Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31 #include "volumes.h"
32
33 #define BTRFS_ROOT_TRANS_TAG 0
34
35 void put_transaction(struct btrfs_transaction *transaction)
36 {
37         WARN_ON(atomic_read(&transaction->use_count) == 0);
38         if (atomic_dec_and_test(&transaction->use_count)) {
39                 BUG_ON(!list_empty(&transaction->list));
40                 WARN_ON(transaction->delayed_refs.root.rb_node);
41                 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
42                 memset(transaction, 0, sizeof(*transaction));
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49         free_extent_buffer(root->commit_root);
50         root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 {
58         struct btrfs_transaction *cur_trans;
59         struct btrfs_fs_info *fs_info = root->fs_info;
60
61         spin_lock(&fs_info->trans_lock);
62 loop:
63         /* The file system has been taken offline. No new transactions. */
64         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65                 spin_unlock(&fs_info->trans_lock);
66                 return -EROFS;
67         }
68
69         if (fs_info->trans_no_join) {
70                 if (!nofail) {
71                         spin_unlock(&fs_info->trans_lock);
72                         return -EBUSY;
73                 }
74         }
75
76         cur_trans = fs_info->running_transaction;
77         if (cur_trans) {
78                 if (cur_trans->aborted) {
79                         spin_unlock(&fs_info->trans_lock);
80                         return cur_trans->aborted;
81                 }
82                 atomic_inc(&cur_trans->use_count);
83                 atomic_inc(&cur_trans->num_writers);
84                 cur_trans->num_joined++;
85                 spin_unlock(&fs_info->trans_lock);
86                 return 0;
87         }
88         spin_unlock(&fs_info->trans_lock);
89
90         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
91         if (!cur_trans)
92                 return -ENOMEM;
93
94         spin_lock(&fs_info->trans_lock);
95         if (fs_info->running_transaction) {
96                 /*
97                  * someone started a transaction after we unlocked.  Make sure
98                  * to redo the trans_no_join checks above
99                  */
100                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
101                 cur_trans = fs_info->running_transaction;
102                 goto loop;
103         }
104
105         atomic_set(&cur_trans->num_writers, 1);
106         cur_trans->num_joined = 0;
107         init_waitqueue_head(&cur_trans->writer_wait);
108         init_waitqueue_head(&cur_trans->commit_wait);
109         cur_trans->in_commit = 0;
110         cur_trans->blocked = 0;
111         /*
112          * One for this trans handle, one so it will live on until we
113          * commit the transaction.
114          */
115         atomic_set(&cur_trans->use_count, 2);
116         cur_trans->commit_done = 0;
117         cur_trans->start_time = get_seconds();
118
119         cur_trans->delayed_refs.root = RB_ROOT;
120         cur_trans->delayed_refs.num_entries = 0;
121         cur_trans->delayed_refs.num_heads_ready = 0;
122         cur_trans->delayed_refs.num_heads = 0;
123         cur_trans->delayed_refs.flushing = 0;
124         cur_trans->delayed_refs.run_delayed_start = 0;
125         cur_trans->delayed_refs.seq = 1;
126
127         /*
128          * although the tree mod log is per file system and not per transaction,
129          * the log must never go across transaction boundaries.
130          */
131         smp_mb();
132         if (!list_empty(&fs_info->tree_mod_seq_list)) {
133                 printk(KERN_ERR "btrfs: tree_mod_seq_list not empty when "
134                         "creating a fresh transaction\n");
135                 WARN_ON(1);
136         }
137         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) {
138                 printk(KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
139                         "creating a fresh transaction\n");
140                 WARN_ON(1);
141         }
142         atomic_set(&fs_info->tree_mod_seq, 0);
143
144         init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
145         spin_lock_init(&cur_trans->commit_lock);
146         spin_lock_init(&cur_trans->delayed_refs.lock);
147         INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
148
149         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
150         list_add_tail(&cur_trans->list, &fs_info->trans_list);
151         extent_io_tree_init(&cur_trans->dirty_pages,
152                              fs_info->btree_inode->i_mapping);
153         fs_info->generation++;
154         cur_trans->transid = fs_info->generation;
155         fs_info->running_transaction = cur_trans;
156         cur_trans->aborted = 0;
157         spin_unlock(&fs_info->trans_lock);
158
159         return 0;
160 }
161
162 /*
163  * this does all the record keeping required to make sure that a reference
164  * counted root is properly recorded in a given transaction.  This is required
165  * to make sure the old root from before we joined the transaction is deleted
166  * when the transaction commits
167  */
168 static int record_root_in_trans(struct btrfs_trans_handle *trans,
169                                struct btrfs_root *root)
170 {
171         if (root->ref_cows && root->last_trans < trans->transid) {
172                 WARN_ON(root == root->fs_info->extent_root);
173                 WARN_ON(root->commit_root != root->node);
174
175                 /*
176                  * see below for in_trans_setup usage rules
177                  * we have the reloc mutex held now, so there
178                  * is only one writer in this function
179                  */
180                 root->in_trans_setup = 1;
181
182                 /* make sure readers find in_trans_setup before
183                  * they find our root->last_trans update
184                  */
185                 smp_wmb();
186
187                 spin_lock(&root->fs_info->fs_roots_radix_lock);
188                 if (root->last_trans == trans->transid) {
189                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
190                         return 0;
191                 }
192                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
193                            (unsigned long)root->root_key.objectid,
194                            BTRFS_ROOT_TRANS_TAG);
195                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
196                 root->last_trans = trans->transid;
197
198                 /* this is pretty tricky.  We don't want to
199                  * take the relocation lock in btrfs_record_root_in_trans
200                  * unless we're really doing the first setup for this root in
201                  * this transaction.
