ext4: add explicit casts when masking cluster sizes
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned long offset);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139                 struct inode *inode, struct page *page, loff_t from,
140                 loff_t length, int flags);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218                 ext4_ioend_shutdown(inode);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228         ext4_ioend_shutdown(inode);
229
230         if (is_bad_inode(inode))
231                 goto no_delete;
232
233         /*
234          * Protect us against freezing - iput() caller didn't have to have any
235          * protection against it
236          */
237         sb_start_intwrite(inode->i_sb);
238         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239                                     ext4_blocks_for_truncate(inode)+3);
240         if (IS_ERR(handle)) {
241                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242                 /*
243                  * If we're going to skip the normal cleanup, we still need to
244                  * make sure that the in-core orphan linked list is properly
245                  * cleaned up.
246                  */
247                 ext4_orphan_del(NULL, inode);
248                 sb_end_intwrite(inode->i_sb);
249                 goto no_delete;
250         }
251
252         if (IS_SYNC(inode))
253                 ext4_handle_sync(handle);
254         inode->i_size = 0;
255         err = ext4_mark_inode_dirty(handle, inode);
256         if (err) {
257                 ext4_warning(inode->i_sb,
258                              "couldn't mark inode dirty (err %d)", err);
259                 goto stop_handle;
260         }
261         if (inode->i_blocks)
262                 ext4_truncate(inode);
263
264         /*
265          * ext4_ext_truncate() doesn't reserve any slop when it
266          * restarts journal transactions; therefore there may not be
267          * enough credits left in the handle to remove the inode from
268          * the orphan list and set the dtime field.
269          */
270         if (!ext4_handle_has_enough_credits(handle, 3)) {
271                 err = ext4_journal_extend(handle, 3);
272                 if (err > 0)
273                         err = ext4_journal_restart(handle, 3);
274                 if (err != 0) {
275                         ext4_warning(inode->i_sb,
276                                      "couldn't extend journal (err %d)", err);
277                 stop_handle:
278                         ext4_journal_stop(handle);
279                         ext4_orphan_del(NULL, inode);
280                         sb_end_intwrite(inode->i_sb);
281                         goto no_delete;
282                 }
283         }
284
285         /*
286          * Kill off the orphan record which ext4_truncate created.
287          * AKPM: I think this can be inside the above `if'.
288          * Note that ext4_orphan_del() has to be able to cope with the
289          * deletion of a non-existent orphan - this is because we don't
290          * know if ext4_truncate() actually created an orphan record.
291          * (Well, we could do this if we need to, but heck - it works)
292          */
293         ext4_orphan_del(handle, inode);
294         EXT4_I(inode)->i_dtime  = get_seconds();
295
296         /*
297          * One subtle ordering requirement: if anything has gone wrong
298          * (transaction abort, IO errors, whatever), then we can still
299          * do these next steps (the fs will already have been marked as
300          * having errors), but we can't free the inode if the mark_dirty
301          * fails.
302          */
303         if (ext4_mark_inode_dirty(handle, inode))
304                 /* If that failed, just do the required in-core inode clear. */
305                 ext4_clear_inode(inode);
306         else
307                 ext4_free_inode(handle, inode);
308         ext4_journal_stop(handle);
309         sb_end_intwrite(inode->i_sb);
310         return;
311 no_delete:
312         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318         return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329                 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331         return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339                                         int used, int quota_claim)
340 {
341         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342         struct ext4_inode_info *ei = EXT4_I(inode);
343
344         spin_lock(&ei->i_block_reservation_lock);
345         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346         if (unlikely(used > ei->i_reserved_data_blocks)) {
347                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348                          "with only %d reserved data blocks",
349                          __func__, inode->i_ino, used,
350                          ei->i_reserved_data_blocks);
351                 WARN_ON(1);
352                 used = ei->i_reserved_data_blocks;
353         }
354
355         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357                         "with only %d reserved metadata blocks "
358                         "(releasing %d blocks with reserved %d data blocks)",
359                         inode->i_ino, ei->i_allocated_meta_blocks,
360                              ei->i_reserved_meta_blocks, used,
361                              ei->i_reserved_data_blocks);
362                 WARN_ON(1);
363                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364         }
365
366         /* Update per-inode reservations */
367         ei->i_reserved_data_blocks -= used;
368         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370                            used + ei->i_allocated_meta_blocks);
371         ei->i_allocated_meta_blocks = 0;
372
373         if (ei->i_reserved_data_blocks == 0) {
374                 /*
375                  * We can release all of the reserved metadata blocks
376                  * only when we have written all of the delayed
377                  * allocation blocks.
378                  */
379                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380                                    ei->i_reserved_meta_blocks);
381                 ei->i_reserved_meta_blocks = 0;
382                 ei->i_da_metadata_calc_len = 0;
383         }
384         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386         /* Update quota subsystem for data blocks */
387         if (quota_claim)
388                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389         else {
390                 /*
391                  * We did fallocate with an offset that is already delayed
392                  * allocated. So on delayed allocated writeback we should
393                  * not re-claim the quota for fallocated blocks.
394                  */
395                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396         }
397
398         /*
399          * If we have done all the pending block allocations and if
400          * there aren't any writers on the inode, we can discard the
401          * inode's preallocations.
402          */
403         if ((ei->i_reserved_data_blocks == 0) &&
404             (atomic_read(&inode->i_writecount) == 0))
405                 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409                                 unsigned int line,
410                                 struct ext4_map_blocks *map)
411 {
412         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413                                    map->m_len)) {
414                 ext4_error_inode(inode, func, line, map->m_pblk,
415                                  "lblock %lu mapped to illegal pblock "
416                                  "(length %d)", (unsigned long) map->m_lblk,
417                                  map->m_len);
418                 return -EIO;
419         }
420         return 0;
421 }
422
423 #define check_block_validity(inode, map)        \
424         __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431                                     unsigned int max_pages)
432 {
433         struct address_space *mapping = inode->i_mapping;
434         pgoff_t index;
435         struct pagevec pvec;
436         pgoff_t num = 0;
437         int i, nr_pages, done = 0;
438
439         if (max_pages == 0)
440                 return 0;
441         pagevec_init(&pvec, 0);
442         while (!done) {
443                 index = idx;
444                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445                                               PAGECACHE_TAG_DIRTY,
446                                               (pgoff_t)PAGEVEC_SIZE);
447                 if (nr_pages == 0)
448                         break;
449                 for (i = 0; i < nr_pages; i++) {
450                         struct page *page = pvec.pages[i];
451                         struct buffer_head *bh, *head;
452
453                         lock_page(page);
454                         if (unlikely(page->mapping != mapping) ||
455                             !PageDirty(page) ||
456                             PageWriteback(page) ||
457                             page->index != idx) {
458                                 done = 1;
459                                 unlock_page(page);
460                                 break;
461                         }
462                         if (page_has_buffers(page)) {
463                                 bh = head = page_buffers(page);
464                                 do {
465                                         if (!buffer_delay(bh) &&
466                                             !buffer_unwritten(bh))
467                                                 done = 1;
468                                         bh = bh->b_this_page;
469                                 } while (!done && (bh != head));
470                         }
471                         unlock_page(page);
472                         if (done)
473                                 break;
474                         idx++;
475                         num++;
476                         if (num >= max_pages) {
477                                 done = 1;
478                                 break;
479                         }
480                 }
481                 pagevec_release(&pvec);
482         }
483         return num;
484 }
485
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488                                        struct inode *inode,
489                                        struct ext4_map_blocks *es_map,
490                                        struct ext4_map_blocks *map,
491                                        int flags)
492 {
493         int retval;
494
495         map->m_flags = 0;
496         /*
497          * There is a race window that the result is not the same.
498          * e.g. xfstests #223 when dioread_nolock enables.  The reason
499          * is that we lookup a block mapping in extent status tree with
500          * out taking i_data_sem.  So at the time the unwritten extent
501          * could be converted.
502          */
503         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504                 down_read((&EXT4_I(inode)->i_data_sem));
505         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507                                              EXT4_GET_BLOCKS_KEEP_SIZE);
508         } else {
509                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510                                              EXT4_GET_BLOCKS_KEEP_SIZE);
511         }
512         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513                 up_read((&EXT4_I(inode)->i_data_sem));
514         /*
515          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516          * because it shouldn't be marked in es_map->m_flags.
517          */
518         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520         /*
521          * We don't check m_len because extent will be collpased in status
522          * tree.  So the m_len might not equal.
523          */
524         if (es_map->m_lblk != map->m_lblk ||
525             es_map->m_flags != map->m_flags ||
526             es_map->m_pblk != map->m_pblk) {
527                 printk("ES cache assertation failed for inode: %lu "
528                        "es_cached ex [%d/%d/%llu/%x] != "
529                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530                        inode->i_ino, es_map->m_lblk, es_map->m_len,
531                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
532                        map->m_len, map->m_pblk, map->m_flags,
533                        retval, flags);
534         }
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561                     struct ext4_map_blocks *map, int flags)
562 {
563         struct extent_status es;
564         int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566         struct ext4_map_blocks orig_map;
567
568         memcpy(&orig_map, map, sizeof(*map));
569 #endif
570
571         map->m_flags = 0;
572         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
574                   (unsigned long) map->m_lblk);
575
576         /* Lookup extent status tree firstly */
577         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579                         map->m_pblk = ext4_es_pblock(&es) +
580                                         map->m_lblk - es.es_lblk;
581                         map->m_flags |= ext4_es_is_written(&es) ?
582                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583                         retval = es.es_len - (map->m_lblk - es.es_lblk);
584                         if (retval > map->m_len)
585                                 retval = map->m_len;
586                         map->m_len = retval;
587                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588                         retval = 0;
589                 } else {
590                         BUG_ON(1);
591                 }
592 #ifdef ES_AGGRESSIVE_TEST
593                 ext4_map_blocks_es_recheck(handle, inode, map,
594                                            &orig_map, flags);
595 #endif
596                 goto found;
597         }
598
599         /*
600          * Try to see if we can get the block without requesting a new
601          * file system block.
602          */
603         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604                 down_read((&EXT4_I(inode)->i_data_sem));
605         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607                                              EXT4_GET_BLOCKS_KEEP_SIZE);
608         } else {
609                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610                                              EXT4_GET_BLOCKS_KEEP_SIZE);
611         }
612         if (retval > 0) {
613                 int ret;
614                 unsigned long long status;
615
616 #ifdef ES_AGGRESSIVE_TEST
617                 if (retval != map->m_len) {
618                         printk("ES len assertation failed for inode: %lu "
619                                "retval %d != map->m_len %d "
620                                "in %s (lookup)\n", inode->i_ino, retval,
621                                map->m_len, __func__);
622                 }
623 #endif
624
625                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628                     ext4_find_delalloc_range(inode, map->m_lblk,
629                                              map->m_lblk + map->m_len - 1))
630                         status |= EXTENT_STATUS_DELAYED;
631                 ret = ext4_es_insert_extent(inode, map->m_lblk,
632                                             map->m_len, map->m_pblk, status);
633                 if (ret < 0)
634                         retval = ret;
635         }
636         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637                 up_read((&EXT4_I(inode)->i_data_sem));
638
639 found:
640         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641                 int ret = check_block_validity(inode, map);
642                 if (ret != 0)
643                         return ret;
644         }
645
646         /* If it is only a block(s) look up */
647         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648                 return retval;
649
650         /*
651          * Returns if the blocks have already allocated
652          *
653          * Note that if blocks have been preallocated
654          * ext4_ext_get_block() returns the create = 0
655          * with buffer head unmapped.
656          */
657         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658                 return retval;
659
660         /*
661          * Here we clear m_flags because after allocating an new extent,
662          * it will be set again.
663          */
664         map->m_flags &= ~EXT4_MAP_FLAGS;
665
666         /*
667          * New blocks allocate and/or writing to uninitialized extent
668          * will possibly result in updating i_data, so we take
669          * the write lock of i_data_sem, and call get_blocks()
670          * with create == 1 flag.
671          */
672         down_write((&EXT4_I(inode)->i_data_sem));
673
674         /*
675          * if the caller is from delayed allocation writeout path
676          * we have already reserved fs blocks for allocation
677          * let the underlying get_block() function know to
678          * avoid double accounting
679          */
680         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682         /*
683          * We need to check for EXT4 here because migrate
684          * could have changed the inode type in between
685          */
686         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
688         } else {
689                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690
691                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692                         /*
693                          * We allocated new blocks which will result in
694                          * i_data's format changing.  Force the migrate
695                          * to fail by clearing migrate flags
696                          */
697                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698                 }
699
700                 /*
701                  * Update reserved blocks/metadata blocks after successful
702                  * block allocation which had been deferred till now. We don't
703                  * support fallocate for non extent files. So we can update
704                  * reserve space here.
705                  */
706                 if ((retval > 0) &&
707                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708                         ext4_da_update_reserve_space(inode, retval, 1);
709         }
710         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712
713         if (retval > 0) {
714                 int ret;
715                 unsigned long long status;
716
717 #ifdef ES_AGGRESSIVE_TEST
718                 if (retval != map->m_len) {
719                         printk("ES len assertation failed for inode: %lu "
720                                "retval %d != map->m_len %d "
721                                "in %s (allocation)\n", inode->i_ino, retval,
722                                map->m_len, __func__);
723                 }
724 #endif
725
726                 /*
727                  * If the extent has been zeroed out, we don't need to update
728                  * extent status tree.
729                  */
730                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732                         if (ext4_es_is_written(&es))
733                                 goto has_zeroout;
734                 }
735                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738                     ext4_find_delalloc_range(inode, map->m_lblk,
739                                              map->m_lblk + map->m_len - 1))
740                         status |= EXTENT_STATUS_DELAYED;
741                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742                                             map->m_pblk, status);
743                 if (ret < 0)
744                         retval = ret;
745         }
746
747 has_zeroout:
748         up_write((&EXT4_I(inode)->i_data_sem));
749         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750                 int ret = check_block_validity(inode, map);
751                 if (ret != 0)
752                         return ret;
753         }
754         return retval;
755 }
756
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761                            struct buffer_head *bh, int flags)
762 {
763         handle_t *handle = ext4_journal_current_handle();
764         struct ext4_map_blocks map;
765         int ret = 0, started = 0;
766         int dio_credits;
767
768         if (ext4_has_inline_data(inode))
769                 return -ERANGE;
770
771         map.m_lblk = iblock;
772         map.m_len = bh->b_size >> inode->i_blkbits;
773
774         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775                 /* Direct IO write... */
776                 if (map.m_len > DIO_MAX_BLOCKS)
777                         map.m_len = DIO_MAX_BLOCKS;
778                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780                                             dio_credits);
781                 if (IS_ERR(handle)) {
782                         ret = PTR_ERR(handle);
783                         return ret;
784                 }
785                 started = 1;
786         }
787
788         ret = ext4_map_blocks(handle, inode, &map, flags);
789         if (ret > 0) {
790                 map_bh(bh, inode->i_sb, map.m_pblk);
791                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793                 ret = 0;
794         }
795         if (started)
796                 ext4_journal_stop(handle);
797         return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801                    struct buffer_head *bh, int create)
802 {
803         return _ext4_get_block(inode, iblock, bh,
804                                create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811                                 ext4_lblk_t block, int create, int *errp)
812 {
813         struct ext4_map_blocks map;
814         struct buffer_head *bh;
815         int fatal = 0, err;
816
817         J_ASSERT(handle != NULL || create == 0);
818
819         map.m_lblk = block;
820         map.m_len = 1;
821         err = ext4_map_blocks(handle, inode, &map,
822                               create ? EXT4_GET_BLOCKS_CREATE : 0);
823
824         /* ensure we send some value back into *errp */
825         *errp = 0;
826
827         if (create && err == 0)
828                 err = -ENOSPC;  /* should never happen */
829         if (err < 0)
830                 *errp = err;
831         if (err <= 0)
832                 return NULL;
833
834         bh = sb_getblk(inode->i_sb, map.m_pblk);
835         if (unlikely(!bh)) {
836                 *errp = -ENOMEM;
837                 return NULL;
838         }
839         if (map.m_flags & EXT4_MAP_NEW) {
840                 J_ASSERT(create != 0);
841                 J_ASSERT(handle != NULL);
842
843                 /*
844                  * Now that we do not always journal data, we should
845                  * keep in mind whether this should always journal the
846                  * new buffer as metadata.  For now, regular file
847                  * writes use ext4_get_block instead, so it's not a
848                  * problem.
849                  */
850                 lock_buffer(bh);
851                 BUFFER_TRACE(bh, "call get_create_access");
852                 fatal = ext4_journal_get_create_access(handle, bh);
853                 if (!fatal && !buffer_uptodate(bh)) {
854                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855                         set_buffer_uptodate(bh);
856                 }
857                 unlock_buffer(bh);
858                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859                 err = ext4_handle_dirty_metadata(handle, inode, bh);
860                 if (!fatal)
861                         fatal = err;
862         } else {
863                 BUFFER_TRACE(bh, "not a new buffer");
864         }
865         if (fatal) {
866                 *errp = fatal;
867                 brelse(bh);
868                 bh = NULL;
869         }
870         return bh;
871 }
872
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874                                ext4_lblk_t block, int create, int *err)
875 {
876         struct buffer_head *bh;
877
878         bh = ext4_getblk(handle, inode, block, create, err);
879         if (!bh)
880                 return bh;
881         if (buffer_uptodate(bh))
882                 return bh;
883         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884         wait_on_buffer(bh);
885         if (buffer_uptodate(bh))
886                 return bh;
887         put_bh(bh);
888         *err = -EIO;
889         return NULL;
890 }
891
892 int ext4_walk_page_buffers(handle_t *handle,
893                            struct buffer_head *head,
894                            unsigned from,
895                            unsigned to,
896                            int *partial,
897                            int (*fn)(handle_t *handle,
898                                      struct buffer_head *bh))
899 {
900         struct buffer_head *bh;
901         unsigned block_start, block_end;
902         unsigned blocksize = head->b_size;
903         int err, ret = 0;
904         struct buffer_head *next;
905
906         for (bh = head, block_start = 0;
907              ret == 0 && (bh != head || !block_start);
908              block_start = block_end, bh = next) {
909                 next = bh->b_this_page;
910                 block_end = block_start + blocksize;
911                 if (block_end <= from || block_start >= to) {
912                         if (partial && !buffer_uptodate(bh))
913                                 *partial = 1;
914                         continue;
915                 }
916                 err = (*fn)(handle, bh);
917                 if (!ret)
918                         ret = err;
919         }
920         return ret;
921 }
922
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948                                 struct buffer_head *bh)
949 {
950         int dirty = buffer_dirty(bh);
951         int ret;
952
953         if (!buffer_mapped(bh) || buffer_freed(bh))
954                 return 0;
955         /*
956          * __block_write_begin() could have dirtied some buffers. Clean
957          * the dirty bit as jbd2_journal_get_write_access() could complain
958          * otherwise about fs integrity issues. Setting of the dirty bit
959          * by __block_write_begin() isn't a real problem here as we clear
960          * the bit before releasing a page lock and thus writeback cannot
961          * ever write the buffer.
962          */
963         if (dirty)
964                 clear_buffer_dirty(bh);
965         ret = ext4_journal_get_write_access(handle, bh);
966         if (!ret && dirty)
967                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968         return ret;
969 }
970
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972                    struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974                             loff_t pos, unsigned len, unsigned flags,
975                             struct page **pagep, void **fsdata)
976 {
977         struct inode *inode = mapping->host;
978         int ret, needed_blocks;
979         handle_t *handle;
980         int retries = 0;
981         struct page *page;
982         pgoff_t index;
983         unsigned from, to;
984
985         trace_ext4_write_begin(inode, pos, len, flags);
986         /*
987          * Reserve one block more for addition to orphan list in case
988          * we allocate blocks but write fails for some reason
989          */
990         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991         index = pos >> PAGE_CACHE_SHIFT;
992         from = pos & (PAGE_CACHE_SIZE - 1);
993         to = from + len;
994
995         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997                                                     flags, pagep);
998                 if (ret < 0)
999                         return ret;
1000                 if (ret == 1)
1001                         return 0;
1002         }
1003
1004         /*
1005          * grab_cache_page_write_begin() can take a long time if the
1006          * system is thrashing due to memory pressure, or if the page
1007          * is being written back.  So grab it first before we start
1008          * the transaction handle.  This also allows us to allocate
1009          * the page (if needed) without using GFP_NOFS.
