091845298f482d735e9af490b24bd521b1a35cf2
[firefly-linux-kernel-4.4.55.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53                               struct ext4_inode_info *ei)
54 {
55         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56         __u16 csum_lo;
57         __u16 csum_hi = 0;
58         __u32 csum;
59
60         csum_lo = le16_to_cpu(raw->i_checksum_lo);
61         raw->i_checksum_lo = 0;
62         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65                 raw->i_checksum_hi = 0;
66         }
67
68         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69                            EXT4_INODE_SIZE(inode->i_sb));
70
71         raw->i_checksum_lo = cpu_to_le16(csum_lo);
72         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76         return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80                                   struct ext4_inode_info *ei)
81 {
82         __u32 provided, calculated;
83
84         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85             cpu_to_le32(EXT4_OS_LINUX) ||
86             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88                 return 1;
89
90         provided = le16_to_cpu(raw->i_checksum_lo);
91         calculated = ext4_inode_csum(inode, raw, ei);
92         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95         else
96                 calculated &= 0xFFFF;
97
98         return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102                                 struct ext4_inode_info *ei)
103 {
104         __u32 csum;
105
106         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107             cpu_to_le32(EXT4_OS_LINUX) ||
108             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110                 return;
111
112         csum = ext4_inode_csum(inode, raw, ei);
113         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120                                               loff_t new_size)
121 {
122         trace_ext4_begin_ordered_truncate(inode, new_size);
123         /*
124          * If jinode is zero, then we never opened the file for
125          * writing, so there's no need to call
126          * jbd2_journal_begin_ordered_truncate() since there's no
127          * outstanding writes we need to flush.
128          */
129         if (!EXT4_I(inode)->jinode)
130                 return 0;
131         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132                                                    EXT4_I(inode)->jinode,
133                                                    new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137                                 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141                                   int pextents);
142
143 /*
144  * Test whether an inode is a fast symlink.
145  */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148         int ea_blocks = EXT4_I(inode)->i_file_acl ?
149                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151         if (ext4_has_inline_data(inode))
152                 return 0;
153
154         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155 }
156
157 /*
158  * Restart the transaction associated with *handle.  This does a commit,
159  * so before we call here everything must be consistently dirtied against
160  * this transaction.
161  */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163                                  int nblocks)
164 {
165         int ret;
166
167         /*
168          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
169          * moment, get_block can be called only for blocks inside i_size since
170          * page cache has been already dropped and writes are blocked by
171          * i_mutex. So we can safely drop the i_data_sem here.
172          */
173         BUG_ON(EXT4_JOURNAL(inode) == NULL);
174         jbd_debug(2, "restarting handle %p\n", handle);
175         up_write(&EXT4_I(inode)->i_data_sem);
176         ret = ext4_journal_restart(handle, nblocks);
177         down_write(&EXT4_I(inode)->i_data_sem);
178         ext4_discard_preallocations(inode);
179
180         return ret;
181 }
182
183 /*
184  * Called at the last iput() if i_nlink is zero.
185  */
186 void ext4_evict_inode(struct inode *inode)
187 {
188         handle_t *handle;
189         int err;
190
191         trace_ext4_evict_inode(inode);
192
193         if (inode->i_nlink) {
194                 /*
195                  * When journalling data dirty buffers are tracked only in the
196                  * journal. So although mm thinks everything is clean and
197                  * ready for reaping the inode might still have some pages to
198                  * write in the running transaction or waiting to be
199                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
200                  * (via truncate_inode_pages()) to discard these buffers can
201                  * cause data loss. Also even if we did not discard these
202                  * buffers, we would have no way to find them after the inode
203                  * is reaped and thus user could see stale data if he tries to
204                  * read them before the transaction is checkpointed. So be
205                  * careful and force everything to disk here... We use
206                  * ei->i_datasync_tid to store the newest transaction
207                  * containing inode's data.
208                  *
209                  * Note that directories do not have this problem because they
210                  * don't use page cache.
211                  */
212                 if (ext4_should_journal_data(inode) &&
213                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214                     inode->i_ino != EXT4_JOURNAL_INO) {
215                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218                         jbd2_complete_transaction(journal, commit_tid);
219                         filemap_write_and_wait(&inode->i_data);
220                 }
221                 truncate_inode_pages_final(&inode->i_data);
222
223                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
224                 goto no_delete;
225         }
226
227         if (!is_bad_inode(inode))
228                 dquot_initialize(inode);
229
230         if (ext4_should_order_data(inode))
231                 ext4_begin_ordered_truncate(inode, 0);
232         truncate_inode_pages_final(&inode->i_data);
233
234         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
235         if (is_bad_inode(inode))
236                 goto no_delete;
237
238         /*
239          * Protect us against freezing - iput() caller didn't have to have any
240          * protection against it
241          */
242         sb_start_intwrite(inode->i_sb);
243         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244                                     ext4_blocks_for_truncate(inode)+3);
245         if (IS_ERR(handle)) {
246                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
247                 /*
248                  * If we're going to skip the normal cleanup, we still need to
249                  * make sure that the in-core orphan linked list is properly
250                  * cleaned up.
251                  */
252                 ext4_orphan_del(NULL, inode);
253                 sb_end_intwrite(inode->i_sb);
254                 goto no_delete;
255         }
256
257         if (IS_SYNC(inode))
258                 ext4_handle_sync(handle);
259         inode->i_size = 0;
260         err = ext4_mark_inode_dirty(handle, inode);
261         if (err) {
262                 ext4_warning(inode->i_sb,
263                              "couldn't mark inode dirty (err %d)", err);
264                 goto stop_handle;
265         }
266         if (inode->i_blocks)
267                 ext4_truncate(inode);
268
269         /*
270          * ext4_ext_truncate() doesn't reserve any slop when it
271          * restarts journal transactions; therefore there may not be
272          * enough credits left in the handle to remove the inode from
273          * the orphan list and set the dtime field.
274          */
275         if (!ext4_handle_has_enough_credits(handle, 3)) {
276                 err = ext4_journal_extend(handle, 3);
277                 if (err > 0)
278                         err = ext4_journal_restart(handle, 3);
279                 if (err != 0) {
280                         ext4_warning(inode->i_sb,
281                                      "couldn't extend journal (err %d)", err);
282                 stop_handle:
283                         ext4_journal_stop(handle);
284                         ext4_orphan_del(NULL, inode);
285                         sb_end_intwrite(inode->i_sb);
286                         goto no_delete;
287                 }
288         }
289
290         /*
291          * Kill off the orphan record which ext4_truncate created.
292          * AKPM: I think this can be inside the above `if'.
293          * Note that ext4_orphan_del() has to be able to cope with the
294          * deletion of a non-existent orphan - this is because we don't
295          * know if ext4_truncate() actually created an orphan record.
296          * (Well, we could do this if we need to, but heck - it works)
297          */
298         ext4_orphan_del(handle, inode);
299         EXT4_I(inode)->i_dtime  = get_seconds();
300
301         /*
302          * One subtle ordering requirement: if anything has gone wrong
303          * (transaction abort, IO errors, whatever), then we can still
304          * do these next steps (the fs will already have been marked as
305          * having errors), but we can't free the inode if the mark_dirty
306          * fails.
307          */
308         if (ext4_mark_inode_dirty(handle, inode))
309                 /* If that failed, just do the required in-core inode clear. */
310                 ext4_clear_inode(inode);
311         else
312                 ext4_free_inode(handle, inode);
313         ext4_journal_stop(handle);
314         sb_end_intwrite(inode->i_sb);
315         return;
316 no_delete:
317         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
318 }
319
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
322 {
323         return &EXT4_I(inode)->i_reserved_quota;
324 }
325 #endif
326
327 /*
328  * Called with i_data_sem down, which is important since we can call
329  * ext4_discard_preallocations() from here.
330  */
331 void ext4_da_update_reserve_space(struct inode *inode,
332                                         int used, int quota_claim)
333 {
334         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335         struct ext4_inode_info *ei = EXT4_I(inode);
336
337         spin_lock(&ei->i_block_reservation_lock);
338         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339         if (unlikely(used > ei->i_reserved_data_blocks)) {
340                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341                          "with only %d reserved data blocks",
342                          __func__, inode->i_ino, used,
343                          ei->i_reserved_data_blocks);
344                 WARN_ON(1);
345                 used = ei->i_reserved_data_blocks;
346         }
347
348         /* Update per-inode reservations */
349         ei->i_reserved_data_blocks -= used;
350         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
351
352         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
353
354         /* Update quota subsystem for data blocks */
355         if (quota_claim)
356                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
357         else {
358                 /*
359                  * We did fallocate with an offset that is already delayed
360                  * allocated. So on delayed allocated writeback we should
361                  * not re-claim the quota for fallocated blocks.
362                  */
363                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
364         }
365
366         /*
367          * If we have done all the pending block allocations and if
368          * there aren't any writers on the inode, we can discard the
369          * inode's preallocations.
370          */
371         if ((ei->i_reserved_data_blocks == 0) &&
372             (atomic_read(&inode->i_writecount) == 0))
373                 ext4_discard_preallocations(inode);
374 }
375
376 static int __check_block_validity(struct inode *inode, const char *func,
377                                 unsigned int line,
378                                 struct ext4_map_blocks *map)
379 {
380         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381                                    map->m_len)) {
382                 ext4_error_inode(inode, func, line, map->m_pblk,
383                                  "lblock %lu mapped to illegal pblock "
384                                  "(length %d)", (unsigned long) map->m_lblk,
385                                  map->m_len);
386                 return -EIO;
387         }
388         return 0;
389 }
390
391 #define check_block_validity(inode, map)        \
392         __check_block_validity((inode), __func__, __LINE__, (map))
393
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
396                                        struct inode *inode,
397                                        struct ext4_map_blocks *es_map,
398                                        struct ext4_map_blocks *map,
399                                        int flags)
400 {
401         int retval;
402
403         map->m_flags = 0;
404         /*
405          * There is a race window that the result is not the same.
406          * e.g. xfstests #223 when dioread_nolock enables.  The reason
407          * is that we lookup a block mapping in extent status tree with
408          * out taking i_data_sem.  So at the time the unwritten extent
409          * could be converted.
410          */
411         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412                 down_read(&EXT4_I(inode)->i_data_sem);
413         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415                                              EXT4_GET_BLOCKS_KEEP_SIZE);
416         } else {
417                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418                                              EXT4_GET_BLOCKS_KEEP_SIZE);
419         }
420         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421                 up_read((&EXT4_I(inode)->i_data_sem));
422         /*
423          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424          * because it shouldn't be marked in es_map->m_flags.
425          */
426         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427
428         /*
429          * We don't check m_len because extent will be collpased in status
430          * tree.  So the m_len might not equal.
431          */
432         if (es_map->m_lblk != map->m_lblk ||
433             es_map->m_flags != map->m_flags ||
434             es_map->m_pblk != map->m_pblk) {
435                 printk("ES cache assertion failed for inode: %lu "
436                        "es_cached ex [%d/%d/%llu/%x] != "
437                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438                        inode->i_ino, es_map->m_lblk, es_map->m_len,
439                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
440                        map->m_len, map->m_pblk, map->m_flags,
441                        retval, flags);
442         }
443 }
444 #endif /* ES_AGGRESSIVE_TEST */
445
446 /*
447  * The ext4_map_blocks() function tries to look up the requested blocks,
448  * and returns if the blocks are already mapped.
449  *
450  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451  * and store the allocated blocks in the result buffer head and mark it
452  * mapped.
453  *
454  * If file type is extents based, it will call ext4_ext_map_blocks(),
455  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
456  * based files
457  *
458  * On success, it returns the number of blocks being mapped or allocated.
459  * if create==0 and the blocks are pre-allocated and unwritten block,
460  * the result buffer head is unmapped. If the create ==1, it will make sure
461  * the buffer head is mapped.
462  *
463  * It returns 0 if plain look up failed (blocks have not been allocated), in
464  * that case, buffer head is unmapped
465  *
466  * It returns the error in case of allocation failure.
467  */
468 int ext4_map_blocks(handle_t *handle, struct inode *inode,
469                     struct ext4_map_blocks *map, int flags)
470 {
471         struct extent_status es;
472         int retval;
473         int ret = 0;
474 #ifdef ES_AGGRESSIVE_TEST
475         struct ext4_map_blocks orig_map;
476
477         memcpy(&orig_map, map, sizeof(*map));
478 #endif
479
480         map->m_flags = 0;
481         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
483                   (unsigned long) map->m_lblk);
484
485         /*
486          * ext4_map_blocks returns an int, and m_len is an unsigned int
487          */
488         if (unlikely(map->m_len > INT_MAX))
489                 map->m_len = INT_MAX;
490
491         /* We can handle the block number less than EXT_MAX_BLOCKS */
492         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493                 return -EIO;
494
495         /* Lookup extent status tree firstly */
496         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497                 ext4_es_lru_add(inode);
498                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499                         map->m_pblk = ext4_es_pblock(&es) +
500                                         map->m_lblk - es.es_lblk;
501                         map->m_flags |= ext4_es_is_written(&es) ?
502                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503                         retval = es.es_len - (map->m_lblk - es.es_lblk);
504                         if (retval > map->m_len)
505                                 retval = map->m_len;
506                         map->m_len = retval;
507                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508                         retval = 0;
509                 } else {
510                         BUG_ON(1);
511                 }
512 #ifdef ES_AGGRESSIVE_TEST
513                 ext4_map_blocks_es_recheck(handle, inode, map,
514                                            &orig_map, flags);
515 #endif
516                 goto found;
517         }
518
519         /*
520          * Try to see if we can get the block without requesting a new
521          * file system block.
522          */
523         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
524                 down_read(&EXT4_I(inode)->i_data_sem);
525         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
526                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527                                              EXT4_GET_BLOCKS_KEEP_SIZE);
528         } else {
529                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530                                              EXT4_GET_BLOCKS_KEEP_SIZE);
531         }
532         if (retval > 0) {
533                 unsigned int status;
534
535                 if (unlikely(retval != map->m_len)) {
536                         ext4_warning(inode->i_sb,
537                                      "ES len assertion failed for inode "
538                                      "%lu: retval %d != map->m_len %d",
539                                      inode->i_ino, retval, map->m_len);
540                         WARN_ON(1);
541                 }
542
543                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546                     ext4_find_delalloc_range(inode, map->m_lblk,
547                                              map->m_lblk + map->m_len - 1))
548                         status |= EXTENT_STATUS_DELAYED;
549                 ret = ext4_es_insert_extent(inode, map->m_lblk,
550                                             map->m_len, map->m_pblk, status);
551                 if (ret < 0)
552                         retval = ret;
553         }
554         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555                 up_read((&EXT4_I(inode)->i_data_sem));
556
557 found:
558         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
559                 ret = check_block_validity(inode, map);
560                 if (ret != 0)
561                         return ret;
562         }
563
564         /* If it is only a block(s) look up */
565         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
566                 return retval;
567
568         /*
569          * Returns if the blocks have already allocated
570          *
571          * Note that if blocks have been preallocated
572          * ext4_ext_get_block() returns the create = 0
573          * with buffer head unmapped.
574          */
575         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
576                 /*
577                  * If we need to convert extent to unwritten
578                  * we continue and do the actual work in
579                  * ext4_ext_map_blocks()
580                  */
581                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582                         return retval;
583
584         /*
585          * Here we clear m_flags because after allocating an new extent,
586          * it will be set again.
587          */
588         map->m_flags &= ~EXT4_MAP_FLAGS;
589
590         /*
591          * New blocks allocate and/or writing to unwritten extent
592          * will possibly result in updating i_data, so we take
593          * the write lock of i_data_sem, and call get_block()
594          * with create == 1 flag.
595          */
596         down_write(&EXT4_I(inode)->i_data_sem);
597
598         /*
599          * We need to check for EXT4 here because migrate
600          * could have changed the inode type in between
601          */
602         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
603                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
604         } else {
605                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
606
607                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
608                         /*
609                          * We allocated new blocks which will result in
610                          * i_data's format changing.  Force the migrate
611                          * to fail by clearing migrate flags
612                          */
613                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
614                 }
615
616                 /*
617                  * Update reserved blocks/metadata blocks after successful
618                  * block allocation which had been deferred till now. We don't
619                  * support fallocate for non extent files. So we can update
620                  * reserve space here.
621                  */
622                 if ((retval > 0) &&
623                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
624                         ext4_da_update_reserve_space(inode, retval, 1);
625         }
626
627         if (retval > 0) {
628                 unsigned int status;
629
630                 if (unlikely(retval != map->m_len)) {
631                         ext4_warning(inode->i_sb,
632                                      "ES len assertion failed for inode "
633                                      "%lu: retval %d != map->m_len %d",
634                                      inode->i_ino, retval, map->m_len);
635                         WARN_ON(1);
636                 }
637
638                 /*
639                  * If the extent has been zeroed out, we don't need to update
640                  * extent status tree.
641                  */
642                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
643                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
644                         if (ext4_es_is_written(&es))
645                                 goto has_zeroout;
646                 }
647                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
648                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
649                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
650                     ext4_find_delalloc_range(inode, map->m_lblk,
651                                              map->m_lblk + map->m_len - 1))
652                         status |= EXTENT_STATUS_DELAYED;
653                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
654                                             map->m_pblk, status);
655                 if (ret < 0)
656                         retval = ret;
657         }
658
659 has_zeroout:
660         up_write((&EXT4_I(inode)->i_data_sem));
661         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
662                 ret = check_block_validity(inode, map);
663                 if (ret != 0)
664                         return ret;
665         }
666         return retval;
667 }
668
669 /* Maximum number of blocks we map for direct IO at once. */
670 #define DIO_MAX_BLOCKS 4096
671
672 static int _ext4_get_block(struct inode *inode, sector_t iblock,
673                            struct buffer_head *bh, int flags)
674 {
675         handle_t *handle = ext4_journal_current_handle();
676         struct ext4_map_blocks map;
677         int ret = 0, started = 0;
678         int dio_credits;
679
680         if (ext4_has_inline_data(inode))
681                 return -ERANGE;
682
683         map.m_lblk = iblock;
684         map.m_len = bh->b_size >> inode->i_blkbits;
685
686         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
687                 /* Direct IO write... */
688                 if (map.m_len > DIO_MAX_BLOCKS)
689                         map.m_len = DIO_MAX_BLOCKS;
690                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
692                                             dio_credits);
693                 if (IS_ERR(handle)) {
694                         ret = PTR_ERR(handle);
695                         return ret;
696                 }
697                 started = 1;
698         }
699
700         ret = ext4_map_blocks(handle, inode, &map, flags);
701         if (ret > 0) {
702                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
703
704                 map_bh(bh, inode->i_sb, map.m_pblk);
705                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
706                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
707                         set_buffer_defer_completion(bh);
708                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
709                 ret = 0;
710         }
711         if (started)
712                 ext4_journal_stop(handle);
713         return ret;
714 }
715
716 int ext4_get_block(struct inode *inode, sector_t iblock,
717                    struct buffer_head *bh, int create)
718 {
719         return _ext4_get_block(inode, iblock, bh,
720                                create ? EXT4_GET_BLOCKS_CREATE : 0);
721 }
722
723 /*
724  * `handle' can be NULL if create is zero
725  */
726 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
727                                 ext4_lblk_t block, int create)
728 {
729         struct ext4_map_blocks map;
730         struct buffer_head *bh;
731         int err;
732
733         J_ASSERT(handle != NULL || create == 0);
734
735         map.m_lblk = block;
736         map.m_len = 1;
737         err = ext4_map_blocks(handle, inode, &map,
738                               create ? EXT4_GET_BLOCKS_CREATE : 0);
739
740         if (err == 0)
741                 return create ? ERR_PTR(-ENOSPC) : NULL;
742         if (err < 0)
743                 return ERR_PTR(err);
744
745         bh = sb_getblk(inode->i_sb, map.m_pblk);
746         if (unlikely(!bh))
747                 return ERR_PTR(-ENOMEM);
748         if (map.m_flags & EXT4_MAP_NEW) {
749                 J_ASSERT(create != 0);
750                 J_ASSERT(handle != NULL);
751
752                 /*
753                  * Now that we do not always journal data, we should
754                  * keep in mind whether this should always journal the
755                  * new buffer as metadata.  For now, regular file
756                  * writes use ext4_get_block instead, so it's not a
757                  * problem.
