ext3: retry failed direct IO allocations
[firefly-linux-kernel-4.4.55.git] / fs / ext3 / inode.c
1 /*
2  *  linux/fs/ext3/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
43
44 static int ext3_writepage_trans_blocks(struct inode *inode);
45
46 /*
47  * Test whether an inode is a fast symlink.
48  */
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
50 {
51         int ea_blocks = EXT3_I(inode)->i_file_acl ?
52                 (inode->i_sb->s_blocksize >> 9) : 0;
53
54         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
55 }
56
57 /*
58  * The ext3 forget function must perform a revoke if we are freeing data
59  * which has been journaled.  Metadata (eg. indirect blocks) must be
60  * revoked in all cases.
61  *
62  * "bh" may be NULL: a metadata block may have been freed from memory
63  * but there may still be a record of it in the journal, and that record
64  * still needs to be revoked.
65  */
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67                         struct buffer_head *bh, ext3_fsblk_t blocknr)
68 {
69         int err;
70
71         might_sleep();
72
73         BUFFER_TRACE(bh, "enter");
74
75         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76                   "data mode %lx\n",
77                   bh, is_metadata, inode->i_mode,
78                   test_opt(inode->i_sb, DATA_FLAGS));
79
80         /* Never use the revoke function if we are doing full data
81          * journaling: there is no need to, and a V1 superblock won't
82          * support it.  Otherwise, only skip the revoke on un-journaled
83          * data blocks. */
84
85         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86             (!is_metadata && !ext3_should_journal_data(inode))) {
87                 if (bh) {
88                         BUFFER_TRACE(bh, "call journal_forget");
89                         return ext3_journal_forget(handle, bh);
90                 }
91                 return 0;
92         }
93
94         /*
95          * data!=journal && (is_metadata || should_journal_data(inode))
96          */
97         BUFFER_TRACE(bh, "call ext3_journal_revoke");
98         err = ext3_journal_revoke(handle, blocknr, bh);
99         if (err)
100                 ext3_abort(inode->i_sb, __func__,
101                            "error %d when attempting revoke", err);
102         BUFFER_TRACE(bh, "exit");
103         return err;
104 }
105
106 /*
107  * Work out how many blocks we need to proceed with the next chunk of a
108  * truncate transaction.
109  */
110 static unsigned long blocks_for_truncate(struct inode *inode)
111 {
112         unsigned long needed;
113
114         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116         /* Give ourselves just enough room to cope with inodes in which
117          * i_blocks is corrupt: we've seen disk corruptions in the past
118          * which resulted in random data in an inode which looked enough
119          * like a regular file for ext3 to try to delete it.  Things
120          * will go a bit crazy if that happens, but at least we should
121          * try not to panic the whole kernel. */
122         if (needed < 2)
123                 needed = 2;
124
125         /* But we need to bound the transaction so we don't overflow the
126          * journal. */
127         if (needed > EXT3_MAX_TRANS_DATA)
128                 needed = EXT3_MAX_TRANS_DATA;
129
130         return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
131 }
132
133 /*
134  * Truncate transactions can be complex and absolutely huge.  So we need to
135  * be able to restart the transaction at a conventient checkpoint to make
136  * sure we don't overflow the journal.
137  *
138  * start_transaction gets us a new handle for a truncate transaction,
139  * and extend_transaction tries to extend the existing one a bit.  If
140  * extend fails, we need to propagate the failure up and restart the
141  * transaction in the top-level truncate loop. --sct
142  */
143 static handle_t *start_transaction(struct inode *inode)
144 {
145         handle_t *result;
146
147         result = ext3_journal_start(inode, blocks_for_truncate(inode));
148         if (!IS_ERR(result))
149                 return result;
150
151         ext3_std_error(inode->i_sb, PTR_ERR(result));
152         return result;
153 }
154
155 /*
156  * Try to extend this transaction for the purposes of truncation.
157  *
158  * Returns 0 if we managed to create more room.  If we can't create more
159  * room, and the transaction must be restarted we return 1.
160  */
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162 {
163         if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164                 return 0;
165         if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166                 return 0;
167         return 1;
168 }
169
170 /*
171  * Restart the transaction associated with *handle.  This does a commit,
172  * so before we call here everything must be consistently dirtied against
173  * this transaction.
174  */
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
176 {
177         int ret;
178
179         jbd_debug(2, "restarting handle %p\n", handle);
180         /*
181          * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182          * At this moment, get_block can be called only for blocks inside
183          * i_size since page cache has been already dropped and writes are
184          * blocked by i_mutex. So we can safely drop the truncate_mutex.
185          */
186         mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187         ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188         mutex_lock(&EXT3_I(inode)->truncate_mutex);
189         return ret;
190 }
191
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext3_delete_inode (struct inode * inode)
196 {
197         handle_t *handle;
198
199         truncate_inode_pages(&inode->i_data, 0);
200
201         if (is_bad_inode(inode))
202                 goto no_delete;
203
204         handle = start_transaction(inode);
205         if (IS_ERR(handle)) {
206                 /*
207                  * If we're going to skip the normal cleanup, we still need to
208                  * make sure that the in-core orphan linked list is properly
209                  * cleaned up.
210                  */
211                 ext3_orphan_del(NULL, inode);
212                 goto no_delete;
213         }
214
215         if (IS_SYNC(inode))
216                 handle->h_sync = 1;
217         inode->i_size = 0;
218         if (inode->i_blocks)
219                 ext3_truncate(inode);
220         /*
221          * Kill off the orphan record which ext3_truncate created.
222          * AKPM: I think this can be inside the above `if'.
223          * Note that ext3_orphan_del() has to be able to cope with the
224          * deletion of a non-existent orphan - this is because we don't
225          * know if ext3_truncate() actually created an orphan record.
226          * (Well, we could do this if we need to, but heck - it works)
227          */
228         ext3_orphan_del(handle, inode);
229         EXT3_I(inode)->i_dtime  = get_seconds();
230
231         /*
232          * One subtle ordering requirement: if anything has gone wrong
233          * (transaction abort, IO errors, whatever), then we can still
234          * do these next steps (the fs will already have been marked as
235          * having errors), but we can't free the inode if the mark_dirty
236          * fails.
237          */
238         if (ext3_mark_inode_dirty(handle, inode))
239                 /* If that failed, just do the required in-core inode clear. */
240                 clear_inode(inode);
241         else
242                 ext3_free_inode(handle, inode);
243         ext3_journal_stop(handle);
244         return;
245 no_delete:
246         clear_inode(inode);     /* We must guarantee clearing of inode... */
247 }
248
249 typedef struct {
250         __le32  *p;
251         __le32  key;
252         struct buffer_head *bh;
253 } Indirect;
254
255 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
256 {
257         p->key = *(p->p = v);
258         p->bh = bh;
259 }
260
261 static int verify_chain(Indirect *from, Indirect *to)
262 {
263         while (from <= to && from->key == *from->p)
264                 from++;
265         return (from > to);
266 }
267
268 /**
269  *      ext3_block_to_path - parse the block number into array of offsets
270  *      @inode: inode in question (we are only interested in its superblock)
271  *      @i_block: block number to be parsed
272  *      @offsets: array to store the offsets in
273  *      @boundary: set this non-zero if the referred-to block is likely to be
274  *             followed (on disk) by an indirect block.
275  *
276  *      To store the locations of file's data ext3 uses a data structure common
277  *      for UNIX filesystems - tree of pointers anchored in the inode, with
278  *      data blocks at leaves and indirect blocks in intermediate nodes.
279  *      This function translates the block number into path in that tree -
280  *      return value is the path length and @offsets[n] is the offset of
281  *      pointer to (n+1)th node in the nth one. If @block is out of range
282  *      (negative or too large) warning is printed and zero returned.
283  *
284  *      Note: function doesn't find node addresses, so no IO is needed. All
285  *      we need to know is the capacity of indirect blocks (taken from the
286  *      inode->i_sb).
287  */
288
289 /*
290  * Portability note: the last comparison (check that we fit into triple
291  * indirect block) is spelled differently, because otherwise on an
292  * architecture with 32-bit longs and 8Kb pages we might get into trouble
293  * if our filesystem had 8Kb blocks. We might use long long, but that would
294  * kill us on x86. Oh, well, at least the sign propagation does not matter -
295  * i_block would have to be negative in the very beginning, so we would not
296  * get there at all.
297  */
298
299 static int ext3_block_to_path(struct inode *inode,
300                         long i_block, int offsets[4], int *boundary)
301 {
302         int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
303         int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
304         const long direct_blocks = EXT3_NDIR_BLOCKS,
305                 indirect_blocks = ptrs,
306                 double_blocks = (1 << (ptrs_bits * 2));
307         int n = 0;
308         int final = 0;
309
310         if (i_block < 0) {
311                 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
312         } else if (i_block < direct_blocks) {
313                 offsets[n++] = i_block;
314                 final = direct_blocks;
315         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
316                 offsets[n++] = EXT3_IND_BLOCK;
317                 offsets[n++] = i_block;
318                 final = ptrs;
319         } else if ((i_block -= indirect_blocks) < double_blocks) {
320                 offsets[n++] = EXT3_DIND_BLOCK;
321                 offsets[n++] = i_block >> ptrs_bits;
322                 offsets[n++] = i_block & (ptrs - 1);
323                 final = ptrs;
324         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325                 offsets[n++] = EXT3_TIND_BLOCK;
326                 offsets[n++] = i_block >> (ptrs_bits * 2);
327                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328                 offsets[n++] = i_block & (ptrs - 1);
329                 final = ptrs;
330         } else {
331                 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
332         }
333         if (boundary)
334                 *boundary = final - 1 - (i_block & (ptrs - 1));
335         return n;
336 }
337
338 /**
339  *      ext3_get_branch - read the chain of indirect blocks leading to data
340  *      @inode: inode in question
341  *      @depth: depth of the chain (1 - direct pointer, etc.)
342  *      @offsets: offsets of pointers in inode/indirect blocks
343  *      @chain: place to store the result
344  *      @err: here we store the error value
345  *
346  *      Function fills the array of triples <key, p, bh> and returns %NULL
347  *      if everything went OK or the pointer to the last filled triple
348  *      (incomplete one) otherwise. Upon the return chain[i].key contains
349  *      the number of (i+1)-th block in the chain (as it is stored in memory,
350  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
351  *      number (it points into struct inode for i==0 and into the bh->b_data
352  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
353  *      block for i>0 and NULL for i==0. In other words, it holds the block
354  *      numbers of the chain, addresses they were taken from (and where we can
355  *      verify that chain did not change) and buffer_heads hosting these
356  *      numbers.
357  *
358  *      Function stops when it stumbles upon zero pointer (absent block)
359  *              (pointer to last triple returned, *@err == 0)
360  *      or when it gets an IO error reading an indirect block
361  *              (ditto, *@err == -EIO)
362  *      or when it notices that chain had been changed while it was reading
363  *              (ditto, *@err == -EAGAIN)
364  *      or when it reads all @depth-1 indirect blocks successfully and finds
365  *      the whole chain, all way to the data (returns %NULL, *err == 0).
366  */
367 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
368                                  Indirect chain[4], int *err)
369 {
370         struct super_block *sb = inode->i_sb;
371         Indirect *p = chain;
372         struct buffer_head *bh;
373
374         *err = 0;
375         /* i_data is not going away, no lock needed */
376         add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
377         if (!p->key)
378                 goto no_block;
379         while (--depth) {
380                 bh = sb_bread(sb, le32_to_cpu(p->key));
381                 if (!bh)
382                         goto failure;
383                 /* Reader: pointers */
384                 if (!verify_chain(chain, p))
385                         goto changed;
386                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
387                 /* Reader: end */
388                 if (!p->key)
389                         goto no_block;
390         }
391         return NULL;
392
393 changed:
394         brelse(bh);
395         *err = -EAGAIN;
396         goto no_block;
397 failure:
398         *err = -EIO;
399 no_block:
400         return p;
401 }
402
403 /**
404  *      ext3_find_near - find a place for allocation with sufficient locality
405  *      @inode: owner
406  *      @ind: descriptor of indirect block.
407  *
408  *      This function returns the preferred place for block allocation.
409  *      It is used when heuristic for sequential allocation fails.
410  *      Rules are:
411  *        + if there is a block to the left of our position - allocate near it.
412  *        + if pointer will live in indirect block - allocate near that block.
413  *        + if pointer will live in inode - allocate in the same
414  *          cylinder group.
415  *
416  * In the latter case we colour the starting block by the callers PID to
417  * prevent it from clashing with concurrent allocations for a different inode
418  * in the same block group.   The PID is used here so that functionally related
419  * files will be close-by on-disk.
420  *
421  *      Caller must make sure that @ind is valid and will stay that way.
422  */
423 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
424 {
425         struct ext3_inode_info *ei = EXT3_I(inode);
426         __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
427         __le32 *p;
428         ext3_fsblk_t bg_start;
429         ext3_grpblk_t colour;
430
431         /* Try to find previous block */
432         for (p = ind->p - 1; p >= start; p--) {
433                 if (*p)
434                         return le32_to_cpu(*p);
435         }
436
437         /* No such thing, so let's try location of indirect block */
438         if (ind->bh)
439                 return ind->bh->b_blocknr;
440
441         /*
442          * It is going to be referred to from the inode itself? OK, just put it
443          * into the same cylinder group then.
444          */
445         bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
446         colour = (current->pid % 16) *
447                         (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
448         return bg_start + colour;
449 }
450
451 /**
452  *      ext3_find_goal - find a preferred place for allocation.
453  *      @inode: owner
454  *      @block:  block we want
455  *      @partial: pointer to the last triple within a chain
456  *
457  *      Normally this function find the preferred place for block allocation,
458  *      returns it.
459  */
460
461 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
462                                    Indirect *partial)
463 {
464         struct ext3_block_alloc_info *block_i;
465
466         block_i =  EXT3_I(inode)->i_block_alloc_info;
467
468         /*
469          * try the heuristic for sequential allocation,
470          * failing that at least try to get decent locality.
471          */
472         if (block_i && (block == block_i->last_alloc_logical_block + 1)
473                 && (block_i->last_alloc_physical_block != 0)) {
474                 return block_i->last_alloc_physical_block + 1;
475         }
476
477         return ext3_find_near(inode, partial);
478 }
479
480 /**
481  *      ext3_blks_to_allocate: Look up the block map and count the number
482  *      of direct blocks need to be allocated for the given branch.
