal);
5724         jbd2_journal_flush(journal);
5725
5726         /*
5727          * OK, there are no updates running now, and all cached data is
5728          * synced to disk.  We are now in a completely consistent state
5729          * which doesn't have anything in the journal, and we know that
5730          * no filesystem updates are running, so it is safe to modify
5731          * the inode's in-core data-journaling state flag now.
5732          */
5733
5734         if (val)
5735                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5736         else
5737                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5738         ext4_set_aops(inode);
5739
5740         jbd2_journal_unlock_updates(journal);
5741
5742         /* Finally we can mark the inode as dirty. */
5743
5744         handle = ext4_journal_start(inode, 1);
5745         if (IS_ERR(handle))
5746                 return PTR_ERR(handle);
5747
5748         err = ext4_mark_inode_dirty(handle, inode);
5749         ext4_handle_sync(handle);
5750         ext4_journal_stop(handle);
5751         ext4_std_error(inode->i_sb, err);
5752
5753         return err;
5754 }
5755
5756 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5757 {
5758         return !buffer_mapped(bh);
5759 }
5760
5761 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5762 {
5763         struct page *page = vmf->page;
5764         loff_t size;
5765         unsigned long len;
5766         int ret = -EINVAL;
5767         void *fsdata;
5768         struct file *file = vma->vm_file;
5769         struct inode *inode = file->f_path.dentry->d_inode;
5770         struct address_space *mapping = inode->i_mapping;
5771
5772         /*
5773          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5774          * get i_mutex because we are already holding mmap_sem.
5775          */
5776         down_read(&inode->i_alloc_sem);
5777         size = i_size_read(inode);
5778         if (page->mapping != mapping || size <= page_offset(page)
5779             || !PageUptodate(page)) {
5780                 /* page got truncated from under us? */
5781                 goto out_unlock;
5782         }
5783         ret = 0;
5784         if (PageMappedToDisk(page))
5785                 goto out_unlock;
5786
5787         if (page->index == size >> PAGE_CACHE_SHIFT)
5788                 len = size & ~PAGE_CACHE_MASK;
5789         else
5790                 len = PAGE_CACHE_SIZE;
5791
5792         lock_page(page);
5793         /*
5794          * return if we have all the buffers mapped. This avoid
5795          * the need to call write_begin/write_end which does a
5796          * journal_start/journal_stop which can block and take
5797          * long time
5798          */
5799         if (page_has_buffers(page)) {
5800                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5801                                         ext4_bh_unmapped)) {
5802                         unlock_page(page);
5803                         goto out_unlock;
5804                 }
5805         }
5806         unlock_page(page);
5807         /*
5808          * OK, we need to fill the hole... Do write_begin write_end
5809          * to do block allocation/reservation.We are not holding
5810          * inode.i__mutex here. That allow * parallel write_begin,
5811          * write_end call. lock_page prevent this from happening
5812          * on the same page though
5813          */
5814         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5815                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5816         if (ret < 0)
5817                 goto out_unlock;
5818         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5819                         len, len, page, fsdata);
5820         if (ret < 0)
5821                 goto out_unlock;
5822         ret = 0;
5823 out_unlock:
5824         if (ret)
5825                 ret = VM_FAULT_SIGBUS;
5826         up_read(&inode->i_alloc_sem);
5827         return ret;
5828 }