758                  */
759                 lock_buffer(bh);
760                 BUFFER_TRACE(bh, "call get_create_access");
761                 err = ext4_journal_get_create_access(handle, bh);
762                 if (unlikely(err)) {
763                         unlock_buffer(bh);
764                         goto errout;
765                 }
766                 if (!buffer_uptodate(bh)) {
767                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
768                         set_buffer_uptodate(bh);
769                 }
770                 unlock_buffer(bh);
771                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
772                 err = ext4_handle_dirty_metadata(handle, inode, bh);
773                 if (unlikely(err))
774                         goto errout;
775         } else
776                 BUFFER_TRACE(bh, "not a new buffer");
777         return bh;
778 errout:
779         brelse(bh);
780         return ERR_PTR(err);
781 }
782
783 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
784                                ext4_lblk_t block, int create)
785 {
786         struct buffer_head *bh;
787
788         bh = ext4_getblk(handle, inode, block, create);
789         if (IS_ERR(bh))
790                 return bh;
791         if (!bh || buffer_uptodate(bh))
792                 return bh;
793         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
794         wait_on_buffer(bh);
795         if (buffer_uptodate(bh))
796                 return bh;
797         put_bh(bh);
798         return ERR_PTR(-EIO);
799 }
800
801 int ext4_walk_page_buffers(handle_t *handle,
802                            struct buffer_head *head,
803                            unsigned from,
804                            unsigned to,
805                            int *partial,
806                            int (*fn)(handle_t *handle,
807                                      struct buffer_head *bh))
808 {
809         struct buffer_head *bh;
810         unsigned block_start, block_end;
811         unsigned blocksize = head->b_size;
812         int err, ret = 0;
813         struct buffer_head *next;
814
815         for (bh = head, block_start = 0;
816              ret == 0 && (bh != head || !block_start);
817              block_start = block_end, bh = next) {
818                 next = bh->b_this_page;
819                 block_end = block_start + blocksize;
820                 if (block_end <= from || block_start >= to) {
821                         if (partial && !buffer_uptodate(bh))
822                                 *partial = 1;
823                         continue;
824                 }
825                 err = (*fn)(handle, bh);
826                 if (!ret)
827                         ret = err;
828         }
829         return ret;
830 }
831
832 /*
833  * To preserve ordering, it is essential that the hole instantiation and
834  * the data write be encapsulated in a single transaction.  We cannot
835  * close off a transaction and start a new one between the ext4_get_block()
836  * and the commit_write().  So doing the jbd2_journal_start at the start of
837  * prepare_write() is the right place.
838  *
839  * Also, this function can nest inside ext4_writepage().  In that case, we
840  * *know* that ext4_writepage() has generated enough buffer credits to do the
841  * whole page.  So we won't block on the journal in that case, which is good,
842  * because the caller may be PF_MEMALLOC.
843  *
844  * By accident, ext4 can be reentered when a transaction is open via
845  * quota file writes.  If we were to commit the transaction while thus
846  * reentered, there can be a deadlock - we would be holding a quota
847  * lock, and the commit would never complete if another thread had a
848  * transaction open and was blocking on the quota lock - a ranking
849  * violation.
850  *
851  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
852  * will _not_ run commit under these circumstances because handle->h_ref
853  * is elevated.  We'll still have enough credits for the tiny quotafile
854  * write.
855  */
856 int do_journal_get_write_access(handle_t *handle,
857                                 struct buffer_head *bh)
858 {
859         int dirty = buffer_dirty(bh);
860         int ret;
861
862         if (!buffer_mapped(bh) || buffer_freed(bh))
863                 return 0;
864         /*
865          * __block_write_begin() could have dirtied some buffers. Clean
866          * the dirty bit as jbd2_journal_get_write_access() could complain
867          * otherwise about fs integrity issues. Setting of the dirty bit
868          * by __block_write_begin() isn't a real problem here as we clear
869          * the bit before releasing a page lock and thus writeback cannot
870          * ever write the buffer.
871          */
872         if (dirty)
873                 clear_buffer_dirty(bh);
874         BUFFER_TRACE(bh, "get write access");
875         ret = ext4_journal_get_write_access(handle, bh);
876         if (!ret && dirty)
877                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878         return ret;
879 }
880
881 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
882                    struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884                             loff_t pos, unsigned len, unsigned flags,
885                             struct page **pagep, void **fsdata)
886 {
887         struct inode *inode = mapping->host;
888         int ret, needed_blocks;
889         handle_t *handle;
890         int retries = 0;
891         struct page *page;
892         pgoff_t index;
893         unsigned from, to;
894
895         trace_ext4_write_begin(inode, pos, len, flags);
896         /*
897          * Reserve one block more for addition to orphan list in case
898          * we allocate blocks but write fails for some reason
899          */
900         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901         index = pos >> PAGE_CACHE_SHIFT;
902         from = pos & (PAGE_CACHE_SIZE - 1);
903         to = from + len;
904
905         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
906                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
907                                                     flags, pagep);
908                 if (ret < 0)
909                         return ret;
910                 if (ret == 1)
911                         return 0;
912         }
913
914         /*
915          * grab_cache_page_write_begin() can take a long time if the
916          * system is thrashing due to memory pressure, or if the page
917          * is being written back.  So grab it first before we start
918          * the transaction handle.  This also allows us to allocate
919          * the page (if needed) without using GFP_NOFS.
920          */
921 retry_grab:
922         page = grab_cache_page_write_begin(mapping, index, flags);
923         if (!page)
924                 return -ENOMEM;
925         unlock_page(page);
926
927 retry_journal:
928         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
929         if (IS_ERR(handle)) {
930                 page_cache_release(page);
931                 return PTR_ERR(handle);
932         }
933
934         lock_page(page);
935         if (page->mapping != mapping) {
936                 /* The page got truncated from under us */
937                 unlock_page(page);
938                 page_cache_release(page);
939                 ext4_journal_stop(handle);
940                 goto retry_grab;
941         }
942         /* In case writeback began while the page was unlocked */
943         wait_for_stable_page(page);
944
945         if (ext4_should_dioread_nolock(inode))
946                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
947         else
948                 ret = __block_write_begin(page, pos, len, ext4_get_block);
949
950         if (!ret && ext4_should_journal_data(inode)) {
951                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
952                                              from, to, NULL,
953                                              do_journal_get_write_access);
954         }
955
956         if (ret) {
957                 unlock_page(page);
958                 /*
959                  * __block_write_begin may have instantiated a few blocks
960                  * outside i_size.  Trim these off again. Don't need
961                  * i_size_read because we hold i_mutex.
962                  *
963                  * Add inode to orphan list in case we crash before
964                  * truncate finishes
965                  */
966                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
967                         ext4_orphan_add(handle, inode);
968
969                 ext4_journal_stop(handle);
970                 if (pos + len > inode->i_size) {
971                         ext4_truncate_failed_write(inode);
972                         /*
973                          * If truncate failed early the inode might
974                          * still be on the orphan list; we need to
975                          * make sure the inode is removed from the
976                          * orphan list in that case.
977                          */
978                         if (inode->i_nlink)
979                                 ext4_orphan_del(NULL, inode);
980                 }
981
982                 if (ret == -ENOSPC &&
983                     ext4_should_retry_alloc(inode->i_sb, &retries))
984                         goto retry_journal;
985                 page_cache_release(page);
986                 return ret;
987         }
988         *pagep = page;
989         return ret;
990 }
991
992 /* For write_end() in data=journal mode */
993 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
994 {
995         int ret;
996         if (!buffer_mapped(bh) || buffer_freed(bh))
997                 return 0;
998         set_buffer_uptodate(bh);
999         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1000         clear_buffer_meta(bh);
1001         clear_buffer_prio(bh);
1002         return ret;
1003 }
1004
1005 /*
1006  * We need to pick up the new inode size which generic_commit_write gave us
1007  * `file' can be NULL - eg, when called from page_symlink().
1008  *
1009  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1010  * buffers are managed internally.
1011  */
1012 static int ext4_write_end(struct file *file,
1013                           struct address_space *mapping,
1014                           loff_t pos, unsigned len, unsigned copied,
1015                           struct page *page, void *fsdata)
1016 {
1017         handle_t *handle = ext4_journal_current_handle();
1018         struct inode *inode = mapping->host;
1019         int ret = 0, ret2;
1020         int i_size_changed = 0;
1021
1022         trace_ext4_write_end(inode, pos, len, copied);
1023         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1024                 ret = ext4_jbd2_file_inode(handle, inode);
1025                 if (ret) {
1026                         unlock_page(page);
1027                         page_cache_release(page);
1028                         goto errout;
1029                 }
1030         }
1031
1032         if (ext4_has_inline_data(inode)) {
1033                 ret = ext4_write_inline_data_end(inode, pos, len,
1034                                                  copied, page);
1035                 if (ret < 0)
1036                         goto errout;
1037                 copied = ret;
1038         } else
1039                 copied = block_write_end(file, mapping, pos,
1040                                          len, copied, page, fsdata);
1041         /*
1042          * it's important to update i_size while still holding page lock:
1043          * page writeout could otherwise come in and zero beyond i_size.
1044          */
1045         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1046         unlock_page(page);
1047         page_cache_release(page);
1048
1049         /*
1050          * Don't mark the inode dirty under page lock. First, it unnecessarily
1051          * makes the holding time of page lock longer. Second, it forces lock
1052          * ordering of page lock and transaction start for journaling
1053          * filesystems.
1054          */
1055         if (i_size_changed)
1056                 ext4_mark_inode_dirty(handle, inode);
1057
1058         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1059                 /* if we have allocated more blocks and copied
1060                  * less. We will have blocks allocated outside
1061                  * inode->i_size. So truncate them
1062                  */
1063                 ext4_orphan_add(handle, inode);
1064 errout:
1065         ret2 = ext4_journal_stop(handle);
1066         if (!ret)
1067                 ret = ret2;
1068
1069         if (pos + len > inode->i_size) {
1070                 ext4_truncate_failed_write(inode);
1071                 /*
1072                  * If truncate failed early the inode might still be
1073                  * on the orphan list; we need to make sure the inode
1074                  * is removed from the orphan list in that case.
1075                  */
1076                 if (inode->i_nlink)
1077                         ext4_orphan_del(NULL, inode);
1078         }
1079
1080         return ret ? ret : copied;
1081 }
1082
1083 static int ext4_journalled_write_end(struct file *file,
1084                                      struct address_space *mapping,
1085                                      loff_t pos, unsigned len, unsigned copied,
1086                                      struct page *page, void *fsdata)
1087 {
1088         handle_t *handle = ext4_journal_current_handle();
1089         struct inode *inode = mapping->host;
1090         int ret = 0, ret2;
1091         int partial = 0;
1092         unsigned from, to;
1093         int size_changed = 0;
1094
1095         trace_ext4_journalled_write_end(inode, pos, len, copied);
1096         from = pos & (PAGE_CACHE_SIZE - 1);
1097         to = from + len;
1098
1099         BUG_ON(!ext4_handle_valid(handle));
1100
1101         if (ext4_has_inline_data(inode))
1102                 copied = ext4_write_inline_data_end(inode, pos, len,
1103                                                     copied, page);
1104         else {
1105                 if (copied < len) {
1106                         if (!PageUptodate(page))
1107                                 copied = 0;
1108                         page_zero_new_buffers(page, from+copied, to);
1109                 }
1110
1111                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1112                                              to, &partial, write_end_fn);
1113                 if (!partial)
1114                         SetPageUptodate(page);
1115         }
1116         size_changed = ext4_update_inode_size(inode, pos + copied);
1117         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1118         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1119         unlock_page(page);
1120         page_cache_release(page);
1121
1122         if (size_changed) {
1123                 ret2 = ext4_mark_inode_dirty(handle, inode);
1124                 if (!ret)
1125                         ret = ret2;
1126         }
1127
1128         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1129                 /* if we have allocated more blocks and copied
1130                  * less. We will have blocks allocated outside
1131                  * inode->i_size. So truncate them
1132                  */
1133                 ext4_orphan_add(handle, inode);
1134
1135         ret2 = ext4_journal_stop(handle);
1136         if (!ret)
1137                 ret = ret2;
1138         if (pos + len > inode->i_size) {
1139                 ext4_truncate_failed_write(inode);
1140                 /*
1141                  * If truncate failed early the inode might still be
1142                  * on the orphan list; we need to make sure the inode
1143                  * is removed from the orphan list in that case.
1144                  */
1145                 if (inode->i_nlink)
1146                         ext4_orphan_del(NULL, inode);
1147         }
1148
1149         return ret ? ret : copied;
1150 }
1151
1152 /*
1153  * Reserve a single cluster located at lblock
1154  */
1155 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1156 {
1157         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1158         struct ext4_inode_info *ei = EXT4_I(inode);
1159         unsigned int md_needed;
1160         int ret;
1161
1162         /*
1163          * We will charge metadata quota at writeout time; this saves
1164          * us from metadata over-estimation, though we may go over by
1165          * a small amount in the end.  Here we just reserve for data.
1166          */
1167         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1168         if (ret)
1169                 return ret;
1170
1171         /*
1172          * recalculate the amount of metadata blocks to reserve
1173          * in order to allocate nrblocks
1174          * worse case is one extent per block
1175          */
1176         spin_lock(&ei->i_block_reservation_lock);
1177         /*
1178          * ext4_calc_metadata_amount() has side effects, which we have
1179          * to be prepared undo if we fail to claim space.
1180          */
1181         md_needed = 0;
1182         trace_ext4_da_reserve_space(inode, 0);
1183
1184         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1185                 spin_unlock(&ei->i_block_reservation_lock);
1186                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1187                 return -ENOSPC;
1188         }
1189         ei->i_reserved_data_blocks++;
1190         spin_unlock(&ei->i_block_reservation_lock);
1191
1192         return 0;       /* success */
1193 }
1194
1195 static void ext4_da_release_space(struct inode *inode, int to_free)
1196 {
1197         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1198         struct ext4_inode_info *ei = EXT4_I(inode);
1199
1200         if (!to_free)
1201                 return;         /* Nothing to release, exit */
1202
1203         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1204
1205         trace_ext4_da_release_space(inode, to_free);
1206         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1207                 /*
1208                  * if there aren't enough reserved blocks, then the
1209                  * counter is messed up somewhere.  Since this
1210                  * function is called from invalidate page, it's
1211                  * harmless to return without any action.
1212                  */
1213                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1214                          "ino %lu, to_free %d with only %d reserved "
1215                          "data blocks", inode->i_ino, to_free,
1216                          ei->i_reserved_data_blocks);
1217                 WARN_ON(1);
1218                 to_free = ei->i_reserved_data_blocks;
1219         }
1220         ei->i_reserved_data_blocks -= to_free;
1221
1222         /* update fs dirty data blocks counter */
1223         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1224
1225         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1226
1227         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1228 }
1229
1230 static void ext4_da_page_release_reservation(struct page *page,
1231                                              unsigned int offset,
1232                                              unsigned int length)
1233 {
1234         int to_release = 0;
1235         struct buffer_head *head, *bh;
1236         unsigned int curr_off = 0;
1237         struct inode *inode = page->mapping->host;
1238         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1239         unsigned int stop = offset + length;
1240         int num_clusters;
1241         ext4_fsblk_t lblk;
1242
1243         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1244
1245         head = page_buffers(page);
1246         bh = head;
1247         do {
1248                 unsigned int next_off = curr_off + bh->b_size;
1249
1250                 if (next_off > stop)
1251                         break;
1252
1253                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1254                         to_release++;
1255                         clear_buffer_delay(bh);
1256                 }
1257                 curr_off = next_off;
1258         } while ((bh = bh->b_this_page) != head);
1259
1260         if (to_release) {
1261                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1262                 ext4_es_remove_extent(inode, lblk, to_release);
1263         }
1264
1265         /* If we have released all the blocks belonging to a cluster, then we
1266          * need to release the reserved space for that cluster. */
1267         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1268         while (num_clusters > 0) {
1269                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1270                         ((num_clusters - 1) << sbi->s_cluster_bits);
1271                 if (sbi->s_cluster_ratio == 1 ||
1272                     !ext4_find_delalloc_cluster(inode, lblk))
1273                         ext4_da_release_space(inode, 1);
1274
1275                 num_clusters--;
1276         }
1277 }
1278
1279 /*
1280  * Delayed allocation stuff
1281  */
1282
1283 struct mpage_da_data {
1284         struct inode *inode;
1285         struct writeback_control *wbc;
1286
1287         pgoff_t first_page;     /* The first page to write */
1288         pgoff_t next_page;      /* Current page to examine */
1289         pgoff_t last_page;      /* Last page to examine */
1290         /*
1291          * Extent to map - this can be after first_page because that can be
1292          * fully mapped. We somewhat abuse m_flags to store whether the extent
1293          * is delalloc or unwritten.
1294          */
1295         struct ext4_map_blocks map;
1296         struct ext4_io_submit io_submit;        /* IO submission data */
1297 };
1298
1299 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1300                                        bool invalidate)
1301 {
1302         int nr_pages, i;
1303         pgoff_t index, end;
1304         struct pagevec pvec;
1305         struct inode *inode = mpd->inode;
1306         struct address_space *mapping = inode->i_mapping;
1307
1308         /* This is necessary when next_page == 0. */
1309         if (mpd->first_page >= mpd->next_page)
1310                 return;
1311
1312         index = mpd->first_page;
1313         end   = mpd->next_page - 1;
1314         if (invalidate) {
1315                 ext4_lblk_t start, last;
1316                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1317                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1318                 ext4_es_remove_extent(inode, start, last - start + 1);
1319         }
1320
1321         pagevec_init(&pvec, 0);
1322         while (index <= end) {
1323                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1324                 if (nr_pages == 0)
1325                         break;
1326                 for (i = 0; i < nr_pages; i++) {
1327                         struct page *page = pvec.pages[i];
1328                         if (page->index > end)
1329                                 break;
1330                         BUG_ON(!PageLocked(page));
1331                         BUG_ON(PageWriteback(page));
1332                         if (invalidate) {
1333                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1334                                 ClearPageUptodate(page);
1335                         }
1336                         unlock_page(page);
1337                 }
1338                 index = pvec.pages[nr_pages - 1]->index + 1;
1339                 pagevec_release(&pvec);
1340         }
1341 }
1342
1343 static void ext4_print_free_blocks(struct inode *inode)
1344 {
1345         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1346         struct super_block *sb = inode->i_sb;
1347         struct ext4_inode_info *ei = EXT4_I(inode);
1348
1349         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1350                EXT4_C2B(EXT4_SB(inode->i_sb),
1351                         ext4_count_free_clusters(sb)));
1352         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1353         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1354                (long long) EXT4_C2B(EXT4_SB(sb),
1355                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1356         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1357                (long long) EXT4_C2B(EXT4_SB(sb),
1358                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1359         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1360         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1361                  ei->i_reserved_data_blocks);
1362         return;
1363 }
1364
1365 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1366 {
1367         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1368 }
1369
1370 /*
1371  * This function is grabs code from the very beginning of
1372  * ext4_map_blocks, but assumes that the caller is from delayed write
1373  * time. This function looks up the requested blocks and sets the
1374  * buffer delay bit under the protection of i_data_sem.