1010          */
1011 retry_grab:
1012         page = grab_cache_page_write_begin(mapping, index, flags);
1013         if (!page)
1014                 return -ENOMEM;
1015         unlock_page(page);
1016
1017 retry_journal:
1018         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019         if (IS_ERR(handle)) {
1020                 page_cache_release(page);
1021                 return PTR_ERR(handle);
1022         }
1023
1024         lock_page(page);
1025         if (page->mapping != mapping) {
1026                 /* The page got truncated from under us */
1027                 unlock_page(page);
1028                 page_cache_release(page);
1029                 ext4_journal_stop(handle);
1030                 goto retry_grab;
1031         }
1032         wait_on_page_writeback(page);
1033
1034         if (ext4_should_dioread_nolock(inode))
1035                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036         else
1037                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038
1039         if (!ret && ext4_should_journal_data(inode)) {
1040                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041                                              from, to, NULL,
1042                                              do_journal_get_write_access);
1043         }
1044
1045         if (ret) {
1046                 unlock_page(page);
1047                 /*
1048                  * __block_write_begin may have instantiated a few blocks
1049                  * outside i_size.  Trim these off again. Don't need
1050                  * i_size_read because we hold i_mutex.
1051                  *
1052                  * Add inode to orphan list in case we crash before
1053                  * truncate finishes
1054                  */
1055                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056                         ext4_orphan_add(handle, inode);
1057
1058                 ext4_journal_stop(handle);
1059                 if (pos + len > inode->i_size) {
1060                         ext4_truncate_failed_write(inode);
1061                         /*
1062                          * If truncate failed early the inode might
1063                          * still be on the orphan list; we need to
1064                          * make sure the inode is removed from the
1065                          * orphan list in that case.
1066                          */
1067                         if (inode->i_nlink)
1068                                 ext4_orphan_del(NULL, inode);
1069                 }
1070
1071                 if (ret == -ENOSPC &&
1072                     ext4_should_retry_alloc(inode->i_sb, &retries))
1073                         goto retry_journal;
1074                 page_cache_release(page);
1075                 return ret;
1076         }
1077         *pagep = page;
1078         return ret;
1079 }
1080
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084         int ret;
1085         if (!buffer_mapped(bh) || buffer_freed(bh))
1086                 return 0;
1087         set_buffer_uptodate(bh);
1088         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089         clear_buffer_meta(bh);
1090         clear_buffer_prio(bh);
1091         return ret;
1092 }
1093
1094 /*
1095  * We need to pick up the new inode size which generic_commit_write gave us
1096  * `file' can be NULL - eg, when called from page_symlink().
1097  *
1098  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1099  * buffers are managed internally.
1100  */
1101 static int ext4_write_end(struct file *file,
1102                           struct address_space *mapping,
1103                           loff_t pos, unsigned len, unsigned copied,
1104                           struct page *page, void *fsdata)
1105 {
1106         handle_t *handle = ext4_journal_current_handle();
1107         struct inode *inode = mapping->host;
1108         int ret = 0, ret2;
1109         int i_size_changed = 0;
1110
1111         trace_ext4_write_end(inode, pos, len, copied);
1112         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113                 ret = ext4_jbd2_file_inode(handle, inode);
1114                 if (ret) {
1115                         unlock_page(page);
1116                         page_cache_release(page);
1117                         goto errout;
1118                 }
1119         }
1120
1121         if (ext4_has_inline_data(inode)) {
1122                 ret = ext4_write_inline_data_end(inode, pos, len,
1123                                                  copied, page);
1124                 if (ret < 0)
1125                         goto errout;
1126                 copied = ret;
1127         } else
1128                 copied = block_write_end(file, mapping, pos,
1129                                          len, copied, page, fsdata);
1130
1131         /*
1132          * No need to use i_size_read() here, the i_size
1133          * cannot change under us because we hole i_mutex.
1134          *
1135          * But it's important to update i_size while still holding page lock:
1136          * page writeout could otherwise come in and zero beyond i_size.
1137          */
1138         if (pos + copied > inode->i_size) {
1139                 i_size_write(inode, pos + copied);
1140                 i_size_changed = 1;
1141         }
1142
1143         if (pos + copied > EXT4_I(inode)->i_disksize) {
1144                 /* We need to mark inode dirty even if
1145                  * new_i_size is less that inode->i_size
1146                  * but greater than i_disksize. (hint delalloc)
1147                  */
1148                 ext4_update_i_disksize(inode, (pos + copied));
1149                 i_size_changed = 1;
1150         }
1151         unlock_page(page);
1152         page_cache_release(page);
1153
1154         /*
1155          * Don't mark the inode dirty under page lock. First, it unnecessarily
1156          * makes the holding time of page lock longer. Second, it forces lock
1157          * ordering of page lock and transaction start for journaling
1158          * filesystems.
1159          */
1160         if (i_size_changed)
1161                 ext4_mark_inode_dirty(handle, inode);
1162
1163         if (copied < 0)
1164                 ret = copied;
1165         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166                 /* if we have allocated more blocks and copied
1167                  * less. We will have blocks allocated outside
1168                  * inode->i_size. So truncate them
1169                  */
1170                 ext4_orphan_add(handle, inode);
1171 errout:
1172         ret2 = ext4_journal_stop(handle);
1173         if (!ret)
1174                 ret = ret2;
1175
1176         if (pos + len > inode->i_size) {
1177                 ext4_truncate_failed_write(inode);
1178                 /*
1179                  * If truncate failed early the inode might still be
1180                  * on the orphan list; we need to make sure the inode
1181                  * is removed from the orphan list in that case.
1182                  */
1183                 if (inode->i_nlink)
1184                         ext4_orphan_del(NULL, inode);
1185         }
1186
1187         return ret ? ret : copied;
1188 }
1189
1190 static int ext4_journalled_write_end(struct file *file,
1191                                      struct address_space *mapping,
1192                                      loff_t pos, unsigned len, unsigned copied,
1193                                      struct page *page, void *fsdata)
1194 {
1195         handle_t *handle = ext4_journal_current_handle();
1196         struct inode *inode = mapping->host;
1197         int ret = 0, ret2;
1198         int partial = 0;
1199         unsigned from, to;
1200         loff_t new_i_size;
1201
1202         trace_ext4_journalled_write_end(inode, pos, len, copied);
1203         from = pos & (PAGE_CACHE_SIZE - 1);
1204         to = from + len;
1205
1206         BUG_ON(!ext4_handle_valid(handle));
1207
1208         if (ext4_has_inline_data(inode))
1209                 copied = ext4_write_inline_data_end(inode, pos, len,
1210                                                     copied, page);
1211         else {
1212                 if (copied < len) {
1213                         if (!PageUptodate(page))
1214                                 copied = 0;
1215                         page_zero_new_buffers(page, from+copied, to);
1216                 }
1217
1218                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1219                                              to, &partial, write_end_fn);
1220                 if (!partial)
1221                         SetPageUptodate(page);
1222         }
1223         new_i_size = pos + copied;
1224         if (new_i_size > inode->i_size)
1225                 i_size_write(inode, pos+copied);
1226         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1227         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1228         if (new_i_size > EXT4_I(inode)->i_disksize) {
1229                 ext4_update_i_disksize(inode, new_i_size);
1230                 ret2 = ext4_mark_inode_dirty(handle, inode);
1231                 if (!ret)
1232                         ret = ret2;
1233         }
1234
1235         unlock_page(page);
1236         page_cache_release(page);
1237         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1238                 /* if we have allocated more blocks and copied
1239                  * less. We will have blocks allocated outside
1240                  * inode->i_size. So truncate them
1241                  */
1242                 ext4_orphan_add(handle, inode);
1243
1244         ret2 = ext4_journal_stop(handle);
1245         if (!ret)
1246                 ret = ret2;
1247         if (pos + len > inode->i_size) {
1248                 ext4_truncate_failed_write(inode);
1249                 /*
1250                  * If truncate failed early the inode might still be
1251                  * on the orphan list; we need to make sure the inode
1252                  * is removed from the orphan list in that case.
1253                  */
1254                 if (inode->i_nlink)
1255                         ext4_orphan_del(NULL, inode);
1256         }
1257
1258         return ret ? ret : copied;
1259 }
1260
1261 /*
1262  * Reserve a metadata for a single block located at lblock
1263  */
1264 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1265 {
1266         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1267         struct ext4_inode_info *ei = EXT4_I(inode);
1268         unsigned int md_needed;
1269         ext4_lblk_t save_last_lblock;
1270         int save_len;
1271
1272         /*
1273          * recalculate the amount of metadata blocks to reserve
1274          * in order to allocate nrblocks
1275          * worse case is one extent per block
1276          */
1277         spin_lock(&ei->i_block_reservation_lock);
1278         /*
1279          * ext4_calc_metadata_amount() has side effects, which we have
1280          * to be prepared undo if we fail to claim space.
1281          */
1282         save_len = ei->i_da_metadata_calc_len;
1283         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284         md_needed = EXT4_NUM_B2C(sbi,
1285                                  ext4_calc_metadata_amount(inode, lblock));
1286         trace_ext4_da_reserve_space(inode, md_needed);
1287
1288         /*
1289          * We do still charge estimated metadata to the sb though;
1290          * we cannot afford to run out of free blocks.
1291          */
1292         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1293                 ei->i_da_metadata_calc_len = save_len;
1294                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295                 spin_unlock(&ei->i_block_reservation_lock);
1296                 return -ENOSPC;
1297         }
1298         ei->i_reserved_meta_blocks += md_needed;
1299         spin_unlock(&ei->i_block_reservation_lock);
1300
1301         return 0;       /* success */
1302 }
1303
1304 /*
1305  * Reserve a single cluster located at lblock
1306  */
1307 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1308 {
1309         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1310         struct ext4_inode_info *ei = EXT4_I(inode);
1311         unsigned int md_needed;
1312         int ret;
1313         ext4_lblk_t save_last_lblock;
1314         int save_len;
1315
1316         /*
1317          * We will charge metadata quota at writeout time; this saves
1318          * us from metadata over-estimation, though we may go over by
1319          * a small amount in the end.  Here we just reserve for data.
1320          */
1321         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1322         if (ret)
1323                 return ret;
1324
1325         /*
1326          * recalculate the amount of metadata blocks to reserve
1327          * in order to allocate nrblocks
1328          * worse case is one extent per block
1329          */
1330         spin_lock(&ei->i_block_reservation_lock);
1331         /*
1332          * ext4_calc_metadata_amount() has side effects, which we have
1333          * to be prepared undo if we fail to claim space.
1334          */
1335         save_len = ei->i_da_metadata_calc_len;
1336         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1337         md_needed = EXT4_NUM_B2C(sbi,
1338                                  ext4_calc_metadata_amount(inode, lblock));
1339         trace_ext4_da_reserve_space(inode, md_needed);
1340
1341         /*
1342          * We do still charge estimated metadata to the sb though;
1343          * we cannot afford to run out of free blocks.
1344          */
1345         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1346                 ei->i_da_metadata_calc_len = save_len;
1347                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1348                 spin_unlock(&ei->i_block_reservation_lock);
1349                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1350                 return -ENOSPC;
1351         }
1352         ei->i_reserved_data_blocks++;
1353         ei->i_reserved_meta_blocks += md_needed;
1354         spin_unlock(&ei->i_block_reservation_lock);
1355
1356         return 0;       /* success */
1357 }
1358
1359 static void ext4_da_release_space(struct inode *inode, int to_free)
1360 {
1361         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1362         struct ext4_inode_info *ei = EXT4_I(inode);
1363
1364         if (!to_free)
1365                 return;         /* Nothing to release, exit */
1366
1367         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1368
1369         trace_ext4_da_release_space(inode, to_free);
1370         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1371                 /*
1372                  * if there aren't enough reserved blocks, then the
1373                  * counter is messed up somewhere.  Since this
1374                  * function is called from invalidate page, it's
1375                  * harmless to return without any action.
1376                  */
1377                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1378                          "ino %lu, to_free %d with only %d reserved "
1379                          "data blocks", inode->i_ino, to_free,
1380                          ei->i_reserved_data_blocks);
1381                 WARN_ON(1);
1382                 to_free = ei->i_reserved_data_blocks;
1383         }
1384         ei->i_reserved_data_blocks -= to_free;
1385
1386         if (ei->i_reserved_data_blocks == 0) {
1387                 /*
1388                  * We can release all of the reserved metadata blocks
1389                  * only when we have written all of the delayed
1390                  * allocation blocks.
1391                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1392                  * i_reserved_data_blocks, etc. refer to number of clusters.
1393                  */
1394                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1395                                    ei->i_reserved_meta_blocks);
1396                 ei->i_reserved_meta_blocks = 0;
1397                 ei->i_da_metadata_calc_len = 0;
1398         }
1399
1400         /* update fs dirty data blocks counter */
1401         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1402
1403         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1404
1405         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1406 }
1407
1408 static void ext4_da_page_release_reservation(struct page *page,
1409                                              unsigned long offset)
1410 {
1411         int to_release = 0;
1412         struct buffer_head *head, *bh;
1413         unsigned int curr_off = 0;
1414         struct inode *inode = page->mapping->host;
1415         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1416         int num_clusters;
1417         ext4_fsblk_t lblk;
1418
1419         head = page_buffers(page);
1420         bh = head;
1421         do {
1422                 unsigned int next_off = curr_off + bh->b_size;
1423
1424                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1425                         to_release++;
1426                         clear_buffer_delay(bh);
1427                 }
1428                 curr_off = next_off;
1429         } while ((bh = bh->b_this_page) != head);
1430
1431         if (to_release) {
1432                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1433                 ext4_es_remove_extent(inode, lblk, to_release);
1434         }
1435
1436         /* If we have released all the blocks belonging to a cluster, then we
1437          * need to release the reserved space for that cluster. */
1438         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1439         while (num_clusters > 0) {
1440                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1441                         ((num_clusters - 1) << sbi->s_cluster_bits);
1442                 if (sbi->s_cluster_ratio == 1 ||
1443                     !ext4_find_delalloc_cluster(inode, lblk))
1444                         ext4_da_release_space(inode, 1);
1445
1446                 num_clusters--;
1447         }
1448 }
1449
1450 /*
1451  * Delayed allocation stuff
1452  */
1453
1454 /*
1455  * mpage_da_submit_io - walks through extent of pages and try to write
1456  * them with writepage() call back
1457  *
1458  * @mpd->inode: inode
1459  * @mpd->first_page: first page of the extent
1460  * @mpd->next_page: page after the last page of the extent
1461  *
1462  * By the time mpage_da_submit_io() is called we expect all blocks
1463  * to be allocated. this may be wrong if allocation failed.
1464  *
1465  * As pages are already locked by write_cache_pages(), we can't use it
1466  */
1467 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1468                               struct ext4_map_blocks *map)
1469 {
1470         struct pagevec pvec;
1471         unsigned long index, end;
1472         int ret = 0, err, nr_pages, i;
1473         struct inode *inode = mpd->inode;
1474         struct address_space *mapping = inode->i_mapping;
1475         loff_t size = i_size_read(inode);
1476         unsigned int len, block_start;
1477         struct buffer_head *bh, *page_bufs = NULL;
1478         sector_t pblock = 0, cur_logical = 0;
1479         struct ext4_io_submit io_submit;
1480
1481         BUG_ON(mpd->next_page <= mpd->first_page);
1482         memset(&io_submit, 0, sizeof(io_submit));
1483         /*
1484          * We need to start from the first_page to the next_page - 1
1485          * to make sure we also write the mapped dirty buffer_heads.
1486          * If we look at mpd->b_blocknr we would only be looking
1487          * at the currently mapped buffer_heads.
1488          */
1489         index = mpd->first_page;
1490         end = mpd->next_page - 1;
1491
1492         pagevec_init(&pvec, 0);
1493         while (index <= end) {
1494                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1495                 if (nr_pages == 0)
1496                         break;
1497                 for (i = 0; i < nr_pages; i++) {
1498                         int skip_page = 0;
1499                         struct page *page = pvec.pages[i];
1500
1501                         index = page->index;
1502                         if (index > end)
1503                                 break;
1504
1505                         if (index == size >> PAGE_CACHE_SHIFT)
1506                                 len = size & ~PAGE_CACHE_MASK;
1507                         else
1508                                 len = PAGE_CACHE_SIZE;
1509                         if (map) {
1510                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1511                                                         inode->i_blkbits);
1512                                 pblock = map->m_pblk + (cur_logical -
1513                                                         map->m_lblk);
1514                         }
1515                         index++;
1516
1517                         BUG_ON(!PageLocked(page));
1518                         BUG_ON(PageWriteback(page));
1519
1520                         bh = page_bufs = page_buffers(page);
1521                         block_start = 0;
1522                         do {
1523                                 if (map && (cur_logical >= map->m_lblk) &&
1524                                     (cur_logical <= (map->m_lblk +
1525                                                      (map->m_len - 1)))) {
1526                                         if (buffer_delay(bh)) {
1527                                                 clear_buffer_delay(bh);
1528                                                 bh->b_blocknr = pblock;
1529                                         }
1530                                         if (buffer_unwritten(bh) ||
1531                                             buffer_mapped(bh))
1532                                                 BUG_ON(bh->b_blocknr != pblock);
1533                                         if (map->m_flags & EXT4_MAP_UNINIT)
1534                                                 set_buffer_uninit(bh);
1535                                         clear_buffer_unwritten(bh);
1536                                 }
1537
1538                                 /*
1539                                  * skip page if block allocation undone and
1540                                  * block is dirty
1541                                  */
1542                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1543                                         skip_page = 1;
1544                                 bh = bh->b_this_page;
1545                                 block_start += bh->b_size;
1546                                 cur_logical++;
1547                                 pblock++;
1548                         } while (bh != page_bufs);
1549
1550                         if (skip_page) {
1551                                 unlock_page(page);
1552                                 continue;
1553                         }
1554
1555                         clear_page_dirty_for_io(page);
1556                         err = ext4_bio_write_page(&io_submit, page, len,
1557                                                   mpd->wbc);
1558                         if (!err)
1559                                 mpd->pages_written++;
1560                         /*
1561                          * In error case, we have to continue because
1562                          * remaining pages are still locked
1563                          */
1564                         if (ret == 0)
1565                                 ret = err;
1566                 }
1567                 pagevec_release(&pvec);
1568         }
1569         ext4_io_submit(&io_submit);
1570         return ret;
1571 }
1572
1573 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1574 {
1575         int nr_pages, i;
1576         pgoff_t index, end;
1577         struct pagevec pvec;
1578         struct inode *inode = mpd->inode;
1579         struct address_space *mapping = inode->i_mapping;
1580         ext4_lblk_t start, last;
1581
1582         index = mpd->first_page;
1583         end   = mpd->next_page - 1;
1584
1585         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1586         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1587         ext4_es_remove_extent(inode, start, last - start + 1);
1588
1589         pagevec_init(&pvec, 0);
1590         while (index <= end) {
1591                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1592                 if (nr_pages == 0)
1593                         break;
1594                 for (i = 0; i < nr_pages; i++) {
1595                         struct page *page = pvec.pages[i];
1596                         if (page->index > end)
1597                                 break;
1598                         BUG_ON(!PageLocked(page));
1599                         BUG_ON(PageWriteback(page));
1600                         block_invalidatepage(page, 0);
1601                         ClearPageUptodate(page);
1602                         unlock_page(page);
1603                 }
1604                 index = pvec.pages[nr_pages - 1]->index + 1;
1605                 pagevec_release(&pvec);
1606         }
1607         return;
1608 }
1609
1610 static void ext4_print_free_blocks(struct inode *inode)
1611 {
1612         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1613         struct super_block *sb = inode->i_sb;
1614         struct ext4_inode_info *ei = EXT4_I(inode);
1615
1616         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1617                EXT4_C2B(EXT4_SB(inode->i_sb),
1618                         ext4_count_free_clusters(sb)));
1619         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1620         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1621                (long long) EXT4_C2B(EXT4_SB(sb),
1622                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1623         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1624                (long long) EXT4_C2B(EXT4_SB(sb),
1625                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1626         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1627         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1628                  ei->i_reserved_data_blocks);
1629         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1630                ei->i_reserved_meta_blocks);
1631         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1632                ei->i_allocated_meta_blocks);
1633         return;
1634 }
1635
1636 /*
1637  * mpage_da_map_and_submit - go through given space, map them
1638  *       if necessary, and then submit them for I/O
1639  *
1640  * @mpd - bh describing space
1641  *
1642  * The function skips space we know is already mapped to disk blocks.
