Merge remote branch 'common/android-2.6.36' into android-tegra-2.6.36
[firefly-linux-kernel-4.4.55.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
62
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 unsigned int core_pipe_limit;
66 int suid_dumpable = 0;
67
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75         if (!fmt)
76                 return -EINVAL;
77         write_lock(&binfmt_lock);
78         insert ? list_add(&fmt->lh, &formats) :
79                  list_add_tail(&fmt->lh, &formats);
80         write_unlock(&binfmt_lock);
81         return 0;       
82 }
83
84 EXPORT_SYMBOL(__register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88         write_lock(&binfmt_lock);
89         list_del(&fmt->lh);
90         write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97         module_put(fmt->module);
98 }
99
100 /*
101  * Note that a shared library must be both readable and executable due to
102  * security reasons.
103  *
104  * Also note that we take the address to load from from the file itself.
105  */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108         struct file *file;
109         char *tmp = getname(library);
110         int error = PTR_ERR(tmp);
111
112         if (IS_ERR(tmp))
113                 goto out;
114
115         file = do_filp_open(AT_FDCWD, tmp,
116                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117                                 MAY_READ | MAY_EXEC | MAY_OPEN);
118         putname(tmp);
119         error = PTR_ERR(file);
120         if (IS_ERR(file))
121                 goto out;
122
123         error = -EINVAL;
124         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125                 goto exit;
126
127         error = -EACCES;
128         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129                 goto exit;
130
131         fsnotify_open(file);
132
133         error = -ENOEXEC;
134         if(file->f_op) {
135                 struct linux_binfmt * fmt;
136
137                 read_lock(&binfmt_lock);
138                 list_for_each_entry(fmt, &formats, lh) {
139                         if (!fmt->load_shlib)
140                                 continue;
141                         if (!try_module_get(fmt->module))
142                                 continue;
143                         read_unlock(&binfmt_lock);
144                         error = fmt->load_shlib(file);
145                         read_lock(&binfmt_lock);
146                         put_binfmt(fmt);
147                         if (error != -ENOEXEC)
148                                 break;
149                 }
150                 read_unlock(&binfmt_lock);
151         }
152 exit:
153         fput(file);
154 out:
155         return error;
156 }
157
158 #ifdef CONFIG_MMU
159
160 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
161 {
162         struct mm_struct *mm = current->mm;
163         long diff = (long)(pages - bprm->vma_pages);
164
165         if (!mm || !diff)
166                 return;
167
168         bprm->vma_pages = pages;
169
170 #ifdef SPLIT_RSS_COUNTING
171         add_mm_counter(mm, MM_ANONPAGES, diff);
172 #else
173         spin_lock(&mm->page_table_lock);
174         add_mm_counter(mm, MM_ANONPAGES, diff);
175         spin_unlock(&mm->page_table_lock);
176 #endif
177 }
178
179 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180                 int write)
181 {
182         struct page *page;
183         int ret;
184
185 #ifdef CONFIG_STACK_GROWSUP
186         if (write) {
187                 ret = expand_stack_downwards(bprm->vma, pos);
188                 if (ret < 0)
189                         return NULL;
190         }
191 #endif
192         ret = get_user_pages(current, bprm->mm, pos,
193                         1, write, 1, &page, NULL);
194         if (ret <= 0)
195                 return NULL;
196
197         if (write) {
198                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199                 struct rlimit *rlim;
200
201                 acct_arg_size(bprm, size / PAGE_SIZE);
202
203                 /*
204                  * We've historically supported up to 32 pages (ARG_MAX)
205                  * of argument strings even with small stacks
206                  */
207                 if (size <= ARG_MAX)
208                         return page;
209
210                 /*
211                  * Limit to 1/4-th the stack size for the argv+env strings.
212                  * This ensures that:
213                  *  - the remaining binfmt code will not run out of stack space,
214                  *  - the program will have a reasonable amount of stack left
215                  *    to work from.
216                  */
217                 rlim = current->signal->rlim;
218                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219                         put_page(page);
220                         return NULL;
221                 }
222         }
223
224         return page;
225 }
226
227 static void put_arg_page(struct page *page)
228 {
229         put_page(page);
230 }
231
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241                 struct page *page)
242 {
243         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248         int err;
249         struct vm_area_struct *vma = NULL;
250         struct mm_struct *mm = bprm->mm;
251
252         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253         if (!vma)
254                 return -ENOMEM;
255
256         down_write(&mm->mmap_sem);
257         vma->vm_mm = mm;
258
259         /*
260          * Place the stack at the largest stack address the architecture
261          * supports. Later, we'll move this to an appropriate place. We don't
262          * use STACK_TOP because that can depend on attributes which aren't
263          * configured yet.
264          */
265         BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266         vma->vm_end = STACK_TOP_MAX;
267         vma->vm_start = vma->vm_end - PAGE_SIZE;
268         vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270         INIT_LIST_HEAD(&vma->anon_vma_chain);
271
272         err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
273         if (err)
274                 goto err;
275
276         err = insert_vm_struct(mm, vma);
277         if (err)
278                 goto err;
279
280         mm->stack_vm = mm->total_vm = 1;
281         up_write(&mm->mmap_sem);
282         bprm->p = vma->vm_end - sizeof(void *);
283         return 0;
284 err:
285         up_write(&mm->mmap_sem);
286         bprm->vma = NULL;
287         kmem_cache_free(vm_area_cachep, vma);
288         return err;
289 }
290
291 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 {
293         return len <= MAX_ARG_STRLEN;
294 }
295
296 #else
297
298 void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
299 {
300 }
301
302 struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
303                 int write)
304 {
305         struct page *page;
306
307         page = bprm->page[pos / PAGE_SIZE];
308         if (!page && write) {
309                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
310                 if (!page)
311                         return NULL;
312                 bprm->page[pos / PAGE_SIZE] = page;
313         }
314
315         return page;
316 }
317
318 static void put_arg_page(struct page *page)
319 {
320 }
321
322 static void free_arg_page(struct linux_binprm *bprm, int i)
323 {
324         if (bprm->page[i]) {
325                 __free_page(bprm->page[i]);
326                 bprm->page[i] = NULL;
327         }
328 }
329
330 static void free_arg_pages(struct linux_binprm *bprm)
331 {
332         int i;
333
334         for (i = 0; i < MAX_ARG_PAGES; i++)
335                 free_arg_page(bprm, i);
336 }
337
338 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
339                 struct page *page)
340 {
341 }
342
343 static int __bprm_mm_init(struct linux_binprm *bprm)
344 {
345         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
346         return 0;
347 }
348
349 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 {
351         return len <= bprm->p;
352 }
353
354 #endif /* CONFIG_MMU */
355
356 /*
357  * Create a new mm_struct and populate it with a temporary stack
358  * vm_area_struct.  We don't have enough context at this point to set the stack
359  * flags, permissions, and offset, so we use temporary values.  We'll update
360  * them later in setup_arg_pages().
361  */
362 int bprm_mm_init(struct linux_binprm *bprm)
363 {
364         int err;
365         struct mm_struct *mm = NULL;
366
367         bprm->mm = mm = mm_alloc();
368         err = -ENOMEM;
369         if (!mm)
370                 goto err;
371
372         err = init_new_context(current, mm);
373         if (err)
374                 goto err;
375
376         err = __bprm_mm_init(bprm);
377         if (err)
378                 goto err;
379
380         return 0;
381
382 err:
383         if (mm) {
384                 bprm->mm = NULL;
385                 mmdrop(mm);
386         }
387
388         return err;
389 }
390
391 /*
392  * count() counts the number of strings in array ARGV.