483  *
484  *      @branch: chain of indirect blocks
485  *      @k: number of blocks need for indirect blocks
486  *      @blks: number of data blocks to be mapped.
487  *      @blocks_to_boundary:  the offset in the indirect block
488  *
489  *      return the total number of blocks to be allocate, including the
490  *      direct and indirect blocks.
491  */
492 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
493                 int blocks_to_boundary)
494 {
495         unsigned long count = 0;
496
497         /*
498          * Simple case, [t,d]Indirect block(s) has not allocated yet
499          * then it's clear blocks on that path have not allocated
500          */
501         if (k > 0) {
502                 /* right now we don't handle cross boundary allocation */
503                 if (blks < blocks_to_boundary + 1)
504                         count += blks;
505                 else
506                         count += blocks_to_boundary + 1;
507                 return count;
508         }
509
510         count++;
511         while (count < blks && count <= blocks_to_boundary &&
512                 le32_to_cpu(*(branch[0].p + count)) == 0) {
513                 count++;
514         }
515         return count;
516 }
517
518 /**
519  *      ext3_alloc_blocks: multiple allocate blocks needed for a branch
520  *      @indirect_blks: the number of blocks need to allocate for indirect
521  *                      blocks
522  *
523  *      @new_blocks: on return it will store the new block numbers for
524  *      the indirect blocks(if needed) and the first direct block,
525  *      @blks:  on return it will store the total number of allocated
526  *              direct blocks
527  */
528 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
529                         ext3_fsblk_t goal, int indirect_blks, int blks,
530                         ext3_fsblk_t new_blocks[4], int *err)
531 {
532         int target, i;
533         unsigned long count = 0;
534         int index = 0;
535         ext3_fsblk_t current_block = 0;
536         int ret = 0;
537
538         /*
539          * Here we try to allocate the requested multiple blocks at once,
540          * on a best-effort basis.
541          * To build a branch, we should allocate blocks for
542          * the indirect blocks(if not allocated yet), and at least
543          * the first direct block of this branch.  That's the
544          * minimum number of blocks need to allocate(required)
545          */
546         target = blks + indirect_blks;
547
548         while (1) {
549                 count = target;
550                 /* allocating blocks for indirect blocks and direct blocks */
551                 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
552                 if (*err)
553                         goto failed_out;
554
555                 target -= count;
556                 /* allocate blocks for indirect blocks */
557                 while (index < indirect_blks && count) {
558                         new_blocks[index++] = current_block++;
559                         count--;
560                 }
561
562                 if (count > 0)
563                         break;
564         }
565
566         /* save the new block number for the first direct block */
567         new_blocks[index] = current_block;
568
569         /* total number of blocks allocated for direct blocks */
570         ret = count;
571         *err = 0;
572         return ret;
573 failed_out:
574         for (i = 0; i <index; i++)
575                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
576         return ret;
577 }
578
579 /**
580  *      ext3_alloc_branch - allocate and set up a chain of blocks.
581  *      @inode: owner
582  *      @indirect_blks: number of allocated indirect blocks
583  *      @blks: number of allocated direct blocks
584  *      @offsets: offsets (in the blocks) to store the pointers to next.
585  *      @branch: place to store the chain in.
586  *
587  *      This function allocates blocks, zeroes out all but the last one,
588  *      links them into chain and (if we are synchronous) writes them to disk.
589  *      In other words, it prepares a branch that can be spliced onto the
590  *      inode. It stores the information about that chain in the branch[], in
591  *      the same format as ext3_get_branch() would do. We are calling it after
592  *      we had read the existing part of chain and partial points to the last
593  *      triple of that (one with zero ->key). Upon the exit we have the same
594  *      picture as after the successful ext3_get_block(), except that in one
595  *      place chain is disconnected - *branch->p is still zero (we did not
596  *      set the last link), but branch->key contains the number that should
597  *      be placed into *branch->p to fill that gap.
598  *
599  *      If allocation fails we free all blocks we've allocated (and forget
600  *      their buffer_heads) and return the error value the from failed
601  *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
602  *      as described above and return 0.
603  */
604 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
605                         int indirect_blks, int *blks, ext3_fsblk_t goal,
606                         int *offsets, Indirect *branch)
607 {
608         int blocksize = inode->i_sb->s_blocksize;
609         int i, n = 0;
610         int err = 0;
611         struct buffer_head *bh;
612         int num;
613         ext3_fsblk_t new_blocks[4];
614         ext3_fsblk_t current_block;
615
616         num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
617                                 *blks, new_blocks, &err);
618         if (err)
619                 return err;
620
621         branch[0].key = cpu_to_le32(new_blocks[0]);
622         /*
623          * metadata blocks and data blocks are allocated.
624          */
625         for (n = 1; n <= indirect_blks;  n++) {
626                 /*
627                  * Get buffer_head for parent block, zero it out
628                  * and set the pointer to new one, then send
629                  * parent to disk.
630                  */
631                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
632                 branch[n].bh = bh;
633                 lock_buffer(bh);
634                 BUFFER_TRACE(bh, "call get_create_access");
635                 err = ext3_journal_get_create_access(handle, bh);
636                 if (err) {
637                         unlock_buffer(bh);
638                         brelse(bh);
639                         goto failed;
640                 }
641
642                 memset(bh->b_data, 0, blocksize);
643                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
644                 branch[n].key = cpu_to_le32(new_blocks[n]);
645                 *branch[n].p = branch[n].key;
646                 if ( n == indirect_blks) {
647                         current_block = new_blocks[n];
648                         /*
649                          * End of chain, update the last new metablock of
650                          * the chain to point to the new allocated
651                          * data blocks numbers
652                          */
653                         for (i=1; i < num; i++)
654                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
655                 }
656                 BUFFER_TRACE(bh, "marking uptodate");
657                 set_buffer_uptodate(bh);
658                 unlock_buffer(bh);
659
660                 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
661                 err = ext3_journal_dirty_metadata(handle, bh);
662                 if (err)
663                         goto failed;
664         }
665         *blks = num;
666         return err;
667 failed:
668         /* Allocation failed, free what we already allocated */
669         for (i = 1; i <= n ; i++) {
670                 BUFFER_TRACE(branch[i].bh, "call journal_forget");
671                 ext3_journal_forget(handle, branch[i].bh);
672         }
673         for (i = 0; i <indirect_blks; i++)
674                 ext3_free_blocks(handle, inode, new_blocks[i], 1);
675
676         ext3_free_blocks(handle, inode, new_blocks[i], num);
677
678         return err;
679 }
680
681 /**
682  * ext3_splice_branch - splice the allocated branch onto inode.
683  * @inode: owner
684  * @block: (logical) number of block we are adding
685  * @chain: chain of indirect blocks (with a missing link - see
686  *      ext3_alloc_branch)
687  * @where: location of missing link
688  * @num:   number of indirect blocks we are adding
689  * @blks:  number of direct blocks we are adding
690  *
691  * This function fills the missing link and does all housekeeping needed in
692  * inode (->i_blocks, etc.). In case of success we end up with the full
693  * chain to new block and return 0.
694  */
695 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
696                         long block, Indirect *where, int num, int blks)
697 {
698         int i;
699         int err = 0;
700         struct ext3_block_alloc_info *block_i;
701         ext3_fsblk_t current_block;
702
703         block_i = EXT3_I(inode)->i_block_alloc_info;
704         /*
705          * If we're splicing into a [td]indirect block (as opposed to the
706          * inode) then we need to get write access to the [td]indirect block
707          * before the splice.
708          */
709         if (where->bh) {
710                 BUFFER_TRACE(where->bh, "get_write_access");
711                 err = ext3_journal_get_write_access(handle, where->bh);
712                 if (err)
713                         goto err_out;
714         }
715         /* That's it */
716
717         *where->p = where->key;
718
719         /*
720          * Update the host buffer_head or inode to point to more just allocated
721          * direct blocks blocks
722          */
723         if (num == 0 && blks > 1) {
724                 current_block = le32_to_cpu(where->key) + 1;
725                 for (i = 1; i < blks; i++)
726                         *(where->p + i ) = cpu_to_le32(current_block++);
727         }
728
729         /*
730          * update the most recently allocated logical & physical block
731          * in i_block_alloc_info, to assist find the proper goal block for next
732          * allocation
733          */
734         if (block_i) {
735                 block_i->last_alloc_logical_block = block + blks - 1;
736                 block_i->last_alloc_physical_block =
737                                 le32_to_cpu(where[num].key) + blks - 1;
738         }
739
740         /* We are done with atomic stuff, now do the rest of housekeeping */
741
742         inode->i_ctime = CURRENT_TIME_SEC;
743         ext3_mark_inode_dirty(handle, inode);
744
745         /* had we spliced it onto indirect block? */
746         if (where->bh) {
747                 /*
748                  * If we spliced it onto an indirect block, we haven't
749                  * altered the inode.  Note however that if it is being spliced
750                  * onto an indirect block at the very end of the file (the
751                  * file is growing) then we *will* alter the inode to reflect
752                  * the new i_size.  But that is not done here - it is done in
753                  * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
754                  */
755                 jbd_debug(5, "splicing indirect only\n");
756                 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
757                 err = ext3_journal_dirty_metadata(handle, where->bh);
758                 if (err)
759                         goto err_out;
760         } else {
761                 /*
762                  * OK, we spliced it into the inode itself on a direct block.
763                  * Inode was dirtied above.
764                  */
765                 jbd_debug(5, "splicing direct\n");
766         }
767         return err;
768
769 err_out:
770         for (i = 1; i <= num; i++) {
771                 BUFFER_TRACE(where[i].bh, "call journal_forget");
772                 ext3_journal_forget(handle, where[i].bh);
773                 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
774         }
775         ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
776
777         return err;
778 }
779
780 /*
781  * Allocation strategy is simple: if we have to allocate something, we will
782  * have to go the whole way to leaf. So let's do it before attaching anything
783  * to tree, set linkage between the newborn blocks, write them if sync is
784  * required, recheck the path, free and repeat if check fails, otherwise
785  * set the last missing link (that will protect us from any truncate-generated
786  * removals - all blocks on the path are immune now) and possibly force the
787  * write on the parent block.
788  * That has a nice additional property: no special recovery from the failed
789  * allocations is needed - we simply release blocks and do not touch anything
790  * reachable from inode.
791  *
792  * `handle' can be NULL if create == 0.
793  *
794  * The BKL may not be held on entry here.  Be sure to take it early.
795  * return > 0, # of blocks mapped or allocated.
796  * return = 0, if plain lookup failed.
797  * return < 0, error case.
798  */
799 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
800                 sector_t iblock, unsigned long maxblocks,
801                 struct buffer_head *bh_result,
802                 int create)
803 {
804         int err = -EIO;
805         int offsets[4];
806         Indirect chain[4];
807         Indirect *partial;
808         ext3_fsblk_t goal;
809         int indirect_blks;
810         int blocks_to_boundary = 0;
811         int depth;
812         struct ext3_inode_info *ei = EXT3_I(inode);
813         int count = 0;
814         ext3_fsblk_t first_block = 0;
815
816
817         J_ASSERT(handle != NULL || create == 0);
818         depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
819
820         if (depth == 0)
821                 goto out;
822
823         partial = ext3_get_branch(inode, depth, offsets, chain, &err);
824
825         /* Simplest case - block found, no allocation needed */
826         if (!partial) {
827                 first_block = le32_to_cpu(chain[depth - 1].key);
828                 clear_buffer_new(bh_result);
829                 count++;
830                 /*map more blocks*/
831                 while (count < maxblocks && count <= blocks_to_boundary) {
832                         ext3_fsblk_t blk;
833
834                         if (!verify_chain(chain, chain + depth - 1)) {
835                                 /*
836                                  * Indirect block might be removed by
837                                  * truncate while we were reading it.
838                                  * Handling of that case: forget what we've
839                                  * got now. Flag the err as EAGAIN, so it
840                                  * will reread.
841                                  */
842                                 err = -EAGAIN;
843                                 count = 0;
844                                 break;
845                         }
846                         blk = le32_to_cpu(*(chain[depth-1].p + count));
847
848                         if (blk == first_block + count)
849                                 count++;
850                         else
851                                 break;
852                 }
853                 if (err != -EAGAIN)
854                         goto got_it;
855         }
856
857         /* Next simple case - plain lookup or failed read of indirect block */
858         if (!create || err == -EIO)
859                 goto cleanup;
860
861         mutex_lock(&ei->truncate_mutex);
862
863         /*
864          * If the indirect block is missing while we are reading
865          * the chain(ext3_get_branch() returns -EAGAIN err), or
866          * if the chain has been changed after we grab the semaphore,
867          * (either because another process truncated this branch, or
868          * another get_block allocated this branch) re-grab the chain to see if
869          * the request block has been allocated or not.
870          *
871          * Since we already block the truncate/other get_block
872          * at this point, we will have the current copy of the chain when we
873          * splice the branch into the tree.
874          */
875         if (err == -EAGAIN || !verify_chain(chain, partial)) {
876                 while (partial > chain) {
877                         brelse(partial->bh);
878                         partial--;
879                 }
880                 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
881                 if (!partial) {
882                         count++;
883                         mutex_unlock(&ei->truncate_mutex);
884                         if (err)
885                                 goto cleanup;
886                         clear_buffer_new(bh_result);
887                         goto got_it;
888                 }
889         }
890
891         /*
892          * Okay, we need to do block allocation.  Lazily initialize the block
893          * allocation info here if necessary
894         */
895         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
896                 ext3_init_block_alloc_info(inode);
897
898         goal = ext3_find_goal(inode, iblock, partial);
899
900         /* the number of blocks need to allocate for [d,t]indirect blocks */
901         indirect_blks = (chain + depth) - partial - 1;
902
903         /*
904          * Next look up the indirect map to count the totoal number of
905          * direct blocks to allocate for this branch.