1643  *
1644  */
1645 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1646 {
1647         int err, blks, get_blocks_flags;
1648         struct ext4_map_blocks map, *mapp = NULL;
1649         sector_t next = mpd->b_blocknr;
1650         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1651         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1652         handle_t *handle = NULL;
1653
1654         /*
1655          * If the blocks are mapped already, or we couldn't accumulate
1656          * any blocks, then proceed immediately to the submission stage.
1657          */
1658         if ((mpd->b_size == 0) ||
1659             ((mpd->b_state  & (1 << BH_Mapped)) &&
1660              !(mpd->b_state & (1 << BH_Delay)) &&
1661              !(mpd->b_state & (1 << BH_Unwritten))))
1662                 goto submit_io;
1663
1664         handle = ext4_journal_current_handle();
1665         BUG_ON(!handle);
1666
1667         /*
1668          * Call ext4_map_blocks() to allocate any delayed allocation
1669          * blocks, or to convert an uninitialized extent to be
1670          * initialized (in the case where we have written into
1671          * one or more preallocated blocks).
1672          *
1673          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1674          * indicate that we are on the delayed allocation path.  This
1675          * affects functions in many different parts of the allocation
1676          * call path.  This flag exists primarily because we don't
1677          * want to change *many* call functions, so ext4_map_blocks()
1678          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1679          * inode's allocation semaphore is taken.
1680          *
1681          * If the blocks in questions were delalloc blocks, set
1682          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1683          * variables are updated after the blocks have been allocated.
1684          */
1685         map.m_lblk = next;
1686         map.m_len = max_blocks;
1687         /*
1688          * We're in delalloc path and it is possible that we're going to
1689          * need more metadata blocks than previously reserved. However
1690          * we must not fail because we're in writeback and there is
1691          * nothing we can do about it so it might result in data loss.
1692          * So use reserved blocks to allocate metadata if possible.
1693          */
1694         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1695                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1696         if (ext4_should_dioread_nolock(mpd->inode))
1697                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1698         if (mpd->b_state & (1 << BH_Delay))
1699                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1700
1701
1702         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1703         if (blks < 0) {
1704                 struct super_block *sb = mpd->inode->i_sb;
1705
1706                 err = blks;
1707                 /*
1708                  * If get block returns EAGAIN or ENOSPC and there
1709                  * appears to be free blocks we will just let
1710                  * mpage_da_submit_io() unlock all of the pages.
1711                  */
1712                 if (err == -EAGAIN)
1713                         goto submit_io;
1714
1715                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1716                         mpd->retval = err;
1717                         goto submit_io;
1718                 }
1719
1720                 /*
1721                  * get block failure will cause us to loop in
1722                  * writepages, because a_ops->writepage won't be able
1723                  * to make progress. The page will be redirtied by
1724                  * writepage and writepages will again try to write
1725                  * the same.
1726                  */
1727                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1728                         ext4_msg(sb, KERN_CRIT,
1729                                  "delayed block allocation failed for inode %lu "
1730                                  "at logical offset %llu with max blocks %zd "
1731                                  "with error %d", mpd->inode->i_ino,
1732                                  (unsigned long long) next,
1733                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1734                         ext4_msg(sb, KERN_CRIT,
1735                                 "This should not happen!! Data will be lost");
1736                         if (err == -ENOSPC)
1737                                 ext4_print_free_blocks(mpd->inode);
1738                 }
1739                 /* invalidate all the pages */
1740                 ext4_da_block_invalidatepages(mpd);
1741
1742                 /* Mark this page range as having been completed */
1743                 mpd->io_done = 1;
1744                 return;
1745         }
1746         BUG_ON(blks == 0);
1747
1748         mapp = &map;
1749         if (map.m_flags & EXT4_MAP_NEW) {
1750                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1751                 int i;
1752
1753                 for (i = 0; i < map.m_len; i++)
1754                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1755         }
1756
1757         /*
1758          * Update on-disk size along with block allocation.
1759          */
1760         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1761         if (disksize > i_size_read(mpd->inode))
1762                 disksize = i_size_read(mpd->inode);
1763         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1764                 ext4_update_i_disksize(mpd->inode, disksize);
1765                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1766                 if (err)
1767                         ext4_error(mpd->inode->i_sb,
1768                                    "Failed to mark inode %lu dirty",
1769                                    mpd->inode->i_ino);
1770         }
1771
1772 submit_io:
1773         mpage_da_submit_io(mpd, mapp);
1774         mpd->io_done = 1;
1775 }
1776
1777 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1778                 (1 << BH_Delay) | (1 << BH_Unwritten))
1779
1780 /*
1781  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1782  *
1783  * @mpd->lbh - extent of blocks
1784  * @logical - logical number of the block in the file
1785  * @b_state - b_state of the buffer head added
1786  *
1787  * the function is used to collect contig. blocks in same state
1788  */
1789 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1790                                    unsigned long b_state)
1791 {
1792         sector_t next;
1793         int blkbits = mpd->inode->i_blkbits;
1794         int nrblocks = mpd->b_size >> blkbits;
1795
1796         /*
1797          * XXX Don't go larger than mballoc is willing to allocate
1798          * This is a stopgap solution.  We eventually need to fold
1799          * mpage_da_submit_io() into this function and then call
1800          * ext4_map_blocks() multiple times in a loop
1801          */
1802         if (nrblocks >= (8*1024*1024 >> blkbits))
1803                 goto flush_it;
1804
1805         /* check if the reserved journal credits might overflow */
1806         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1807                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1808                         /*
1809                          * With non-extent format we are limited by the journal
1810                          * credit available.  Total credit needed to insert
1811                          * nrblocks contiguous blocks is dependent on the
1812                          * nrblocks.  So limit nrblocks.
1813                          */
1814                         goto flush_it;
1815                 }
1816         }
1817         /*
1818          * First block in the extent
1819          */
1820         if (mpd->b_size == 0) {
1821                 mpd->b_blocknr = logical;
1822                 mpd->b_size = 1 << blkbits;
1823                 mpd->b_state = b_state & BH_FLAGS;
1824                 return;
1825         }
1826
1827         next = mpd->b_blocknr + nrblocks;
1828         /*
1829          * Can we merge the block to our big extent?
1830          */
1831         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1832                 mpd->b_size += 1 << blkbits;
1833                 return;
1834         }
1835
1836 flush_it:
1837         /*
1838          * We couldn't merge the block to our extent, so we
1839          * need to flush current  extent and start new one
1840          */
1841         mpage_da_map_and_submit(mpd);
1842         return;
1843 }
1844
1845 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1846 {
1847         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1848 }
1849
1850 /*
1851  * This function is grabs code from the very beginning of
1852  * ext4_map_blocks, but assumes that the caller is from delayed write
1853  * time. This function looks up the requested blocks and sets the
1854  * buffer delay bit under the protection of i_data_sem.
1855  */
1856 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1857                               struct ext4_map_blocks *map,
1858                               struct buffer_head *bh)
1859 {
1860         struct extent_status es;
1861         int retval;
1862         sector_t invalid_block = ~((sector_t) 0xffff);
1863 #ifdef ES_AGGRESSIVE_TEST
1864         struct ext4_map_blocks orig_map;
1865
1866         memcpy(&orig_map, map, sizeof(*map));
1867 #endif
1868
1869         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1870                 invalid_block = ~0;
1871
1872         map->m_flags = 0;
1873         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1874                   "logical block %lu\n", inode->i_ino, map->m_len,
1875                   (unsigned long) map->m_lblk);
1876
1877         /* Lookup extent status tree firstly */
1878         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1879
1880                 if (ext4_es_is_hole(&es)) {
1881                         retval = 0;
1882                         down_read((&EXT4_I(inode)->i_data_sem));
1883                         goto add_delayed;
1884                 }
1885
1886                 /*
1887                  * Delayed extent could be allocated by fallocate.
1888                  * So we need to check it.
1889                  */
1890                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1891                         map_bh(bh, inode->i_sb, invalid_block);
1892                         set_buffer_new(bh);
1893                         set_buffer_delay(bh);
1894                         return 0;
1895                 }
1896
1897                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1898                 retval = es.es_len - (iblock - es.es_lblk);
1899                 if (retval > map->m_len)
1900                         retval = map->m_len;
1901                 map->m_len = retval;
1902                 if (ext4_es_is_written(&es))
1903                         map->m_flags |= EXT4_MAP_MAPPED;
1904                 else if (ext4_es_is_unwritten(&es))
1905                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1906                 else
1907                         BUG_ON(1);
1908
1909 #ifdef ES_AGGRESSIVE_TEST
1910                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1911 #endif
1912                 return retval;
1913         }
1914
1915         /*
1916          * Try to see if we can get the block without requesting a new
1917          * file system block.
1918          */
1919         down_read((&EXT4_I(inode)->i_data_sem));
1920         if (ext4_has_inline_data(inode)) {
1921                 /*
1922                  * We will soon create blocks for this page, and let
1923                  * us pretend as if the blocks aren't allocated yet.
1924                  * In case of clusters, we have to handle the work
1925                  * of mapping from cluster so that the reserved space
1926                  * is calculated properly.
1927                  */
1928                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1929                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1930                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1931                 retval = 0;
1932         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1933                 retval = ext4_ext_map_blocks(NULL, inode, map,
1934                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1935         else
1936                 retval = ext4_ind_map_blocks(NULL, inode, map,
1937                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1938
1939 add_delayed:
1940         if (retval == 0) {
1941                 int ret;
1942                 /*
1943                  * XXX: __block_prepare_write() unmaps passed block,
1944                  * is it OK?
1945                  */
1946                 /*
1947                  * If the block was allocated from previously allocated cluster,
1948                  * then we don't need to reserve it again. However we still need
1949                  * to reserve metadata for every block we're going to write.
1950                  */
1951                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1952                         ret = ext4_da_reserve_space(inode, iblock);
1953                         if (ret) {
1954                                 /* not enough space to reserve */
1955                                 retval = ret;
1956                                 goto out_unlock;
1957                         }
1958                 } else {
1959                         ret = ext4_da_reserve_metadata(inode, iblock);
1960                         if (ret) {
1961                                 /* not enough space to reserve */
1962                                 retval = ret;
1963                                 goto out_unlock;
1964                         }
1965                 }
1966
1967                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1968                                             ~0, EXTENT_STATUS_DELAYED);
1969                 if (ret) {
1970                         retval = ret;
1971                         goto out_unlock;
1972                 }
1973
1974                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1975                  * and it should not appear on the bh->b_state.
1976                  */
1977                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1978
1979                 map_bh(bh, inode->i_sb, invalid_block);
1980                 set_buffer_new(bh);
1981                 set_buffer_delay(bh);
1982         } else if (retval > 0) {
1983                 int ret;
1984                 unsigned long long status;
1985
1986 #ifdef ES_AGGRESSIVE_TEST
1987                 if (retval != map->m_len) {
1988                         printk("ES len assertation failed for inode: %lu "
1989                                "retval %d != map->m_len %d "
1990                                "in %s (lookup)\n", inode->i_ino, retval,
1991                                map->m_len, __func__);
1992                 }
1993 #endif
1994
1995                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1996                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1997                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1998                                             map->m_pblk, status);
1999                 if (ret != 0)
2000                         retval = ret;
2001         }
2002
2003 out_unlock:
2004         up_read((&EXT4_I(inode)->i_data_sem));
2005
2006         return retval;
2007 }
2008
2009 /*
2010  * This is a special get_blocks_t callback which is used by
2011  * ext4_da_write_begin().  It will either return mapped block or
2012  * reserve space for a single block.
2013  *
2014  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2015  * We also have b_blocknr = -1 and b_bdev initialized properly
2016  *
2017  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2018  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2019  * initialized properly.
2020  */
2021 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2022                            struct buffer_head *bh, int create)
2023 {
2024         struct ext4_map_blocks map;
2025         int ret = 0;
2026
2027         BUG_ON(create == 0);
2028         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2029
2030         map.m_lblk = iblock;
2031         map.m_len = 1;
2032
2033         /*
2034          * first, we need to know whether the block is allocated already
2035          * preallocated blocks are unmapped but should treated
2036          * the same as allocated blocks.
2037          */
2038         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2039         if (ret <= 0)
2040                 return ret;
2041
2042         map_bh(bh, inode->i_sb, map.m_pblk);
2043         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2044
2045         if (buffer_unwritten(bh)) {
2046                 /* A delayed write to unwritten bh should be marked
2047                  * new and mapped.  Mapped ensures that we don't do
2048                  * get_block multiple times when we write to the same
2049                  * offset and new ensures that we do proper zero out
2050                  * for partial write.
2051                  */
2052                 set_buffer_new(bh);
2053                 set_buffer_mapped(bh);
2054         }
2055         return 0;
2056 }
2057
2058 static int bget_one(handle_t *handle, struct buffer_head *bh)
2059 {
2060         get_bh(bh);
2061         return 0;
2062 }
2063
2064 static int bput_one(handle_t *handle, struct buffer_head *bh)
2065 {
2066         put_bh(bh);
2067         return 0;
2068 }
2069
2070 static int __ext4_journalled_writepage(struct page *page,
2071                                        unsigned int len)
2072 {
2073         struct address_space *mapping = page->mapping;
2074         struct inode *inode = mapping->host;
2075         struct buffer_head *page_bufs = NULL;
2076         handle_t *handle = NULL;
2077         int ret = 0, err = 0;
2078         int inline_data = ext4_has_inline_data(inode);
2079         struct buffer_head *inode_bh = NULL;
2080
2081         ClearPageChecked(page);
2082
2083         if (inline_data) {
2084                 BUG_ON(page->index != 0);
2085                 BUG_ON(len > ext4_get_max_inline_size(inode));
2086                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2087                 if (inode_bh == NULL)
2088                         goto out;
2089         } else {
2090                 page_bufs = page_buffers(page);
2091                 if (!page_bufs) {
2092                         BUG();
2093                         goto out;
2094                 }
2095                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2096                                        NULL, bget_one);
2097         }
2098         /* As soon as we unlock the page, it can go away, but we have
2099          * references to buffers so we are safe */
2100         unlock_page(page);
2101
2102         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2103                                     ext4_writepage_trans_blocks(inode));
2104         if (IS_ERR(handle)) {
2105                 ret = PTR_ERR(handle);
2106                 goto out;
2107         }
2108
2109         BUG_ON(!ext4_handle_valid(handle));
2110
2111         if (inline_data) {
2112                 ret = ext4_journal_get_write_access(handle, inode_bh);
2113
2114                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2115
2116         } else {
2117                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2118                                              do_journal_get_write_access);
2119
2120                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2121                                              write_end_fn);
2122         }
2123         if (ret == 0)
2124                 ret = err;
2125         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2126         err = ext4_journal_stop(handle);
2127         if (!ret)
2128                 ret = err;
2129
2130         if (!ext4_has_inline_data(inode))
2131                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2132                                        NULL, bput_one);
2133         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2134 out:
2135         brelse(inode_bh);
2136         return ret;
2137 }
2138
2139 /*
2140  * Note that we don't need to start a transaction unless we're journaling data
2141  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2142  * need to file the inode to the transaction's list in ordered mode because if
2143  * we are writing back data added by write(), the inode is already there and if
2144  * we are writing back data modified via mmap(), no one guarantees in which
2145  * transaction the data will hit the disk. In case we are journaling data, we
2146  * cannot start transaction directly because transaction start ranks above page
2147  * lock so we have to do some magic.
2148  *
2149  * This function can get called via...
2150  *   - ext4_da_writepages after taking page lock (have journal handle)
2151  *   - journal_submit_inode_data_buffers (no journal handle)
2152  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2153  *   - grab_page_cache when doing write_begin (have journal handle)
2154  *
2155  * We don't do any block allocation in this function. If we have page with
2156  * multiple blocks we need to write those buffer_heads that are mapped. This
2157  * is important for mmaped based write. So if we do with blocksize 1K
2158  * truncate(f, 1024);
2159  * a = mmap(f, 0, 4096);
2160  * a[0] = 'a';
2161  * truncate(f, 4096);
2162  * we have in the page first buffer_head mapped via page_mkwrite call back
2163  * but other buffer_heads would be unmapped but dirty (dirty done via the
2164  * do_wp_page). So writepage should write the first block. If we modify
2165  * the mmap area beyond 1024 we will again get a page_fault and the
2166  * page_mkwrite callback will do the block allocation and mark the
2167  * buffer_heads mapped.
2168  *
2169  * We redirty the page if we have any buffer_heads that is either delay or
2170  * unwritten in the page.
2171  *
2172  * We can get recursively called as show below.
2173  *
2174  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2175  *              ext4_writepage()
2176  *
2177  * But since we don't do any block allocation we should not deadlock.
2178  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2179  */
2180 static int ext4_writepage(struct page *page,
2181                           struct writeback_control *wbc)
2182 {
2183         int ret = 0;
2184         loff_t size;
2185         unsigned int len;
2186         struct buffer_head *page_bufs = NULL;
2187         struct inode *inode = page->mapping->host;
2188         struct ext4_io_submit io_submit;
2189
2190         trace_ext4_writepage(page);
2191         size = i_size_read(inode);
2192         if (page->index == size >> PAGE_CACHE_SHIFT)
2193                 len = size & ~PAGE_CACHE_MASK;
2194         else
2195                 len = PAGE_CACHE_SIZE;
2196
2197         page_bufs = page_buffers(page);
2198         /*
2199          * We cannot do block allocation or other extent handling in this
2200          * function. If there are buffers needing that, we have to redirty
2201          * the page. But we may reach here when we do a journal commit via
2202          * journal_submit_inode_data_buffers() and in that case we must write
2203          * allocated buffers to achieve data=ordered mode guarantees.
2204          */
2205         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2206                                    ext4_bh_delay_or_unwritten)) {
2207                 redirty_page_for_writepage(wbc, page);
2208                 if (current->flags & PF_MEMALLOC) {
2209                         /*
2210                          * For memory cleaning there's no point in writing only
2211                          * some buffers. So just bail out. Warn if we came here
2212                          * from direct reclaim.
2213                          */
2214                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2215                                                         == PF_MEMALLOC);
2216                         unlock_page(page);
2217                         return 0;
2218                 }
2219         }
2220
2221         if (PageChecked(page) && ext4_should_journal_data(inode))
2222                 /*
2223                  * It's mmapped pagecache.  Add buffers and journal it.  There
2224                  * doesn't seem much point in redirtying the page here.