202                  *
203                  * Normally we'd use root->last_trans as a flag to decide
204                  * if we want to take the expensive mutex.
205                  *
206                  * But, we have to set root->last_trans before we
207                  * init the relocation root, otherwise, we trip over warnings
208                  * in ctree.c.  The solution used here is to flag ourselves
209                  * with root->in_trans_setup.  When this is 1, we're still
210                  * fixing up the reloc trees and everyone must wait.
211                  *
212                  * When this is zero, they can trust root->last_trans and fly
213                  * through btrfs_record_root_in_trans without having to take the
214                  * lock.  smp_wmb() makes sure that all the writes above are
215                  * done before we pop in the zero below
216                  */
217                 btrfs_init_reloc_root(trans, root);
218                 smp_wmb();
219                 root->in_trans_setup = 0;
220         }
221         return 0;
222 }
223
224
225 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
226                                struct btrfs_root *root)
227 {
228         if (!root->ref_cows)
229                 return 0;
230
231         /*
232          * see record_root_in_trans for comments about in_trans_setup usage
233          * and barriers
234          */
235         smp_rmb();
236         if (root->last_trans == trans->transid &&
237             !root->in_trans_setup)
238                 return 0;
239
240         mutex_lock(&root->fs_info->reloc_mutex);
241         record_root_in_trans(trans, root);
242         mutex_unlock(&root->fs_info->reloc_mutex);
243
244         return 0;
245 }
246
247 /* wait for commit against the current transaction to become unblocked
248  * when this is done, it is safe to start a new transaction, but the current
249  * transaction might not be fully on disk.
250  */
251 static void wait_current_trans(struct btrfs_root *root)
252 {
253         struct btrfs_transaction *cur_trans;
254
255         spin_lock(&root->fs_info->trans_lock);
256         cur_trans = root->fs_info->running_transaction;
257         if (cur_trans && cur_trans->blocked) {
258                 atomic_inc(&cur_trans->use_count);
259                 spin_unlock(&root->fs_info->trans_lock);
260
261                 wait_event(root->fs_info->transaction_wait,
262                            !cur_trans->blocked);
263                 put_transaction(cur_trans);
264         } else {
265                 spin_unlock(&root->fs_info->trans_lock);
266         }
267 }
268
269 enum btrfs_trans_type {
270         TRANS_START,
271         TRANS_JOIN,
272         TRANS_USERSPACE,
273         TRANS_JOIN_NOLOCK,
274 };
275
276 static int may_wait_transaction(struct btrfs_root *root, int type)
277 {
278         if (root->fs_info->log_root_recovering)
279                 return 0;
280
281         if (type == TRANS_USERSPACE)
282                 return 1;
283
284         if (type == TRANS_START &&
285             !atomic_read(&root->fs_info->open_ioctl_trans))
286                 return 1;
287
288         return 0;
289 }
290
291 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
292                                                     u64 num_items, int type)
293 {
294         struct btrfs_trans_handle *h;
295         struct btrfs_transaction *cur_trans;
296         u64 num_bytes = 0;
297         int ret;
298
299         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
300                 return ERR_PTR(-EROFS);
301
302         if (current->journal_info) {
303                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
304                 h = current->journal_info;
305                 h->use_count++;
306                 h->orig_rsv = h->block_rsv;
307                 h->block_rsv = NULL;
308                 goto got_it;
309         }
310
311         /*
312          * Do the reservation before we join the transaction so we can do all
313          * the appropriate flushing if need be.