906          */
907         count = ext3_blks_to_allocate(partial, indirect_blks,
908                                         maxblocks, blocks_to_boundary);
909         /*
910          * Block out ext3_truncate while we alter the tree
911          */
912         err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
913                                 offsets + (partial - chain), partial);
914
915         /*
916          * The ext3_splice_branch call will free and forget any buffers
917          * on the new chain if there is a failure, but that risks using
918          * up transaction credits, especially for bitmaps where the
919          * credits cannot be returned.  Can we handle this somehow?  We
920          * may need to return -EAGAIN upwards in the worst case.  --sct
921          */
922         if (!err)
923                 err = ext3_splice_branch(handle, inode, iblock,
924                                         partial, indirect_blks, count);
925         mutex_unlock(&ei->truncate_mutex);
926         if (err)
927                 goto cleanup;
928
929         set_buffer_new(bh_result);
930 got_it:
931         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
932         if (count > blocks_to_boundary)
933                 set_buffer_boundary(bh_result);
934         err = count;
935         /* Clean up and exit */
936         partial = chain + depth - 1;    /* the whole chain */
937 cleanup:
938         while (partial > chain) {
939                 BUFFER_TRACE(partial->bh, "call brelse");
940                 brelse(partial->bh);
941                 partial--;
942         }
943         BUFFER_TRACE(bh_result, "returned");
944 out:
945         return err;
946 }
947
948 /* Maximum number of blocks we map for direct IO at once. */
949 #define DIO_MAX_BLOCKS 4096
950 /*
951  * Number of credits we need for writing DIO_MAX_BLOCKS:
952  * We need sb + group descriptor + bitmap + inode -> 4
953  * For B blocks with A block pointers per block we need:
954  * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
955  * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
956  */
957 #define DIO_CREDITS 25
958
959 static int ext3_get_block(struct inode *inode, sector_t iblock,
960                         struct buffer_head *bh_result, int create)
961 {
962         handle_t *handle = ext3_journal_current_handle();
963         int ret = 0, started = 0;
964         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
965
966         if (create && !handle) {        /* Direct IO write... */
967                 if (max_blocks > DIO_MAX_BLOCKS)
968                         max_blocks = DIO_MAX_BLOCKS;
969                 handle = ext3_journal_start(inode, DIO_CREDITS +
970                                 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
971                 if (IS_ERR(handle)) {
972                         ret = PTR_ERR(handle);
973                         goto out;
974                 }
975                 started = 1;
976         }
977
978         ret = ext3_get_blocks_handle(handle, inode, iblock,
979                                         max_blocks, bh_result, create);
980         if (ret > 0) {
981                 bh_result->b_size = (ret << inode->i_blkbits);
982                 ret = 0;
983         }
984         if (started)
985                 ext3_journal_stop(handle);
986 out:
987         return ret;
988 }
989
990 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
991                 u64 start, u64 len)
992 {
993         return generic_block_fiemap(inode, fieinfo, start, len,
994                                     ext3_get_block);
995 }
996
997 /*
998  * `handle' can be NULL if create is zero
999  */
1000 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1001                                 long block, int create, int *errp)
1002 {
1003         struct buffer_head dummy;
1004         int fatal = 0, err;
1005
1006         J_ASSERT(handle != NULL || create == 0);
1007
1008         dummy.b_state = 0;
1009         dummy.b_blocknr = -1000;
1010         buffer_trace_init(&dummy.b_history);
1011         err = ext3_get_blocks_handle(handle, inode, block, 1,
1012                                         &dummy, create);
1013         /*
1014          * ext3_get_blocks_handle() returns number of blocks
1015          * mapped. 0 in case of a HOLE.
1016          */
1017         if (err > 0) {
1018                 if (err > 1)
1019                         WARN_ON(1);
1020                 err = 0;
1021         }
1022         *errp = err;
1023         if (!err && buffer_mapped(&dummy)) {
1024                 struct buffer_head *bh;
1025                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1026                 if (!bh) {
1027                         *errp = -EIO;
1028                         goto err;
1029                 }
1030                 if (buffer_new(&dummy)) {
1031                         J_ASSERT(create != 0);
1032                         J_ASSERT(handle != NULL);
1033
1034                         /*
1035                          * Now that we do not always journal data, we should
1036                          * keep in mind whether this should always journal the
1037                          * new buffer as metadata.  For now, regular file
1038                          * writes use ext3_get_block instead, so it's not a
1039                          * problem.
1040                          */
1041                         lock_buffer(bh);
1042                         BUFFER_TRACE(bh, "call get_create_access");
1043                         fatal = ext3_journal_get_create_access(handle, bh);
1044                         if (!fatal && !buffer_uptodate(bh)) {
1045                                 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1046                                 set_buffer_uptodate(bh);
1047                         }
1048                         unlock_buffer(bh);
1049                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1050                         err = ext3_journal_dirty_metadata(handle, bh);
1051                         if (!fatal)
1052                                 fatal = err;
1053                 } else {
1054                         BUFFER_TRACE(bh, "not a new buffer");
1055                 }
1056                 if (fatal) {
1057                         *errp = fatal;
1058                         brelse(bh);
1059                         bh = NULL;
1060                 }
1061                 return bh;
1062         }
1063 err:
1064         return NULL;
1065 }
1066
1067 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1068                                int block, int create, int *err)
1069 {
1070         struct buffer_head * bh;
1071
1072         bh = ext3_getblk(handle, inode, block, create, err);
1073         if (!bh)
1074                 return bh;
1075         if (buffer_uptodate(bh))
1076                 return bh;
1077         ll_rw_block(READ_META, 1, &bh);
1078         wait_on_buffer(bh);
1079         if (buffer_uptodate(bh))
1080                 return bh;
1081         put_bh(bh);
1082         *err = -EIO;
1083         return NULL;
1084 }
1085
1086 static int walk_page_buffers(   handle_t *handle,
1087                                 struct buffer_head *head,
1088                                 unsigned from,
1089                                 unsigned to,
1090                                 int *partial,
1091                                 int (*fn)(      handle_t *handle,
1092                                                 struct buffer_head *bh))
1093 {
1094         struct buffer_head *bh;
1095         unsigned block_start, block_end;
1096         unsigned blocksize = head->b_size;
1097         int err, ret = 0;
1098         struct buffer_head *next;
1099
1100         for (   bh = head, block_start = 0;
1101                 ret == 0 && (bh != head || !block_start);
1102                 block_start = block_end, bh = next)
1103         {
1104                 next = bh->b_this_page;
1105                 block_end = block_start + blocksize;
1106                 if (block_end <= from || block_start >= to) {
1107                         if (partial && !buffer_uptodate(bh))
1108                                 *partial = 1;
1109                         continue;
1110                 }
1111                 err = (*fn)(handle, bh);
1112                 if (!ret)
1113                         ret = err;
1114         }
1115         return ret;
1116 }
1117
1118 /*
1119  * To preserve ordering, it is essential that the hole instantiation and
1120  * the data write be encapsulated in a single transaction.  We cannot
1121  * close off a transaction and start a new one between the ext3_get_block()
1122  * and the commit_write().  So doing the journal_start at the start of
1123  * prepare_write() is the right place.
1124  *
1125  * Also, this function can nest inside ext3_writepage() ->
1126  * block_write_full_page(). In that case, we *know* that ext3_writepage()
1127  * has generated enough buffer credits to do the whole page.  So we won't
1128  * block on the journal in that case, which is good, because the caller may
1129  * be PF_MEMALLOC.
1130  *
1131  * By accident, ext3 can be reentered when a transaction is open via
1132  * quota file writes.  If we were to commit the transaction while thus
1133  * reentered, there can be a deadlock - we would be holding a quota
1134  * lock, and the commit would never complete if another thread had a
1135  * transaction open and was blocking on the quota lock - a ranking
1136  * violation.
1137  *
1138  * So what we do is to rely on the fact that journal_stop/journal_start
1139  * will _not_ run commit under these circumstances because handle->h_ref
1140  * is elevated.  We'll still have enough credits for the tiny quotafile
1141  * write.
1142  */
1143 static int do_journal_get_write_access(handle_t *handle,
1144                                         struct buffer_head *bh)
1145 {
1146         if (!buffer_mapped(bh) || buffer_freed(bh))
1147                 return 0;
1148         return ext3_journal_get_write_access(handle, bh);
1149 }
1150
1151 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1152                                 loff_t pos, unsigned len, unsigned flags,
1153                                 struct page **pagep, void **fsdata)
1154 {
1155         struct inode *inode = mapping->host;
1156         int ret;
1157         handle_t *handle;
1158         int retries = 0;
1159         struct page *page;
1160         pgoff_t index;
1161         unsigned from, to;
1162         /* Reserve one block more for addition to orphan list in case
1163          * we allocate blocks but write fails for some reason */
1164         int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1165
1166         index = pos >> PAGE_CACHE_SHIFT;
1167         from = pos & (PAGE_CACHE_SIZE - 1);
1168         to = from + len;
1169
1170 retry:
1171         page = grab_cache_page_write_begin(mapping, index, flags);
1172         if (!page)
1173                 return -ENOMEM;
1174         *pagep = page;
1175
1176         handle = ext3_journal_start(inode, needed_blocks);
1177         if (IS_ERR(handle)) {
1178                 unlock_page(page);
1179                 page_cache_release(page);
1180                 ret = PTR_ERR(handle);
1181                 goto out;
1182         }
1183         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1184                                                         ext3_get_block);
1185         if (ret)
1186                 goto write_begin_failed;
1187
1188         if (ext3_should_journal_data(inode)) {
1189                 ret = walk_page_buffers(handle, page_buffers(page),
1190                                 from, to, NULL, do_journal_get_write_access);
1191         }
1192 write_begin_failed:
1193         if (ret) {
1194                 /*
1195                  * block_write_begin may have instantiated a few blocks
1196                  * outside i_size.  Trim these off again. Don't need
1197                  * i_size_read because we hold i_mutex.
1198                  *
1199                  * Add inode to orphan list in case we crash before truncate
1200                  * finishes. Do this only if ext3_can_truncate() agrees so
1201                  * that orphan processing code is happy.
1202                  */
1203                 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1204                         ext3_orphan_add(handle, inode);
1205                 ext3_journal_stop(handle);
1206                 unlock_page(page);
1207                 page_cache_release(page);
1208                 if (pos + len > inode->i_size)
1209                         ext3_truncate(inode);
1210         }
1211         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1212                 goto retry;
1213 out:
1214         return ret;
1215 }
1216
1217
1218 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1219 {
1220         int err = journal_dirty_data(handle, bh);
1221         if (err)
1222                 ext3_journal_abort_handle(__func__, __func__,
1223                                                 bh, handle, err);
1224         return err;
1225 }
1226
1227 /* For ordered writepage and write_end functions */
1228 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1229 {
1230         /*
1231          * Write could have mapped the buffer but it didn't copy the data in
1232          * yet. So avoid filing such buffer into a transaction.
1233          */
1234         if (buffer_mapped(bh) && buffer_uptodate(bh))
1235                 return ext3_journal_dirty_data(handle, bh);
1236         return 0;
1237 }
1238
1239 /* For write_end() in data=journal mode */
1240 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1241 {
1242         if (!buffer_mapped(bh) || buffer_freed(bh))
1243                 return 0;
1244         set_buffer_uptodate(bh);
1245         return ext3_journal_dirty_metadata(handle, bh);
1246 }
1247
1248 /*
1249  * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1250  * for the whole page but later we failed to copy the data in. Update inode
1251  * size according to what we managed to copy. The rest is going to be
1252  * truncated in write_end function.
1253  */
1254 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1255 {
1256         /* What matters to us is i_disksize. We don't write i_size anywhere */
1257         if (pos + copied > inode->i_size)
1258                 i_size_write(inode, pos + copied);
1259         if (pos + copied > EXT3_I(inode)->i_disksize) {
1260                 EXT3_I(inode)->i_disksize = pos + copied;
1261                 mark_inode_dirty(inode);
1262         }
1263 }
1264
1265 /*
1266  * We need to pick up the new inode size which generic_commit_write gave us
1267  * `file' can be NULL - eg, when called from page_symlink().
1268  *
1269  * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1270  * buffers are managed internally.
1271  */
1272 static int ext3_ordered_write_end(struct file *file,
1273                                 struct address_space *mapping,
1274                                 loff_t pos, unsigned len, unsigned copied,
1275                                 struct page *page, void *fsdata)
1276 {
1277         handle_t *handle = ext3_journal_current_handle();
1278         struct inode *inode = file->f_mapping->host;
1279         unsigned from, to;
1280         int ret = 0, ret2;
1281
1282         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1283
1284         from = pos & (PAGE_CACHE_SIZE - 1);
1285         to = from + copied;
1286         ret = walk_page_buffers(handle, page_buffers(page),
1287                 from, to, NULL, journal_dirty_data_fn);
1288
1289         if (ret == 0)
1290                 update_file_sizes(inode, pos, copied);
1291         /*
1292          * There may be allocated blocks outside of i_size because
1293          * we failed to copy some data. Prepare for truncate.
1294          */
1295         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1296                 ext3_orphan_add(handle, inode);
1297         ret2 = ext3_journal_stop(handle);
1298         if (!ret)
1299                 ret = ret2;
1300         unlock_page(page);
1301         page_cache_release(page);
1302
1303         if (pos + len > inode->i_size)
1304                 ext3_truncate(inode);
1305         return ret ? ret : copied;
1306 }
1307
1308 static int ext3_writeback_write_end(struct file *file,
1309                                 struct address_space *mapping,
1310                                 loff_t pos, unsigned len, unsigned copied,
1311                                 struct page *page, void *fsdata)
1312 {
1313         handle_t *handle = ext3_journal_current_handle();
1314         struct inode *inode = file->f_mapping->host;
1315         int ret;
1316
1317         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1318         update_file_sizes(inode, pos, copied);
1319         /*
1320          * There may be allocated blocks outside of i_size because
1321          * we failed to copy some data. Prepare for truncate.