2225                  */
2226                 return __ext4_journalled_writepage(page, len);
2227
2228         memset(&io_submit, 0, sizeof(io_submit));
2229         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2230         ext4_io_submit(&io_submit);
2231         return ret;
2232 }
2233
2234 /*
2235  * This is called via ext4_da_writepages() to
2236  * calculate the total number of credits to reserve to fit
2237  * a single extent allocation into a single transaction,
2238  * ext4_da_writpeages() will loop calling this before
2239  * the block allocation.
2240  */
2241
2242 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2243 {
2244         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2245
2246         /*
2247          * With non-extent format the journal credit needed to
2248          * insert nrblocks contiguous block is dependent on
2249          * number of contiguous block. So we will limit
2250          * number of contiguous block to a sane value
2251          */
2252         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2253             (max_blocks > EXT4_MAX_TRANS_DATA))
2254                 max_blocks = EXT4_MAX_TRANS_DATA;
2255
2256         return ext4_chunk_trans_blocks(inode, max_blocks);
2257 }
2258
2259 /*
2260  * write_cache_pages_da - walk the list of dirty pages of the given
2261  * address space and accumulate pages that need writing, and call
2262  * mpage_da_map_and_submit to map a single contiguous memory region
2263  * and then write them.
2264  */
2265 static int write_cache_pages_da(handle_t *handle,
2266                                 struct address_space *mapping,
2267                                 struct writeback_control *wbc,
2268                                 struct mpage_da_data *mpd,
2269                                 pgoff_t *done_index)
2270 {
2271         struct buffer_head      *bh, *head;
2272         struct inode            *inode = mapping->host;
2273         struct pagevec          pvec;
2274         unsigned int            nr_pages;
2275         sector_t                logical;
2276         pgoff_t                 index, end;
2277         long                    nr_to_write = wbc->nr_to_write;
2278         int                     i, tag, ret = 0;
2279
2280         memset(mpd, 0, sizeof(struct mpage_da_data));
2281         mpd->wbc = wbc;
2282         mpd->inode = inode;
2283         pagevec_init(&pvec, 0);
2284         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2285         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2286
2287         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2288                 tag = PAGECACHE_TAG_TOWRITE;
2289         else
2290                 tag = PAGECACHE_TAG_DIRTY;
2291
2292         *done_index = index;
2293         while (index <= end) {
2294                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2295                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2296                 if (nr_pages == 0)
2297                         return 0;
2298
2299                 for (i = 0; i < nr_pages; i++) {
2300                         struct page *page = pvec.pages[i];
2301
2302                         /*
2303                          * At this point, the page may be truncated or
2304                          * invalidated (changing page->mapping to NULL), or
2305                          * even swizzled back from swapper_space to tmpfs file
2306                          * mapping. However, page->index will not change
2307                          * because we have a reference on the page.
2308                          */
2309                         if (page->index > end)
2310                                 goto out;
2311
2312                         *done_index = page->index + 1;
2313
2314                         /*
2315                          * If we can't merge this page, and we have
2316                          * accumulated an contiguous region, write it
2317                          */
2318                         if ((mpd->next_page != page->index) &&
2319                             (mpd->next_page != mpd->first_page)) {
2320                                 mpage_da_map_and_submit(mpd);
2321                                 goto ret_extent_tail;
2322                         }
2323
2324                         lock_page(page);
2325
2326                         /*
2327                          * If the page is no longer dirty, or its
2328                          * mapping no longer corresponds to inode we
2329                          * are writing (which means it has been
2330                          * truncated or invalidated), or the page is
2331                          * already under writeback and we are not
2332                          * doing a data integrity writeback, skip the page
2333                          */
2334                         if (!PageDirty(page) ||
2335                             (PageWriteback(page) &&
2336                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2337                             unlikely(page->mapping != mapping)) {
2338                                 unlock_page(page);
2339                                 continue;
2340                         }
2341
2342                         wait_on_page_writeback(page);
2343                         BUG_ON(PageWriteback(page));
2344
2345                         /*
2346                          * If we have inline data and arrive here, it means that
2347                          * we will soon create the block for the 1st page, so
2348                          * we'd better clear the inline data here.
2349                          */
2350                         if (ext4_has_inline_data(inode)) {
2351                                 BUG_ON(ext4_test_inode_state(inode,
2352                                                 EXT4_STATE_MAY_INLINE_DATA));
2353                                 ext4_destroy_inline_data(handle, inode);
2354                         }
2355
2356                         if (mpd->next_page != page->index)
2357                                 mpd->first_page = page->index;
2358                         mpd->next_page = page->index + 1;
2359                         logical = (sector_t) page->index <<
2360                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2361
2362                         /* Add all dirty buffers to mpd */
2363                         head = page_buffers(page);
2364                         bh = head;
2365                         do {
2366                                 BUG_ON(buffer_locked(bh));
2367                                 /*
2368                                  * We need to try to allocate unmapped blocks
2369                                  * in the same page.  Otherwise we won't make
2370                                  * progress with the page in ext4_writepage
2371                                  */
2372                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2373                                         mpage_add_bh_to_extent(mpd, logical,
2374                                                                bh->b_state);
2375                                         if (mpd->io_done)
2376                                                 goto ret_extent_tail;
2377                                 } else if (buffer_dirty(bh) &&
2378                                            buffer_mapped(bh)) {
2379                                         /*
2380                                          * mapped dirty buffer. We need to
2381                                          * update the b_state because we look
2382                                          * at b_state in mpage_da_map_blocks.
2383                                          * We don't update b_size because if we
2384                                          * find an unmapped buffer_head later
2385                                          * we need to use the b_state flag of
2386                                          * that buffer_head.
2387                                          */
2388                                         if (mpd->b_size == 0)
2389                                                 mpd->b_state =
2390                                                         bh->b_state & BH_FLAGS;
2391                                 }
2392                                 logical++;
2393                         } while ((bh = bh->b_this_page) != head);
2394
2395                         if (nr_to_write > 0) {
2396                                 nr_to_write--;
2397                                 if (nr_to_write == 0 &&
2398                                     wbc->sync_mode == WB_SYNC_NONE)
2399                                         /*
2400                                          * We stop writing back only if we are
2401                                          * not doing integrity sync. In case of
2402                                          * integrity sync we have to keep going
2403                                          * because someone may be concurrently
2404                                          * dirtying pages, and we might have
2405                                          * synced a lot of newly appeared dirty
2406                                          * pages, but have not synced all of the
2407                                          * old dirty pages.
2408                                          */
2409                                         goto out;
2410                         }
2411                 }
2412                 pagevec_release(&pvec);
2413                 cond_resched();
2414         }
2415         return 0;
2416 ret_extent_tail:
2417         ret = MPAGE_DA_EXTENT_TAIL;
2418 out:
2419         pagevec_release(&pvec);
2420         cond_resched();
2421         return ret;
2422 }
2423
2424
2425 static int ext4_da_writepages(struct address_space *mapping,
2426                               struct writeback_control *wbc)
2427 {
2428         pgoff_t index;
2429         int range_whole = 0;
2430         handle_t *handle = NULL;
2431         struct mpage_da_data mpd;
2432         struct inode *inode = mapping->host;
2433         int pages_written = 0;
2434         unsigned int max_pages;
2435         int range_cyclic, cycled = 1, io_done = 0;
2436         int needed_blocks, ret = 0;
2437         long desired_nr_to_write, nr_to_writebump = 0;
2438         loff_t range_start = wbc->range_start;
2439         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2440         pgoff_t done_index = 0;
2441         pgoff_t end;
2442         struct blk_plug plug;
2443
2444         trace_ext4_da_writepages(inode, wbc);
2445
2446         /*
2447          * No pages to write? This is mainly a kludge to avoid starting
2448          * a transaction for special inodes like journal inode on last iput()
2449          * because that could violate lock ordering on umount
2450          */
2451         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2452                 return 0;
2453
2454         /*
2455          * If the filesystem has aborted, it is read-only, so return
2456          * right away instead of dumping stack traces later on that
2457          * will obscure the real source of the problem.  We test
2458          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2459          * the latter could be true if the filesystem is mounted
2460          * read-only, and in that case, ext4_da_writepages should
2461          * *never* be called, so if that ever happens, we would want
2462          * the stack trace.
2463          */
2464         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2465                 return -EROFS;
2466
2467         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2468                 range_whole = 1;
2469
2470         range_cyclic = wbc->range_cyclic;
2471         if (wbc->range_cyclic) {
2472                 index = mapping->writeback_index;
2473                 if (index)
2474                         cycled = 0;
2475                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2476                 wbc->range_end  = LLONG_MAX;
2477                 wbc->range_cyclic = 0;
2478                 end = -1;
2479         } else {
2480                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2481                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2482         }
2483
2484         /*
2485          * This works around two forms of stupidity.  The first is in
2486          * the writeback code, which caps the maximum number of pages
2487          * written to be 1024 pages.  This is wrong on multiple
2488          * levels; different architectues have a different page size,
2489          * which changes the maximum amount of data which gets
2490          * written.  Secondly, 4 megabytes is way too small.  XFS
2491          * forces this value to be 16 megabytes by multiplying
2492          * nr_to_write parameter by four, and then relies on its
2493          * allocator to allocate larger extents to make them
2494          * contiguous.  Unfortunately this brings us to the second
2495          * stupidity, which is that ext4's mballoc code only allocates
2496          * at most 2048 blocks.  So we force contiguous writes up to
2497          * the number of dirty blocks in the inode, or
2498          * sbi->max_writeback_mb_bump whichever is smaller.
2499          */
2500         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2501         if (!range_cyclic && range_whole) {
2502                 if (wbc->nr_to_write == LONG_MAX)
2503                         desired_nr_to_write = wbc->nr_to_write;
2504                 else
2505                         desired_nr_to_write = wbc->nr_to_write * 8;
2506         } else
2507                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2508                                                            max_pages);
2509         if (desired_nr_to_write > max_pages)
2510                 desired_nr_to_write = max_pages;
2511
2512         if (wbc->nr_to_write < desired_nr_to_write) {
2513                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2514                 wbc->nr_to_write = desired_nr_to_write;
2515         }
2516
2517 retry:
2518         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2519                 tag_pages_for_writeback(mapping, index, end);
2520
2521         blk_start_plug(&plug);
2522         while (!ret && wbc->nr_to_write > 0) {
2523
2524                 /*
2525                  * we  insert one extent at a time. So we need
2526                  * credit needed for single extent allocation.
2527                  * journalled mode is currently not supported
2528                  * by delalloc
2529                  */
2530                 BUG_ON(ext4_should_journal_data(inode));
2531                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2532
2533                 /* start a new transaction*/
2534                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2535                                             needed_blocks);
2536                 if (IS_ERR(handle)) {
2537                         ret = PTR_ERR(handle);
2538                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2539                                "%ld pages, ino %lu; err %d", __func__,
2540                                 wbc->nr_to_write, inode->i_ino, ret);
2541                         blk_finish_plug(&plug);
2542                         goto out_writepages;
2543                 }
2544
2545                 /*
2546                  * Now call write_cache_pages_da() to find the next
2547                  * contiguous region of logical blocks that need
2548                  * blocks to be allocated by ext4 and submit them.
2549                  */
2550                 ret = write_cache_pages_da(handle, mapping,
2551                                            wbc, &mpd, &done_index);
2552                 /*
2553                  * If we have a contiguous extent of pages and we
2554                  * haven't done the I/O yet, map the blocks and submit
2555                  * them for I/O.
2556                  */
2557                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2558                         mpage_da_map_and_submit(&mpd);
2559                         ret = MPAGE_DA_EXTENT_TAIL;
2560                 }
2561                 trace_ext4_da_write_pages(inode, &mpd);
2562                 wbc->nr_to_write -= mpd.pages_written;
2563
2564                 ext4_journal_stop(handle);
2565
2566                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2567                         /* commit the transaction which would
2568                          * free blocks released in the transaction
2569                          * and try again
2570                          */
2571                         jbd2_journal_force_commit_nested(sbi->s_journal);
2572                         ret = 0;
2573                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2574                         /*
2575                          * Got one extent now try with rest of the pages.
2576                          * If mpd.retval is set -EIO, journal is aborted.
2577                          * So we don't need to write any more.
2578                          */
2579                         pages_written += mpd.pages_written;
2580                         ret = mpd.retval;
2581                         io_done = 1;
2582                 } else if (wbc->nr_to_write)
2583                         /*
2584                          * There is no more writeout needed
2585                          * or we requested for a noblocking writeout
2586                          * and we found the device congested
2587                          */
2588                         break;
2589         }
2590         blk_finish_plug(&plug);
2591         if (!io_done && !cycled) {
2592                 cycled = 1;
2593                 index = 0;
2594                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2595                 wbc->range_end  = mapping->writeback_index - 1;
2596                 goto retry;
2597         }
2598
2599         /* Update index */
2600         wbc->range_cyclic = range_cyclic;
2601         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2602                 /*
2603                  * set the writeback_index so that range_cyclic
2604                  * mode will write it back later
2605                  */
2606                 mapping->writeback_index = done_index;
2607
2608 out_writepages:
2609         wbc->nr_to_write -= nr_to_writebump;
2610         wbc->range_start = range_start;
2611         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2612         return ret;
2613 }
2614
2615 static int ext4_nonda_switch(struct super_block *sb)
2616 {
2617         s64 free_clusters, dirty_clusters;
2618         struct ext4_sb_info *sbi = EXT4_SB(sb);
2619
2620         /*
2621          * switch to non delalloc mode if we are running low
2622          * on free block. The free block accounting via percpu
2623          * counters can get slightly wrong with percpu_counter_batch getting
2624          * accumulated on each CPU without updating global counters
2625          * Delalloc need an accurate free block accounting. So switch
2626          * to non delalloc when we are near to error range.
2627          */
2628         free_clusters =
2629                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2630         dirty_clusters =
2631                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2632         /*
2633          * Start pushing delalloc when 1/2 of free blocks are dirty.
2634          */
2635         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2636                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2637
2638         if (2 * free_clusters < 3 * dirty_clusters ||
2639             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2640                 /*
2641                  * free block count is less than 150% of dirty blocks
2642                  * or free blocks is less than watermark
2643                  */
2644                 return 1;
2645         }
2646         return 0;
2647 }
2648
2649 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2650                                loff_t pos, unsigned len, unsigned flags,
2651                                struct page **pagep, void **fsdata)
2652 {
2653         int ret, retries = 0;
2654         struct page *page;
2655         pgoff_t index;
2656         struct inode *inode = mapping->host;
2657         handle_t *handle;
2658
2659         index = pos >> PAGE_CACHE_SHIFT;
2660
2661         if (ext4_nonda_switch(inode->i_sb)) {
2662                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2663                 return ext4_write_begin(file, mapping, pos,
2664                                         len, flags, pagep, fsdata);
2665         }
2666         *fsdata = (void *)0;
2667         trace_ext4_da_write_begin(inode, pos, len, flags);
2668
2669         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2670                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2671                                                       pos, len, flags,
2672                                                       pagep, fsdata);
2673                 if (ret < 0)
2674                         return ret;
2675                 if (ret == 1)
2676                         return 0;
2677         }
2678
2679         /*
2680          * grab_cache_page_write_begin() can take a long time if the
2681          * system is thrashing due to memory pressure, or if the page
2682          * is being written back.  So grab it first before we start
2683          * the transaction handle.  This also allows us to allocate
2684          * the page (if needed) without using GFP_NOFS.
2685          */
2686 retry_grab:
2687         page = grab_cache_page_write_begin(mapping, index, flags);
2688         if (!page)
2689                 return -ENOMEM;
2690         unlock_page(page);
2691
2692         /*
2693          * With delayed allocation, we don't log the i_disksize update
2694          * if there is delayed block allocation. But we still need
2695          * to journalling the i_disksize update if writes to the end
2696          * of file which has an already mapped buffer.
2697          */
2698 retry_journal:
2699         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2700         if (IS_ERR(handle)) {
2701                 page_cache_release(page);
2702                 return PTR_ERR(handle);
2703         }
2704
2705         lock_page(page);
2706         if (page->mapping != mapping) {
2707                 /* The page got truncated from under us */
2708                 unlock_page(page);
2709                 page_cache_release(page);
2710                 ext4_journal_stop(handle);
2711                 goto retry_grab;
2712         }
2713         /* In case writeback began while the page was unlocked */
2714         wait_on_page_writeback(page);
2715
2716         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2717         if (ret < 0) {
2718                 unlock_page(page);
2719                 ext4_journal_stop(handle);
2720                 /*
2721                  * block_write_begin may have instantiated a few blocks
2722                  * outside i_size.  Trim these off again. Don't need
2723                  * i_size_read because we hold i_mutex.
2724                  */
2725                 if (pos + len > inode->i_size)
2726                         ext4_truncate_failed_write(inode);
2727
2728                 if (ret == -ENOSPC &&
2729                     ext4_should_retry_alloc(inode->i_sb, &retries))
2730                         goto retry_journal;
2731
2732                 page_cache_release(page);
2733                 return ret;
2734         }
2735
2736         *pagep = page;
2737         return ret;
2738 }
2739
2740 /*
2741  * Check if we should update i_disksize
2742  * when write to the end of file but not require block allocation
2743  */
2744 static int ext4_da_should_update_i_disksize(struct page *page,
2745                                             unsigned long offset)
2746 {
2747         struct buffer_head *bh;
2748         struct inode *inode = page->mapping->host;
2749         unsigned int idx;
2750         int i;
2751
2752         bh = page_buffers(page);
2753         idx = offset >> inode->i_blkbits;
2754
2755         for (i = 0; i < idx; i++)
2756                 bh = bh->b_this_page;
2757
2758         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2759                 return 0;
2760         return 1;
2761 }
2762
2763 static int ext4_da_write_end(struct file *file,
2764                              struct address_space *mapping,
2765                              loff_t pos, unsigned len, unsigned copied,
2766                              struct page *page, void *fsdata)
2767 {
2768         struct inode *inode = mapping->host;
2769         int ret = 0, ret2;
2770         handle_t *handle = ext4_journal_current_handle();
2771         loff_t new_i_size;
2772         unsigned long start, end;
2773         int write_mode = (int)(unsigned long)fsdata;
2774
2775         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2776                 return ext4_write_end(file, mapping, pos,
2777                                       len, copied, page, fsdata);
2778
2779         trace_ext4_da_write_end(inode, pos, len, copied);
2780         start = pos & (PAGE_CACHE_SIZE - 1);
2781         end = start + copied - 1;
2782
2783         /*
2784          * generic_write_end() will run mark_inode_dirty() if i_size
2785          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2786          * into that.
2787          */
2788         new_i_size = pos + copied;
2789         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2790                 if (ext4_has_inline_data(inode) ||
2791                     ext4_da_should_update_i_disksize(page, end)) {
2792                         down_write(&EXT4_I(inode)->i_data_sem);
2793                         if (new_i_size > EXT4_I(inode)->i_disksize)
2794                                 EXT4_I(inode)->i_disksize = new_i_size;
2795                         up_write(&EXT4_I(inode)->i_data_sem);
2796                         /* We need to mark inode dirty even if
2797                          * new_i_size is less that inode->i_size
2798                          * bu greater than i_disksize.(hint delalloc)
2799                          */
2800                         ext4_mark_inode_dirty(handle, inode);
2801                 }
2802         }
2803
2804         if (write_mode != CONVERT_INLINE_DATA &&
2805             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2806             ext4_has_inline_data(inode))
2807                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2808                                                      page);
2809         else
2810                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2811                                                         page, fsdata);
2812
2813         copied = ret2;
2814         if (ret2 < 0)
2815                 ret = ret2;
2816         ret2 = ext4_journal_stop(handle);
2817         if (!ret)
2818                 ret = ret2;
2819
2820         return ret ? ret : copied;
2821 }
2822
2823 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2824 {
2825         /*
2826          * Drop reserved blocks
2827          */
2828         BUG_ON(!PageLocked(page));
2829         if (!page_has_buffers(page))
2830                 goto out;
2831
2832         ext4_da_page_release_reservation(page, offset);
2833
2834 out:
2835         ext4_invalidatepage(page, offset);
2836
2837         return;
2838 }
2839
2840 /*
2841  * Force all delayed allocation blocks to be allocated for a given inode.