1375  */
1376 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1377                               struct ext4_map_blocks *map,
1378                               struct buffer_head *bh)
1379 {
1380         struct extent_status es;
1381         int retval;
1382         sector_t invalid_block = ~((sector_t) 0xffff);
1383 #ifdef ES_AGGRESSIVE_TEST
1384         struct ext4_map_blocks orig_map;
1385
1386         memcpy(&orig_map, map, sizeof(*map));
1387 #endif
1388
1389         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1390                 invalid_block = ~0;
1391
1392         map->m_flags = 0;
1393         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1394                   "logical block %lu\n", inode->i_ino, map->m_len,
1395                   (unsigned long) map->m_lblk);
1396
1397         /* Lookup extent status tree firstly */
1398         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1399                 ext4_es_lru_add(inode);
1400                 if (ext4_es_is_hole(&es)) {
1401                         retval = 0;
1402                         down_read(&EXT4_I(inode)->i_data_sem);
1403                         goto add_delayed;
1404                 }
1405
1406                 /*
1407                  * Delayed extent could be allocated by fallocate.
1408                  * So we need to check it.
1409                  */
1410                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1411                         map_bh(bh, inode->i_sb, invalid_block);
1412                         set_buffer_new(bh);
1413                         set_buffer_delay(bh);
1414                         return 0;
1415                 }
1416
1417                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1418                 retval = es.es_len - (iblock - es.es_lblk);
1419                 if (retval > map->m_len)
1420                         retval = map->m_len;
1421                 map->m_len = retval;
1422                 if (ext4_es_is_written(&es))
1423                         map->m_flags |= EXT4_MAP_MAPPED;
1424                 else if (ext4_es_is_unwritten(&es))
1425                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1426                 else
1427                         BUG_ON(1);
1428
1429 #ifdef ES_AGGRESSIVE_TEST
1430                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1431 #endif
1432                 return retval;
1433         }
1434
1435         /*
1436          * Try to see if we can get the block without requesting a new
1437          * file system block.
1438          */
1439         down_read(&EXT4_I(inode)->i_data_sem);
1440         if (ext4_has_inline_data(inode)) {
1441                 /*
1442                  * We will soon create blocks for this page, and let
1443                  * us pretend as if the blocks aren't allocated yet.
1444                  * In case of clusters, we have to handle the work
1445                  * of mapping from cluster so that the reserved space
1446                  * is calculated properly.
1447                  */
1448                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1449                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1450                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1451                 retval = 0;
1452         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1453                 retval = ext4_ext_map_blocks(NULL, inode, map,
1454                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1455         else
1456                 retval = ext4_ind_map_blocks(NULL, inode, map,
1457                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1458
1459 add_delayed:
1460         if (retval == 0) {
1461                 int ret;
1462                 /*
1463                  * XXX: __block_prepare_write() unmaps passed block,
1464                  * is it OK?
1465                  */
1466                 /*
1467                  * If the block was allocated from previously allocated cluster,
1468                  * then we don't need to reserve it again. However we still need
1469                  * to reserve metadata for every block we're going to write.
1470                  */
1471                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1472                         ret = ext4_da_reserve_space(inode, iblock);
1473                         if (ret) {
1474                                 /* not enough space to reserve */
1475                                 retval = ret;
1476                                 goto out_unlock;
1477                         }
1478                 }
1479
1480                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1481                                             ~0, EXTENT_STATUS_DELAYED);
1482                 if (ret) {
1483                         retval = ret;
1484                         goto out_unlock;
1485                 }
1486
1487                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1488                  * and it should not appear on the bh->b_state.
1489                  */
1490                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1491
1492                 map_bh(bh, inode->i_sb, invalid_block);
1493                 set_buffer_new(bh);
1494                 set_buffer_delay(bh);
1495         } else if (retval > 0) {
1496                 int ret;
1497                 unsigned int status;
1498
1499                 if (unlikely(retval != map->m_len)) {
1500                         ext4_warning(inode->i_sb,
1501                                      "ES len assertion failed for inode "
1502                                      "%lu: retval %d != map->m_len %d",
1503                                      inode->i_ino, retval, map->m_len);
1504                         WARN_ON(1);
1505                 }
1506
1507                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1508                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1509                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1510                                             map->m_pblk, status);
1511                 if (ret != 0)
1512                         retval = ret;
1513         }
1514
1515 out_unlock:
1516         up_read((&EXT4_I(inode)->i_data_sem));
1517
1518         return retval;
1519 }
1520
1521 /*
1522  * This is a special get_block_t callback which is used by
1523  * ext4_da_write_begin().  It will either return mapped block or
1524  * reserve space for a single block.
1525  *
1526  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1527  * We also have b_blocknr = -1 and b_bdev initialized properly
1528  *
1529  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1530  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1531  * initialized properly.
1532  */
1533 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1534                            struct buffer_head *bh, int create)
1535 {
1536         struct ext4_map_blocks map;
1537         int ret = 0;
1538
1539         BUG_ON(create == 0);
1540         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1541
1542         map.m_lblk = iblock;
1543         map.m_len = 1;
1544
1545         /*
1546          * first, we need to know whether the block is allocated already
1547          * preallocated blocks are unmapped but should treated
1548          * the same as allocated blocks.
1549          */
1550         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1551         if (ret <= 0)
1552                 return ret;
1553
1554         map_bh(bh, inode->i_sb, map.m_pblk);
1555         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1556
1557         if (buffer_unwritten(bh)) {
1558                 /* A delayed write to unwritten bh should be marked
1559                  * new and mapped.  Mapped ensures that we don't do
1560                  * get_block multiple times when we write to the same
1561                  * offset and new ensures that we do proper zero out
1562                  * for partial write.
1563                  */
1564                 set_buffer_new(bh);
1565                 set_buffer_mapped(bh);
1566         }
1567         return 0;
1568 }
1569
1570 static int bget_one(handle_t *handle, struct buffer_head *bh)
1571 {
1572         get_bh(bh);
1573         return 0;
1574 }
1575
1576 static int bput_one(handle_t *handle, struct buffer_head *bh)
1577 {
1578         put_bh(bh);
1579         return 0;
1580 }
1581
1582 static int __ext4_journalled_writepage(struct page *page,
1583                                        unsigned int len)
1584 {
1585         struct address_space *mapping = page->mapping;
1586         struct inode *inode = mapping->host;
1587         struct buffer_head *page_bufs = NULL;
1588         handle_t *handle = NULL;
1589         int ret = 0, err = 0;
1590         int inline_data = ext4_has_inline_data(inode);
1591         struct buffer_head *inode_bh = NULL;
1592
1593         ClearPageChecked(page);
1594
1595         if (inline_data) {
1596                 BUG_ON(page->index != 0);
1597                 BUG_ON(len > ext4_get_max_inline_size(inode));
1598                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1599                 if (inode_bh == NULL)
1600                         goto out;
1601         } else {
1602                 page_bufs = page_buffers(page);
1603                 if (!page_bufs) {
1604                         BUG();
1605                         goto out;
1606                 }
1607                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1608                                        NULL, bget_one);
1609         }
1610         /* As soon as we unlock the page, it can go away, but we have
1611          * references to buffers so we are safe */
1612         unlock_page(page);
1613
1614         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1615                                     ext4_writepage_trans_blocks(inode));
1616         if (IS_ERR(handle)) {
1617                 ret = PTR_ERR(handle);
1618                 goto out;
1619         }
1620
1621         BUG_ON(!ext4_handle_valid(handle));
1622
1623         if (inline_data) {
1624                 BUFFER_TRACE(inode_bh, "get write access");
1625                 ret = ext4_journal_get_write_access(handle, inode_bh);
1626
1627                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1628
1629         } else {
1630                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1631                                              do_journal_get_write_access);
1632
1633                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1634                                              write_end_fn);
1635         }
1636         if (ret == 0)
1637                 ret = err;
1638         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1639         err = ext4_journal_stop(handle);
1640         if (!ret)
1641                 ret = err;
1642
1643         if (!ext4_has_inline_data(inode))
1644                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1645                                        NULL, bput_one);
1646         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1647 out:
1648         brelse(inode_bh);
1649         return ret;
1650 }
1651
1652 /*
1653  * Note that we don't need to start a transaction unless we're journaling data
1654  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1655  * need to file the inode to the transaction's list in ordered mode because if
1656  * we are writing back data added by write(), the inode is already there and if
1657  * we are writing back data modified via mmap(), no one guarantees in which
1658  * transaction the data will hit the disk. In case we are journaling data, we
1659  * cannot start transaction directly because transaction start ranks above page
1660  * lock so we have to do some magic.
1661  *
1662  * This function can get called via...
1663  *   - ext4_writepages after taking page lock (have journal handle)
1664  *   - journal_submit_inode_data_buffers (no journal handle)
1665  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1666  *   - grab_page_cache when doing write_begin (have journal handle)
1667  *
1668  * We don't do any block allocation in this function. If we have page with
1669  * multiple blocks we need to write those buffer_heads that are mapped. This
1670  * is important for mmaped based write. So if we do with blocksize 1K
1671  * truncate(f, 1024);
1672  * a = mmap(f, 0, 4096);
1673  * a[0] = 'a';
1674  * truncate(f, 4096);
1675  * we have in the page first buffer_head mapped via page_mkwrite call back
1676  * but other buffer_heads would be unmapped but dirty (dirty done via the
1677  * do_wp_page). So writepage should write the first block. If we modify
1678  * the mmap area beyond 1024 we will again get a page_fault and the
1679  * page_mkwrite callback will do the block allocation and mark the
1680  * buffer_heads mapped.
1681  *
1682  * We redirty the page if we have any buffer_heads that is either delay or
1683  * unwritten in the page.
1684  *
1685  * We can get recursively called as show below.
1686  *
1687  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1688  *              ext4_writepage()
1689  *
1690  * But since we don't do any block allocation we should not deadlock.
1691  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1692  */
1693 static int ext4_writepage(struct page *page,
1694                           struct writeback_control *wbc)
1695 {
1696         int ret = 0;
1697         loff_t size;
1698         unsigned int len;
1699         struct buffer_head *page_bufs = NULL;
1700         struct inode *inode = page->mapping->host;
1701         struct ext4_io_submit io_submit;
1702         bool keep_towrite = false;
1703
1704         trace_ext4_writepage(page);
1705         size = i_size_read(inode);
1706         if (page->index == size >> PAGE_CACHE_SHIFT)
1707                 len = size & ~PAGE_CACHE_MASK;
1708         else
1709                 len = PAGE_CACHE_SIZE;
1710
1711         page_bufs = page_buffers(page);
1712         /*
1713          * We cannot do block allocation or other extent handling in this
1714          * function. If there are buffers needing that, we have to redirty
1715          * the page. But we may reach here when we do a journal commit via
1716          * journal_submit_inode_data_buffers() and in that case we must write
1717          * allocated buffers to achieve data=ordered mode guarantees.
1718          */
1719         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1720                                    ext4_bh_delay_or_unwritten)) {
1721                 redirty_page_for_writepage(wbc, page);
1722                 if (current->flags & PF_MEMALLOC) {
1723                         /*
1724                          * For memory cleaning there's no point in writing only
1725                          * some buffers. So just bail out. Warn if we came here
1726                          * from direct reclaim.
1727                          */
1728                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1729                                                         == PF_MEMALLOC);
1730                         unlock_page(page);
1731                         return 0;
1732                 }
1733                 keep_towrite = true;
1734         }
1735
1736         if (PageChecked(page) && ext4_should_journal_data(inode))
1737                 /*
1738                  * It's mmapped pagecache.  Add buffers and journal it.  There
1739                  * doesn't seem much point in redirtying the page here.
1740                  */
1741                 return __ext4_journalled_writepage(page, len);
1742
1743         ext4_io_submit_init(&io_submit, wbc);
1744         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1745         if (!io_submit.io_end) {
1746                 redirty_page_for_writepage(wbc, page);
1747                 unlock_page(page);
1748                 return -ENOMEM;
1749         }
1750         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1751         ext4_io_submit(&io_submit);
1752         /* Drop io_end reference we got from init */
1753         ext4_put_io_end_defer(io_submit.io_end);
1754         return ret;
1755 }
1756
1757 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1758 {
1759         int len;
1760         loff_t size = i_size_read(mpd->inode);
1761         int err;
1762
1763         BUG_ON(page->index != mpd->first_page);
1764         if (page->index == size >> PAGE_CACHE_SHIFT)
1765                 len = size & ~PAGE_CACHE_MASK;
1766         else
1767                 len = PAGE_CACHE_SIZE;
1768         clear_page_dirty_for_io(page);
1769         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1770         if (!err)
1771                 mpd->wbc->nr_to_write--;
1772         mpd->first_page++;
1773
1774         return err;
1775 }
1776
1777 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1778
1779 /*
1780  * mballoc gives us at most this number of blocks...
1781  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1782  * The rest of mballoc seems to handle chunks up to full group size.
1783  */
1784 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1785
1786 /*
1787  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1788  *
1789  * @mpd - extent of blocks
1790  * @lblk - logical number of the block in the file
1791  * @bh - buffer head we want to add to the extent
1792  *
1793  * The function is used to collect contig. blocks in the same state. If the
1794  * buffer doesn't require mapping for writeback and we haven't started the
1795  * extent of buffers to map yet, the function returns 'true' immediately - the
1796  * caller can write the buffer right away. Otherwise the function returns true
1797  * if the block has been added to the extent, false if the block couldn't be
1798  * added.
1799  */
1800 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1801                                    struct buffer_head *bh)
1802 {
1803         struct ext4_map_blocks *map = &mpd->map;
1804
1805         /* Buffer that doesn't need mapping for writeback? */
1806         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1807             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1808                 /* So far no extent to map => we write the buffer right away */
1809                 if (map->m_len == 0)
1810                         return true;
1811                 return false;
1812         }
1813
1814         /* First block in the extent? */
1815         if (map->m_len == 0) {
1816                 map->m_lblk = lblk;
1817                 map->m_len = 1;
1818                 map->m_flags = bh->b_state & BH_FLAGS;
1819                 return true;
1820         }
1821
1822         /* Don't go larger than mballoc is willing to allocate */
1823         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1824                 return false;
1825
1826         /* Can we merge the block to our big extent? */
1827         if (lblk == map->m_lblk + map->m_len &&
1828             (bh->b_state & BH_FLAGS) == map->m_flags) {
1829                 map->m_len++;
1830                 return true;
1831         }
1832         return false;
1833 }
1834
1835 /*
1836  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1837  *
1838  * @mpd - extent of blocks for mapping
1839  * @head - the first buffer in the page
1840  * @bh - buffer we should start processing from
1841  * @lblk - logical number of the block in the file corresponding to @bh
1842  *
1843  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1844  * the page for IO if all buffers in this page were mapped and there's no
1845  * accumulated extent of buffers to map or add buffers in the page to the
1846  * extent of buffers to map. The function returns 1 if the caller can continue
1847  * by processing the next page, 0 if it should stop adding buffers to the
1848  * extent to map because we cannot extend it anymore. It can also return value
1849  * < 0 in case of error during IO submission.
1850  */
1851 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1852                                    struct buffer_head *head,
1853                                    struct buffer_head *bh,
1854                                    ext4_lblk_t lblk)
1855 {
1856         struct inode *inode = mpd->inode;
1857         int err;
1858         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1859                                                         >> inode->i_blkbits;
1860
1861         do {
1862                 BUG_ON(buffer_locked(bh));
1863
1864                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1865                         /* Found extent to map? */
1866                         if (mpd->map.m_len)
1867                                 return 0;
1868                         /* Everything mapped so far and we hit EOF */
1869                         break;
1870                 }
1871         } while (lblk++, (bh = bh->b_this_page) != head);
1872         /* So far everything mapped? Submit the page for IO. */
1873         if (mpd->map.m_len == 0) {
1874                 err = mpage_submit_page(mpd, head->b_page);
1875                 if (err < 0)
1876                         return err;
1877         }
1878         return lblk < blocks;
1879 }
1880
1881 /*
1882  * mpage_map_buffers - update buffers corresponding to changed extent and
1883  *                     submit fully mapped pages for IO
1884  *
1885  * @mpd - description of extent to map, on return next extent to map
1886  *
1887  * Scan buffers corresponding to changed extent (we expect corresponding pages
1888  * to be already locked) and update buffer state according to new extent state.
1889  * We map delalloc buffers to their physical location, clear unwritten bits,
1890  * and mark buffers as uninit when we perform writes to unwritten extents
1891  * and do extent conversion after IO is finished. If the last page is not fully
1892  * mapped, we update @map to the next extent in the last page that needs
1893  * mapping. Otherwise we submit the page for IO.
1894  */
1895 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1896 {
1897         struct pagevec pvec;
1898         int nr_pages, i;
1899         struct inode *inode = mpd->inode;
1900         struct buffer_head *head, *bh;
1901         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1902         pgoff_t start, end;
1903         ext4_lblk_t lblk;
1904         sector_t pblock;
1905         int err;
1906
1907         start = mpd->map.m_lblk >> bpp_bits;
1908         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1909         lblk = start << bpp_bits;
1910         pblock = mpd->map.m_pblk;
1911
1912         pagevec_init(&pvec, 0);
1913         while (start <= end) {
1914                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1915                                           PAGEVEC_SIZE);
1916                 if (nr_pages == 0)
1917                         break;
1918                 for (i = 0; i < nr_pages; i++) {
1919                         struct page *page = pvec.pages[i];
1920
1921                         if (page->index > end)
1922                                 break;
1923                         /* Up to 'end' pages must be contiguous */
1924                         BUG_ON(page->index != start);
1925                         bh = head = page_buffers(page);
1926                         do {
1927                                 if (lblk < mpd->map.m_lblk)
1928                                         continue;
1929                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1930                                         /*
1931                                          * Buffer after end of mapped extent.
1932                                          * Find next buffer in the page to map.
1933                                          */
1934                                         mpd->map.m_len = 0;
1935                                         mpd->map.m_flags = 0;
1936                                         /*
1937                                          * FIXME: If dioread_nolock supports
1938                                          * blocksize < pagesize, we need to make
1939                                          * sure we add size mapped so far to
1940                                          * io_end->size as the following call
1941                                          * can submit the page for IO.
1942                                          */
1943                                         err = mpage_process_page_bufs(mpd, head,
1944                                                                       bh, lblk);
1945                                         pagevec_release(&pvec);
1946                                         if (err > 0)
1947                                                 err = 0;
1948                                         return err;
1949                                 }
1950                                 if (buffer_delay(bh)) {
1951                                         clear_buffer_delay(bh);
1952                                         bh->b_blocknr = pblock++;
1953                                 }
1954                                 clear_buffer_unwritten(bh);
1955                         } while (lblk++, (bh = bh->b_this_page) != head);
1956
1957                         /*
1958                          * FIXME: This is going to break if dioread_nolock
1959                          * supports blocksize < pagesize as we will try to
1960                          * convert potentially unmapped parts of inode.
1961                          */
1962                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1963                         /* Page fully mapped - let IO run! */
1964                         err = mpage_submit_page(mpd, page);
1965                         if (err < 0) {
1966                                 pagevec_release(&pvec);
1967                                 return err;
1968                         }
1969                         start++;
1970                 }
1971                 pagevec_release(&pvec);
1972         }
1973         /* Extent fully mapped and matches with page boundary. We are done. */
1974         mpd->map.m_len = 0;
1975         mpd->map.m_flags = 0;
1976         return 0;
1977 }
1978
1979 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1980 {
1981         struct inode *inode = mpd->inode;
1982         struct ext4_map_blocks *map = &mpd->map;
1983         int get_blocks_flags;
1984         int err, dioread_nolock;
1985
1986         trace_ext4_da_write_pages_extent(inode, map);
1987         /*
1988          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1989          * to convert an unwritten extent to be initialized (in the case
1990          * where we have written into one or more preallocated blocks).  It is
1991          * possible that we're going to need more metadata blocks than
1992          * previously reserved. However we must not fail because we're in
1993          * writeback and there is nothing we can do about it so it might result
1994          * in data loss.  So use reserved blocks to allocate metadata if
1995          * possible.
1996          *
1997          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1998          * the blocks in question are delalloc blocks.  This indicates
1999          * that the blocks and quotas has already been checked when
2000          * the data was copied into the page cache.