1322          */
1323         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1324                 ext3_orphan_add(handle, inode);
1325         ret = ext3_journal_stop(handle);
1326         unlock_page(page);
1327         page_cache_release(page);
1328
1329         if (pos + len > inode->i_size)
1330                 ext3_truncate(inode);
1331         return ret ? ret : copied;
1332 }
1333
1334 static int ext3_journalled_write_end(struct file *file,
1335                                 struct address_space *mapping,
1336                                 loff_t pos, unsigned len, unsigned copied,
1337                                 struct page *page, void *fsdata)
1338 {
1339         handle_t *handle = ext3_journal_current_handle();
1340         struct inode *inode = mapping->host;
1341         int ret = 0, ret2;
1342         int partial = 0;
1343         unsigned from, to;
1344
1345         from = pos & (PAGE_CACHE_SIZE - 1);
1346         to = from + len;
1347
1348         if (copied < len) {
1349                 if (!PageUptodate(page))
1350                         copied = 0;
1351                 page_zero_new_buffers(page, from + copied, to);
1352                 to = from + copied;
1353         }
1354
1355         ret = walk_page_buffers(handle, page_buffers(page), from,
1356                                 to, &partial, write_end_fn);
1357         if (!partial)
1358                 SetPageUptodate(page);
1359
1360         if (pos + copied > inode->i_size)
1361                 i_size_write(inode, pos + copied);
1362         /*
1363          * There may be allocated blocks outside of i_size because
1364          * we failed to copy some data. Prepare for truncate.
1365          */
1366         if (pos + len > inode->i_size && ext3_can_truncate(inode))
1367                 ext3_orphan_add(handle, inode);
1368         EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1369         if (inode->i_size > EXT3_I(inode)->i_disksize) {
1370                 EXT3_I(inode)->i_disksize = inode->i_size;
1371                 ret2 = ext3_mark_inode_dirty(handle, inode);
1372                 if (!ret)
1373                         ret = ret2;
1374         }
1375
1376         ret2 = ext3_journal_stop(handle);
1377         if (!ret)
1378                 ret = ret2;
1379         unlock_page(page);
1380         page_cache_release(page);
1381
1382         if (pos + len > inode->i_size)
1383                 ext3_truncate(inode);
1384         return ret ? ret : copied;
1385 }
1386
1387 /*
1388  * bmap() is special.  It gets used by applications such as lilo and by
1389  * the swapper to find the on-disk block of a specific piece of data.
1390  *
1391  * Naturally, this is dangerous if the block concerned is still in the
1392  * journal.  If somebody makes a swapfile on an ext3 data-journaling
1393  * filesystem and enables swap, then they may get a nasty shock when the
1394  * data getting swapped to that swapfile suddenly gets overwritten by
1395  * the original zero's written out previously to the journal and
1396  * awaiting writeback in the kernel's buffer cache.
1397  *
1398  * So, if we see any bmap calls here on a modified, data-journaled file,
1399  * take extra steps to flush any blocks which might be in the cache.
1400  */
1401 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1402 {
1403         struct inode *inode = mapping->host;
1404         journal_t *journal;
1405         int err;
1406
1407         if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1408                 /*
1409                  * This is a REALLY heavyweight approach, but the use of
1410                  * bmap on dirty files is expected to be extremely rare:
1411                  * only if we run lilo or swapon on a freshly made file
1412                  * do we expect this to happen.
1413                  *
1414                  * (bmap requires CAP_SYS_RAWIO so this does not
1415                  * represent an unprivileged user DOS attack --- we'd be
1416                  * in trouble if mortal users could trigger this path at
1417                  * will.)
1418                  *
1419                  * NB. EXT3_STATE_JDATA is not set on files other than
1420                  * regular files.  If somebody wants to bmap a directory
1421                  * or symlink and gets confused because the buffer
1422                  * hasn't yet been flushed to disk, they deserve
1423                  * everything they get.
1424                  */
1425
1426                 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1427                 journal = EXT3_JOURNAL(inode);
1428                 journal_lock_updates(journal);
1429                 err = journal_flush(journal);
1430                 journal_unlock_updates(journal);
1431
1432                 if (err)
1433                         return 0;
1434         }
1435
1436         return generic_block_bmap(mapping,block,ext3_get_block);
1437 }
1438
1439 static int bget_one(handle_t *handle, struct buffer_head *bh)
1440 {
1441         get_bh(bh);
1442         return 0;
1443 }
1444
1445 static int bput_one(handle_t *handle, struct buffer_head *bh)
1446 {
1447         put_bh(bh);
1448         return 0;
1449 }
1450
1451 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1452 {
1453         return !buffer_mapped(bh);
1454 }
1455
1456 /*
1457  * Note that we always start a transaction even if we're not journalling
1458  * data.  This is to preserve ordering: any hole instantiation within
1459  * __block_write_full_page -> ext3_get_block() should be journalled
1460  * along with the data so we don't crash and then get metadata which
1461  * refers to old data.
1462  *
1463  * In all journalling modes block_write_full_page() will start the I/O.
1464  *
1465  * Problem:
1466  *
1467  *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1468  *              ext3_writepage()
1469  *
1470  * Similar for:
1471  *
1472  *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1473  *
1474  * Same applies to ext3_get_block().  We will deadlock on various things like
1475  * lock_journal and i_truncate_mutex.
1476  *
1477  * Setting PF_MEMALLOC here doesn't work - too many internal memory
1478  * allocations fail.
1479  *
1480  * 16May01: If we're reentered then journal_current_handle() will be
1481  *          non-zero. We simply *return*.
1482  *
1483  * 1 July 2001: @@@ FIXME:
1484  *   In journalled data mode, a data buffer may be metadata against the
1485  *   current transaction.  But the same file is part of a shared mapping
1486  *   and someone does a writepage() on it.
1487  *
1488  *   We will move the buffer onto the async_data list, but *after* it has
1489  *   been dirtied. So there's a small window where we have dirty data on
1490  *   BJ_Metadata.
1491  *
1492  *   Note that this only applies to the last partial page in the file.  The
1493  *   bit which block_write_full_page() uses prepare/commit for.  (That's
1494  *   broken code anyway: it's wrong for msync()).
1495  *
1496  *   It's a rare case: affects the final partial page, for journalled data
1497  *   where the file is subject to bith write() and writepage() in the same
1498  *   transction.  To fix it we'll need a custom block_write_full_page().
1499  *   We'll probably need that anyway for journalling writepage() output.
1500  *
1501  * We don't honour synchronous mounts for writepage().  That would be
1502  * disastrous.  Any write() or metadata operation will sync the fs for
1503  * us.
1504  *
1505  * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1506  * we don't need to open a transaction here.
1507  */
1508 static int ext3_ordered_writepage(struct page *page,
1509                                 struct writeback_control *wbc)
1510 {
1511         struct inode *inode = page->mapping->host;
1512         struct buffer_head *page_bufs;
1513         handle_t *handle = NULL;
1514         int ret = 0;
1515         int err;
1516
1517         J_ASSERT(PageLocked(page));
1518
1519         /*
1520          * We give up here if we're reentered, because it might be for a
1521          * different filesystem.
1522          */
1523         if (ext3_journal_current_handle())
1524                 goto out_fail;
1525
1526         if (!page_has_buffers(page)) {
1527                 create_empty_buffers(page, inode->i_sb->s_blocksize,
1528                                 (1 << BH_Dirty)|(1 << BH_Uptodate));
1529                 page_bufs = page_buffers(page);
1530         } else {
1531                 page_bufs = page_buffers(page);
1532                 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1533                                        NULL, buffer_unmapped)) {
1534                         /* Provide NULL get_block() to catch bugs if buffers
1535                          * weren't really mapped */
1536                         return block_write_full_page(page, NULL, wbc);
1537                 }
1538         }
1539         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1540
1541         if (IS_ERR(handle)) {
1542                 ret = PTR_ERR(handle);
1543                 goto out_fail;
1544         }
1545
1546         walk_page_buffers(handle, page_bufs, 0,
1547                         PAGE_CACHE_SIZE, NULL, bget_one);
1548
1549         ret = block_write_full_page(page, ext3_get_block, wbc);
1550
1551         /*
1552          * The page can become unlocked at any point now, and
1553          * truncate can then come in and change things.  So we
1554          * can't touch *page from now on.  But *page_bufs is
1555          * safe due to elevated refcount.
1556          */
1557
1558         /*
1559          * And attach them to the current transaction.  But only if
1560          * block_write_full_page() succeeded.  Otherwise they are unmapped,
1561          * and generally junk.
1562          */
1563         if (ret == 0) {
1564                 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1565                                         NULL, journal_dirty_data_fn);
1566                 if (!ret)
1567                         ret = err;
1568         }
1569         walk_page_buffers(handle, page_bufs, 0,
1570                         PAGE_CACHE_SIZE, NULL, bput_one);
1571         err = ext3_journal_stop(handle);
1572         if (!ret)
1573                 ret = err;
1574         return ret;
1575
1576 out_fail:
1577         redirty_page_for_writepage(wbc, page);
1578         unlock_page(page);
1579         return ret;
1580 }
1581
1582 static int ext3_writeback_writepage(struct page *page,
1583                                 struct writeback_control *wbc)
1584 {
1585         struct inode *inode = page->mapping->host;
1586         handle_t *handle = NULL;
1587         int ret = 0;
1588         int err;
1589
1590         if (ext3_journal_current_handle())
1591                 goto out_fail;
1592
1593         if (page_has_buffers(page)) {
1594                 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1595                                       PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1596                         /* Provide NULL get_block() to catch bugs if buffers
1597                          * weren't really mapped */
1598                         return block_write_full_page(page, NULL, wbc);
1599                 }
1600         }
1601
1602         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1603         if (IS_ERR(handle)) {
1604                 ret = PTR_ERR(handle);
1605                 goto out_fail;
1606         }
1607
1608         if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1609                 ret = nobh_writepage(page, ext3_get_block, wbc);
1610         else
1611                 ret = block_write_full_page(page, ext3_get_block, wbc);
1612
1613         err = ext3_journal_stop(handle);
1614         if (!ret)
1615                 ret = err;
1616         return ret;
1617
1618 out_fail:
1619         redirty_page_for_writepage(wbc, page);
1620         unlock_page(page);
1621         return ret;
1622 }
1623
1624 static int ext3_journalled_writepage(struct page *page,
1625                                 struct writeback_control *wbc)
1626 {
1627         struct inode *inode = page->mapping->host;
1628         handle_t *handle = NULL;
1629         int ret = 0;
1630         int err;
1631
1632         if (ext3_journal_current_handle())
1633                 goto no_write;
1634
1635         handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1636         if (IS_ERR(handle)) {
1637                 ret = PTR_ERR(handle);
1638                 goto no_write;
1639         }
1640
1641         if (!page_has_buffers(page) || PageChecked(page)) {
1642                 /*
1643                  * It's mmapped pagecache.  Add buffers and journal it.  There
1644                  * doesn't seem much point in redirtying the page here.
1645                  */
1646                 ClearPageChecked(page);
1647                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1648                                         ext3_get_block);
1649                 if (ret != 0) {
1650                         ext3_journal_stop(handle);
1651                         goto out_unlock;
1652                 }
1653                 ret = walk_page_buffers(handle, page_buffers(page), 0,
1654                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1655
1656                 err = walk_page_buffers(handle, page_buffers(page), 0,
1657                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
1658                 if (ret == 0)
1659                         ret = err;
1660                 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1661                 unlock_page(page);
1662         } else {
1663                 /*
1664                  * It may be a page full of checkpoint-mode buffers.  We don't
1665                  * really know unless we go poke around in the buffer_heads.
1666                  * But block_write_full_page will do the right thing.
1667                  */
1668                 ret = block_write_full_page(page, ext3_get_block, wbc);
1669         }
1670         err = ext3_journal_stop(handle);
1671         if (!ret)
1672                 ret = err;
1673 out:
1674         return ret;
1675
1676 no_write:
1677         redirty_page_for_writepage(wbc, page);
1678 out_unlock:
1679         unlock_page(page);
1680         goto out;
1681 }
1682
1683 static int ext3_readpage(struct file *file, struct page *page)
1684 {
1685         return mpage_readpage(page, ext3_get_block);
1686 }
1687
1688 static int
1689 ext3_readpages(struct file *file, struct address_space *mapping,
1690                 struct list_head *pages, unsigned nr_pages)
1691 {
1692         return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1693 }
1694
1695 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1696 {
1697         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1698
1699         /*
1700          * If it's a full truncate we just forget about the pending dirtying
1701          */
1702         if (offset == 0)
1703                 ClearPageChecked(page);
1704
1705         journal_invalidatepage(journal, page, offset);
1706 }
1707
1708 static int ext3_releasepage(struct page *page, gfp_t wait)
1709 {
1710         journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1711
1712         WARN_ON(PageChecked(page));
1713         if (!page_has_buffers(page))
1714                 return 0;
1715         return journal_try_to_free_buffers(journal, page, wait);
1716 }
1717
1718 /*
1719  * If the O_DIRECT write will extend the file then add this inode to the
1720  * orphan list.  So recovery will truncate it back to the original size
1721  * if the machine crashes during the write.
1722  *
1723  * If the O_DIRECT write is intantiating holes inside i_size and the machine
1724  * crashes then stale disk data _may_ be exposed inside the file. But current
1725  * VFS code falls back into buffered path in that case so we are safe.
1726  */
1727 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1728                         const struct iovec *iov, loff_t offset,
1729                         unsigned long nr_segs)
1730 {
1731         struct file *file = iocb->ki_filp;
1732         struct inode *inode = file->f_mapping->host;
1733         struct ext3_inode_info *ei = EXT3_I(inode);
1734         handle_t *handle;
1735         ssize_t ret;
1736         int orphan = 0;
1737         size_t count = iov_length(iov, nr_segs);
1738         int retries = 0;
1739
1740         if (rw == WRITE) {
1741                 loff_t final_size = offset + count;
1742
1743                 if (final_size > inode->i_size) {
1744                         /* Credits for sb + inode write */
1745                         handle = ext3_journal_start(inode, 2);
1746                         if (IS_ERR(handle)) {
1747                                 ret = PTR_ERR(handle);
1748                                 goto out;
1749                         }
1750                         ret = ext3_orphan_add(handle, inode);
1751                         if (ret) {
1752                                 ext3_journal_stop(handle);
1753                                 goto out;
1754                         }
1755                         orphan = 1;
1756                         ei->i_disksize = inode->i_size;
1757                         ext3_journal_stop(handle);
1758                 }
1759         }
1760
1761 retry:
1762         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1763                                  offset, nr_segs,
1764                                  ext3_get_block, NULL);
1765         if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1766                 goto retry;
1767
1768         if (orphan) {
1769                 int err;
1770
1771                 /* Credits for sb + inode write */
1772                 handle = ext3_journal_start(inode, 2);
1773                 if (IS_ERR(handle)) {
1774                         /* This is really bad luck. We've written the data
1775                          * but cannot extend i_size. Bail out and pretend
1776                          * the write failed... */
1777                         ret = PTR_ERR(handle);
1778                         goto out;
1779                 }
1780                 if (inode->i_nlink)
1781                         ext3_orphan_del(handle, inode);
1782                 if (ret > 0) {
1783                         loff_t end = offset + ret;
1784                         if (end > inode->i_size) {
1785                                 ei->i_disksize = end;
1786                                 i_size_write(inode, end);
1787                                 /*
1788                                  * We're going to return a positive `ret'
1789                                  * here due to non-zero-length I/O, so there's
1790                                  * no way of reporting error returns from
1791                                  * ext3_mark_inode_dirty() to userspace.  So
1792                                  * ignore it.