2842  */
2843 int ext4_alloc_da_blocks(struct inode *inode)
2844 {
2845         trace_ext4_alloc_da_blocks(inode);
2846
2847         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2848             !EXT4_I(inode)->i_reserved_meta_blocks)
2849                 return 0;
2850
2851         /*
2852          * We do something simple for now.  The filemap_flush() will
2853          * also start triggering a write of the data blocks, which is
2854          * not strictly speaking necessary (and for users of
2855          * laptop_mode, not even desirable).  However, to do otherwise
2856          * would require replicating code paths in:
2857          *
2858          * ext4_da_writepages() ->
2859          *    write_cache_pages() ---> (via passed in callback function)
2860          *        __mpage_da_writepage() -->
2861          *           mpage_add_bh_to_extent()
2862          *           mpage_da_map_blocks()
2863          *
2864          * The problem is that write_cache_pages(), located in
2865          * mm/page-writeback.c, marks pages clean in preparation for
2866          * doing I/O, which is not desirable if we're not planning on
2867          * doing I/O at all.
2868          *
2869          * We could call write_cache_pages(), and then redirty all of
2870          * the pages by calling redirty_page_for_writepage() but that
2871          * would be ugly in the extreme.  So instead we would need to
2872          * replicate parts of the code in the above functions,
2873          * simplifying them because we wouldn't actually intend to
2874          * write out the pages, but rather only collect contiguous
2875          * logical block extents, call the multi-block allocator, and
2876          * then update the buffer heads with the block allocations.
2877          *
2878          * For now, though, we'll cheat by calling filemap_flush(),
2879          * which will map the blocks, and start the I/O, but not
2880          * actually wait for the I/O to complete.
2881          */
2882         return filemap_flush(inode->i_mapping);
2883 }
2884
2885 /*
2886  * bmap() is special.  It gets used by applications such as lilo and by
2887  * the swapper to find the on-disk block of a specific piece of data.
2888  *
2889  * Naturally, this is dangerous if the block concerned is still in the
2890  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2891  * filesystem and enables swap, then they may get a nasty shock when the
2892  * data getting swapped to that swapfile suddenly gets overwritten by
2893  * the original zero's written out previously to the journal and
2894  * awaiting writeback in the kernel's buffer cache.
2895  *
2896  * So, if we see any bmap calls here on a modified, data-journaled file,
2897  * take extra steps to flush any blocks which might be in the cache.
2898  */
2899 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2900 {
2901         struct inode *inode = mapping->host;
2902         journal_t *journal;
2903         int err;
2904
2905         /*
2906          * We can get here for an inline file via the FIBMAP ioctl
2907          */
2908         if (ext4_has_inline_data(inode))
2909                 return 0;
2910
2911         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2912                         test_opt(inode->i_sb, DELALLOC)) {
2913                 /*
2914                  * With delalloc we want to sync the file
2915                  * so that we can make sure we allocate
2916                  * blocks for file
2917                  */
2918                 filemap_write_and_wait(mapping);
2919         }
2920
2921         if (EXT4_JOURNAL(inode) &&
2922             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2923                 /*
2924                  * This is a REALLY heavyweight approach, but the use of
2925                  * bmap on dirty files is expected to be extremely rare:
2926                  * only if we run lilo or swapon on a freshly made file
2927                  * do we expect this to happen.
2928                  *
2929                  * (bmap requires CAP_SYS_RAWIO so this does not
2930                  * represent an unprivileged user DOS attack --- we'd be
2931                  * in trouble if mortal users could trigger this path at
2932                  * will.)
2933                  *
2934                  * NB. EXT4_STATE_JDATA is not set on files other than
2935                  * regular files.  If somebody wants to bmap a directory
2936                  * or symlink and gets confused because the buffer
2937                  * hasn't yet been flushed to disk, they deserve
2938                  * everything they get.
2939                  */
2940
2941                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2942                 journal = EXT4_JOURNAL(inode);
2943                 jbd2_journal_lock_updates(journal);
2944                 err = jbd2_journal_flush(journal);
2945                 jbd2_journal_unlock_updates(journal);
2946
2947                 if (err)
2948                         return 0;
2949         }
2950
2951         return generic_block_bmap(mapping, block, ext4_get_block);
2952 }
2953
2954 static int ext4_readpage(struct file *file, struct page *page)
2955 {
2956         int ret = -EAGAIN;
2957         struct inode *inode = page->mapping->host;
2958
2959         trace_ext4_readpage(page);
2960
2961         if (ext4_has_inline_data(inode))
2962                 ret = ext4_readpage_inline(inode, page);
2963
2964         if (ret == -EAGAIN)
2965                 return mpage_readpage(page, ext4_get_block);
2966
2967         return ret;
2968 }
2969
2970 static int
2971 ext4_readpages(struct file *file, struct address_space *mapping,
2972                 struct list_head *pages, unsigned nr_pages)
2973 {
2974         struct inode *inode = mapping->host;
2975
2976         /* If the file has inline data, no need to do readpages. */
2977         if (ext4_has_inline_data(inode))
2978                 return 0;
2979
2980         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2981 }
2982
2983 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2984 {
2985         trace_ext4_invalidatepage(page, offset);
2986
2987         /* No journalling happens on data buffers when this function is used */
2988         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2989
2990         block_invalidatepage(page, offset);
2991 }
2992
2993 static int __ext4_journalled_invalidatepage(struct page *page,
2994                                             unsigned long offset)
2995 {
2996         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2997
2998         trace_ext4_journalled_invalidatepage(page, offset);
2999
3000         /*
3001          * If it's a full truncate we just forget about the pending dirtying
3002          */
3003         if (offset == 0)
3004                 ClearPageChecked(page);
3005
3006         return jbd2_journal_invalidatepage(journal, page, offset);
3007 }
3008
3009 /* Wrapper for aops... */
3010 static void ext4_journalled_invalidatepage(struct page *page,
3011                                            unsigned long offset)
3012 {
3013         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3014 }
3015
3016 static int ext4_releasepage(struct page *page, gfp_t wait)
3017 {
3018         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3019
3020         trace_ext4_releasepage(page);
3021
3022         /* Page has dirty journalled data -> cannot release */
3023         if (PageChecked(page))
3024                 return 0;
3025         if (journal)
3026                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3027         else
3028                 return try_to_free_buffers(page);
3029 }
3030
3031 /*
3032  * ext4_get_block used when preparing for a DIO write or buffer write.
3033  * We allocate an uinitialized extent if blocks haven't been allocated.
3034  * The extent will be converted to initialized after the IO is complete.
3035  */
3036 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3037                    struct buffer_head *bh_result, int create)
3038 {
3039         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3040                    inode->i_ino, create);
3041         return _ext4_get_block(inode, iblock, bh_result,
3042                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3043 }
3044
3045 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3046                    struct buffer_head *bh_result, int create)
3047 {
3048         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3049                    inode->i_ino, create);
3050         return _ext4_get_block(inode, iblock, bh_result,
3051                                EXT4_GET_BLOCKS_NO_LOCK);
3052 }
3053
3054 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3055                             ssize_t size, void *private, int ret,
3056                             bool is_async)
3057 {
3058         struct inode *inode = file_inode(iocb->ki_filp);
3059         ext4_io_end_t *io_end = iocb->private;
3060
3061         /* if not async direct IO or dio with 0 bytes write, just return */
3062         if (!io_end || !size)
3063                 goto out;
3064
3065         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3066                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3067                   iocb->private, io_end->inode->i_ino, iocb, offset,
3068                   size);
3069
3070         iocb->private = NULL;
3071
3072         /* if not aio dio with unwritten extents, just free io and return */
3073         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3074                 ext4_free_io_end(io_end);
3075 out:
3076                 inode_dio_done(inode);
3077                 if (is_async)
3078                         aio_complete(iocb, ret, 0);
3079                 return;
3080         }
3081
3082         io_end->offset = offset;
3083         io_end->size = size;
3084         if (is_async) {
3085                 io_end->iocb = iocb;
3086                 io_end->result = ret;
3087         }
3088
3089         ext4_add_complete_io(io_end);
3090 }
3091
3092 /*
3093  * For ext4 extent files, ext4 will do direct-io write to holes,
3094  * preallocated extents, and those write extend the file, no need to
3095  * fall back to buffered IO.
3096  *
3097  * For holes, we fallocate those blocks, mark them as uninitialized
3098  * If those blocks were preallocated, we mark sure they are split, but
3099  * still keep the range to write as uninitialized.
3100  *
3101  * The unwritten extents will be converted to written when DIO is completed.
3102  * For async direct IO, since the IO may still pending when return, we
3103  * set up an end_io call back function, which will do the conversion
3104  * when async direct IO completed.
3105  *
3106  * If the O_DIRECT write will extend the file then add this inode to the
3107  * orphan list.  So recovery will truncate it back to the original size
3108  * if the machine crashes during the write.
3109  *
3110  */
3111 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3112                               const struct iovec *iov, loff_t offset,
3113                               unsigned long nr_segs)
3114 {
3115         struct file *file = iocb->ki_filp;
3116         struct inode *inode = file->f_mapping->host;
3117         ssize_t ret;
3118         size_t count = iov_length(iov, nr_segs);
3119         int overwrite = 0;
3120         get_block_t *get_block_func = NULL;
3121         int dio_flags = 0;
3122         loff_t final_size = offset + count;
3123
3124         /* Use the old path for reads and writes beyond i_size. */
3125         if (rw != WRITE || final_size > inode->i_size)
3126                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3127
3128         BUG_ON(iocb->private == NULL);
3129
3130         /* If we do a overwrite dio, i_mutex locking can be released */
3131         overwrite = *((int *)iocb->private);
3132
3133         if (overwrite) {
3134                 atomic_inc(&inode->i_dio_count);
3135                 down_read(&EXT4_I(inode)->i_data_sem);
3136                 mutex_unlock(&inode->i_mutex);
3137         }
3138
3139         /*
3140          * We could direct write to holes and fallocate.
3141          *
3142          * Allocated blocks to fill the hole are marked as
3143          * uninitialized to prevent parallel buffered read to expose
3144          * the stale data before DIO complete the data IO.
3145          *
3146          * As to previously fallocated extents, ext4 get_block will
3147          * just simply mark the buffer mapped but still keep the
3148          * extents uninitialized.
3149          *
3150          * For non AIO case, we will convert those unwritten extents
3151          * to written after return back from blockdev_direct_IO.
3152          *
3153          * For async DIO, the conversion needs to be deferred when the
3154          * IO is completed. The ext4 end_io callback function will be
3155          * called to take care of the conversion work.  Here for async
3156          * case, we allocate an io_end structure to hook to the iocb.
3157          */
3158         iocb->private = NULL;
3159         ext4_inode_aio_set(inode, NULL);
3160         if (!is_sync_kiocb(iocb)) {
3161                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3162                 if (!io_end) {
3163                         ret = -ENOMEM;
3164                         goto retake_lock;
3165                 }
3166                 io_end->flag |= EXT4_IO_END_DIRECT;
3167                 iocb->private = io_end;
3168                 /*
3169                  * we save the io structure for current async direct
3170                  * IO, so that later ext4_map_blocks() could flag the
3171                  * io structure whether there is a unwritten extents
3172                  * needs to be converted when IO is completed.
3173                  */
3174                 ext4_inode_aio_set(inode, io_end);
3175         }
3176
3177         if (overwrite) {
3178                 get_block_func = ext4_get_block_write_nolock;
3179         } else {
3180                 get_block_func = ext4_get_block_write;
3181                 dio_flags = DIO_LOCKING;
3182         }
3183         ret = __blockdev_direct_IO(rw, iocb, inode,
3184                                    inode->i_sb->s_bdev, iov,
3185                                    offset, nr_segs,
3186                                    get_block_func,
3187                                    ext4_end_io_dio,
3188                                    NULL,
3189                                    dio_flags);
3190
3191         if (iocb->private)
3192                 ext4_inode_aio_set(inode, NULL);
3193         /*
3194          * The io_end structure takes a reference to the inode, that
3195          * structure needs to be destroyed and the reference to the
3196          * inode need to be dropped, when IO is complete, even with 0
3197          * byte write, or failed.
3198          *
3199          * In the successful AIO DIO case, the io_end structure will
3200          * be destroyed and the reference to the inode will be dropped
3201          * after the end_io call back function is called.
3202          *
3203          * In the case there is 0 byte write, or error case, since VFS
3204          * direct IO won't invoke the end_io call back function, we
3205          * need to free the end_io structure here.
3206          */
3207         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3208                 ext4_free_io_end(iocb->private);
3209                 iocb->private = NULL;
3210         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3211                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3212                 int err;
3213                 /*
3214                  * for non AIO case, since the IO is already
3215                  * completed, we could do the conversion right here
3216                  */
3217                 err = ext4_convert_unwritten_extents(inode,
3218                                                      offset, ret);
3219                 if (err < 0)
3220                         ret = err;
3221                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3222         }
3223
3224 retake_lock:
3225         /* take i_mutex locking again if we do a ovewrite dio */
3226         if (overwrite) {
3227                 inode_dio_done(inode);
3228                 up_read(&EXT4_I(inode)->i_data_sem);
3229                 mutex_lock(&inode->i_mutex);
3230         }
3231
3232         return ret;
3233 }
3234
3235 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3236                               const struct iovec *iov, loff_t offset,
3237                               unsigned long nr_segs)
3238 {
3239         struct file *file = iocb->ki_filp;
3240         struct inode *inode = file->f_mapping->host;
3241         ssize_t ret;
3242
3243         /*
3244          * If we are doing data journalling we don't support O_DIRECT
3245          */
3246         if (ext4_should_journal_data(inode))
3247                 return 0;
3248
3249         /* Let buffer I/O handle the inline data case. */
3250         if (ext4_has_inline_data(inode))
3251                 return 0;
3252
3253         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3254         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3255                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3256         else
3257                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3258         trace_ext4_direct_IO_exit(inode, offset,
3259                                 iov_length(iov, nr_segs), rw, ret);
3260         return ret;
3261 }
3262
3263 /*
3264  * Pages can be marked dirty completely asynchronously from ext4's journalling
3265  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3266  * much here because ->set_page_dirty is called under VFS locks.  The page is
3267  * not necessarily locked.
3268  *
3269  * We cannot just dirty the page and leave attached buffers clean, because the
3270  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3271  * or jbddirty because all the journalling code will explode.
3272  *
3273  * So what we do is to mark the page "pending dirty" and next time writepage
3274  * is called, propagate that into the buffers appropriately.
3275  */
3276 static int ext4_journalled_set_page_dirty(struct page *page)
3277 {
3278         SetPageChecked(page);
3279         return __set_page_dirty_nobuffers(page);
3280 }
3281
3282 static const struct address_space_operations ext4_aops = {
3283         .readpage               = ext4_readpage,
3284         .readpages              = ext4_readpages,
3285         .writepage              = ext4_writepage,
3286         .write_begin            = ext4_write_begin,
3287         .write_end              = ext4_write_end,
3288         .bmap                   = ext4_bmap,
3289         .invalidatepage         = ext4_invalidatepage,
3290         .releasepage            = ext4_releasepage,
3291         .direct_IO              = ext4_direct_IO,
3292         .migratepage            = buffer_migrate_page,
3293         .is_partially_uptodate  = block_is_partially_uptodate,
3294         .error_remove_page      = generic_error_remove_page,
3295 };
3296
3297 static const struct address_space_operations ext4_journalled_aops = {
3298         .readpage               = ext4_readpage,
3299         .readpages              = ext4_readpages,
3300         .writepage              = ext4_writepage,
3301         .write_begin            = ext4_write_begin,
3302         .write_end              = ext4_journalled_write_end,
3303         .set_page_dirty         = ext4_journalled_set_page_dirty,
3304         .bmap                   = ext4_bmap,
3305         .invalidatepage         = ext4_journalled_invalidatepage,
3306         .releasepage            = ext4_releasepage,
3307         .direct_IO              = ext4_direct_IO,
3308         .is_partially_uptodate  = block_is_partially_uptodate,
3309         .error_remove_page      = generic_error_remove_page,
3310 };
3311
3312 static const struct address_space_operations ext4_da_aops = {
3313         .readpage               = ext4_readpage,
3314         .readpages              = ext4_readpages,
3315         .writepage              = ext4_writepage,
3316         .writepages             = ext4_da_writepages,
3317         .write_begin            = ext4_da_write_begin,
3318         .write_end              = ext4_da_write_end,
3319         .bmap                   = ext4_bmap,
3320         .invalidatepage         = ext4_da_invalidatepage,
3321         .releasepage            = ext4_releasepage,
3322         .direct_IO              = ext4_direct_IO,
3323         .migratepage            = buffer_migrate_page,
3324         .is_partially_uptodate  = block_is_partially_uptodate,
3325         .error_remove_page      = generic_error_remove_page,
3326 };
3327
3328 void ext4_set_aops(struct inode *inode)
3329 {
3330         switch (ext4_inode_journal_mode(inode)) {
3331         case EXT4_INODE_ORDERED_DATA_MODE:
3332                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3333                 break;
3334         case EXT4_INODE_WRITEBACK_DATA_MODE:
3335                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3336                 break;
3337         case EXT4_INODE_JOURNAL_DATA_MODE:
3338                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3339                 return;
3340         default:
3341                 BUG();
3342         }
3343         if (test_opt(inode->i_sb, DELALLOC))
3344                 inode->i_mapping->a_ops = &ext4_da_aops;
3345         else
3346                 inode->i_mapping->a_ops = &ext4_aops;
3347 }
3348
3349
3350 /*
3351  * ext4_discard_partial_page_buffers()
3352  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3353  * This function finds and locks the page containing the offset
3354  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3355  * Calling functions that already have the page locked should call
3356  * ext4_discard_partial_page_buffers_no_lock directly.
3357  */
3358 int ext4_discard_partial_page_buffers(handle_t *handle,
3359                 struct address_space *mapping, loff_t from,
3360                 loff_t length, int flags)
3361 {
3362         struct inode *inode = mapping->host;
3363         struct page *page;
3364         int err = 0;
3365
3366         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3367                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3368         if (!page)
3369                 return -ENOMEM;
3370
3371         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3372                 from, length, flags);
3373
3374         unlock_page(page);
3375         page_cache_release(page);
3376         return err;
3377 }
3378
3379 /*
3380  * ext4_discard_partial_page_buffers_no_lock()
3381  * Zeros a page range of length 'length' starting from offset 'from'.
3382  * Buffer heads that correspond to the block aligned regions of the
3383  * zeroed range will be unmapped.  Unblock aligned regions
3384  * will have the corresponding buffer head mapped if needed so that
3385  * that region of the page can be updated with the partial zero out.
3386  *
3387  * This function assumes that the page has already been  locked.  The
3388  * The range to be discarded must be contained with in the given page.
3389  * If the specified range exceeds the end of the page it will be shortened
3390  * to the end of the page that corresponds to 'from'.  This function is
3391  * appropriate for updating a page and it buffer heads to be unmapped and
3392  * zeroed for blocks that have been either released, or are going to be
3393  * released.
3394  *
3395  * handle: The journal handle
3396  * inode:  The files inode
3397  * page:   A locked page that contains the offset "from"
3398  * from:   The starting byte offset (from the beginning of the file)
3399  *         to begin discarding
3400  * len:    The length of bytes to discard
3401  * flags:  Optional flags that may be used:
3402  *
3403  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3404  *         Only zero the regions of the page whose buffer heads
3405  *         have already been unmapped.  This flag is appropriate
3406  *         for updating the contents of a page whose blocks may
3407  *         have already been released, and we only want to zero
3408  *         out the regions that correspond to those released blocks.