2001          */
2002         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2003                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2004         dioread_nolock = ext4_should_dioread_nolock(inode);
2005         if (dioread_nolock)
2006                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2007         if (map->m_flags & (1 << BH_Delay))
2008                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2009
2010         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2011         if (err < 0)
2012                 return err;
2013         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2014                 if (!mpd->io_submit.io_end->handle &&
2015                     ext4_handle_valid(handle)) {
2016                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2017                         handle->h_rsv_handle = NULL;
2018                 }
2019                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2020         }
2021
2022         BUG_ON(map->m_len == 0);
2023         if (map->m_flags & EXT4_MAP_NEW) {
2024                 struct block_device *bdev = inode->i_sb->s_bdev;
2025                 int i;
2026
2027                 for (i = 0; i < map->m_len; i++)
2028                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2029         }
2030         return 0;
2031 }
2032
2033 /*
2034  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2035  *                               mpd->len and submit pages underlying it for IO
2036  *
2037  * @handle - handle for journal operations
2038  * @mpd - extent to map
2039  * @give_up_on_write - we set this to true iff there is a fatal error and there
2040  *                     is no hope of writing the data. The caller should discard
2041  *                     dirty pages to avoid infinite loops.
2042  *
2043  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2044  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2045  * them to initialized or split the described range from larger unwritten
2046  * extent. Note that we need not map all the described range since allocation
2047  * can return less blocks or the range is covered by more unwritten extents. We
2048  * cannot map more because we are limited by reserved transaction credits. On
2049  * the other hand we always make sure that the last touched page is fully
2050  * mapped so that it can be written out (and thus forward progress is
2051  * guaranteed). After mapping we submit all mapped pages for IO.
2052  */
2053 static int mpage_map_and_submit_extent(handle_t *handle,
2054                                        struct mpage_da_data *mpd,
2055                                        bool *give_up_on_write)
2056 {
2057         struct inode *inode = mpd->inode;
2058         struct ext4_map_blocks *map = &mpd->map;
2059         int err;
2060         loff_t disksize;
2061         int progress = 0;
2062
2063         mpd->io_submit.io_end->offset =
2064                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2065         do {
2066                 err = mpage_map_one_extent(handle, mpd);
2067                 if (err < 0) {
2068                         struct super_block *sb = inode->i_sb;
2069
2070                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2071                                 goto invalidate_dirty_pages;
2072                         /*
2073                          * Let the uper layers retry transient errors.
2074                          * In the case of ENOSPC, if ext4_count_free_blocks()
2075                          * is non-zero, a commit should free up blocks.
2076                          */
2077                         if ((err == -ENOMEM) ||
2078                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2079                                 if (progress)
2080                                         goto update_disksize;
2081                                 return err;
2082                         }
2083                         ext4_msg(sb, KERN_CRIT,
2084                                  "Delayed block allocation failed for "
2085                                  "inode %lu at logical offset %llu with"
2086                                  " max blocks %u with error %d",
2087                                  inode->i_ino,
2088                                  (unsigned long long)map->m_lblk,
2089                                  (unsigned)map->m_len, -err);
2090                         ext4_msg(sb, KERN_CRIT,
2091                                  "This should not happen!! Data will "
2092                                  "be lost\n");
2093                         if (err == -ENOSPC)
2094                                 ext4_print_free_blocks(inode);
2095                 invalidate_dirty_pages:
2096                         *give_up_on_write = true;
2097                         return err;
2098                 }
2099                 progress = 1;
2100                 /*
2101                  * Update buffer state, submit mapped pages, and get us new
2102                  * extent to map
2103                  */
2104                 err = mpage_map_and_submit_buffers(mpd);
2105                 if (err < 0)
2106                         goto update_disksize;
2107         } while (map->m_len);
2108
2109 update_disksize:
2110         /*
2111          * Update on-disk size after IO is submitted.  Races with
2112          * truncate are avoided by checking i_size under i_data_sem.
2113          */
2114         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2115         if (disksize > EXT4_I(inode)->i_disksize) {
2116                 int err2;
2117                 loff_t i_size;
2118
2119                 down_write(&EXT4_I(inode)->i_data_sem);
2120                 i_size = i_size_read(inode);
2121                 if (disksize > i_size)
2122                         disksize = i_size;
2123                 if (disksize > EXT4_I(inode)->i_disksize)
2124                         EXT4_I(inode)->i_disksize = disksize;
2125                 err2 = ext4_mark_inode_dirty(handle, inode);
2126                 up_write(&EXT4_I(inode)->i_data_sem);
2127                 if (err2)
2128                         ext4_error(inode->i_sb,
2129                                    "Failed to mark inode %lu dirty",
2130                                    inode->i_ino);
2131                 if (!err)
2132                         err = err2;
2133         }
2134         return err;
2135 }
2136
2137 /*
2138  * Calculate the total number of credits to reserve for one writepages
2139  * iteration. This is called from ext4_writepages(). We map an extent of
2140  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2141  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2142  * bpp - 1 blocks in bpp different extents.
2143  */
2144 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2145 {
2146         int bpp = ext4_journal_blocks_per_page(inode);
2147
2148         return ext4_meta_trans_blocks(inode,
2149                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2150 }
2151
2152 /*
2153  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2154  *                               and underlying extent to map
2155  *
2156  * @mpd - where to look for pages
2157  *
2158  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2159  * IO immediately. When we find a page which isn't mapped we start accumulating
2160  * extent of buffers underlying these pages that needs mapping (formed by
2161  * either delayed or unwritten buffers). We also lock the pages containing
2162  * these buffers. The extent found is returned in @mpd structure (starting at
2163  * mpd->lblk with length mpd->len blocks).
2164  *
2165  * Note that this function can attach bios to one io_end structure which are
2166  * neither logically nor physically contiguous. Although it may seem as an
2167  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2168  * case as we need to track IO to all buffers underlying a page in one io_end.
2169  */
2170 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2171 {
2172         struct address_space *mapping = mpd->inode->i_mapping;
2173         struct pagevec pvec;
2174         unsigned int nr_pages;
2175         long left = mpd->wbc->nr_to_write;
2176         pgoff_t index = mpd->first_page;
2177         pgoff_t end = mpd->last_page;
2178         int tag;
2179         int i, err = 0;
2180         int blkbits = mpd->inode->i_blkbits;
2181         ext4_lblk_t lblk;
2182         struct buffer_head *head;
2183
2184         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2185                 tag = PAGECACHE_TAG_TOWRITE;
2186         else
2187                 tag = PAGECACHE_TAG_DIRTY;
2188
2189         pagevec_init(&pvec, 0);
2190         mpd->map.m_len = 0;
2191         mpd->next_page = index;
2192         while (index <= end) {
2193                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2194                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2195                 if (nr_pages == 0)
2196                         goto out;
2197
2198                 for (i = 0; i < nr_pages; i++) {
2199                         struct page *page = pvec.pages[i];
2200
2201                         /*
2202                          * At this point, the page may be truncated or
2203                          * invalidated (changing page->mapping to NULL), or
2204                          * even swizzled back from swapper_space to tmpfs file
2205                          * mapping. However, page->index will not change
2206                          * because we have a reference on the page.
2207                          */
2208                         if (page->index > end)
2209                                 goto out;
2210
2211                         /*
2212                          * Accumulated enough dirty pages? This doesn't apply
2213                          * to WB_SYNC_ALL mode. For integrity sync we have to
2214                          * keep going because someone may be concurrently
2215                          * dirtying pages, and we might have synced a lot of
2216                          * newly appeared dirty pages, but have not synced all
2217                          * of the old dirty pages.
2218                          */
2219                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2220                                 goto out;
2221
2222                         /* If we can't merge this page, we are done. */
2223                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2224                                 goto out;
2225
2226                         lock_page(page);
2227                         /*
2228                          * If the page is no longer dirty, or its mapping no
2229                          * longer corresponds to inode we are writing (which
2230                          * means it has been truncated or invalidated), or the
2231                          * page is already under writeback and we are not doing
2232                          * a data integrity writeback, skip the page
2233                          */
2234                         if (!PageDirty(page) ||
2235                             (PageWriteback(page) &&
2236                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2237                             unlikely(page->mapping != mapping)) {
2238                                 unlock_page(page);
2239                                 continue;
2240                         }
2241
2242                         wait_on_page_writeback(page);
2243                         BUG_ON(PageWriteback(page));
2244
2245                         if (mpd->map.m_len == 0)
2246                                 mpd->first_page = page->index;
2247                         mpd->next_page = page->index + 1;
2248                         /* Add all dirty buffers to mpd */
2249                         lblk = ((ext4_lblk_t)page->index) <<
2250                                 (PAGE_CACHE_SHIFT - blkbits);
2251                         head = page_buffers(page);
2252                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2253                         if (err <= 0)
2254                                 goto out;
2255                         err = 0;
2256                         left--;
2257                 }
2258                 pagevec_release(&pvec);
2259                 cond_resched();
2260         }
2261         return 0;
2262 out:
2263         pagevec_release(&pvec);
2264         return err;
2265 }
2266
2267 static int __writepage(struct page *page, struct writeback_control *wbc,
2268                        void *data)
2269 {
2270         struct address_space *mapping = data;
2271         int ret = ext4_writepage(page, wbc);
2272         mapping_set_error(mapping, ret);
2273         return ret;
2274 }
2275
2276 static int ext4_writepages(struct address_space *mapping,
2277                            struct writeback_control *wbc)
2278 {
2279         pgoff_t writeback_index = 0;
2280         long nr_to_write = wbc->nr_to_write;
2281         int range_whole = 0;
2282         int cycled = 1;
2283         handle_t *handle = NULL;
2284         struct mpage_da_data mpd;
2285         struct inode *inode = mapping->host;
2286         int needed_blocks, rsv_blocks = 0, ret = 0;
2287         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2288         bool done;
2289         struct blk_plug plug;
2290         bool give_up_on_write = false;
2291
2292         trace_ext4_writepages(inode, wbc);
2293
2294         /*
2295          * No pages to write? This is mainly a kludge to avoid starting
2296          * a transaction for special inodes like journal inode on last iput()
2297          * because that could violate lock ordering on umount
2298          */
2299         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2300                 goto out_writepages;
2301
2302         if (ext4_should_journal_data(inode)) {
2303                 struct blk_plug plug;
2304
2305                 blk_start_plug(&plug);
2306                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2307                 blk_finish_plug(&plug);
2308                 goto out_writepages;
2309         }
2310
2311         /*
2312          * If the filesystem has aborted, it is read-only, so return
2313          * right away instead of dumping stack traces later on that
2314          * will obscure the real source of the problem.  We test
2315          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2316          * the latter could be true if the filesystem is mounted
2317          * read-only, and in that case, ext4_writepages should
2318          * *never* be called, so if that ever happens, we would want
2319          * the stack trace.
2320          */
2321         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2322                 ret = -EROFS;
2323                 goto out_writepages;
2324         }
2325
2326         if (ext4_should_dioread_nolock(inode)) {
2327                 /*
2328                  * We may need to convert up to one extent per block in
2329                  * the page and we may dirty the inode.
2330                  */
2331                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2332         }
2333
2334         /*
2335          * If we have inline data and arrive here, it means that
2336          * we will soon create the block for the 1st page, so
2337          * we'd better clear the inline data here.
2338          */
2339         if (ext4_has_inline_data(inode)) {
2340                 /* Just inode will be modified... */
2341                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2342                 if (IS_ERR(handle)) {
2343                         ret = PTR_ERR(handle);
2344                         goto out_writepages;
2345                 }
2346                 BUG_ON(ext4_test_inode_state(inode,
2347                                 EXT4_STATE_MAY_INLINE_DATA));
2348                 ext4_destroy_inline_data(handle, inode);
2349                 ext4_journal_stop(handle);
2350         }
2351
2352         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2353                 range_whole = 1;
2354
2355         if (wbc->range_cyclic) {
2356                 writeback_index = mapping->writeback_index;
2357                 if (writeback_index)
2358                         cycled = 0;
2359                 mpd.first_page = writeback_index;
2360                 mpd.last_page = -1;
2361         } else {
2362                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2363                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2364         }
2365
2366         mpd.inode = inode;
2367         mpd.wbc = wbc;
2368         ext4_io_submit_init(&mpd.io_submit, wbc);
2369 retry:
2370         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2371                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2372         done = false;
2373         blk_start_plug(&plug);
2374         while (!done && mpd.first_page <= mpd.last_page) {
2375                 /* For each extent of pages we use new io_end */
2376                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2377                 if (!mpd.io_submit.io_end) {
2378                         ret = -ENOMEM;
2379                         break;
2380                 }
2381
2382                 /*
2383                  * We have two constraints: We find one extent to map and we
2384                  * must always write out whole page (makes a difference when
2385                  * blocksize < pagesize) so that we don't block on IO when we
2386                  * try to write out the rest of the page. Journalled mode is
2387                  * not supported by delalloc.
2388                  */
2389                 BUG_ON(ext4_should_journal_data(inode));
2390                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2391
2392                 /* start a new transaction */
2393                 handle = ext4_journal_start_with_reserve(inode,
2394                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2395                 if (IS_ERR(handle)) {
2396                         ret = PTR_ERR(handle);
2397                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2398                                "%ld pages, ino %lu; err %d", __func__,
2399                                 wbc->nr_to_write, inode->i_ino, ret);
2400                         /* Release allocated io_end */
2401                         ext4_put_io_end(mpd.io_submit.io_end);
2402                         break;
2403                 }
2404
2405                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2406                 ret = mpage_prepare_extent_to_map(&mpd);
2407                 if (!ret) {
2408                         if (mpd.map.m_len)
2409                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2410                                         &give_up_on_write);
2411                         else {
2412                                 /*
2413                                  * We scanned the whole range (or exhausted
2414                                  * nr_to_write), submitted what was mapped and
2415                                  * didn't find anything needing mapping. We are
2416                                  * done.
2417                                  */
2418                                 done = true;
2419                         }
2420                 }
2421                 ext4_journal_stop(handle);
2422                 /* Submit prepared bio */
2423                 ext4_io_submit(&mpd.io_submit);
2424                 /* Unlock pages we didn't use */
2425                 mpage_release_unused_pages(&mpd, give_up_on_write);
2426                 /* Drop our io_end reference we got from init */
2427                 ext4_put_io_end(mpd.io_submit.io_end);
2428
2429                 if (ret == -ENOSPC && sbi->s_journal) {
2430                         /*
2431                          * Commit the transaction which would
2432                          * free blocks released in the transaction
2433                          * and try again
2434                          */
2435                         jbd2_journal_force_commit_nested(sbi->s_journal);
2436                         ret = 0;
2437                         continue;
2438                 }
2439                 /* Fatal error - ENOMEM, EIO... */
2440                 if (ret)
2441                         break;
2442         }
2443         blk_finish_plug(&plug);
2444         if (!ret && !cycled && wbc->nr_to_write > 0) {
2445                 cycled = 1;
2446                 mpd.last_page = writeback_index - 1;
2447                 mpd.first_page = 0;
2448                 goto retry;
2449         }
2450
2451         /* Update index */
2452         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2453                 /*
2454                  * Set the writeback_index so that range_cyclic
2455                  * mode will write it back later
2456                  */
2457                 mapping->writeback_index = mpd.first_page;
2458
2459 out_writepages:
2460         trace_ext4_writepages_result(inode, wbc, ret,
2461                                      nr_to_write - wbc->nr_to_write);
2462         return ret;
2463 }
2464
2465 static int ext4_nonda_switch(struct super_block *sb)
2466 {
2467         s64 free_clusters, dirty_clusters;
2468         struct ext4_sb_info *sbi = EXT4_SB(sb);
2469
2470         /*
2471          * switch to non delalloc mode if we are running low
2472          * on free block. The free block accounting via percpu
2473          * counters can get slightly wrong with percpu_counter_batch getting
2474          * accumulated on each CPU without updating global counters
2475          * Delalloc need an accurate free block accounting. So switch
2476          * to non delalloc when we are near to error range.
2477          */
2478         free_clusters =
2479                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2480         dirty_clusters =
2481                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2482         /*
2483          * Start pushing delalloc when 1/2 of free blocks are dirty.
2484          */
2485         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2486                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2487
2488         if (2 * free_clusters < 3 * dirty_clusters ||
2489             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2490                 /*
2491                  * free block count is less than 150% of dirty blocks
2492                  * or free blocks is less than watermark
2493                  */
2494                 return 1;
2495         }
2496         return 0;
2497 }
2498
2499 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2500                                loff_t pos, unsigned len, unsigned flags,
2501                                struct page **pagep, void **fsdata)
2502 {
2503         int ret, retries = 0;
2504         struct page *page;
2505         pgoff_t index;
2506         struct inode *inode = mapping->host;
2507         handle_t *handle;
2508
2509         index = pos >> PAGE_CACHE_SHIFT;
2510
2511         if (ext4_nonda_switch(inode->i_sb)) {
2512                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2513                 return ext4_write_begin(file, mapping, pos,
2514                                         len, flags, pagep, fsdata);
2515         }
2516         *fsdata = (void *)0;
2517         trace_ext4_da_write_begin(inode, pos, len, flags);
2518
2519         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2520                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2521                                                       pos, len, flags,
2522                                                       pagep, fsdata);
2523                 if (ret < 0)
2524                         return ret;
2525                 if (ret == 1)
2526                         return 0;
2527         }
2528
2529         /*
2530          * grab_cache_page_write_begin() can take a long time if the
2531          * system is thrashing due to memory pressure, or if the page
2532          * is being written back.  So grab it first before we start
2533          * the transaction handle.  This also allows us to allocate
2534          * the page (if needed) without using GFP_NOFS.
2535          */
2536 retry_grab:
2537         page = grab_cache_page_write_begin(mapping, index, flags);
2538         if (!page)
2539                 return -ENOMEM;
2540         unlock_page(page);
2541
2542         /*
2543          * With delayed allocation, we don't log the i_disksize update
2544          * if there is delayed block allocation. But we still need
2545          * to journalling the i_disksize update if writes to the end
2546          * of file which has an already mapped buffer.
2547          */
2548 retry_journal:
2549         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2550         if (IS_ERR(handle)) {
2551                 page_cache_release(page);
2552                 return PTR_ERR(handle);
2553         }
2554
2555         lock_page(page);
2556         if (page->mapping != mapping) {
2557                 /* The page got truncated from under us */
2558                 unlock_page(page);
2559                 page_cache_release(page);
2560                 ext4_journal_stop(handle);
2561                 goto retry_grab;
2562         }
2563         /* In case writeback began while the page was unlocked */
2564         wait_for_stable_page(page);
2565
2566         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2567         if (ret < 0) {
2568                 unlock_page(page);
2569                 ext4_journal_stop(handle);
2570                 /*
2571                  * block_write_begin may have instantiated a few blocks
2572                  * outside i_size.  Trim these off again. Don't need
2573                  * i_size_read because we hold i_mutex.
2574                  */
2575                 if (pos + len > inode->i_size)
2576                         ext4_truncate_failed_write(inode);
2577
2578                 if (ret == -ENOSPC &&
2579                     ext4_should_retry_alloc(inode->i_sb, &retries))
2580                         goto retry_journal;
2581
2582                 page_cache_release(page);
2583                 return ret;
2584         }
2585
2586         *pagep = page;
2587         return ret;
2588 }
2589
2590 /*
2591  * Check if we should update i_disksize
2592  * when write to the end of file but not require block allocation
2593  */
2594 static int ext4_da_should_update_i_disksize(struct page *page,
2595                                             unsigned long offset)
2596 {
2597         struct buffer_head *bh;
2598         struct inode *inode = page->mapping->host;
2599         unsigned int idx;
2600         int i;
2601
2602         bh = page_buffers(page);
2603         idx = offset >> inode->i_blkbits;
2604
2605         for (i = 0; i < idx; i++)
2606                 bh = bh->b_this_page;
2607
2608         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2609                 return 0;
2610         return 1;
2611 }
2612
2613 static int ext4_da_write_end(struct file *file,
2614                              struct address_space *mapping,
2615                              loff_t pos, unsigned len, unsigned copied,
2616                              struct page *page, void *fsdata)
2617 {
2618         struct inode *inode = mapping->host;
2619         int ret = 0, ret2;
2620         handle_t *handle = ext4_journal_current_handle();
2621         loff_t new_i_size;
2622         unsigned long start, end;
2623         int write_mode = (int)(unsigned long)fsdata;
2624
2625         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2626                 return ext4_write_end(file, mapping, pos,
2627                                       len, copied, page, fsdata);
2628
2629         trace_ext4_da_write_end(inode, pos, len, copied);
2630         start = pos & (PAGE_CACHE_SIZE - 1);
2631         end = start + copied - 1;
2632
2633         /*
2634          * generic_write_end() will run mark_inode_dirty() if i_size
2635          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2636          * into that.
