ext4: ignore EXT4_INODE_JOURNAL_DATA flag with delalloc
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50
51 #include <trace/events/ext4.h>
52
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56                                               loff_t new_size)
57 {
58         trace_ext4_begin_ordered_truncate(inode, new_size);
59         /*
60          * If jinode is zero, then we never opened the file for
61          * writing, so there's no need to call
62          * jbd2_journal_begin_ordered_truncate() since there's no
63          * outstanding writes we need to flush.
64          */
65         if (!EXT4_I(inode)->jinode)
66                 return 0;
67         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68                                                    EXT4_I(inode)->jinode,
69                                                    new_size);
70 }
71
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74                                    struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79
80 /*
81  * Test whether an inode is a fast symlink.
82  */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85         int ea_blocks = EXT4_I(inode)->i_file_acl ?
86                 (inode->i_sb->s_blocksize >> 9) : 0;
87
88         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90
91 /*
92  * Work out how many blocks we need to proceed with the next chunk of a
93  * truncate transaction.
94  */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97         ext4_lblk_t needed;
98
99         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101         /* Give ourselves just enough room to cope with inodes in which
102          * i_blocks is corrupt: we've seen disk corruptions in the past
103          * which resulted in random data in an inode which looked enough
104          * like a regular file for ext4 to try to delete it.  Things
105          * will go a bit crazy if that happens, but at least we should
106          * try not to panic the whole kernel. */
107         if (needed < 2)
108                 needed = 2;
109
110         /* But we need to bound the transaction so we don't overflow the
111          * journal. */
112         if (needed > EXT4_MAX_TRANS_DATA)
113                 needed = EXT4_MAX_TRANS_DATA;
114
115         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117
118 /*
119  * Truncate transactions can be complex and absolutely huge.  So we need to
120  * be able to restart the transaction at a conventient checkpoint to make
121  * sure we don't overflow the journal.
122  *
123  * start_transaction gets us a new handle for a truncate transaction,
124  * and extend_transaction tries to extend the existing one a bit.  If
125  * extend fails, we need to propagate the failure up and restart the
126  * transaction in the top-level truncate loop. --sct
127  */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130         handle_t *result;
131
132         result = ext4_journal_start(inode, blocks_for_truncate(inode));
133         if (!IS_ERR(result))
134                 return result;
135
136         ext4_std_error(inode->i_sb, PTR_ERR(result));
137         return result;
138 }
139
140 /*
141  * Try to extend this transaction for the purposes of truncation.
142  *
143  * Returns 0 if we managed to create more room.  If we can't create more
144  * room, and the transaction must be restarted we return 1.
145  */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148         if (!ext4_handle_valid(handle))
149                 return 0;
150         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151                 return 0;
152         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153                 return 0;
154         return 1;
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192
193         ext4_ioend_wait(inode);
194
195         if (inode->i_nlink) {
196                 truncate_inode_pages(&inode->i_data, 0);
197                 goto no_delete;
198         }
199
200         if (!is_bad_inode(inode))
201                 dquot_initialize(inode);
202
203         if (ext4_should_order_data(inode))
204                 ext4_begin_ordered_truncate(inode, 0);
205         truncate_inode_pages(&inode->i_data, 0);
206
207         if (is_bad_inode(inode))
208                 goto no_delete;
209
210         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
211         if (IS_ERR(handle)) {
212                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
213                 /*
214                  * If we're going to skip the normal cleanup, we still need to
215                  * make sure that the in-core orphan linked list is properly
216                  * cleaned up.
217                  */
218                 ext4_orphan_del(NULL, inode);
219                 goto no_delete;
220         }
221
222         if (IS_SYNC(inode))
223                 ext4_handle_sync(handle);
224         inode->i_size = 0;
225         err = ext4_mark_inode_dirty(handle, inode);
226         if (err) {
227                 ext4_warning(inode->i_sb,
228                              "couldn't mark inode dirty (err %d)", err);
229                 goto stop_handle;
230         }
231         if (inode->i_blocks)
232                 ext4_truncate(inode);
233
234         /*
235          * ext4_ext_truncate() doesn't reserve any slop when it
236          * restarts journal transactions; therefore there may not be
237          * enough credits left in the handle to remove the inode from
238          * the orphan list and set the dtime field.
239          */
240         if (!ext4_handle_has_enough_credits(handle, 3)) {
241                 err = ext4_journal_extend(handle, 3);
242                 if (err > 0)
243                         err = ext4_journal_restart(handle, 3);
244                 if (err != 0) {
245                         ext4_warning(inode->i_sb,
246                                      "couldn't extend journal (err %d)", err);
247                 stop_handle:
248                         ext4_journal_stop(handle);
249                         ext4_orphan_del(NULL, inode);
250                         goto no_delete;
251                 }
252         }
253
254         /*
255          * Kill off the orphan record which ext4_truncate created.
256          * AKPM: I think this can be inside the above `if'.
257          * Note that ext4_orphan_del() has to be able to cope with the
258          * deletion of a non-existent orphan - this is because we don't
259          * know if ext4_truncate() actually created an orphan record.
260          * (Well, we could do this if we need to, but heck - it works)
261          */
262         ext4_orphan_del(handle, inode);
263         EXT4_I(inode)->i_dtime  = get_seconds();
264
265         /*
266          * One subtle ordering requirement: if anything has gone wrong
267          * (transaction abort, IO errors, whatever), then we can still
268          * do these next steps (the fs will already have been marked as
269          * having errors), but we can't free the inode if the mark_dirty
270          * fails.
271          */
272         if (ext4_mark_inode_dirty(handle, inode))
273                 /* If that failed, just do the required in-core inode clear. */
274                 ext4_clear_inode(inode);
275         else
276                 ext4_free_inode(handle, inode);
277         ext4_journal_stop(handle);
278         return;
279 no_delete:
280         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
281 }
282
283 typedef struct {
284         __le32  *p;
285         __le32  key;
286         struct buffer_head *bh;
287 } Indirect;
288
289 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
290 {
291         p->key = *(p->p = v);
292         p->bh = bh;
293 }
294
295 /**
296  *      ext4_block_to_path - parse the block number into array of offsets
297  *      @inode: inode in question (we are only interested in its superblock)
298  *      @i_block: block number to be parsed
299  *      @offsets: array to store the offsets in
300  *      @boundary: set this non-zero if the referred-to block is likely to be
301  *             followed (on disk) by an indirect block.
302  *
303  *      To store the locations of file's data ext4 uses a data structure common
304  *      for UNIX filesystems - tree of pointers anchored in the inode, with
305  *      data blocks at leaves and indirect blocks in intermediate nodes.
306  *      This function translates the block number into path in that tree -
307  *      return value is the path length and @offsets[n] is the offset of
308  *      pointer to (n+1)th node in the nth one. If @block is out of range
309  *      (negative or too large) warning is printed and zero returned.
310  *
311  *      Note: function doesn't find node addresses, so no IO is needed. All
312  *      we need to know is the capacity of indirect blocks (taken from the
313  *      inode->i_sb).
314  */
315
316 /*
317  * Portability note: the last comparison (check that we fit into triple
318  * indirect block) is spelled differently, because otherwise on an
319  * architecture with 32-bit longs and 8Kb pages we might get into trouble
320  * if our filesystem had 8Kb blocks. We might use long long, but that would
321  * kill us on x86. Oh, well, at least the sign propagation does not matter -
322  * i_block would have to be negative in the very beginning, so we would not
323  * get there at all.
324  */
325
326 static int ext4_block_to_path(struct inode *inode,
327                               ext4_lblk_t i_block,
328                               ext4_lblk_t offsets[4], int *boundary)
329 {
330         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
331         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
332         const long direct_blocks = EXT4_NDIR_BLOCKS,
333                 indirect_blocks = ptrs,
334                 double_blocks = (1 << (ptrs_bits * 2));
335         int n = 0;
336         int final = 0;
337
338         if (i_block < direct_blocks) {
339                 offsets[n++] = i_block;
340                 final = direct_blocks;
341         } else if ((i_block -= direct_blocks) < indirect_blocks) {
342                 offsets[n++] = EXT4_IND_BLOCK;
343                 offsets[n++] = i_block;
344                 final = ptrs;
345         } else if ((i_block -= indirect_blocks) < double_blocks) {
346                 offsets[n++] = EXT4_DIND_BLOCK;
347                 offsets[n++] = i_block >> ptrs_bits;
348                 offsets[n++] = i_block & (ptrs - 1);
349                 final = ptrs;
350         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
351                 offsets[n++] = EXT4_TIND_BLOCK;
352                 offsets[n++] = i_block >> (ptrs_bits * 2);
353                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
354                 offsets[n++] = i_block & (ptrs - 1);
355                 final = ptrs;
356         } else {
357                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
358                              i_block + direct_blocks +
359                              indirect_blocks + double_blocks, inode->i_ino);
360         }
361         if (boundary)
362                 *boundary = final - 1 - (i_block & (ptrs - 1));
363         return n;
364 }
365
366 static int __ext4_check_blockref(const char *function, unsigned int line,
367                                  struct inode *inode,
368                                  __le32 *p, unsigned int max)
369 {
370         struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
371         __le32 *bref = p;
372         unsigned int blk;
373
374         while (bref < p+max) {
375                 blk = le32_to_cpu(*bref++);
376                 if (blk &&
377                     unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
378                                                     blk, 1))) {
379                         es->s_last_error_block = cpu_to_le64(blk);
380                         ext4_error_inode(inode, function, line, blk,
381                                          "invalid block");
382                         return -EIO;
383                 }
384         }
385         return 0;
386 }
387
388
389 #define ext4_check_indirect_blockref(inode, bh)                         \
390         __ext4_check_blockref(__func__, __LINE__, inode,                \
391                               (__le32 *)(bh)->b_data,                   \
392                               EXT4_ADDR_PER_BLOCK((inode)->i_sb))
393
394 #define ext4_check_inode_blockref(inode)                                \
395         __ext4_check_blockref(__func__, __LINE__, inode,                \
396                               EXT4_I(inode)->i_data,                    \
397                               EXT4_NDIR_BLOCKS)
398
399 /**
400  *      ext4_get_branch - read the chain of indirect blocks leading to data
401  *      @inode: inode in question
402  *      @depth: depth of the chain (1 - direct pointer, etc.)
403  *      @offsets: offsets of pointers in inode/indirect blocks
404  *      @chain: place to store the result
405  *      @err: here we store the error value
406  *
407  *      Function fills the array of triples <key, p, bh> and returns %NULL
408  *      if everything went OK or the pointer to the last filled triple
409  *      (incomplete one) otherwise. Upon the return chain[i].key contains
410  *      the number of (i+1)-th block in the chain (as it is stored in memory,
411  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
412  *      number (it points into struct inode for i==0 and into the bh->b_data
413  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
414  *      block for i>0 and NULL for i==0. In other words, it holds the block
415  *      numbers of the chain, addresses they were taken from (and where we can
416  *      verify that chain did not change) and buffer_heads hosting these
417  *      numbers.
418  *
419  *      Function stops when it stumbles upon zero pointer (absent block)
420  *              (pointer to last triple returned, *@err == 0)
421  *      or when it gets an IO error reading an indirect block
422  *              (ditto, *@err == -EIO)
423  *      or when it reads all @depth-1 indirect blocks successfully and finds
424  *      the whole chain, all way to the data (returns %NULL, *err == 0).
425  *
426  *      Need to be called with
427  *      down_read(&EXT4_I(inode)->i_data_sem)
428  */
429 static Indirect *ext4_get_branch(struct inode *inode, int depth,
430                                  ext4_lblk_t  *offsets,
431                                  Indirect chain[4], int *err)
432 {
433         struct super_block *sb = inode->i_sb;
434         Indirect *p = chain;
435         struct buffer_head *bh;
436
437         *err = 0;
438         /* i_data is not going away, no lock needed */
439         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
440         if (!p->key)
441                 goto no_block;
442         while (--depth) {
443                 bh = sb_getblk(sb, le32_to_cpu(p->key));
444                 if (unlikely(!bh))
445                         goto failure;
446
447                 if (!bh_uptodate_or_lock(bh)) {
448                         if (bh_submit_read(bh) < 0) {
449                                 put_bh(bh);
450                                 goto failure;
451                         }
452                         /* validate block references */
453                         if (ext4_check_indirect_blockref(inode, bh)) {
454                                 put_bh(bh);
455                                 goto failure;
456                         }
457                 }
458
459                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
460                 /* Reader: end */
461                 if (!p->key)
462                         goto no_block;
463         }
464         return NULL;
465
466 failure:
467         *err = -EIO;
468 no_block:
469         return p;
470 }
471
472 /**
473  *      ext4_find_near - find a place for allocation with sufficient locality
474  *      @inode: owner
475  *      @ind: descriptor of indirect block.
476  *
477  *      This function returns the preferred place for block allocation.
478  *      It is used when heuristic for sequential allocation fails.
479  *      Rules are:
480  *        + if there is a block to the left of our position - allocate near it.
481  *        + if pointer will live in indirect block - allocate near that block.
482  *        + if pointer will live in inode - allocate in the same
483  *          cylinder group.
484  *
485  * In the latter case we colour the starting block by the callers PID to
486  * prevent it from clashing with concurrent allocations for a different inode
487  * in the same block group.   The PID is used here so that functionally related
488  * files will be close-by on-disk.
489  *
490  *      Caller must make sure that @ind is valid and will stay that way.
491  */
492 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
493 {
494         struct ext4_inode_info *ei = EXT4_I(inode);
495         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
496         __le32 *p;
497         ext4_fsblk_t bg_start;
498         ext4_fsblk_t last_block;
499         ext4_grpblk_t colour;
500         ext4_group_t block_group;
501         int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
502
503         /* Try to find previous block */
504         for (p = ind->p - 1; p >= start; p--) {
505                 if (*p)
506                         return le32_to_cpu(*p);
507         }
508
509         /* No such thing, so let's try location of indirect block */
510         if (ind->bh)
511                 return ind->bh->b_blocknr;
512
513         /*
514          * It is going to be referred to from the inode itself? OK, just put it
515          * into the same cylinder group then.
516          */
517         block_group = ei->i_block_group;
518         if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
519                 block_group &= ~(flex_size-1);
520                 if (S_ISREG(inode->i_mode))
521                         block_group++;
522         }
523         bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
524         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
525
526         /*
527          * If we are doing delayed allocation, we don't need take
528          * colour into account.
529          */
530         if (test_opt(inode->i_sb, DELALLOC))
531                 return bg_start;
532
533         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
534                 colour = (current->pid % 16) *
535                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
536         else
537                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
538         return bg_start + colour;
539 }
540
541 /**
542  *      ext4_find_goal - find a preferred place for allocation.
543  *      @inode: owner
544  *      @block:  block we want
545  *      @partial: pointer to the last triple within a chain
546  *
547  *      Normally this function find the preferred place for block allocation,
548  *      returns it.
549  *      Because this is only used for non-extent files, we limit the block nr
550  *      to 32 bits.
551  */
552 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
553                                    Indirect *partial)
554 {
555         ext4_fsblk_t goal;
556
557         /*
558          * XXX need to get goal block from mballoc's data structures
559          */
560
561         goal = ext4_find_near(inode, partial);
562         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
563         return goal;
564 }
565
566 /**
567  *      ext4_blks_to_allocate - Look up the block map and count the number
568  *      of direct blocks need to be allocated for the given branch.
569  *
570  *      @branch: chain of indirect blocks
571  *      @k: number of blocks need for indirect blocks
572  *      @blks: number of data blocks to be mapped.
573  *      @blocks_to_boundary:  the offset in the indirect block
574  *
575  *      return the total number of blocks to be allocate, including the
576  *      direct and indirect blocks.
577  */
578 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
579                                  int blocks_to_boundary)
580 {
581         unsigned int count = 0;
582
583         /*
584          * Simple case, [t,d]Indirect block(s) has not allocated yet
585          * then it's clear blocks on that path have not allocated
586          */
587         if (k > 0) {
588                 /* right now we don't handle cross boundary allocation */
589                 if (blks < blocks_to_boundary + 1)
590                         count += blks;
591                 else
592                         count += blocks_to_boundary + 1;
593                 return count;
594         }
595
596         count++;
597         while (count < blks && count <= blocks_to_boundary &&
598                 le32_to_cpu(*(branch[0].p + count)) == 0) {
599                 count++;
600         }
601         return count;
602 }
603
604 /**
605  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
606  *      @handle: handle for this transaction
607  *      @inode: inode which needs allocated blocks
608  *      @iblock: the logical block to start allocated at
609  *      @goal: preferred physical block of allocation
610  *      @indirect_blks: the number of blocks need to allocate for indirect
611  *                      blocks
612  *      @blks: number of desired blocks
613  *      @new_blocks: on return it will store the new block numbers for
614  *      the indirect blocks(if needed) and the first direct block,
615  *      @err: on return it will store the error code
616  *
617  *      This function will return the number of blocks allocated as
618  *      requested by the passed-in parameters.
619  */
620 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
621                              ext4_lblk_t iblock, ext4_fsblk_t goal,
622                              int indirect_blks, int blks,
623                              ext4_fsblk_t new_blocks[4], int *err)
624 {
625         struct ext4_allocation_request ar;
626         int target, i;
627         unsigned long count = 0, blk_allocated = 0;
628         int index = 0;
629         ext4_fsblk_t current_block = 0;
630         int ret = 0;
631
632         /*
633          * Here we try to allocate the requested multiple blocks at once,
634          * on a best-effort basis.
635          * To build a branch, we should allocate blocks for
636          * the indirect blocks(if not allocated yet), and at least
637          * the first direct block of this branch.  That's the
638          * minimum number of blocks need to allocate(required)
639          */
640         /* first we try to allocate the indirect blocks */
641         target = indirect_blks;
642         while (target > 0) {
643                 count = target;
644                 /* allocating blocks for indirect blocks and direct blocks */
645                 current_block = ext4_new_meta_blocks(handle, inode, goal,
646                                                      0, &count, err);
647                 if (*err)
648                         goto failed_out;
649
650                 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
651                         EXT4_ERROR_INODE(inode,
652                                          "current_block %llu + count %lu > %d!",
653                                          current_block, count,
654                                          EXT4_MAX_BLOCK_FILE_PHYS);
655                         *err = -EIO;
656                         goto failed_out;
657                 }
658
659                 target -= count;
660                 /* allocate blocks for indirect blocks */
661                 while (index < indirect_blks && count) {
662                         new_blocks[index++] = current_block++;
663                         count--;
664                 }
665                 if (count > 0) {
666                         /*
667                          * save the new block number
668                          * for the first direct block
669                          */
670                         new_blocks[index] = current_block;
671                         printk(KERN_INFO "%s returned more blocks than "
672                                                 "requested\n", __func__);
673                         WARN_ON(1);
674                         break;
675                 }
676         }
677
678         target = blks - count ;
679         blk_allocated = count;
680         if (!target)
681                 goto allocated;
682         /* Now allocate data blocks */
683         memset(&ar, 0, sizeof(ar));
684         ar.inode = inode;
685         ar.goal = goal;
686         ar.len = target;
687         ar.logical = iblock;
688         if (S_ISREG(inode->i_mode))
689                 /* enable in-core preallocation only for regular files */
690                 ar.flags = EXT4_MB_HINT_DATA;
691
692         current_block = ext4_mb_new_blocks(handle, &ar, err);
693         if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
694                 EXT4_ERROR_INODE(inode,
695                                  "current_block %llu + ar.len %d > %d!",
696                                  current_block, ar.len,
697                                  EXT4_MAX_BLOCK_FILE_PHYS);
698                 *err = -EIO;
699                 goto failed_out;
700         }
701
702         if (*err && (target == blks)) {
703                 /*
704                  * if the allocation failed and we didn't allocate
705                  * any blocks before
706                  */
707                 goto failed_out;
708         }
709         if (!*err) {
710                 if (target == blks) {
711                         /*
712                          * save the new block number
713                          * for the first direct block
714                          */
715                         new_blocks[index] = current_block;
716                 }
717                 blk_allocated += ar.len;
718         }
719 allocated:
720         /* total number of blocks allocated for direct blocks */
721         ret = blk_allocated;
722         *err = 0;
723         return ret;
724 failed_out:
725         for (i = 0; i < index; i++)
726                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
727         return ret;
728 }
729
730 /**
731  *      ext4_alloc_branch - allocate and set up a chain of blocks.
732  *      @handle: handle for this transaction
733  *      @inode: owner
734  *      @indirect_blks: number of allocated indirect blocks
735  *      @blks: number of allocated direct blocks
736  *      @goal: preferred place for allocation
737  *      @offsets: offsets (in the blocks) to store the pointers to next.
738  *      @branch: place to store the chain in.
739  *
740  *      This function allocates blocks, zeroes out all but the last one,
741  *      links them into chain and (if we are synchronous) writes them to disk.
742  *      In other words, it prepares a branch that can be spliced onto the
743  *      inode. It stores the information about that chain in the branch[], in
744  *      the same format as ext4_get_branch() would do. We are calling it after
745  *      we had read the existing part of chain and partial points to the last
746  *      triple of that (one with zero ->key). Upon the exit we have the same
747  *      picture as after the successful ext4_get_block(), except that in one
748  *      place chain is disconnected - *branch->p is still zero (we did not
749  *      set the last link), but branch->key contains the number that should
750  *      be placed into *branch->p to fill that gap.
751  *
752  *      If allocation fails we free all blocks we've allocated (and forget
753  *      their buffer_heads) and return the error value the from failed
754  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
755  *      as described above and return 0.
756  */
757 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
758                              ext4_lblk_t iblock, int indirect_blks,
759                              int *blks, ext4_fsblk_t goal,
760                              ext4_lblk_t *offsets, Indirect *branch)
761 {
762         int blocksize = inode->i_sb->s_blocksize;
763         int i, n = 0;
764         int err = 0;
765         struct buffer_head *bh;
766         int num;
767         ext4_fsblk_t new_blocks[4];
768         ext4_fsblk_t current_block;
769
770         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
771                                 *blks, new_blocks, &err);
772         if (err)
773                 return err;
774
775         branch[0].key = cpu_to_le32(new_blocks[0]);
776         /*
777          * metadata blocks and data blocks are allocated.
778          */
779         for (n = 1; n <= indirect_blks;  n++) {
780                 /*
781                  * Get buffer_head for parent block, zero it out
782                  * and set the pointer to new one, then send
783                  * parent to disk.
784                  */
785                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
786                 if (unlikely(!bh)) {
787                         err = -EIO;
788                         goto failed;
789                 }
790
791                 branch[n].bh = bh;
792                 lock_buffer(bh);
793                 BUFFER_TRACE(bh, "call get_create_access");
794                 err = ext4_journal_get_create_access(handle, bh);
795                 if (err) {
796                         /* Don't brelse(bh) here; it's done in
797                          * ext4_journal_forget() below */
798                         unlock_buffer(bh);
799                         goto failed;
800                 }
801
802                 memset(bh->b_data, 0, blocksize);
803                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
804                 branch[n].key = cpu_to_le32(new_blocks[n]);
805                 *branch[n].p = branch[n].key;
806                 if (n == indirect_blks) {
807                         current_block = new_blocks[n];
808                         /*
809                          * End of chain, update the last new metablock of
810                          * the chain to point to the new allocated
811                          * data blocks numbers
812                          */
813                         for (i = 1; i < num; i++)
814                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
815                 }
816                 BUFFER_TRACE(bh, "marking uptodate");
817                 set_buffer_uptodate(bh);
818                 unlock_buffer(bh);
819
820                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
821                 err = ext4_handle_dirty_metadata(handle, inode, bh);
822                 if (err)
823                         goto failed;
824         }
825         *blks = num;
826         return err;
827 failed:
828         /* Allocation failed, free what we already allocated */
829         ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
830         for (i = 1; i <= n ; i++) {
831                 /*
832                  * branch[i].bh is newly allocated, so there is no
833                  * need to revoke the block, which is why we don't
834                  * need to set EXT4_FREE_BLOCKS_METADATA.
835                  */
836                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
837                                  EXT4_FREE_BLOCKS_FORGET);
838         }
839         for (i = n+1; i < indirect_blks; i++)
840                 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
841
842         ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
843
844         return err;
845 }
846
847 /**
848  * ext4_splice_branch - splice the allocated branch onto inode.