3409  *
3410  * Returns zero on success or negative on failure.
3411  */
3412 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3413                 struct inode *inode, struct page *page, loff_t from,
3414                 loff_t length, int flags)
3415 {
3416         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3417         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3418         unsigned int blocksize, max, pos;
3419         ext4_lblk_t iblock;
3420         struct buffer_head *bh;
3421         int err = 0;
3422
3423         blocksize = inode->i_sb->s_blocksize;
3424         max = PAGE_CACHE_SIZE - offset;
3425
3426         if (index != page->index)
3427                 return -EINVAL;
3428
3429         /*
3430          * correct length if it does not fall between
3431          * 'from' and the end of the page
3432          */
3433         if (length > max || length < 0)
3434                 length = max;
3435
3436         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3437
3438         if (!page_has_buffers(page))
3439                 create_empty_buffers(page, blocksize, 0);
3440
3441         /* Find the buffer that contains "offset" */
3442         bh = page_buffers(page);
3443         pos = blocksize;
3444         while (offset >= pos) {
3445                 bh = bh->b_this_page;
3446                 iblock++;
3447                 pos += blocksize;
3448         }
3449
3450         pos = offset;
3451         while (pos < offset + length) {
3452                 unsigned int end_of_block, range_to_discard;
3453
3454                 err = 0;
3455
3456                 /* The length of space left to zero and unmap */
3457                 range_to_discard = offset + length - pos;
3458
3459                 /* The length of space until the end of the block */
3460                 end_of_block = blocksize - (pos & (blocksize-1));
3461
3462                 /*
3463                  * Do not unmap or zero past end of block
3464                  * for this buffer head
3465                  */
3466                 if (range_to_discard > end_of_block)
3467                         range_to_discard = end_of_block;
3468
3469
3470                 /*
3471                  * Skip this buffer head if we are only zeroing unampped
3472                  * regions of the page
3473                  */
3474                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3475                         buffer_mapped(bh))
3476                                 goto next;
3477
3478                 /* If the range is block aligned, unmap */
3479                 if (range_to_discard == blocksize) {
3480                         clear_buffer_dirty(bh);
3481                         bh->b_bdev = NULL;
3482                         clear_buffer_mapped(bh);
3483                         clear_buffer_req(bh);
3484                         clear_buffer_new(bh);
3485                         clear_buffer_delay(bh);
3486                         clear_buffer_unwritten(bh);
3487                         clear_buffer_uptodate(bh);
3488                         zero_user(page, pos, range_to_discard);
3489                         BUFFER_TRACE(bh, "Buffer discarded");
3490                         goto next;
3491                 }
3492
3493                 /*
3494                  * If this block is not completely contained in the range
3495                  * to be discarded, then it is not going to be released. Because
3496                  * we need to keep this block, we need to make sure this part
3497                  * of the page is uptodate before we modify it by writeing
3498                  * partial zeros on it.
3499                  */
3500                 if (!buffer_mapped(bh)) {
3501                         /*
3502                          * Buffer head must be mapped before we can read
3503                          * from the block
3504                          */
3505                         BUFFER_TRACE(bh, "unmapped");
3506                         ext4_get_block(inode, iblock, bh, 0);
3507                         /* unmapped? It's a hole - nothing to do */
3508                         if (!buffer_mapped(bh)) {
3509                                 BUFFER_TRACE(bh, "still unmapped");
3510                                 goto next;
3511                         }
3512                 }
3513
3514                 /* Ok, it's mapped. Make sure it's up-to-date */
3515                 if (PageUptodate(page))
3516                         set_buffer_uptodate(bh);
3517
3518                 if (!buffer_uptodate(bh)) {
3519                         err = -EIO;
3520                         ll_rw_block(READ, 1, &bh);
3521                         wait_on_buffer(bh);
3522                         /* Uhhuh. Read error. Complain and punt.*/
3523                         if (!buffer_uptodate(bh))
3524                                 goto next;
3525                 }
3526
3527                 if (ext4_should_journal_data(inode)) {
3528                         BUFFER_TRACE(bh, "get write access");
3529                         err = ext4_journal_get_write_access(handle, bh);
3530                         if (err)
3531                                 goto next;
3532                 }
3533
3534                 zero_user(page, pos, range_to_discard);
3535
3536                 err = 0;
3537                 if (ext4_should_journal_data(inode)) {
3538                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3539                 } else
3540                         mark_buffer_dirty(bh);
3541
3542                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3543 next:
3544                 bh = bh->b_this_page;
3545                 iblock++;
3546                 pos += range_to_discard;
3547         }
3548
3549         return err;
3550 }
3551
3552 int ext4_can_truncate(struct inode *inode)
3553 {
3554         if (S_ISREG(inode->i_mode))
3555                 return 1;
3556         if (S_ISDIR(inode->i_mode))
3557                 return 1;
3558         if (S_ISLNK(inode->i_mode))
3559                 return !ext4_inode_is_fast_symlink(inode);
3560         return 0;
3561 }
3562
3563 /*
3564  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3565  * associated with the given offset and length
3566  *
3567  * @inode:  File inode
3568  * @offset: The offset where the hole will begin
3569  * @len:    The length of the hole
3570  *
3571  * Returns: 0 on success or negative on failure
3572  */
3573
3574 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3575 {
3576         struct inode *inode = file_inode(file);
3577         struct super_block *sb = inode->i_sb;
3578         ext4_lblk_t first_block, stop_block;
3579         struct address_space *mapping = inode->i_mapping;
3580         loff_t first_page, last_page, page_len;
3581         loff_t first_page_offset, last_page_offset;
3582         handle_t *handle;
3583         unsigned int credits;
3584         int ret = 0;
3585
3586         if (!S_ISREG(inode->i_mode))
3587                 return -EOPNOTSUPP;
3588
3589         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3590                 /* TODO: Add support for bigalloc file systems */
3591                 return -EOPNOTSUPP;
3592         }
3593
3594         trace_ext4_punch_hole(inode, offset, length);
3595
3596         /*
3597          * Write out all dirty pages to avoid race conditions
3598          * Then release them.
3599          */
3600         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3601                 ret = filemap_write_and_wait_range(mapping, offset,
3602                                                    offset + length - 1);
3603                 if (ret)
3604                         return ret;
3605         }
3606
3607         mutex_lock(&inode->i_mutex);
3608         /* It's not possible punch hole on append only file */
3609         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3610                 ret = -EPERM;
3611                 goto out_mutex;
3612         }
3613         if (IS_SWAPFILE(inode)) {
3614                 ret = -ETXTBSY;
3615                 goto out_mutex;
3616         }
3617
3618         /* No need to punch hole beyond i_size */
3619         if (offset >= inode->i_size)
3620                 goto out_mutex;
3621
3622         /*
3623          * If the hole extends beyond i_size, set the hole
3624          * to end after the page that contains i_size
3625          */
3626         if (offset + length > inode->i_size) {
3627                 length = inode->i_size +
3628                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3629                    offset;
3630         }
3631
3632         first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3633         last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3634
3635         first_page_offset = first_page << PAGE_CACHE_SHIFT;
3636         last_page_offset = last_page << PAGE_CACHE_SHIFT;
3637
3638         /* Now release the pages */
3639         if (last_page_offset > first_page_offset) {
3640                 truncate_pagecache_range(inode, first_page_offset,
3641                                          last_page_offset - 1);
3642         }
3643
3644         /* Wait all existing dio workers, newcomers will block on i_mutex */
3645         ext4_inode_block_unlocked_dio(inode);
3646         ret = ext4_flush_unwritten_io(inode);
3647         if (ret)
3648                 goto out_dio;
3649         inode_dio_wait(inode);
3650
3651         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3652                 credits = ext4_writepage_trans_blocks(inode);
3653         else
3654                 credits = ext4_blocks_for_truncate(inode);
3655         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3656         if (IS_ERR(handle)) {
3657                 ret = PTR_ERR(handle);
3658                 ext4_std_error(sb, ret);
3659                 goto out_dio;
3660         }
3661
3662         /*
3663          * Now we need to zero out the non-page-aligned data in the
3664          * pages at the start and tail of the hole, and unmap the
3665          * buffer heads for the block aligned regions of the page that
3666          * were completely zeroed.
3667          */
3668         if (first_page > last_page) {
3669                 /*
3670                  * If the file space being truncated is contained
3671                  * within a page just zero out and unmap the middle of
3672                  * that page
3673                  */
3674                 ret = ext4_discard_partial_page_buffers(handle,
3675                         mapping, offset, length, 0);
3676
3677                 if (ret)
3678                         goto out_stop;
3679         } else {
3680                 /*
3681                  * zero out and unmap the partial page that contains
3682                  * the start of the hole
3683                  */
3684                 page_len = first_page_offset - offset;
3685                 if (page_len > 0) {
3686                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3687                                                 offset, page_len, 0);
3688                         if (ret)
3689                                 goto out_stop;
3690                 }
3691
3692                 /*
3693                  * zero out and unmap the partial page that contains
3694                  * the end of the hole
3695                  */
3696                 page_len = offset + length - last_page_offset;
3697                 if (page_len > 0) {
3698                         ret = ext4_discard_partial_page_buffers(handle, mapping,
3699                                         last_page_offset, page_len, 0);
3700                         if (ret)
3701                                 goto out_stop;
3702                 }
3703         }
3704
3705         /*
3706          * If i_size is contained in the last page, we need to
3707          * unmap and zero the partial page after i_size
3708          */
3709         if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3710            inode->i_size % PAGE_CACHE_SIZE != 0) {
3711                 page_len = PAGE_CACHE_SIZE -
3712                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3713
3714                 if (page_len > 0) {
3715                         ret = ext4_discard_partial_page_buffers(handle,
3716                                         mapping, inode->i_size, page_len, 0);
3717
3718                         if (ret)
3719                                 goto out_stop;
3720                 }
3721         }
3722
3723         first_block = (offset + sb->s_blocksize - 1) >>
3724                 EXT4_BLOCK_SIZE_BITS(sb);
3725         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3726
3727         /* If there are no blocks to remove, return now */
3728         if (first_block >= stop_block)
3729                 goto out_stop;
3730
3731         down_write(&EXT4_I(inode)->i_data_sem);
3732         ext4_discard_preallocations(inode);
3733
3734         ret = ext4_es_remove_extent(inode, first_block,
3735                                     stop_block - first_block);
3736         if (ret) {
3737                 up_write(&EXT4_I(inode)->i_data_sem);
3738                 goto out_stop;
3739         }
3740
3741         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3742                 ret = ext4_ext_remove_space(inode, first_block,
3743                                             stop_block - 1);
3744         else
3745                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3746                                             stop_block);
3747
3748         ext4_discard_preallocations(inode);
3749         up_write(&EXT4_I(inode)->i_data_sem);
3750         if (IS_SYNC(inode))
3751                 ext4_handle_sync(handle);
3752         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3753         ext4_mark_inode_dirty(handle, inode);
3754 out_stop:
3755         ext4_journal_stop(handle);
3756 out_dio:
3757         ext4_inode_resume_unlocked_dio(inode);
3758 out_mutex:
3759         mutex_unlock(&inode->i_mutex);
3760         return ret;
3761 }
3762
3763 /*
3764  * ext4_truncate()
3765  *
3766  * We block out ext4_get_block() block instantiations across the entire
3767  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3768  * simultaneously on behalf of the same inode.
3769  *
3770  * As we work through the truncate and commit bits of it to the journal there
3771  * is one core, guiding principle: the file's tree must always be consistent on
3772  * disk.  We must be able to restart the truncate after a crash.
3773  *
3774  * The file's tree may be transiently inconsistent in memory (although it
3775  * probably isn't), but whenever we close off and commit a journal transaction,
3776  * the contents of (the filesystem + the journal) must be consistent and
3777  * restartable.  It's pretty simple, really: bottom up, right to left (although
3778  * left-to-right works OK too).
3779  *
3780  * Note that at recovery time, journal replay occurs *before* the restart of
3781  * truncate against the orphan inode list.
3782  *
3783  * The committed inode has the new, desired i_size (which is the same as
3784  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3785  * that this inode's truncate did not complete and it will again call
3786  * ext4_truncate() to have another go.  So there will be instantiated blocks
3787  * to the right of the truncation point in a crashed ext4 filesystem.  But
3788  * that's fine - as long as they are linked from the inode, the post-crash
3789  * ext4_truncate() run will find them and release them.
3790  */
3791 void ext4_truncate(struct inode *inode)
3792 {
3793         struct ext4_inode_info *ei = EXT4_I(inode);
3794         unsigned int credits;
3795         handle_t *handle;
3796         struct address_space *mapping = inode->i_mapping;
3797         loff_t page_len;
3798
3799         /*
3800          * There is a possibility that we're either freeing the inode
3801          * or it completely new indode. In those cases we might not
3802          * have i_mutex locked because it's not necessary.
3803          */
3804         if (!(inode->i_state & (I_NEW|I_FREEING)))
3805                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3806         trace_ext4_truncate_enter(inode);
3807
3808         if (!ext4_can_truncate(inode))
3809                 return;
3810
3811         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3812
3813         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3814                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3815
3816         if (ext4_has_inline_data(inode)) {
3817                 int has_inline = 1;
3818
3819                 ext4_inline_data_truncate(inode, &has_inline);
3820                 if (has_inline)
3821                         return;
3822         }
3823
3824         /*
3825          * finish any pending end_io work so we won't run the risk of
3826          * converting any truncated blocks to initialized later
3827          */
3828         ext4_flush_unwritten_io(inode);
3829
3830         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3831                 credits = ext4_writepage_trans_blocks(inode);
3832         else
3833                 credits = ext4_blocks_for_truncate(inode);
3834
3835         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3836         if (IS_ERR(handle)) {
3837                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3838                 return;
3839         }
3840
3841         if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3842                 page_len = PAGE_CACHE_SIZE -
3843                         (inode->i_size & (PAGE_CACHE_SIZE - 1));
3844
3845                 if (ext4_discard_partial_page_buffers(handle,
3846                                 mapping, inode->i_size, page_len, 0))
3847                         goto out_stop;
3848         }
3849
3850         /*
3851          * We add the inode to the orphan list, so that if this
3852          * truncate spans multiple transactions, and we crash, we will
3853          * resume the truncate when the filesystem recovers.  It also
3854          * marks the inode dirty, to catch the new size.
3855          *
3856          * Implication: the file must always be in a sane, consistent
3857          * truncatable state while each transaction commits.
3858          */
3859         if (ext4_orphan_add(handle, inode))
3860                 goto out_stop;
3861
3862         down_write(&EXT4_I(inode)->i_data_sem);
3863
3864         ext4_discard_preallocations(inode);
3865
3866         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3867                 ext4_ext_truncate(handle, inode);
3868         else
3869                 ext4_ind_truncate(handle, inode);
3870
3871         up_write(&ei->i_data_sem);
3872
3873         if (IS_SYNC(inode))
3874                 ext4_handle_sync(handle);
3875
3876 out_stop:
3877         /*
3878          * If this was a simple ftruncate() and the file will remain alive,
3879          * then we need to clear up the orphan record which we created above.
3880          * However, if this was a real unlink then we were called by
3881          * ext4_delete_inode(), and we allow that function to clean up the
3882          * orphan info for us.
3883          */
3884         if (inode->i_nlink)
3885                 ext4_orphan_del(handle, inode);
3886
3887         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3888         ext4_mark_inode_dirty(handle, inode);
3889         ext4_journal_stop(handle);
3890
3891         trace_ext4_truncate_exit(inode);
3892 }
3893
3894 /*
3895  * ext4_get_inode_loc returns with an extra refcount against the inode's
3896  * underlying buffer_head on success. If 'in_mem' is true, we have all
3897  * data in memory that is needed to recreate the on-disk version of this
3898  * inode.
3899  */
3900 static int __ext4_get_inode_loc(struct inode *inode,
3901                                 struct ext4_iloc *iloc, int in_mem)
3902 {
3903         struct ext4_group_desc  *gdp;
3904         struct buffer_head      *bh;
3905         struct super_block      *sb = inode->i_sb;
3906         ext4_fsblk_t            block;
3907         int                     inodes_per_block, inode_offset;
3908
3909         iloc->bh = NULL;
3910         if (!ext4_valid_inum(sb, inode->i_ino))
3911                 return -EIO;
3912
3913         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3914         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3915         if (!gdp)
3916                 return -EIO;
3917
3918         /*
3919          * Figure out the offset within the block group inode table
3920          */
3921         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3922         inode_offset = ((inode->i_ino - 1) %
3923                         EXT4_INODES_PER_GROUP(sb));
3924         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3925         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3926
3927         bh = sb_getblk(sb, block);
3928         if (unlikely(!bh))
3929                 return -ENOMEM;
3930         if (!buffer_uptodate(bh)) {
3931                 lock_buffer(bh);
3932
3933                 /*
3934                  * If the buffer has the write error flag, we have failed
3935                  * to write out another inode in the same block.  In this
3936                  * case, we don't have to read the block because we may
3937                  * read the old inode data successfully.
3938                  */
3939                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3940                         set_buffer_uptodate(bh);
3941
3942                 if (buffer_uptodate(bh)) {
3943                         /* someone brought it uptodate while we waited */
3944                         unlock_buffer(bh);
3945                         goto has_buffer;
3946                 }
3947
3948                 /*
3949                  * If we have all information of the inode in memory and this
3950                  * is the only valid inode in the block, we need not read the
3951                  * block.
3952                  */
3953                 if (in_mem) {
3954                         struct buffer_head *bitmap_bh;
3955                         int i, start;
3956
3957                         start = inode_offset & ~(inodes_per_block - 1);
3958
3959                         /* Is the inode bitmap in cache? */
3960                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3961                         if (unlikely(!bitmap_bh))
3962                                 goto make_io;
3963
3964                         /*
3965                          * If the inode bitmap isn't in cache then the
3966                          * optimisation may end up performing two reads instead
3967                          * of one, so skip it.
3968                          */
3969                         if (!buffer_uptodate(bitmap_bh)) {
3970                                 brelse(bitmap_bh);
3971                                 goto make_io;
3972                         }
3973                         for (i = start; i < start + inodes_per_block; i++) {
3974                                 if (i == inode_offset)
3975                                         continue;
3976                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3977                                         break;
3978                         }
3979                         brelse(bitmap_bh);
3980                         if (i == start + inodes_per_block) {
3981                                 /* all other inodes are free, so skip I/O */
3982                                 memset(bh->b_data, 0, bh->b_size);
3983                                 set_buffer_uptodate(bh);
3984                                 unlock_buffer(bh);
3985                                 goto has_buffer;
3986                         }
3987                 }
3988
3989 make_io:
3990                 /*
3991                  * If we need to do any I/O, try to pre-readahead extra
3992                  * blocks from the inode table.
3993                  */
3994                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3995                         ext4_fsblk_t b, end, table;
3996                         unsigned num;
3997                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3998
3999                         table = ext4_inode_table(sb, gdp);
4000                         /* s_inode_readahead_blks is always a power of 2 */
4001                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4002                         if (table > b)
4003                                 b = table;
4004                         end = b + ra_blks;
4005                         num = EXT4_INODES_PER_GROUP(sb);
4006                         if (ext4_has_group_desc_csum(sb))
4007                                 num -= ext4_itable_unused_count(sb, gdp);
4008                         table += num / inodes_per_block;
4009                         if (end > table)
4010                                 end = table;
4011                         while (b <= end)
4012                                 sb_breadahead(sb, b++);
4013                 }
4014
4015                 /*
4016                  * There are other valid inodes in the buffer, this inode
4017                  * has in-inode xattrs, or we don't have this inode in memory.
4018                  * Read the block from disk.