2637          */
2638         new_i_size = pos + copied;
2639         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2640                 if (ext4_has_inline_data(inode) ||
2641                     ext4_da_should_update_i_disksize(page, end)) {
2642                         ext4_update_i_disksize(inode, new_i_size);
2643                         /* We need to mark inode dirty even if
2644                          * new_i_size is less that inode->i_size
2645                          * bu greater than i_disksize.(hint delalloc)
2646                          */
2647                         ext4_mark_inode_dirty(handle, inode);
2648                 }
2649         }
2650
2651         if (write_mode != CONVERT_INLINE_DATA &&
2652             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2653             ext4_has_inline_data(inode))
2654                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2655                                                      page);
2656         else
2657                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2658                                                         page, fsdata);
2659
2660         copied = ret2;
2661         if (ret2 < 0)
2662                 ret = ret2;
2663         ret2 = ext4_journal_stop(handle);
2664         if (!ret)
2665                 ret = ret2;
2666
2667         return ret ? ret : copied;
2668 }
2669
2670 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2671                                    unsigned int length)
2672 {
2673         /*
2674          * Drop reserved blocks
2675          */
2676         BUG_ON(!PageLocked(page));
2677         if (!page_has_buffers(page))
2678                 goto out;
2679
2680         ext4_da_page_release_reservation(page, offset, length);
2681
2682 out:
2683         ext4_invalidatepage(page, offset, length);
2684
2685         return;
2686 }
2687
2688 /*
2689  * Force all delayed allocation blocks to be allocated for a given inode.
2690  */
2691 int ext4_alloc_da_blocks(struct inode *inode)
2692 {
2693         trace_ext4_alloc_da_blocks(inode);
2694
2695         if (!EXT4_I(inode)->i_reserved_data_blocks)
2696                 return 0;
2697
2698         /*
2699          * We do something simple for now.  The filemap_flush() will
2700          * also start triggering a write of the data blocks, which is
2701          * not strictly speaking necessary (and for users of
2702          * laptop_mode, not even desirable).  However, to do otherwise
2703          * would require replicating code paths in:
2704          *
2705          * ext4_writepages() ->
2706          *    write_cache_pages() ---> (via passed in callback function)
2707          *        __mpage_da_writepage() -->
2708          *           mpage_add_bh_to_extent()
2709          *           mpage_da_map_blocks()
2710          *
2711          * The problem is that write_cache_pages(), located in
2712          * mm/page-writeback.c, marks pages clean in preparation for
2713          * doing I/O, which is not desirable if we're not planning on
2714          * doing I/O at all.
2715          *
2716          * We could call write_cache_pages(), and then redirty all of
2717          * the pages by calling redirty_page_for_writepage() but that
2718          * would be ugly in the extreme.  So instead we would need to
2719          * replicate parts of the code in the above functions,
2720          * simplifying them because we wouldn't actually intend to
2721          * write out the pages, but rather only collect contiguous
2722          * logical block extents, call the multi-block allocator, and
2723          * then update the buffer heads with the block allocations.
2724          *
2725          * For now, though, we'll cheat by calling filemap_flush(),
2726          * which will map the blocks, and start the I/O, but not
2727          * actually wait for the I/O to complete.
2728          */
2729         return filemap_flush(inode->i_mapping);
2730 }
2731
2732 /*
2733  * bmap() is special.  It gets used by applications such as lilo and by
2734  * the swapper to find the on-disk block of a specific piece of data.
2735  *
2736  * Naturally, this is dangerous if the block concerned is still in the
2737  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2738  * filesystem and enables swap, then they may get a nasty shock when the
2739  * data getting swapped to that swapfile suddenly gets overwritten by
2740  * the original zero's written out previously to the journal and
2741  * awaiting writeback in the kernel's buffer cache.
2742  *
2743  * So, if we see any bmap calls here on a modified, data-journaled file,
2744  * take extra steps to flush any blocks which might be in the cache.
2745  */
2746 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2747 {
2748         struct inode *inode = mapping->host;
2749         journal_t *journal;
2750         int err;
2751
2752         /*
2753          * We can get here for an inline file via the FIBMAP ioctl
2754          */
2755         if (ext4_has_inline_data(inode))
2756                 return 0;
2757
2758         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2759                         test_opt(inode->i_sb, DELALLOC)) {
2760                 /*
2761                  * With delalloc we want to sync the file
2762                  * so that we can make sure we allocate
2763                  * blocks for file
2764                  */
2765                 filemap_write_and_wait(mapping);
2766         }
2767
2768         if (EXT4_JOURNAL(inode) &&
2769             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2770                 /*
2771                  * This is a REALLY heavyweight approach, but the use of
2772                  * bmap on dirty files is expected to be extremely rare:
2773                  * only if we run lilo or swapon on a freshly made file
2774                  * do we expect this to happen.
2775                  *
2776                  * (bmap requires CAP_SYS_RAWIO so this does not
2777                  * represent an unprivileged user DOS attack --- we'd be
2778                  * in trouble if mortal users could trigger this path at
2779                  * will.)
2780                  *
2781                  * NB. EXT4_STATE_JDATA is not set on files other than
2782                  * regular files.  If somebody wants to bmap a directory
2783                  * or symlink and gets confused because the buffer
2784                  * hasn't yet been flushed to disk, they deserve
2785                  * everything they get.
2786                  */
2787
2788                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2789                 journal = EXT4_JOURNAL(inode);
2790                 jbd2_journal_lock_updates(journal);
2791                 err = jbd2_journal_flush(journal);
2792                 jbd2_journal_unlock_updates(journal);
2793
2794                 if (err)
2795                         return 0;
2796         }
2797
2798         return generic_block_bmap(mapping, block, ext4_get_block);
2799 }
2800
2801 static int ext4_readpage(struct file *file, struct page *page)
2802 {
2803         int ret = -EAGAIN;
2804         struct inode *inode = page->mapping->host;
2805
2806         trace_ext4_readpage(page);
2807
2808         if (ext4_has_inline_data(inode))
2809                 ret = ext4_readpage_inline(inode, page);
2810
2811         if (ret == -EAGAIN)
2812                 return mpage_readpage(page, ext4_get_block);
2813
2814         return ret;
2815 }
2816
2817 static int
2818 ext4_readpages(struct file *file, struct address_space *mapping,
2819                 struct list_head *pages, unsigned nr_pages)
2820 {
2821         struct inode *inode = mapping->host;
2822
2823         /* If the file has inline data, no need to do readpages. */
2824         if (ext4_has_inline_data(inode))
2825                 return 0;
2826
2827         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2828 }
2829
2830 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2831                                 unsigned int length)
2832 {
2833         trace_ext4_invalidatepage(page, offset, length);
2834
2835         /* No journalling happens on data buffers when this function is used */
2836         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2837
2838         block_invalidatepage(page, offset, length);
2839 }
2840
2841 static int __ext4_journalled_invalidatepage(struct page *page,
2842                                             unsigned int offset,
2843                                             unsigned int length)
2844 {
2845         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2846
2847         trace_ext4_journalled_invalidatepage(page, offset, length);
2848
2849         /*
2850          * If it's a full truncate we just forget about the pending dirtying
2851          */
2852         if (offset == 0 && length == PAGE_CACHE_SIZE)
2853                 ClearPageChecked(page);
2854
2855         return jbd2_journal_invalidatepage(journal, page, offset, length);
2856 }
2857
2858 /* Wrapper for aops... */
2859 static void ext4_journalled_invalidatepage(struct page *page,
2860                                            unsigned int offset,
2861                                            unsigned int length)
2862 {
2863         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2864 }
2865
2866 static int ext4_releasepage(struct page *page, gfp_t wait)
2867 {
2868         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2869
2870         trace_ext4_releasepage(page);
2871
2872         /* Page has dirty journalled data -> cannot release */
2873         if (PageChecked(page))
2874                 return 0;
2875         if (journal)
2876                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2877         else
2878                 return try_to_free_buffers(page);
2879 }
2880
2881 /*
2882  * ext4_get_block used when preparing for a DIO write or buffer write.
2883  * We allocate an uinitialized extent if blocks haven't been allocated.
2884  * The extent will be converted to initialized after the IO is complete.
2885  */
2886 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2887                    struct buffer_head *bh_result, int create)
2888 {
2889         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2890                    inode->i_ino, create);
2891         return _ext4_get_block(inode, iblock, bh_result,
2892                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2893 }
2894
2895 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2896                    struct buffer_head *bh_result, int create)
2897 {
2898         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2899                    inode->i_ino, create);
2900         return _ext4_get_block(inode, iblock, bh_result,
2901                                EXT4_GET_BLOCKS_NO_LOCK);
2902 }
2903
2904 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2905                             ssize_t size, void *private)
2906 {
2907         ext4_io_end_t *io_end = iocb->private;
2908
2909         /* if not async direct IO just return */
2910         if (!io_end)
2911                 return;
2912
2913         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2914                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2915                   iocb->private, io_end->inode->i_ino, iocb, offset,
2916                   size);
2917
2918         iocb->private = NULL;
2919         io_end->offset = offset;
2920         io_end->size = size;
2921         ext4_put_io_end(io_end);
2922 }
2923
2924 /*
2925  * For ext4 extent files, ext4 will do direct-io write to holes,
2926  * preallocated extents, and those write extend the file, no need to
2927  * fall back to buffered IO.
2928  *
2929  * For holes, we fallocate those blocks, mark them as unwritten
2930  * If those blocks were preallocated, we mark sure they are split, but
2931  * still keep the range to write as unwritten.
2932  *
2933  * The unwritten extents will be converted to written when DIO is completed.
2934  * For async direct IO, since the IO may still pending when return, we
2935  * set up an end_io call back function, which will do the conversion
2936  * when async direct IO completed.
2937  *
2938  * If the O_DIRECT write will extend the file then add this inode to the
2939  * orphan list.  So recovery will truncate it back to the original size
2940  * if the machine crashes during the write.
2941  *
2942  */
2943 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2944                               struct iov_iter *iter, loff_t offset)
2945 {
2946         struct file *file = iocb->ki_filp;
2947         struct inode *inode = file->f_mapping->host;
2948         ssize_t ret;
2949         size_t count = iov_iter_count(iter);
2950         int overwrite = 0;
2951         get_block_t *get_block_func = NULL;
2952         int dio_flags = 0;
2953         loff_t final_size = offset + count;
2954         ext4_io_end_t *io_end = NULL;
2955
2956         /* Use the old path for reads and writes beyond i_size. */
2957         if (rw != WRITE || final_size > inode->i_size)
2958                 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2959
2960         BUG_ON(iocb->private == NULL);
2961
2962         /*
2963          * Make all waiters for direct IO properly wait also for extent
2964          * conversion. This also disallows race between truncate() and
2965          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2966          */
2967         if (rw == WRITE)
2968                 atomic_inc(&inode->i_dio_count);
2969
2970         /* If we do a overwrite dio, i_mutex locking can be released */
2971         overwrite = *((int *)iocb->private);
2972
2973         if (overwrite) {
2974                 down_read(&EXT4_I(inode)->i_data_sem);
2975                 mutex_unlock(&inode->i_mutex);
2976         }
2977
2978         /*
2979          * We could direct write to holes and fallocate.
2980          *
2981          * Allocated blocks to fill the hole are marked as
2982          * unwritten to prevent parallel buffered read to expose
2983          * the stale data before DIO complete the data IO.
2984          *
2985          * As to previously fallocated extents, ext4 get_block will
2986          * just simply mark the buffer mapped but still keep the
2987          * extents unwritten.
2988          *
2989          * For non AIO case, we will convert those unwritten extents
2990          * to written after return back from blockdev_direct_IO.
2991          *
2992          * For async DIO, the conversion needs to be deferred when the
2993          * IO is completed. The ext4 end_io callback function will be
2994          * called to take care of the conversion work.  Here for async
2995          * case, we allocate an io_end structure to hook to the iocb.
2996          */
2997         iocb->private = NULL;
2998         ext4_inode_aio_set(inode, NULL);
2999         if (!is_sync_kiocb(iocb)) {
3000                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3001                 if (!io_end) {
3002                         ret = -ENOMEM;
3003                         goto retake_lock;
3004                 }
3005                 /*
3006                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3007                  */
3008                 iocb->private = ext4_get_io_end(io_end);
3009                 /*
3010                  * we save the io structure for current async direct
3011                  * IO, so that later ext4_map_blocks() could flag the
3012                  * io structure whether there is a unwritten extents
3013                  * needs to be converted when IO is completed.
3014                  */
3015                 ext4_inode_aio_set(inode, io_end);
3016         }
3017
3018         if (overwrite) {
3019                 get_block_func = ext4_get_block_write_nolock;
3020         } else {
3021                 get_block_func = ext4_get_block_write;
3022                 dio_flags = DIO_LOCKING;
3023         }
3024         ret = __blockdev_direct_IO(rw, iocb, inode,
3025                                    inode->i_sb->s_bdev, iter,
3026                                    offset,
3027                                    get_block_func,
3028                                    ext4_end_io_dio,
3029                                    NULL,
3030                                    dio_flags);
3031
3032         /*
3033          * Put our reference to io_end. This can free the io_end structure e.g.
3034          * in sync IO case or in case of error. It can even perform extent
3035          * conversion if all bios we submitted finished before we got here.
3036          * Note that in that case iocb->private can be already set to NULL
3037          * here.
3038          */
3039         if (io_end) {
3040                 ext4_inode_aio_set(inode, NULL);
3041                 ext4_put_io_end(io_end);
3042                 /*
3043                  * When no IO was submitted ext4_end_io_dio() was not
3044                  * called so we have to put iocb's reference.
3045                  */
3046                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3047                         WARN_ON(iocb->private != io_end);
3048                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3049                         ext4_put_io_end(io_end);
3050                         iocb->private = NULL;
3051                 }
3052         }
3053         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3054                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3055                 int err;
3056                 /*
3057                  * for non AIO case, since the IO is already
3058                  * completed, we could do the conversion right here
3059                  */
3060                 err = ext4_convert_unwritten_extents(NULL, inode,
3061                                                      offset, ret);
3062                 if (err < 0)
3063                         ret = err;
3064                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3065         }
3066
3067 retake_lock:
3068         if (rw == WRITE)
3069                 inode_dio_done(inode);
3070         /* take i_mutex locking again if we do a ovewrite dio */
3071         if (overwrite) {
3072                 up_read(&EXT4_I(inode)->i_data_sem);
3073                 mutex_lock(&inode->i_mutex);
3074         }
3075
3076         return ret;
3077 }
3078
3079 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3080                               struct iov_iter *iter, loff_t offset)
3081 {
3082         struct file *file = iocb->ki_filp;
3083         struct inode *inode = file->f_mapping->host;
3084         size_t count = iov_iter_count(iter);
3085         ssize_t ret;
3086
3087         /*
3088          * If we are doing data journalling we don't support O_DIRECT
3089          */
3090         if (ext4_should_journal_data(inode))
3091                 return 0;
3092
3093         /* Let buffer I/O handle the inline data case. */
3094         if (ext4_has_inline_data(inode))
3095                 return 0;
3096
3097         trace_ext4_direct_IO_enter(inode, offset, count, rw);
3098         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3099                 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3100         else
3101                 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3102         trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3103         return ret;
3104 }
3105
3106 /*
3107  * Pages can be marked dirty completely asynchronously from ext4's journalling
3108  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3109  * much here because ->set_page_dirty is called under VFS locks.  The page is
3110  * not necessarily locked.
3111  *
3112  * We cannot just dirty the page and leave attached buffers clean, because the
3113  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3114  * or jbddirty because all the journalling code will explode.
3115  *
3116  * So what we do is to mark the page "pending dirty" and next time writepage
3117  * is called, propagate that into the buffers appropriately.
3118  */
3119 static int ext4_journalled_set_page_dirty(struct page *page)
3120 {
3121         SetPageChecked(page);
3122         return __set_page_dirty_nobuffers(page);
3123 }
3124
3125 static const struct address_space_operations ext4_aops = {
3126         .readpage               = ext4_readpage,
3127         .readpages              = ext4_readpages,
3128         .writepage              = ext4_writepage,
3129         .writepages             = ext4_writepages,
3130         .write_begin            = ext4_write_begin,
3131         .write_end              = ext4_write_end,
3132         .bmap                   = ext4_bmap,
3133         .invalidatepage         = ext4_invalidatepage,
3134         .releasepage            = ext4_releasepage,
3135         .direct_IO              = ext4_direct_IO,
3136         .migratepage            = buffer_migrate_page,
3137         .is_partially_uptodate  = block_is_partially_uptodate,
3138         .error_remove_page      = generic_error_remove_page,
3139 };
3140
3141 static const struct address_space_operations ext4_journalled_aops = {
3142         .readpage               = ext4_readpage,
3143         .readpages              = ext4_readpages,
3144         .writepage              = ext4_writepage,
3145         .writepages             = ext4_writepages,
3146         .write_begin            = ext4_write_begin,
3147         .write_end              = ext4_journalled_write_end,
3148         .set_page_dirty         = ext4_journalled_set_page_dirty,
3149         .bmap                   = ext4_bmap,
3150         .invalidatepage         = ext4_journalled_invalidatepage,
3151         .releasepage            = ext4_releasepage,
3152         .direct_IO              = ext4_direct_IO,
3153         .is_partially_uptodate  = block_is_partially_uptodate,
3154         .error_remove_page      = generic_error_remove_page,
3155 };
3156
3157 static const struct address_space_operations ext4_da_aops = {
3158         .readpage               = ext4_readpage,
3159         .readpages              = ext4_readpages,
3160         .writepage              = ext4_writepage,
3161         .writepages             = ext4_writepages,
3162         .write_begin            = ext4_da_write_begin,
3163         .write_end              = ext4_da_write_end,
3164         .bmap                   = ext4_bmap,
3165         .invalidatepage         = ext4_da_invalidatepage,
3166         .releasepage            = ext4_releasepage,
3167         .direct_IO              = ext4_direct_IO,
3168         .migratepage            = buffer_migrate_page,
3169         .is_partially_uptodate  = block_is_partially_uptodate,
3170         .error_remove_page      = generic_error_remove_page,
3171 };
3172
3173 void ext4_set_aops(struct inode *inode)
3174 {
3175         switch (ext4_inode_journal_mode(inode)) {
3176         case EXT4_INODE_ORDERED_DATA_MODE:
3177                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3178                 break;
3179         case EXT4_INODE_WRITEBACK_DATA_MODE:
3180                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3181                 break;
3182         case EXT4_INODE_JOURNAL_DATA_MODE:
3183                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3184                 return;
3185         default:
3186                 BUG();
3187         }
3188         if (test_opt(inode->i_sb, DELALLOC))
3189                 inode->i_mapping->a_ops = &ext4_da_aops;
3190         else
3191                 inode->i_mapping->a_ops = &ext4_aops;
3192 }
3193
3194 /*
3195  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3196  * starting from file offset 'from'.  The range to be zero'd must
3197  * be contained with in one block.  If the specified range exceeds
3198  * the end of the block it will be shortened to end of the block
3199  * that cooresponds to 'from'
3200  */
3201 static int ext4_block_zero_page_range(handle_t *handle,
3202                 struct address_space *mapping, loff_t from, loff_t length)
3203 {
3204         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3205         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3206         unsigned blocksize, max, pos;
3207         ext4_lblk_t iblock;
3208         struct inode *inode = mapping->host;
3209         struct buffer_head *bh;
3210         struct page *page;
3211         int err = 0;
3212
3213         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3214                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3215         if (!page)
3216                 return -ENOMEM;
3217
3218         blocksize = inode->i_sb->s_blocksize;
3219         max = blocksize - (offset & (blocksize - 1));
3220
3221         /*
3222          * correct length if it does not fall between
3223          * 'from' and the end of the block
3224          */
3225         if (length > max || length < 0)
3226                 length = max;
3227
3228         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3229
3230         if (!page_has_buffers(page))
3231                 create_empty_buffers(page, blocksize, 0);
3232
3233         /* Find the buffer that contains "offset" */
3234         bh = page_buffers(page);
3235         pos = blocksize;
3236         while (offset >= pos) {
3237                 bh = bh->b_this_page;
3238                 iblock++;
3239                 pos += blocksize;
3240         }
3241         if (buffer_freed(bh)) {
3242                 BUFFER_TRACE(bh, "freed: skip");
3243                 goto unlock;
3244         }
3245         if (!buffer_mapped(bh)) {
3246                 BUFFER_TRACE(bh, "unmapped");
3247                 ext4_get_block(inode, iblock, bh, 0);
3248                 /* unmapped? It's a hole - nothing to do */
3249                 if (!buffer_mapped(bh)) {
3250                         BUFFER_TRACE(bh, "still unmapped");
3251                         goto unlock;
3252                 }
3253         }
3254
3255         /* Ok, it's mapped. Make sure it's up-to-date */
3256         if (PageUptodate(page))
3257                 set_buffer_uptodate(bh);
3258
3259         if (!buffer_uptodate(bh)) {
3260                 err = -EIO;
3261                 ll_rw_block(READ, 1, &bh);
3262                 wait_on_buffer(bh);
3263                 /* Uhhuh. Read error. Complain and punt. */
3264                 if (!buffer_uptodate(bh))
3265                         goto unlock;
3266         }
3267         if (ext4_should_journal_data(inode)) {
3268                 BUFFER_TRACE(bh, "get write access");
3269                 err = ext4_journal_get_write_access(handle, bh);
3270                 if (err)
3271                         goto unlock;
3272         }
3273         zero_user(page, offset, length);
3274         BUFFER_TRACE(bh, "zeroed end of block");
3275
3276         if (ext4_should_journal_data(inode)) {
3277                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3278         } else {
3279                 err = 0;
3280                 mark_buffer_dirty(bh);
3281                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3282                         err = ext4_jbd2_file_inode(handle, inode);
3283         }
3284
3285 unlock:
3286         unlock_page(page);
3287         page_cache_release(page);
3288         return err;
3289 }
3290
3291 /*
3292  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3293  * up to the end of the block which corresponds to `from'.