393  */
394 static int count(const char __user * const __user * argv, int max)
395 {
396         int i = 0;
397
398         if (argv != NULL) {
399                 for (;;) {
400                         const char __user * p;
401
402                         if (get_user(p, argv))
403                                 return -EFAULT;
404                         if (!p)
405                                 break;
406                         argv++;
407                         if (i++ >= max)
408                                 return -E2BIG;
409
410                         if (fatal_signal_pending(current))
411                                 return -ERESTARTNOHAND;
412                         cond_resched();
413                 }
414         }
415         return i;
416 }
417
418 /*
419  * 'copy_strings()' copies argument/environment strings from the old
420  * processes's memory to the new process's stack.  The call to get_user_pages()
421  * ensures the destination page is created and not swapped out.
422  */
423 static int copy_strings(int argc, const char __user *const __user *argv,
424                         struct linux_binprm *bprm)
425 {
426         struct page *kmapped_page = NULL;
427         char *kaddr = NULL;
428         unsigned long kpos = 0;
429         int ret;
430
431         while (argc-- > 0) {
432                 const char __user *str;
433                 int len;
434                 unsigned long pos;
435
436                 if (get_user(str, argv+argc) ||
437                                 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
438                         ret = -EFAULT;
439                         goto out;
440                 }
441
442                 if (!valid_arg_len(bprm, len)) {
443                         ret = -E2BIG;
444                         goto out;
445                 }
446
447                 /* We're going to work our way backwords. */
448                 pos = bprm->p;
449                 str += len;
450                 bprm->p -= len;
451
452                 while (len > 0) {
453                         int offset, bytes_to_copy;
454
455                         if (fatal_signal_pending(current)) {
456                                 ret = -ERESTARTNOHAND;
457                                 goto out;
458                         }
459                         cond_resched();
460
461                         offset = pos % PAGE_SIZE;
462                         if (offset == 0)
463                                 offset = PAGE_SIZE;
464
465                         bytes_to_copy = offset;
466                         if (bytes_to_copy > len)
467                                 bytes_to_copy = len;
468
469                         offset -= bytes_to_copy;
470                         pos -= bytes_to_copy;
471                         str -= bytes_to_copy;
472                         len -= bytes_to_copy;
473
474                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
475                                 struct page *page;
476
477                                 page = get_arg_page(bprm, pos, 1);
478                                 if (!page) {
479                                         ret = -E2BIG;
480                                         goto out;
481                                 }
482
483                                 if (kmapped_page) {
484                                         flush_kernel_dcache_page(kmapped_page);
485                                         kunmap(kmapped_page);
486                                         put_arg_page(kmapped_page);
487                                 }
488                                 kmapped_page = page;
489                                 kaddr = kmap(kmapped_page);
490                                 kpos = pos & PAGE_MASK;
491                                 flush_arg_page(bprm, kpos, kmapped_page);
492                         }
493                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
494                                 ret = -EFAULT;
495                                 goto out;
496                         }
497                 }
498         }
499         ret = 0;
500 out:
501         if (kmapped_page) {
502                 flush_kernel_dcache_page(kmapped_page);
503                 kunmap(kmapped_page);
504                 put_arg_page(kmapped_page);
505         }
506         return ret;
507 }
508
509 /*
510  * Like copy_strings, but get argv and its values from kernel memory.
511  */
512 int copy_strings_kernel(int argc, const char *const *argv,
513                         struct linux_binprm *bprm)
514 {
515         int r;
516         mm_segment_t oldfs = get_fs();
517         set_fs(KERNEL_DS);
518         r = copy_strings(argc, (const char __user *const  __user *)argv, bprm);
519         set_fs(oldfs);
520         return r;
521 }
522 EXPORT_SYMBOL(copy_strings_kernel);
523
524 #ifdef CONFIG_MMU
525
526 /*
527  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
528  * the binfmt code determines where the new stack should reside, we shift it to
529  * its final location.  The process proceeds as follows:
530  *
531  * 1) Use shift to calculate the new vma endpoints.
532  * 2) Extend vma to cover both the old and new ranges.  This ensures the
533  *    arguments passed to subsequent functions are consistent.
534  * 3) Move vma's page tables to the new range.
535  * 4) Free up any cleared pgd range.
536  * 5) Shrink the vma to cover only the new range.
537  */
538 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
539 {
540         struct mm_struct *mm = vma->vm_mm;
541         unsigned long old_start = vma->vm_start;
542         unsigned long old_end = vma->vm_end;
543         unsigned long length = old_end - old_start;
544         unsigned long new_start = old_start - shift;
545         unsigned long new_end = old_end - shift;
546         struct mmu_gather *tlb;
547
548         BUG_ON(new_start > new_end);
549
550         /*
551          * ensure there are no vmas between where we want to go
552          * and where we are
553          */
554         if (vma != find_vma(mm, new_start))
555                 return -EFAULT;
556
557         /*
558          * cover the whole range: [new_start, old_end)
559          */
560         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
561                 return -ENOMEM;
562
563         /*
564          * move the page tables downwards, on failure we rely on
565          * process cleanup to remove whatever mess we made.
566          */
567         if (length != move_page_tables(vma, old_start,
568                                        vma, new_start, length))
569                 return -ENOMEM;
570
571         lru_add_drain();
572         tlb = tlb_gather_mmu(mm, 0);
573         if (new_end > old_start) {
574                 /*
575                  * when the old and new regions overlap clear from new_end.
576                  */
577                 free_pgd_range(tlb, new_end, old_end, new_end,
578                         vma->vm_next ? vma->vm_next->vm_start : 0);
579         } else {
580                 /*
581                  * otherwise, clean from old_start; this is done to not touch
582                  * the address space in [new_end, old_start) some architectures
583                  * have constraints on va-space that make this illegal (IA64) -
584                  * for the others its just a little faster.
585                  */
586                 free_pgd_range(tlb, old_start, old_end, new_end,
587                         vma->vm_next ? vma->vm_next->vm_start : 0);
588         }
589         tlb_finish_mmu(tlb, new_end, old_end);
590
591         /*
592          * Shrink the vma to just the new range.  Always succeeds.
593          */
594         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
595
596         return 0;
597 }
598
599 /*
600  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
601  * the stack is optionally relocated, and some extra space is added.
602  */
603 int setup_arg_pages(struct linux_binprm *bprm,
604                     unsigned long stack_top,
605                     int executable_stack)
606 {
607         unsigned long ret;
608         unsigned long stack_shift;
609         struct mm_struct *mm = current->mm;
610         struct vm_area_struct *vma = bprm->vma;
611         struct vm_area_struct *prev = NULL;
612         unsigned long vm_flags;
613         unsigned long stack_base;
614         unsigned long stack_size;
615         unsigned long stack_expand;
616         unsigned long rlim_stack;
617
618 #ifdef CONFIG_STACK_GROWSUP
619         /* Limit stack size to 1GB */
620         stack_base = rlimit_max(RLIMIT_STACK);
621         if (stack_base > (1 << 30))
622                 stack_base = 1 << 30;
623
624         /* Make sure we didn't let the argument array grow too large. */
625         if (vma->vm_end - vma->vm_start > stack_base)
626                 return -ENOMEM;
627
628         stack_base = PAGE_ALIGN(stack_top - stack_base);
629
630         stack_shift = vma->vm_start - stack_base;
631         mm->arg_start = bprm->p - stack_shift;
632         bprm->p = vma->vm_end - stack_shift;
633 #else
634         stack_top = arch_align_stack(stack_top);
635         stack_top = PAGE_ALIGN(stack_top);
636
637         if (unlikely(stack_top < mmap_min_addr) ||
638             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
639                 return -ENOMEM;
640
641         stack_shift = vma->vm_end - stack_top;
642
643         bprm->p -= stack_shift;
644         mm->arg_start = bprm->p;
645 #endif
646
647         if (bprm->loader)
648                 bprm->loader -= stack_shift;
649         bprm->exec -= stack_shift;
650
651         down_write(&mm->mmap_sem);
652         vm_flags = VM_STACK_FLAGS;
653
654         /*
655          * Adjust stack execute permissions; explicitly enable for
656          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
657          * (arch default) otherwise.