849  * @handle: handle for this transaction
850  * @inode: owner
851  * @block: (logical) number of block we are adding
852  * @chain: chain of indirect blocks (with a missing link - see
853  *      ext4_alloc_branch)
854  * @where: location of missing link
855  * @num:   number of indirect blocks we are adding
856  * @blks:  number of direct blocks we are adding
857  *
858  * This function fills the missing link and does all housekeeping needed in
859  * inode (->i_blocks, etc.). In case of success we end up with the full
860  * chain to new block and return 0.
861  */
862 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
863                               ext4_lblk_t block, Indirect *where, int num,
864                               int blks)
865 {
866         int i;
867         int err = 0;
868         ext4_fsblk_t current_block;
869
870         /*
871          * If we're splicing into a [td]indirect block (as opposed to the
872          * inode) then we need to get write access to the [td]indirect block
873          * before the splice.
874          */
875         if (where->bh) {
876                 BUFFER_TRACE(where->bh, "get_write_access");
877                 err = ext4_journal_get_write_access(handle, where->bh);
878                 if (err)
879                         goto err_out;
880         }
881         /* That's it */
882
883         *where->p = where->key;
884
885         /*
886          * Update the host buffer_head or inode to point to more just allocated
887          * direct blocks blocks
888          */
889         if (num == 0 && blks > 1) {
890                 current_block = le32_to_cpu(where->key) + 1;
891                 for (i = 1; i < blks; i++)
892                         *(where->p + i) = cpu_to_le32(current_block++);
893         }
894
895         /* We are done with atomic stuff, now do the rest of housekeeping */
896         /* had we spliced it onto indirect block? */
897         if (where->bh) {
898                 /*
899                  * If we spliced it onto an indirect block, we haven't
900                  * altered the inode.  Note however that if it is being spliced
901                  * onto an indirect block at the very end of the file (the
902                  * file is growing) then we *will* alter the inode to reflect
903                  * the new i_size.  But that is not done here - it is done in
904                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
905                  */
906                 jbd_debug(5, "splicing indirect only\n");
907                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
908                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
909                 if (err)
910                         goto err_out;
911         } else {
912                 /*
913                  * OK, we spliced it into the inode itself on a direct block.
914                  */
915                 ext4_mark_inode_dirty(handle, inode);
916                 jbd_debug(5, "splicing direct\n");
917         }
918         return err;
919
920 err_out:
921         for (i = 1; i <= num; i++) {
922                 /*
923                  * branch[i].bh is newly allocated, so there is no
924                  * need to revoke the block, which is why we don't
925                  * need to set EXT4_FREE_BLOCKS_METADATA.
926                  */
927                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
928                                  EXT4_FREE_BLOCKS_FORGET);
929         }
930         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
931                          blks, 0);
932
933         return err;
934 }
935
936 /*
937  * The ext4_ind_map_blocks() function handles non-extents inodes
938  * (i.e., using the traditional indirect/double-indirect i_blocks
939  * scheme) for ext4_map_blocks().
940  *
941  * Allocation strategy is simple: if we have to allocate something, we will
942  * have to go the whole way to leaf. So let's do it before attaching anything
943  * to tree, set linkage between the newborn blocks, write them if sync is
944  * required, recheck the path, free and repeat if check fails, otherwise
945  * set the last missing link (that will protect us from any truncate-generated
946  * removals - all blocks on the path are immune now) and possibly force the
947  * write on the parent block.
948  * That has a nice additional property: no special recovery from the failed
949  * allocations is needed - we simply release blocks and do not touch anything
950  * reachable from inode.
951  *
952  * `handle' can be NULL if create == 0.
953  *
954  * return > 0, # of blocks mapped or allocated.
955  * return = 0, if plain lookup failed.
956  * return < 0, error case.
957  *
958  * The ext4_ind_get_blocks() function should be called with
959  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
960  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
961  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
962  * blocks.
963  */
964 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
965                                struct ext4_map_blocks *map,
966                                int flags)
967 {
968         int err = -EIO;
969         ext4_lblk_t offsets[4];
970         Indirect chain[4];
971         Indirect *partial;
972         ext4_fsblk_t goal;
973         int indirect_blks;
974         int blocks_to_boundary = 0;
975         int depth;
976         int count = 0;
977         ext4_fsblk_t first_block = 0;
978
979         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
980         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
981         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
982         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
983                                    &blocks_to_boundary);
984
985         if (depth == 0)
986                 goto out;
987
988         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
989
990         /* Simplest case - block found, no allocation needed */
991         if (!partial) {
992                 first_block = le32_to_cpu(chain[depth - 1].key);
993                 count++;
994                 /*map more blocks*/
995                 while (count < map->m_len && count <= blocks_to_boundary) {
996                         ext4_fsblk_t blk;
997
998                         blk = le32_to_cpu(*(chain[depth-1].p + count));
999
1000                         if (blk == first_block + count)
1001                                 count++;
1002                         else
1003                                 break;
1004                 }
1005                 goto got_it;
1006         }
1007
1008         /* Next simple case - plain lookup or failed read of indirect block */
1009         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1010                 goto cleanup;
1011
1012         /*
1013          * Okay, we need to do block allocation.
1014         */
1015         goal = ext4_find_goal(inode, map->m_lblk, partial);
1016
1017         /* the number of blocks need to allocate for [d,t]indirect blocks */
1018         indirect_blks = (chain + depth) - partial - 1;
1019
1020         /*
1021          * Next look up the indirect map to count the totoal number of
1022          * direct blocks to allocate for this branch.
1023          */
1024         count = ext4_blks_to_allocate(partial, indirect_blks,
1025                                       map->m_len, blocks_to_boundary);
1026         /*
1027          * Block out ext4_truncate while we alter the tree
1028          */
1029         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1030                                 &count, goal,
1031                                 offsets + (partial - chain), partial);
1032
1033         /*
1034          * The ext4_splice_branch call will free and forget any buffers
1035          * on the new chain if there is a failure, but that risks using
1036          * up transaction credits, especially for bitmaps where the
1037          * credits cannot be returned.  Can we handle this somehow?  We
1038          * may need to return -EAGAIN upwards in the worst case.  --sct
1039          */
1040         if (!err)
1041                 err = ext4_splice_branch(handle, inode, map->m_lblk,
1042                                          partial, indirect_blks, count);
1043         if (err)
1044                 goto cleanup;
1045
1046         map->m_flags |= EXT4_MAP_NEW;
1047
1048         ext4_update_inode_fsync_trans(handle, inode, 1);
1049 got_it:
1050         map->m_flags |= EXT4_MAP_MAPPED;
1051         map->m_pblk = le32_to_cpu(chain[depth-1].key);
1052         map->m_len = count;
1053         if (count > blocks_to_boundary)
1054                 map->m_flags |= EXT4_MAP_BOUNDARY;
1055         err = count;
1056         /* Clean up and exit */
1057         partial = chain + depth - 1;    /* the whole chain */
1058 cleanup:
1059         while (partial > chain) {
1060                 BUFFER_TRACE(partial->bh, "call brelse");
1061                 brelse(partial->bh);
1062                 partial--;
1063         }
1064 out:
1065         trace_ext4_ind_map_blocks_exit(inode, map->m_lblk,
1066                                 map->m_pblk, map->m_len, err);
1067         return err;
1068 }
1069
1070 #ifdef CONFIG_QUOTA
1071 qsize_t *ext4_get_reserved_space(struct inode *inode)
1072 {
1073         return &EXT4_I(inode)->i_reserved_quota;
1074 }
1075 #endif
1076
1077 /*
1078  * Calculate the number of metadata blocks need to reserve
1079  * to allocate a new block at @lblocks for non extent file based file
1080  */
1081 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1082                                               sector_t lblock)
1083 {
1084         struct ext4_inode_info *ei = EXT4_I(inode);
1085         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1086         int blk_bits;
1087
1088         if (lblock < EXT4_NDIR_BLOCKS)
1089                 return 0;
1090
1091         lblock -= EXT4_NDIR_BLOCKS;
1092
1093         if (ei->i_da_metadata_calc_len &&
1094             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1095                 ei->i_da_metadata_calc_len++;
1096                 return 0;
1097         }
1098         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1099         ei->i_da_metadata_calc_len = 1;
1100         blk_bits = order_base_2(lblock);
1101         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1102 }
1103
1104 /*
1105  * Calculate the number of metadata blocks need to reserve
1106  * to allocate a block located at @lblock
1107  */
1108 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1109 {
1110         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1111                 return ext4_ext_calc_metadata_amount(inode, lblock);
1112
1113         return ext4_indirect_calc_metadata_amount(inode, lblock);
1114 }
1115
1116 /*
1117  * Called with i_data_sem down, which is important since we can call
1118  * ext4_discard_preallocations() from here.
1119  */
1120 void ext4_da_update_reserve_space(struct inode *inode,
1121                                         int used, int quota_claim)
1122 {
1123         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1124         struct ext4_inode_info *ei = EXT4_I(inode);
1125
1126         spin_lock(&ei->i_block_reservation_lock);
1127         trace_ext4_da_update_reserve_space(inode, used);
1128         if (unlikely(used > ei->i_reserved_data_blocks)) {
1129                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1130                          "with only %d reserved data blocks\n",
1131                          __func__, inode->i_ino, used,
1132                          ei->i_reserved_data_blocks);
1133                 WARN_ON(1);
1134                 used = ei->i_reserved_data_blocks;
1135         }
1136
1137         /* Update per-inode reservations */
1138         ei->i_reserved_data_blocks -= used;
1139         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1140         percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1141                            used + ei->i_allocated_meta_blocks);
1142         ei->i_allocated_meta_blocks = 0;
1143
1144         if (ei->i_reserved_data_blocks == 0) {
1145                 /*
1146                  * We can release all of the reserved metadata blocks
1147                  * only when we have written all of the delayed
1148                  * allocation blocks.
1149                  */
1150                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1151                                    ei->i_reserved_meta_blocks);
1152                 ei->i_reserved_meta_blocks = 0;
1153                 ei->i_da_metadata_calc_len = 0;
1154         }
1155         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1156
1157         /* Update quota subsystem for data blocks */
1158         if (quota_claim)
1159                 dquot_claim_block(inode, used);
1160         else {
1161                 /*
1162                  * We did fallocate with an offset that is already delayed
1163                  * allocated. So on delayed allocated writeback we should
1164                  * not re-claim the quota for fallocated blocks.
1165                  */
1166                 dquot_release_reservation_block(inode, used);
1167         }
1168
1169         /*
1170          * If we have done all the pending block allocations and if
1171          * there aren't any writers on the inode, we can discard the
1172          * inode's preallocations.
1173          */
1174         if ((ei->i_reserved_data_blocks == 0) &&
1175             (atomic_read(&inode->i_writecount) == 0))
1176                 ext4_discard_preallocations(inode);
1177 }
1178
1179 static int __check_block_validity(struct inode *inode, const char *func,
1180                                 unsigned int line,
1181                                 struct ext4_map_blocks *map)
1182 {
1183         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1184                                    map->m_len)) {
1185                 ext4_error_inode(inode, func, line, map->m_pblk,
1186                                  "lblock %lu mapped to illegal pblock "
1187                                  "(length %d)", (unsigned long) map->m_lblk,
1188                                  map->m_len);
1189                 return -EIO;
1190         }
1191         return 0;
1192 }
1193
1194 #define check_block_validity(inode, map)        \
1195         __check_block_validity((inode), __func__, __LINE__, (map))
1196
1197 /*
1198  * Return the number of contiguous dirty pages in a given inode
1199  * starting at page frame idx.
1200  */
1201 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1202                                     unsigned int max_pages)
1203 {
1204         struct address_space *mapping = inode->i_mapping;
1205         pgoff_t index;
1206         struct pagevec pvec;
1207         pgoff_t num = 0;
1208         int i, nr_pages, done = 0;
1209
1210         if (max_pages == 0)
1211                 return 0;
1212         pagevec_init(&pvec, 0);
1213         while (!done) {
1214                 index = idx;
1215                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1216                                               PAGECACHE_TAG_DIRTY,
1217                                               (pgoff_t)PAGEVEC_SIZE);
1218                 if (nr_pages == 0)
1219                         break;
1220                 for (i = 0; i < nr_pages; i++) {
1221                         struct page *page = pvec.pages[i];
1222                         struct buffer_head *bh, *head;
1223
1224                         lock_page(page);
1225                         if (unlikely(page->mapping != mapping) ||
1226                             !PageDirty(page) ||
1227                             PageWriteback(page) ||
1228                             page->index != idx) {
1229                                 done = 1;
1230                                 unlock_page(page);
1231                                 break;
1232                         }
1233                         if (page_has_buffers(page)) {
1234                                 bh = head = page_buffers(page);
1235                                 do {
1236                                         if (!buffer_delay(bh) &&
1237                                             !buffer_unwritten(bh))
1238                                                 done = 1;
1239                                         bh = bh->b_this_page;
1240                                 } while (!done && (bh != head));
1241                         }
1242                         unlock_page(page);
1243                         if (done)
1244                                 break;
1245                         idx++;
1246                         num++;
1247                         if (num >= max_pages) {
1248                                 done = 1;
1249                                 break;
1250                         }
1251                 }
1252                 pagevec_release(&pvec);
1253         }
1254         return num;
1255 }
1256
1257 /*
1258  * The ext4_map_blocks() function tries to look up the requested blocks,
1259  * and returns if the blocks are already mapped.
1260  *
1261  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1262  * and store the allocated blocks in the result buffer head and mark it
1263  * mapped.
1264  *
1265  * If file type is extents based, it will call ext4_ext_map_blocks(),
1266  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1267  * based files
1268  *
1269  * On success, it returns the number of blocks being mapped or allocate.
1270  * if create==0 and the blocks are pre-allocated and uninitialized block,
1271  * the result buffer head is unmapped. If the create ==1, it will make sure
1272  * the buffer head is mapped.
1273  *
1274  * It returns 0 if plain look up failed (blocks have not been allocated), in
1275  * that casem, buffer head is unmapped
1276  *
1277  * It returns the error in case of allocation failure.
1278  */
1279 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1280                     struct ext4_map_blocks *map, int flags)
1281 {
1282         int retval;
1283
1284         map->m_flags = 0;
1285         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1286                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
1287                   (unsigned long) map->m_lblk);
1288         /*
1289          * Try to see if we can get the block without requesting a new
1290          * file system block.
1291          */
1292         down_read((&EXT4_I(inode)->i_data_sem));
1293         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1294                 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1295         } else {
1296                 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1297         }
1298         up_read((&EXT4_I(inode)->i_data_sem));
1299
1300         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1301                 int ret = check_block_validity(inode, map);
1302                 if (ret != 0)
1303                         return ret;
1304         }
1305
1306         /* If it is only a block(s) look up */
1307         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1308                 return retval;
1309
1310         /*
1311          * Returns if the blocks have already allocated
1312          *
1313          * Note that if blocks have been preallocated
1314          * ext4_ext_get_block() returns th create = 0
1315          * with buffer head unmapped.
1316          */
1317         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1318                 return retval;
1319
1320         /*
1321          * When we call get_blocks without the create flag, the
1322          * BH_Unwritten flag could have gotten set if the blocks
1323          * requested were part of a uninitialized extent.  We need to
1324          * clear this flag now that we are committed to convert all or
1325          * part of the uninitialized extent to be an initialized
1326          * extent.  This is because we need to avoid the combination
1327          * of BH_Unwritten and BH_Mapped flags being simultaneously
1328          * set on the buffer_head.
1329          */
1330         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1331
1332         /*
1333          * New blocks allocate and/or writing to uninitialized extent
1334          * will possibly result in updating i_data, so we take
1335          * the write lock of i_data_sem, and call get_blocks()
1336          * with create == 1 flag.
1337          */
1338         down_write((&EXT4_I(inode)->i_data_sem));
1339
1340         /*
1341          * if the caller is from delayed allocation writeout path
1342          * we have already reserved fs blocks for allocation
1343          * let the underlying get_block() function know to
1344          * avoid double accounting
1345          */
1346         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1347                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1348         /*
1349          * We need to check for EXT4 here because migrate
1350          * could have changed the inode type in between
1351          */
1352         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1353                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1354         } else {
1355                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1356
1357                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1358                         /*
1359                          * We allocated new blocks which will result in
1360                          * i_data's format changing.  Force the migrate
1361                          * to fail by clearing migrate flags
1362                          */
1363                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1364                 }
1365
1366                 /*
1367                  * Update reserved blocks/metadata blocks after successful
1368                  * block allocation which had been deferred till now. We don't
1369                  * support fallocate for non extent files. So we can update
1370                  * reserve space here.
1371                  */
1372                 if ((retval > 0) &&
1373                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1374                         ext4_da_update_reserve_space(inode, retval, 1);
1375         }
1376         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1377                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1378
1379         up_write((&EXT4_I(inode)->i_data_sem));
1380         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1381                 int ret = check_block_validity(inode, map);
1382                 if (ret != 0)
1383                         return ret;
1384         }
1385         return retval;
1386 }
1387
1388 /* Maximum number of blocks we map for direct IO at once. */
1389 #define DIO_MAX_BLOCKS 4096
1390
1391 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1392                            struct buffer_head *bh, int flags)
1393 {
1394         handle_t *handle = ext4_journal_current_handle();
1395         struct ext4_map_blocks map;
1396         int ret = 0, started = 0;
1397         int dio_credits;
1398
1399         map.m_lblk = iblock;
1400         map.m_len = bh->b_size >> inode->i_blkbits;
1401
1402         if (flags && !handle) {
1403                 /* Direct IO write... */
1404                 if (map.m_len > DIO_MAX_BLOCKS)
1405                         map.m_len = DIO_MAX_BLOCKS;
1406                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1407                 handle = ext4_journal_start(inode, dio_credits);
1408                 if (IS_ERR(handle)) {
1409                         ret = PTR_ERR(handle);
1410                         return ret;
1411                 }
1412                 started = 1;
1413         }
1414
1415         ret = ext4_map_blocks(handle, inode, &map, flags);
1416         if (ret > 0) {
1417                 map_bh(bh, inode->i_sb, map.m_pblk);
1418                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1419                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1420                 ret = 0;
1421         }
1422         if (started)
1423                 ext4_journal_stop(handle);
1424         return ret;
1425 }
1426
1427 int ext4_get_block(struct inode *inode, sector_t iblock,
1428                    struct buffer_head *bh, int create)
1429 {
1430         return _ext4_get_block(inode, iblock, bh,
1431                                create ? EXT4_GET_BLOCKS_CREATE : 0);
1432 }
1433
1434 /*
1435  * `handle' can be NULL if create is zero
1436  */
1437 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1438                                 ext4_lblk_t block, int create, int *errp)
1439 {
1440         struct ext4_map_blocks map;
1441         struct buffer_head *bh;
1442         int fatal = 0, err;
1443
1444         J_ASSERT(handle != NULL || create == 0);
1445
1446         map.m_lblk = block;
1447         map.m_len = 1;
1448         err = ext4_map_blocks(handle, inode, &map,
1449                               create ? EXT4_GET_BLOCKS_CREATE : 0);
1450
1451         if (err < 0)
1452                 *errp = err;
1453         if (err <= 0)
1454                 return NULL;
1455         *errp = 0;
1456
1457         bh = sb_getblk(inode->i_sb, map.m_pblk);
1458         if (!bh) {
1459                 *errp = -EIO;
1460                 return NULL;
1461         }
1462         if (map.m_flags & EXT4_MAP_NEW) {
1463                 J_ASSERT(create != 0);
1464                 J_ASSERT(handle != NULL);
1465
1466                 /*
1467                  * Now that we do not always journal data, we should
1468                  * keep in mind whether this should always journal the
1469                  * new buffer as metadata.  For now, regular file
1470                  * writes use ext4_get_block instead, so it's not a
1471                  * problem.
1472                  */
1473                 lock_buffer(bh);
1474                 BUFFER_TRACE(bh, "call get_create_access");
1475                 fatal = ext4_journal_get_create_access(handle, bh);
1476                 if (!fatal && !buffer_uptodate(bh)) {
1477                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1478                         set_buffer_uptodate(bh);
1479                 }
1480                 unlock_buffer(bh);
1481                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1482                 err = ext4_handle_dirty_metadata(handle, inode, bh);
1483                 if (!fatal)
1484                         fatal = err;
1485         } else {
1486                 BUFFER_TRACE(bh, "not a new buffer");
1487         }
1488         if (fatal) {
1489                 *errp = fatal;
1490                 brelse(bh);
1491                 bh = NULL;
1492         }
1493         return bh;
1494 }
1495
1496 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1497                                ext4_lblk_t block, int create, int *err)
1498 {
1499         struct buffer_head *bh;
1500
1501         bh = ext4_getblk(handle, inode, block, create, err);
1502         if (!bh)
1503                 return bh;
1504         if (buffer_uptodate(bh))
1505                 return bh;
1506         ll_rw_block(READ_META, 1, &bh);
1507         wait_on_buffer(bh);
1508         if (buffer_uptodate(bh))
1509                 return bh;
1510         put_bh(bh);
1511         *err = -EIO;
1512         return NULL;
1513 }
1514
1515 static int walk_page_buffers(handle_t *handle,
1516                              struct buffer_head *head,
1517                              unsigned from,
1518                              unsigned to,
1519                              int *partial,
1520                              int (*fn)(handle_t *handle,
1521                                        struct buffer_head *bh))
1522 {
1523         struct buffer_head *bh;
1524         unsigned block_start, block_end;
1525         unsigned blocksize = head->b_size;
1526         int err, ret = 0;
1527         struct buffer_head *next;
1528
1529         for (bh = head, block_start = 0;
1530              ret == 0 && (bh != head || !block_start);
1531              block_start = block_end, bh = next) {
1532                 next = bh->b_this_page;
1533                 block_end = block_start + blocksize;
1534                 if (block_end <= from || block_start >= to) {
1535                         if (partial && !buffer_uptodate(bh))
1536                                 *partial = 1;
1537                         continue;
1538                 }
1539                 err = (*fn)(handle, bh);
1540                 if (!ret)
1541                         ret = err;
1542         }
1543         return ret;
1544 }
1545
1546 /*
1547  * To preserve ordering, it is essential that the hole instantiation and
1548  * the data write be encapsulated in a single transaction.  We cannot
1549  * close off a transaction and start a new one between the ext4_get_block()
1550  * and the commit_write().  So doing the jbd2_journal_start at the start of
1551  * prepare_write() is the right place.
1552  *
1553  * Also, this function can nest inside ext4_writepage() ->
1554  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1555  * has generated enough buffer credits to do the whole page.  So we won't
1556  * block on the journal in that case, which is good, because the caller may
1557  * be PF_MEMALLOC.
1558  *
1559  * By accident, ext4 can be reentered when a transaction is open via
1560  * quota file writes.  If we were to commit the transaction while thus
1561  * reentered, there can be a deadlock - we would be holding a quota
1562  * lock, and the commit would never complete if another thread had a
1563  * transaction open and was blocking on the quota lock - a ranking
1564  * violation.
1565  *
1566  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1567  * will _not_ run commit under these circumstances because handle->h_ref
1568  * is elevated.  We'll still have enough credits for the tiny quotafile
1569  * write.
1570  */
1571 static int do_journal_get_write_access(handle_t *handle,
1572                                        struct buffer_head *bh)
1573 {
1574         int dirty = buffer_dirty(bh);
1575         int ret;
1576
1577         if (!buffer_mapped(bh) || buffer_freed(bh))
1578                 return 0;
1579         /*
1580          * __block_write_begin() could have dirtied some buffers. Clean
1581          * the dirty bit as jbd2_journal_get_write_access() could complain
1582          * otherwise about fs integrity issues. Setting of the dirty bit
1583          * by __block_write_begin() isn't a real problem here as we clear
1584          * the bit before releasing a page lock and thus writeback cannot
1585          * ever write the buffer.
1586          */
1587         if (dirty)
1588                 clear_buffer_dirty(bh);
1589         ret = ext4_journal_get_write_access(handle, bh);
1590         if (!ret && dirty)
1591                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1592         return ret;
1593 }
1594
1595 /*
1596  * Truncate blocks that were not used by write. We have to truncate the
1597  * pagecache as well so that corresponding buffers get properly unmapped.