1793                                  */
1794                                 ext3_mark_inode_dirty(handle, inode);
1795                         }
1796                 }
1797                 err = ext3_journal_stop(handle);
1798                 if (ret == 0)
1799                         ret = err;
1800         }
1801 out:
1802         return ret;
1803 }
1804
1805 /*
1806  * Pages can be marked dirty completely asynchronously from ext3's journalling
1807  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1808  * much here because ->set_page_dirty is called under VFS locks.  The page is
1809  * not necessarily locked.
1810  *
1811  * We cannot just dirty the page and leave attached buffers clean, because the
1812  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1813  * or jbddirty because all the journalling code will explode.
1814  *
1815  * So what we do is to mark the page "pending dirty" and next time writepage
1816  * is called, propagate that into the buffers appropriately.
1817  */
1818 static int ext3_journalled_set_page_dirty(struct page *page)
1819 {
1820         SetPageChecked(page);
1821         return __set_page_dirty_nobuffers(page);
1822 }
1823
1824 static const struct address_space_operations ext3_ordered_aops = {
1825         .readpage               = ext3_readpage,
1826         .readpages              = ext3_readpages,
1827         .writepage              = ext3_ordered_writepage,
1828         .sync_page              = block_sync_page,
1829         .write_begin            = ext3_write_begin,
1830         .write_end              = ext3_ordered_write_end,
1831         .bmap                   = ext3_bmap,
1832         .invalidatepage         = ext3_invalidatepage,
1833         .releasepage            = ext3_releasepage,
1834         .direct_IO              = ext3_direct_IO,
1835         .migratepage            = buffer_migrate_page,
1836         .is_partially_uptodate  = block_is_partially_uptodate,
1837         .error_remove_page      = generic_error_remove_page,
1838 };
1839
1840 static const struct address_space_operations ext3_writeback_aops = {
1841         .readpage               = ext3_readpage,
1842         .readpages              = ext3_readpages,
1843         .writepage              = ext3_writeback_writepage,
1844         .sync_page              = block_sync_page,
1845         .write_begin            = ext3_write_begin,
1846         .write_end              = ext3_writeback_write_end,
1847         .bmap                   = ext3_bmap,
1848         .invalidatepage         = ext3_invalidatepage,
1849         .releasepage            = ext3_releasepage,
1850         .direct_IO              = ext3_direct_IO,
1851         .migratepage            = buffer_migrate_page,
1852         .is_partially_uptodate  = block_is_partially_uptodate,
1853         .error_remove_page      = generic_error_remove_page,
1854 };
1855
1856 static const struct address_space_operations ext3_journalled_aops = {
1857         .readpage               = ext3_readpage,
1858         .readpages              = ext3_readpages,
1859         .writepage              = ext3_journalled_writepage,
1860         .sync_page              = block_sync_page,
1861         .write_begin            = ext3_write_begin,
1862         .write_end              = ext3_journalled_write_end,
1863         .set_page_dirty         = ext3_journalled_set_page_dirty,
1864         .bmap                   = ext3_bmap,
1865         .invalidatepage         = ext3_invalidatepage,
1866         .releasepage            = ext3_releasepage,
1867         .is_partially_uptodate  = block_is_partially_uptodate,
1868         .error_remove_page      = generic_error_remove_page,
1869 };
1870
1871 void ext3_set_aops(struct inode *inode)
1872 {
1873         if (ext3_should_order_data(inode))
1874                 inode->i_mapping->a_ops = &ext3_ordered_aops;
1875         else if (ext3_should_writeback_data(inode))
1876                 inode->i_mapping->a_ops = &ext3_writeback_aops;
1877         else
1878                 inode->i_mapping->a_ops = &ext3_journalled_aops;
1879 }
1880
1881 /*
1882  * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1883  * up to the end of the block which corresponds to `from'.
1884  * This required during truncate. We need to physically zero the tail end
1885  * of that block so it doesn't yield old data if the file is later grown.
1886  */
1887 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1888                 struct address_space *mapping, loff_t from)
1889 {
1890         ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1891         unsigned offset = from & (PAGE_CACHE_SIZE-1);
1892         unsigned blocksize, iblock, length, pos;
1893         struct inode *inode = mapping->host;
1894         struct buffer_head *bh;
1895         int err = 0;
1896
1897         blocksize = inode->i_sb->s_blocksize;
1898         length = blocksize - (offset & (blocksize - 1));
1899         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1900
1901         /*
1902          * For "nobh" option,  we can only work if we don't need to
1903          * read-in the page - otherwise we create buffers to do the IO.
1904          */
1905         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1906              ext3_should_writeback_data(inode) && PageUptodate(page)) {
1907                 zero_user(page, offset, length);
1908                 set_page_dirty(page);
1909                 goto unlock;
1910         }
1911
1912         if (!page_has_buffers(page))
1913                 create_empty_buffers(page, blocksize, 0);
1914
1915         /* Find the buffer that contains "offset" */
1916         bh = page_buffers(page);
1917         pos = blocksize;
1918         while (offset >= pos) {
1919                 bh = bh->b_this_page;
1920                 iblock++;
1921                 pos += blocksize;
1922         }
1923
1924         err = 0;
1925         if (buffer_freed(bh)) {
1926                 BUFFER_TRACE(bh, "freed: skip");
1927                 goto unlock;
1928         }
1929
1930         if (!buffer_mapped(bh)) {
1931                 BUFFER_TRACE(bh, "unmapped");
1932                 ext3_get_block(inode, iblock, bh, 0);
1933                 /* unmapped? It's a hole - nothing to do */
1934                 if (!buffer_mapped(bh)) {
1935                         BUFFER_TRACE(bh, "still unmapped");
1936                         goto unlock;
1937                 }
1938         }
1939
1940         /* Ok, it's mapped. Make sure it's up-to-date */
1941         if (PageUptodate(page))
1942                 set_buffer_uptodate(bh);
1943
1944         if (!buffer_uptodate(bh)) {
1945                 err = -EIO;
1946                 ll_rw_block(READ, 1, &bh);
1947                 wait_on_buffer(bh);
1948                 /* Uhhuh. Read error. Complain and punt. */
1949                 if (!buffer_uptodate(bh))
1950                         goto unlock;
1951         }
1952
1953         if (ext3_should_journal_data(inode)) {
1954                 BUFFER_TRACE(bh, "get write access");
1955                 err = ext3_journal_get_write_access(handle, bh);
1956                 if (err)
1957                         goto unlock;
1958         }
1959
1960         zero_user(page, offset, length);
1961         BUFFER_TRACE(bh, "zeroed end of block");
1962
1963         err = 0;
1964         if (ext3_should_journal_data(inode)) {
1965                 err = ext3_journal_dirty_metadata(handle, bh);
1966         } else {
1967                 if (ext3_should_order_data(inode))
1968                         err = ext3_journal_dirty_data(handle, bh);
1969                 mark_buffer_dirty(bh);
1970         }
1971
1972 unlock:
1973         unlock_page(page);
1974         page_cache_release(page);
1975         return err;
1976 }
1977
1978 /*
1979  * Probably it should be a library function... search for first non-zero word
1980  * or memcmp with zero_page, whatever is better for particular architecture.
1981  * Linus?
1982  */
1983 static inline int all_zeroes(__le32 *p, __le32 *q)
1984 {
1985         while (p < q)
1986                 if (*p++)
1987                         return 0;
1988         return 1;
1989 }
1990
1991 /**
1992  *      ext3_find_shared - find the indirect blocks for partial truncation.
1993  *      @inode:   inode in question
1994  *      @depth:   depth of the affected branch
1995  *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1996  *      @chain:   place to store the pointers to partial indirect blocks
1997  *      @top:     place to the (detached) top of branch
1998  *
1999  *      This is a helper function used by ext3_truncate().
2000  *
2001  *      When we do truncate() we may have to clean the ends of several
2002  *      indirect blocks but leave the blocks themselves alive. Block is
2003  *      partially truncated if some data below the new i_size is refered
2004  *      from it (and it is on the path to the first completely truncated
2005  *      data block, indeed).  We have to free the top of that path along
2006  *      with everything to the right of the path. Since no allocation
2007  *      past the truncation point is possible until ext3_truncate()
2008  *      finishes, we may safely do the latter, but top of branch may
2009  *      require special attention - pageout below the truncation point
2010  *      might try to populate it.
2011  *
2012  *      We atomically detach the top of branch from the tree, store the
2013  *      block number of its root in *@top, pointers to buffer_heads of
2014  *      partially truncated blocks - in @chain[].bh and pointers to
2015  *      their last elements that should not be removed - in
2016  *      @chain[].p. Return value is the pointer to last filled element
2017  *      of @chain.
2018  *
2019  *      The work left to caller to do the actual freeing of subtrees:
2020  *              a) free the subtree starting from *@top
2021  *              b) free the subtrees whose roots are stored in
2022  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2023  *              c) free the subtrees growing from the inode past the @chain[0].
2024  *                      (no partially truncated stuff there).  */
2025
2026 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2027                         int offsets[4], Indirect chain[4], __le32 *top)
2028 {
2029         Indirect *partial, *p;
2030         int k, err;
2031
2032         *top = 0;
2033         /* Make k index the deepest non-null offest + 1 */
2034         for (k = depth; k > 1 && !offsets[k-1]; k--)
2035                 ;
2036         partial = ext3_get_branch(inode, k, offsets, chain, &err);
2037         /* Writer: pointers */
2038         if (!partial)
2039                 partial = chain + k-1;
2040         /*
2041          * If the branch acquired continuation since we've looked at it -
2042          * fine, it should all survive and (new) top doesn't belong to us.
2043          */
2044         if (!partial->key && *partial->p)
2045                 /* Writer: end */
2046                 goto no_top;
2047         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2048                 ;
2049         /*
2050          * OK, we've found the last block that must survive. The rest of our
2051          * branch should be detached before unlocking. However, if that rest
2052          * of branch is all ours and does not grow immediately from the inode
2053          * it's easier to cheat and just decrement partial->p.
2054          */
2055         if (p == chain + k - 1 && p > chain) {
2056                 p->p--;
2057         } else {
2058                 *top = *p->p;
2059                 /* Nope, don't do this in ext3.  Must leave the tree intact */
2060 #if 0
2061                 *p->p = 0;
2062 #endif
2063         }
2064         /* Writer: end */
2065
2066         while(partial > p) {
2067                 brelse(partial->bh);
2068                 partial--;
2069         }
2070 no_top:
2071         return partial;
2072 }
2073
2074 /*
2075  * Zero a number of block pointers in either an inode or an indirect block.
2076  * If we restart the transaction we must again get write access to the
2077  * indirect block for further modification.
2078  *
2079  * We release `count' blocks on disk, but (last - first) may be greater
2080  * than `count' because there can be holes in there.
2081  */
2082 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2083                 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2084                 unsigned long count, __le32 *first, __le32 *last)
2085 {
2086         __le32 *p;
2087         if (try_to_extend_transaction(handle, inode)) {
2088                 if (bh) {
2089                         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2090                         ext3_journal_dirty_metadata(handle, bh);
2091                 }
2092                 ext3_mark_inode_dirty(handle, inode);
2093                 truncate_restart_transaction(handle, inode);
2094                 if (bh) {
2095                         BUFFER_TRACE(bh, "retaking write access");
2096                         ext3_journal_get_write_access(handle, bh);
2097                 }
2098         }
2099
2100         /*
2101          * Any buffers which are on the journal will be in memory. We find
2102          * them on the hash table so journal_revoke() will run journal_forget()
2103          * on them.  We've already detached each block from the file, so
2104          * bforget() in journal_forget() should be safe.
2105          *
2106          * AKPM: turn on bforget in journal_forget()!!!
2107          */
2108         for (p = first; p < last; p++) {
2109                 u32 nr = le32_to_cpu(*p);
2110                 if (nr) {
2111                         struct buffer_head *bh;
2112
2113                         *p = 0;
2114                         bh = sb_find_get_block(inode->i_sb, nr);
2115                         ext3_forget(handle, 0, inode, bh, nr);
2116                 }
2117         }
2118
2119         ext3_free_blocks(handle, inode, block_to_free, count);
2120 }
2121
2122 /**
2123  * ext3_free_data - free a list of data blocks
2124  * @handle:     handle for this transaction
2125  * @inode:      inode we are dealing with
2126  * @this_bh:    indirect buffer_head which contains *@first and *@last
2127  * @first:      array of block numbers
2128  * @last:       points immediately past the end of array
2129  *
2130  * We are freeing all blocks refered from that array (numbers are stored as
2131  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2132  *
2133  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2134  * blocks are contiguous then releasing them at one time will only affect one
2135  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2136  * actually use a lot of journal space.
2137  *
2138  * @this_bh will be %NULL if @first and @last point into the inode's direct
2139  * block pointers.