658          */
659         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
660                 vm_flags |= VM_EXEC;
661         else if (executable_stack == EXSTACK_DISABLE_X)
662                 vm_flags &= ~VM_EXEC;
663         vm_flags |= mm->def_flags;
664         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
665
666         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
667                         vm_flags);
668         if (ret)
669                 goto out_unlock;
670         BUG_ON(prev != vma);
671
672         /* Move stack pages down in memory. */
673         if (stack_shift) {
674                 ret = shift_arg_pages(vma, stack_shift);
675                 if (ret)
676                         goto out_unlock;
677         }
678
679         /* mprotect_fixup is overkill to remove the temporary stack flags */
680         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
681
682         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
683         stack_size = vma->vm_end - vma->vm_start;
684         /*
685          * Align this down to a page boundary as expand_stack
686          * will align it up.
687          */
688         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
689 #ifdef CONFIG_STACK_GROWSUP
690         if (stack_size + stack_expand > rlim_stack)
691                 stack_base = vma->vm_start + rlim_stack;
692         else
693                 stack_base = vma->vm_end + stack_expand;
694 #else
695         if (stack_size + stack_expand > rlim_stack)
696                 stack_base = vma->vm_end - rlim_stack;
697         else
698                 stack_base = vma->vm_start - stack_expand;
699 #endif
700         current->mm->start_stack = bprm->p;
701         ret = expand_stack(vma, stack_base);
702         if (ret)
703                 ret = -EFAULT;
704
705 out_unlock:
706         up_write(&mm->mmap_sem);
707         return ret;
708 }
709 EXPORT_SYMBOL(setup_arg_pages);
710
711 #endif /* CONFIG_MMU */
712
713 struct file *open_exec(const char *name)
714 {
715         struct file *file;
716         int err;
717
718         file = do_filp_open(AT_FDCWD, name,
719                                 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
720                                 MAY_EXEC | MAY_OPEN);
721         if (IS_ERR(file))
722                 goto out;
723
724         err = -EACCES;
725         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
726                 goto exit;
727
728         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
729                 goto exit;
730
731         fsnotify_open(file);
732
733         err = deny_write_access(file);
734         if (err)
735                 goto exit;
736
737 out:
738         return file;
739
740 exit:
741         fput(file);
742         return ERR_PTR(err);
743 }
744 EXPORT_SYMBOL(open_exec);
745
746 int kernel_read(struct file *file, loff_t offset,
747                 char *addr, unsigned long count)
748 {
749         mm_segment_t old_fs;
750         loff_t pos = offset;
751         int result;
752
753         old_fs = get_fs();
754         set_fs(get_ds());
755         /* The cast to a user pointer is valid due to the set_fs() */
756         result = vfs_read(file, (void __user *)addr, count, &pos);
757         set_fs(old_fs);
758         return result;
759 }
760
761 EXPORT_SYMBOL(kernel_read);
762
763 static int exec_mmap(struct mm_struct *mm)
764 {
765         struct task_struct *tsk;
766         struct mm_struct * old_mm, *active_mm;
767
768         /* Notify parent that we're no longer interested in the old VM */
769         tsk = current;
770         old_mm = current->mm;
771         sync_mm_rss(tsk, old_mm);
772         mm_release(tsk, old_mm);
773
774         if (old_mm) {
775                 /*
776                  * Make sure that if there is a core dump in progress
777                  * for the old mm, we get out and die instead of going
778                  * through with the exec.  We must hold mmap_sem around
779                  * checking core_state and changing tsk->mm.
780                  */
781                 down_read(&old_mm->mmap_sem);
782                 if (unlikely(old_mm->core_state)) {
783                         up_read(&old_mm->mmap_sem);
784                         return -EINTR;
785                 }
786         }
787         task_lock(tsk);
788         active_mm = tsk->active_mm;
789         tsk->mm = mm;
790         tsk->active_mm = mm;
791         activate_mm(active_mm, mm);
792         task_unlock(tsk);
793         arch_pick_mmap_layout(mm);
794         if (old_mm) {
795                 up_read(&old_mm->mmap_sem);
796                 BUG_ON(active_mm != old_mm);
797                 mm_update_next_owner(old_mm);
798                 mmput(old_mm);
799                 return 0;
800         }
801         mmdrop(active_mm);
802         return 0;
803 }
804
805 /*
806  * This function makes sure the current process has its own signal table,
807  * so that flush_signal_handlers can later reset the handlers without
808  * disturbing other processes.  (Other processes might share the signal
809  * table via the CLONE_SIGHAND option to clone().)
810  */
811 static int de_thread(struct task_struct *tsk)
812 {
813         struct signal_struct *sig = tsk->signal;
814         struct sighand_struct *oldsighand = tsk->sighand;
815         spinlock_t *lock = &oldsighand->siglock;
816
817         if (thread_group_empty(tsk))
818                 goto no_thread_group;
819
820         /*
821          * Kill all other threads in the thread group.
822          */
823         spin_lock_irq(lock);
824         if (signal_group_exit(sig)) {
825                 /*
826                  * Another group action in progress, just
827                  * return so that the signal is processed.
828                  */
829                 spin_unlock_irq(lock);
830                 return -EAGAIN;
831         }
832
833         sig->group_exit_task = tsk;
834         sig->notify_count = zap_other_threads(tsk);
835         if (!thread_group_leader(tsk))
836                 sig->notify_count--;
837
838         while (sig->notify_count) {
839                 __set_current_state(TASK_UNINTERRUPTIBLE);
840                 spin_unlock_irq(lock);
841                 schedule();
842                 spin_lock_irq(lock);
843         }
844         spin_unlock_irq(lock);
845
846         /*
847          * At this point all other threads have exited, all we have to
848          * do is to wait for the thread group leader to become inactive,
849          * and to assume its PID:
850          */
851         if (!thread_group_leader(tsk)) {
852                 struct task_struct *leader = tsk->group_leader;
853
854                 sig->notify_count = -1; /* for exit_notify() */
855                 for (;;) {
856                         write_lock_irq(&tasklist_lock);
857                         if (likely(leader->exit_state))
858                                 break;
859                         __set_current_state(TASK_UNINTERRUPTIBLE);
860                         write_unlock_irq(&tasklist_lock);
861                         schedule();
862                 }
863
864                 /*
865                  * The only record we have of the real-time age of a
866                  * process, regardless of execs it's done, is start_time.
867                  * All the past CPU time is accumulated in signal_struct
868                  * from sister threads now dead.  But in this non-leader
869                  * exec, nothing survives from the original leader thread,
870                  * whose birth marks the true age of this process now.
871                  * When we take on its identity by switching to its PID, we
872                  * also take its birthdate (always earlier than our own).
873                  */
874                 tsk->start_time = leader->start_time;
875
876                 BUG_ON(!same_thread_group(leader, tsk));
877                 BUG_ON(has_group_leader_pid(tsk));
878                 /*
879                  * An exec() starts a new thread group with the
880                  * TGID of the previous thread group. Rehash the
881                  * two threads with a switched PID, and release
882                  * the former thread group leader:
883                  */
884
885                 /* Become a process group leader with the old leader's pid.
886                  * The old leader becomes a thread of the this thread group.
887                  * Note: The old leader also uses this pid until release_task
888                  *       is called.  Odd but simple and correct.