1598  */
1599 static void ext4_truncate_failed_write(struct inode *inode)
1600 {
1601         truncate_inode_pages(inode->i_mapping, inode->i_size);
1602         ext4_truncate(inode);
1603 }
1604
1605 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1606                    struct buffer_head *bh_result, int create);
1607 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1608                             loff_t pos, unsigned len, unsigned flags,
1609                             struct page **pagep, void **fsdata)
1610 {
1611         struct inode *inode = mapping->host;
1612         int ret, needed_blocks;
1613         handle_t *handle;
1614         int retries = 0;
1615         struct page *page;
1616         pgoff_t index;
1617         unsigned from, to;
1618
1619         trace_ext4_write_begin(inode, pos, len, flags);
1620         /*
1621          * Reserve one block more for addition to orphan list in case
1622          * we allocate blocks but write fails for some reason
1623          */
1624         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1625         index = pos >> PAGE_CACHE_SHIFT;
1626         from = pos & (PAGE_CACHE_SIZE - 1);
1627         to = from + len;
1628
1629 retry:
1630         handle = ext4_journal_start(inode, needed_blocks);
1631         if (IS_ERR(handle)) {
1632                 ret = PTR_ERR(handle);
1633                 goto out;
1634         }
1635
1636         /* We cannot recurse into the filesystem as the transaction is already
1637          * started */
1638         flags |= AOP_FLAG_NOFS;
1639
1640         page = grab_cache_page_write_begin(mapping, index, flags);
1641         if (!page) {
1642                 ext4_journal_stop(handle);
1643                 ret = -ENOMEM;
1644                 goto out;
1645         }
1646         *pagep = page;
1647
1648         if (ext4_should_dioread_nolock(inode))
1649                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1650         else
1651                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1652
1653         if (!ret && ext4_should_journal_data(inode)) {
1654                 ret = walk_page_buffers(handle, page_buffers(page),
1655                                 from, to, NULL, do_journal_get_write_access);
1656         }
1657
1658         if (ret) {
1659                 unlock_page(page);
1660                 page_cache_release(page);
1661                 /*
1662                  * __block_write_begin may have instantiated a few blocks
1663                  * outside i_size.  Trim these off again. Don't need
1664                  * i_size_read because we hold i_mutex.
1665                  *
1666                  * Add inode to orphan list in case we crash before
1667                  * truncate finishes
1668                  */
1669                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1670                         ext4_orphan_add(handle, inode);
1671
1672                 ext4_journal_stop(handle);
1673                 if (pos + len > inode->i_size) {
1674                         ext4_truncate_failed_write(inode);
1675                         /*
1676                          * If truncate failed early the inode might
1677                          * still be on the orphan list; we need to
1678                          * make sure the inode is removed from the
1679                          * orphan list in that case.
1680                          */
1681                         if (inode->i_nlink)
1682                                 ext4_orphan_del(NULL, inode);
1683                 }
1684         }
1685
1686         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1687                 goto retry;
1688 out:
1689         return ret;
1690 }
1691
1692 /* For write_end() in data=journal mode */
1693 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1694 {
1695         if (!buffer_mapped(bh) || buffer_freed(bh))
1696                 return 0;
1697         set_buffer_uptodate(bh);
1698         return ext4_handle_dirty_metadata(handle, NULL, bh);
1699 }
1700
1701 static int ext4_generic_write_end(struct file *file,
1702                                   struct address_space *mapping,
1703                                   loff_t pos, unsigned len, unsigned copied,
1704                                   struct page *page, void *fsdata)
1705 {
1706         int i_size_changed = 0;
1707         struct inode *inode = mapping->host;
1708         handle_t *handle = ext4_journal_current_handle();
1709
1710         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1711
1712         /*
1713          * No need to use i_size_read() here, the i_size
1714          * cannot change under us because we hold i_mutex.
1715          *
1716          * But it's important to update i_size while still holding page lock:
1717          * page writeout could otherwise come in and zero beyond i_size.
1718          */
1719         if (pos + copied > inode->i_size) {
1720                 i_size_write(inode, pos + copied);
1721                 i_size_changed = 1;
1722         }
1723
1724         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1725                 /* We need to mark inode dirty even if
1726                  * new_i_size is less that inode->i_size
1727                  * bu greater than i_disksize.(hint delalloc)
1728                  */
1729                 ext4_update_i_disksize(inode, (pos + copied));
1730                 i_size_changed = 1;
1731         }
1732         unlock_page(page);
1733         page_cache_release(page);
1734
1735         /*
1736          * Don't mark the inode dirty under page lock. First, it unnecessarily
1737          * makes the holding time of page lock longer. Second, it forces lock
1738          * ordering of page lock and transaction start for journaling
1739          * filesystems.
1740          */
1741         if (i_size_changed)
1742                 ext4_mark_inode_dirty(handle, inode);
1743
1744         return copied;
1745 }
1746
1747 /*
1748  * We need to pick up the new inode size which generic_commit_write gave us
1749  * `file' can be NULL - eg, when called from page_symlink().
1750  *
1751  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1752  * buffers are managed internally.
1753  */
1754 static int ext4_ordered_write_end(struct file *file,
1755                                   struct address_space *mapping,
1756                                   loff_t pos, unsigned len, unsigned copied,
1757                                   struct page *page, void *fsdata)
1758 {
1759         handle_t *handle = ext4_journal_current_handle();
1760         struct inode *inode = mapping->host;
1761         int ret = 0, ret2;
1762
1763         trace_ext4_ordered_write_end(inode, pos, len, copied);
1764         ret = ext4_jbd2_file_inode(handle, inode);
1765
1766         if (ret == 0) {
1767                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1768                                                         page, fsdata);
1769                 copied = ret2;
1770                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1771                         /* if we have allocated more blocks and copied
1772                          * less. We will have blocks allocated outside
1773                          * inode->i_size. So truncate them
1774                          */
1775                         ext4_orphan_add(handle, inode);
1776                 if (ret2 < 0)
1777                         ret = ret2;
1778         }
1779         ret2 = ext4_journal_stop(handle);
1780         if (!ret)
1781                 ret = ret2;
1782
1783         if (pos + len > inode->i_size) {
1784                 ext4_truncate_failed_write(inode);
1785                 /*
1786                  * If truncate failed early the inode might still be
1787                  * on the orphan list; we need to make sure the inode
1788                  * is removed from the orphan list in that case.
1789                  */
1790                 if (inode->i_nlink)
1791                         ext4_orphan_del(NULL, inode);
1792         }
1793
1794
1795         return ret ? ret : copied;
1796 }
1797
1798 static int ext4_writeback_write_end(struct file *file,
1799                                     struct address_space *mapping,
1800                                     loff_t pos, unsigned len, unsigned copied,
1801                                     struct page *page, void *fsdata)
1802 {
1803         handle_t *handle = ext4_journal_current_handle();
1804         struct inode *inode = mapping->host;
1805         int ret = 0, ret2;
1806
1807         trace_ext4_writeback_write_end(inode, pos, len, copied);
1808         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1809                                                         page, fsdata);
1810         copied = ret2;
1811         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1812                 /* if we have allocated more blocks and copied
1813                  * less. We will have blocks allocated outside
1814                  * inode->i_size. So truncate them
1815                  */
1816                 ext4_orphan_add(handle, inode);
1817
1818         if (ret2 < 0)
1819                 ret = ret2;
1820
1821         ret2 = ext4_journal_stop(handle);
1822         if (!ret)
1823                 ret = ret2;
1824
1825         if (pos + len > inode->i_size) {
1826                 ext4_truncate_failed_write(inode);
1827                 /*
1828                  * If truncate failed early the inode might still be
1829                  * on the orphan list; we need to make sure the inode
1830                  * is removed from the orphan list in that case.
1831                  */
1832                 if (inode->i_nlink)
1833                         ext4_orphan_del(NULL, inode);
1834         }
1835
1836         return ret ? ret : copied;
1837 }
1838
1839 static int ext4_journalled_write_end(struct file *file,
1840                                      struct address_space *mapping,
1841                                      loff_t pos, unsigned len, unsigned copied,
1842                                      struct page *page, void *fsdata)
1843 {
1844         handle_t *handle = ext4_journal_current_handle();
1845         struct inode *inode = mapping->host;
1846         int ret = 0, ret2;
1847         int partial = 0;
1848         unsigned from, to;
1849         loff_t new_i_size;
1850
1851         trace_ext4_journalled_write_end(inode, pos, len, copied);
1852         from = pos & (PAGE_CACHE_SIZE - 1);
1853         to = from + len;
1854
1855         BUG_ON(!ext4_handle_valid(handle));
1856
1857         if (copied < len) {
1858                 if (!PageUptodate(page))
1859                         copied = 0;
1860                 page_zero_new_buffers(page, from+copied, to);
1861         }
1862
1863         ret = walk_page_buffers(handle, page_buffers(page), from,
1864                                 to, &partial, write_end_fn);
1865         if (!partial)
1866                 SetPageUptodate(page);
1867         new_i_size = pos + copied;
1868         if (new_i_size > inode->i_size)
1869                 i_size_write(inode, pos+copied);
1870         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1871         if (new_i_size > EXT4_I(inode)->i_disksize) {
1872                 ext4_update_i_disksize(inode, new_i_size);
1873                 ret2 = ext4_mark_inode_dirty(handle, inode);
1874                 if (!ret)
1875                         ret = ret2;
1876         }
1877
1878         unlock_page(page);
1879         page_cache_release(page);
1880         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1881                 /* if we have allocated more blocks and copied
1882                  * less. We will have blocks allocated outside
1883                  * inode->i_size. So truncate them
1884                  */
1885                 ext4_orphan_add(handle, inode);
1886
1887         ret2 = ext4_journal_stop(handle);
1888         if (!ret)
1889                 ret = ret2;
1890         if (pos + len > inode->i_size) {
1891                 ext4_truncate_failed_write(inode);
1892                 /*
1893                  * If truncate failed early the inode might still be
1894                  * on the orphan list; we need to make sure the inode
1895                  * is removed from the orphan list in that case.
1896                  */
1897                 if (inode->i_nlink)
1898                         ext4_orphan_del(NULL, inode);
1899         }
1900
1901         return ret ? ret : copied;
1902 }
1903
1904 /*
1905  * Reserve a single block located at lblock
1906  */
1907 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1908 {
1909         int retries = 0;
1910         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1911         struct ext4_inode_info *ei = EXT4_I(inode);
1912         unsigned long md_needed;
1913         int ret;
1914
1915         /*
1916          * recalculate the amount of metadata blocks to reserve
1917          * in order to allocate nrblocks
1918          * worse case is one extent per block
1919          */
1920 repeat:
1921         spin_lock(&ei->i_block_reservation_lock);
1922         md_needed = ext4_calc_metadata_amount(inode, lblock);
1923         trace_ext4_da_reserve_space(inode, md_needed);
1924         spin_unlock(&ei->i_block_reservation_lock);
1925
1926         /*
1927          * We will charge metadata quota at writeout time; this saves
1928          * us from metadata over-estimation, though we may go over by
1929          * a small amount in the end.  Here we just reserve for data.
1930          */
1931         ret = dquot_reserve_block(inode, 1);
1932         if (ret)
1933                 return ret;
1934         /*
1935          * We do still charge estimated metadata to the sb though;
1936          * we cannot afford to run out of free blocks.
1937          */
1938         if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1939                 dquot_release_reservation_block(inode, 1);
1940                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1941                         yield();
1942                         goto repeat;
1943                 }
1944                 return -ENOSPC;
1945         }
1946         spin_lock(&ei->i_block_reservation_lock);
1947         ei->i_reserved_data_blocks++;
1948         ei->i_reserved_meta_blocks += md_needed;
1949         spin_unlock(&ei->i_block_reservation_lock);
1950
1951         return 0;       /* success */
1952 }
1953
1954 static void ext4_da_release_space(struct inode *inode, int to_free)
1955 {
1956         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1957         struct ext4_inode_info *ei = EXT4_I(inode);
1958
1959         if (!to_free)
1960                 return;         /* Nothing to release, exit */
1961
1962         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1963
1964         trace_ext4_da_release_space(inode, to_free);
1965         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1966                 /*
1967                  * if there aren't enough reserved blocks, then the
1968                  * counter is messed up somewhere.  Since this
1969                  * function is called from invalidate page, it's
1970                  * harmless to return without any action.
1971                  */
1972                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1973                          "ino %lu, to_free %d with only %d reserved "
1974                          "data blocks\n", inode->i_ino, to_free,
1975                          ei->i_reserved_data_blocks);
1976                 WARN_ON(1);
1977                 to_free = ei->i_reserved_data_blocks;
1978         }
1979         ei->i_reserved_data_blocks -= to_free;
1980
1981         if (ei->i_reserved_data_blocks == 0) {
1982                 /*
1983                  * We can release all of the reserved metadata blocks
1984                  * only when we have written all of the delayed
1985                  * allocation blocks.
1986                  */
1987                 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1988                                    ei->i_reserved_meta_blocks);
1989                 ei->i_reserved_meta_blocks = 0;
1990                 ei->i_da_metadata_calc_len = 0;
1991         }
1992
1993         /* update fs dirty data blocks counter */
1994         percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1995
1996         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1997
1998         dquot_release_reservation_block(inode, to_free);
1999 }
2000
2001 static void ext4_da_page_release_reservation(struct page *page,
2002                                              unsigned long offset)
2003 {
2004         int to_release = 0;
2005         struct buffer_head *head, *bh;
2006         unsigned int curr_off = 0;
2007
2008         head = page_buffers(page);
2009         bh = head;
2010         do {
2011                 unsigned int next_off = curr_off + bh->b_size;
2012
2013                 if ((offset <= curr_off) && (buffer_delay(bh))) {
2014                         to_release++;
2015                         clear_buffer_delay(bh);
2016                 }
2017                 curr_off = next_off;
2018         } while ((bh = bh->b_this_page) != head);
2019         ext4_da_release_space(page->mapping->host, to_release);
2020 }
2021
2022 /*
2023  * Delayed allocation stuff
2024  */
2025
2026 /*
2027  * mpage_da_submit_io - walks through extent of pages and try to write
2028  * them with writepage() call back
2029  *
2030  * @mpd->inode: inode
2031  * @mpd->first_page: first page of the extent
2032  * @mpd->next_page: page after the last page of the extent
2033  *
2034  * By the time mpage_da_submit_io() is called we expect all blocks
2035  * to be allocated. this may be wrong if allocation failed.
2036  *
2037  * As pages are already locked by write_cache_pages(), we can't use it
2038  */
2039 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2040                               struct ext4_map_blocks *map)
2041 {
2042         struct pagevec pvec;
2043         unsigned long index, end;
2044         int ret = 0, err, nr_pages, i;
2045         struct inode *inode = mpd->inode;
2046         struct address_space *mapping = inode->i_mapping;
2047         loff_t size = i_size_read(inode);
2048         unsigned int len, block_start;
2049         struct buffer_head *bh, *page_bufs = NULL;
2050         int journal_data = ext4_should_journal_data(inode);
2051         sector_t pblock = 0, cur_logical = 0;
2052         struct ext4_io_submit io_submit;
2053
2054         BUG_ON(mpd->next_page <= mpd->first_page);
2055         memset(&io_submit, 0, sizeof(io_submit));
2056         /*
2057          * We need to start from the first_page to the next_page - 1
2058          * to make sure we also write the mapped dirty buffer_heads.
2059          * If we look at mpd->b_blocknr we would only be looking
2060          * at the currently mapped buffer_heads.
2061          */
2062         index = mpd->first_page;
2063         end = mpd->next_page - 1;
2064
2065         pagevec_init(&pvec, 0);
2066         while (index <= end) {
2067                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2068                 if (nr_pages == 0)
2069                         break;
2070                 for (i = 0; i < nr_pages; i++) {
2071                         int commit_write = 0, skip_page = 0;
2072                         struct page *page = pvec.pages[i];
2073
2074                         index = page->index;
2075                         if (index > end)
2076                                 break;
2077
2078                         if (index == size >> PAGE_CACHE_SHIFT)
2079                                 len = size & ~PAGE_CACHE_MASK;
2080                         else
2081                                 len = PAGE_CACHE_SIZE;
2082                         if (map) {
2083                                 cur_logical = index << (PAGE_CACHE_SHIFT -
2084                                                         inode->i_blkbits);
2085                                 pblock = map->m_pblk + (cur_logical -
2086                                                         map->m_lblk);
2087                         }
2088                         index++;
2089
2090                         BUG_ON(!PageLocked(page));
2091                         BUG_ON(PageWriteback(page));
2092
2093                         /*
2094                          * If the page does not have buffers (for
2095                          * whatever reason), try to create them using
2096                          * __block_write_begin.  If this fails,
2097                          * skip the page and move on.
2098                          */
2099                         if (!page_has_buffers(page)) {
2100                                 if (__block_write_begin(page, 0, len,
2101                                                 noalloc_get_block_write)) {
2102                                 skip_page:
2103                                         unlock_page(page);
2104                                         continue;
2105                                 }
2106                                 commit_write = 1;
2107                         }
2108
2109                         bh = page_bufs = page_buffers(page);
2110                         block_start = 0;
2111                         do {
2112                                 if (!bh)
2113                                         goto skip_page;
2114                                 if (map && (cur_logical >= map->m_lblk) &&
2115                                     (cur_logical <= (map->m_lblk +
2116                                                      (map->m_len - 1)))) {
2117                                         if (buffer_delay(bh)) {
2118                                                 clear_buffer_delay(bh);
2119                                                 bh->b_blocknr = pblock;
2120                                         }
2121                                         if (buffer_unwritten(bh) ||
2122                                             buffer_mapped(bh))
2123                                                 BUG_ON(bh->b_blocknr != pblock);
2124                                         if (map->m_flags & EXT4_MAP_UNINIT)
2125                                                 set_buffer_uninit(bh);
2126                                         clear_buffer_unwritten(bh);
2127                                 }
2128
2129                                 /*
2130                                  * skip page if block allocation undone and
2131                                  * block is dirty
2132                                  */
2133                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
2134                                         skip_page = 1;
2135                                 bh = bh->b_this_page;
2136                                 block_start += bh->b_size;
2137                                 cur_logical++;
2138                                 pblock++;
2139                         } while (bh != page_bufs);
2140
2141                         if (skip_page)
2142                                 goto skip_page;
2143
2144                         if (commit_write)
2145                                 /* mark the buffer_heads as dirty & uptodate */
2146                                 block_commit_write(page, 0, len);
2147
2148                         clear_page_dirty_for_io(page);
2149                         /*
2150                          * Delalloc doesn't support data journalling,
2151                          * but eventually maybe we'll lift this
2152                          * restriction.
2153                          */
2154                         if (unlikely(journal_data && PageChecked(page)))
2155                                 err = __ext4_journalled_writepage(page, len);
2156                         else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2157                                 err = ext4_bio_write_page(&io_submit, page,
2158                                                           len, mpd->wbc);
2159                         else if (buffer_uninit(page_bufs)) {
2160                                 ext4_set_bh_endio(page_bufs, inode);
2161                                 err = block_write_full_page_endio(page,
2162                                         noalloc_get_block_write,
2163                                         mpd->wbc, ext4_end_io_buffer_write);
2164                         } else
2165                                 err = block_write_full_page(page,
2166                                         noalloc_get_block_write, mpd->wbc);
2167
2168                         if (!err)
2169                                 mpd->pages_written++;
2170                         /*
2171                          * In error case, we have to continue because
2172                          * remaining pages are still locked
2173                          */
2174                         if (ret == 0)
2175                                 ret = err;
2176                 }
2177                 pagevec_release(&pvec);
2178         }
2179         ext4_io_submit(&io_submit);
2180         return ret;
2181 }
2182
2183 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2184 {
2185         int nr_pages, i;
2186         pgoff_t index, end;
2187         struct pagevec pvec;
2188         struct inode *inode = mpd->inode;
2189         struct address_space *mapping = inode->i_mapping;
2190
2191         index = mpd->first_page;
2192         end   = mpd->next_page - 1;
2193         while (index <= end) {
2194                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2195                 if (nr_pages == 0)
2196                         break;
2197                 for (i = 0; i < nr_pages; i++) {
2198                         struct page *page = pvec.pages[i];
2199                         if (page->index > end)
2200                                 break;
2201                         BUG_ON(!PageLocked(page));
2202                         BUG_ON(PageWriteback(page));
2203                         block_invalidatepage(page, 0);
2204                         ClearPageUptodate(page);
2205                         unlock_page(page);
2206                 }
2207                 index = pvec.pages[nr_pages - 1]->index + 1;
2208                 pagevec_release(&pvec);
2209         }
2210         return;
2211 }
2212
2213 static void ext4_print_free_blocks(struct inode *inode)
2214 {
2215         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2216         printk(KERN_CRIT "Total free blocks count %lld\n",
2217                ext4_count_free_blocks(inode->i_sb));
2218         printk(KERN_CRIT "Free/Dirty block details\n");
2219         printk(KERN_CRIT "free_blocks=%lld\n",
2220                (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2221         printk(KERN_CRIT "dirty_blocks=%lld\n",
2222                (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2223         printk(KERN_CRIT "Block reservation details\n");
2224         printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2225                EXT4_I(inode)->i_reserved_data_blocks);
2226         printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2227                EXT4_I(inode)->i_reserved_meta_blocks);
2228         return;
2229 }
2230
2231 /*
2232  * mpage_da_map_and_submit - go through given space, map them
2233  *       if necessary, and then submit them for I/O
2234  *
2235  * @mpd - bh describing space
2236  *
2237  * The function skips space we know is already mapped to disk blocks.
2238  *
2239  */
2240 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2241 {
2242         int err, blks, get_blocks_flags;
2243         struct ext4_map_blocks map, *mapp = NULL;
2244         sector_t next = mpd->b_blocknr;
2245         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2246         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2247         handle_t *handle = NULL;
2248
2249         /*
2250          * If the blocks are mapped already, or we couldn't accumulate
2251          * any blocks, then proceed immediately to the submission stage.
2252          */
2253         if ((mpd->b_size == 0) ||
2254             ((mpd->b_state  & (1 << BH_Mapped)) &&
2255              !(mpd->b_state & (1 << BH_Delay)) &&
2256              !(mpd->b_state & (1 << BH_Unwritten))))
2257                 goto submit_io;
2258
2259         handle = ext4_journal_current_handle();
2260         BUG_ON(!handle);
2261
2262         /*
2263          * Call ext4_map_blocks() to allocate any delayed allocation
2264          * blocks, or to convert an uninitialized extent to be
2265          * initialized (in the case where we have written into
2266          * one or more preallocated blocks).
2267          *
2268          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2269          * indicate that we are on the delayed allocation path.  This
2270          * affects functions in many different parts of the allocation
2271          * call path.  This flag exists primarily because we don't
2272          * want to change *many* call functions, so ext4_map_blocks()
2273          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2274          * inode's allocation semaphore is taken.
2275          *
2276          * If the blocks in questions were delalloc blocks, set
2277          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2278          * variables are updated after the blocks have been allocated.
2279          */
2280         map.m_lblk = next;
2281         map.m_len = max_blocks;
2282         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2283         if (ext4_should_dioread_nolock(mpd->inode))
2284                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2285         if (mpd->b_state & (1 << BH_Delay))
2286                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2287
2288         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2289         if (blks < 0) {
2290                 struct super_block *sb = mpd->inode->i_sb;
2291
2292                 err = blks;
2293                 /*
2294                  * If get block returns EAGAIN or ENOSPC and there
2295                  * appears to be free blocks we will just let
2296                  * mpage_da_submit_io() unlock all of the pages.
2297                  */
2298                 if (err == -EAGAIN)
2299                         goto submit_io;
2300
2301                 if (err == -ENOSPC &&
2302                     ext4_count_free_blocks(sb)) {
2303                         mpd->retval = err;
2304                         goto submit_io;
2305                 }
2306
2307                 /*
2308                  * get block failure will cause us to loop in
2309                  * writepages, because a_ops->writepage won't be able
2310                  * to make progress. The page will be redirtied by
2311                  * writepage and writepages will again try to write
2312                  * the same.