2140  */
2141 static void ext3_free_data(handle_t *handle, struct inode *inode,
2142                            struct buffer_head *this_bh,
2143                            __le32 *first, __le32 *last)
2144 {
2145         ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2146         unsigned long count = 0;            /* Number of blocks in the run */
2147         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2148                                                corresponding to
2149                                                block_to_free */
2150         ext3_fsblk_t nr;                    /* Current block # */
2151         __le32 *p;                          /* Pointer into inode/ind
2152                                                for current block */
2153         int err;
2154
2155         if (this_bh) {                          /* For indirect block */
2156                 BUFFER_TRACE(this_bh, "get_write_access");
2157                 err = ext3_journal_get_write_access(handle, this_bh);
2158                 /* Important: if we can't update the indirect pointers
2159                  * to the blocks, we can't free them. */
2160                 if (err)
2161                         return;
2162         }
2163
2164         for (p = first; p < last; p++) {
2165                 nr = le32_to_cpu(*p);
2166                 if (nr) {
2167                         /* accumulate blocks to free if they're contiguous */
2168                         if (count == 0) {
2169                                 block_to_free = nr;
2170                                 block_to_free_p = p;
2171                                 count = 1;
2172                         } else if (nr == block_to_free + count) {
2173                                 count++;
2174                         } else {
2175                                 ext3_clear_blocks(handle, inode, this_bh,
2176                                                   block_to_free,
2177                                                   count, block_to_free_p, p);
2178                                 block_to_free = nr;
2179                                 block_to_free_p = p;
2180                                 count = 1;
2181                         }
2182                 }
2183         }
2184
2185         if (count > 0)
2186                 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2187                                   count, block_to_free_p, p);
2188
2189         if (this_bh) {
2190                 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2191
2192                 /*
2193                  * The buffer head should have an attached journal head at this
2194                  * point. However, if the data is corrupted and an indirect
2195                  * block pointed to itself, it would have been detached when
2196                  * the block was cleared. Check for this instead of OOPSing.
2197                  */
2198                 if (bh2jh(this_bh))
2199                         ext3_journal_dirty_metadata(handle, this_bh);
2200                 else
2201                         ext3_error(inode->i_sb, "ext3_free_data",
2202                                    "circular indirect block detected, "
2203                                    "inode=%lu, block=%llu",
2204                                    inode->i_ino,
2205                                    (unsigned long long)this_bh->b_blocknr);
2206         }
2207 }
2208
2209 /**
2210  *      ext3_free_branches - free an array of branches
2211  *      @handle: JBD handle for this transaction
2212  *      @inode: inode we are dealing with
2213  *      @parent_bh: the buffer_head which contains *@first and *@last
2214  *      @first: array of block numbers
2215  *      @last:  pointer immediately past the end of array
2216  *      @depth: depth of the branches to free
2217  *
2218  *      We are freeing all blocks refered from these branches (numbers are
2219  *      stored as little-endian 32-bit) and updating @inode->i_blocks
2220  *      appropriately.
2221  */
2222 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2223                                struct buffer_head *parent_bh,
2224                                __le32 *first, __le32 *last, int depth)
2225 {
2226         ext3_fsblk_t nr;
2227         __le32 *p;
2228
2229         if (is_handle_aborted(handle))
2230                 return;
2231
2232         if (depth--) {
2233                 struct buffer_head *bh;
2234                 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2235                 p = last;
2236                 while (--p >= first) {
2237                         nr = le32_to_cpu(*p);
2238                         if (!nr)
2239                                 continue;               /* A hole */
2240
2241                         /* Go read the buffer for the next level down */
2242                         bh = sb_bread(inode->i_sb, nr);
2243
2244                         /*
2245                          * A read failure? Report error and clear slot
2246                          * (should be rare).
2247                          */
2248                         if (!bh) {
2249                                 ext3_error(inode->i_sb, "ext3_free_branches",
2250                                            "Read failure, inode=%lu, block="E3FSBLK,
2251                                            inode->i_ino, nr);
2252                                 continue;
2253                         }
2254
2255                         /* This zaps the entire block.  Bottom up. */
2256                         BUFFER_TRACE(bh, "free child branches");
2257                         ext3_free_branches(handle, inode, bh,
2258                                            (__le32*)bh->b_data,
2259                                            (__le32*)bh->b_data + addr_per_block,
2260                                            depth);
2261
2262                         /*
2263                          * We've probably journalled the indirect block several
2264                          * times during the truncate.  But it's no longer
2265                          * needed and we now drop it from the transaction via
2266                          * journal_revoke().
2267                          *
2268                          * That's easy if it's exclusively part of this
2269                          * transaction.  But if it's part of the committing
2270                          * transaction then journal_forget() will simply
2271                          * brelse() it.  That means that if the underlying
2272                          * block is reallocated in ext3_get_block(),
2273                          * unmap_underlying_metadata() will find this block
2274                          * and will try to get rid of it.  damn, damn.
2275                          *
2276                          * If this block has already been committed to the
2277                          * journal, a revoke record will be written.  And
2278                          * revoke records must be emitted *before* clearing
2279                          * this block's bit in the bitmaps.
2280                          */
2281                         ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2282
2283                         /*
2284                          * Everything below this this pointer has been
2285                          * released.  Now let this top-of-subtree go.
2286                          *
2287                          * We want the freeing of this indirect block to be
2288                          * atomic in the journal with the updating of the
2289                          * bitmap block which owns it.  So make some room in
2290                          * the journal.
2291                          *
2292                          * We zero the parent pointer *after* freeing its
2293                          * pointee in the bitmaps, so if extend_transaction()
2294                          * for some reason fails to put the bitmap changes and
2295                          * the release into the same transaction, recovery
2296                          * will merely complain about releasing a free block,
2297                          * rather than leaking blocks.
2298                          */
2299                         if (is_handle_aborted(handle))
2300                                 return;
2301                         if (try_to_extend_transaction(handle, inode)) {
2302                                 ext3_mark_inode_dirty(handle, inode);
2303                                 truncate_restart_transaction(handle, inode);
2304                         }
2305
2306                         ext3_free_blocks(handle, inode, nr, 1);
2307
2308                         if (parent_bh) {
2309                                 /*
2310                                  * The block which we have just freed is
2311                                  * pointed to by an indirect block: journal it
2312                                  */
2313                                 BUFFER_TRACE(parent_bh, "get_write_access");
2314                                 if (!ext3_journal_get_write_access(handle,
2315                                                                    parent_bh)){
2316                                         *p = 0;
2317                                         BUFFER_TRACE(parent_bh,
2318                                         "call ext3_journal_dirty_metadata");
2319                                         ext3_journal_dirty_metadata(handle,
2320                                                                     parent_bh);
2321                                 }
2322                         }
2323                 }
2324         } else {
2325                 /* We have reached the bottom of the tree. */
2326                 BUFFER_TRACE(parent_bh, "free data blocks");
2327                 ext3_free_data(handle, inode, parent_bh, first, last);
2328         }
2329 }
2330
2331 int ext3_can_truncate(struct inode *inode)
2332 {
2333         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2334                 return 0;
2335         if (S_ISREG(inode->i_mode))
2336                 return 1;
2337         if (S_ISDIR(inode->i_mode))
2338                 return 1;
2339         if (S_ISLNK(inode->i_mode))
2340                 return !ext3_inode_is_fast_symlink(inode);
2341         return 0;
2342 }
2343
2344 /*
2345  * ext3_truncate()
2346  *
2347  * We block out ext3_get_block() block instantiations across the entire
2348  * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2349  * simultaneously on behalf of the same inode.
2350  *
2351  * As we work through the truncate and commmit bits of it to the journal there
2352  * is one core, guiding principle: the file's tree must always be consistent on
2353  * disk.  We must be able to restart the truncate after a crash.
2354  *
2355  * The file's tree may be transiently inconsistent in memory (although it
2356  * probably isn't), but whenever we close off and commit a journal transaction,
2357  * the contents of (the filesystem + the journal) must be consistent and
2358  * restartable.  It's pretty simple, really: bottom up, right to left (although
2359  * left-to-right works OK too).
2360  *
2361  * Note that at recovery time, journal replay occurs *before* the restart of
2362  * truncate against the orphan inode list.
2363  *
2364  * The committed inode has the new, desired i_size (which is the same as
2365  * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2366  * that this inode's truncate did not complete and it will again call
2367  * ext3_truncate() to have another go.  So there will be instantiated blocks
2368  * to the right of the truncation point in a crashed ext3 filesystem.  But
2369  * that's fine - as long as they are linked from the inode, the post-crash
2370  * ext3_truncate() run will find them and release them.
2371  */
2372 void ext3_truncate(struct inode *inode)
2373 {
2374         handle_t *handle;
2375         struct ext3_inode_info *ei = EXT3_I(inode);
2376         __le32 *i_data = ei->i_data;
2377         int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2378         struct address_space *mapping = inode->i_mapping;
2379         int offsets[4];
2380         Indirect chain[4];
2381         Indirect *partial;
2382         __le32 nr = 0;
2383         int n;
2384         long last_block;
2385         unsigned blocksize = inode->i_sb->s_blocksize;
2386         struct page *page;
2387
2388         if (!ext3_can_truncate(inode))
2389                 goto out_notrans;
2390
2391         if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2392                 ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
2393
2394         /*
2395          * We have to lock the EOF page here, because lock_page() nests
2396          * outside journal_start().
2397          */
2398         if ((inode->i_size & (blocksize - 1)) == 0) {
2399                 /* Block boundary? Nothing to do */
2400                 page = NULL;
2401         } else {
2402                 page = grab_cache_page(mapping,
2403                                 inode->i_size >> PAGE_CACHE_SHIFT);
2404                 if (!page)
2405                         goto out_notrans;
2406         }
2407
2408         handle = start_transaction(inode);
2409         if (IS_ERR(handle)) {
2410                 if (page) {
2411                         clear_highpage(page);
2412                         flush_dcache_page(page);
2413                         unlock_page(page);
2414                         page_cache_release(page);
2415                 }
2416                 goto out_notrans;
2417         }
2418
2419         last_block = (inode->i_size + blocksize-1)
2420                                         >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2421
2422         if (page)
2423                 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2424
2425         n = ext3_block_to_path(inode, last_block, offsets, NULL);
2426         if (n == 0)
2427                 goto out_stop;  /* error */
2428
2429         /*
2430          * OK.  This truncate is going to happen.  We add the inode to the
2431          * orphan list, so that if this truncate spans multiple transactions,
2432          * and we crash, we will resume the truncate when the filesystem
2433          * recovers.  It also marks the inode dirty, to catch the new size.
2434          *
2435          * Implication: the file must always be in a sane, consistent
2436          * truncatable state while each transaction commits.
2437          */
2438         if (ext3_orphan_add(handle, inode))
2439                 goto out_stop;
2440
2441         /*
2442          * The orphan list entry will now protect us from any crash which
2443          * occurs before the truncate completes, so it is now safe to propagate
2444          * the new, shorter inode size (held for now in i_size) into the
2445          * on-disk inode. We do this via i_disksize, which is the value which
2446          * ext3 *really* writes onto the disk inode.
2447          */
2448         ei->i_disksize = inode->i_size;
2449
2450         /*
2451          * From here we block out all ext3_get_block() callers who want to
2452          * modify the block allocation tree.
2453          */
2454         mutex_lock(&ei->truncate_mutex);
2455
2456         if (n == 1) {           /* direct blocks */
2457                 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2458                                i_data + EXT3_NDIR_BLOCKS);
2459                 goto do_indirects;
2460         }
2461
2462         partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2463         /* Kill the top of shared branch (not detached) */
2464         if (nr) {
2465                 if (partial == chain) {
2466                         /* Shared branch grows from the inode */
2467                         ext3_free_branches(handle, inode, NULL,
2468                                            &nr, &nr+1, (chain+n-1) - partial);
2469                         *partial->p = 0;
2470                         /*
2471                          * We mark the inode dirty prior to restart,
2472                          * and prior to stop.  No need for it here.
2473                          */
2474                 } else {
2475                         /* Shared branch grows from an indirect block */
2476                         BUFFER_TRACE(partial->bh, "get_write_access");
2477                         ext3_free_branches(handle, inode, partial->bh,
2478                                         partial->p,
2479                                         partial->p+1, (chain+n-1) - partial);
2480                 }
2481         }
2482         /* Clear the ends of indirect blocks on the shared branch */
2483         while (partial > chain) {
2484                 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2485                                    (__le32*)partial->bh->b_data+addr_per_block,
2486                                    (chain+n-1) - partial);
2487                 BUFFER_TRACE(partial->bh, "call brelse");
2488                 brelse (partial->bh);
2489                 partial--;
2490         }
2491 do_indirects:
2492         /* Kill the remaining (whole) subtrees */
2493         switch (offsets[0]) {
2494         default:
2495                 nr = i_data[EXT3_IND_BLOCK];
2496                 if (nr) {
2497                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2498                         i_data[EXT3_IND_BLOCK] = 0;
2499                 }
2500         case EXT3_IND_BLOCK:
2501                 nr = i_data[EXT3_DIND_BLOCK];
2502                 if (nr) {
2503                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2504                         i_data[EXT3_DIND_BLOCK] = 0;
2505                 }
2506         case EXT3_DIND_BLOCK:
2507                 nr = i_data[EXT3_TIND_BLOCK];
2508                 if (nr) {
2509                         ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2510                         i_data[EXT3_TIND_BLOCK] = 0;
2511                 }
2512         case EXT3_TIND_BLOCK:
2513                 ;
2514         }
2515
2516         ext3_discard_reservation(inode);
2517
2518         mutex_unlock(&ei->truncate_mutex);
2519         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2520         ext3_mark_inode_dirty(handle, inode);
2521
2522         /*
2523          * In a multi-transaction truncate, we only make the final transaction
2524          * synchronous
2525          */
2526         if (IS_SYNC(inode))
2527                 handle->h_sync = 1;
2528 out_stop:
2529         /*
2530          * If this was a simple ftruncate(), and the file will remain alive
2531          * then we need to clear up the orphan record which we created above.
2532          * However, if this was a real unlink then we were called by
2533          * ext3_delete_inode(), and we allow that function to clean up the
2534          * orphan info for us.
2535          */
2536         if (inode->i_nlink)
2537                 ext3_orphan_del(handle, inode);
2538
2539         ext3_journal_stop(handle);
2540         return;
2541 out_notrans:
2542         /*
2543          * Delete the inode from orphan list so that it doesn't stay there
2544          * forever and trigger assertion on umount.