889                  */
890                 detach_pid(tsk, PIDTYPE_PID);
891                 tsk->pid = leader->pid;
892                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
893                 transfer_pid(leader, tsk, PIDTYPE_PGID);
894                 transfer_pid(leader, tsk, PIDTYPE_SID);
895
896                 list_replace_rcu(&leader->tasks, &tsk->tasks);
897                 list_replace_init(&leader->sibling, &tsk->sibling);
898
899                 tsk->group_leader = tsk;
900                 leader->group_leader = tsk;
901
902                 tsk->exit_signal = SIGCHLD;
903
904                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
905                 leader->exit_state = EXIT_DEAD;
906                 write_unlock_irq(&tasklist_lock);
907
908                 release_task(leader);
909         }
910
911         sig->group_exit_task = NULL;
912         sig->notify_count = 0;
913
914 no_thread_group:
915         if (current->mm)
916                 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
917
918         exit_itimers(sig);
919         flush_itimer_signals();
920
921         if (atomic_read(&oldsighand->count) != 1) {
922                 struct sighand_struct *newsighand;
923                 /*
924                  * This ->sighand is shared with the CLONE_SIGHAND
925                  * but not CLONE_THREAD task, switch to the new one.
926                  */
927                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
928                 if (!newsighand)
929                         return -ENOMEM;
930
931                 atomic_set(&newsighand->count, 1);
932                 memcpy(newsighand->action, oldsighand->action,
933                        sizeof(newsighand->action));
934
935                 write_lock_irq(&tasklist_lock);
936                 spin_lock(&oldsighand->siglock);
937                 rcu_assign_pointer(tsk->sighand, newsighand);
938                 spin_unlock(&oldsighand->siglock);
939                 write_unlock_irq(&tasklist_lock);
940
941                 __cleanup_sighand(oldsighand);
942         }
943
944         BUG_ON(!thread_group_leader(tsk));
945         return 0;
946 }
947
948 /*
949  * These functions flushes out all traces of the currently running executable
950  * so that a new one can be started
951  */
952 static void flush_old_files(struct files_struct * files)
953 {
954         long j = -1;
955         struct fdtable *fdt;
956
957         spin_lock(&files->file_lock);
958         for (;;) {
959                 unsigned long set, i;
960
961                 j++;
962                 i = j * __NFDBITS;
963                 fdt = files_fdtable(files);
964                 if (i >= fdt->max_fds)
965                         break;
966                 set = fdt->close_on_exec->fds_bits[j];
967                 if (!set)
968                         continue;
969                 fdt->close_on_exec->fds_bits[j] = 0;
970                 spin_unlock(&files->file_lock);
971                 for ( ; set ; i++,set >>= 1) {
972                         if (set & 1) {
973                                 sys_close(i);
974                         }
975                 }
976                 spin_lock(&files->file_lock);
977
978         }
979         spin_unlock(&files->file_lock);
980 }
981
982 char *get_task_comm(char *buf, struct task_struct *tsk)
983 {
984         /* buf must be at least sizeof(tsk->comm) in size */
985         task_lock(tsk);
986         strncpy(buf, tsk->comm, sizeof(tsk->comm));
987         task_unlock(tsk);
988         return buf;
989 }
990
991 void set_task_comm(struct task_struct *tsk, char *buf)
992 {
993         task_lock(tsk);
994
995         /*
996          * Threads may access current->comm without holding
997          * the task lock, so write the string carefully.
998          * Readers without a lock may see incomplete new
999          * names but are safe from non-terminating string reads.
1000          */
1001         memset(tsk->comm, 0, TASK_COMM_LEN);
1002         wmb();
1003         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1004         task_unlock(tsk);
1005         perf_event_comm(tsk);
1006 }
1007
1008 int flush_old_exec(struct linux_binprm * bprm)
1009 {
1010         int retval;
1011
1012         /*
1013          * Make sure we have a private signal table and that
1014          * we are unassociated from the previous thread group.
1015          */
1016         retval = de_thread(current);
1017         if (retval)
1018                 goto out;
1019
1020         set_mm_exe_file(bprm->mm, bprm->file);
1021
1022         /*
1023          * Release all of the old mmap stuff
1024          */
1025         acct_arg_size(bprm, 0);
1026         retval = exec_mmap(bprm->mm);
1027         if (retval)
1028                 goto out;
1029
1030         bprm->mm = NULL;                /* We're using it now */
1031
1032         current->flags &= ~PF_RANDOMIZE;
1033         flush_thread();
1034         current->personality &= ~bprm->per_clear;
1035
1036         return 0;
1037
1038 out:
1039         return retval;
1040 }
1041 EXPORT_SYMBOL(flush_old_exec);
1042
1043 void setup_new_exec(struct linux_binprm * bprm)
1044 {
1045         int i, ch;
1046         const char *name;
1047         char tcomm[sizeof(current->comm)];
1048
1049         arch_pick_mmap_layout(current->mm);
1050
1051         /* This is the point of no return */
1052         current->sas_ss_sp = current->sas_ss_size = 0;
1053
1054         if (current_euid() == current_uid() && current_egid() == current_gid())
1055                 set_dumpable(current->mm, 1);
1056         else
1057                 set_dumpable(current->mm, suid_dumpable);
1058
1059         name = bprm->filename;
1060
1061         /* Copies the binary name from after last slash */
1062         for (i=0; (ch = *(name++)) != '\0';) {
1063                 if (ch == '/')
1064                         i = 0; /* overwrite what we wrote */
1065                 else
1066                         if (i < (sizeof(tcomm) - 1))
1067                                 tcomm[i++] = ch;
1068         }
1069         tcomm[i] = '\0';
1070         set_task_comm(current, tcomm);
1071
1072         /* Set the new mm task size. We have to do that late because it may
1073          * depend on TIF_32BIT which is only updated in flush_thread() on
1074          * some architectures like powerpc
1075          */
1076         current->mm->task_size = TASK_SIZE;
1077
1078         /* install the new credentials */
1079         if (bprm->cred->uid != current_euid() ||
1080             bprm->cred->gid != current_egid()) {
1081                 current->pdeath_signal = 0;
1082         } else if (file_permission(bprm->file, MAY_READ) ||
1083                    bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1084                 set_dumpable(current->mm, suid_dumpable);
1085         }
1086
1087         /*
1088          * Flush performance counters when crossing a
1089          * security domain:
1090          */
1091         if (!get_dumpable(current->mm))
1092                 perf_event_exit_task(current);
1093
1094         /* An exec changes our domain. We are no longer part of the thread
1095            group */
1096
1097         current->self_exec_id++;
1098                         
1099         flush_signal_handlers(current, 0);
1100         flush_old_files(current->files);
1101 }
1102 EXPORT_SYMBOL(setup_new_exec);
1103
1104 /*
1105  * Prepare credentials and lock ->cred_guard_mutex.
1106  * install_exec_creds() commits the new creds and drops the lock.
1107  * Or, if exec fails before, free_bprm() should release ->cred and
1108  * and unlock.
1109  */
1110 int prepare_bprm_creds(struct linux_binprm *bprm)
1111 {
1112         if (mutex_lock_interruptible(&current->cred_guard_mutex))
1113                 return -ERESTARTNOINTR;
1114
1115         bprm->cred = prepare_exec_creds();
1116         if (likely(bprm->cred))
1117                 return 0;
1118
1119         mutex_unlock(&current->cred_guard_mutex);
1120         return -ENOMEM;
1121 }
1122
1123 void free_bprm(struct linux_binprm *bprm)
1124 {
1125         free_arg_pages(bprm);
1126         if (bprm->cred) {
1127                 mutex_unlock(&current->cred_guard_mutex);
1128                 abort_creds(bprm->cred);
1129         }
1130         kfree(bprm);
1131 }
1132
1133 /*
1134  * install the new credentials for this executable
1135  */
1136 void install_exec_creds(struct linux_binprm *bprm)
1137 {
1138         security_bprm_committing_creds(bprm);
1139
1140         commit_creds(bprm->cred);
1141         bprm->cred = NULL;
1142         /*
1143          * cred_guard_mutex must be held at least to this point to prevent
1144          * ptrace_attach() from altering our determination of the task's
1145          * credentials; any time after this it may be unlocked.