2313                  */
2314                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2315                         ext4_msg(sb, KERN_CRIT,
2316                                  "delayed block allocation failed for inode %lu "
2317                                  "at logical offset %llu with max blocks %zd "
2318                                  "with error %d", mpd->inode->i_ino,
2319                                  (unsigned long long) next,
2320                                  mpd->b_size >> mpd->inode->i_blkbits, err);
2321                         ext4_msg(sb, KERN_CRIT,
2322                                 "This should not happen!! Data will be lost\n");
2323                         if (err == -ENOSPC)
2324                                 ext4_print_free_blocks(mpd->inode);
2325                 }
2326                 /* invalidate all the pages */
2327                 ext4_da_block_invalidatepages(mpd);
2328
2329                 /* Mark this page range as having been completed */
2330                 mpd->io_done = 1;
2331                 return;
2332         }
2333         BUG_ON(blks == 0);
2334
2335         mapp = &map;
2336         if (map.m_flags & EXT4_MAP_NEW) {
2337                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2338                 int i;
2339
2340                 for (i = 0; i < map.m_len; i++)
2341                         unmap_underlying_metadata(bdev, map.m_pblk + i);
2342         }
2343
2344         if (ext4_should_order_data(mpd->inode)) {
2345                 err = ext4_jbd2_file_inode(handle, mpd->inode);
2346                 if (err)
2347                         /* This only happens if the journal is aborted */
2348                         return;
2349         }
2350
2351         /*
2352          * Update on-disk size along with block allocation.
2353          */
2354         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2355         if (disksize > i_size_read(mpd->inode))
2356                 disksize = i_size_read(mpd->inode);
2357         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2358                 ext4_update_i_disksize(mpd->inode, disksize);
2359                 err = ext4_mark_inode_dirty(handle, mpd->inode);
2360                 if (err)
2361                         ext4_error(mpd->inode->i_sb,
2362                                    "Failed to mark inode %lu dirty",
2363                                    mpd->inode->i_ino);
2364         }
2365
2366 submit_io:
2367         mpage_da_submit_io(mpd, mapp);
2368         mpd->io_done = 1;
2369 }
2370
2371 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2372                 (1 << BH_Delay) | (1 << BH_Unwritten))
2373
2374 /*
2375  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2376  *
2377  * @mpd->lbh - extent of blocks
2378  * @logical - logical number of the block in the file
2379  * @bh - bh of the block (used to access block's state)
2380  *
2381  * the function is used to collect contig. blocks in same state
2382  */
2383 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2384                                    sector_t logical, size_t b_size,
2385                                    unsigned long b_state)
2386 {
2387         sector_t next;
2388         int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2389
2390         /*
2391          * XXX Don't go larger than mballoc is willing to allocate
2392          * This is a stopgap solution.  We eventually need to fold
2393          * mpage_da_submit_io() into this function and then call
2394          * ext4_map_blocks() multiple times in a loop
2395          */
2396         if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2397                 goto flush_it;
2398
2399         /* check if thereserved journal credits might overflow */
2400         if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2401                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2402                         /*
2403                          * With non-extent format we are limited by the journal
2404                          * credit available.  Total credit needed to insert
2405                          * nrblocks contiguous blocks is dependent on the
2406                          * nrblocks.  So limit nrblocks.
2407                          */
2408                         goto flush_it;
2409                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2410                                 EXT4_MAX_TRANS_DATA) {
2411                         /*
2412                          * Adding the new buffer_head would make it cross the
2413                          * allowed limit for which we have journal credit
2414                          * reserved. So limit the new bh->b_size
2415                          */
2416                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2417                                                 mpd->inode->i_blkbits;
2418                         /* we will do mpage_da_submit_io in the next loop */
2419                 }
2420         }
2421         /*
2422          * First block in the extent
2423          */
2424         if (mpd->b_size == 0) {
2425                 mpd->b_blocknr = logical;
2426                 mpd->b_size = b_size;
2427                 mpd->b_state = b_state & BH_FLAGS;
2428                 return;
2429         }
2430
2431         next = mpd->b_blocknr + nrblocks;
2432         /*
2433          * Can we merge the block to our big extent?
2434          */
2435         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2436                 mpd->b_size += b_size;
2437                 return;
2438         }
2439
2440 flush_it:
2441         /*
2442          * We couldn't merge the block to our extent, so we
2443          * need to flush current  extent and start new one
2444          */
2445         mpage_da_map_and_submit(mpd);
2446         return;
2447 }
2448
2449 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2450 {
2451         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2452 }
2453
2454 /*
2455  * This is a special get_blocks_t callback which is used by
2456  * ext4_da_write_begin().  It will either return mapped block or
2457  * reserve space for a single block.
2458  *
2459  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2460  * We also have b_blocknr = -1 and b_bdev initialized properly
2461  *
2462  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2463  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2464  * initialized properly.
2465  */
2466 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2467                                   struct buffer_head *bh, int create)
2468 {
2469         struct ext4_map_blocks map;
2470         int ret = 0;
2471         sector_t invalid_block = ~((sector_t) 0xffff);
2472
2473         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2474                 invalid_block = ~0;
2475
2476         BUG_ON(create == 0);
2477         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2478
2479         map.m_lblk = iblock;
2480         map.m_len = 1;
2481
2482         /*
2483          * first, we need to know whether the block is allocated already
2484          * preallocated blocks are unmapped but should treated
2485          * the same as allocated blocks.
2486          */
2487         ret = ext4_map_blocks(NULL, inode, &map, 0);
2488         if (ret < 0)
2489                 return ret;
2490         if (ret == 0) {
2491                 if (buffer_delay(bh))
2492                         return 0; /* Not sure this could or should happen */
2493                 /*
2494                  * XXX: __block_write_begin() unmaps passed block, is it OK?
2495                  */
2496                 ret = ext4_da_reserve_space(inode, iblock);
2497                 if (ret)
2498                         /* not enough space to reserve */
2499                         return ret;
2500
2501                 map_bh(bh, inode->i_sb, invalid_block);
2502                 set_buffer_new(bh);
2503                 set_buffer_delay(bh);
2504                 return 0;
2505         }
2506
2507         map_bh(bh, inode->i_sb, map.m_pblk);
2508         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2509
2510         if (buffer_unwritten(bh)) {
2511                 /* A delayed write to unwritten bh should be marked
2512                  * new and mapped.  Mapped ensures that we don't do
2513                  * get_block multiple times when we write to the same
2514                  * offset and new ensures that we do proper zero out
2515                  * for partial write.
2516                  */
2517                 set_buffer_new(bh);
2518                 set_buffer_mapped(bh);
2519         }
2520         return 0;
2521 }
2522
2523 /*
2524  * This function is used as a standard get_block_t calback function
2525  * when there is no desire to allocate any blocks.  It is used as a
2526  * callback function for block_write_begin() and block_write_full_page().
2527  * These functions should only try to map a single block at a time.
2528  *
2529  * Since this function doesn't do block allocations even if the caller
2530  * requests it by passing in create=1, it is critically important that
2531  * any caller checks to make sure that any buffer heads are returned
2532  * by this function are either all already mapped or marked for
2533  * delayed allocation before calling  block_write_full_page().  Otherwise,
2534  * b_blocknr could be left unitialized, and the page write functions will
2535  * be taken by surprise.
2536  */
2537 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2538                                    struct buffer_head *bh_result, int create)
2539 {
2540         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2541         return _ext4_get_block(inode, iblock, bh_result, 0);
2542 }
2543
2544 static int bget_one(handle_t *handle, struct buffer_head *bh)
2545 {
2546         get_bh(bh);
2547         return 0;
2548 }
2549
2550 static int bput_one(handle_t *handle, struct buffer_head *bh)
2551 {
2552         put_bh(bh);
2553         return 0;
2554 }
2555
2556 static int __ext4_journalled_writepage(struct page *page,
2557                                        unsigned int len)
2558 {
2559         struct address_space *mapping = page->mapping;
2560         struct inode *inode = mapping->host;
2561         struct buffer_head *page_bufs;
2562         handle_t *handle = NULL;
2563         int ret = 0;
2564         int err;
2565
2566         ClearPageChecked(page);
2567         page_bufs = page_buffers(page);
2568         BUG_ON(!page_bufs);
2569         walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2570         /* As soon as we unlock the page, it can go away, but we have
2571          * references to buffers so we are safe */
2572         unlock_page(page);
2573
2574         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2575         if (IS_ERR(handle)) {
2576                 ret = PTR_ERR(handle);
2577                 goto out;
2578         }
2579
2580         BUG_ON(!ext4_handle_valid(handle));
2581
2582         ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2583                                 do_journal_get_write_access);
2584
2585         err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2586                                 write_end_fn);
2587         if (ret == 0)
2588                 ret = err;
2589         err = ext4_journal_stop(handle);
2590         if (!ret)
2591                 ret = err;
2592
2593         walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2594         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2595 out:
2596         return ret;
2597 }
2598
2599 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2600 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2601
2602 /*
2603  * Note that we don't need to start a transaction unless we're journaling data
2604  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2605  * need to file the inode to the transaction's list in ordered mode because if
2606  * we are writing back data added by write(), the inode is already there and if
2607  * we are writing back data modified via mmap(), no one guarantees in which
2608  * transaction the data will hit the disk. In case we are journaling data, we
2609  * cannot start transaction directly because transaction start ranks above page
2610  * lock so we have to do some magic.
2611  *
2612  * This function can get called via...
2613  *   - ext4_da_writepages after taking page lock (have journal handle)
2614  *   - journal_submit_inode_data_buffers (no journal handle)
2615  *   - shrink_page_list via pdflush (no journal handle)
2616  *   - grab_page_cache when doing write_begin (have journal handle)
2617  *
2618  * We don't do any block allocation in this function. If we have page with
2619  * multiple blocks we need to write those buffer_heads that are mapped. This
2620  * is important for mmaped based write. So if we do with blocksize 1K
2621  * truncate(f, 1024);
2622  * a = mmap(f, 0, 4096);
2623  * a[0] = 'a';
2624  * truncate(f, 4096);
2625  * we have in the page first buffer_head mapped via page_mkwrite call back
2626  * but other bufer_heads would be unmapped but dirty(dirty done via the
2627  * do_wp_page). So writepage should write the first block. If we modify
2628  * the mmap area beyond 1024 we will again get a page_fault and the
2629  * page_mkwrite callback will do the block allocation and mark the
2630  * buffer_heads mapped.
2631  *
2632  * We redirty the page if we have any buffer_heads that is either delay or
2633  * unwritten in the page.
2634  *
2635  * We can get recursively called as show below.
2636  *
2637  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2638  *              ext4_writepage()
2639  *
2640  * But since we don't do any block allocation we should not deadlock.
2641  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2642  */
2643 static int ext4_writepage(struct page *page,
2644                           struct writeback_control *wbc)
2645 {
2646         int ret = 0, commit_write = 0;
2647         loff_t size;
2648         unsigned int len;
2649         struct buffer_head *page_bufs = NULL;
2650         struct inode *inode = page->mapping->host;
2651
2652         trace_ext4_writepage(page);
2653         size = i_size_read(inode);
2654         if (page->index == size >> PAGE_CACHE_SHIFT)
2655                 len = size & ~PAGE_CACHE_MASK;
2656         else
2657                 len = PAGE_CACHE_SIZE;
2658
2659         /*
2660          * If the page does not have buffers (for whatever reason),
2661          * try to create them using __block_write_begin.  If this
2662          * fails, redirty the page and move on.
2663          */
2664         if (!page_has_buffers(page)) {
2665                 if (__block_write_begin(page, 0, len,
2666                                         noalloc_get_block_write)) {
2667                 redirty_page:
2668                         redirty_page_for_writepage(wbc, page);
2669                         unlock_page(page);
2670                         return 0;
2671                 }
2672                 commit_write = 1;
2673         }
2674         page_bufs = page_buffers(page);
2675         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2676                               ext4_bh_delay_or_unwritten)) {
2677                 /*
2678                  * We don't want to do block allocation, so redirty
2679                  * the page and return.  We may reach here when we do
2680                  * a journal commit via journal_submit_inode_data_buffers.
2681                  * We can also reach here via shrink_page_list
2682                  */
2683                 goto redirty_page;
2684         }
2685         if (commit_write)
2686                 /* now mark the buffer_heads as dirty and uptodate */
2687                 block_commit_write(page, 0, len);
2688
2689         if (PageChecked(page) && ext4_should_journal_data(inode))
2690                 /*
2691                  * It's mmapped pagecache.  Add buffers and journal it.  There
2692                  * doesn't seem much point in redirtying the page here.
2693                  */
2694                 return __ext4_journalled_writepage(page, len);
2695
2696         if (buffer_uninit(page_bufs)) {
2697                 ext4_set_bh_endio(page_bufs, inode);
2698                 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2699                                             wbc, ext4_end_io_buffer_write);
2700         } else
2701                 ret = block_write_full_page(page, noalloc_get_block_write,
2702                                             wbc);
2703
2704         return ret;
2705 }
2706
2707 /*
2708  * This is called via ext4_da_writepages() to
2709  * calculate the total number of credits to reserve to fit
2710  * a single extent allocation into a single transaction,
2711  * ext4_da_writpeages() will loop calling this before
2712  * the block allocation.
2713  */
2714
2715 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2716 {
2717         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2718
2719         /*
2720          * With non-extent format the journal credit needed to
2721          * insert nrblocks contiguous block is dependent on
2722          * number of contiguous block. So we will limit
2723          * number of contiguous block to a sane value
2724          */
2725         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2726             (max_blocks > EXT4_MAX_TRANS_DATA))
2727                 max_blocks = EXT4_MAX_TRANS_DATA;
2728
2729         return ext4_chunk_trans_blocks(inode, max_blocks);
2730 }
2731
2732 /*
2733  * write_cache_pages_da - walk the list of dirty pages of the given
2734  * address space and accumulate pages that need writing, and call
2735  * mpage_da_map_and_submit to map a single contiguous memory region
2736  * and then write them.
2737  */
2738 static int write_cache_pages_da(struct address_space *mapping,
2739                                 struct writeback_control *wbc,
2740                                 struct mpage_da_data *mpd,
2741                                 pgoff_t *done_index)
2742 {
2743         struct buffer_head      *bh, *head;
2744         struct inode            *inode = mapping->host;
2745         struct pagevec          pvec;
2746         unsigned int            nr_pages;
2747         sector_t                logical;
2748         pgoff_t                 index, end;
2749         long                    nr_to_write = wbc->nr_to_write;
2750         int                     i, tag, ret = 0;
2751
2752         memset(mpd, 0, sizeof(struct mpage_da_data));
2753         mpd->wbc = wbc;
2754         mpd->inode = inode;
2755         pagevec_init(&pvec, 0);
2756         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2757         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2758
2759         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2760                 tag = PAGECACHE_TAG_TOWRITE;
2761         else
2762                 tag = PAGECACHE_TAG_DIRTY;
2763
2764         *done_index = index;
2765         while (index <= end) {
2766                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2767                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2768                 if (nr_pages == 0)
2769                         return 0;
2770
2771                 for (i = 0; i < nr_pages; i++) {
2772                         struct page *page = pvec.pages[i];
2773
2774                         /*
2775                          * At this point, the page may be truncated or
2776                          * invalidated (changing page->mapping to NULL), or
2777                          * even swizzled back from swapper_space to tmpfs file
2778                          * mapping. However, page->index will not change
2779                          * because we have a reference on the page.
2780                          */
2781                         if (page->index > end)
2782                                 goto out;
2783
2784                         *done_index = page->index + 1;
2785
2786                         /*
2787                          * If we can't merge this page, and we have
2788                          * accumulated an contiguous region, write it
2789                          */
2790                         if ((mpd->next_page != page->index) &&
2791                             (mpd->next_page != mpd->first_page)) {
2792                                 mpage_da_map_and_submit(mpd);
2793                                 goto ret_extent_tail;
2794                         }
2795
2796                         lock_page(page);
2797
2798                         /*
2799                          * If the page is no longer dirty, or its
2800                          * mapping no longer corresponds to inode we
2801                          * are writing (which means it has been
2802                          * truncated or invalidated), or the page is
2803                          * already under writeback and we are not
2804                          * doing a data integrity writeback, skip the page
2805                          */
2806                         if (!PageDirty(page) ||
2807                             (PageWriteback(page) &&
2808                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2809                             unlikely(page->mapping != mapping)) {
2810                                 unlock_page(page);
2811                                 continue;
2812                         }
2813
2814                         wait_on_page_writeback(page);
2815                         BUG_ON(PageWriteback(page));
2816
2817                         if (mpd->next_page != page->index)
2818                                 mpd->first_page = page->index;
2819                         mpd->next_page = page->index + 1;
2820                         logical = (sector_t) page->index <<
2821                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2822
2823                         if (!page_has_buffers(page)) {
2824                                 mpage_add_bh_to_extent(mpd, logical,
2825                                                        PAGE_CACHE_SIZE,
2826                                                        (1 << BH_Dirty) | (1 << BH_Uptodate));
2827                                 if (mpd->io_done)
2828                                         goto ret_extent_tail;
2829                         } else {
2830                                 /*
2831                                  * Page with regular buffer heads,
2832                                  * just add all dirty ones
2833                                  */
2834                                 head = page_buffers(page);
2835                                 bh = head;
2836                                 do {
2837                                         BUG_ON(buffer_locked(bh));
2838                                         /*
2839                                          * We need to try to allocate
2840                                          * unmapped blocks in the same page.
2841                                          * Otherwise we won't make progress
2842                                          * with the page in ext4_writepage
2843                                          */
2844                                         if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2845                                                 mpage_add_bh_to_extent(mpd, logical,
2846                                                                        bh->b_size,
2847                                                                        bh->b_state);
2848                                                 if (mpd->io_done)
2849                                                         goto ret_extent_tail;
2850                                         } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2851                                                 /*
2852                                                  * mapped dirty buffer. We need
2853                                                  * to update the b_state
2854                                                  * because we look at b_state
2855                                                  * in mpage_da_map_blocks.  We
2856                                                  * don't update b_size because
2857                                                  * if we find an unmapped
2858                                                  * buffer_head later we need to
2859                                                  * use the b_state flag of that
2860                                                  * buffer_head.
2861                                                  */
2862                                                 if (mpd->b_size == 0)
2863                                                         mpd->b_state = bh->b_state & BH_FLAGS;
2864                                         }
2865                                         logical++;
2866                                 } while ((bh = bh->b_this_page) != head);
2867                         }
2868
2869                         if (nr_to_write > 0) {
2870                                 nr_to_write--;
2871                                 if (nr_to_write == 0 &&
2872                                     wbc->sync_mode == WB_SYNC_NONE)
2873                                         /*
2874                                          * We stop writing back only if we are
2875                                          * not doing integrity sync. In case of
2876                                          * integrity sync we have to keep going
2877                                          * because someone may be concurrently
2878                                          * dirtying pages, and we might have
2879                                          * synced a lot of newly appeared dirty
2880                                          * pages, but have not synced all of the
2881                                          * old dirty pages.
2882                                          */
2883                                         goto out;
2884                         }
2885                 }
2886                 pagevec_release(&pvec);
2887                 cond_resched();
2888         }
2889         return 0;
2890 ret_extent_tail:
2891         ret = MPAGE_DA_EXTENT_TAIL;
2892 out:
2893         pagevec_release(&pvec);
2894         cond_resched();
2895         return ret;
2896 }
2897
2898
2899 static int ext4_da_writepages(struct address_space *mapping,
2900                               struct writeback_control *wbc)
2901 {
2902         pgoff_t index;
2903         int range_whole = 0;
2904         handle_t *handle = NULL;
2905         struct mpage_da_data mpd;
2906         struct inode *inode = mapping->host;
2907         int pages_written = 0;
2908         unsigned int max_pages;
2909         int range_cyclic, cycled = 1, io_done = 0;
2910         int needed_blocks, ret = 0;
2911         long desired_nr_to_write, nr_to_writebump = 0;
2912         loff_t range_start = wbc->range_start;
2913         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2914         pgoff_t done_index = 0;
2915         pgoff_t end;
2916
2917         trace_ext4_da_writepages(inode, wbc);
2918
2919         /*
2920          * No pages to write? This is mainly a kludge to avoid starting
2921          * a transaction for special inodes like journal inode on last iput()
2922          * because that could violate lock ordering on umount
2923          */
2924         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2925                 return 0;
2926
2927         /*
2928          * If the filesystem has aborted, it is read-only, so return
2929          * right away instead of dumping stack traces later on that
2930          * will obscure the real source of the problem.  We test
2931          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2932          * the latter could be true if the filesystem is mounted
2933          * read-only, and in that case, ext4_da_writepages should
2934          * *never* be called, so if that ever happens, we would want
2935          * the stack trace.
2936          */
2937         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2938                 return -EROFS;
2939
2940         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2941                 range_whole = 1;
2942
2943         range_cyclic = wbc->range_cyclic;
2944         if (wbc->range_cyclic) {
2945                 index = mapping->writeback_index;
2946                 if (index)
2947                         cycled = 0;
2948                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2949                 wbc->range_end  = LLONG_MAX;
2950                 wbc->range_cyclic = 0;
2951                 end = -1;
2952         } else {
2953                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2954                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2955         }
2956
2957         /*
2958          * This works around two forms of stupidity.  The first is in
2959          * the writeback code, which caps the maximum number of pages
2960          * written to be 1024 pages.  This is wrong on multiple
2961          * levels; different architectues have a different page size,
2962          * which changes the maximum amount of data which gets
2963          * written.  Secondly, 4 megabytes is way too small.  XFS
2964          * forces this value to be 16 megabytes by multiplying
2965          * nr_to_write parameter by four, and then relies on its
2966          * allocator to allocate larger extents to make them
2967          * contiguous.  Unfortunately this brings us to the second
2968          * stupidity, which is that ext4's mballoc code only allocates
2969          * at most 2048 blocks.  So we force contiguous writes up to
2970          * the number of dirty blocks in the inode, or
2971          * sbi->max_writeback_mb_bump whichever is smaller.
2972          */
2973         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2974         if (!range_cyclic && range_whole) {
2975                 if (wbc->nr_to_write == LONG_MAX)
2976                         desired_nr_to_write = wbc->nr_to_write;
2977                 else
2978                         desired_nr_to_write = wbc->nr_to_write * 8;
2979         } else
2980                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2981                                                            max_pages);
2982         if (desired_nr_to_write > max_pages)
2983                 desired_nr_to_write = max_pages;
2984
2985         if (wbc->nr_to_write < desired_nr_to_write) {
2986                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2987                 wbc->nr_to_write = desired_nr_to_write;
2988         }
2989
2990 retry:
2991         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2992                 tag_pages_for_writeback(mapping, index, end);
2993
2994         while (!ret && wbc->nr_to_write > 0) {
2995
2996                 /*
2997                  * we  insert one extent at a time. So we need
2998                  * credit needed for single extent allocation.
2999                  * journalled mode is currently not supported
3000                  * by delalloc
3001                  */
3002                 BUG_ON(ext4_should_journal_data(inode));
3003                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3004
3005                 /* start a new transaction*/
3006                 handle = ext4_journal_start(inode, needed_blocks);
3007                 if (IS_ERR(handle)) {
3008                         ret = PTR_ERR(handle);
3009                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3010                                "%ld pages, ino %lu; err %d", __func__,
3011                                 wbc->nr_to_write, inode->i_ino, ret);
3012                         goto out_writepages;
3013                 }
3014
3015                 /*
3016                  * Now call write_cache_pages_da() to find the next
3017                  * contiguous region of logical blocks that need
3018                  * blocks to be allocated by ext4 and submit them.
3019                  */
3020                 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3021                 /*
3022                  * If we have a contiguous extent of pages and we
3023                  * haven't done the I/O yet, map the blocks and submit
3024                  * them for I/O.