2545          */
2546         if (inode->i_nlink)
2547                 ext3_orphan_del(NULL, inode);
2548 }
2549
2550 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2551                 unsigned long ino, struct ext3_iloc *iloc)
2552 {
2553         unsigned long block_group;
2554         unsigned long offset;
2555         ext3_fsblk_t block;
2556         struct ext3_group_desc *gdp;
2557
2558         if (!ext3_valid_inum(sb, ino)) {
2559                 /*
2560                  * This error is already checked for in namei.c unless we are
2561                  * looking at an NFS filehandle, in which case no error
2562                  * report is needed
2563                  */
2564                 return 0;
2565         }
2566
2567         block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2568         gdp = ext3_get_group_desc(sb, block_group, NULL);
2569         if (!gdp)
2570                 return 0;
2571         /*
2572          * Figure out the offset within the block group inode table
2573          */
2574         offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2575                 EXT3_INODE_SIZE(sb);
2576         block = le32_to_cpu(gdp->bg_inode_table) +
2577                 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2578
2579         iloc->block_group = block_group;
2580         iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2581         return block;
2582 }
2583
2584 /*
2585  * ext3_get_inode_loc returns with an extra refcount against the inode's
2586  * underlying buffer_head on success. If 'in_mem' is true, we have all
2587  * data in memory that is needed to recreate the on-disk version of this
2588  * inode.
2589  */
2590 static int __ext3_get_inode_loc(struct inode *inode,
2591                                 struct ext3_iloc *iloc, int in_mem)
2592 {
2593         ext3_fsblk_t block;
2594         struct buffer_head *bh;
2595
2596         block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2597         if (!block)
2598                 return -EIO;
2599
2600         bh = sb_getblk(inode->i_sb, block);
2601         if (!bh) {
2602                 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2603                                 "unable to read inode block - "
2604                                 "inode=%lu, block="E3FSBLK,
2605                                  inode->i_ino, block);
2606                 return -EIO;
2607         }
2608         if (!buffer_uptodate(bh)) {
2609                 lock_buffer(bh);
2610
2611                 /*
2612                  * If the buffer has the write error flag, we have failed
2613                  * to write out another inode in the same block.  In this
2614                  * case, we don't have to read the block because we may
2615                  * read the old inode data successfully.
2616                  */
2617                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2618                         set_buffer_uptodate(bh);
2619
2620                 if (buffer_uptodate(bh)) {
2621                         /* someone brought it uptodate while we waited */
2622                         unlock_buffer(bh);
2623                         goto has_buffer;
2624                 }
2625
2626                 /*
2627                  * If we have all information of the inode in memory and this
2628                  * is the only valid inode in the block, we need not read the
2629                  * block.
2630                  */
2631                 if (in_mem) {
2632                         struct buffer_head *bitmap_bh;
2633                         struct ext3_group_desc *desc;
2634                         int inodes_per_buffer;
2635                         int inode_offset, i;
2636                         int block_group;
2637                         int start;
2638
2639                         block_group = (inode->i_ino - 1) /
2640                                         EXT3_INODES_PER_GROUP(inode->i_sb);
2641                         inodes_per_buffer = bh->b_size /
2642                                 EXT3_INODE_SIZE(inode->i_sb);
2643                         inode_offset = ((inode->i_ino - 1) %
2644                                         EXT3_INODES_PER_GROUP(inode->i_sb));
2645                         start = inode_offset & ~(inodes_per_buffer - 1);
2646
2647                         /* Is the inode bitmap in cache? */
2648                         desc = ext3_get_group_desc(inode->i_sb,
2649                                                 block_group, NULL);
2650                         if (!desc)
2651                                 goto make_io;
2652
2653                         bitmap_bh = sb_getblk(inode->i_sb,
2654                                         le32_to_cpu(desc->bg_inode_bitmap));
2655                         if (!bitmap_bh)
2656                                 goto make_io;
2657
2658                         /*
2659                          * If the inode bitmap isn't in cache then the
2660                          * optimisation may end up performing two reads instead
2661                          * of one, so skip it.
2662                          */
2663                         if (!buffer_uptodate(bitmap_bh)) {
2664                                 brelse(bitmap_bh);
2665                                 goto make_io;
2666                         }
2667                         for (i = start; i < start + inodes_per_buffer; i++) {
2668                                 if (i == inode_offset)
2669                                         continue;
2670                                 if (ext3_test_bit(i, bitmap_bh->b_data))
2671                                         break;
2672                         }
2673                         brelse(bitmap_bh);
2674                         if (i == start + inodes_per_buffer) {
2675                                 /* all other inodes are free, so skip I/O */
2676                                 memset(bh->b_data, 0, bh->b_size);
2677                                 set_buffer_uptodate(bh);
2678                                 unlock_buffer(bh);
2679                                 goto has_buffer;
2680                         }
2681                 }
2682
2683 make_io:
2684                 /*
2685                  * There are other valid inodes in the buffer, this inode
2686                  * has in-inode xattrs, or we don't have this inode in memory.
2687                  * Read the block from disk.
2688                  */
2689                 get_bh(bh);
2690                 bh->b_end_io = end_buffer_read_sync;
2691                 submit_bh(READ_META, bh);
2692                 wait_on_buffer(bh);
2693                 if (!buffer_uptodate(bh)) {
2694                         ext3_error(inode->i_sb, "ext3_get_inode_loc",
2695                                         "unable to read inode block - "
2696                                         "inode=%lu, block="E3FSBLK,
2697                                         inode->i_ino, block);
2698                         brelse(bh);
2699                         return -EIO;
2700                 }
2701         }
2702 has_buffer:
2703         iloc->bh = bh;
2704         return 0;
2705 }
2706
2707 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2708 {
2709         /* We have all inode data except xattrs in memory here. */
2710         return __ext3_get_inode_loc(inode, iloc,
2711                 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2712 }
2713
2714 void ext3_set_inode_flags(struct inode *inode)
2715 {
2716         unsigned int flags = EXT3_I(inode)->i_flags;
2717
2718         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2719         if (flags & EXT3_SYNC_FL)
2720                 inode->i_flags |= S_SYNC;
2721         if (flags & EXT3_APPEND_FL)
2722                 inode->i_flags |= S_APPEND;
2723         if (flags & EXT3_IMMUTABLE_FL)
2724                 inode->i_flags |= S_IMMUTABLE;
2725         if (flags & EXT3_NOATIME_FL)
2726                 inode->i_flags |= S_NOATIME;
2727         if (flags & EXT3_DIRSYNC_FL)
2728                 inode->i_flags |= S_DIRSYNC;
2729 }
2730
2731 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2732 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2733 {
2734         unsigned int flags = ei->vfs_inode.i_flags;
2735
2736         ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2737                         EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2738         if (flags & S_SYNC)
2739                 ei->i_flags |= EXT3_SYNC_FL;
2740         if (flags & S_APPEND)
2741                 ei->i_flags |= EXT3_APPEND_FL;
2742         if (flags & S_IMMUTABLE)
2743                 ei->i_flags |= EXT3_IMMUTABLE_FL;
2744         if (flags & S_NOATIME)
2745                 ei->i_flags |= EXT3_NOATIME_FL;
2746         if (flags & S_DIRSYNC)
2747                 ei->i_flags |= EXT3_DIRSYNC_FL;
2748 }
2749
2750 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2751 {
2752         struct ext3_iloc iloc;
2753         struct ext3_inode *raw_inode;
2754         struct ext3_inode_info *ei;
2755         struct buffer_head *bh;
2756         struct inode *inode;
2757         long ret;
2758         int block;
2759
2760         inode = iget_locked(sb, ino);
2761         if (!inode)
2762                 return ERR_PTR(-ENOMEM);
2763         if (!(inode->i_state & I_NEW))
2764                 return inode;
2765
2766         ei = EXT3_I(inode);
2767         ei->i_block_alloc_info = NULL;
2768
2769         ret = __ext3_get_inode_loc(inode, &iloc, 0);
2770         if (ret < 0)
2771                 goto bad_inode;
2772         bh = iloc.bh;
2773         raw_inode = ext3_raw_inode(&iloc);
2774         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2775         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2776         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2777         if(!(test_opt (inode->i_sb, NO_UID32))) {
2778                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2779                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2780         }
2781         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2782         inode->i_size = le32_to_cpu(raw_inode->i_size);
2783         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2784         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2785         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2786         inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2787
2788         ei->i_state = 0;
2789         ei->i_dir_start_lookup = 0;
2790         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2791         /* We now have enough fields to check if the inode was active or not.
2792          * This is needed because nfsd might try to access dead inodes
2793          * the test is that same one that e2fsck uses
2794          * NeilBrown 1999oct15
2795          */
2796         if (inode->i_nlink == 0) {
2797                 if (inode->i_mode == 0 ||
2798                     !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2799                         /* this inode is deleted */
2800                         brelse (bh);
2801                         ret = -ESTALE;
2802                         goto bad_inode;
2803                 }
2804                 /* The only unlinked inodes we let through here have
2805                  * valid i_mode and are being read by the orphan
2806                  * recovery code: that's fine, we're about to complete
2807                  * the process of deleting those. */
2808         }
2809         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2810         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2811 #ifdef EXT3_FRAGMENTS
2812         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2813         ei->i_frag_no = raw_inode->i_frag;
2814         ei->i_frag_size = raw_inode->i_fsize;
2815 #endif
2816         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2817         if (!S_ISREG(inode->i_mode)) {
2818                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2819         } else {
2820                 inode->i_size |=
2821                         ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2822         }
2823         ei->i_disksize = inode->i_size;
2824         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2825         ei->i_block_group = iloc.block_group;
2826         /*
2827          * NOTE! The in-memory inode i_data array is in little-endian order
2828          * even on big-endian machines: we do NOT byteswap the block numbers!
2829          */
2830         for (block = 0; block < EXT3_N_BLOCKS; block++)
2831                 ei->i_data[block] = raw_inode->i_block[block];
2832         INIT_LIST_HEAD(&ei->i_orphan);
2833
2834         if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2835             EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2836                 /*
2837                  * When mke2fs creates big inodes it does not zero out
2838                  * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2839                  * so ignore those first few inodes.
2840                  */
2841                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2842                 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2843                     EXT3_INODE_SIZE(inode->i_sb)) {
2844                         brelse (bh);
2845                         ret = -EIO;
2846                         goto bad_inode;
2847                 }
2848                 if (ei->i_extra_isize == 0) {
2849                         /* The extra space is currently unused. Use it. */
2850                         ei->i_extra_isize = sizeof(struct ext3_inode) -
2851                                             EXT3_GOOD_OLD_INODE_SIZE;
2852                 } else {
2853                         __le32 *magic = (void *)raw_inode +
2854                                         EXT3_GOOD_OLD_INODE_SIZE +
2855                                         ei->i_extra_isize;
2856                         if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2857                                  ei->i_state |= EXT3_STATE_XATTR;
2858                 }
2859         } else
2860                 ei->i_extra_isize = 0;
2861
2862         if (S_ISREG(inode->i_mode)) {
2863                 inode->i_op = &ext3_file_inode_operations;
2864                 inode->i_fop = &ext3_file_operations;
2865                 ext3_set_aops(inode);
2866         } else if (S_ISDIR(inode->i_mode)) {
2867                 inode->i_op = &ext3_dir_inode_operations;
2868                 inode->i_fop = &ext3_dir_operations;
2869         } else if (S_ISLNK(inode->i_mode)) {
2870                 if (ext3_inode_is_fast_symlink(inode)) {
2871                         inode->i_op = &ext3_fast_symlink_inode_operations;
2872                         nd_terminate_link(ei->i_data, inode->i_size,
2873                                 sizeof(ei->i_data) - 1);
2874                 } else {
2875                         inode->i_op = &ext3_symlink_inode_operations;
2876                         ext3_set_aops(inode);
2877                 }
2878         } else {
2879                 inode->i_op = &ext3_special_inode_operations;
2880                 if (raw_inode->i_block[0])
2881                         init_special_inode(inode, inode->i_mode,
2882                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2883                 else
2884                         init_special_inode(inode, inode->i_mode,
2885                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2886         }
2887         brelse (iloc.bh);
2888         ext3_set_inode_flags(inode);
2889         unlock_new_inode(inode);
2890         return inode;
2891
2892 bad_inode:
2893         iget_failed(inode);
2894         return ERR_PTR(ret);
2895 }
2896
2897 /*
2898  * Post the struct inode info into an on-disk inode location in the
2899  * buffer-cache.  This gobbles the caller's reference to the
2900  * buffer_head in the inode location struct.
2901  *
2902  * The caller must have write access to iloc->bh.
2903  */
2904 static int ext3_do_update_inode(handle_t *handle,
2905                                 struct inode *inode,
2906                                 struct ext3_iloc *iloc)
2907 {
2908         struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2909         struct ext3_inode_info *ei = EXT3_I(inode);
2910         struct buffer_head *bh = iloc->bh;
2911         int err = 0, rc, block;
2912
2913 again:
2914         /* we can't allow multiple procs in here at once, its a bit racey */
2915         lock_buffer(bh);
2916
2917         /* For fields not not tracking in the in-memory inode,
2918          * initialise them to zero for new inodes. */
2919         if (ei->i_state & EXT3_STATE_NEW)
2920                 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2921
2922         ext3_get_inode_flags(ei);
2923         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2924         if(!(test_opt(inode->i_sb, NO_UID32))) {
2925                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2926                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2927 /*
2928  * Fix up interoperability with old kernels. Otherwise, old inodes get
2929  * re-used with the upper 16 bits of the uid/gid intact
2930  */
2931                 if(!ei->i_dtime) {
2932                         raw_inode->i_uid_high =
2933                                 cpu_to_le16(high_16_bits(inode->i_uid));
2934                         raw_inode->i_gid_high =
2935                                 cpu_to_le16(high_16_bits(inode->i_gid));
2936                 } else {
2937                         raw_inode->i_uid_high = 0;
2938                         raw_inode->i_gid_high = 0;
2939                 }
2940         } else {
2941                 raw_inode->i_uid_low =
2942                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
2943                 raw_inode->i_gid_low =
2944                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
2945                 raw_inode->i_uid_high = 0;
2946                 raw_inode->i_gid_high = 0;
2947         }
2948         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2949         raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2950         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2951         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2952         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2953         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2954         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2955         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2956 #ifdef EXT3_FRAGMENTS
2957         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2958         raw_inode->i_frag = ei->i_frag_no;
2959         raw_inode->i_fsize = ei->i_frag_size;
2960 #endif
2961         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2962         if (!S_ISREG(inode->i_mode)) {
2963                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2964         } else {
2965                 raw_inode->i_size_high =
2966                         cpu_to_le32(ei->i_disksize >> 32);
2967                 if (ei->i_disksize > 0x7fffffffULL) {
2968                         struct super_block *sb = inode->i_sb;
2969                         if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2970                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2971                             EXT3_SB(sb)->s_es->s_rev_level ==
2972                                         cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2973                                /* If this is the first large file
2974                                 * created, add a flag to the superblock.