1146          */
1147         security_bprm_committed_creds(bprm);
1148         mutex_unlock(&current->cred_guard_mutex);
1149 }
1150 EXPORT_SYMBOL(install_exec_creds);
1151
1152 /*
1153  * determine how safe it is to execute the proposed program
1154  * - the caller must hold current->cred_guard_mutex to protect against
1155  *   PTRACE_ATTACH
1156  */
1157 int check_unsafe_exec(struct linux_binprm *bprm)
1158 {
1159         struct task_struct *p = current, *t;
1160         unsigned n_fs;
1161         int res = 0;
1162
1163         bprm->unsafe = tracehook_unsafe_exec(p);
1164
1165         n_fs = 1;
1166         spin_lock(&p->fs->lock);
1167         rcu_read_lock();
1168         for (t = next_thread(p); t != p; t = next_thread(t)) {
1169                 if (t->fs == p->fs)
1170                         n_fs++;
1171         }
1172         rcu_read_unlock();
1173
1174         if (p->fs->users > n_fs) {
1175                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1176         } else {
1177                 res = -EAGAIN;
1178                 if (!p->fs->in_exec) {
1179                         p->fs->in_exec = 1;
1180                         res = 1;
1181                 }
1182         }
1183         spin_unlock(&p->fs->lock);
1184
1185         return res;
1186 }
1187
1188 /* 
1189  * Fill the binprm structure from the inode. 
1190  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1191  *
1192  * This may be called multiple times for binary chains (scripts for example).
1193  */
1194 int prepare_binprm(struct linux_binprm *bprm)
1195 {
1196         umode_t mode;
1197         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1198         int retval;
1199
1200         mode = inode->i_mode;
1201         if (bprm->file->f_op == NULL)
1202                 return -EACCES;
1203
1204         /* clear any previous set[ug]id data from a previous binary */
1205         bprm->cred->euid = current_euid();
1206         bprm->cred->egid = current_egid();
1207
1208         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1209                 /* Set-uid? */
1210                 if (mode & S_ISUID) {
1211                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1212                         bprm->cred->euid = inode->i_uid;
1213                 }
1214
1215                 /* Set-gid? */
1216                 /*
1217                  * If setgid is set but no group execute bit then this
1218                  * is a candidate for mandatory locking, not a setgid
1219                  * executable.
1220                  */
1221                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1222                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1223                         bprm->cred->egid = inode->i_gid;
1224                 }
1225         }
1226
1227         /* fill in binprm security blob */
1228         retval = security_bprm_set_creds(bprm);
1229         if (retval)
1230                 return retval;
1231         bprm->cred_prepared = 1;
1232
1233         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1234         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1235 }
1236
1237 EXPORT_SYMBOL(prepare_binprm);
1238
1239 /*
1240  * Arguments are '\0' separated strings found at the location bprm->p
1241  * points to; chop off the first by relocating brpm->p to right after
1242  * the first '\0' encountered.
1243  */
1244 int remove_arg_zero(struct linux_binprm *bprm)
1245 {
1246         int ret = 0;
1247         unsigned long offset;
1248         char *kaddr;
1249         struct page *page;
1250
1251         if (!bprm->argc)
1252                 return 0;
1253
1254         do {
1255                 offset = bprm->p & ~PAGE_MASK;
1256                 page = get_arg_page(bprm, bprm->p, 0);
1257                 if (!page) {
1258                         ret = -EFAULT;
1259                         goto out;
1260                 }
1261                 kaddr = kmap_atomic(page, KM_USER0);
1262
1263                 for (; offset < PAGE_SIZE && kaddr[offset];
1264                                 offset++, bprm->p++)
1265                         ;
1266
1267                 kunmap_atomic(kaddr, KM_USER0);
1268                 put_arg_page(page);
1269
1270                 if (offset == PAGE_SIZE)
1271                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1272         } while (offset == PAGE_SIZE);
1273
1274         bprm->p++;
1275         bprm->argc--;
1276         ret = 0;
1277
1278 out:
1279         return ret;
1280 }
1281 EXPORT_SYMBOL(remove_arg_zero);
1282
1283 /*
1284  * cycle the list of binary formats handler, until one recognizes the image
1285  */
1286 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1287 {
1288         unsigned int depth = bprm->recursion_depth;
1289         int try,retval;
1290         struct linux_binfmt *fmt;
1291
1292         retval = security_bprm_check(bprm);
1293         if (retval)
1294                 return retval;
1295
1296         /* kernel module loader fixup */
1297         /* so we don't try to load run modprobe in kernel space. */
1298         set_fs(USER_DS);
1299
1300         retval = audit_bprm(bprm);
1301         if (retval)
1302                 return retval;
1303
1304         retval = -ENOENT;
1305         for (try=0; try<2; try++) {
1306                 read_lock(&binfmt_lock);
1307                 list_for_each_entry(fmt, &formats, lh) {
1308                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1309                         if (!fn)
1310                                 continue;
1311                         if (!try_module_get(fmt->module))
1312                                 continue;
1313                         read_unlock(&binfmt_lock);
1314                         retval = fn(bprm, regs);
1315                         /*
1316                          * Restore the depth counter to its starting value
1317                          * in this call, so we don't have to rely on every
1318                          * load_binary function to restore it on return.
1319                          */
1320                         bprm->recursion_depth = depth;
1321                         if (retval >= 0) {
1322                                 if (depth == 0)
1323                                         tracehook_report_exec(fmt, bprm, regs);
1324                                 put_binfmt(fmt);
1325                                 allow_write_access(bprm->file);
1326                                 if (bprm->file)
1327                                         fput(bprm->file);
1328                                 bprm->file = NULL;
1329                                 current->did_exec = 1;
1330                                 proc_exec_connector(current);
1331                                 return retval;
1332                         }
1333                         read_lock(&binfmt_lock);
1334                         put_binfmt(fmt);
1335                         if (retval != -ENOEXEC || bprm->mm == NULL)
1336                                 break;
1337                         if (!bprm->file) {
1338                                 read_unlock(&binfmt_lock);
1339                                 return retval;
1340                         }
1341                 }
1342                 read_unlock(&binfmt_lock);
1343                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1344                         break;
1345 #ifdef CONFIG_MODULES
1346                 } else {
1347 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1348                         if (printable(bprm->buf[0]) &&
1349                             printable(bprm->buf[1]) &&
1350                             printable(bprm->buf[2]) &&
1351                             printable(bprm->buf[3]))
1352                                 break; /* -ENOEXEC */
1353                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1354 #endif
1355                 }
1356         }
1357         return retval;
1358 }
1359
1360 EXPORT_SYMBOL(search_binary_handler);
1361
1362 /*
1363  * sys_execve() executes a new program.