3025                  */
3026                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3027                         mpage_da_map_and_submit(&mpd);
3028                         ret = MPAGE_DA_EXTENT_TAIL;
3029                 }
3030                 trace_ext4_da_write_pages(inode, &mpd);
3031                 wbc->nr_to_write -= mpd.pages_written;
3032
3033                 ext4_journal_stop(handle);
3034
3035                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3036                         /* commit the transaction which would
3037                          * free blocks released in the transaction
3038                          * and try again
3039                          */
3040                         jbd2_journal_force_commit_nested(sbi->s_journal);
3041                         ret = 0;
3042                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3043                         /*
3044                          * got one extent now try with
3045                          * rest of the pages
3046                          */
3047                         pages_written += mpd.pages_written;
3048                         ret = 0;
3049                         io_done = 1;
3050                 } else if (wbc->nr_to_write)
3051                         /*
3052                          * There is no more writeout needed
3053                          * or we requested for a noblocking writeout
3054                          * and we found the device congested
3055                          */
3056                         break;
3057         }
3058         if (!io_done && !cycled) {
3059                 cycled = 1;
3060                 index = 0;
3061                 wbc->range_start = index << PAGE_CACHE_SHIFT;
3062                 wbc->range_end  = mapping->writeback_index - 1;
3063                 goto retry;
3064         }
3065
3066         /* Update index */
3067         wbc->range_cyclic = range_cyclic;
3068         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3069                 /*
3070                  * set the writeback_index so that range_cyclic
3071                  * mode will write it back later
3072                  */
3073                 mapping->writeback_index = done_index;
3074
3075 out_writepages:
3076         wbc->nr_to_write -= nr_to_writebump;
3077         wbc->range_start = range_start;
3078         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3079         return ret;
3080 }
3081
3082 #define FALL_BACK_TO_NONDELALLOC 1
3083 static int ext4_nonda_switch(struct super_block *sb)
3084 {
3085         s64 free_blocks, dirty_blocks;
3086         struct ext4_sb_info *sbi = EXT4_SB(sb);
3087
3088         /*
3089          * switch to non delalloc mode if we are running low
3090          * on free block. The free block accounting via percpu
3091          * counters can get slightly wrong with percpu_counter_batch getting
3092          * accumulated on each CPU without updating global counters
3093          * Delalloc need an accurate free block accounting. So switch
3094          * to non delalloc when we are near to error range.
3095          */
3096         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3097         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3098         if (2 * free_blocks < 3 * dirty_blocks ||
3099                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3100                 /*
3101                  * free block count is less than 150% of dirty blocks
3102                  * or free blocks is less than watermark
3103                  */
3104                 return 1;
3105         }
3106         /*
3107          * Even if we don't switch but are nearing capacity,
3108          * start pushing delalloc when 1/2 of free blocks are dirty.
3109          */
3110         if (free_blocks < 2 * dirty_blocks)
3111                 writeback_inodes_sb_if_idle(sb);
3112
3113         return 0;
3114 }
3115
3116 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3117                                loff_t pos, unsigned len, unsigned flags,
3118                                struct page **pagep, void **fsdata)
3119 {
3120         int ret, retries = 0;
3121         struct page *page;
3122         pgoff_t index;
3123         struct inode *inode = mapping->host;
3124         handle_t *handle;
3125
3126         index = pos >> PAGE_CACHE_SHIFT;
3127
3128         if (ext4_nonda_switch(inode->i_sb)) {
3129                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3130                 return ext4_write_begin(file, mapping, pos,
3131                                         len, flags, pagep, fsdata);
3132         }
3133         *fsdata = (void *)0;
3134         trace_ext4_da_write_begin(inode, pos, len, flags);
3135 retry:
3136         /*
3137          * With delayed allocation, we don't log the i_disksize update
3138          * if there is delayed block allocation. But we still need
3139          * to journalling the i_disksize update if writes to the end
3140          * of file which has an already mapped buffer.
3141          */
3142         handle = ext4_journal_start(inode, 1);
3143         if (IS_ERR(handle)) {
3144                 ret = PTR_ERR(handle);
3145                 goto out;
3146         }
3147         /* We cannot recurse into the filesystem as the transaction is already
3148          * started */
3149         flags |= AOP_FLAG_NOFS;
3150
3151         page = grab_cache_page_write_begin(mapping, index, flags);
3152         if (!page) {
3153                 ext4_journal_stop(handle);
3154                 ret = -ENOMEM;
3155                 goto out;
3156         }
3157         *pagep = page;
3158
3159         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3160         if (ret < 0) {
3161                 unlock_page(page);
3162                 ext4_journal_stop(handle);
3163                 page_cache_release(page);
3164                 /*
3165                  * block_write_begin may have instantiated a few blocks
3166                  * outside i_size.  Trim these off again. Don't need
3167                  * i_size_read because we hold i_mutex.
3168                  */
3169                 if (pos + len > inode->i_size)
3170                         ext4_truncate_failed_write(inode);
3171         }
3172
3173         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3174                 goto retry;
3175 out:
3176         return ret;
3177 }
3178
3179 /*
3180  * Check if we should update i_disksize
3181  * when write to the end of file but not require block allocation
3182  */
3183 static int ext4_da_should_update_i_disksize(struct page *page,
3184                                             unsigned long offset)
3185 {
3186         struct buffer_head *bh;
3187         struct inode *inode = page->mapping->host;
3188         unsigned int idx;
3189         int i;
3190
3191         bh = page_buffers(page);
3192         idx = offset >> inode->i_blkbits;
3193
3194         for (i = 0; i < idx; i++)
3195                 bh = bh->b_this_page;
3196
3197         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3198                 return 0;
3199         return 1;
3200 }
3201
3202 static int ext4_da_write_end(struct file *file,
3203                              struct address_space *mapping,
3204                              loff_t pos, unsigned len, unsigned copied,
3205                              struct page *page, void *fsdata)
3206 {
3207         struct inode *inode = mapping->host;
3208         int ret = 0, ret2;
3209         handle_t *handle = ext4_journal_current_handle();
3210         loff_t new_i_size;
3211         unsigned long start, end;
3212         int write_mode = (int)(unsigned long)fsdata;
3213
3214         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3215                 switch (ext4_inode_journal_mode(inode)) {
3216                 case EXT4_INODE_ORDERED_DATA_MODE:
3217                         return ext4_ordered_write_end(file, mapping, pos,
3218                                         len, copied, page, fsdata);
3219                 case EXT4_INODE_WRITEBACK_DATA_MODE:
3220                         return ext4_writeback_write_end(file, mapping, pos,
3221                                         len, copied, page, fsdata);
3222                 default:
3223                         BUG();
3224                 }
3225         }
3226
3227         trace_ext4_da_write_end(inode, pos, len, copied);
3228         start = pos & (PAGE_CACHE_SIZE - 1);
3229         end = start + copied - 1;
3230
3231         /*
3232          * generic_write_end() will run mark_inode_dirty() if i_size
3233          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3234          * into that.
3235          */
3236
3237         new_i_size = pos + copied;
3238         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3239                 if (ext4_da_should_update_i_disksize(page, end)) {
3240                         down_write(&EXT4_I(inode)->i_data_sem);
3241                         if (new_i_size > EXT4_I(inode)->i_disksize) {
3242                                 /*
3243                                  * Updating i_disksize when extending file
3244                                  * without needing block allocation
3245                                  */
3246                                 if (ext4_should_order_data(inode))
3247                                         ret = ext4_jbd2_file_inode(handle,
3248                                                                    inode);
3249
3250                                 EXT4_I(inode)->i_disksize = new_i_size;
3251                         }
3252                         up_write(&EXT4_I(inode)->i_data_sem);
3253                         /* We need to mark inode dirty even if
3254                          * new_i_size is less that inode->i_size
3255                          * bu greater than i_disksize.(hint delalloc)
3256                          */
3257                         ext4_mark_inode_dirty(handle, inode);
3258                 }
3259         }
3260         ret2 = generic_write_end(file, mapping, pos, len, copied,
3261                                                         page, fsdata);
3262         copied = ret2;
3263         if (ret2 < 0)
3264                 ret = ret2;
3265         ret2 = ext4_journal_stop(handle);
3266         if (!ret)
3267                 ret = ret2;
3268
3269         return ret ? ret : copied;
3270 }
3271
3272 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3273 {
3274         /*
3275          * Drop reserved blocks
3276          */
3277         BUG_ON(!PageLocked(page));
3278         if (!page_has_buffers(page))
3279                 goto out;
3280
3281         ext4_da_page_release_reservation(page, offset);
3282
3283 out:
3284         ext4_invalidatepage(page, offset);
3285
3286         return;
3287 }
3288
3289 /*
3290  * Force all delayed allocation blocks to be allocated for a given inode.
3291  */
3292 int ext4_alloc_da_blocks(struct inode *inode)
3293 {
3294         trace_ext4_alloc_da_blocks(inode);
3295
3296         if (!EXT4_I(inode)->i_reserved_data_blocks &&
3297             !EXT4_I(inode)->i_reserved_meta_blocks)
3298                 return 0;
3299
3300         /*
3301          * We do something simple for now.  The filemap_flush() will
3302          * also start triggering a write of the data blocks, which is
3303          * not strictly speaking necessary (and for users of
3304          * laptop_mode, not even desirable).  However, to do otherwise
3305          * would require replicating code paths in:
3306          *
3307          * ext4_da_writepages() ->
3308          *    write_cache_pages() ---> (via passed in callback function)
3309          *        __mpage_da_writepage() -->
3310          *           mpage_add_bh_to_extent()
3311          *           mpage_da_map_blocks()
3312          *
3313          * The problem is that write_cache_pages(), located in
3314          * mm/page-writeback.c, marks pages clean in preparation for
3315          * doing I/O, which is not desirable if we're not planning on
3316          * doing I/O at all.
3317          *
3318          * We could call write_cache_pages(), and then redirty all of
3319          * the pages by calling redirty_page_for_writepage() but that
3320          * would be ugly in the extreme.  So instead we would need to
3321          * replicate parts of the code in the above functions,
3322          * simplifying them because we wouldn't actually intend to
3323          * write out the pages, but rather only collect contiguous
3324          * logical block extents, call the multi-block allocator, and
3325          * then update the buffer heads with the block allocations.
3326          *
3327          * For now, though, we'll cheat by calling filemap_flush(),
3328          * which will map the blocks, and start the I/O, but not
3329          * actually wait for the I/O to complete.
3330          */
3331         return filemap_flush(inode->i_mapping);
3332 }
3333
3334 /*
3335  * bmap() is special.  It gets used by applications such as lilo and by
3336  * the swapper to find the on-disk block of a specific piece of data.
3337  *
3338  * Naturally, this is dangerous if the block concerned is still in the
3339  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3340  * filesystem and enables swap, then they may get a nasty shock when the
3341  * data getting swapped to that swapfile suddenly gets overwritten by
3342  * the original zero's written out previously to the journal and
3343  * awaiting writeback in the kernel's buffer cache.
3344  *
3345  * So, if we see any bmap calls here on a modified, data-journaled file,
3346  * take extra steps to flush any blocks which might be in the cache.
3347  */
3348 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3349 {
3350         struct inode *inode = mapping->host;
3351         journal_t *journal;
3352         int err;
3353
3354         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3355                         test_opt(inode->i_sb, DELALLOC)) {
3356                 /*
3357                  * With delalloc we want to sync the file
3358                  * so that we can make sure we allocate
3359                  * blocks for file
3360                  */
3361                 filemap_write_and_wait(mapping);
3362         }
3363
3364         if (EXT4_JOURNAL(inode) &&
3365             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3366                 /*
3367                  * This is a REALLY heavyweight approach, but the use of
3368                  * bmap on dirty files is expected to be extremely rare:
3369                  * only if we run lilo or swapon on a freshly made file
3370                  * do we expect this to happen.
3371                  *
3372                  * (bmap requires CAP_SYS_RAWIO so this does not
3373                  * represent an unprivileged user DOS attack --- we'd be
3374                  * in trouble if mortal users could trigger this path at
3375                  * will.)
3376                  *
3377                  * NB. EXT4_STATE_JDATA is not set on files other than
3378                  * regular files.  If somebody wants to bmap a directory
3379                  * or symlink and gets confused because the buffer
3380                  * hasn't yet been flushed to disk, they deserve
3381                  * everything they get.
3382                  */
3383
3384                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3385                 journal = EXT4_JOURNAL(inode);
3386                 jbd2_journal_lock_updates(journal);
3387                 err = jbd2_journal_flush(journal);
3388                 jbd2_journal_unlock_updates(journal);
3389
3390                 if (err)
3391                         return 0;
3392         }
3393
3394         return generic_block_bmap(mapping, block, ext4_get_block);
3395 }
3396
3397 static int ext4_readpage(struct file *file, struct page *page)
3398 {
3399         trace_ext4_readpage(page);
3400         return mpage_readpage(page, ext4_get_block);
3401 }
3402
3403 static int
3404 ext4_readpages(struct file *file, struct address_space *mapping,
3405                 struct list_head *pages, unsigned nr_pages)
3406 {
3407         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3408 }
3409
3410 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3411 {
3412         struct buffer_head *head, *bh;
3413         unsigned int curr_off = 0;
3414
3415         if (!page_has_buffers(page))
3416                 return;
3417         head = bh = page_buffers(page);
3418         do {
3419                 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3420                                         && bh->b_private) {
3421                         ext4_free_io_end(bh->b_private);
3422                         bh->b_private = NULL;
3423                         bh->b_end_io = NULL;
3424                 }
3425                 curr_off = curr_off + bh->b_size;
3426                 bh = bh->b_this_page;
3427         } while (bh != head);
3428 }
3429
3430 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3431 {
3432         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3433
3434         trace_ext4_invalidatepage(page, offset);
3435
3436         /*
3437          * free any io_end structure allocated for buffers to be discarded
3438          */
3439         if (ext4_should_dioread_nolock(page->mapping->host))
3440                 ext4_invalidatepage_free_endio(page, offset);
3441         /*
3442          * If it's a full truncate we just forget about the pending dirtying
3443          */
3444         if (offset == 0)
3445                 ClearPageChecked(page);
3446
3447         if (journal)
3448                 jbd2_journal_invalidatepage(journal, page, offset);
3449         else
3450                 block_invalidatepage(page, offset);
3451 }
3452
3453 static int ext4_releasepage(struct page *page, gfp_t wait)
3454 {
3455         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3456
3457         trace_ext4_releasepage(page);
3458
3459         WARN_ON(PageChecked(page));
3460         if (!page_has_buffers(page))
3461                 return 0;
3462         if (journal)
3463                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3464         else
3465                 return try_to_free_buffers(page);
3466 }
3467
3468 /*
3469  * O_DIRECT for ext3 (or indirect map) based files
3470  *
3471  * If the O_DIRECT write will extend the file then add this inode to the
3472  * orphan list.  So recovery will truncate it back to the original size
3473  * if the machine crashes during the write.
3474  *
3475  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3476  * crashes then stale disk data _may_ be exposed inside the file. But current
3477  * VFS code falls back into buffered path in that case so we are safe.
3478  */
3479 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3480                               const struct iovec *iov, loff_t offset,
3481                               unsigned long nr_segs)
3482 {
3483         struct file *file = iocb->ki_filp;
3484         struct inode *inode = file->f_mapping->host;
3485         struct ext4_inode_info *ei = EXT4_I(inode);
3486         handle_t *handle;
3487         ssize_t ret;
3488         int orphan = 0;
3489         size_t count = iov_length(iov, nr_segs);
3490         int retries = 0;
3491
3492         if (rw == WRITE) {
3493                 loff_t final_size = offset + count;
3494
3495                 if (final_size > inode->i_size) {
3496                         /* Credits for sb + inode write */
3497                         handle = ext4_journal_start(inode, 2);
3498                         if (IS_ERR(handle)) {
3499                                 ret = PTR_ERR(handle);
3500                                 goto out;
3501                         }
3502                         ret = ext4_orphan_add(handle, inode);
3503                         if (ret) {
3504                                 ext4_journal_stop(handle);
3505                                 goto out;
3506                         }
3507                         orphan = 1;
3508                         ei->i_disksize = inode->i_size;
3509                         ext4_journal_stop(handle);
3510                 }
3511         }
3512
3513 retry:
3514         if (rw == READ && ext4_should_dioread_nolock(inode)) {
3515                 if (unlikely(!list_empty(&ei->i_completed_io_list))) {
3516                         mutex_lock(&inode->i_mutex);
3517                         ext4_flush_completed_IO(inode);
3518                         mutex_unlock(&inode->i_mutex);
3519                 }
3520                 ret = __blockdev_direct_IO(rw, iocb, inode,
3521                                  inode->i_sb->s_bdev, iov,
3522                                  offset, nr_segs,
3523                                  ext4_get_block, NULL, NULL, 0);
3524         } else {
3525                 ret = blockdev_direct_IO(rw, iocb, inode,
3526                                  inode->i_sb->s_bdev, iov,
3527                                  offset, nr_segs,
3528                                  ext4_get_block, NULL);
3529
3530                 if (unlikely((rw & WRITE) && ret < 0)) {
3531                         loff_t isize = i_size_read(inode);
3532                         loff_t end = offset + iov_length(iov, nr_segs);
3533
3534                         if (end > isize)
3535                                 ext4_truncate_failed_write(inode);
3536                 }
3537         }
3538         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3539                 goto retry;
3540
3541         if (orphan) {
3542                 int err;
3543
3544                 /* Credits for sb + inode write */
3545                 handle = ext4_journal_start(inode, 2);
3546                 if (IS_ERR(handle)) {
3547                         /* This is really bad luck. We've written the data
3548                          * but cannot extend i_size. Bail out and pretend
3549                          * the write failed... */
3550                         ret = PTR_ERR(handle);
3551                         if (inode->i_nlink)
3552                                 ext4_orphan_del(NULL, inode);
3553
3554                         goto out;
3555                 }
3556                 if (inode->i_nlink)
3557                         ext4_orphan_del(handle, inode);
3558                 if (ret > 0) {
3559                         loff_t end = offset + ret;
3560                         if (end > inode->i_size) {
3561                                 ei->i_disksize = end;
3562                                 i_size_write(inode, end);
3563                                 /*
3564                                  * We're going to return a positive `ret'
3565                                  * here due to non-zero-length I/O, so there's
3566                                  * no way of reporting error returns from
3567                                  * ext4_mark_inode_dirty() to userspace.  So
3568                                  * ignore it.
3569                                  */
3570                                 ext4_mark_inode_dirty(handle, inode);
3571                         }
3572                 }
3573                 err = ext4_journal_stop(handle);
3574                 if (ret == 0)
3575                         ret = err;
3576         }
3577 out:
3578         return ret;
3579 }
3580
3581 /*
3582  * ext4_get_block used when preparing for a DIO write or buffer write.
3583  * We allocate an uinitialized extent if blocks haven't been allocated.
3584  * The extent will be converted to initialized after the IO is complete.
3585  */
3586 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3587                    struct buffer_head *bh_result, int create)
3588 {
3589         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3590                    inode->i_ino, create);
3591         return _ext4_get_block(inode, iblock, bh_result,
3592                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3593 }
3594
3595 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3596                             ssize_t size, void *private, int ret,
3597                             bool is_async)
3598 {
3599         ext4_io_end_t *io_end = iocb->private;
3600         struct workqueue_struct *wq;
3601         unsigned long flags;
3602         struct ext4_inode_info *ei;
3603
3604         /* if not async direct IO or dio with 0 bytes write, just return */
3605         if (!io_end || !size)
3606                 goto out;
3607
3608         ext_debug("ext4_end_io_dio(): io_end 0x%p"
3609                   "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3610                   iocb->private, io_end->inode->i_ino, iocb, offset,
3611                   size);
3612
3613         /* if not aio dio with unwritten extents, just free io and return */
3614         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3615                 ext4_free_io_end(io_end);
3616                 iocb->private = NULL;
3617 out:
3618                 if (is_async)
3619                         aio_complete(iocb, ret, 0);
3620                 return;
3621         }
3622
3623         io_end->offset = offset;
3624         io_end->size = size;
3625         if (is_async) {
3626                 io_end->iocb = iocb;
3627                 io_end->result = ret;
3628         }
3629         wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3630
3631         /* Add the io_end to per-inode completed aio dio list*/
3632         ei = EXT4_I(io_end->inode);
3633         spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3634         list_add_tail(&io_end->list, &ei->i_completed_io_list);
3635         spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3636
3637         /* queue the work to convert unwritten extents to written */
3638         queue_work(wq, &io_end->work);
3639         iocb->private = NULL;
3640 }
3641
3642 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3643 {
3644         ext4_io_end_t *io_end = bh->b_private;
3645         struct workqueue_struct *wq;
3646         struct inode *inode;
3647         unsigned long flags;
3648
3649         if (!test_clear_buffer_uninit(bh) || !io_end)
3650                 goto out;
3651
3652         if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3653                 printk("sb umounted, discard end_io request for inode %lu\n",
3654                         io_end->inode->i_ino);
3655                 ext4_free_io_end(io_end);
3656                 goto out;
3657         }
3658
3659         /*
3660          * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
3661          * but being more careful is always safe for the future change.
3662          */
3663         inode = io_end->inode;
3664         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3665                 io_end->flag |= EXT4_IO_END_UNWRITTEN;
3666                 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3667         }
3668
3669         /* Add the io_end to per-inode completed io list*/
3670         spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3671         list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3672         spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3673
3674         wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3675         /* queue the work to convert unwritten extents to written */
3676         queue_work(wq, &io_end->work);
3677 out:
3678         bh->b_private = NULL;
3679         bh->b_end_io = NULL;
3680         clear_buffer_uninit(bh);
3681         end_buffer_async_write(bh, uptodate);
3682 }
3683
3684 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3685 {
3686         ext4_io_end_t *io_end;
3687         struct page *page = bh->b_page;
3688         loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3689         size_t size = bh->b_size;
3690
3691 retry:
3692         io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3693         if (!io_end) {
3694                 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3695                 schedule();
3696                 goto retry;
3697         }
3698         io_end->offset = offset;
3699         io_end->size = size;
3700         /*
3701          * We need to hold a reference to the page to make sure it
3702          * doesn't get evicted before ext4_end_io_work() has a chance
3703          * to convert the extent from written to unwritten.
3704          */
3705         io_end->page = page;
3706         get_page(io_end->page);
3707
3708         bh->b_private = io_end;
3709         bh->b_end_io = ext4_end_io_buffer_write;
3710         return 0;
3711 }
3712
3713 /*
3714  * For ext4 extent files, ext4 will do direct-io write to holes,
3715  * preallocated extents, and those write extend the file, no need to
3716  * fall back to buffered IO.
3717  *
3718  * For holes, we fallocate those blocks, mark them as uninitialized
3719  * If those blocks were preallocated, we mark sure they are splited, but
3720  * still keep the range to write as uninitialized.
3721  *
3722  * The unwrritten extents will be converted to written when DIO is completed.
3723  * For async direct IO, since the IO may still pending when return, we
3724  * set up an end_io call back function, which will do the conversion
3725  * when async direct IO completed.
3726  *
3727  * If the O_DIRECT write will extend the file then add this inode to the
3728  * orphan list.  So recovery will truncate it back to the original size
3729  * if the machine crashes during the write.
3730  *
3731  */
3732 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3733                               const struct iovec *iov, loff_t offset,
3734                               unsigned long nr_segs)
3735 {
3736         struct file *file = iocb->ki_filp;
3737         struct inode *inode = file->f_mapping->host;
3738         ssize_t ret;
3739         size_t count = iov_length(iov, nr_segs);
3740
3741         loff_t final_size = offset + count;
3742         if (rw == WRITE && final_size <= inode->i_size) {
3743                 /*
3744                  * We could direct write to holes and fallocate.
3745                  *
3746                  * Allocated blocks to fill the hole are marked as uninitialized
3747                  * to prevent parallel buffered read to expose the stale data
3748                  * before DIO complete the data IO.
3749                  *
3750                  * As to previously fallocated extents, ext4 get_block
3751                  * will just simply mark the buffer mapped but still
3752                  * keep the extents uninitialized.
3753                  *
3754                  * for non AIO case, we will convert those unwritten extents
3755                  * to written after return back from blockdev_direct_IO.
3756                  *
3757                  * for async DIO, the conversion needs to be defered when
3758                  * the IO is completed. The ext4 end_io callback function
3759                  * will be called to take care of the conversion work.
3760                  * Here for async case, we allocate an io_end structure to
3761                  * hook to the iocb.