314          */
315         if (num_items > 0 && root != root->fs_info->chunk_root) {
316                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
317                 ret = btrfs_block_rsv_add(root,
318                                           &root->fs_info->trans_block_rsv,
319                                           num_bytes);
320                 if (ret)
321                         return ERR_PTR(ret);
322         }
323 again:
324         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
325         if (!h)
326                 return ERR_PTR(-ENOMEM);
327
328         if (may_wait_transaction(root, type))
329                 wait_current_trans(root);
330
331         do {
332                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
333                 if (ret == -EBUSY)
334                         wait_current_trans(root);
335         } while (ret == -EBUSY);
336
337         if (ret < 0) {
338                 kmem_cache_free(btrfs_trans_handle_cachep, h);
339                 return ERR_PTR(ret);
340         }
341
342         cur_trans = root->fs_info->running_transaction;
343
344         h->transid = cur_trans->transid;
345         h->transaction = cur_trans;
346         h->blocks_used = 0;
347         h->bytes_reserved = 0;
348         h->delayed_ref_updates = 0;
349         h->use_count = 1;
350         h->block_rsv = NULL;
351         h->orig_rsv = NULL;
352         h->aborted = 0;
353
354         smp_mb();
355         if (cur_trans->blocked && may_wait_transaction(root, type)) {
356                 btrfs_commit_transaction(h, root);
357                 goto again;
358         }
359
360         if (num_bytes) {
361                 trace_btrfs_space_reservation(root->fs_info, "transaction",
362                                               h->transid, num_bytes, 1);
363                 h->block_rsv = &root->fs_info->trans_block_rsv;
364                 h->bytes_reserved = num_bytes;
365         }
366
367 got_it:
368         btrfs_record_root_in_trans(h, root);
369
370         if (!current->journal_info && type != TRANS_USERSPACE)
371                 current->journal_info = h;
372         return h;
373 }
374
375 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
376                                                    int num_items)
377 {
378         return start_transaction(root, num_items, TRANS_START);
379 }
380 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
381 {
382         return start_transaction(root, 0, TRANS_JOIN);
383 }
384
385 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
386 {
387         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
388 }
389
390 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
391 {
392         return start_transaction(root, 0, TRANS_USERSPACE);
393 }
394
395 /* wait for a transaction commit to be fully complete */
396 static noinline void wait_for_commit(struct btrfs_root *root,
397                                     struct btrfs_transaction *commit)
398 {
399         wait_event(commit->commit_wait, commit->commit_done);
400 }
401
402 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
403 {
404         struct btrfs_transaction *cur_trans = NULL, *t;
405         int ret;
406
407         ret = 0;
408         if (transid) {
409                 if (transid <= root->fs_info->last_trans_committed)
410                         goto out;
411
412                 /* find specified transaction */
413                 spin_lock(&root->fs_info->trans_lock);
414                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
415                         if (t->transid == transid) {
416                                 cur_trans = t;
417                                 atomic_inc(&cur_trans->use_count);
418                                 break;
419                         }
420                         if (t->transid > transid)
421                                 break;
422                 }
423                 spin_unlock(&root->fs_info->trans_lock);
424                 ret = -EINVAL;
425                 if (!cur_trans)
426                         goto out;  /* bad transid */
427         } else {
428                 /* find newest transaction that is committing | committed */
429                 spin_lock(&root->fs_info->trans_lock);
430                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
431                                             list) {
432                         if (t->in_commit) {
433                                 if (t->commit_done)
434                                         break;
435                                 cur_trans = t;
436                                 atomic_inc(&cur_trans->use_count);
437                                 break;
438                         }
439                 }
440                 spin_unlock(&root->fs_info->trans_lock);
441                 if (!cur_trans)
442                         goto out;  /* nothing committing|committed */
443         }
444
445         wait_for_commit(root, cur_trans);
446
447         put_transaction(cur_trans);
448         ret = 0;
449 out:
450         return ret;
451 }
452
453 void btrfs_throttle(struct btrfs_root *root)
454 {
455         if (!atomic_read(&root->fs_info->open_ioctl_trans))
456                 wait_current_trans(root);
457 }
458
459 static int should_end_transaction(struct btrfs_trans_handle *trans,
460                                   struct btrfs_root *root)
461 {
462         int ret;
463
464         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
465         return ret ? 1 : 0;
466 }
467
468 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
469                                  struct btrfs_root *root)
470 {
471         struct btrfs_transaction *cur_trans = trans->transaction;
472         struct btrfs_block_rsv *rsv = trans->block_rsv;
473         int updates;
474         int err;
475
476         smp_mb();
477         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
478                 return 1;
479
480         /*
481          * We need to do this in case we're deleting csums so the global block
482          * rsv get's used instead of the csum block rsv.