1364  */
1365 int do_execve(const char * filename,
1366         const char __user *const __user *argv,
1367         const char __user *const __user *envp,
1368         struct pt_regs * regs)
1369 {
1370         struct linux_binprm *bprm;
1371         struct file *file;
1372         struct files_struct *displaced;
1373         bool clear_in_exec;
1374         int retval;
1375
1376         retval = unshare_files(&displaced);
1377         if (retval)
1378                 goto out_ret;
1379
1380         retval = -ENOMEM;
1381         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1382         if (!bprm)
1383                 goto out_files;
1384
1385         retval = prepare_bprm_creds(bprm);
1386         if (retval)
1387                 goto out_free;
1388
1389         retval = check_unsafe_exec(bprm);
1390         if (retval < 0)
1391                 goto out_free;
1392         clear_in_exec = retval;
1393         current->in_execve = 1;
1394
1395         file = open_exec(filename);
1396         retval = PTR_ERR(file);
1397         if (IS_ERR(file))
1398                 goto out_unmark;
1399
1400         sched_exec();
1401
1402         bprm->file = file;
1403         bprm->filename = filename;
1404         bprm->interp = filename;
1405
1406         retval = bprm_mm_init(bprm);
1407         if (retval)
1408                 goto out_file;
1409
1410         bprm->argc = count(argv, MAX_ARG_STRINGS);
1411         if ((retval = bprm->argc) < 0)
1412                 goto out;
1413
1414         bprm->envc = count(envp, MAX_ARG_STRINGS);
1415         if ((retval = bprm->envc) < 0)
1416                 goto out;
1417
1418         retval = prepare_binprm(bprm);
1419         if (retval < 0)
1420                 goto out;
1421
1422         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1423         if (retval < 0)
1424                 goto out;
1425
1426         bprm->exec = bprm->p;
1427         retval = copy_strings(bprm->envc, envp, bprm);
1428         if (retval < 0)
1429                 goto out;
1430
1431         retval = copy_strings(bprm->argc, argv, bprm);
1432         if (retval < 0)
1433                 goto out;
1434
1435         current->flags &= ~PF_KTHREAD;
1436         retval = search_binary_handler(bprm,regs);
1437         if (retval < 0)
1438                 goto out;
1439
1440         /* execve succeeded */
1441         current->fs->in_exec = 0;
1442         current->in_execve = 0;
1443         acct_update_integrals(current);
1444         free_bprm(bprm);
1445         if (displaced)
1446                 put_files_struct(displaced);
1447         return retval;
1448
1449 out:
1450         if (bprm->mm) {
1451                 acct_arg_size(bprm, 0);
1452                 mmput(bprm->mm);
1453         }
1454
1455 out_file:
1456         if (bprm->file) {
1457                 allow_write_access(bprm->file);
1458                 fput(bprm->file);
1459         }
1460
1461 out_unmark:
1462         if (clear_in_exec)
1463                 current->fs->in_exec = 0;
1464         current->in_execve = 0;
1465
1466 out_free:
1467         free_bprm(bprm);
1468
1469 out_files:
1470         if (displaced)
1471                 reset_files_struct(displaced);
1472 out_ret:
1473         return retval;
1474 }
1475
1476 void set_binfmt(struct linux_binfmt *new)
1477 {
1478         struct mm_struct *mm = current->mm;
1479
1480         if (mm->binfmt)
1481                 module_put(mm->binfmt->module);
1482
1483         mm->binfmt = new;
1484         if (new)
1485                 __module_get(new->module);
1486 }
1487
1488 EXPORT_SYMBOL(set_binfmt);
1489
1490 /* format_corename will inspect the pattern parameter, and output a
1491  * name into corename, which must have space for at least
1492  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1493  */
1494 static int format_corename(char *corename, long signr)
1495 {
1496         const struct cred *cred = current_cred();
1497         const char *pat_ptr = core_pattern;
1498         int ispipe = (*pat_ptr == '|');
1499         char *out_ptr = corename;
1500         char *const out_end = corename + CORENAME_MAX_SIZE;
1501         int rc;
1502         int pid_in_pattern = 0;
1503
1504         /* Repeat as long as we have more pattern to process and more output
1505            space */
1506         while (*pat_ptr) {
1507                 if (*pat_ptr != '%') {
1508                         if (out_ptr == out_end)
1509                                 goto out;
1510                         *out_ptr++ = *pat_ptr++;
1511                 } else {
1512                         switch (*++pat_ptr) {
1513                         case 0:
1514                                 goto out;
1515                         /* Double percent, output one percent */
1516                         case '%':
1517                                 if (out_ptr == out_end)
1518                                         goto out;
1519                                 *out_ptr++ = '%';
1520                                 break;
1521                         /* pid */
1522                         case 'p':
1523                                 pid_in_pattern = 1;
1524                                 rc = snprintf(out_ptr, out_end - out_ptr,
1525                                               "%d", task_tgid_vnr(current));
1526                                 if (rc > out_end - out_ptr)
1527                                         goto out;
1528                                 out_ptr += rc;
1529                                 break;
1530                         /* uid */
1531                         case 'u':
1532                                 rc = snprintf(out_ptr, out_end - out_ptr,
1533                                               "%d", cred->uid);
1534                                 if (rc > out_end - out_ptr)
1535                                         goto out;
1536                                 out_ptr += rc;
1537                                 break;
1538                         /* gid */
1539                         case 'g':
1540                                 rc = snprintf(out_ptr, out_end - out_ptr,
1541                                               "%d", cred->gid);
1542                                 if (rc > out_end - out_ptr)
1543                                         goto out;
1544                                 out_ptr += rc;
1545                                 break;
1546                         /* signal that caused the coredump */
1547                         case 's':
1548                                 rc = snprintf(out_ptr, out_end - out_ptr,
1549                                               "%ld", signr);
1550                                 if (rc > out_end - out_ptr)
1551                                         goto out;
1552                                 out_ptr += rc;
1553                                 break;
1554                         /* UNIX time of coredump */
1555                         case 't': {
1556                                 struct timeval tv;
1557                                 do_gettimeofday(&tv);
1558                                 rc = snprintf(out_ptr, out_end - out_ptr,
1559                                               "%lu", tv.tv_sec);
1560                                 if (rc > out_end - out_ptr)
1561                                         goto out;
1562                                 out_ptr += rc;
1563                                 break;
1564                         }
1565                         /* hostname */
1566                         case 'h':
1567                                 down_read(&uts_sem);
1568                                 rc = snprintf(out_ptr, out_end - out_ptr,
1569                                               "%s", utsname()->nodename);
1570                                 up_read(&uts_sem);
1571                                 if (rc > out_end - out_ptr)
1572                                         goto out;
1573                                 out_ptr += rc;
1574                                 break;
1575                         /* executable */
1576                         case 'e':
1577                                 rc = snprintf(out_ptr, out_end - out_ptr,
1578                                               "%s", current->comm);
1579                                 if (rc > out_end - out_ptr)
1580                                         goto out;
1581                                 out_ptr += rc;
1582                                 break;
1583                         /* core limit size */
1584                         case 'c':
1585                                 rc = snprintf(out_ptr, out_end - out_ptr,
1586                                               "%lu", rlimit(RLIMIT_CORE));
1587                                 if (rc > out_end - out_ptr)
1588                                         goto out;
1589                                 out_ptr += rc;
1590                                 break;
1591                         default:
1592                                 break;
1593                         }
1594                         ++pat_ptr;
1595                 }
1596         }
1597         /* Backward compatibility with core_uses_pid:
1598          *
1599          * If core_pattern does not include a %p (as is the default)
1600          * and core_uses_pid is set, then .%pid will be appended to
1601          * the filename. Do not do this for piped commands. */
1602         if (!ispipe && !pid_in_pattern && core_uses_pid) {
1603                 rc = snprintf(out_ptr, out_end - out_ptr,
1604                               ".%d", task_tgid_vnr(current));
1605                 if (rc > out_end - out_ptr)
1606                         goto out;
1607                 out_ptr += rc;
1608         }
1609 out:
1610         *out_ptr = 0;
1611         return ispipe;
1612 }
1613
1614 static int zap_process(struct task_struct *start, int exit_code)
1615 {
1616         struct task_struct *t;
1617         int nr = 0;
1618
1619         start->signal->flags = SIGNAL_GROUP_EXIT;
1620         start->signal->group_exit_code = exit_code;
1621         start->signal->group_stop_count = 0;
1622
1623         t = start;
1624         do {
1625                 if (t != current && t->mm) {
1626                         sigaddset(&t->pending.signal, SIGKILL);
1627                         signal_wake_up(t, 1);
1628                         nr++;
1629                 }
1630         } while_each_thread(start, t);
1631
1632         return nr;
1633 }
1634
1635 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1636                                 struct core_state *core_state, int exit_code)
1637 {
1638         struct task_struct *g, *p;
1639         unsigned long flags;
1640         int nr = -EAGAIN;
1641
1642         spin_lock_irq(&tsk->sighand->siglock);
1643         if (!signal_group_exit(tsk->signal)) {
1644                 mm->core_state = core_state;
1645                 nr = zap_process(tsk, exit_code);
1646         }
1647         spin_unlock_irq(&tsk->sighand->siglock);
1648         if (unlikely(nr < 0))
1649                 return nr;
1650
1651         if (atomic_read(&mm->mm_users) == nr + 1)
1652                 goto done;
1653         /*
1654          * We should find and kill all tasks which use this mm, and we should
1655          * count them correctly into ->nr_threads. We don't take tasklist
1656          * lock, but this is safe wrt:
1657          *
1658          * fork:
1659          *      None of sub-threads can fork after zap_process(leader). All
1660          *      processes which were created before this point should be
1661          *      visible to zap_threads() because copy_process() adds the new
1662          *      process to the tail of init_task.tasks list, and lock/unlock
1663          *      of ->siglock provides a memory barrier.