3294  * This required during truncate. We need to physically zero the tail end
3295  * of that block so it doesn't yield old data if the file is later grown.
3296  */
3297 static int ext4_block_truncate_page(handle_t *handle,
3298                 struct address_space *mapping, loff_t from)
3299 {
3300         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3301         unsigned length;
3302         unsigned blocksize;
3303         struct inode *inode = mapping->host;
3304
3305         blocksize = inode->i_sb->s_blocksize;
3306         length = blocksize - (offset & (blocksize - 1));
3307
3308         return ext4_block_zero_page_range(handle, mapping, from, length);
3309 }
3310
3311 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3312                              loff_t lstart, loff_t length)
3313 {
3314         struct super_block *sb = inode->i_sb;
3315         struct address_space *mapping = inode->i_mapping;
3316         unsigned partial_start, partial_end;
3317         ext4_fsblk_t start, end;
3318         loff_t byte_end = (lstart + length - 1);
3319         int err = 0;
3320
3321         partial_start = lstart & (sb->s_blocksize - 1);
3322         partial_end = byte_end & (sb->s_blocksize - 1);
3323
3324         start = lstart >> sb->s_blocksize_bits;
3325         end = byte_end >> sb->s_blocksize_bits;
3326
3327         /* Handle partial zero within the single block */
3328         if (start == end &&
3329             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3330                 err = ext4_block_zero_page_range(handle, mapping,
3331                                                  lstart, length);
3332                 return err;
3333         }
3334         /* Handle partial zero out on the start of the range */
3335         if (partial_start) {
3336                 err = ext4_block_zero_page_range(handle, mapping,
3337                                                  lstart, sb->s_blocksize);
3338                 if (err)
3339                         return err;
3340         }
3341         /* Handle partial zero out on the end of the range */
3342         if (partial_end != sb->s_blocksize - 1)
3343                 err = ext4_block_zero_page_range(handle, mapping,
3344                                                  byte_end - partial_end,
3345                                                  partial_end + 1);
3346         return err;
3347 }
3348
3349 int ext4_can_truncate(struct inode *inode)
3350 {
3351         if (S_ISREG(inode->i_mode))
3352                 return 1;
3353         if (S_ISDIR(inode->i_mode))
3354                 return 1;
3355         if (S_ISLNK(inode->i_mode))
3356                 return !ext4_inode_is_fast_symlink(inode);
3357         return 0;
3358 }
3359
3360 /*
3361  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3362  * associated with the given offset and length
3363  *
3364  * @inode:  File inode
3365  * @offset: The offset where the hole will begin
3366  * @len:    The length of the hole
3367  *
3368  * Returns: 0 on success or negative on failure
3369  */
3370
3371 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3372 {
3373         struct super_block *sb = inode->i_sb;
3374         ext4_lblk_t first_block, stop_block;
3375         struct address_space *mapping = inode->i_mapping;
3376         loff_t first_block_offset, last_block_offset;
3377         handle_t *handle;
3378         unsigned int credits;
3379         int ret = 0;
3380
3381         if (!S_ISREG(inode->i_mode))
3382                 return -EOPNOTSUPP;
3383
3384         trace_ext4_punch_hole(inode, offset, length, 0);
3385
3386         /*
3387          * Write out all dirty pages to avoid race conditions
3388          * Then release them.
3389          */
3390         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3391                 ret = filemap_write_and_wait_range(mapping, offset,
3392                                                    offset + length - 1);
3393                 if (ret)
3394                         return ret;
3395         }
3396
3397         mutex_lock(&inode->i_mutex);
3398
3399         /* No need to punch hole beyond i_size */
3400         if (offset >= inode->i_size)
3401                 goto out_mutex;
3402
3403         /*
3404          * If the hole extends beyond i_size, set the hole
3405          * to end after the page that contains i_size
3406          */
3407         if (offset + length > inode->i_size) {
3408                 length = inode->i_size +
3409                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3410                    offset;
3411         }
3412
3413         if (offset & (sb->s_blocksize - 1) ||
3414             (offset + length) & (sb->s_blocksize - 1)) {
3415                 /*
3416                  * Attach jinode to inode for jbd2 if we do any zeroing of
3417                  * partial block
3418                  */
3419                 ret = ext4_inode_attach_jinode(inode);
3420                 if (ret < 0)
3421                         goto out_mutex;
3422
3423         }
3424
3425         first_block_offset = round_up(offset, sb->s_blocksize);
3426         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3427
3428         /* Now release the pages and zero block aligned part of pages*/
3429         if (last_block_offset > first_block_offset)
3430                 truncate_pagecache_range(inode, first_block_offset,
3431                                          last_block_offset);
3432
3433         /* Wait all existing dio workers, newcomers will block on i_mutex */
3434         ext4_inode_block_unlocked_dio(inode);
3435         inode_dio_wait(inode);
3436
3437         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3438                 credits = ext4_writepage_trans_blocks(inode);
3439         else
3440                 credits = ext4_blocks_for_truncate(inode);
3441         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3442         if (IS_ERR(handle)) {
3443                 ret = PTR_ERR(handle);
3444                 ext4_std_error(sb, ret);
3445                 goto out_dio;
3446         }
3447
3448         ret = ext4_zero_partial_blocks(handle, inode, offset,
3449                                        length);
3450         if (ret)
3451                 goto out_stop;
3452
3453         first_block = (offset + sb->s_blocksize - 1) >>
3454                 EXT4_BLOCK_SIZE_BITS(sb);
3455         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3456
3457         /* If there are no blocks to remove, return now */
3458         if (first_block >= stop_block)
3459                 goto out_stop;
3460
3461         down_write(&EXT4_I(inode)->i_data_sem);
3462         ext4_discard_preallocations(inode);
3463
3464         ret = ext4_es_remove_extent(inode, first_block,
3465                                     stop_block - first_block);
3466         if (ret) {
3467                 up_write(&EXT4_I(inode)->i_data_sem);
3468                 goto out_stop;
3469         }
3470
3471         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3472                 ret = ext4_ext_remove_space(inode, first_block,
3473                                             stop_block - 1);
3474         else
3475                 ret = ext4_ind_remove_space(handle, inode, first_block,
3476                                             stop_block);
3477
3478         up_write(&EXT4_I(inode)->i_data_sem);
3479         if (IS_SYNC(inode))
3480                 ext4_handle_sync(handle);
3481
3482         /* Now release the pages again to reduce race window */
3483         if (last_block_offset > first_block_offset)
3484                 truncate_pagecache_range(inode, first_block_offset,
3485                                          last_block_offset);
3486
3487         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3488         ext4_mark_inode_dirty(handle, inode);
3489 out_stop:
3490         ext4_journal_stop(handle);
3491 out_dio:
3492         ext4_inode_resume_unlocked_dio(inode);
3493 out_mutex:
3494         mutex_unlock(&inode->i_mutex);
3495         return ret;
3496 }
3497
3498 int ext4_inode_attach_jinode(struct inode *inode)
3499 {
3500         struct ext4_inode_info *ei = EXT4_I(inode);
3501         struct jbd2_inode *jinode;
3502
3503         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3504                 return 0;
3505
3506         jinode = jbd2_alloc_inode(GFP_KERNEL);
3507         spin_lock(&inode->i_lock);
3508         if (!ei->jinode) {
3509                 if (!jinode) {
3510                         spin_unlock(&inode->i_lock);
3511                         return -ENOMEM;
3512                 }
3513                 ei->jinode = jinode;
3514                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3515                 jinode = NULL;
3516         }
3517         spin_unlock(&inode->i_lock);
3518         if (unlikely(jinode != NULL))
3519                 jbd2_free_inode(jinode);
3520         return 0;
3521 }
3522
3523 /*
3524  * ext4_truncate()
3525  *
3526  * We block out ext4_get_block() block instantiations across the entire
3527  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3528  * simultaneously on behalf of the same inode.
3529  *
3530  * As we work through the truncate and commit bits of it to the journal there
3531  * is one core, guiding principle: the file's tree must always be consistent on
3532  * disk.  We must be able to restart the truncate after a crash.
3533  *
3534  * The file's tree may be transiently inconsistent in memory (although it
3535  * probably isn't), but whenever we close off and commit a journal transaction,
3536  * the contents of (the filesystem + the journal) must be consistent and
3537  * restartable.  It's pretty simple, really: bottom up, right to left (although
3538  * left-to-right works OK too).
3539  *
3540  * Note that at recovery time, journal replay occurs *before* the restart of
3541  * truncate against the orphan inode list.
3542  *
3543  * The committed inode has the new, desired i_size (which is the same as
3544  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3545  * that this inode's truncate did not complete and it will again call
3546  * ext4_truncate() to have another go.  So there will be instantiated blocks
3547  * to the right of the truncation point in a crashed ext4 filesystem.  But
3548  * that's fine - as long as they are linked from the inode, the post-crash
3549  * ext4_truncate() run will find them and release them.
3550  */
3551 void ext4_truncate(struct inode *inode)
3552 {
3553         struct ext4_inode_info *ei = EXT4_I(inode);
3554         unsigned int credits;
3555         handle_t *handle;
3556         struct address_space *mapping = inode->i_mapping;
3557
3558         /*
3559          * There is a possibility that we're either freeing the inode
3560          * or it's a completely new inode. In those cases we might not
3561          * have i_mutex locked because it's not necessary.
3562          */
3563         if (!(inode->i_state & (I_NEW|I_FREEING)))
3564                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3565         trace_ext4_truncate_enter(inode);
3566
3567         if (!ext4_can_truncate(inode))
3568                 return;
3569
3570         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3571
3572         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3573                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3574
3575         if (ext4_has_inline_data(inode)) {
3576                 int has_inline = 1;
3577
3578                 ext4_inline_data_truncate(inode, &has_inline);
3579                 if (has_inline)
3580                         return;
3581         }
3582
3583         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3584         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3585                 if (ext4_inode_attach_jinode(inode) < 0)
3586                         return;
3587         }
3588
3589         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3590                 credits = ext4_writepage_trans_blocks(inode);
3591         else
3592                 credits = ext4_blocks_for_truncate(inode);
3593
3594         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3595         if (IS_ERR(handle)) {
3596                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3597                 return;
3598         }
3599
3600         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3601                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3602
3603         /*
3604          * We add the inode to the orphan list, so that if this
3605          * truncate spans multiple transactions, and we crash, we will
3606          * resume the truncate when the filesystem recovers.  It also
3607          * marks the inode dirty, to catch the new size.
3608          *
3609          * Implication: the file must always be in a sane, consistent
3610          * truncatable state while each transaction commits.
3611          */
3612         if (ext4_orphan_add(handle, inode))
3613                 goto out_stop;
3614
3615         down_write(&EXT4_I(inode)->i_data_sem);
3616
3617         ext4_discard_preallocations(inode);
3618
3619         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3620                 ext4_ext_truncate(handle, inode);
3621         else
3622                 ext4_ind_truncate(handle, inode);
3623
3624         up_write(&ei->i_data_sem);
3625
3626         if (IS_SYNC(inode))
3627                 ext4_handle_sync(handle);
3628
3629 out_stop:
3630         /*
3631          * If this was a simple ftruncate() and the file will remain alive,
3632          * then we need to clear up the orphan record which we created above.
3633          * However, if this was a real unlink then we were called by
3634          * ext4_delete_inode(), and we allow that function to clean up the
3635          * orphan info for us.
3636          */
3637         if (inode->i_nlink)
3638                 ext4_orphan_del(handle, inode);
3639
3640         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3641         ext4_mark_inode_dirty(handle, inode);
3642         ext4_journal_stop(handle);
3643
3644         trace_ext4_truncate_exit(inode);
3645 }
3646
3647 /*
3648  * ext4_get_inode_loc returns with an extra refcount against the inode's
3649  * underlying buffer_head on success. If 'in_mem' is true, we have all
3650  * data in memory that is needed to recreate the on-disk version of this
3651  * inode.
3652  */
3653 static int __ext4_get_inode_loc(struct inode *inode,
3654                                 struct ext4_iloc *iloc, int in_mem)
3655 {
3656         struct ext4_group_desc  *gdp;
3657         struct buffer_head      *bh;
3658         struct super_block      *sb = inode->i_sb;
3659         ext4_fsblk_t            block;
3660         int                     inodes_per_block, inode_offset;
3661
3662         iloc->bh = NULL;
3663         if (!ext4_valid_inum(sb, inode->i_ino))
3664                 return -EIO;
3665
3666         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3667         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3668         if (!gdp)
3669                 return -EIO;
3670
3671         /*
3672          * Figure out the offset within the block group inode table
3673          */
3674         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3675         inode_offset = ((inode->i_ino - 1) %
3676                         EXT4_INODES_PER_GROUP(sb));
3677         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3678         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3679
3680         bh = sb_getblk(sb, block);
3681         if (unlikely(!bh))
3682                 return -ENOMEM;
3683         if (!buffer_uptodate(bh)) {
3684                 lock_buffer(bh);
3685
3686                 /*
3687                  * If the buffer has the write error flag, we have failed
3688                  * to write out another inode in the same block.  In this
3689                  * case, we don't have to read the block because we may
3690                  * read the old inode data successfully.
3691                  */
3692                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3693                         set_buffer_uptodate(bh);
3694
3695                 if (buffer_uptodate(bh)) {
3696                         /* someone brought it uptodate while we waited */
3697                         unlock_buffer(bh);
3698                         goto has_buffer;
3699                 }
3700
3701                 /*
3702                  * If we have all information of the inode in memory and this
3703                  * is the only valid inode in the block, we need not read the
3704                  * block.
3705                  */
3706                 if (in_mem) {
3707                         struct buffer_head *bitmap_bh;
3708                         int i, start;
3709
3710                         start = inode_offset & ~(inodes_per_block - 1);
3711
3712                         /* Is the inode bitmap in cache? */
3713                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3714                         if (unlikely(!bitmap_bh))
3715                                 goto make_io;
3716
3717                         /*
3718                          * If the inode bitmap isn't in cache then the
3719                          * optimisation may end up performing two reads instead
3720                          * of one, so skip it.
3721                          */
3722                         if (!buffer_uptodate(bitmap_bh)) {
3723                                 brelse(bitmap_bh);
3724                                 goto make_io;
3725                         }
3726                         for (i = start; i < start + inodes_per_block; i++) {
3727                                 if (i == inode_offset)
3728                                         continue;
3729                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3730                                         break;
3731                         }
3732                         brelse(bitmap_bh);
3733                         if (i == start + inodes_per_block) {
3734                                 /* all other inodes are free, so skip I/O */
3735                                 memset(bh->b_data, 0, bh->b_size);
3736                                 set_buffer_uptodate(bh);
3737                                 unlock_buffer(bh);
3738                                 goto has_buffer;
3739                         }
3740                 }
3741
3742 make_io:
3743                 /*
3744                  * If we need to do any I/O, try to pre-readahead extra
3745                  * blocks from the inode table.
3746                  */
3747                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3748                         ext4_fsblk_t b, end, table;
3749                         unsigned num;
3750                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3751
3752                         table = ext4_inode_table(sb, gdp);
3753                         /* s_inode_readahead_blks is always a power of 2 */
3754                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3755                         if (table > b)
3756                                 b = table;
3757                         end = b + ra_blks;
3758                         num = EXT4_INODES_PER_GROUP(sb);
3759                         if (ext4_has_group_desc_csum(sb))
3760                                 num -= ext4_itable_unused_count(sb, gdp);
3761                         table += num / inodes_per_block;
3762                         if (end > table)
3763                                 end = table;
3764                         while (b <= end)
3765                                 sb_breadahead(sb, b++);
3766                 }
3767
3768                 /*
3769                  * There are other valid inodes in the buffer, this inode
3770                  * has in-inode xattrs, or we don't have this inode in memory.
3771                  * Read the block from disk.