483          */
484         trans->block_rsv = NULL;
485
486         updates = trans->delayed_ref_updates;
487         trans->delayed_ref_updates = 0;
488         if (updates) {
489                 err = btrfs_run_delayed_refs(trans, root, updates);
490                 if (err) /* Error code will also eval true */
491                         return err;
492         }
493
494         trans->block_rsv = rsv;
495
496         return should_end_transaction(trans, root);
497 }
498
499 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
500                           struct btrfs_root *root, int throttle, int lock)
501 {
502         struct btrfs_transaction *cur_trans = trans->transaction;
503         struct btrfs_fs_info *info = root->fs_info;
504         int count = 0;
505         int err = 0;
506
507         if (--trans->use_count) {
508                 trans->block_rsv = trans->orig_rsv;
509                 return 0;
510         }
511
512         btrfs_trans_release_metadata(trans, root);
513         trans->block_rsv = NULL;
514         while (count < 2) {
515                 unsigned long cur = trans->delayed_ref_updates;
516                 trans->delayed_ref_updates = 0;
517                 if (cur &&
518                     trans->transaction->delayed_refs.num_heads_ready > 64) {
519                         trans->delayed_ref_updates = 0;
520                         btrfs_run_delayed_refs(trans, root, cur);
521                 } else {
522                         break;
523                 }
524                 count++;
525         }
526
527         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
528             should_end_transaction(trans, root)) {
529                 trans->transaction->blocked = 1;
530                 smp_wmb();
531         }
532
533         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
534                 if (throttle) {
535                         /*
536                          * We may race with somebody else here so end up having
537                          * to call end_transaction on ourselves again, so inc
538                          * our use_count.
539                          */
540                         trans->use_count++;
541                         return btrfs_commit_transaction(trans, root);
542                 } else {
543                         wake_up_process(info->transaction_kthread);
544                 }
545         }
546
547         WARN_ON(cur_trans != info->running_transaction);
548         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
549         atomic_dec(&cur_trans->num_writers);
550
551         smp_mb();
552         if (waitqueue_active(&cur_trans->writer_wait))
553                 wake_up(&cur_trans->writer_wait);
554         put_transaction(cur_trans);
555
556         if (current->journal_info == trans)
557                 current->journal_info = NULL;
558
559         if (throttle)
560                 btrfs_run_delayed_iputs(root);
561
562         if (trans->aborted ||
563             root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
564                 err = -EIO;
565         }
566
567         memset(trans, 0, sizeof(*trans));
568         kmem_cache_free(btrfs_trans_handle_cachep, trans);
569         return err;
570 }
571
572 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
573                           struct btrfs_root *root)
574 {
575         int ret;
576
577         ret = __btrfs_end_transaction(trans, root, 0, 1);
578         if (ret)
579                 return ret;
580         return 0;
581 }
582
583 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
584                                    struct btrfs_root *root)
585 {
586         int ret;
587
588         ret = __btrfs_end_transaction(trans, root, 1, 1);
589         if (ret)
590                 return ret;
591         return 0;
592 }
593
594 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
595                                  struct btrfs_root *root)
596 {
597         int ret;
598
599         ret = __btrfs_end_transaction(trans, root, 0, 0);
600         if (ret)
601                 return ret;
602         return 0;
603 }
604
605 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
606                                 struct btrfs_root *root)
607 {
608         return __btrfs_end_transaction(trans, root, 1, 1);
609 }
610
611 /*
612  * when btree blocks are allocated, they have some corresponding bits set for
613  * them in one of two extent_io trees.  This is used to make sure all of
614  * those extents are sent to disk but does not wait on them
615  */
616 int btrfs_write_marked_extents(struct btrfs_root *root,
617                                struct extent_io_tree *dirty_pages, int mark)
618 {
619         int err = 0;
620         int werr = 0;
621         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
622         u64 start = 0;
623         u64 end;
624
625         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
626                                       mark)) {
627                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
628                                    GFP_NOFS);
629                 err = filemap_fdatawrite_range(mapping, start, end);
630                 if (err)
631                         werr = err;
632                 cond_resched();
633                 start = end + 1;
634         }
635         if (err)
636                 werr = err;
637         return werr;
638 }
639
640 /*
641  * when btree blocks are allocated, they have some corresponding bits set for
642  * them in one of two extent_io trees.  This is used to make sure all of
643  * those extents are on disk for transaction or log commit.  We wait
644  * on all the pages and clear them from the dirty pages state tree
645  */
646 int btrfs_wait_marked_extents(struct btrfs_root *root,
647                               struct extent_io_tree *dirty_pages, int mark)
648 {
649         int err = 0;
650         int werr = 0;
651         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
652         u64 start = 0;
653         u64 end;
654
655         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
656                                       EXTENT_NEED_WAIT)) {
657                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
658                 err = filemap_fdatawait_range(mapping, start, end);
659                 if (err)
660                         werr = err;
661                 cond_resched();
662                 start = end + 1;
663         }
664         if (err)
665                 werr = err;
666         return werr;
667 }
668
669 /*
670  * when btree blocks are allocated, they have some corresponding bits set for
671  * them in one of two extent_io trees.  This is used to make sure all of
672  * those extents are on disk for transaction or log commit
673  */
674 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
675                                 struct extent_io_tree *dirty_pages, int mark)
676 {
677         int ret;
678         int ret2;
679
680         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
681         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
682
683         if (ret)
684                 return ret;
685         if (ret2)
686                 return ret2;
687         return 0;
688 }
689
690 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
691                                      struct btrfs_root *root)
692 {
693         if (!trans || !trans->transaction) {
694                 struct inode *btree_inode;
695                 btree_inode = root->fs_info->btree_inode;
696                 return filemap_write_and_wait(btree_inode->i_mapping);
697         }
698         return btrfs_write_and_wait_marked_extents(root,
699                                            &trans->transaction->dirty_pages,
700                                            EXTENT_DIRTY);
701 }
702
703 /*
704  * this is used to update the root pointer in the tree of tree roots.