1664          *
1665          * do_exit:
1666          *      The caller holds mm->mmap_sem. This means that the task which
1667          *      uses this mm can't pass exit_mm(), so it can't exit or clear
1668          *      its ->mm.
1669          *
1670          * de_thread:
1671          *      It does list_replace_rcu(&leader->tasks, &current->tasks),
1672          *      we must see either old or new leader, this does not matter.
1673          *      However, it can change p->sighand, so lock_task_sighand(p)
1674          *      must be used. Since p->mm != NULL and we hold ->mmap_sem
1675          *      it can't fail.
1676          *
1677          *      Note also that "g" can be the old leader with ->mm == NULL
1678          *      and already unhashed and thus removed from ->thread_group.
1679          *      This is OK, __unhash_process()->list_del_rcu() does not
1680          *      clear the ->next pointer, we will find the new leader via
1681          *      next_thread().
1682          */
1683         rcu_read_lock();
1684         for_each_process(g) {
1685                 if (g == tsk->group_leader)
1686                         continue;
1687                 if (g->flags & PF_KTHREAD)
1688                         continue;
1689                 p = g;
1690                 do {
1691                         if (p->mm) {
1692                                 if (unlikely(p->mm == mm)) {
1693                                         lock_task_sighand(p, &flags);
1694                                         nr += zap_process(p, exit_code);
1695                                         unlock_task_sighand(p, &flags);
1696                                 }
1697                                 break;
1698                         }
1699                 } while_each_thread(g, p);
1700         }
1701         rcu_read_unlock();
1702 done:
1703         atomic_set(&core_state->nr_threads, nr);
1704         return nr;
1705 }
1706
1707 static int coredump_wait(int exit_code, struct core_state *core_state)
1708 {
1709         struct task_struct *tsk = current;
1710         struct mm_struct *mm = tsk->mm;
1711         struct completion *vfork_done;
1712         int core_waiters = -EBUSY;
1713
1714         init_completion(&core_state->startup);
1715         core_state->dumper.task = tsk;
1716         core_state->dumper.next = NULL;
1717
1718         down_write(&mm->mmap_sem);
1719         if (!mm->core_state)
1720                 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1721         up_write(&mm->mmap_sem);
1722
1723         if (unlikely(core_waiters < 0))
1724                 goto fail;
1725
1726         /*
1727          * Make sure nobody is waiting for us to release the VM,
1728          * otherwise we can deadlock when we wait on each other
1729          */
1730         vfork_done = tsk->vfork_done;
1731         if (vfork_done) {
1732                 tsk->vfork_done = NULL;
1733                 complete(vfork_done);
1734         }
1735
1736         if (core_waiters)
1737                 wait_for_completion(&core_state->startup);
1738 fail:
1739         return core_waiters;
1740 }
1741
1742 static void coredump_finish(struct mm_struct *mm)
1743 {
1744         struct core_thread *curr, *next;
1745         struct task_struct *task;
1746
1747         next = mm->core_state->dumper.next;
1748         while ((curr = next) != NULL) {
1749                 next = curr->next;
1750                 task = curr->task;
1751                 /*
1752                  * see exit_mm(), curr->task must not see
1753                  * ->task == NULL before we read ->next.
1754                  */
1755                 smp_mb();
1756                 curr->task = NULL;
1757                 wake_up_process(task);
1758         }
1759
1760         mm->core_state = NULL;
1761 }
1762
1763 /*
1764  * set_dumpable converts traditional three-value dumpable to two flags and
1765  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1766  * these bits are not changed atomically.  So get_dumpable can observe the
1767  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1768  * return either old dumpable or new one by paying attention to the order of
1769  * modifying the bits.
1770  *
1771  * dumpable |   mm->flags (binary)
1772  * old  new | initial interim  final
1773  * ---------+-----------------------
1774  *  0    1  |   00      01      01
1775  *  0    2  |   00      10(*)   11
1776  *  1    0  |   01      00      00
1777  *  1    2  |   01      11      11
1778  *  2    0  |   11      10(*)   00
1779  *  2    1  |   11      11      01
1780  *
1781  * (*) get_dumpable regards interim value of 10 as 11.
1782  */
1783 void set_dumpable(struct mm_struct *mm, int value)
1784 {
1785         switch (value) {
1786         case 0:
1787                 clear_bit(MMF_DUMPABLE, &mm->flags);
1788                 smp_wmb();
1789                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1790                 break;
1791         case 1:
1792                 set_bit(MMF_DUMPABLE, &mm->flags);
1793                 smp_wmb();
1794                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1795                 break;
1796         case 2:
1797                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1798                 smp_wmb();
1799                 set_bit(MMF_DUMPABLE, &mm->flags);
1800                 break;
1801         }
1802 }
1803
1804 static int __get_dumpable(unsigned long mm_flags)
1805 {
1806         int ret;
1807
1808         ret = mm_flags & MMF_DUMPABLE_MASK;
1809         return (ret >= 2) ? 2 : ret;
1810 }
1811
1812 int get_dumpable(struct mm_struct *mm)
1813 {
1814         return __get_dumpable(mm->flags);
1815 }
1816
1817 static void wait_for_dump_helpers(struct file *file)
1818 {
1819         struct pipe_inode_info *pipe;
1820
1821         pipe = file->f_path.dentry->d_inode->i_pipe;
1822
1823         pipe_lock(pipe);
1824         pipe->readers++;
1825         pipe->writers--;
1826
1827         while ((pipe->readers > 1) && (!signal_pending(current))) {
1828                 wake_up_interruptible_sync(&pipe->wait);
1829                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1830                 pipe_wait(pipe);
1831         }
1832
1833         pipe->readers--;
1834         pipe->writers++;
1835         pipe_unlock(pipe);
1836
1837 }
1838
1839
1840 /*
1841  * uhm_pipe_setup
1842  * helper function to customize the process used
1843  * to collect the core in userspace.  Specifically
1844  * it sets up a pipe and installs it as fd 0 (stdin)
1845  * for the process.  Returns 0 on success, or
1846  * PTR_ERR on failure.