3762                  */
3763                 iocb->private = NULL;
3764                 EXT4_I(inode)->cur_aio_dio = NULL;
3765                 if (!is_sync_kiocb(iocb)) {
3766                         iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3767                         if (!iocb->private)
3768                                 return -ENOMEM;
3769                         /*
3770                          * we save the io structure for current async
3771                          * direct IO, so that later ext4_map_blocks()
3772                          * could flag the io structure whether there
3773                          * is a unwritten extents needs to be converted
3774                          * when IO is completed.
3775                          */
3776                         EXT4_I(inode)->cur_aio_dio = iocb->private;
3777                 }
3778
3779                 ret = blockdev_direct_IO(rw, iocb, inode,
3780                                          inode->i_sb->s_bdev, iov,
3781                                          offset, nr_segs,
3782                                          ext4_get_block_write,
3783                                          ext4_end_io_dio);
3784                 if (iocb->private)
3785                         EXT4_I(inode)->cur_aio_dio = NULL;
3786                 /*
3787                  * The io_end structure takes a reference to the inode,
3788                  * that structure needs to be destroyed and the
3789                  * reference to the inode need to be dropped, when IO is
3790                  * complete, even with 0 byte write, or failed.
3791                  *
3792                  * In the successful AIO DIO case, the io_end structure will be
3793                  * desctroyed and the reference to the inode will be dropped
3794                  * after the end_io call back function is called.
3795                  *
3796                  * In the case there is 0 byte write, or error case, since
3797                  * VFS direct IO won't invoke the end_io call back function,
3798                  * we need to free the end_io structure here.
3799                  */
3800                 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3801                         ext4_free_io_end(iocb->private);
3802                         iocb->private = NULL;
3803                 } else if (ret > 0 && ext4_test_inode_state(inode,
3804                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3805                         int err;
3806                         /*
3807                          * for non AIO case, since the IO is already
3808                          * completed, we could do the conversion right here
3809                          */
3810                         err = ext4_convert_unwritten_extents(inode,
3811                                                              offset, ret);
3812                         if (err < 0)
3813                                 ret = err;
3814                         ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3815                 }
3816                 return ret;
3817         }
3818
3819         /* for write the the end of file case, we fall back to old way */
3820         return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3821 }
3822
3823 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3824                               const struct iovec *iov, loff_t offset,
3825                               unsigned long nr_segs)
3826 {
3827         struct file *file = iocb->ki_filp;
3828         struct inode *inode = file->f_mapping->host;
3829         ssize_t ret;
3830
3831         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3832         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3833                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3834         else
3835                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3836         trace_ext4_direct_IO_exit(inode, offset,
3837                                 iov_length(iov, nr_segs), rw, ret);
3838         return ret;
3839 }
3840
3841 /*
3842  * Pages can be marked dirty completely asynchronously from ext4's journalling
3843  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3844  * much here because ->set_page_dirty is called under VFS locks.  The page is
3845  * not necessarily locked.
3846  *
3847  * We cannot just dirty the page and leave attached buffers clean, because the
3848  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3849  * or jbddirty because all the journalling code will explode.
3850  *
3851  * So what we do is to mark the page "pending dirty" and next time writepage
3852  * is called, propagate that into the buffers appropriately.
3853  */
3854 static int ext4_journalled_set_page_dirty(struct page *page)
3855 {
3856         SetPageChecked(page);
3857         return __set_page_dirty_nobuffers(page);
3858 }
3859
3860 static const struct address_space_operations ext4_ordered_aops = {
3861         .readpage               = ext4_readpage,
3862         .readpages              = ext4_readpages,
3863         .writepage              = ext4_writepage,
3864         .write_begin            = ext4_write_begin,
3865         .write_end              = ext4_ordered_write_end,
3866         .bmap                   = ext4_bmap,
3867         .invalidatepage         = ext4_invalidatepage,
3868         .releasepage            = ext4_releasepage,
3869         .direct_IO              = ext4_direct_IO,
3870         .migratepage            = buffer_migrate_page,
3871         .is_partially_uptodate  = block_is_partially_uptodate,
3872         .error_remove_page      = generic_error_remove_page,
3873 };
3874
3875 static const struct address_space_operations ext4_writeback_aops = {
3876         .readpage               = ext4_readpage,
3877         .readpages              = ext4_readpages,
3878         .writepage              = ext4_writepage,
3879         .write_begin            = ext4_write_begin,
3880         .write_end              = ext4_writeback_write_end,
3881         .bmap                   = ext4_bmap,
3882         .invalidatepage         = ext4_invalidatepage,
3883         .releasepage            = ext4_releasepage,
3884         .direct_IO              = ext4_direct_IO,
3885         .migratepage            = buffer_migrate_page,
3886         .is_partially_uptodate  = block_is_partially_uptodate,
3887         .error_remove_page      = generic_error_remove_page,
3888 };
3889
3890 static const struct address_space_operations ext4_journalled_aops = {
3891         .readpage               = ext4_readpage,
3892         .readpages              = ext4_readpages,
3893         .writepage              = ext4_writepage,
3894         .write_begin            = ext4_write_begin,
3895         .write_end              = ext4_journalled_write_end,
3896         .set_page_dirty         = ext4_journalled_set_page_dirty,
3897         .bmap                   = ext4_bmap,
3898         .invalidatepage         = ext4_invalidatepage,
3899         .releasepage            = ext4_releasepage,
3900         .is_partially_uptodate  = block_is_partially_uptodate,
3901         .error_remove_page      = generic_error_remove_page,
3902 };
3903
3904 static const struct address_space_operations ext4_da_aops = {
3905         .readpage               = ext4_readpage,
3906         .readpages              = ext4_readpages,
3907         .writepage              = ext4_writepage,
3908         .writepages             = ext4_da_writepages,
3909         .write_begin            = ext4_da_write_begin,
3910         .write_end              = ext4_da_write_end,
3911         .bmap                   = ext4_bmap,
3912         .invalidatepage         = ext4_da_invalidatepage,
3913         .releasepage            = ext4_releasepage,
3914         .direct_IO              = ext4_direct_IO,
3915         .migratepage            = buffer_migrate_page,
3916         .is_partially_uptodate  = block_is_partially_uptodate,
3917         .error_remove_page      = generic_error_remove_page,
3918 };
3919
3920 void ext4_set_aops(struct inode *inode)
3921 {
3922         switch (ext4_inode_journal_mode(inode)) {
3923         case EXT4_INODE_ORDERED_DATA_MODE:
3924                 if (test_opt(inode->i_sb, DELALLOC))
3925                         inode->i_mapping->a_ops = &ext4_da_aops;
3926                 else
3927                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3928                 break;
3929         case EXT4_INODE_WRITEBACK_DATA_MODE:
3930                 if (test_opt(inode->i_sb, DELALLOC))
3931                         inode->i_mapping->a_ops = &ext4_da_aops;
3932                 else
3933                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3934                 break;
3935         case EXT4_INODE_JOURNAL_DATA_MODE:
3936                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3937                 break;
3938         default:
3939                 BUG();
3940         }
3941 }
3942
3943 /*
3944  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3945  * up to the end of the block which corresponds to `from'.
3946  * This required during truncate. We need to physically zero the tail end
3947  * of that block so it doesn't yield old data if the file is later grown.
3948  */
3949 int ext4_block_truncate_page(handle_t *handle,
3950                 struct address_space *mapping, loff_t from)
3951 {
3952         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3953         unsigned length;
3954         unsigned blocksize;
3955         struct inode *inode = mapping->host;
3956
3957         blocksize = inode->i_sb->s_blocksize;
3958         length = blocksize - (offset & (blocksize - 1));
3959
3960         return ext4_block_zero_page_range(handle, mapping, from, length);
3961 }
3962
3963 /*
3964  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3965  * starting from file offset 'from'.  The range to be zero'd must
3966  * be contained with in one block.  If the specified range exceeds
3967  * the end of the block it will be shortened to end of the block
3968  * that cooresponds to 'from'
3969  */
3970 int ext4_block_zero_page_range(handle_t *handle,
3971                 struct address_space *mapping, loff_t from, loff_t length)
3972 {
3973         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3974         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3975         unsigned blocksize, max, pos;
3976         ext4_lblk_t iblock;
3977         struct inode *inode = mapping->host;
3978         struct buffer_head *bh;
3979         struct page *page;
3980         int err = 0;
3981
3982         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3983                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3984         if (!page)
3985                 return -EINVAL;
3986
3987         blocksize = inode->i_sb->s_blocksize;
3988         max = blocksize - (offset & (blocksize - 1));
3989
3990         /*
3991          * correct length if it does not fall between
3992          * 'from' and the end of the block
3993          */
3994         if (length > max || length < 0)
3995                 length = max;
3996
3997         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3998
3999         if (!page_has_buffers(page))
4000                 create_empty_buffers(page, blocksize, 0);
4001
4002         /* Find the buffer that contains "offset" */
4003         bh = page_buffers(page);
4004         pos = blocksize;
4005         while (offset >= pos) {
4006                 bh = bh->b_this_page;
4007                 iblock++;
4008                 pos += blocksize;
4009         }
4010
4011         err = 0;
4012         if (buffer_freed(bh)) {
4013                 BUFFER_TRACE(bh, "freed: skip");
4014                 goto unlock;
4015         }
4016
4017         if (!buffer_mapped(bh)) {
4018                 BUFFER_TRACE(bh, "unmapped");
4019                 ext4_get_block(inode, iblock, bh, 0);
4020                 /* unmapped? It's a hole - nothing to do */
4021                 if (!buffer_mapped(bh)) {
4022                         BUFFER_TRACE(bh, "still unmapped");
4023                         goto unlock;
4024                 }
4025         }
4026
4027         /* Ok, it's mapped. Make sure it's up-to-date */
4028         if (PageUptodate(page))
4029                 set_buffer_uptodate(bh);
4030
4031         if (!buffer_uptodate(bh)) {
4032                 err = -EIO;
4033                 ll_rw_block(READ, 1, &bh);
4034                 wait_on_buffer(bh);
4035                 /* Uhhuh. Read error. Complain and punt. */
4036                 if (!buffer_uptodate(bh))
4037                         goto unlock;
4038         }
4039
4040         if (ext4_should_journal_data(inode)) {
4041                 BUFFER_TRACE(bh, "get write access");
4042                 err = ext4_journal_get_write_access(handle, bh);
4043                 if (err)
4044                         goto unlock;
4045         }
4046
4047         zero_user(page, offset, length);
4048
4049         BUFFER_TRACE(bh, "zeroed end of block");
4050
4051         err = 0;
4052         if (ext4_should_journal_data(inode)) {
4053                 err = ext4_handle_dirty_metadata(handle, inode, bh);
4054         } else {
4055                 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4056                         err = ext4_jbd2_file_inode(handle, inode);
4057                 mark_buffer_dirty(bh);
4058         }
4059
4060 unlock:
4061         unlock_page(page);
4062         page_cache_release(page);
4063         return err;
4064 }
4065
4066 /*
4067  * Probably it should be a library function... search for first non-zero word
4068  * or memcmp with zero_page, whatever is better for particular architecture.
4069  * Linus?
4070  */
4071 static inline int all_zeroes(__le32 *p, __le32 *q)
4072 {
4073         while (p < q)
4074                 if (*p++)
4075                         return 0;
4076         return 1;
4077 }
4078
4079 /**
4080  *      ext4_find_shared - find the indirect blocks for partial truncation.
4081  *      @inode:   inode in question
4082  *      @depth:   depth of the affected branch
4083  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4084  *      @chain:   place to store the pointers to partial indirect blocks
4085  *      @top:     place to the (detached) top of branch
4086  *
4087  *      This is a helper function used by ext4_truncate().
4088  *
4089  *      When we do truncate() we may have to clean the ends of several
4090  *      indirect blocks but leave the blocks themselves alive. Block is
4091  *      partially truncated if some data below the new i_size is referred
4092  *      from it (and it is on the path to the first completely truncated
4093  *      data block, indeed).  We have to free the top of that path along
4094  *      with everything to the right of the path. Since no allocation
4095  *      past the truncation point is possible until ext4_truncate()
4096  *      finishes, we may safely do the latter, but top of branch may
4097  *      require special attention - pageout below the truncation point
4098  *      might try to populate it.
4099  *
4100  *      We atomically detach the top of branch from the tree, store the
4101  *      block number of its root in *@top, pointers to buffer_heads of
4102  *      partially truncated blocks - in @chain[].bh and pointers to
4103  *      their last elements that should not be removed - in
4104  *      @chain[].p. Return value is the pointer to last filled element
4105  *      of @chain.
4106  *
4107  *      The work left to caller to do the actual freeing of subtrees:
4108  *              a) free the subtree starting from *@top
4109  *              b) free the subtrees whose roots are stored in
4110  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4111  *              c) free the subtrees growing from the inode past the @chain[0].
4112  *                      (no partially truncated stuff there).  */
4113
4114 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4115                                   ext4_lblk_t offsets[4], Indirect chain[4],
4116                                   __le32 *top)
4117 {
4118         Indirect *partial, *p;
4119         int k, err;
4120
4121         *top = 0;
4122         /* Make k index the deepest non-null offset + 1 */
4123         for (k = depth; k > 1 && !offsets[k-1]; k--)
4124                 ;
4125         partial = ext4_get_branch(inode, k, offsets, chain, &err);
4126         /* Writer: pointers */
4127         if (!partial)
4128                 partial = chain + k-1;
4129         /*
4130          * If the branch acquired continuation since we've looked at it -
4131          * fine, it should all survive and (new) top doesn't belong to us.
4132          */
4133         if (!partial->key && *partial->p)
4134                 /* Writer: end */
4135                 goto no_top;
4136         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4137                 ;
4138         /*
4139          * OK, we've found the last block that must survive. The rest of our
4140          * branch should be detached before unlocking. However, if that rest
4141          * of branch is all ours and does not grow immediately from the inode
4142          * it's easier to cheat and just decrement partial->p.
4143          */
4144         if (p == chain + k - 1 && p > chain) {
4145                 p->p--;
4146         } else {
4147                 *top = *p->p;
4148                 /* Nope, don't do this in ext4.  Must leave the tree intact */
4149 #if 0
4150                 *p->p = 0;
4151 #endif
4152         }
4153         /* Writer: end */
4154
4155         while (partial > p) {
4156                 brelse(partial->bh);
4157                 partial--;
4158         }
4159 no_top:
4160         return partial;
4161 }
4162
4163 /*
4164  * Zero a number of block pointers in either an inode or an indirect block.
4165  * If we restart the transaction we must again get write access to the
4166  * indirect block for further modification.
4167  *
4168  * We release `count' blocks on disk, but (last - first) may be greater
4169  * than `count' because there can be holes in there.
4170  *
4171  * Return 0 on success, 1 on invalid block range
4172  * and < 0 on fatal error.
4173  */
4174 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4175                              struct buffer_head *bh,
4176                              ext4_fsblk_t block_to_free,
4177                              unsigned long count, __le32 *first,
4178                              __le32 *last)
4179 {
4180         __le32 *p;
4181         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4182         int     err;
4183
4184         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4185                 flags |= EXT4_FREE_BLOCKS_METADATA;
4186
4187         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4188                                    count)) {
4189                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4190                                  "blocks %llu len %lu",
4191                                  (unsigned long long) block_to_free, count);
4192                 return 1;
4193         }
4194
4195         if (try_to_extend_transaction(handle, inode)) {
4196                 if (bh) {
4197                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4198                         err = ext4_handle_dirty_metadata(handle, inode, bh);
4199                         if (unlikely(err))
4200                                 goto out_err;
4201                 }
4202                 err = ext4_mark_inode_dirty(handle, inode);
4203                 if (unlikely(err))
4204                         goto out_err;
4205                 err = ext4_truncate_restart_trans(handle, inode,
4206                                                   blocks_for_truncate(inode));
4207                 if (unlikely(err))
4208                         goto out_err;
4209                 if (bh) {
4210                         BUFFER_TRACE(bh, "retaking write access");
4211                         err = ext4_journal_get_write_access(handle, bh);
4212                         if (unlikely(err))
4213                                 goto out_err;
4214                 }
4215         }
4216
4217         for (p = first; p < last; p++)
4218                 *p = 0;
4219
4220         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4221         return 0;
4222 out_err:
4223         ext4_std_error(inode->i_sb, err);
4224         return err;
4225 }
4226
4227 /**
4228  * ext4_free_data - free a list of data blocks
4229  * @handle:     handle for this transaction
4230  * @inode:      inode we are dealing with
4231  * @this_bh:    indirect buffer_head which contains *@first and *@last
4232  * @first:      array of block numbers
4233  * @last:       points immediately past the end of array
4234  *
4235  * We are freeing all blocks referred from that array (numbers are stored as
4236  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4237  *
4238  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
4239  * blocks are contiguous then releasing them at one time will only affect one
4240  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4241  * actually use a lot of journal space.
4242  *
4243  * @this_bh will be %NULL if @first and @last point into the inode's direct
4244  * block pointers.
4245  */
4246 static void ext4_free_data(handle_t *handle, struct inode *inode,
4247                            struct buffer_head *this_bh,
4248                            __le32 *first, __le32 *last)
4249 {
4250         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4251         unsigned long count = 0;            /* Number of blocks in the run */
4252         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
4253                                                corresponding to
4254                                                block_to_free */
4255         ext4_fsblk_t nr;                    /* Current block # */
4256         __le32 *p;                          /* Pointer into inode/ind
4257                                                for current block */
4258         int err = 0;
4259
4260         if (this_bh) {                          /* For indirect block */
4261                 BUFFER_TRACE(this_bh, "get_write_access");
4262                 err = ext4_journal_get_write_access(handle, this_bh);
4263                 /* Important: if we can't update the indirect pointers
4264                  * to the blocks, we can't free them. */
4265                 if (err)
4266                         return;
4267         }
4268
4269         for (p = first; p < last; p++) {
4270                 nr = le32_to_cpu(*p);
4271                 if (nr) {
4272                         /* accumulate blocks to free if they're contiguous */
4273                         if (count == 0) {
4274                                 block_to_free = nr;
4275                                 block_to_free_p = p;
4276                                 count = 1;
4277                         } else if (nr == block_to_free + count) {
4278                                 count++;
4279                         } else {
4280                                 err = ext4_clear_blocks(handle, inode, this_bh,
4281                                                         block_to_free, count,
4282                                                         block_to_free_p, p);
4283                                 if (err)
4284                                         break;
4285                                 block_to_free = nr;
4286                                 block_to_free_p = p;
4287                                 count = 1;
4288                         }
4289                 }
4290         }
4291
4292         if (!err && count > 0)
4293                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4294                                         count, block_to_free_p, p);
4295         if (err < 0)
4296                 /* fatal error */
4297                 return;
4298
4299         if (this_bh) {
4300                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4301
4302                 /*
4303                  * The buffer head should have an attached journal head at this
4304                  * point. However, if the data is corrupted and an indirect
4305                  * block pointed to itself, it would have been detached when
4306                  * the block was cleared. Check for this instead of OOPSing.
4307                  */
4308                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4309                         ext4_handle_dirty_metadata(handle, inode, this_bh);
4310                 else
4311                         EXT4_ERROR_INODE(inode,
4312                                          "circular indirect block detected at "
4313                                          "block %llu",
4314                                 (unsigned long long) this_bh->b_blocknr);
4315         }
4316 }
4317
4318 /**
4319  *      ext4_free_branches - free an array of branches
4320  *      @handle: JBD handle for this transaction
4321  *      @inode: inode we are dealing with
4322  *      @parent_bh: the buffer_head which contains *@first and *@last
4323  *      @first: array of block numbers
4324  *      @last:  pointer immediately past the end of array
4325  *      @depth: depth of the branches to free
4326  *
4327  *      We are freeing all blocks referred from these branches (numbers are
4328  *      stored as little-endian 32-bit) and updating @inode->i_blocks
4329  *      appropriately.
4330  */
4331 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4332                                struct buffer_head *parent_bh,
4333                                __le32 *first, __le32 *last, int depth)
4334 {
4335         ext4_fsblk_t nr;
4336         __le32 *p;
4337
4338         if (ext4_handle_is_aborted(handle))
4339                 return;
4340
4341         if (depth--) {
4342                 struct buffer_head *bh;
4343                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4344                 p = last;
4345                 while (--p >= first) {
4346                         nr = le32_to_cpu(*p);
4347                         if (!nr)
4348                                 continue;               /* A hole */
4349
4350                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4351                                                    nr, 1)) {
4352                                 EXT4_ERROR_INODE(inode,
4353                                                  "invalid indirect mapped "
4354                                                  "block %lu (level %d)",
4355                                                  (unsigned long) nr, depth);
4356                                 break;
4357                         }
4358
4359                         /* Go read the buffer for the next level down */
4360                         bh = sb_bread(inode->i_sb, nr);
4361
4362                         /*
4363                          * A read failure? Report error and clear slot
4364                          * (should be rare).
4365                          */
4366                         if (!bh) {
4367                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
4368                                                        "Read failure");
4369                                 continue;
4370                         }
4371
4372                         /* This zaps the entire block.  Bottom up. */
4373                         BUFFER_TRACE(bh, "free child branches");
4374                         ext4_free_branches(handle, inode, bh,
4375                                         (__le32 *) bh->b_data,
4376                                         (__le32 *) bh->b_data + addr_per_block,
4377                                         depth);
4378                         brelse(bh);
4379
4380                         /*
4381                          * Everything below this this pointer has been
4382                          * released.  Now let this top-of-subtree go.
4383                          *
4384                          * We want the freeing of this indirect block to be
4385                          * atomic in the journal with the updating of the
4386                          * bitmap block which owns it.  So make some room in
4387                          * the journal.
4388                          *
4389                          * We zero the parent pointer *after* freeing its
4390                          * pointee in the bitmaps, so if extend_transaction()
4391                          * for some reason fails to put the bitmap changes and
4392                          * the release into the same transaction, recovery
4393                          * will merely complain about releasing a free block,
4394                          * rather than leaking blocks.
4395                          */
4396                         if (ext4_handle_is_aborted(handle))
4397                                 return;
4398                         if (try_to_extend_transaction(handle, inode)) {
4399                                 ext4_mark_inode_dirty(handle, inode);
4400                                 ext4_truncate_restart_trans(handle, inode,
4401                                             blocks_for_truncate(inode));
4402                         }
4403
4404                         /*
4405                          * The forget flag here is critical because if
4406                          * we are journaling (and not doing data
4407                          * journaling), we have to make sure a revoke
4408                          * record is written to prevent the journal
4409                          * replay from overwriting the (former)
4410                          * indirect block if it gets reallocated as a
4411                          * data block.  This must happen in the same
4412                          * transaction where the data blocks are
4413                          * actually freed.
4414                          */
4415                         ext4_free_blocks(handle, inode, NULL, nr, 1,
4416                                          EXT4_FREE_BLOCKS_METADATA|
4417                                          EXT4_FREE_BLOCKS_FORGET);
4418
4419                         if (parent_bh) {
4420                                 /*
4421                                  * The block which we have just freed is
4422                                  * pointed to by an indirect block: journal it
4423                                  */
4424                                 BUFFER_TRACE(parent_bh, "get_write_access");
4425                                 if (!ext4_journal_get_write_access(handle,
4426                                                                    parent_bh)){
4427                                         *p = 0;
4428                                         BUFFER_TRACE(parent_bh,
4429                                         "call ext4_handle_dirty_metadata");
4430                                         ext4_handle_dirty_metadata(handle,
4431                                                                    inode,
4432                                                                    parent_bh);
4433                                 }
4434                         }
4435                 }
4436         } else {
4437                 /* We have reached the bottom of the tree. */
4438                 BUFFER_TRACE(parent_bh, "free data blocks");
4439                 ext4_free_data(handle, inode, parent_bh, first, last);
4440         }
4441 }
4442
4443 int ext4_can_truncate(struct inode *inode)
4444 {
4445         if (S_ISREG(inode->i_mode))
4446                 return 1;
4447         if (S_ISDIR(inode->i_mode))
4448                 return 1;
4449         if (S_ISLNK(inode->i_mode))
4450                 return !ext4_inode_is_fast_symlink(inode);
4451         return 0;
4452 }
4453
4454 /*
4455  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
4456  * associated with the given offset and length
4457  *
4458  * @inode:  File inode
4459  * @offset: The offset where the hole will begin
4460  * @len:    The length of the hole
4461  *
4462  * Returns: 0 on sucess or negative on failure
4463  */
4464
4465 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4466 {
4467         struct inode *inode = file->f_path.dentry->d_inode;
4468         if (!S_ISREG(inode->i_mode))
4469                 return -ENOTSUPP;
4470
4471         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4472                 /* TODO: Add support for non extent hole punching */
4473                 return -ENOTSUPP;
4474         }
4475
4476         return ext4_ext_punch_hole(file, offset, length);
4477 }
4478
4479 /*
4480  * ext4_truncate()
4481  *
4482  * We block out ext4_get_block() block instantiations across the entire
4483  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4484  * simultaneously on behalf of the same inode.