705  *
706  * But, in the case of the extent allocation tree, updating the root
707  * pointer may allocate blocks which may change the root of the extent
708  * allocation tree.
709  *
710  * So, this loops and repeats and makes sure the cowonly root didn't
711  * change while the root pointer was being updated in the metadata.
712  */
713 static int update_cowonly_root(struct btrfs_trans_handle *trans,
714                                struct btrfs_root *root)
715 {
716         int ret;
717         u64 old_root_bytenr;
718         u64 old_root_used;
719         struct btrfs_root *tree_root = root->fs_info->tree_root;
720
721         old_root_used = btrfs_root_used(&root->root_item);
722         btrfs_write_dirty_block_groups(trans, root);
723
724         while (1) {
725                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
726                 if (old_root_bytenr == root->node->start &&
727                     old_root_used == btrfs_root_used(&root->root_item))
728                         break;
729
730                 btrfs_set_root_node(&root->root_item, root->node);
731                 ret = btrfs_update_root(trans, tree_root,
732                                         &root->root_key,
733                                         &root->root_item);
734                 if (ret)
735                         return ret;
736
737                 old_root_used = btrfs_root_used(&root->root_item);
738                 ret = btrfs_write_dirty_block_groups(trans, root);
739                 if (ret)
740                         return ret;
741         }
742
743         if (root != root->fs_info->extent_root)
744                 switch_commit_root(root);
745
746         return 0;
747 }
748
749 /*
750  * update all the cowonly tree roots on disk
751  *
752  * The error handling in this function may not be obvious. Any of the
753  * failures will cause the file system to go offline. We still need
754  * to clean up the delayed refs.
755  */
756 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
757                                          struct btrfs_root *root)
758 {
759         struct btrfs_fs_info *fs_info = root->fs_info;
760         struct list_head *next;
761         struct extent_buffer *eb;
762         int ret;
763
764         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
765         if (ret)
766                 return ret;
767
768         eb = btrfs_lock_root_node(fs_info->tree_root);
769         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
770                               0, &eb);
771         btrfs_tree_unlock(eb);
772         free_extent_buffer(eb);
773
774         if (ret)
775                 return ret;
776
777         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
778         if (ret)
779                 return ret;
780
781         ret = btrfs_run_dev_stats(trans, root->fs_info);
782         BUG_ON(ret);
783
784         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
785                 next = fs_info->dirty_cowonly_roots.next;
786                 list_del_init(next);
787                 root = list_entry(next, struct btrfs_root, dirty_list);
788
789                 ret = update_cowonly_root(trans, root);
790                 if (ret)
791                         return ret;
792         }
793
794         down_write(&fs_info->extent_commit_sem);
795         switch_commit_root(fs_info->extent_root);
796         up_write(&fs_info->extent_commit_sem);
797
798         return 0;
799 }
800
801 /*
802  * dead roots are old snapshots that need to be deleted.  This allocates
803  * a dirty root struct and adds it into the list of dead roots that need to
804  * be deleted
805  */
806 int btrfs_add_dead_root(struct btrfs_root *root)
807 {
808         spin_lock(&root->fs_info->trans_lock);
809         list_add(&root->root_list, &root->fs_info->dead_roots);
810         spin_unlock(&root->fs_info->trans_lock);
811         return 0;
812 }
813
814 /*
815  * update all the cowonly tree roots on disk
816  */
817 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
818                                     struct btrfs_root *root)
819 {
820         struct btrfs_root *gang[8];
821         struct btrfs_fs_info *fs_info = root->fs_info;
822         int i;
823         int ret;
824         int err = 0;
825
826         spin_lock(&fs_info->fs_roots_radix_lock);
827         while (1) {
828                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
829                                                  (void **)gang, 0,
830                                                  ARRAY_SIZE(gang),
831                                                  BTRFS_ROOT_TRANS_TAG);
832                 if (ret == 0)
833                         break;
834                 for (i = 0; i < ret; i++) {
835                         root = gang[i];
836                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
837                                         (unsigned long)root->root_key.objectid,
838                                         BTRFS_ROOT_TRANS_TAG);
839                         spin_unlock(&fs_info->fs_roots_radix_lock);
840
841                         btrfs_free_log(trans, root);
842                         btrfs_update_reloc_root(trans, root);
843                         btrfs_orphan_commit_root(trans, root);
844
845                         btrfs_save_ino_cache(root, trans);
846
847                         /* see comments in should_cow_block() */
848                         root->force_cow = 0;