2975                                 */
2976                                 unlock_buffer(bh);
2977                                 err = ext3_journal_get_write_access(handle,
2978                                                 EXT3_SB(sb)->s_sbh);
2979                                 if (err)
2980                                         goto out_brelse;
2981
2982                                 ext3_update_dynamic_rev(sb);
2983                                 EXT3_SET_RO_COMPAT_FEATURE(sb,
2984                                         EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2985                                 handle->h_sync = 1;
2986                                 err = ext3_journal_dirty_metadata(handle,
2987                                                 EXT3_SB(sb)->s_sbh);
2988                                 /* get our lock and start over */
2989                                 goto again;
2990                         }
2991                 }
2992         }
2993         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2994         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2995                 if (old_valid_dev(inode->i_rdev)) {
2996                         raw_inode->i_block[0] =
2997                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
2998                         raw_inode->i_block[1] = 0;
2999                 } else {
3000                         raw_inode->i_block[0] = 0;
3001                         raw_inode->i_block[1] =
3002                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
3003                         raw_inode->i_block[2] = 0;
3004                 }
3005         } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3006                 raw_inode->i_block[block] = ei->i_data[block];
3007
3008         if (ei->i_extra_isize)
3009                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3010
3011         BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3012         unlock_buffer(bh);
3013         rc = ext3_journal_dirty_metadata(handle, bh);
3014         if (!err)
3015                 err = rc;
3016         ei->i_state &= ~EXT3_STATE_NEW;
3017
3018 out_brelse:
3019         brelse (bh);
3020         ext3_std_error(inode->i_sb, err);
3021         return err;
3022 }
3023
3024 /*
3025  * ext3_write_inode()
3026  *
3027  * We are called from a few places:
3028  *
3029  * - Within generic_file_write() for O_SYNC files.
3030  *   Here, there will be no transaction running. We wait for any running
3031  *   trasnaction to commit.
3032  *
3033  * - Within sys_sync(), kupdate and such.
3034  *   We wait on commit, if tol to.
3035  *
3036  * - Within prune_icache() (PF_MEMALLOC == true)
3037  *   Here we simply return.  We can't afford to block kswapd on the
3038  *   journal commit.
3039  *
3040  * In all cases it is actually safe for us to return without doing anything,
3041  * because the inode has been copied into a raw inode buffer in
3042  * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3043  * knfsd.
3044  *
3045  * Note that we are absolutely dependent upon all inode dirtiers doing the
3046  * right thing: they *must* call mark_inode_dirty() after dirtying info in
3047  * which we are interested.
3048  *
3049  * It would be a bug for them to not do this.  The code:
3050  *
3051  *      mark_inode_dirty(inode)
3052  *      stuff();
3053  *      inode->i_size = expr;
3054  *
3055  * is in error because a kswapd-driven write_inode() could occur while
3056  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3057  * will no longer be on the superblock's dirty inode list.
3058  */
3059 int ext3_write_inode(struct inode *inode, int wait)
3060 {
3061         if (current->flags & PF_MEMALLOC)
3062                 return 0;
3063
3064         if (ext3_journal_current_handle()) {
3065                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3066                 dump_stack();
3067                 return -EIO;
3068         }
3069
3070         if (!wait)
3071                 return 0;
3072
3073         return ext3_force_commit(inode->i_sb);
3074 }
3075
3076 /*
3077  * ext3_setattr()
3078  *
3079  * Called from notify_change.
3080  *
3081  * We want to trap VFS attempts to truncate the file as soon as
3082  * possible.  In particular, we want to make sure that when the VFS
3083  * shrinks i_size, we put the inode on the orphan list and modify
3084  * i_disksize immediately, so that during the subsequent flushing of
3085  * dirty pages and freeing of disk blocks, we can guarantee that any
3086  * commit will leave the blocks being flushed in an unused state on
3087  * disk.  (On recovery, the inode will get truncated and the blocks will
3088  * be freed, so we have a strong guarantee that no future commit will
3089  * leave these blocks visible to the user.)
3090  *
3091  * Called with inode->sem down.
3092  */
3093 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3094 {
3095         struct inode *inode = dentry->d_inode;
3096         int error, rc = 0;
3097         const unsigned int ia_valid = attr->ia_valid;
3098
3099         error = inode_change_ok(inode, attr);
3100         if (error)
3101                 return error;
3102
3103         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3104                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3105                 handle_t *handle;
3106
3107                 /* (user+group)*(old+new) structure, inode write (sb,
3108                  * inode block, ? - but truncate inode update has it) */
3109                 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3110                                         EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3111                 if (IS_ERR(handle)) {
3112                         error = PTR_ERR(handle);
3113                         goto err_out;
3114                 }
3115                 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
3116                 if (error) {
3117                         ext3_journal_stop(handle);
3118                         return error;
3119                 }
3120                 /* Update corresponding info in inode so that everything is in
3121                  * one transaction */
3122                 if (attr->ia_valid & ATTR_UID)
3123                         inode->i_uid = attr->ia_uid;
3124                 if (attr->ia_valid & ATTR_GID)
3125                         inode->i_gid = attr->ia_gid;
3126                 error = ext3_mark_inode_dirty(handle, inode);
3127                 ext3_journal_stop(handle);
3128         }
3129
3130         if (S_ISREG(inode->i_mode) &&
3131             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3132                 handle_t *handle;
3133
3134                 handle = ext3_journal_start(inode, 3);
3135                 if (IS_ERR(handle)) {
3136                         error = PTR_ERR(handle);
3137                         goto err_out;
3138                 }
3139
3140                 error = ext3_orphan_add(handle, inode);
3141                 EXT3_I(inode)->i_disksize = attr->ia_size;
3142                 rc = ext3_mark_inode_dirty(handle, inode);
3143                 if (!error)
3144                         error = rc;
3145                 ext3_journal_stop(handle);
3146         }
3147
3148         rc = inode_setattr(inode, attr);
3149
3150         if (!rc && (ia_valid & ATTR_MODE))
3151                 rc = ext3_acl_chmod(inode);
3152
3153 err_out:
3154         ext3_std_error(inode->i_sb, error);
3155         if (!error)
3156                 error = rc;
3157         return error;
3158 }
3159
3160
3161 /*
3162  * How many blocks doth make a writepage()?
3163  *
3164  * With N blocks per page, it may be:
3165  * N data blocks
3166  * 2 indirect block
3167  * 2 dindirect
3168  * 1 tindirect
3169  * N+5 bitmap blocks (from the above)
3170  * N+5 group descriptor summary blocks
3171  * 1 inode block
3172  * 1 superblock.
3173  * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3174  *
3175  * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3176  *
3177  * With ordered or writeback data it's the same, less the N data blocks.
3178  *
3179  * If the inode's direct blocks can hold an integral number of pages then a
3180  * page cannot straddle two indirect blocks, and we can only touch one indirect
3181  * and dindirect block, and the "5" above becomes "3".
3182  *
3183  * This still overestimates under most circumstances.  If we were to pass the
3184  * start and end offsets in here as well we could do block_to_path() on each
3185  * block and work out the exact number of indirects which are touched.  Pah.
3186  */
3187
3188 static int ext3_writepage_trans_blocks(struct inode *inode)
3189 {
3190         int bpp = ext3_journal_blocks_per_page(inode);
3191         int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3192         int ret;
3193
3194         if (ext3_should_journal_data(inode))
3195                 ret = 3 * (bpp + indirects) + 2;
3196         else
3197                 ret = 2 * (bpp + indirects) + 2;
3198
3199 #ifdef CONFIG_QUOTA
3200         /* We know that structure was already allocated during vfs_dq_init so
3201          * we will be updating only the data blocks + inodes */
3202         ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3203 #endif
3204
3205         return ret;
3206 }
3207
3208 /*
3209  * The caller must have previously called ext3_reserve_inode_write().
3210  * Give this, we know that the caller already has write access to iloc->bh.
3211  */
3212 int ext3_mark_iloc_dirty(handle_t *handle,
3213                 struct inode *inode, struct ext3_iloc *iloc)
3214 {
3215         int err = 0;
3216
3217         /* the do_update_inode consumes one bh->b_count */
3218         get_bh(iloc->bh);
3219
3220         /* ext3_do_update_inode() does journal_dirty_metadata */
3221         err = ext3_do_update_inode(handle, inode, iloc);
3222         put_bh(iloc->bh);
3223         return err;
3224 }
3225
3226 /*
3227  * On success, We end up with an outstanding reference count against
3228  * iloc->bh.  This _must_ be cleaned up later.
3229  */
3230
3231 int
3232 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3233                          struct ext3_iloc *iloc)
3234 {
3235         int err = 0;
3236         if (handle) {
3237                 err = ext3_get_inode_loc(inode, iloc);
3238                 if (!err) {
3239                         BUFFER_TRACE(iloc->bh, "get_write_access");
3240                         err = ext3_journal_get_write_access(handle, iloc->bh);
3241                         if (err) {
3242                                 brelse(iloc->bh);
3243                                 iloc->bh = NULL;
3244                         }
3245                 }
3246         }
3247         ext3_std_error(inode->i_sb, err);
3248         return err;
3249 }
3250
3251 /*
3252  * What we do here is to mark the in-core inode as clean with respect to inode
3253  * dirtiness (it may still be data-dirty).
3254  * This means that the in-core inode may be reaped by prune_icache
3255  * without having to perform any I/O.  This is a very good thing,
3256  * because *any* task may call prune_icache - even ones which
3257  * have a transaction open against a different journal.
3258  *
3259  * Is this cheating?  Not really.  Sure, we haven't written the
3260  * inode out, but prune_icache isn't a user-visible syncing function.
3261  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3262  * we start and wait on commits.
3263  *
3264  * Is this efficient/effective?  Well, we're being nice to the system
3265  * by cleaning up our inodes proactively so they can be reaped
3266  * without I/O.  But we are potentially leaving up to five seconds'
3267  * worth of inodes floating about which prune_icache wants us to
3268  * write out.  One way to fix that would be to get prune_icache()
3269  * to do a write_super() to free up some memory.  It has the desired
3270  * effect.
3271  */
3272 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3273 {
3274         struct ext3_iloc iloc;
3275         int err;
3276
3277         might_sleep();
3278         err = ext3_reserve_inode_write(handle, inode, &iloc);
3279         if (!err)
3280                 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3281         return err;
3282 }
3283
3284 /*
3285  * ext3_dirty_inode() is called from __mark_inode_dirty()
3286  *
3287  * We're really interested in the case where a file is being extended.
3288  * i_size has been changed by generic_commit_write() and we thus need
3289  * to include the updated inode in the current transaction.
3290  *
3291  * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
3292  * are allocated to the file.
3293  *
3294  * If the inode is marked synchronous, we don't honour that here - doing
3295  * so would cause a commit on atime updates, which we don't bother doing.
3296  * We handle synchronous inodes at the highest possible level.
3297  */
3298 void ext3_dirty_inode(struct inode *inode)
3299 {
3300         handle_t *current_handle = ext3_journal_current_handle();
3301         handle_t *handle;
3302
3303         handle = ext3_journal_start(inode, 2);
3304         if (IS_ERR(handle))
3305                 goto out;
3306         if (current_handle &&
3307                 current_handle->h_transaction != handle->h_transaction) {
3308                 /* This task has a transaction open against a different fs */
3309                 printk(KERN_EMERG "%s: transactions do not match!\n",
3310                        __func__);
3311         } else {
3312                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
3313                                 current_handle);
3314                 ext3_mark_inode_dirty(handle, inode);
3315         }
3316         ext3_journal_stop(handle);
3317 out:
3318         return;
3319 }
3320
3321 #if 0
3322 /*
3323  * Bind an inode's backing buffer_head into this transaction, to prevent
3324  * it from being flushed to disk early.  Unlike
3325  * ext3_reserve_inode_write, this leaves behind no bh reference and
3326  * returns no iloc structure, so the caller needs to repeat the iloc
3327  * lookup to mark the inode dirty later.
3328  */
3329 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3330 {
3331         struct ext3_iloc iloc;
3332
3333         int err = 0;
3334         if (handle) {
3335                 err = ext3_get_inode_loc(inode, &iloc);
3336                 if (!err) {
3337                         BUFFER_TRACE(iloc.bh, "get_write_access");
3338                         err = journal_get_write_access(handle, iloc.bh);
3339                         if (!err)
3340                                 err = ext3_journal_dirty_metadata(handle,
3341                                                                   iloc.bh);
3342                         brelse(iloc.bh);
3343                 }
3344         }
3345         ext3_std_error(inode->i_sb, err);
3346         return err;
3347 }
3348 #endif
3349
3350 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3351 {
3352         journal_t *journal;
3353         handle_t *handle;
3354         int err;
3355
3356         /*
3357          * We have to be very careful here: changing a data block's
3358          * journaling status dynamically is dangerous.  If we write a
3359          * data block to the journal, change the status and then delete
3360          * that block, we risk forgetting to revoke the old log record
3361          * from the journal and so a subsequent replay can corrupt data.
3362          * So, first we make sure that the journal is empty and that
3363          * nobody is changing anything.
3364          */
3365
3366         journal = EXT3_JOURNAL(inode);
3367         if (is_journal_aborted(journal))
3368                 return -EROFS;
3369
3370         journal_lock_updates(journal);
3371         journal_flush(journal);
3372
3373         /*
3374          * OK, there are no updates running now, and all cached data is
3375          * synced to disk.  We are now in a completely consistent state
3376          * which doesn't have anything in the journal, and we know that
3377          * no filesystem updates are running, so it is safe to modify
3378          * the inode's in-core data-journaling state flag now.
3379          */
3380
3381         if (val)
3382                 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3383         else
3384                 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3385         ext3_set_aops(inode);
3386
3387         journal_unlock_updates(journal);
3388
3389         /* Finally we can mark the inode as dirty. */
3390
3391         handle = ext3_journal_start(inode, 1);
3392         if (IS_ERR(handle))
3393                 return PTR_ERR(handle);
3394
3395         err = ext3_mark_inode_dirty(handle, inode);
3396         handle->h_sync = 1;
3397         ext3_journal_stop(handle);
3398         ext3_std_error(inode->i_sb, err);
3399
3400         return err;
3401 }