4019                  */
4020                 trace_ext4_load_inode(inode);
4021                 get_bh(bh);
4022                 bh->b_end_io = end_buffer_read_sync;
4023                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4024                 wait_on_buffer(bh);
4025                 if (!buffer_uptodate(bh)) {
4026                         EXT4_ERROR_INODE_BLOCK(inode, block,
4027                                                "unable to read itable block");
4028                         brelse(bh);
4029                         return -EIO;
4030                 }
4031         }
4032 has_buffer:
4033         iloc->bh = bh;
4034         return 0;
4035 }
4036
4037 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4038 {
4039         /* We have all inode data except xattrs in memory here. */
4040         return __ext4_get_inode_loc(inode, iloc,
4041                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4042 }
4043
4044 void ext4_set_inode_flags(struct inode *inode)
4045 {
4046         unsigned int flags = EXT4_I(inode)->i_flags;
4047
4048         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4049         if (flags & EXT4_SYNC_FL)
4050                 inode->i_flags |= S_SYNC;
4051         if (flags & EXT4_APPEND_FL)
4052                 inode->i_flags |= S_APPEND;
4053         if (flags & EXT4_IMMUTABLE_FL)
4054                 inode->i_flags |= S_IMMUTABLE;
4055         if (flags & EXT4_NOATIME_FL)
4056                 inode->i_flags |= S_NOATIME;
4057         if (flags & EXT4_DIRSYNC_FL)
4058                 inode->i_flags |= S_DIRSYNC;
4059 }
4060
4061 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4062 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4063 {
4064         unsigned int vfs_fl;
4065         unsigned long old_fl, new_fl;
4066
4067         do {
4068                 vfs_fl = ei->vfs_inode.i_flags;
4069                 old_fl = ei->i_flags;
4070                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4071                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4072                                 EXT4_DIRSYNC_FL);
4073                 if (vfs_fl & S_SYNC)
4074                         new_fl |= EXT4_SYNC_FL;
4075                 if (vfs_fl & S_APPEND)
4076                         new_fl |= EXT4_APPEND_FL;
4077                 if (vfs_fl & S_IMMUTABLE)
4078                         new_fl |= EXT4_IMMUTABLE_FL;
4079                 if (vfs_fl & S_NOATIME)
4080                         new_fl |= EXT4_NOATIME_FL;
4081                 if (vfs_fl & S_DIRSYNC)
4082                         new_fl |= EXT4_DIRSYNC_FL;
4083         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4084 }
4085
4086 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4087                                   struct ext4_inode_info *ei)
4088 {
4089         blkcnt_t i_blocks ;
4090         struct inode *inode = &(ei->vfs_inode);
4091         struct super_block *sb = inode->i_sb;
4092
4093         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4094                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4095                 /* we are using combined 48 bit field */
4096                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4097                                         le32_to_cpu(raw_inode->i_blocks_lo);
4098                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4099                         /* i_blocks represent file system block size */
4100                         return i_blocks  << (inode->i_blkbits - 9);
4101                 } else {
4102                         return i_blocks;
4103                 }
4104         } else {
4105                 return le32_to_cpu(raw_inode->i_blocks_lo);
4106         }
4107 }
4108
4109 static inline void ext4_iget_extra_inode(struct inode *inode,
4110                                          struct ext4_inode *raw_inode,
4111                                          struct ext4_inode_info *ei)
4112 {
4113         __le32 *magic = (void *)raw_inode +
4114                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4115         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4116                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4117                 ext4_find_inline_data_nolock(inode);
4118         } else
4119                 EXT4_I(inode)->i_inline_off = 0;
4120 }
4121
4122 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4123 {
4124         struct ext4_iloc iloc;
4125         struct ext4_inode *raw_inode;
4126         struct ext4_inode_info *ei;
4127         struct inode *inode;
4128         journal_t *journal = EXT4_SB(sb)->s_journal;
4129         long ret;
4130         int block;
4131         uid_t i_uid;
4132         gid_t i_gid;
4133
4134         inode = iget_locked(sb, ino);
4135         if (!inode)
4136                 return ERR_PTR(-ENOMEM);
4137         if (!(inode->i_state & I_NEW))
4138                 return inode;
4139
4140         ei = EXT4_I(inode);
4141         iloc.bh = NULL;
4142
4143         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4144         if (ret < 0)
4145                 goto bad_inode;
4146         raw_inode = ext4_raw_inode(&iloc);
4147
4148         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4149                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4150                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4151                     EXT4_INODE_SIZE(inode->i_sb)) {
4152                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4153                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4154                                 EXT4_INODE_SIZE(inode->i_sb));
4155                         ret = -EIO;
4156                         goto bad_inode;
4157                 }
4158         } else
4159                 ei->i_extra_isize = 0;
4160
4161         /* Precompute checksum seed for inode metadata */
4162         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4163                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4164                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4165                 __u32 csum;
4166                 __le32 inum = cpu_to_le32(inode->i_ino);
4167                 __le32 gen = raw_inode->i_generation;
4168                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4169                                    sizeof(inum));
4170                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4171                                               sizeof(gen));
4172         }
4173
4174         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4175                 EXT4_ERROR_INODE(inode, "checksum invalid");
4176                 ret = -EIO;
4177                 goto bad_inode;
4178         }
4179
4180         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4181         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4182         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4183         if (!(test_opt(inode->i_sb, NO_UID32))) {
4184                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4185                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4186         }
4187         i_uid_write(inode, i_uid);
4188         i_gid_write(inode, i_gid);
4189         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4190
4191         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4192         ei->i_inline_off = 0;
4193         ei->i_dir_start_lookup = 0;
4194         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4195         /* We now have enough fields to check if the inode was active or not.
4196          * This is needed because nfsd might try to access dead inodes
4197          * the test is that same one that e2fsck uses
4198          * NeilBrown 1999oct15
4199          */
4200         if (inode->i_nlink == 0) {
4201                 if ((inode->i_mode == 0 ||
4202                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4203                     ino != EXT4_BOOT_LOADER_INO) {
4204                         /* this inode is deleted */
4205                         ret = -ESTALE;
4206                         goto bad_inode;
4207                 }
4208                 /* The only unlinked inodes we let through here have
4209                  * valid i_mode and are being read by the orphan
4210                  * recovery code: that's fine, we're about to complete
4211                  * the process of deleting those.
4212                  * OR it is the EXT4_BOOT_LOADER_INO which is
4213                  * not initialized on a new filesystem. */
4214         }
4215         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4216         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4217         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4218         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4219                 ei->i_file_acl |=
4220                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4221         inode->i_size = ext4_isize(raw_inode);
4222         ei->i_disksize = inode->i_size;
4223 #ifdef CONFIG_QUOTA
4224         ei->i_reserved_quota = 0;
4225 #endif
4226         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4227         ei->i_block_group = iloc.block_group;
4228         ei->i_last_alloc_group = ~0;
4229         /*
4230          * NOTE! The in-memory inode i_data array is in little-endian order
4231          * even on big-endian machines: we do NOT byteswap the block numbers!
4232          */
4233         for (block = 0; block < EXT4_N_BLOCKS; block++)
4234                 ei->i_data[block] = raw_inode->i_block[block];
4235         INIT_LIST_HEAD(&ei->i_orphan);
4236
4237         /*
4238          * Set transaction id's of transactions that have to be committed
4239          * to finish f[data]sync. We set them to currently running transaction
4240          * as we cannot be sure that the inode or some of its metadata isn't
4241          * part of the transaction - the inode could have been reclaimed and
4242          * now it is reread from disk.
4243          */
4244         if (journal) {
4245                 transaction_t *transaction;
4246                 tid_t tid;
4247
4248                 read_lock(&journal->j_state_lock);
4249                 if (journal->j_running_transaction)
4250                         transaction = journal->j_running_transaction;
4251                 else
4252                         transaction = journal->j_committing_transaction;
4253                 if (transaction)
4254                         tid = transaction->t_tid;
4255                 else
4256                         tid = journal->j_commit_sequence;
4257                 read_unlock(&journal->j_state_lock);
4258                 ei->i_sync_tid = tid;
4259                 ei->i_datasync_tid = tid;
4260         }
4261
4262         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4263                 if (ei->i_extra_isize == 0) {
4264                         /* The extra space is currently unused. Use it. */
4265                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4266                                             EXT4_GOOD_OLD_INODE_SIZE;
4267                 } else {
4268                         ext4_iget_extra_inode(inode, raw_inode, ei);
4269                 }
4270         }
4271
4272         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4273         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4274         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4275         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4276
4277         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4278         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4279                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4280                         inode->i_version |=
4281                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4282         }
4283
4284         ret = 0;
4285         if (ei->i_file_acl &&
4286             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4287                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4288                                  ei->i_file_acl);
4289                 ret = -EIO;
4290                 goto bad_inode;
4291         } else if (!ext4_has_inline_data(inode)) {
4292                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4293                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4294                             (S_ISLNK(inode->i_mode) &&
4295                              !ext4_inode_is_fast_symlink(inode))))
4296                                 /* Validate extent which is part of inode */
4297                                 ret = ext4_ext_check_inode(inode);
4298                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4299                            (S_ISLNK(inode->i_mode) &&
4300                             !ext4_inode_is_fast_symlink(inode))) {
4301                         /* Validate block references which are part of inode */
4302                         ret = ext4_ind_check_inode(inode);
4303                 }
4304         }
4305         if (ret)
4306                 goto bad_inode;
4307
4308         if (S_ISREG(inode->i_mode)) {
4309                 inode->i_op = &ext4_file_inode_operations;
4310                 inode->i_fop = &ext4_file_operations;
4311                 ext4_set_aops(inode);
4312         } else if (S_ISDIR(inode->i_mode)) {
4313                 inode->i_op = &ext4_dir_inode_operations;
4314                 inode->i_fop = &ext4_dir_operations;
4315         } else if (S_ISLNK(inode->i_mode)) {
4316                 if (ext4_inode_is_fast_symlink(inode)) {
4317                         inode->i_op = &ext4_fast_symlink_inode_operations;
4318                         nd_terminate_link(ei->i_data, inode->i_size,
4319                                 sizeof(ei->i_data) - 1);
4320                 } else {
4321                         inode->i_op = &ext4_symlink_inode_operations;
4322                         ext4_set_aops(inode);
4323                 }
4324         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4325               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4326                 inode->i_op = &ext4_special_inode_operations;
4327                 if (raw_inode->i_block[0])
4328                         init_special_inode(inode, inode->i_mode,
4329                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4330                 else
4331                         init_special_inode(inode, inode->i_mode,
4332                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4333         } else if (ino == EXT4_BOOT_LOADER_INO) {
4334                 make_bad_inode(inode);
4335         } else {
4336                 ret = -EIO;
4337                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4338                 goto bad_inode;
4339         }
4340         brelse(iloc.bh);
4341         ext4_set_inode_flags(inode);
4342         unlock_new_inode(inode);
4343         return inode;
4344
4345 bad_inode:
4346         brelse(iloc.bh);
4347         iget_failed(inode);
4348         return ERR_PTR(ret);
4349 }
4350
4351 static int ext4_inode_blocks_set(handle_t *handle,
4352                                 struct ext4_inode *raw_inode,
4353                                 struct ext4_inode_info *ei)
4354 {
4355         struct inode *inode = &(ei->vfs_inode);
4356         u64 i_blocks = inode->i_blocks;
4357         struct super_block *sb = inode->i_sb;
4358
4359         if (i_blocks <= ~0U) {
4360                 /*
4361                  * i_blocks can be represented in a 32 bit variable
4362                  * as multiple of 512 bytes
4363                  */
4364                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4365                 raw_inode->i_blocks_high = 0;
4366                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4367                 return 0;
4368         }
4369         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4370                 return -EFBIG;
4371
4372         if (i_blocks <= 0xffffffffffffULL) {
4373                 /*
4374                  * i_blocks can be represented in a 48 bit variable
4375                  * as multiple of 512 bytes
4376                  */
4377                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4378                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4379                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4380         } else {
4381                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4382                 /* i_block is stored in file system block size */
4383                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4384                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4385                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4386         }
4387         return 0;
4388 }
4389
4390 /*
4391  * Post the struct inode info into an on-disk inode location in the
4392  * buffer-cache.  This gobbles the caller's reference to the
4393  * buffer_head in the inode location struct.
4394  *
4395  * The caller must have write access to iloc->bh.
4396  */
4397 static int ext4_do_update_inode(handle_t *handle,
4398                                 struct inode *inode,
4399                                 struct ext4_iloc *iloc)
4400 {
4401         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4402         struct ext4_inode_info *ei = EXT4_I(inode);
4403         struct buffer_head *bh = iloc->bh;
4404         int err = 0, rc, block;
4405         int need_datasync = 0;
4406         uid_t i_uid;
4407         gid_t i_gid;
4408
4409         /* For fields not not tracking in the in-memory inode,
4410          * initialise them to zero for new inodes. */
4411         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4412                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4413
4414         ext4_get_inode_flags(ei);
4415         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4416         i_uid = i_uid_read(inode);
4417         i_gid = i_gid_read(inode);
4418         if (!(test_opt(inode->i_sb, NO_UID32))) {
4419                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4420                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4421 /*
4422  * Fix up interoperability with old kernels. Otherwise, old inodes get
4423  * re-used with the upper 16 bits of the uid/gid intact
4424  */
4425                 if (!ei->i_dtime) {
4426                         raw_inode->i_uid_high =
4427                                 cpu_to_le16(high_16_bits(i_uid));
4428                         raw_inode->i_gid_high =
4429                                 cpu_to_le16(high_16_bits(i_gid));
4430                 } else {
4431                         raw_inode->i_uid_high = 0;
4432                         raw_inode->i_gid_high = 0;
4433                 }
4434         } else {
4435                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4436                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4437                 raw_inode->i_uid_high = 0;
4438                 raw_inode->i_gid_high = 0;
4439         }
4440         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4441
4442         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4443         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4444         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4445         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4446
4447         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4448                 goto out_brelse;
4449         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4450         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4451         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4452             cpu_to_le32(EXT4_OS_HURD))
4453                 raw_inode->i_file_acl_high =
4454                         cpu_to_le16(ei->i_file_acl >> 32);
4455         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4456         if (ei->i_disksize != ext4_isize(raw_inode)) {
4457                 ext4_isize_set(raw_inode, ei->i_disksize);
4458                 need_datasync = 1;
4459         }
4460         if (ei->i_disksize > 0x7fffffffULL) {
4461                 struct super_block *sb = inode->i_sb;
4462                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4463                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4464                                 EXT4_SB(sb)->s_es->s_rev_level ==
4465                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4466                         /* If this is the first large file
4467                          * created, add a flag to the superblock.
4468                          */
4469                         err = ext4_journal_get_write_access(handle,
4470                                         EXT4_SB(sb)->s_sbh);
4471                         if (err)
4472                                 goto out_brelse;
4473                         ext4_update_dynamic_rev(sb);
4474                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4475                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4476                         ext4_handle_sync(handle);
4477                         err = ext4_handle_dirty_super(handle, sb);
4478                 }
4479         }
4480         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4481         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4482                 if (old_valid_dev(inode->i_rdev)) {
4483                         raw_inode->i_block[0] =
4484                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4485                         raw_inode->i_block[1] = 0;
4486                 } else {
4487                         raw_inode->i_block[0] = 0;
4488                         raw_inode->i_block[1] =
4489                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4490                         raw_inode->i_block[2] = 0;
4491                 }
4492         } else if (!ext4_has_inline_data(inode)) {
4493                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4494                         raw_inode->i_block[block] = ei->i_data[block];
4495         }
4496
4497         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4498         if (ei->i_extra_isize) {
4499                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4500                         raw_inode->i_version_hi =
4501                         cpu_to_le32(inode->i_version >> 32);
4502                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4503         }
4504
4505         ext4_inode_csum_set(inode, raw_inode, ei);
4506
4507         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4508         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4509         if (!err)
4510                 err = rc;
4511         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4512
4513         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4514 out_brelse:
4515         brelse(bh);
4516         ext4_std_error(inode->i_sb, err);
4517         return err;
4518 }
4519
4520 /*
4521  * ext4_write_inode()
4522  *
4523  * We are called from a few places:
4524  *
4525  * - Within generic_file_write() for O_SYNC files.
4526  *   Here, there will be no transaction running. We wait for any running
4527  *   transaction to commit.
4528  *
4529  * - Within sys_sync(), kupdate and such.
4530  *   We wait on commit, if tol to.
4531  *
4532  * - Within prune_icache() (PF_MEMALLOC == true)
4533  *   Here we simply return.  We can't afford to block kswapd on the
4534  *   journal commit.
4535  *
4536  * In all cases it is actually safe for us to return without doing anything,
4537  * because the inode has been copied into a raw inode buffer in
4538  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4539  * knfsd.
4540  *
4541  * Note that we are absolutely dependent upon all inode dirtiers doing the
4542  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4543  * which we are interested.
4544  *
4545  * It would be a bug for them to not do this.  The code:
4546  *
4547  *      mark_inode_dirty(inode)
4548  *      stuff();
4549  *      inode->i_size = expr;
4550  *
4551  * is in error because a kswapd-driven write_inode() could occur while
4552  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4553  * will no longer be on the superblock's dirty inode list.
4554  */
4555 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4556 {
4557         int err;
4558
4559         if (current->flags & PF_MEMALLOC)
4560                 return 0;
4561
4562         if (EXT4_SB(inode->i_sb)->s_journal) {
4563                 if (ext4_journal_current_handle()) {
4564                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4565                         dump_stack();
4566                         return -EIO;
4567                 }
4568
4569                 if (wbc->sync_mode != WB_SYNC_ALL)
4570                         return 0;
4571
4572                 err = ext4_force_commit(inode->i_sb);
4573         } else {
4574                 struct ext4_iloc iloc;
4575
4576                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4577                 if (err)
4578                         return err;
4579                 if (wbc->sync_mode == WB_SYNC_ALL)
4580                         sync_dirty_buffer(iloc.bh);
4581                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4582                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4583                                          "IO error syncing inode");
4584                         err = -EIO;
4585                 }
4586                 brelse(iloc.bh);
4587         }
4588         return err;
4589 }
4590
4591 /*
4592  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4593  * buffers that are attached to a page stradding i_size and are undergoing
4594  * commit. In that case we have to wait for commit to finish and try again.
4595  */
4596 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4597 {
4598         struct page *page;
4599         unsigned offset;
4600         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4601         tid_t commit_tid = 0;
4602         int ret;
4603
4604         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4605         /*
4606          * All buffers in the last page remain valid? Then there's nothing to
4607          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4608          * blocksize case
4609          */
4610         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4611                 return;
4612         while (1) {
4613                 page = find_lock_page(inode->i_mapping,
4614                                       inode->i_size >> PAGE_CACHE_SHIFT);
4615                 if (!page)
4616                         return;
4617                 ret = __ext4_journalled_invalidatepage(page, offset);
4618                 unlock_page(page);
4619                 page_cache_release(page);
4620                 if (ret != -EBUSY)
4621                         return;
4622                 commit_tid = 0;
4623                 read_lock(&journal->j_state_lock);
4624                 if (journal->j_committing_transaction)
4625                         commit_tid = journal->j_committing_transaction->t_tid;
4626                 read_unlock(&journal->j_state_lock);
4627                 if (commit_tid)
4628                         jbd2_log_wait_commit(journal, commit_tid);
4629         }
4630 }
4631
4632 /*
4633  * ext4_setattr()
4634  *
4635  * Called from notify_change.
4636  *
4637  * We want to trap VFS attempts to truncate the file as soon as
4638  * possible.  In particular, we want to make sure that when the VFS
4639  * shrinks i_size, we put the inode on the orphan list and modify
4640  * i_disksize immediately, so that during the subsequent flushing of
4641  * dirty pages and freeing of disk blocks, we can guarantee that any
4642  * commit will leave the blocks being flushed in an unused state on
4643  * disk.  (On recovery, the inode will get truncated and the blocks will
4644  * be freed, so we have a strong guarantee that no future commit will
4645  * leave these blocks visible to the user.)