849                         smp_wmb();
850
851                         if (root->commit_root != root->node) {
852                                 mutex_lock(&root->fs_commit_mutex);
853                                 switch_commit_root(root);
854                                 btrfs_unpin_free_ino(root);
855                                 mutex_unlock(&root->fs_commit_mutex);
856
857                                 btrfs_set_root_node(&root->root_item,
858                                                     root->node);
859                         }
860
861                         err = btrfs_update_root(trans, fs_info->tree_root,
862                                                 &root->root_key,
863                                                 &root->root_item);
864                         spin_lock(&fs_info->fs_roots_radix_lock);
865                         if (err)
866                                 break;
867                 }
868         }
869         spin_unlock(&fs_info->fs_roots_radix_lock);
870         return err;
871 }
872
873 /*
874  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
875  * otherwise every leaf in the btree is read and defragged.
876  */
877 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
878 {
879         struct btrfs_fs_info *info = root->fs_info;
880         struct btrfs_trans_handle *trans;
881         int ret;
882         unsigned long nr;
883
884         if (xchg(&root->defrag_running, 1))
885                 return 0;
886
887         while (1) {
888                 trans = btrfs_start_transaction(root, 0);
889                 if (IS_ERR(trans))
890                         return PTR_ERR(trans);
891
892                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
893
894                 nr = trans->blocks_used;
895                 btrfs_end_transaction(trans, root);
896                 btrfs_btree_balance_dirty(info->tree_root, nr);
897                 cond_resched();
898
899                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
900                         break;
901         }
902         root->defrag_running = 0;
903         return ret;
904 }
905
906 /*
907  * new snapshots need to be created at a very specific time in the
908  * transaction commit.  This does the actual creation
909  */
910 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
911                                    struct btrfs_fs_info *fs_info,
912                                    struct btrfs_pending_snapshot *pending)
913 {
914         struct btrfs_key key;
915         struct btrfs_root_item *new_root_item;
916         struct btrfs_root *tree_root = fs_info->tree_root;
917         struct btrfs_root *root = pending->root;
918         struct btrfs_root *parent_root;
919         struct btrfs_block_rsv *rsv;
920         struct inode *parent_inode;
921         struct dentry *parent;
922         struct dentry *dentry;
923         struct extent_buffer *tmp;
924         struct extent_buffer *old;
925         int ret;
926         u64 to_reserve = 0;
927         u64 index = 0;
928         u64 objectid;
929         u64 root_flags;
930
931         rsv = trans->block_rsv;
932
933         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
934         if (!new_root_item) {
935                 ret = pending->error = -ENOMEM;
936                 goto fail;
937         }
938
939         ret = btrfs_find_free_objectid(tree_root, &objectid);
940         if (ret) {
941                 pending->error = ret;
942                 goto fail;
943         }
944
945         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
946
947         if (to_reserve > 0) {
948                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
949                                                   to_reserve);
950                 if (ret) {
951                         pending->error = ret;
952                         goto fail;
953                 }
954         }
955
956         key.objectid = objectid;
957         key.offset = (u64)-1;
958         key.type = BTRFS_ROOT_ITEM_KEY;
959
960         trans->block_rsv = &pending->block_rsv;
961
962         dentry = pending->dentry;
963         parent = dget_parent(dentry);
964         parent_inode = parent->d_inode;
965         parent_root = BTRFS_I(parent_inode)->root;
966         record_root_in_trans(trans, parent_root);
967
968         /*
969          * insert the directory item
970          */
971         ret = btrfs_set_inode_index(parent_inode, &index);
972         BUG_ON(ret); /* -ENOMEM */
973         ret = btrfs_insert_dir_item(trans, parent_root,
974                                 dentry->d_name.name, dentry->d_name.len,
975                                 parent_inode, &key,
976                                 BTRFS_FT_DIR, index);
977         if (ret == -EEXIST) {
978                 pending->error = -EEXIST;
979                 dput(parent);
980                 goto fail;
981         } else if (ret) {
982                 goto abort_trans_dput;
983         }
984
985         btrfs_i_size_write(parent_inode, parent_inode->i_size +
986                                          dentry->d_name.len * 2);
987         ret = btrfs_update_inode(trans, parent_root, parent_inode);
988         if (ret)
989                 goto abort_trans_dput;
990
991         /*
992          * pull in the delayed directory update
993          * and the delayed inode item
994          * otherwise we corrupt the FS during
995          * snapshot