3772                  */
3773                 trace_ext4_load_inode(inode);
3774                 get_bh(bh);
3775                 bh->b_end_io = end_buffer_read_sync;
3776                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3777                 wait_on_buffer(bh);
3778                 if (!buffer_uptodate(bh)) {
3779                         EXT4_ERROR_INODE_BLOCK(inode, block,
3780                                                "unable to read itable block");
3781                         brelse(bh);
3782                         return -EIO;
3783                 }
3784         }
3785 has_buffer:
3786         iloc->bh = bh;
3787         return 0;
3788 }
3789
3790 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3791 {
3792         /* We have all inode data except xattrs in memory here. */
3793         return __ext4_get_inode_loc(inode, iloc,
3794                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3795 }
3796
3797 void ext4_set_inode_flags(struct inode *inode)
3798 {
3799         unsigned int flags = EXT4_I(inode)->i_flags;
3800         unsigned int new_fl = 0;
3801
3802         if (flags & EXT4_SYNC_FL)
3803                 new_fl |= S_SYNC;
3804         if (flags & EXT4_APPEND_FL)
3805                 new_fl |= S_APPEND;
3806         if (flags & EXT4_IMMUTABLE_FL)
3807                 new_fl |= S_IMMUTABLE;
3808         if (flags & EXT4_NOATIME_FL)
3809                 new_fl |= S_NOATIME;
3810         if (flags & EXT4_DIRSYNC_FL)
3811                 new_fl |= S_DIRSYNC;
3812         inode_set_flags(inode, new_fl,
3813                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3814 }
3815
3816 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3817 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3818 {
3819         unsigned int vfs_fl;
3820         unsigned long old_fl, new_fl;
3821
3822         do {
3823                 vfs_fl = ei->vfs_inode.i_flags;
3824                 old_fl = ei->i_flags;
3825                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3826                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3827                                 EXT4_DIRSYNC_FL);
3828                 if (vfs_fl & S_SYNC)
3829                         new_fl |= EXT4_SYNC_FL;
3830                 if (vfs_fl & S_APPEND)
3831                         new_fl |= EXT4_APPEND_FL;
3832                 if (vfs_fl & S_IMMUTABLE)
3833                         new_fl |= EXT4_IMMUTABLE_FL;
3834                 if (vfs_fl & S_NOATIME)
3835                         new_fl |= EXT4_NOATIME_FL;
3836                 if (vfs_fl & S_DIRSYNC)
3837                         new_fl |= EXT4_DIRSYNC_FL;
3838         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3839 }
3840
3841 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3842                                   struct ext4_inode_info *ei)
3843 {
3844         blkcnt_t i_blocks ;
3845         struct inode *inode = &(ei->vfs_inode);
3846         struct super_block *sb = inode->i_sb;
3847
3848         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3849                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3850                 /* we are using combined 48 bit field */
3851                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3852                                         le32_to_cpu(raw_inode->i_blocks_lo);
3853                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3854                         /* i_blocks represent file system block size */
3855                         return i_blocks  << (inode->i_blkbits - 9);
3856                 } else {
3857                         return i_blocks;
3858                 }
3859         } else {
3860                 return le32_to_cpu(raw_inode->i_blocks_lo);
3861         }
3862 }
3863
3864 static inline void ext4_iget_extra_inode(struct inode *inode,
3865                                          struct ext4_inode *raw_inode,
3866                                          struct ext4_inode_info *ei)
3867 {
3868         __le32 *magic = (void *)raw_inode +
3869                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3870         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3871                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3872                 ext4_find_inline_data_nolock(inode);
3873         } else
3874                 EXT4_I(inode)->i_inline_off = 0;
3875 }
3876
3877 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3878 {
3879         struct ext4_iloc iloc;
3880         struct ext4_inode *raw_inode;
3881         struct ext4_inode_info *ei;
3882         struct inode *inode;
3883         journal_t *journal = EXT4_SB(sb)->s_journal;
3884         long ret;
3885         int block;
3886         uid_t i_uid;
3887         gid_t i_gid;
3888
3889         inode = iget_locked(sb, ino);
3890         if (!inode)
3891                 return ERR_PTR(-ENOMEM);
3892         if (!(inode->i_state & I_NEW))
3893                 return inode;
3894
3895         ei = EXT4_I(inode);
3896         iloc.bh = NULL;
3897
3898         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3899         if (ret < 0)
3900                 goto bad_inode;
3901         raw_inode = ext4_raw_inode(&iloc);
3902
3903         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3904                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3905                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3906                     EXT4_INODE_SIZE(inode->i_sb)) {
3907                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3908                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3909                                 EXT4_INODE_SIZE(inode->i_sb));
3910                         ret = -EIO;
3911                         goto bad_inode;
3912                 }
3913         } else
3914                 ei->i_extra_isize = 0;
3915
3916         /* Precompute checksum seed for inode metadata */
3917         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3918                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3919                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3920                 __u32 csum;
3921                 __le32 inum = cpu_to_le32(inode->i_ino);
3922                 __le32 gen = raw_inode->i_generation;
3923                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3924                                    sizeof(inum));
3925                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3926                                               sizeof(gen));
3927         }
3928
3929         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3930                 EXT4_ERROR_INODE(inode, "checksum invalid");
3931                 ret = -EIO;
3932                 goto bad_inode;
3933         }
3934
3935         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3936         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3937         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3938         if (!(test_opt(inode->i_sb, NO_UID32))) {
3939                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3940                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3941         }
3942         i_uid_write(inode, i_uid);
3943         i_gid_write(inode, i_gid);
3944         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3945
3946         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3947         ei->i_inline_off = 0;
3948         ei->i_dir_start_lookup = 0;
3949         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3950         /* We now have enough fields to check if the inode was active or not.
3951          * This is needed because nfsd might try to access dead inodes
3952          * the test is that same one that e2fsck uses
3953          * NeilBrown 1999oct15
3954          */
3955         if (inode->i_nlink == 0) {
3956                 if ((inode->i_mode == 0 ||
3957                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3958                     ino != EXT4_BOOT_LOADER_INO) {
3959                         /* this inode is deleted */
3960                         ret = -ESTALE;
3961                         goto bad_inode;
3962                 }
3963                 /* The only unlinked inodes we let through here have
3964                  * valid i_mode and are being read by the orphan
3965                  * recovery code: that's fine, we're about to complete
3966                  * the process of deleting those.
3967                  * OR it is the EXT4_BOOT_LOADER_INO which is
3968                  * not initialized on a new filesystem. */
3969         }
3970         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3971         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3972         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3973         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3974                 ei->i_file_acl |=
3975                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3976         inode->i_size = ext4_isize(raw_inode);
3977         ei->i_disksize = inode->i_size;
3978 #ifdef CONFIG_QUOTA
3979         ei->i_reserved_quota = 0;
3980 #endif
3981         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3982         ei->i_block_group = iloc.block_group;
3983         ei->i_last_alloc_group = ~0;
3984         /*
3985          * NOTE! The in-memory inode i_data array is in little-endian order
3986          * even on big-endian machines: we do NOT byteswap the block numbers!
3987          */
3988         for (block = 0; block < EXT4_N_BLOCKS; block++)
3989                 ei->i_data[block] = raw_inode->i_block[block];
3990         INIT_LIST_HEAD(&ei->i_orphan);
3991
3992         /*
3993          * Set transaction id's of transactions that have to be committed
3994          * to finish f[data]sync. We set them to currently running transaction
3995          * as we cannot be sure that the inode or some of its metadata isn't
3996          * part of the transaction - the inode could have been reclaimed and
3997          * now it is reread from disk.
3998          */
3999         if (journal) {
4000                 transaction_t *transaction;
4001                 tid_t tid;
4002
4003                 read_lock(&journal->j_state_lock);
4004                 if (journal->j_running_transaction)
4005                         transaction = journal->j_running_transaction;
4006                 else
4007                         transaction = journal->j_committing_transaction;
4008                 if (transaction)
4009                         tid = transaction->t_tid;
4010                 else
4011                         tid = journal->j_commit_sequence;
4012                 read_unlock(&journal->j_state_lock);
4013                 ei->i_sync_tid = tid;
4014                 ei->i_datasync_tid = tid;
4015         }
4016
4017         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4018                 if (ei->i_extra_isize == 0) {
4019                         /* The extra space is currently unused. Use it. */
4020                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4021                                             EXT4_GOOD_OLD_INODE_SIZE;
4022                 } else {
4023                         ext4_iget_extra_inode(inode, raw_inode, ei);
4024                 }
4025         }
4026
4027         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4028         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4029         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4030         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4031
4032         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4033                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4034                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4035                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4036                                 inode->i_version |=
4037                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4038                 }
4039         }
4040
4041         ret = 0;
4042         if (ei->i_file_acl &&
4043             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4044                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4045                                  ei->i_file_acl);
4046                 ret = -EIO;
4047                 goto bad_inode;
4048         } else if (!ext4_has_inline_data(inode)) {
4049                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4050                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4051                             (S_ISLNK(inode->i_mode) &&
4052                              !ext4_inode_is_fast_symlink(inode))))
4053                                 /* Validate extent which is part of inode */
4054                                 ret = ext4_ext_check_inode(inode);
4055                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4056                            (S_ISLNK(inode->i_mode) &&
4057                             !ext4_inode_is_fast_symlink(inode))) {
4058                         /* Validate block references which are part of inode */
4059                         ret = ext4_ind_check_inode(inode);
4060                 }
4061         }
4062         if (ret)
4063                 goto bad_inode;
4064
4065         if (S_ISREG(inode->i_mode)) {
4066                 inode->i_op = &ext4_file_inode_operations;
4067                 inode->i_fop = &ext4_file_operations;
4068                 ext4_set_aops(inode);
4069         } else if (S_ISDIR(inode->i_mode)) {
4070                 inode->i_op = &ext4_dir_inode_operations;
4071                 inode->i_fop = &ext4_dir_operations;
4072         } else if (S_ISLNK(inode->i_mode)) {
4073                 if (ext4_inode_is_fast_symlink(inode)) {
4074                         inode->i_op = &ext4_fast_symlink_inode_operations;
4075                         nd_terminate_link(ei->i_data, inode->i_size,
4076                                 sizeof(ei->i_data) - 1);
4077                 } else {
4078                         inode->i_op = &ext4_symlink_inode_operations;
4079                         ext4_set_aops(inode);
4080                 }
4081         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4082               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4083                 inode->i_op = &ext4_special_inode_operations;
4084                 if (raw_inode->i_block[0])
4085                         init_special_inode(inode, inode->i_mode,
4086                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4087                 else
4088                         init_special_inode(inode, inode->i_mode,
4089                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4090         } else if (ino == EXT4_BOOT_LOADER_INO) {
4091                 make_bad_inode(inode);
4092         } else {
4093                 ret = -EIO;
4094                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4095                 goto bad_inode;
4096         }
4097         brelse(iloc.bh);
4098         ext4_set_inode_flags(inode);
4099         unlock_new_inode(inode);
4100         return inode;
4101
4102 bad_inode:
4103         brelse(iloc.bh);
4104         iget_failed(inode);
4105         return ERR_PTR(ret);
4106 }
4107
4108 static int ext4_inode_blocks_set(handle_t *handle,
4109                                 struct ext4_inode *raw_inode,
4110                                 struct ext4_inode_info *ei)
4111 {
4112         struct inode *inode = &(ei->vfs_inode);
4113         u64 i_blocks = inode->i_blocks;
4114         struct super_block *sb = inode->i_sb;
4115
4116         if (i_blocks <= ~0U) {
4117                 /*
4118                  * i_blocks can be represented in a 32 bit variable
4119                  * as multiple of 512 bytes
4120                  */
4121                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4122                 raw_inode->i_blocks_high = 0;
4123                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4124                 return 0;
4125         }
4126         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4127                 return -EFBIG;
4128
4129         if (i_blocks <= 0xffffffffffffULL) {
4130                 /*
4131                  * i_blocks can be represented in a 48 bit variable
4132                  * as multiple of 512 bytes
4133                  */
4134                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4135                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4136                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4137         } else {
4138                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4139                 /* i_block is stored in file system block size */
4140                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4141                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4142                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4143         }
4144         return 0;
4145 }
4146
4147 /*
4148  * Post the struct inode info into an on-disk inode location in the
4149  * buffer-cache.  This gobbles the caller's reference to the
4150  * buffer_head in the inode location struct.
4151  *
4152  * The caller must have write access to iloc->bh.
4153  */
4154 static int ext4_do_update_inode(handle_t *handle,
4155                                 struct inode *inode,
4156                                 struct ext4_iloc *iloc)
4157 {
4158         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4159         struct ext4_inode_info *ei = EXT4_I(inode);
4160         struct buffer_head *bh = iloc->bh;
4161         struct super_block *sb = inode->i_sb;
4162         int err = 0, rc, block;
4163         int need_datasync = 0, set_large_file = 0;
4164         uid_t i_uid;
4165         gid_t i_gid;
4166
4167         spin_lock(&ei->i_raw_lock);
4168
4169         /* For fields not tracked in the in-memory inode,
4170          * initialise them to zero for new inodes. */
4171         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4172                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4173
4174         ext4_get_inode_flags(ei);
4175         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4176         i_uid = i_uid_read(inode);
4177         i_gid = i_gid_read(inode);
4178         if (!(test_opt(inode->i_sb, NO_UID32))) {
4179                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4180                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4181 /*
4182  * Fix up interoperability with old kernels. Otherwise, old inodes get
4183  * re-used with the upper 16 bits of the uid/gid intact
4184  */
4185                 if (!ei->i_dtime) {
4186                         raw_inode->i_uid_high =
4187                                 cpu_to_le16(high_16_bits(i_uid));
4188                         raw_inode->i_gid_high =
4189                                 cpu_to_le16(high_16_bits(i_gid));
4190                 } else {
4191                         raw_inode->i_uid_high = 0;
4192                         raw_inode->i_gid_high = 0;
4193                 }
4194         } else {
4195                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4196                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4197                 raw_inode->i_uid_high = 0;
4198                 raw_inode->i_gid_high = 0;
4199         }
4200         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4201
4202         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4203         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4204         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4205         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4206
4207         if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4208                 spin_unlock(&ei->i_raw_lock);
4209                 goto out_brelse;
4210         }
4211         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4212         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4213         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4214                 raw_inode->i_file_acl_high =
4215                         cpu_to_le16(ei->i_file_acl >> 32);
4216         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4217         if (ei->i_disksize != ext4_isize(raw_inode)) {
4218                 ext4_isize_set(raw_inode, ei->i_disksize);
4219                 need_datasync = 1;
4220         }
4221         if (ei->i_disksize > 0x7fffffffULL) {
4222                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4223                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4224                                 EXT4_SB(sb)->s_es->s_rev_level ==
4225                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4226                         set_large_file = 1;
4227         }
4228         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4229         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4230                 if (old_valid_dev(inode->i_rdev)) {
4231                         raw_inode->i_block[0] =
4232                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4233                         raw_inode->i_block[1] = 0;
4234                 } else {
4235                         raw_inode->i_block[0] = 0;
4236                         raw_inode->i_block[1] =
4237                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4238                         raw_inode->i_block[2] = 0;
4239                 }
4240         } else if (!ext4_has_inline_data(inode)) {
4241                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4242                         raw_inode->i_block[block] = ei->i_data[block];
4243         }
4244
4245         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4246                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4247                 if (ei->i_extra_isize) {
4248                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4249                                 raw_inode->i_version_hi =
4250                                         cpu_to_le32(inode->i_version >> 32);
4251                         raw_inode->i_extra_isize =
4252                                 cpu_to_le16(ei->i_extra_isize);
4253                 }
4254         }
4255
4256         ext4_inode_csum_set(inode, raw_inode, ei);
4257
4258         spin_unlock(&ei->i_raw_lock);
4259
4260         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4261         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4262         if (!err)
4263                 err = rc;
4264         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4265         if (set_large_file) {
4266                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4267                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4268                 if (err)
4269                         goto out_brelse;
4270                 ext4_update_dynamic_rev(sb);
4271                 EXT4_SET_RO_COMPAT_FEATURE(sb,
4272                                            EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4273                 ext4_handle_sync(handle);
4274                 err = ext4_handle_dirty_super(handle, sb);
4275         }
4276         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4277 out_brelse:
4278         brelse(bh);
4279         ext4_std_error(inode->i_sb, err);
4280         return err;
4281 }
4282
4283 /*
4284  * ext4_write_inode()
4285  *
4286  * We are called from a few places:
4287  *
4288  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4289  *   Here, there will be no transaction running. We wait for any running
4290  *   transaction to commit.
4291  *
4292  * - Within flush work (sys_sync(), kupdate and such).
4293  *   We wait on commit, if told to.
4294  *
4295  * - Within iput_final() -> write_inode_now()
4296  *   We wait on commit, if told to.
4297  *
4298  * In all cases it is actually safe for us to return without doing anything,
4299  * because the inode has been copied into a raw inode buffer in
4300  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4301  * writeback.
4302  *
4303  * Note that we are absolutely dependent upon all inode dirtiers doing the
4304  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4305  * which we are interested.
4306  *
4307  * It would be a bug for them to not do this.  The code:
4308  *
4309  *      mark_inode_dirty(inode)
4310  *      stuff();
4311  *      inode->i_size = expr;
4312  *
4313  * is in error because write_inode() could occur while `stuff()' is running,
4314  * and the new i_size will be lost.  Plus the inode will no longer be on the
4315  * superblock's dirty inode list.
4316  */
4317 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4318 {
4319         int err;
4320
4321         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4322                 return 0;
4323
4324         if (EXT4_SB(inode->i_sb)->s_journal) {
4325                 if (ext4_journal_current_handle()) {
4326                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4327                         dump_stack();
4328                         return -EIO;
4329                 }
4330
4331                 /*
4332                  * No need to force transaction in WB_SYNC_NONE mode. Also
4333                  * ext4_sync_fs() will force the commit after everything is
4334                  * written.
4335                  */
4336                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4337                         return 0;
4338
4339                 err = ext4_force_commit(inode->i_sb);
4340         } else {
4341                 struct ext4_iloc iloc;
4342
4343                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4344                 if (err)
4345                         return err;
4346                 /*
4347                  * sync(2) will flush the whole buffer cache. No need to do
4348                  * it here separately for each inode.
4349                  */
4350                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4351                         sync_dirty_buffer(iloc.bh);
4352                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4353                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4354                                          "IO error syncing inode");
4355                         err = -EIO;
4356                 }
4357                 brelse(iloc.bh);
4358         }
4359         return err;
4360 }
4361
4362 /*
4363  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4364  * buffers that are attached to a page stradding i_size and are undergoing
4365  * commit. In that case we have to wait for commit to finish and try again.
4366  */
4367 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4368 {
4369         struct page *page;
4370         unsigned offset;
4371         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4372         tid_t commit_tid = 0;
4373         int ret;
4374
4375         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4376         /*
4377          * All buffers in the last page remain valid? Then there's nothing to
4378          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4379          * blocksize case
4380          */
4381         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4382                 return;
4383         while (1) {
4384                 page = find_lock_page(inode->i_mapping,
4385                                       inode->i_size >> PAGE_CACHE_SHIFT);
4386                 if (!page)
4387                         return;
4388                 ret = __ext4_journalled_invalidatepage(page, offset,
4389                                                 PAGE_CACHE_SIZE - offset);
4390                 unlock_page(page);
4391                 page_cache_release(page);
4392                 if (ret != -EBUSY)
4393                         return;
4394                 commit_tid = 0;
4395                 read_lock(&journal->j_state_lock);
4396                 if (journal->j_committing_transaction)
4397                         commit_tid = journal->j_committing_transaction->t_tid;
4398                 read_unlock(&journal->j_state_lock);
4399                 if (commit_tid)
4400                         jbd2_log_wait_commit(journal, commit_tid);
4401         }
4402 }
4403
4404 /*
4405  * ext4_setattr()
4406  *
4407  * Called from notify_change.
4408  *
4409  * We want to trap VFS attempts to truncate the file as soon as
4410  * possible.  In particular, we want to make sure that when the VFS
4411  * shrinks i_size, we put the inode on the orphan list and modify
4412  * i_disksize immediately, so that during the subsequent flushing of
4413  * dirty pages and freeing of disk blocks, we can guarantee that any
4414  * commit will leave the blocks being flushed in an unused state on
4415  * disk.  (On recovery, the inode will get truncated and the blocks will
4416  * be freed, so we have a strong guarantee that no future commit will
4417  * leave these blocks visible to the user.)
4418  *
4419  * Another thing we have to assure is that if we are in ordered mode
4420  * and inode is still attached to the committing transaction, we must
4421  * we start writeout of all the dirty pages which are being truncated.
4422  * This way we are sure that all the data written in the previous
4423  * transaction are already on disk (truncate waits for pages under
4424  * writeback).
4425  *
4426  * Called with inode->i_mutex down.