4646  *
4647  * Another thing we have to assure is that if we are in ordered mode
4648  * and inode is still attached to the committing transaction, we must
4649  * we start writeout of all the dirty pages which are being truncated.
4650  * This way we are sure that all the data written in the previous
4651  * transaction are already on disk (truncate waits for pages under
4652  * writeback).
4653  *
4654  * Called with inode->i_mutex down.
4655  */
4656 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4657 {
4658         struct inode *inode = dentry->d_inode;
4659         int error, rc = 0;
4660         int orphan = 0;
4661         const unsigned int ia_valid = attr->ia_valid;
4662
4663         error = inode_change_ok(inode, attr);
4664         if (error)
4665                 return error;
4666
4667         if (is_quota_modification(inode, attr))
4668                 dquot_initialize(inode);
4669         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4670             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4671                 handle_t *handle;
4672
4673                 /* (user+group)*(old+new) structure, inode write (sb,
4674                  * inode block, ? - but truncate inode update has it) */
4675                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4676                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4677                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4678                 if (IS_ERR(handle)) {
4679                         error = PTR_ERR(handle);
4680                         goto err_out;
4681                 }
4682                 error = dquot_transfer(inode, attr);
4683                 if (error) {
4684                         ext4_journal_stop(handle);
4685                         return error;
4686                 }
4687                 /* Update corresponding info in inode so that everything is in
4688                  * one transaction */
4689                 if (attr->ia_valid & ATTR_UID)
4690                         inode->i_uid = attr->ia_uid;
4691                 if (attr->ia_valid & ATTR_GID)
4692                         inode->i_gid = attr->ia_gid;
4693                 error = ext4_mark_inode_dirty(handle, inode);
4694                 ext4_journal_stop(handle);
4695         }
4696
4697         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4698                 handle_t *handle;
4699                 loff_t oldsize = inode->i_size;
4700
4701                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4702                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4703
4704                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4705                                 return -EFBIG;
4706                 }
4707                 if (S_ISREG(inode->i_mode) &&
4708                     (attr->ia_size < inode->i_size)) {
4709                         if (ext4_should_order_data(inode)) {
4710                                 error = ext4_begin_ordered_truncate(inode,
4711                                                             attr->ia_size);
4712                                 if (error)
4713                                         goto err_out;
4714                         }
4715                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4716                         if (IS_ERR(handle)) {
4717                                 error = PTR_ERR(handle);
4718                                 goto err_out;
4719                         }
4720                         if (ext4_handle_valid(handle)) {
4721                                 error = ext4_orphan_add(handle, inode);
4722                                 orphan = 1;
4723                         }
4724                         EXT4_I(inode)->i_disksize = attr->ia_size;
4725                         rc = ext4_mark_inode_dirty(handle, inode);
4726                         if (!error)
4727                                 error = rc;
4728                         ext4_journal_stop(handle);
4729                         if (error) {
4730                                 ext4_orphan_del(NULL, inode);
4731                                 goto err_out;
4732                         }
4733                 }
4734
4735                 i_size_write(inode, attr->ia_size);
4736                 /*
4737                  * Blocks are going to be removed from the inode. Wait
4738                  * for dio in flight.  Temporarily disable
4739                  * dioread_nolock to prevent livelock.
4740                  */
4741                 if (orphan) {
4742                         if (!ext4_should_journal_data(inode)) {
4743                                 ext4_inode_block_unlocked_dio(inode);
4744                                 inode_dio_wait(inode);
4745                                 ext4_inode_resume_unlocked_dio(inode);
4746                         } else
4747                                 ext4_wait_for_tail_page_commit(inode);
4748                 }
4749                 /*
4750                  * Truncate pagecache after we've waited for commit
4751                  * in data=journal mode to make pages freeable.
4752                  */
4753                 truncate_pagecache(inode, oldsize, inode->i_size);
4754         }
4755         /*
4756          * We want to call ext4_truncate() even if attr->ia_size ==
4757          * inode->i_size for cases like truncation of fallocated space
4758          */
4759         if (attr->ia_valid & ATTR_SIZE)
4760                 ext4_truncate(inode);
4761
4762         if (!rc) {
4763                 setattr_copy(inode, attr);
4764                 mark_inode_dirty(inode);
4765         }
4766
4767         /*
4768          * If the call to ext4_truncate failed to get a transaction handle at
4769          * all, we need to clean up the in-core orphan list manually.
4770          */
4771         if (orphan && inode->i_nlink)
4772                 ext4_orphan_del(NULL, inode);
4773
4774         if (!rc && (ia_valid & ATTR_MODE))
4775                 rc = ext4_acl_chmod(inode);
4776
4777 err_out:
4778         ext4_std_error(inode->i_sb, error);
4779         if (!error)
4780                 error = rc;
4781         return error;
4782 }
4783
4784 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4785                  struct kstat *stat)
4786 {
4787         struct inode *inode;
4788         unsigned long long delalloc_blocks;
4789
4790         inode = dentry->d_inode;
4791         generic_fillattr(inode, stat);
4792
4793         /*
4794          * We can't update i_blocks if the block allocation is delayed
4795          * otherwise in the case of system crash before the real block
4796          * allocation is done, we will have i_blocks inconsistent with
4797          * on-disk file blocks.
4798          * We always keep i_blocks updated together with real
4799          * allocation. But to not confuse with user, stat
4800          * will return the blocks that include the delayed allocation
4801          * blocks for this file.
4802          */
4803         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4804                                 EXT4_I(inode)->i_reserved_data_blocks);
4805
4806         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4807         return 0;
4808 }
4809
4810 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4811 {
4812         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4813                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4814         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4815 }
4816
4817 /*
4818  * Account for index blocks, block groups bitmaps and block group
4819  * descriptor blocks if modify datablocks and index blocks
4820  * worse case, the indexs blocks spread over different block groups
4821  *
4822  * If datablocks are discontiguous, they are possible to spread over
4823  * different block groups too. If they are contiguous, with flexbg,
4824  * they could still across block group boundary.
4825  *
4826  * Also account for superblock, inode, quota and xattr blocks
4827  */
4828 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4829 {
4830         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4831         int gdpblocks;
4832         int idxblocks;
4833         int ret = 0;
4834
4835         /*
4836          * How many index blocks need to touch to modify nrblocks?
4837          * The "Chunk" flag indicating whether the nrblocks is
4838          * physically contiguous on disk
4839          *
4840          * For Direct IO and fallocate, they calls get_block to allocate
4841          * one single extent at a time, so they could set the "Chunk" flag
4842          */
4843         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4844
4845         ret = idxblocks;
4846
4847         /*
4848          * Now let's see how many group bitmaps and group descriptors need
4849          * to account
4850          */
4851         groups = idxblocks;
4852         if (chunk)
4853                 groups += 1;
4854         else
4855                 groups += nrblocks;
4856
4857         gdpblocks = groups;
4858         if (groups > ngroups)
4859                 groups = ngroups;
4860         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4861                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4862
4863         /* bitmaps and block group descriptor blocks */
4864         ret += groups + gdpblocks;
4865
4866         /* Blocks for super block, inode, quota and xattr blocks */
4867         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4868
4869         return ret;
4870 }
4871
4872 /*
4873  * Calculate the total number of credits to reserve to fit
4874  * the modification of a single pages into a single transaction,
4875  * which may include multiple chunks of block allocations.
4876  *
4877  * This could be called via ext4_write_begin()
4878  *
4879  * We need to consider the worse case, when
4880  * one new block per extent.
4881  */
4882 int ext4_writepage_trans_blocks(struct inode *inode)
4883 {
4884         int bpp = ext4_journal_blocks_per_page(inode);
4885         int ret;
4886
4887         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4888
4889         /* Account for data blocks for journalled mode */
4890         if (ext4_should_journal_data(inode))
4891                 ret += bpp;
4892         return ret;
4893 }
4894
4895 /*
4896  * Calculate the journal credits for a chunk of data modification.
4897  *
4898  * This is called from DIO, fallocate or whoever calling
4899  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4900  *
4901  * journal buffers for data blocks are not included here, as DIO
4902  * and fallocate do no need to journal data buffers.
4903  */
4904 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4905 {
4906         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4907 }
4908
4909 /*
4910  * The caller must have previously called ext4_reserve_inode_write().
4911  * Give this, we know that the caller already has write access to iloc->bh.
4912  */
4913 int ext4_mark_iloc_dirty(handle_t *handle,
4914                          struct inode *inode, struct ext4_iloc *iloc)
4915 {
4916         int err = 0;
4917
4918         if (IS_I_VERSION(inode))
4919                 inode_inc_iversion(inode);
4920
4921         /* the do_update_inode consumes one bh->b_count */
4922         get_bh(iloc->bh);
4923
4924         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4925         err = ext4_do_update_inode(handle, inode, iloc);
4926         put_bh(iloc->bh);
4927         return err;
4928 }
4929
4930 /*
4931  * On success, We end up with an outstanding reference count against
4932  * iloc->bh.  This _must_ be cleaned up later.
4933  */
4934
4935 int
4936 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4937                          struct ext4_iloc *iloc)
4938 {
4939         int err;
4940
4941         err = ext4_get_inode_loc(inode, iloc);
4942         if (!err) {
4943                 BUFFER_TRACE(iloc->bh, "get_write_access");
4944                 err = ext4_journal_get_write_access(handle, iloc->bh);
4945                 if (err) {
4946                         brelse(iloc->bh);
4947                         iloc->bh = NULL;
4948                 }
4949         }
4950         ext4_std_error(inode->i_sb, err);
4951         return err;
4952 }
4953
4954 /*
4955  * Expand an inode by new_extra_isize bytes.
4956  * Returns 0 on success or negative error number on failure.
4957  */
4958 static int ext4_expand_extra_isize(struct inode *inode,
4959                                    unsigned int new_extra_isize,
4960                                    struct ext4_iloc iloc,
4961                                    handle_t *handle)
4962 {
4963         struct ext4_inode *raw_inode;
4964         struct ext4_xattr_ibody_header *header;
4965
4966         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4967                 return 0;
4968
4969         raw_inode = ext4_raw_inode(&iloc);
4970
4971         header = IHDR(inode, raw_inode);
4972
4973         /* No extended attributes present */
4974         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4975             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4976                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4977                         new_extra_isize);
4978                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4979                 return 0;
4980         }
4981
4982         /* try to expand with EAs present */
4983         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4984                                           raw_inode, handle);
4985 }
4986
4987 /*
4988  * What we do here is to mark the in-core inode as clean with respect to inode
4989  * dirtiness (it may still be data-dirty).
4990  * This means that the in-core inode may be reaped by prune_icache
4991  * without having to perform any I/O.  This is a very good thing,
4992  * because *any* task may call prune_icache - even ones which
4993  * have a transaction open against a different journal.
4994  *
4995  * Is this cheating?  Not really.  Sure, we haven't written the
4996  * inode out, but prune_icache isn't a user-visible syncing function.
4997  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4998  * we start and wait on commits.
4999  */
5000 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5001 {
5002         struct ext4_iloc iloc;
5003         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5004         static unsigned int mnt_count;
5005         int err, ret;
5006
5007         might_sleep();
5008         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5009         err = ext4_reserve_inode_write(handle, inode, &iloc);
5010         if (ext4_handle_valid(handle) &&
5011             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5012             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5013                 /*
5014                  * We need extra buffer credits since we may write into EA block
5015                  * with this same handle. If journal_extend fails, then it will
5016                  * only result in a minor loss of functionality for that inode.
5017                  * If this is felt to be critical, then e2fsck should be run to
5018                  * force a large enough s_min_extra_isize.
5019                  */
5020                 if ((jbd2_journal_extend(handle,
5021                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5022                         ret = ext4_expand_extra_isize(inode,
5023                                                       sbi->s_want_extra_isize,
5024                                                       iloc, handle);
5025                         if (ret) {
5026                                 ext4_set_inode_state(inode,
5027                                                      EXT4_STATE_NO_EXPAND);
5028                                 if (mnt_count !=
5029                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5030                                         ext4_warning(inode->i_sb,
5031                                         "Unable to expand inode %lu. Delete"
5032                                         " some EAs or run e2fsck.",
5033                                         inode->i_ino);
5034                                         mnt_count =
5035                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5036                                 }
5037                         }
5038                 }
5039         }
5040         if (!err)
5041                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5042         return err;
5043 }
5044
5045 /*
5046  * ext4_dirty_inode() is called from __mark_inode_dirty()
5047  *
5048  * We're really interested in the case where a file is being extended.
5049  * i_size has been changed by generic_commit_write() and we thus need
5050  * to include the updated inode in the current transaction.
5051  *
5052  * Also, dquot_alloc_block() will always dirty the inode when blocks
5053  * are allocated to the file.
5054  *
5055  * If the inode is marked synchronous, we don't honour that here - doing
5056  * so would cause a commit on atime updates, which we don't bother doing.
5057  * We handle synchronous inodes at the highest possible level.
5058  */
5059 void ext4_dirty_inode(struct inode *inode, int flags)
5060 {
5061         handle_t *handle;
5062
5063         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5064         if (IS_ERR(handle))
5065                 goto out;
5066
5067         ext4_mark_inode_dirty(handle, inode);
5068
5069         ext4_journal_stop(handle);
5070 out:
5071         return;
5072 }
5073
5074 #if 0
5075 /*
5076  * Bind an inode's backing buffer_head into this transaction, to prevent
5077  * it from being flushed to disk early.  Unlike
5078  * ext4_reserve_inode_write, this leaves behind no bh reference and
5079  * returns no iloc structure, so the caller needs to repeat the iloc
5080  * lookup to mark the inode dirty later.
5081  */
5082 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5083 {
5084         struct ext4_iloc iloc;
5085
5086         int err = 0;
5087         if (handle) {
5088                 err = ext4_get_inode_loc(inode, &iloc);
5089                 if (!err) {
5090                         BUFFER_TRACE(iloc.bh, "get_write_access");
5091                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5092                         if (!err)
5093                                 err = ext4_handle_dirty_metadata(handle,
5094                                                                  NULL,
5095                                                                  iloc.bh);
5096                         brelse(iloc.bh);
5097                 }
5098         }
5099         ext4_std_error(inode->i_sb, err);
5100         return err;
5101 }
5102 #endif
5103
5104 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5105 {
5106         journal_t *journal;
5107         handle_t *handle;
5108         int err;
5109
5110         /*
5111          * We have to be very careful here: changing a data block's
5112          * journaling status dynamically is dangerous.  If we write a
5113          * data block to the journal, change the status and then delete
5114          * that block, we risk forgetting to revoke the old log record
5115          * from the journal and so a subsequent replay can corrupt data.
5116          * So, first we make sure that the journal is empty and that
5117          * nobody is changing anything.
5118          */
5119
5120         journal = EXT4_JOURNAL(inode);
5121         if (!journal)
5122                 return 0;
5123         if (is_journal_aborted(journal))
5124                 return -EROFS;
5125         /* We have to allocate physical blocks for delalloc blocks
5126          * before flushing journal. otherwise delalloc blocks can not
5127          * be allocated any more. even more truncate on delalloc blocks
5128          * could trigger BUG by flushing delalloc blocks in journal.
5129          * There is no delalloc block in non-journal data mode.
5130          */
5131         if (val && test_opt(inode->i_sb, DELALLOC)) {
5132                 err = ext4_alloc_da_blocks(inode);
5133                 if (err < 0)
5134                         return err;
5135         }
5136
5137         /* Wait for all existing dio workers */
5138         ext4_inode_block_unlocked_dio(inode);
5139         inode_dio_wait(inode);
5140
5141         jbd2_journal_lock_updates(journal);
5142
5143         /*
5144          * OK, there are no updates running now, and all cached data is
5145          * synced to disk.  We are now in a completely consistent state
5146          * which doesn't have anything in the journal, and we know that
5147          * no filesystem updates are running, so it is safe to modify
5148          * the inode's in-core data-journaling state flag now.
5149          */
5150
5151         if (val)
5152                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5153         else {
5154                 jbd2_journal_flush(journal);
5155                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5156         }
5157         ext4_set_aops(inode);
5158
5159         jbd2_journal_unlock_updates(journal);
5160         ext4_inode_resume_unlocked_dio(inode);
5161
5162         /* Finally we can mark the inode as dirty. */
5163
5164         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5165         if (IS_ERR(handle))
5166                 return PTR_ERR(handle);
5167
5168         err = ext4_mark_inode_dirty(handle, inode);
5169         ext4_handle_sync(handle);
5170         ext4_journal_stop(handle);
5171         ext4_std_error(inode->i_sb, err);
5172
5173         return err;
5174 }
5175
5176 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5177 {
5178         return !buffer_mapped(bh);
5179 }
5180
5181 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5182 {
5183         struct page *page = vmf->page;
5184         loff_t size;
5185         unsigned long len;
5186         int ret;
5187         struct file *file = vma->vm_file;
5188         struct inode *inode = file_inode(file);
5189         struct address_space *mapping = inode->i_mapping;
5190         handle_t *handle;
5191         get_block_t *get_block;
5192         int retries = 0;
5193
5194         sb_start_pagefault(inode->i_sb);
5195         file_update_time(vma->vm_file);
5196         /* Delalloc case is easy... */
5197         if (test_opt(inode->i_sb, DELALLOC) &&
5198             !ext4_should_journal_data(inode) &&
5199             !ext4_nonda_switch(inode->i_sb)) {
5200                 do {
5201                         ret = __block_page_mkwrite(vma, vmf,
5202                                                    ext4_da_get_block_prep);
5203                 } while (ret == -ENOSPC &&
5204                        ext4_should_retry_alloc(inode->i_sb, &retries));
5205                 goto out_ret;
5206         }
5207
5208         lock_page(page);
5209         size = i_size_read(inode);
5210         /* Page got truncated from under us? */
5211         if (page->mapping != mapping || page_offset(page) > size) {
5212                 unlock_page(page);
5213                 ret = VM_FAULT_NOPAGE;
5214                 goto out;
5215         }
5216
5217         if (page->index == size >> PAGE_CACHE_SHIFT)
5218                 len = size & ~PAGE_CACHE_MASK;
5219         else
5220                 len = PAGE_CACHE_SIZE;
5221         /*
5222          * Return if we have all the buffers mapped. This avoids the need to do
5223          * journal_start/journal_stop which can block and take a long time
5224          */
5225         if (page_has_buffers(page)) {
5226                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5227                                             0, len, NULL,
5228                                             ext4_bh_unmapped)) {
5229                         /* Wait so that we don't change page under IO */
5230                         wait_for_stable_page(page);
5231                         ret = VM_FAULT_LOCKED;
5232                         goto out;
5233                 }
5234         }
5235         unlock_page(page);
5236         /* OK, we need to fill the hole... */
5237         if (ext4_should_dioread_nolock(inode))
5238                 get_block = ext4_get_block_write;
5239         else
5240                 get_block = ext4_get_block;
5241 retry_alloc:
5242         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5243                                     ext4_writepage_trans_blocks(inode));
5244         if (IS_ERR(handle)) {
5245                 ret = VM_FAULT_SIGBUS;
5246                 goto out;
5247         }
5248         ret = __block_page_mkwrite(vma, vmf, get_block);
5249         if (!ret && ext4_should_journal_data(inode)) {
5250                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5251                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5252                         unlock_page(page);
5253                         ret = VM_FAULT_SIGBUS;
5254                         ext4_journal_stop(handle);
5255                         goto out;
5256                 }
5257                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5258         }
5259         ext4_journal_stop(handle);
5260         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5261                 goto retry_alloc;
5262 out_ret:
5263         ret = block_page_mkwrite_return(ret);
5264 out:
5265         sb_end_pagefault(inode->i_sb);
5266         return ret;
5267 }