1847  * Note that it also sets the core limit to 1.  This
1848  * is a special value that we use to trap recursive
1849  * core dumps
1850  */
1851 static int umh_pipe_setup(struct subprocess_info *info)
1852 {
1853         struct file *rp, *wp;
1854         struct fdtable *fdt;
1855         struct coredump_params *cp = (struct coredump_params *)info->data;
1856         struct files_struct *cf = current->files;
1857
1858         wp = create_write_pipe(0);
1859         if (IS_ERR(wp))
1860                 return PTR_ERR(wp);
1861
1862         rp = create_read_pipe(wp, 0);
1863         if (IS_ERR(rp)) {
1864                 free_write_pipe(wp);
1865                 return PTR_ERR(rp);
1866         }
1867
1868         cp->file = wp;
1869
1870         sys_close(0);
1871         fd_install(0, rp);
1872         spin_lock(&cf->file_lock);
1873         fdt = files_fdtable(cf);
1874         FD_SET(0, fdt->open_fds);
1875         FD_CLR(0, fdt->close_on_exec);
1876         spin_unlock(&cf->file_lock);
1877
1878         /* and disallow core files too */
1879         current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1880
1881         return 0;
1882 }
1883
1884 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1885 {
1886         struct core_state core_state;
1887         char corename[CORENAME_MAX_SIZE + 1];
1888         struct mm_struct *mm = current->mm;
1889         struct linux_binfmt * binfmt;
1890         const struct cred *old_cred;
1891         struct cred *cred;
1892         int retval = 0;
1893         int flag = 0;
1894         int ispipe;
1895         static atomic_t core_dump_count = ATOMIC_INIT(0);
1896         struct coredump_params cprm = {
1897                 .signr = signr,
1898                 .regs = regs,
1899                 .limit = rlimit(RLIMIT_CORE),
1900                 /*
1901                  * We must use the same mm->flags while dumping core to avoid
1902                  * inconsistency of bit flags, since this flag is not protected
1903                  * by any locks.
1904                  */
1905                 .mm_flags = mm->flags,
1906         };
1907
1908         audit_core_dumps(signr);
1909
1910         binfmt = mm->binfmt;
1911         if (!binfmt || !binfmt->core_dump)
1912                 goto fail;
1913         if (!__get_dumpable(cprm.mm_flags))
1914                 goto fail;
1915
1916         cred = prepare_creds();
1917         if (!cred)
1918                 goto fail;
1919         /*
1920          *      We cannot trust fsuid as being the "true" uid of the
1921          *      process nor do we know its entire history. We only know it
1922          *      was tainted so we dump it as root in mode 2.
1923          */
1924         if (__get_dumpable(cprm.mm_flags) == 2) {
1925                 /* Setuid core dump mode */
1926                 flag = O_EXCL;          /* Stop rewrite attacks */
1927                 cred->fsuid = 0;        /* Dump root private */
1928         }
1929
1930         retval = coredump_wait(exit_code, &core_state);
1931         if (retval < 0)
1932                 goto fail_creds;
1933
1934         old_cred = override_creds(cred);
1935
1936         /*
1937          * Clear any false indication of pending signals that might
1938          * be seen by the filesystem code called to write the core file.
1939          */
1940         clear_thread_flag(TIF_SIGPENDING);
1941
1942         ispipe = format_corename(corename, signr);
1943
1944         if (ispipe) {
1945                 int dump_count;
1946                 char **helper_argv;
1947
1948                 if (cprm.limit == 1) {
1949                         /*
1950                          * Normally core limits are irrelevant to pipes, since
1951                          * we're not writing to the file system, but we use
1952                          * cprm.limit of 1 here as a speacial value. Any
1953                          * non-1 limit gets set to RLIM_INFINITY below, but
1954                          * a limit of 0 skips the dump.  This is a consistent
1955                          * way to catch recursive crashes.  We can still crash
1956                          * if the core_pattern binary sets RLIM_CORE =  !1
1957                          * but it runs as root, and can do lots of stupid things
1958                          * Note that we use task_tgid_vnr here to grab the pid
1959                          * of the process group leader.  That way we get the
1960                          * right pid if a thread in a multi-threaded
1961                          * core_pattern process dies.
1962                          */
1963                         printk(KERN_WARNING
1964                                 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1965                                 task_tgid_vnr(current), current->comm);
1966                         printk(KERN_WARNING "Aborting core\n");
1967                         goto fail_unlock;
1968                 }
1969                 cprm.limit = RLIM_INFINITY;
1970
1971                 dump_count = atomic_inc_return(&core_dump_count);
1972                 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1973                         printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1974                                task_tgid_vnr(current), current->comm);
1975                         printk(KERN_WARNING "Skipping core dump\n");
1976                         goto fail_dropcount;
1977                 }
1978
1979                 helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1980                 if (!helper_argv) {
1981                         printk(KERN_WARNING "%s failed to allocate memory\n",
1982                                __func__);
1983                         goto fail_dropcount;
1984                 }
1985
1986                 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1987                                         NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1988                                         NULL, &cprm);
1989                 argv_free(helper_argv);
1990                 if (retval) {
1991                         printk(KERN_INFO "Core dump to %s pipe failed\n",
1992                                corename);
1993                         goto close_fail;
1994                 }
1995         } else {
1996                 struct inode *inode;
1997
1998                 if (cprm.limit < binfmt->min_coredump)
1999                         goto fail_unlock;
2000
2001                 cprm.file = filp_open(corename,
2002                                  O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2003                                  0600);
2004                 if (IS_ERR(cprm.file))
2005                         goto fail_unlock;
2006
2007                 inode = cprm.file->f_path.dentry->d_inode;
2008                 if (inode->i_nlink > 1)
2009                         goto close_fail;
2010                 if (d_unhashed(cprm.file->f_path.dentry))
2011                         goto close_fail;
2012                 /*
2013                  * AK: actually i see no reason to not allow this for named
2014                  * pipes etc, but keep the previous behaviour for now.
2015                  */
2016                 if (!S_ISREG(inode->i_mode))
2017                         goto close_fail;
2018                 /*
2019                  * Dont allow local users get cute and trick others to coredump
2020                  * into their pre-created files.
2021                  */
2022                 if (inode->i_uid != current_fsuid())
2023                         goto close_fail;
2024                 if (!cprm.file->f_op || !cprm.file->f_op->write)
2025                         goto close_fail;
2026                 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2027                         goto close_fail;
2028         }
2029
2030         retval = binfmt->core_dump(&cprm);
2031         if (retval)
2032                 current->signal->group_exit_code |= 0x80;
2033
2034         if (ispipe && core_pipe_limit)
2035                 wait_for_dump_helpers(cprm.file);
2036 close_fail:
2037         if (cprm.file)
2038                 filp_close(cprm.file, NULL);
2039 fail_dropcount:
2040         if (ispipe)
2041                 atomic_dec(&core_dump_count);
2042 fail_unlock:
2043         coredump_finish(mm);
2044         revert_creds(old_cred);
2045 fail_creds:
2046         put_cred(cred);
2047 fail:
2048         return;
2049 }
2050
2051 /*
2052  * Core dumping helper functions.  These are the only things you should
2053  * do on a core-file: use only these functions to write out all the
2054  * necessary info.
2055  */
2056 int dump_write(struct file *file, const void *addr, int nr)
2057 {
2058         return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2059 }
2060 EXPORT_SYMBOL(dump_write);
2061
2062 int dump_seek(struct file *file, loff_t off)
2063 {
2064         int ret = 1;
2065
2066         if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2067                 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2068                         return 0;
2069         } else {
2070                 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2071
2072                 if (!buf)
2073                         return 0;
2074                 while (off > 0) {
2075                         unsigned long n = off;
2076
2077                         if (n > PAGE_SIZE)
2078                                 n = PAGE_SIZE;
2079                         if (!dump_write(file, buf, n)) {
2080                                 ret = 0;
2081                                 break;
2082                         }
2083                         off -= n;
2084                 }
2085                 free_page((unsigned long)buf);
2086         }
2087         return ret;
2088 }
2089 EXPORT_SYMBOL(dump_seek);