4427  */
4428 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4429 {
4430         struct inode *inode = dentry->d_inode;
4431         int error, rc = 0;
4432         int orphan = 0;
4433         const unsigned int ia_valid = attr->ia_valid;
4434
4435         error = inode_change_ok(inode, attr);
4436         if (error)
4437                 return error;
4438
4439         if (is_quota_modification(inode, attr))
4440                 dquot_initialize(inode);
4441         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4442             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4443                 handle_t *handle;
4444
4445                 /* (user+group)*(old+new) structure, inode write (sb,
4446                  * inode block, ? - but truncate inode update has it) */
4447                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4448                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4449                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4450                 if (IS_ERR(handle)) {
4451                         error = PTR_ERR(handle);
4452                         goto err_out;
4453                 }
4454                 error = dquot_transfer(inode, attr);
4455                 if (error) {
4456                         ext4_journal_stop(handle);
4457                         return error;
4458                 }
4459                 /* Update corresponding info in inode so that everything is in
4460                  * one transaction */
4461                 if (attr->ia_valid & ATTR_UID)
4462                         inode->i_uid = attr->ia_uid;
4463                 if (attr->ia_valid & ATTR_GID)
4464                         inode->i_gid = attr->ia_gid;
4465                 error = ext4_mark_inode_dirty(handle, inode);
4466                 ext4_journal_stop(handle);
4467         }
4468
4469         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4470                 handle_t *handle;
4471
4472                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4473                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4474
4475                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4476                                 return -EFBIG;
4477                 }
4478
4479                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4480                         inode_inc_iversion(inode);
4481
4482                 if (S_ISREG(inode->i_mode) &&
4483                     (attr->ia_size < inode->i_size)) {
4484                         if (ext4_should_order_data(inode)) {
4485                                 error = ext4_begin_ordered_truncate(inode,
4486                                                             attr->ia_size);
4487                                 if (error)
4488                                         goto err_out;
4489                         }
4490                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4491                         if (IS_ERR(handle)) {
4492                                 error = PTR_ERR(handle);
4493                                 goto err_out;
4494                         }
4495                         if (ext4_handle_valid(handle)) {
4496                                 error = ext4_orphan_add(handle, inode);
4497                                 orphan = 1;
4498                         }
4499                         down_write(&EXT4_I(inode)->i_data_sem);
4500                         EXT4_I(inode)->i_disksize = attr->ia_size;
4501                         rc = ext4_mark_inode_dirty(handle, inode);
4502                         if (!error)
4503                                 error = rc;
4504                         /*
4505                          * We have to update i_size under i_data_sem together
4506                          * with i_disksize to avoid races with writeback code
4507                          * running ext4_wb_update_i_disksize().
4508                          */
4509                         if (!error)
4510                                 i_size_write(inode, attr->ia_size);
4511                         up_write(&EXT4_I(inode)->i_data_sem);
4512                         ext4_journal_stop(handle);
4513                         if (error) {
4514                                 ext4_orphan_del(NULL, inode);
4515                                 goto err_out;
4516                         }
4517                 } else {
4518                         loff_t oldsize = inode->i_size;
4519
4520                         i_size_write(inode, attr->ia_size);
4521                         pagecache_isize_extended(inode, oldsize, inode->i_size);
4522                 }
4523
4524                 /*
4525                  * Blocks are going to be removed from the inode. Wait
4526                  * for dio in flight.  Temporarily disable
4527                  * dioread_nolock to prevent livelock.
4528                  */
4529                 if (orphan) {
4530                         if (!ext4_should_journal_data(inode)) {
4531                                 ext4_inode_block_unlocked_dio(inode);
4532                                 inode_dio_wait(inode);
4533                                 ext4_inode_resume_unlocked_dio(inode);
4534                         } else
4535                                 ext4_wait_for_tail_page_commit(inode);
4536                 }
4537                 /*
4538                  * Truncate pagecache after we've waited for commit
4539                  * in data=journal mode to make pages freeable.
4540                  */
4541                         truncate_pagecache(inode, inode->i_size);
4542         }
4543         /*
4544          * We want to call ext4_truncate() even if attr->ia_size ==
4545          * inode->i_size for cases like truncation of fallocated space
4546          */
4547         if (attr->ia_valid & ATTR_SIZE)
4548                 ext4_truncate(inode);
4549
4550         if (!rc) {
4551                 setattr_copy(inode, attr);
4552                 mark_inode_dirty(inode);
4553         }
4554
4555         /*
4556          * If the call to ext4_truncate failed to get a transaction handle at
4557          * all, we need to clean up the in-core orphan list manually.
4558          */
4559         if (orphan && inode->i_nlink)
4560                 ext4_orphan_del(NULL, inode);
4561
4562         if (!rc && (ia_valid & ATTR_MODE))
4563                 rc = posix_acl_chmod(inode, inode->i_mode);
4564
4565 err_out:
4566         ext4_std_error(inode->i_sb, error);
4567         if (!error)
4568                 error = rc;
4569         return error;
4570 }
4571
4572 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4573                  struct kstat *stat)
4574 {
4575         struct inode *inode;
4576         unsigned long long delalloc_blocks;
4577
4578         inode = dentry->d_inode;
4579         generic_fillattr(inode, stat);
4580
4581         /*
4582          * If there is inline data in the inode, the inode will normally not
4583          * have data blocks allocated (it may have an external xattr block).
4584          * Report at least one sector for such files, so tools like tar, rsync,
4585          * others doen't incorrectly think the file is completely sparse.
4586          */
4587         if (unlikely(ext4_has_inline_data(inode)))
4588                 stat->blocks += (stat->size + 511) >> 9;
4589
4590         /*
4591          * We can't update i_blocks if the block allocation is delayed
4592          * otherwise in the case of system crash before the real block
4593          * allocation is done, we will have i_blocks inconsistent with
4594          * on-disk file blocks.
4595          * We always keep i_blocks updated together with real
4596          * allocation. But to not confuse with user, stat
4597          * will return the blocks that include the delayed allocation
4598          * blocks for this file.
4599          */
4600         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4601                                    EXT4_I(inode)->i_reserved_data_blocks);
4602         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4603         return 0;
4604 }
4605
4606 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4607                                    int pextents)
4608 {
4609         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4610                 return ext4_ind_trans_blocks(inode, lblocks);
4611         return ext4_ext_index_trans_blocks(inode, pextents);
4612 }
4613
4614 /*
4615  * Account for index blocks, block groups bitmaps and block group
4616  * descriptor blocks if modify datablocks and index blocks
4617  * worse case, the indexs blocks spread over different block groups
4618  *
4619  * If datablocks are discontiguous, they are possible to spread over
4620  * different block groups too. If they are contiguous, with flexbg,
4621  * they could still across block group boundary.
4622  *
4623  * Also account for superblock, inode, quota and xattr blocks
4624  */
4625 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4626                                   int pextents)
4627 {
4628         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4629         int gdpblocks;
4630         int idxblocks;
4631         int ret = 0;
4632
4633         /*
4634          * How many index blocks need to touch to map @lblocks logical blocks
4635          * to @pextents physical extents?
4636          */
4637         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4638
4639         ret = idxblocks;
4640
4641         /*
4642          * Now let's see how many group bitmaps and group descriptors need
4643          * to account
4644          */
4645         groups = idxblocks + pextents;
4646         gdpblocks = groups;
4647         if (groups > ngroups)
4648                 groups = ngroups;
4649         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4650                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4651
4652         /* bitmaps and block group descriptor blocks */
4653         ret += groups + gdpblocks;
4654
4655         /* Blocks for super block, inode, quota and xattr blocks */
4656         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4657
4658         return ret;
4659 }
4660
4661 /*
4662  * Calculate the total number of credits to reserve to fit
4663  * the modification of a single pages into a single transaction,
4664  * which may include multiple chunks of block allocations.
4665  *
4666  * This could be called via ext4_write_begin()
4667  *
4668  * We need to consider the worse case, when
4669  * one new block per extent.
4670  */
4671 int ext4_writepage_trans_blocks(struct inode *inode)
4672 {
4673         int bpp = ext4_journal_blocks_per_page(inode);
4674         int ret;
4675
4676         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4677
4678         /* Account for data blocks for journalled mode */
4679         if (ext4_should_journal_data(inode))
4680                 ret += bpp;
4681         return ret;
4682 }
4683
4684 /*
4685  * Calculate the journal credits for a chunk of data modification.
4686  *
4687  * This is called from DIO, fallocate or whoever calling
4688  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4689  *
4690  * journal buffers for data blocks are not included here, as DIO
4691  * and fallocate do no need to journal data buffers.
4692  */
4693 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4694 {
4695         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4696 }
4697
4698 /*
4699  * The caller must have previously called ext4_reserve_inode_write().
4700  * Give this, we know that the caller already has write access to iloc->bh.
4701  */
4702 int ext4_mark_iloc_dirty(handle_t *handle,
4703                          struct inode *inode, struct ext4_iloc *iloc)
4704 {
4705         int err = 0;
4706
4707         if (IS_I_VERSION(inode))
4708                 inode_inc_iversion(inode);
4709
4710         /* the do_update_inode consumes one bh->b_count */
4711         get_bh(iloc->bh);
4712
4713         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4714         err = ext4_do_update_inode(handle, inode, iloc);
4715         put_bh(iloc->bh);
4716         return err;
4717 }
4718
4719 /*
4720  * On success, We end up with an outstanding reference count against
4721  * iloc->bh.  This _must_ be cleaned up later.
4722  */
4723
4724 int
4725 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4726                          struct ext4_iloc *iloc)
4727 {
4728         int err;
4729
4730         err = ext4_get_inode_loc(inode, iloc);
4731         if (!err) {
4732                 BUFFER_TRACE(iloc->bh, "get_write_access");
4733                 err = ext4_journal_get_write_access(handle, iloc->bh);
4734                 if (err) {
4735                         brelse(iloc->bh);
4736                         iloc->bh = NULL;
4737                 }
4738         }
4739         ext4_std_error(inode->i_sb, err);
4740         return err;
4741 }
4742
4743 /*
4744  * Expand an inode by new_extra_isize bytes.
4745  * Returns 0 on success or negative error number on failure.
4746  */
4747 static int ext4_expand_extra_isize(struct inode *inode,
4748                                    unsigned int new_extra_isize,
4749                                    struct ext4_iloc iloc,
4750                                    handle_t *handle)
4751 {
4752         struct ext4_inode *raw_inode;
4753         struct ext4_xattr_ibody_header *header;
4754
4755         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4756                 return 0;
4757
4758         raw_inode = ext4_raw_inode(&iloc);
4759
4760         header = IHDR(inode, raw_inode);
4761
4762         /* No extended attributes present */
4763         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4764             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4765                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4766                         new_extra_isize);
4767                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4768                 return 0;
4769         }
4770
4771         /* try to expand with EAs present */
4772         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4773                                           raw_inode, handle);
4774 }
4775
4776 /*
4777  * What we do here is to mark the in-core inode as clean with respect to inode
4778  * dirtiness (it may still be data-dirty).
4779  * This means that the in-core inode may be reaped by prune_icache
4780  * without having to perform any I/O.  This is a very good thing,
4781  * because *any* task may call prune_icache - even ones which
4782  * have a transaction open against a different journal.
4783  *
4784  * Is this cheating?  Not really.  Sure, we haven't written the
4785  * inode out, but prune_icache isn't a user-visible syncing function.
4786  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4787  * we start and wait on commits.
4788  */
4789 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4790 {
4791         struct ext4_iloc iloc;
4792         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4793         static unsigned int mnt_count;
4794         int err, ret;
4795
4796         might_sleep();
4797         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4798         err = ext4_reserve_inode_write(handle, inode, &iloc);
4799         if (ext4_handle_valid(handle) &&
4800             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4801             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4802                 /*
4803                  * We need extra buffer credits since we may write into EA block
4804                  * with this same handle. If journal_extend fails, then it will
4805                  * only result in a minor loss of functionality for that inode.
4806                  * If this is felt to be critical, then e2fsck should be run to
4807                  * force a large enough s_min_extra_isize.
4808                  */
4809                 if ((jbd2_journal_extend(handle,
4810                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4811                         ret = ext4_expand_extra_isize(inode,
4812                                                       sbi->s_want_extra_isize,
4813                                                       iloc, handle);
4814                         if (ret) {
4815                                 ext4_set_inode_state(inode,
4816                                                      EXT4_STATE_NO_EXPAND);
4817                                 if (mnt_count !=
4818                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4819                                         ext4_warning(inode->i_sb,
4820                                         "Unable to expand inode %lu. Delete"
4821                                         " some EAs or run e2fsck.",
4822                                         inode->i_ino);
4823                                         mnt_count =
4824                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4825                                 }
4826                         }
4827                 }
4828         }
4829         if (!err)
4830                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4831         return err;
4832 }
4833
4834 /*
4835  * ext4_dirty_inode() is called from __mark_inode_dirty()
4836  *
4837  * We're really interested in the case where a file is being extended.
4838  * i_size has been changed by generic_commit_write() and we thus need
4839  * to include the updated inode in the current transaction.
4840  *
4841  * Also, dquot_alloc_block() will always dirty the inode when blocks
4842  * are allocated to the file.
4843  *
4844  * If the inode is marked synchronous, we don't honour that here - doing
4845  * so would cause a commit on atime updates, which we don't bother doing.
4846  * We handle synchronous inodes at the highest possible level.
4847  */
4848 void ext4_dirty_inode(struct inode *inode, int flags)
4849 {
4850         handle_t *handle;
4851
4852         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4853         if (IS_ERR(handle))
4854                 goto out;
4855
4856         ext4_mark_inode_dirty(handle, inode);
4857
4858         ext4_journal_stop(handle);
4859 out:
4860         return;
4861 }
4862
4863 #if 0
4864 /*
4865  * Bind an inode's backing buffer_head into this transaction, to prevent
4866  * it from being flushed to disk early.  Unlike
4867  * ext4_reserve_inode_write, this leaves behind no bh reference and
4868  * returns no iloc structure, so the caller needs to repeat the iloc
4869  * lookup to mark the inode dirty later.
4870  */
4871 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4872 {
4873         struct ext4_iloc iloc;
4874
4875         int err = 0;
4876         if (handle) {
4877                 err = ext4_get_inode_loc(inode, &iloc);
4878                 if (!err) {
4879                         BUFFER_TRACE(iloc.bh, "get_write_access");
4880                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4881                         if (!err)
4882                                 err = ext4_handle_dirty_metadata(handle,
4883                                                                  NULL,
4884                                                                  iloc.bh);
4885                         brelse(iloc.bh);
4886                 }
4887         }
4888         ext4_std_error(inode->i_sb, err);
4889         return err;
4890 }
4891 #endif
4892
4893 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4894 {
4895         journal_t *journal;
4896         handle_t *handle;
4897         int err;
4898
4899         /*
4900          * We have to be very careful here: changing a data block's
4901          * journaling status dynamically is dangerous.  If we write a
4902          * data block to the journal, change the status and then delete
4903          * that block, we risk forgetting to revoke the old log record
4904          * from the journal and so a subsequent replay can corrupt data.
4905          * So, first we make sure that the journal is empty and that
4906          * nobody is changing anything.
4907          */
4908
4909         journal = EXT4_JOURNAL(inode);
4910         if (!journal)
4911                 return 0;
4912         if (is_journal_aborted(journal))
4913                 return -EROFS;
4914         /* We have to allocate physical blocks for delalloc blocks
4915          * before flushing journal. otherwise delalloc blocks can not
4916          * be allocated any more. even more truncate on delalloc blocks
4917          * could trigger BUG by flushing delalloc blocks in journal.
4918          * There is no delalloc block in non-journal data mode.
4919          */
4920         if (val && test_opt(inode->i_sb, DELALLOC)) {
4921                 err = ext4_alloc_da_blocks(inode);
4922                 if (err < 0)
4923                         return err;
4924         }
4925
4926         /* Wait for all existing dio workers */
4927         ext4_inode_block_unlocked_dio(inode);
4928         inode_dio_wait(inode);
4929
4930         jbd2_journal_lock_updates(journal);
4931
4932         /*
4933          * OK, there are no updates running now, and all cached data is
4934          * synced to disk.  We are now in a completely consistent state
4935          * which doesn't have anything in the journal, and we know that
4936          * no filesystem updates are running, so it is safe to modify
4937          * the inode's in-core data-journaling state flag now.
4938          */
4939
4940         if (val)
4941                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4942         else {
4943                 jbd2_journal_flush(journal);
4944                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4945         }
4946         ext4_set_aops(inode);
4947
4948         jbd2_journal_unlock_updates(journal);
4949         ext4_inode_resume_unlocked_dio(inode);
4950
4951         /* Finally we can mark the inode as dirty. */
4952
4953         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4954         if (IS_ERR(handle))
4955                 return PTR_ERR(handle);
4956
4957         err = ext4_mark_inode_dirty(handle, inode);
4958         ext4_handle_sync(handle);
4959         ext4_journal_stop(handle);
4960         ext4_std_error(inode->i_sb, err);
4961
4962         return err;
4963 }
4964
4965 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4966 {
4967         return !buffer_mapped(bh);
4968 }
4969
4970 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4971 {
4972         struct page *page = vmf->page;
4973         loff_t size;
4974         unsigned long len;
4975         int ret;
4976         struct file *file = vma->vm_file;
4977         struct inode *inode = file_inode(file);
4978         struct address_space *mapping = inode->i_mapping;
4979         handle_t *handle;
4980         get_block_t *get_block;
4981         int retries = 0;
4982
4983         sb_start_pagefault(inode->i_sb);
4984         file_update_time(vma->vm_file);
4985         /* Delalloc case is easy... */
4986         if (test_opt(inode->i_sb, DELALLOC) &&
4987             !ext4_should_journal_data(inode) &&
4988             !ext4_nonda_switch(inode->i_sb)) {
4989                 do {
4990                         ret = __block_page_mkwrite(vma, vmf,
4991                                                    ext4_da_get_block_prep);
4992                 } while (ret == -ENOSPC &&
4993                        ext4_should_retry_alloc(inode->i_sb, &retries));
4994                 goto out_ret;
4995         }
4996
4997         lock_page(page);
4998         size = i_size_read(inode);
4999         /* Page got truncated from under us? */
5000         if (page->mapping != mapping || page_offset(page) > size) {
5001                 unlock_page(page);
5002                 ret = VM_FAULT_NOPAGE;
5003                 goto out;
5004         }
5005
5006         if (page->index == size >> PAGE_CACHE_SHIFT)
5007                 len = size & ~PAGE_CACHE_MASK;
5008         else
5009                 len = PAGE_CACHE_SIZE;
5010         /*
5011          * Return if we have all the buffers mapped. This avoids the need to do
5012          * journal_start/journal_stop which can block and take a long time
5013          */
5014         if (page_has_buffers(page)) {
5015                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5016                                             0, len, NULL,
5017                                             ext4_bh_unmapped)) {
5018                         /* Wait so that we don't change page under IO */
5019                         wait_for_stable_page(page);
5020                         ret = VM_FAULT_LOCKED;
5021                         goto out;
5022                 }
5023         }
5024         unlock_page(page);
5025         /* OK, we need to fill the hole... */
5026         if (ext4_should_dioread_nolock(inode))
5027                 get_block = ext4_get_block_write;
5028         else
5029                 get_block = ext4_get_block;
5030 retry_alloc:
5031         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5032                                     ext4_writepage_trans_blocks(inode));
5033         if (IS_ERR(handle)) {
5034                 ret = VM_FAULT_SIGBUS;
5035                 goto out;
5036         }
5037         ret = __block_page_mkwrite(vma, vmf, get_block);
5038         if (!ret && ext4_should_journal_data(inode)) {
5039                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5040                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5041                         unlock_page(page);
5042                         ret = VM_FAULT_SIGBUS;
5043                         ext4_journal_stop(handle);
5044                         goto out;
5045                 }
5046                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5047         }
5048         ext4_journal_stop(handle);
5049         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5050                 goto retry_alloc;
5051 out_ret:
5052         ret = block_page_mkwrite_return(ret);
5053 out:
5054         sb_end_pagefault(inode->i_sb);
5055         return ret;
5056 }