4485  *
4486  * As we work through the truncate and commmit bits of it to the journal there
4487  * is one core, guiding principle: the file's tree must always be consistent on
4488  * disk.  We must be able to restart the truncate after a crash.
4489  *
4490  * The file's tree may be transiently inconsistent in memory (although it
4491  * probably isn't), but whenever we close off and commit a journal transaction,
4492  * the contents of (the filesystem + the journal) must be consistent and
4493  * restartable.  It's pretty simple, really: bottom up, right to left (although
4494  * left-to-right works OK too).
4495  *
4496  * Note that at recovery time, journal replay occurs *before* the restart of
4497  * truncate against the orphan inode list.
4498  *
4499  * The committed inode has the new, desired i_size (which is the same as
4500  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4501  * that this inode's truncate did not complete and it will again call
4502  * ext4_truncate() to have another go.  So there will be instantiated blocks
4503  * to the right of the truncation point in a crashed ext4 filesystem.  But
4504  * that's fine - as long as they are linked from the inode, the post-crash
4505  * ext4_truncate() run will find them and release them.
4506  */
4507 void ext4_truncate(struct inode *inode)
4508 {
4509         handle_t *handle;
4510         struct ext4_inode_info *ei = EXT4_I(inode);
4511         __le32 *i_data = ei->i_data;
4512         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4513         struct address_space *mapping = inode->i_mapping;
4514         ext4_lblk_t offsets[4];
4515         Indirect chain[4];
4516         Indirect *partial;
4517         __le32 nr = 0;
4518         int n = 0;
4519         ext4_lblk_t last_block, max_block;
4520         unsigned blocksize = inode->i_sb->s_blocksize;
4521
4522         trace_ext4_truncate_enter(inode);
4523
4524         if (!ext4_can_truncate(inode))
4525                 return;
4526
4527         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4528
4529         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4530                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4531
4532         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4533                 ext4_ext_truncate(inode);
4534                 trace_ext4_truncate_exit(inode);
4535                 return;
4536         }
4537
4538         handle = start_transaction(inode);
4539         if (IS_ERR(handle))
4540                 return;         /* AKPM: return what? */
4541
4542         last_block = (inode->i_size + blocksize-1)
4543                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4544         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
4545                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4546
4547         if (inode->i_size & (blocksize - 1))
4548                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4549                         goto out_stop;
4550
4551         if (last_block != max_block) {
4552                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4553                 if (n == 0)
4554                         goto out_stop;  /* error */
4555         }
4556
4557         /*
4558          * OK.  This truncate is going to happen.  We add the inode to the
4559          * orphan list, so that if this truncate spans multiple transactions,
4560          * and we crash, we will resume the truncate when the filesystem
4561          * recovers.  It also marks the inode dirty, to catch the new size.
4562          *
4563          * Implication: the file must always be in a sane, consistent
4564          * truncatable state while each transaction commits.
4565          */
4566         if (ext4_orphan_add(handle, inode))
4567                 goto out_stop;
4568
4569         /*
4570          * From here we block out all ext4_get_block() callers who want to
4571          * modify the block allocation tree.
4572          */
4573         down_write(&ei->i_data_sem);
4574
4575         ext4_discard_preallocations(inode);
4576
4577         /*
4578          * The orphan list entry will now protect us from any crash which
4579          * occurs before the truncate completes, so it is now safe to propagate
4580          * the new, shorter inode size (held for now in i_size) into the
4581          * on-disk inode. We do this via i_disksize, which is the value which
4582          * ext4 *really* writes onto the disk inode.
4583          */
4584         ei->i_disksize = inode->i_size;
4585
4586         if (last_block == max_block) {
4587                 /*
4588                  * It is unnecessary to free any data blocks if last_block is
4589                  * equal to the indirect block limit.
4590                  */
4591                 goto out_unlock;
4592         } else if (n == 1) {            /* direct blocks */
4593                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4594                                i_data + EXT4_NDIR_BLOCKS);
4595                 goto do_indirects;
4596         }
4597
4598         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4599         /* Kill the top of shared branch (not detached) */
4600         if (nr) {
4601                 if (partial == chain) {
4602                         /* Shared branch grows from the inode */
4603                         ext4_free_branches(handle, inode, NULL,
4604                                            &nr, &nr+1, (chain+n-1) - partial);
4605                         *partial->p = 0;
4606                         /*
4607                          * We mark the inode dirty prior to restart,
4608                          * and prior to stop.  No need for it here.
4609                          */
4610                 } else {
4611                         /* Shared branch grows from an indirect block */
4612                         BUFFER_TRACE(partial->bh, "get_write_access");
4613                         ext4_free_branches(handle, inode, partial->bh,
4614                                         partial->p,
4615                                         partial->p+1, (chain+n-1) - partial);
4616                 }
4617         }
4618         /* Clear the ends of indirect blocks on the shared branch */
4619         while (partial > chain) {
4620                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4621                                    (__le32*)partial->bh->b_data+addr_per_block,
4622                                    (chain+n-1) - partial);
4623                 BUFFER_TRACE(partial->bh, "call brelse");
4624                 brelse(partial->bh);
4625                 partial--;
4626         }
4627 do_indirects:
4628         /* Kill the remaining (whole) subtrees */
4629         switch (offsets[0]) {
4630         default:
4631                 nr = i_data[EXT4_IND_BLOCK];
4632                 if (nr) {
4633                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4634                         i_data[EXT4_IND_BLOCK] = 0;
4635                 }
4636         case EXT4_IND_BLOCK:
4637                 nr = i_data[EXT4_DIND_BLOCK];
4638                 if (nr) {
4639                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4640                         i_data[EXT4_DIND_BLOCK] = 0;
4641                 }
4642         case EXT4_DIND_BLOCK:
4643                 nr = i_data[EXT4_TIND_BLOCK];
4644                 if (nr) {
4645                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4646                         i_data[EXT4_TIND_BLOCK] = 0;
4647                 }
4648         case EXT4_TIND_BLOCK:
4649                 ;
4650         }
4651
4652 out_unlock:
4653         up_write(&ei->i_data_sem);
4654         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4655         ext4_mark_inode_dirty(handle, inode);
4656
4657         /*
4658          * In a multi-transaction truncate, we only make the final transaction
4659          * synchronous
4660          */
4661         if (IS_SYNC(inode))
4662                 ext4_handle_sync(handle);
4663 out_stop:
4664         /*
4665          * If this was a simple ftruncate(), and the file will remain alive
4666          * then we need to clear up the orphan record which we created above.
4667          * However, if this was a real unlink then we were called by
4668          * ext4_delete_inode(), and we allow that function to clean up the
4669          * orphan info for us.
4670          */
4671         if (inode->i_nlink)
4672                 ext4_orphan_del(handle, inode);
4673
4674         ext4_journal_stop(handle);
4675         trace_ext4_truncate_exit(inode);
4676 }
4677
4678 /*
4679  * ext4_get_inode_loc returns with an extra refcount against the inode's
4680  * underlying buffer_head on success. If 'in_mem' is true, we have all
4681  * data in memory that is needed to recreate the on-disk version of this
4682  * inode.
4683  */
4684 static int __ext4_get_inode_loc(struct inode *inode,
4685                                 struct ext4_iloc *iloc, int in_mem)
4686 {
4687         struct ext4_group_desc  *gdp;
4688         struct buffer_head      *bh;
4689         struct super_block      *sb = inode->i_sb;
4690         ext4_fsblk_t            block;
4691         int                     inodes_per_block, inode_offset;
4692
4693         iloc->bh = NULL;
4694         if (!ext4_valid_inum(sb, inode->i_ino))
4695                 return -EIO;
4696
4697         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4698         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4699         if (!gdp)
4700                 return -EIO;
4701
4702         /*
4703          * Figure out the offset within the block group inode table
4704          */
4705         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4706         inode_offset = ((inode->i_ino - 1) %
4707                         EXT4_INODES_PER_GROUP(sb));
4708         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4709         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4710
4711         bh = sb_getblk(sb, block);
4712         if (!bh) {
4713                 EXT4_ERROR_INODE_BLOCK(inode, block,
4714                                        "unable to read itable block");
4715                 return -EIO;
4716         }
4717         if (!buffer_uptodate(bh)) {
4718                 lock_buffer(bh);
4719
4720                 /*
4721                  * If the buffer has the write error flag, we have failed
4722                  * to write out another inode in the same block.  In this
4723                  * case, we don't have to read the block because we may
4724                  * read the old inode data successfully.
4725                  */
4726                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4727                         set_buffer_uptodate(bh);
4728
4729                 if (buffer_uptodate(bh)) {
4730                         /* someone brought it uptodate while we waited */
4731                         unlock_buffer(bh);
4732                         goto has_buffer;
4733                 }
4734
4735                 /*
4736                  * If we have all information of the inode in memory and this
4737                  * is the only valid inode in the block, we need not read the
4738                  * block.
4739                  */
4740                 if (in_mem) {
4741                         struct buffer_head *bitmap_bh;
4742                         int i, start;
4743
4744                         start = inode_offset & ~(inodes_per_block - 1);
4745
4746                         /* Is the inode bitmap in cache? */
4747                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4748                         if (!bitmap_bh)
4749                                 goto make_io;
4750
4751                         /*
4752                          * If the inode bitmap isn't in cache then the
4753                          * optimisation may end up performing two reads instead
4754                          * of one, so skip it.
4755                          */
4756                         if (!buffer_uptodate(bitmap_bh)) {
4757                                 brelse(bitmap_bh);
4758                                 goto make_io;
4759                         }
4760                         for (i = start; i < start + inodes_per_block; i++) {
4761                                 if (i == inode_offset)
4762                                         continue;
4763                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4764                                         break;
4765                         }
4766                         brelse(bitmap_bh);
4767                         if (i == start + inodes_per_block) {
4768                                 /* all other inodes are free, so skip I/O */
4769                                 memset(bh->b_data, 0, bh->b_size);
4770                                 set_buffer_uptodate(bh);
4771                                 unlock_buffer(bh);
4772                                 goto has_buffer;
4773                         }
4774                 }
4775
4776 make_io:
4777                 /*
4778                  * If we need to do any I/O, try to pre-readahead extra
4779                  * blocks from the inode table.
4780                  */
4781                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4782                         ext4_fsblk_t b, end, table;
4783                         unsigned num;
4784
4785                         table = ext4_inode_table(sb, gdp);
4786                         /* s_inode_readahead_blks is always a power of 2 */
4787                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4788                         if (table > b)
4789                                 b = table;
4790                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4791                         num = EXT4_INODES_PER_GROUP(sb);
4792                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4793                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4794                                 num -= ext4_itable_unused_count(sb, gdp);
4795                         table += num / inodes_per_block;
4796                         if (end > table)
4797                                 end = table;
4798                         while (b <= end)
4799                                 sb_breadahead(sb, b++);
4800                 }
4801
4802                 /*
4803                  * There are other valid inodes in the buffer, this inode
4804                  * has in-inode xattrs, or we don't have this inode in memory.
4805                  * Read the block from disk.
4806                  */
4807                 trace_ext4_load_inode(inode);
4808                 get_bh(bh);
4809                 bh->b_end_io = end_buffer_read_sync;
4810                 submit_bh(READ_META, bh);
4811                 wait_on_buffer(bh);
4812                 if (!buffer_uptodate(bh)) {
4813                         EXT4_ERROR_INODE_BLOCK(inode, block,
4814                                                "unable to read itable block");
4815                         brelse(bh);
4816                         return -EIO;
4817                 }
4818         }
4819 has_buffer:
4820         iloc->bh = bh;
4821         return 0;
4822 }
4823
4824 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4825 {
4826         /* We have all inode data except xattrs in memory here. */
4827         return __ext4_get_inode_loc(inode, iloc,
4828                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4829 }
4830
4831 void ext4_set_inode_flags(struct inode *inode)
4832 {
4833         unsigned int flags = EXT4_I(inode)->i_flags;
4834
4835         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4836         if (flags & EXT4_SYNC_FL)
4837                 inode->i_flags |= S_SYNC;
4838         if (flags & EXT4_APPEND_FL)
4839                 inode->i_flags |= S_APPEND;
4840         if (flags & EXT4_IMMUTABLE_FL)
4841                 inode->i_flags |= S_IMMUTABLE;
4842         if (flags & EXT4_NOATIME_FL)
4843                 inode->i_flags |= S_NOATIME;
4844         if (flags & EXT4_DIRSYNC_FL)
4845                 inode->i_flags |= S_DIRSYNC;
4846 }
4847
4848 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4849 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4850 {
4851         unsigned int vfs_fl;
4852         unsigned long old_fl, new_fl;
4853
4854         do {
4855                 vfs_fl = ei->vfs_inode.i_flags;
4856                 old_fl = ei->i_flags;
4857                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4858                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4859                                 EXT4_DIRSYNC_FL);
4860                 if (vfs_fl & S_SYNC)
4861                         new_fl |= EXT4_SYNC_FL;
4862                 if (vfs_fl & S_APPEND)
4863                         new_fl |= EXT4_APPEND_FL;
4864                 if (vfs_fl & S_IMMUTABLE)
4865                         new_fl |= EXT4_IMMUTABLE_FL;
4866                 if (vfs_fl & S_NOATIME)
4867                         new_fl |= EXT4_NOATIME_FL;
4868                 if (vfs_fl & S_DIRSYNC)
4869                         new_fl |= EXT4_DIRSYNC_FL;
4870         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4871 }
4872
4873 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4874                                   struct ext4_inode_info *ei)
4875 {
4876         blkcnt_t i_blocks ;
4877         struct inode *inode = &(ei->vfs_inode);
4878         struct super_block *sb = inode->i_sb;
4879
4880         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4881                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4882                 /* we are using combined 48 bit field */
4883                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4884                                         le32_to_cpu(raw_inode->i_blocks_lo);
4885                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4886                         /* i_blocks represent file system block size */
4887                         return i_blocks  << (inode->i_blkbits - 9);
4888                 } else {
4889                         return i_blocks;
4890                 }
4891         } else {
4892                 return le32_to_cpu(raw_inode->i_blocks_lo);
4893         }
4894 }
4895
4896 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4897 {
4898         struct ext4_iloc iloc;
4899         struct ext4_inode *raw_inode;
4900         struct ext4_inode_info *ei;
4901         struct inode *inode;
4902         journal_t *journal = EXT4_SB(sb)->s_journal;
4903         long ret;
4904         int block;
4905
4906         inode = iget_locked(sb, ino);
4907         if (!inode)
4908                 return ERR_PTR(-ENOMEM);
4909         if (!(inode->i_state & I_NEW))
4910                 return inode;
4911
4912         ei = EXT4_I(inode);
4913         iloc.bh = NULL;
4914
4915         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4916         if (ret < 0)
4917                 goto bad_inode;
4918         raw_inode = ext4_raw_inode(&iloc);
4919         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4920         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4921         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4922         if (!(test_opt(inode->i_sb, NO_UID32))) {
4923                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4924                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4925         }
4926         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4927
4928         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4929         ei->i_dir_start_lookup = 0;
4930         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4931         /* We now have enough fields to check if the inode was active or not.
4932          * This is needed because nfsd might try to access dead inodes
4933          * the test is that same one that e2fsck uses
4934          * NeilBrown 1999oct15
4935          */
4936         if (inode->i_nlink == 0) {
4937                 if (inode->i_mode == 0 ||
4938                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4939                         /* this inode is deleted */
4940                         ret = -ESTALE;
4941                         goto bad_inode;
4942                 }
4943                 /* The only unlinked inodes we let through here have
4944                  * valid i_mode and are being read by the orphan
4945                  * recovery code: that's fine, we're about to complete
4946                  * the process of deleting those. */
4947         }
4948         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4949         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4950         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4951         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4952                 ei->i_file_acl |=
4953                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4954         inode->i_size = ext4_isize(raw_inode);
4955         ei->i_disksize = inode->i_size;
4956 #ifdef CONFIG_QUOTA
4957         ei->i_reserved_quota = 0;
4958 #endif
4959         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4960         ei->i_block_group = iloc.block_group;
4961         ei->i_last_alloc_group = ~0;
4962         /*
4963          * NOTE! The in-memory inode i_data array is in little-endian order
4964          * even on big-endian machines: we do NOT byteswap the block numbers!
4965          */
4966         for (block = 0; block < EXT4_N_BLOCKS; block++)
4967                 ei->i_data[block] = raw_inode->i_block[block];
4968         INIT_LIST_HEAD(&ei->i_orphan);
4969
4970         /*
4971          * Set transaction id's of transactions that have to be committed
4972          * to finish f[data]sync. We set them to currently running transaction
4973          * as we cannot be sure that the inode or some of its metadata isn't
4974          * part of the transaction - the inode could have been reclaimed and
4975          * now it is reread from disk.
4976          */
4977         if (journal) {
4978                 transaction_t *transaction;
4979                 tid_t tid;
4980
4981                 read_lock(&journal->j_state_lock);
4982                 if (journal->j_running_transaction)
4983                         transaction = journal->j_running_transaction;
4984                 else
4985                         transaction = journal->j_committing_transaction;
4986                 if (transaction)
4987                         tid = transaction->t_tid;
4988                 else
4989                         tid = journal->j_commit_sequence;
4990                 read_unlock(&journal->j_state_lock);
4991                 ei->i_sync_tid = tid;
4992                 ei->i_datasync_tid = tid;
4993         }
4994
4995         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4996                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4997                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4998                     EXT4_INODE_SIZE(inode->i_sb)) {
4999                         ret = -EIO;
5000                         goto bad_inode;
5001                 }
5002                 if (ei->i_extra_isize == 0) {
5003                         /* The extra space is currently unused. Use it. */
5004                         ei->i_extra_isize = sizeof(struct ext4_inode) -
5005                                             EXT4_GOOD_OLD_INODE_SIZE;
5006                 } else {
5007                         __le32 *magic = (void *)raw_inode +
5008                                         EXT4_GOOD_OLD_INODE_SIZE +
5009                                         ei->i_extra_isize;
5010                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5011                                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5012                 }
5013         } else
5014                 ei->i_extra_isize = 0;
5015
5016         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5017         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5018         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5019         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5020
5021         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5022         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5023                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5024                         inode->i_version |=
5025                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5026         }
5027
5028         ret = 0;
5029         if (ei->i_file_acl &&
5030             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5031                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5032                                  ei->i_file_acl);
5033                 ret = -EIO;
5034                 goto bad_inode;
5035         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5036                 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5037                     (S_ISLNK(inode->i_mode) &&
5038                      !ext4_inode_is_fast_symlink(inode)))
5039                         /* Validate extent which is part of inode */
5040                         ret = ext4_ext_check_inode(inode);
5041         } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5042                    (S_ISLNK(inode->i_mode) &&
5043                     !ext4_inode_is_fast_symlink(inode))) {
5044                 /* Validate block references which are part of inode */
5045                 ret = ext4_check_inode_blockref(inode);
5046         }
5047         if (ret)
5048                 goto bad_inode;
5049
5050         if (S_ISREG(inode->i_mode)) {
5051                 inode->i_op = &ext4_file_inode_operations;
5052                 inode->i_fop = &ext4_file_operations;
5053                 ext4_set_aops(inode);
5054         } else if (S_ISDIR(inode->i_mode)) {
5055                 inode->i_op = &ext4_dir_inode_operations;
5056                 inode->i_fop = &ext4_dir_operations;
5057         } else if (S_ISLNK(inode->i_mode)) {
5058                 if (ext4_inode_is_fast_symlink(inode)) {
5059                         inode->i_op = &ext4_fast_symlink_inode_operations;
5060                         nd_terminate_link(ei->i_data, inode->i_size,
5061                                 sizeof(ei->i_data) - 1);
5062                 } else {
5063                         inode->i_op = &ext4_symlink_inode_operations;
5064                         ext4_set_aops(inode);
5065                 }
5066         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5067               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5068                 inode->i_op = &ext4_special_inode_operations;
5069                 if (raw_inode->i_block[0])
5070                         init_special_inode(inode, inode->i_mode,
5071                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5072                 else
5073                         init_special_inode(inode, inode->i_mode,
5074                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5075         } else {
5076                 ret = -EIO;
5077                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5078                 goto bad_inode;
5079         }
5080         brelse(iloc.bh);
5081         ext4_set_inode_flags(inode);
5082         unlock_new_inode(inode);
5083         return inode;
5084
5085 bad_inode:
5086         brelse(iloc.bh);
5087         iget_failed(inode);
5088         return ERR_PTR(ret);
5089 }
5090
5091 static int ext4_inode_blocks_set(handle_t *handle,
5092                                 struct ext4_inode *raw_inode,
5093                                 struct ext4_inode_info *ei)
5094 {
5095         struct inode *inode = &(ei->vfs_inode);
5096         u64 i_blocks = inode->i_blocks;
5097         struct super_block *sb = inode->i_sb;
5098
5099         if (i_blocks <= ~0U) {
5100                 /*
5101                  * i_blocks can be represnted in a 32 bit variable
5102                  * as multiple of 512 bytes
5103                  */
5104                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5105                 raw_inode->i_blocks_high = 0;
5106                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5107                 return 0;
5108         }
5109         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5110                 return -EFBIG;
5111
5112         if (i_blocks <= 0xffffffffffffULL) {
5113                 /*
5114                  * i_blocks can be represented in a 48 bit variable
5115                  * as multiple of 512 bytes
5116                  */
5117                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5118                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5119                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5120         } else {
5121                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5122                 /* i_block is stored in file system block size */
5123                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5124                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5125                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5126         }
5127         return 0;
5128 }
5129
5130 /*
5131  * Post the struct inode info into an on-disk inode location in the
5132  * buffer-cache.  This gobbles the caller's reference to the
5133  * buffer_head in the inode location struct.
5134  *
5135  * The caller must have write access to iloc->bh.
5136  */
5137 static int ext4_do_update_inode(handle_t *handle,
5138                                 struct inode *inode,
5139                                 struct ext4_iloc *iloc)
5140 {
5141         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5142         struct ext4_inode_info *ei = EXT4_I(inode);
5143         struct buffer_head *bh = iloc->bh;
5144         int err = 0, rc, block;
5145
5146         /* For fields not not tracking in the in-memory inode,
5147          * initialise them to zero for new inodes. */
5148         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5149                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5150
5151         ext4_get_inode_flags(ei);
5152         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5153         if (!(test_opt(inode->i_sb, NO_UID32))) {
5154                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5155                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5156 /*
5157  * Fix up interoperability with old kernels. Otherwise, old inodes get
5158  * re-used with the upper 16 bits of the uid/gid intact
5159  */
5160                 if (!ei->i_dtime) {
5161                         raw_inode->i_uid_high =
5162                                 cpu_to_le16(high_16_bits(inode->i_uid));
5163                         raw_inode->i_gid_high =
5164                                 cpu_to_le16(high_16_bits(inode->i_gid));
5165                 } else {
5166                         raw_inode->i_uid_high = 0;
5167                         raw_inode->i_gid_high = 0;
5168                 }
5169         } else {
5170                 raw_inode->i_uid_low =
5171                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
5172                 raw_inode->i_gid_low =
5173                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
5174                 raw_inode->i_uid_high = 0;
5175                 raw_inode->i_gid_high = 0;
5176         }
5177         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5178
5179         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5180         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5181         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5182         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5183
5184         if (ext4_inode_blocks_set(handle, raw_inode, ei))
5185                 goto out_brelse;
5186         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5187         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5188         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5189             cpu_to_le32(EXT4_OS_HURD))
5190                 raw_inode->i_file_acl_high =
5191                         cpu_to_le16(ei->i_file_acl >> 32);
5192         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5193         ext4_isize_set(raw_inode, ei->i_disksize);
5194         if (ei->i_disksize > 0x7fffffffULL) {
5195                 struct super_block *sb = inode->i_sb;
5196                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5197                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5198                                 EXT4_SB(sb)->s_es->s_rev_level ==
5199                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5200                         /* If this is the first large file
5201                          * created, add a flag to the superblock.