996          */
997         ret = btrfs_run_delayed_items(trans, root);
998         if (ret) { /* Transaction aborted */
999                 dput(parent);
1000                 goto fail;
1001         }
1002
1003         record_root_in_trans(trans, root);
1004         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1005         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1006         btrfs_check_and_init_root_item(new_root_item);
1007
1008         root_flags = btrfs_root_flags(new_root_item);
1009         if (pending->readonly)
1010                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1011         else
1012                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1013         btrfs_set_root_flags(new_root_item, root_flags);
1014
1015         old = btrfs_lock_root_node(root);
1016         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1017         if (ret) {
1018                 btrfs_tree_unlock(old);
1019                 free_extent_buffer(old);
1020                 goto abort_trans_dput;
1021         }
1022
1023         btrfs_set_lock_blocking(old);
1024
1025         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1026         /* clean up in any case */
1027         btrfs_tree_unlock(old);
1028         free_extent_buffer(old);
1029         if (ret)
1030                 goto abort_trans_dput;
1031
1032         /* see comments in should_cow_block() */
1033         root->force_cow = 1;
1034         smp_wmb();
1035
1036         btrfs_set_root_node(new_root_item, tmp);
1037         /* record when the snapshot was created in key.offset */
1038         key.offset = trans->transid;
1039         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1040         btrfs_tree_unlock(tmp);
1041         free_extent_buffer(tmp);
1042         if (ret)
1043                 goto abort_trans_dput;
1044
1045         /*
1046          * insert root back/forward references
1047          */
1048         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1049                                  parent_root->root_key.objectid,
1050                                  btrfs_ino(parent_inode), index,
1051                                  dentry->d_name.name, dentry->d_name.len);
1052         dput(parent);
1053         if (ret)
1054                 goto fail;
1055
1056         key.offset = (u64)-1;
1057         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1058         if (IS_ERR(pending->snap)) {
1059                 ret = PTR_ERR(pending->snap);
1060                 goto abort_trans;
1061         }
1062
1063         ret = btrfs_reloc_post_snapshot(trans, pending);
1064         if (ret)
1065                 goto abort_trans;
1066         ret = 0;
1067 fail:
1068         kfree(new_root_item);
1069         trans->block_rsv = rsv;
1070         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1071         return ret;
1072
1073 abort_trans_dput:
1074         dput(parent);
1075 abort_trans:
1076         btrfs_abort_transaction(trans, root, ret);
1077         goto fail;
1078 }
1079
1080 /*
1081  * create all the snapshots we've scheduled for creation
1082  */
1083 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1084                                              struct btrfs_fs_info *fs_info)
1085 {
1086         struct btrfs_pending_snapshot *pending;
1087         struct list_head *head = &trans->transaction->pending_snapshots;
1088
1089         list_for_each_entry(pending, head, list)
1090                 create_pending_snapshot(trans, fs_info, pending);
1091         return 0;
1092 }
1093
1094 static void update_super_roots(struct btrfs_root *root)
1095 {
1096         struct btrfs_root_item *root_item;
1097         struct btrfs_super_block *super;
1098
1099         super = root->fs_info->super_copy;
1100
1101         root_item = &root->fs_info->chunk_root->root_item;
1102         super->chunk_root = root_item->bytenr;
1103         super->chunk_root_generation = root_item->generation;
1104         super->chunk_root_level = root_item->level;
1105
1106         root_item = &root->fs_info->tree_root->root_item;
1107         super->root = root_item->bytenr;
1108         super->generation = root_item->generation;
1109         super->root_level = root_item->level;
1110         if (btrfs_test_opt(root, SPACE_CACHE))
1111                 super->cache_generation = root_item->generation;
1112 }
1113
1114 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1115 {
1116         int ret = 0;
1117         spin_lock(&info->trans_lock);
1118         if (info->running_transaction)
1119                 ret = info->running_transaction->in_commit;
1120         spin_unlock(&info->trans_lock);
1121         return ret;
1122 }
1123
1124 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1125 {
1126         int ret = 0;
1127         spin_lock(&info->trans_lock);
1128         if (info->running_transaction)
1129                 ret = info->running_transaction->blocked;
1130         spin_unlock(&info->trans_lock);
1131         return ret;
1132 }
1133
1134 /*
1135  * wait for the current transaction commit to start and block subsequent
1136  * transaction joins
1137  */
1138 static void wait_current_trans_commit_start(struct btrfs_root *root,
1139                                             struct btrfs_transaction *trans)
1140 {
1141         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1142 }
1143
1144 /*
1145  * wait for the current transaction to start and then become unblocked.