5202                          */
5203                         err = ext4_journal_get_write_access(handle,
5204                                         EXT4_SB(sb)->s_sbh);
5205                         if (err)
5206                                 goto out_brelse;
5207                         ext4_update_dynamic_rev(sb);
5208                         EXT4_SET_RO_COMPAT_FEATURE(sb,
5209                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5210                         sb->s_dirt = 1;
5211                         ext4_handle_sync(handle);
5212                         err = ext4_handle_dirty_metadata(handle, NULL,
5213                                         EXT4_SB(sb)->s_sbh);
5214                 }
5215         }
5216         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5217         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5218                 if (old_valid_dev(inode->i_rdev)) {
5219                         raw_inode->i_block[0] =
5220                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
5221                         raw_inode->i_block[1] = 0;
5222                 } else {
5223                         raw_inode->i_block[0] = 0;
5224                         raw_inode->i_block[1] =
5225                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
5226                         raw_inode->i_block[2] = 0;
5227                 }
5228         } else
5229                 for (block = 0; block < EXT4_N_BLOCKS; block++)
5230                         raw_inode->i_block[block] = ei->i_data[block];
5231
5232         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5233         if (ei->i_extra_isize) {
5234                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5235                         raw_inode->i_version_hi =
5236                         cpu_to_le32(inode->i_version >> 32);
5237                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5238         }
5239
5240         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5241         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5242         if (!err)
5243                 err = rc;
5244         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5245
5246         ext4_update_inode_fsync_trans(handle, inode, 0);
5247 out_brelse:
5248         brelse(bh);
5249         ext4_std_error(inode->i_sb, err);
5250         return err;
5251 }
5252
5253 /*
5254  * ext4_write_inode()
5255  *
5256  * We are called from a few places:
5257  *
5258  * - Within generic_file_write() for O_SYNC files.
5259  *   Here, there will be no transaction running. We wait for any running
5260  *   trasnaction to commit.
5261  *
5262  * - Within sys_sync(), kupdate and such.
5263  *   We wait on commit, if tol to.
5264  *
5265  * - Within prune_icache() (PF_MEMALLOC == true)
5266  *   Here we simply return.  We can't afford to block kswapd on the
5267  *   journal commit.
5268  *
5269  * In all cases it is actually safe for us to return without doing anything,
5270  * because the inode has been copied into a raw inode buffer in
5271  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5272  * knfsd.
5273  *
5274  * Note that we are absolutely dependent upon all inode dirtiers doing the
5275  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5276  * which we are interested.
5277  *
5278  * It would be a bug for them to not do this.  The code:
5279  *
5280  *      mark_inode_dirty(inode)
5281  *      stuff();
5282  *      inode->i_size = expr;
5283  *
5284  * is in error because a kswapd-driven write_inode() could occur while
5285  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
5286  * will no longer be on the superblock's dirty inode list.
5287  */
5288 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5289 {
5290         int err;
5291
5292         if (current->flags & PF_MEMALLOC)
5293                 return 0;
5294
5295         if (EXT4_SB(inode->i_sb)->s_journal) {
5296                 if (ext4_journal_current_handle()) {
5297                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5298                         dump_stack();
5299                         return -EIO;
5300                 }
5301
5302                 if (wbc->sync_mode != WB_SYNC_ALL)
5303                         return 0;
5304
5305                 err = ext4_force_commit(inode->i_sb);
5306         } else {
5307                 struct ext4_iloc iloc;
5308
5309                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5310                 if (err)
5311                         return err;
5312                 if (wbc->sync_mode == WB_SYNC_ALL)
5313                         sync_dirty_buffer(iloc.bh);
5314                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5315                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5316                                          "IO error syncing inode");
5317                         err = -EIO;
5318                 }
5319                 brelse(iloc.bh);
5320         }
5321         return err;
5322 }
5323
5324 /*
5325  * ext4_setattr()
5326  *
5327  * Called from notify_change.
5328  *
5329  * We want to trap VFS attempts to truncate the file as soon as
5330  * possible.  In particular, we want to make sure that when the VFS
5331  * shrinks i_size, we put the inode on the orphan list and modify
5332  * i_disksize immediately, so that during the subsequent flushing of
5333  * dirty pages and freeing of disk blocks, we can guarantee that any
5334  * commit will leave the blocks being flushed in an unused state on
5335  * disk.  (On recovery, the inode will get truncated and the blocks will
5336  * be freed, so we have a strong guarantee that no future commit will
5337  * leave these blocks visible to the user.)
5338  *
5339  * Another thing we have to assure is that if we are in ordered mode
5340  * and inode is still attached to the committing transaction, we must
5341  * we start writeout of all the dirty pages which are being truncated.
5342  * This way we are sure that all the data written in the previous
5343  * transaction are already on disk (truncate waits for pages under
5344  * writeback).
5345  *
5346  * Called with inode->i_mutex down.
5347  */
5348 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5349 {
5350         struct inode *inode = dentry->d_inode;
5351         int error, rc = 0;
5352         int orphan = 0;
5353         const unsigned int ia_valid = attr->ia_valid;
5354
5355         error = inode_change_ok(inode, attr);
5356         if (error)
5357                 return error;
5358
5359         if (is_quota_modification(inode, attr))
5360                 dquot_initialize(inode);
5361         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5362                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5363                 handle_t *handle;
5364
5365                 /* (user+group)*(old+new) structure, inode write (sb,
5366                  * inode block, ? - but truncate inode update has it) */
5367                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5368                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5369                 if (IS_ERR(handle)) {
5370                         error = PTR_ERR(handle);
5371                         goto err_out;
5372                 }
5373                 error = dquot_transfer(inode, attr);
5374                 if (error) {
5375                         ext4_journal_stop(handle);
5376                         return error;
5377                 }
5378                 /* Update corresponding info in inode so that everything is in
5379                  * one transaction */
5380                 if (attr->ia_valid & ATTR_UID)
5381                         inode->i_uid = attr->ia_uid;
5382                 if (attr->ia_valid & ATTR_GID)
5383                         inode->i_gid = attr->ia_gid;
5384                 error = ext4_mark_inode_dirty(handle, inode);
5385                 ext4_journal_stop(handle);
5386         }
5387
5388         if (attr->ia_valid & ATTR_SIZE) {
5389                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5390                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5391
5392                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5393                                 return -EFBIG;
5394                 }
5395         }
5396
5397         if (S_ISREG(inode->i_mode) &&
5398             attr->ia_valid & ATTR_SIZE &&
5399             (attr->ia_size < inode->i_size)) {
5400                 handle_t *handle;
5401
5402                 handle = ext4_journal_start(inode, 3);
5403                 if (IS_ERR(handle)) {
5404                         error = PTR_ERR(handle);
5405                         goto err_out;
5406                 }
5407                 if (ext4_handle_valid(handle)) {
5408                         error = ext4_orphan_add(handle, inode);
5409                         orphan = 1;
5410                 }
5411                 EXT4_I(inode)->i_disksize = attr->ia_size;
5412                 rc = ext4_mark_inode_dirty(handle, inode);
5413                 if (!error)
5414                         error = rc;
5415                 ext4_journal_stop(handle);
5416
5417                 if (ext4_should_order_data(inode)) {
5418                         error = ext4_begin_ordered_truncate(inode,
5419                                                             attr->ia_size);
5420                         if (error) {
5421                                 /* Do as much error cleanup as possible */
5422                                 handle = ext4_journal_start(inode, 3);
5423                                 if (IS_ERR(handle)) {
5424                                         ext4_orphan_del(NULL, inode);
5425                                         goto err_out;
5426                                 }
5427                                 ext4_orphan_del(handle, inode);
5428                                 orphan = 0;
5429                                 ext4_journal_stop(handle);
5430                                 goto err_out;
5431                         }
5432                 }
5433         }
5434
5435         if (attr->ia_valid & ATTR_SIZE) {
5436                 if (attr->ia_size != i_size_read(inode)) {
5437                         truncate_setsize(inode, attr->ia_size);
5438                         ext4_truncate(inode);
5439                 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
5440                         ext4_truncate(inode);
5441         }
5442
5443         if (!rc) {
5444                 setattr_copy(inode, attr);
5445                 mark_inode_dirty(inode);
5446         }
5447
5448         /*
5449          * If the call to ext4_truncate failed to get a transaction handle at
5450          * all, we need to clean up the in-core orphan list manually.
5451          */
5452         if (orphan && inode->i_nlink)
5453                 ext4_orphan_del(NULL, inode);
5454
5455         if (!rc && (ia_valid & ATTR_MODE))
5456                 rc = ext4_acl_chmod(inode);
5457
5458 err_out:
5459         ext4_std_error(inode->i_sb, error);
5460         if (!error)
5461                 error = rc;
5462         return error;
5463 }
5464
5465 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5466                  struct kstat *stat)
5467 {
5468         struct inode *inode;
5469         unsigned long delalloc_blocks;
5470
5471         inode = dentry->d_inode;
5472         generic_fillattr(inode, stat);
5473
5474         /*
5475          * We can't update i_blocks if the block allocation is delayed
5476          * otherwise in the case of system crash before the real block
5477          * allocation is done, we will have i_blocks inconsistent with
5478          * on-disk file blocks.
5479          * We always keep i_blocks updated together with real
5480          * allocation. But to not confuse with user, stat
5481          * will return the blocks that include the delayed allocation
5482          * blocks for this file.
5483          */
5484         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5485
5486         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5487         return 0;
5488 }
5489
5490 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5491                                       int chunk)
5492 {
5493         int indirects;
5494
5495         /* if nrblocks are contiguous */
5496         if (chunk) {
5497                 /*
5498                  * With N contiguous data blocks, we need at most
5499                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
5500                  * 2 dindirect blocks, and 1 tindirect block
5501                  */
5502                 return DIV_ROUND_UP(nrblocks,
5503                                     EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
5504         }
5505         /*
5506          * if nrblocks are not contiguous, worse case, each block touch
5507          * a indirect block, and each indirect block touch a double indirect
5508          * block, plus a triple indirect block
5509          */
5510         indirects = nrblocks * 2 + 1;
5511         return indirects;
5512 }
5513
5514 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5515 {
5516         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5517                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5518         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5519 }
5520
5521 /*
5522  * Account for index blocks, block groups bitmaps and block group
5523  * descriptor blocks if modify datablocks and index blocks
5524  * worse case, the indexs blocks spread over different block groups
5525  *
5526  * If datablocks are discontiguous, they are possible to spread over
5527  * different block groups too. If they are contiuguous, with flexbg,
5528  * they could still across block group boundary.
5529  *
5530  * Also account for superblock, inode, quota and xattr blocks
5531  */
5532 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5533 {
5534         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535         int gdpblocks;
5536         int idxblocks;
5537         int ret = 0;
5538
5539         /*
5540          * How many index blocks need to touch to modify nrblocks?
5541          * The "Chunk" flag indicating whether the nrblocks is
5542          * physically contiguous on disk
5543          *
5544          * For Direct IO and fallocate, they calls get_block to allocate
5545          * one single extent at a time, so they could set the "Chunk" flag
5546          */
5547         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5548
5549         ret = idxblocks;
5550
5551         /*
5552          * Now let's see how many group bitmaps and group descriptors need
5553          * to account
5554          */
5555         groups = idxblocks;
5556         if (chunk)
5557                 groups += 1;
5558         else
5559                 groups += nrblocks;
5560
5561         gdpblocks = groups;
5562         if (groups > ngroups)
5563                 groups = ngroups;
5564         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5565                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5566
5567         /* bitmaps and block group descriptor blocks */
5568         ret += groups + gdpblocks;
5569
5570         /* Blocks for super block, inode, quota and xattr blocks */
5571         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5572
5573         return ret;
5574 }
5575
5576 /*
5577  * Calculate the total number of credits to reserve to fit
5578  * the modification of a single pages into a single transaction,
5579  * which may include multiple chunks of block allocations.
5580  *
5581  * This could be called via ext4_write_begin()
5582  *
5583  * We need to consider the worse case, when
5584  * one new block per extent.
5585  */
5586 int ext4_writepage_trans_blocks(struct inode *inode)
5587 {
5588         int bpp = ext4_journal_blocks_per_page(inode);
5589         int ret;
5590
5591         ret = ext4_meta_trans_blocks(inode, bpp, 0);
5592
5593         /* Account for data blocks for journalled mode */
5594         if (ext4_should_journal_data(inode))
5595                 ret += bpp;
5596         return ret;
5597 }
5598
5599 /*
5600  * Calculate the journal credits for a chunk of data modification.
5601  *
5602  * This is called from DIO, fallocate or whoever calling
5603  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5604  *
5605  * journal buffers for data blocks are not included here, as DIO
5606  * and fallocate do no need to journal data buffers.
5607  */
5608 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5609 {
5610         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5611 }
5612
5613 /*
5614  * The caller must have previously called ext4_reserve_inode_write().
5615  * Give this, we know that the caller already has write access to iloc->bh.
5616  */
5617 int ext4_mark_iloc_dirty(handle_t *handle,
5618                          struct inode *inode, struct ext4_iloc *iloc)
5619 {
5620         int err = 0;
5621
5622         if (test_opt(inode->i_sb, I_VERSION))
5623                 inode_inc_iversion(inode);
5624
5625         /* the do_update_inode consumes one bh->b_count */
5626         get_bh(iloc->bh);
5627
5628         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5629         err = ext4_do_update_inode(handle, inode, iloc);
5630         put_bh(iloc->bh);
5631         return err;
5632 }
5633
5634 /*
5635  * On success, We end up with an outstanding reference count against
5636  * iloc->bh.  This _must_ be cleaned up later.
5637  */
5638
5639 int
5640 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5641                          struct ext4_iloc *iloc)
5642 {
5643         int err;
5644
5645         err = ext4_get_inode_loc(inode, iloc);
5646         if (!err) {
5647                 BUFFER_TRACE(iloc->bh, "get_write_access");
5648                 err = ext4_journal_get_write_access(handle, iloc->bh);
5649                 if (err) {
5650                         brelse(iloc->bh);
5651                         iloc->bh = NULL;
5652                 }
5653         }
5654         ext4_std_error(inode->i_sb, err);
5655         return err;
5656 }
5657
5658 /*
5659  * Expand an inode by new_extra_isize bytes.
5660  * Returns 0 on success or negative error number on failure.
5661  */
5662 static int ext4_expand_extra_isize(struct inode *inode,
5663                                    unsigned int new_extra_isize,
5664                                    struct ext4_iloc iloc,
5665                                    handle_t *handle)
5666 {
5667         struct ext4_inode *raw_inode;
5668         struct ext4_xattr_ibody_header *header;
5669
5670         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5671                 return 0;
5672
5673         raw_inode = ext4_raw_inode(&iloc);
5674
5675         header = IHDR(inode, raw_inode);
5676
5677         /* No extended attributes present */
5678         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5679             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5680                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5681                         new_extra_isize);
5682                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5683                 return 0;
5684         }
5685
5686         /* try to expand with EAs present */
5687         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5688                                           raw_inode, handle);
5689 }
5690
5691 /*
5692  * What we do here is to mark the in-core inode as clean with respect to inode
5693  * dirtiness (it may still be data-dirty).
5694  * This means that the in-core inode may be reaped by prune_icache
5695  * without having to perform any I/O.  This is a very good thing,
5696  * because *any* task may call prune_icache - even ones which
5697  * have a transaction open against a different journal.
5698  *
5699  * Is this cheating?  Not really.  Sure, we haven't written the
5700  * inode out, but prune_icache isn't a user-visible syncing function.
5701  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5702  * we start and wait on commits.
5703  *
5704  * Is this efficient/effective?  Well, we're being nice to the system
5705  * by cleaning up our inodes proactively so they can be reaped
5706  * without I/O.  But we are potentially leaving up to five seconds'
5707  * worth of inodes floating about which prune_icache wants us to
5708  * write out.  One way to fix that would be to get prune_icache()
5709  * to do a write_super() to free up some memory.  It has the desired
5710  * effect.
5711  */
5712 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5713 {
5714         struct ext4_iloc iloc;
5715         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5716         static unsigned int mnt_count;
5717         int err, ret;
5718
5719         might_sleep();
5720         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5721         err = ext4_reserve_inode_write(handle, inode, &iloc);
5722         if (ext4_handle_valid(handle) &&
5723             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5724             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5725                 /*
5726                  * We need extra buffer credits since we may write into EA block
5727                  * with this same handle. If journal_extend fails, then it will
5728                  * only result in a minor loss of functionality for that inode.
5729                  * If this is felt to be critical, then e2fsck should be run to
5730                  * force a large enough s_min_extra_isize.
5731                  */
5732                 if ((jbd2_journal_extend(handle,
5733                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5734                         ret = ext4_expand_extra_isize(inode,
5735                                                       sbi->s_want_extra_isize,
5736                                                       iloc, handle);
5737                         if (ret) {
5738                                 ext4_set_inode_state(inode,
5739                                                      EXT4_STATE_NO_EXPAND);
5740                                 if (mnt_count !=
5741                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5742                                         ext4_warning(inode->i_sb,
5743                                         "Unable to expand inode %lu. Delete"
5744                                         " some EAs or run e2fsck.",
5745                                         inode->i_ino);
5746                                         mnt_count =
5747                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5748                                 }
5749                         }
5750                 }
5751         }
5752         if (!err)
5753                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5754         return err;
5755 }
5756
5757 /*
5758  * ext4_dirty_inode() is called from __mark_inode_dirty()
5759  *
5760  * We're really interested in the case where a file is being extended.
5761  * i_size has been changed by generic_commit_write() and we thus need
5762  * to include the updated inode in the current transaction.
5763  *
5764  * Also, dquot_alloc_block() will always dirty the inode when blocks
5765  * are allocated to the file.
5766  *
5767  * If the inode is marked synchronous, we don't honour that here - doing
5768  * so would cause a commit on atime updates, which we don't bother doing.
5769  * We handle synchronous inodes at the highest possible level.
5770  */
5771 void ext4_dirty_inode(struct inode *inode, int flags)
5772 {
5773         handle_t *handle;
5774
5775         handle = ext4_journal_start(inode, 2);
5776         if (IS_ERR(handle))
5777                 goto out;
5778
5779         ext4_mark_inode_dirty(handle, inode);
5780
5781         ext4_journal_stop(handle);
5782 out:
5783         return;
5784 }
5785
5786 #if 0
5787 /*
5788  * Bind an inode's backing buffer_head into this transaction, to prevent
5789  * it from being flushed to disk early.  Unlike
5790  * ext4_reserve_inode_write, this leaves behind no bh reference and
5791  * returns no iloc structure, so the caller needs to repeat the iloc
5792  * lookup to mark the inode dirty later.
5793  */
5794 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5795 {
5796         struct ext4_iloc iloc;
5797
5798         int err = 0;
5799         if (handle) {
5800                 err = ext4_get_inode_loc(inode, &iloc);
5801                 if (!err) {
5802                         BUFFER_TRACE(iloc.bh, "get_write_access");
5803                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5804                         if (!err)
5805                                 err = ext4_handle_dirty_metadata(handle,
5806                                                                  NULL,
5807                                                                  iloc.bh);
5808                         brelse(iloc.bh);
5809                 }
5810         }
5811         ext4_std_error(inode->i_sb, err);
5812         return err;
5813 }
5814 #endif
5815
5816 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5817 {
5818         journal_t *journal;
5819         handle_t *handle;
5820         int err;
5821
5822         /*
5823          * We have to be very careful here: changing a data block's
5824          * journaling status dynamically is dangerous.  If we write a
5825          * data block to the journal, change the status and then delete
5826          * that block, we risk forgetting to revoke the old log record
5827          * from the journal and so a subsequent replay can corrupt data.
5828          * So, first we make sure that the journal is empty and that
5829          * nobody is changing anything.
5830          */
5831
5832         journal = EXT4_JOURNAL(inode);
5833         if (!journal)
5834                 return 0;
5835         if (is_journal_aborted(journal))
5836                 return -EROFS;
5837
5838         jbd2_journal_lock_updates(journal);
5839         jbd2_journal_flush(journal);
5840
5841         /*
5842          * OK, there are no updates running now, and all cached data is
5843          * synced to disk.  We are now in a completely consistent state
5844          * which doesn't have anything in the journal, and we know that
5845          * no filesystem updates are running, so it is safe to modify
5846          * the inode's in-core data-journaling state flag now.
5847          */
5848
5849         if (val)
5850                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5851         else
5852                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5853         ext4_set_aops(inode);
5854
5855         jbd2_journal_unlock_updates(journal);
5856
5857         /* Finally we can mark the inode as dirty. */
5858
5859         handle = ext4_journal_start(inode, 1);
5860         if (IS_ERR(handle))
5861                 return PTR_ERR(handle);
5862
5863         err = ext4_mark_inode_dirty(handle, inode);
5864         ext4_handle_sync(handle);
5865         ext4_journal_stop(handle);
5866         ext4_std_error(inode->i_sb, err);
5867
5868         return err;
5869 }
5870
5871 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5872 {
5873         return !buffer_mapped(bh);
5874 }
5875
5876 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5877 {
5878         struct page *page = vmf->page;
5879         loff_t size;
5880         unsigned long len;
5881         int ret = -EINVAL;
5882         void *fsdata;
5883         struct file *file = vma->vm_file;
5884         struct inode *inode = file->f_path.dentry->d_inode;
5885         struct address_space *mapping = inode->i_mapping;
5886
5887         /*
5888          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5889          * get i_mutex because we are already holding mmap_sem.
5890          */
5891         down_read(&inode->i_alloc_sem);
5892         size = i_size_read(inode);
5893         if (page->mapping != mapping || size <= page_offset(page)
5894             || !PageUptodate(page)) {
5895                 /* page got truncated from under us? */
5896                 goto out_unlock;
5897         }
5898         ret = 0;
5899
5900         lock_page(page);
5901         wait_on_page_writeback(page);
5902         if (PageMappedToDisk(page)) {
5903                 up_read(&inode->i_alloc_sem);
5904                 return VM_FAULT_LOCKED;
5905         }
5906
5907         if (page->index == size >> PAGE_CACHE_SHIFT)
5908                 len = size & ~PAGE_CACHE_MASK;
5909         else
5910                 len = PAGE_CACHE_SIZE;
5911
5912         /*
5913          * return if we have all the buffers mapped. This avoid
5914          * the need to call write_begin/write_end which does a
5915          * journal_start/journal_stop which can block and take
5916          * long time
5917          */
5918         if (page_has_buffers(page)) {
5919                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5920                                         ext4_bh_unmapped)) {
5921                         up_read(&inode->i_alloc_sem);
5922                         return VM_FAULT_LOCKED;
5923                 }
5924         }
5925         unlock_page(page);
5926         /*
5927          * OK, we need to fill the hole... Do write_begin write_end
5928          * to do block allocation/reservation.We are not holding
5929          * inode.i__mutex here. That allow * parallel write_begin,
5930          * write_end call. lock_page prevent this from happening
5931          * on the same page though
5932          */
5933         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5934                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5935         if (ret < 0)
5936                 goto out_unlock;
5937         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5938                         len, len, page, fsdata);
5939         if (ret < 0)
5940                 goto out_unlock;
5941         ret = 0;
5942
5943         /*
5944          * write_begin/end might have created a dirty page and someone
5945          * could wander in and start the IO.  Make sure that hasn't
5946          * happened.
5947          */
5948         lock_page(page);
5949         wait_on_page_writeback(page);
5950         up_read(&inode->i_alloc_sem);
5951         return VM_FAULT_LOCKED;
5952 out_unlock:
5953         if (ret)
5954                 ret = VM_FAULT_SIGBUS;
5955         up_read(&inode->i_alloc_sem);
5956         return ret;
5957 }