1146  * caller holds ref.
1147  */
1148 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1149                                          struct btrfs_transaction *trans)
1150 {
1151         wait_event(root->fs_info->transaction_wait,
1152                    trans->commit_done || (trans->in_commit && !trans->blocked));
1153 }
1154
1155 /*
1156  * commit transactions asynchronously. once btrfs_commit_transaction_async
1157  * returns, any subsequent transaction will not be allowed to join.
1158  */
1159 struct btrfs_async_commit {
1160         struct btrfs_trans_handle *newtrans;
1161         struct btrfs_root *root;
1162         struct delayed_work work;
1163 };
1164
1165 static void do_async_commit(struct work_struct *work)
1166 {
1167         struct btrfs_async_commit *ac =
1168                 container_of(work, struct btrfs_async_commit, work.work);
1169
1170         btrfs_commit_transaction(ac->newtrans, ac->root);
1171         kfree(ac);
1172 }
1173
1174 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1175                                    struct btrfs_root *root,
1176                                    int wait_for_unblock)
1177 {
1178         struct btrfs_async_commit *ac;
1179         struct btrfs_transaction *cur_trans;
1180
1181         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1182         if (!ac)
1183                 return -ENOMEM;
1184
1185         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1186         ac->root = root;
1187         ac->newtrans = btrfs_join_transaction(root);
1188         if (IS_ERR(ac->newtrans)) {
1189                 int err = PTR_ERR(ac->newtrans);
1190                 kfree(ac);
1191                 return err;
1192         }
1193
1194         /* take transaction reference */
1195         cur_trans = trans->transaction;
1196         atomic_inc(&cur_trans->use_count);
1197
1198         btrfs_end_transaction(trans, root);
1199         schedule_delayed_work(&ac->work, 0);
1200
1201         /* wait for transaction to start and unblock */
1202         if (wait_for_unblock)
1203                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1204         else
1205                 wait_current_trans_commit_start(root, cur_trans);
1206
1207         if (current->journal_info == trans)
1208                 current->journal_info = NULL;
1209
1210         put_transaction(cur_trans);
1211         return 0;
1212 }
1213
1214
1215 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1216                                 struct btrfs_root *root)
1217 {
1218         struct btrfs_transaction *cur_trans = trans->transaction;
1219
1220         WARN_ON(trans->use_count > 1);
1221
1222         spin_lock(&root->fs_info->trans_lock);
1223         list_del_init(&cur_trans->list);
1224         spin_unlock(&root->fs_info->trans_lock);
1225
1226         btrfs_cleanup_one_transaction(trans->transaction, root);
1227
1228         put_transaction(cur_trans);
1229         put_transaction(cur_trans);
1230
1231         trace_btrfs_transaction_commit(root);
1232
1233         btrfs_scrub_continue(root);
1234
1235         if (current->journal_info == trans)
1236                 current->journal_info = NULL;
1237
1238         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1239 }
1240
1241 /*
1242  * btrfs_transaction state sequence:
1243  *    in_commit = 0, blocked = 0  (initial)
1244  *    in_commit = 1, blocked = 1
1245  *    blocked = 0
1246  *    commit_done = 1
1247  */
1248 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1249                              struct btrfs_root *root)
1250 {
1251         unsigned long joined = 0;
1252         struct btrfs_transaction *cur_trans = trans->transaction;
1253         struct btrfs_transaction *prev_trans = NULL;
1254         DEFINE_WAIT(wait);
1255         int ret = -EIO;
1256         int should_grow = 0;
1257         unsigned long now = get_seconds();
1258         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1259
1260         btrfs_run_ordered_operations(root, 0);
1261
1262         btrfs_trans_release_metadata(trans, root);
1263         trans->block_rsv = NULL;
1264
1265         if (cur_trans->aborted)
1266                 goto cleanup_transaction;
1267
1268         /* make a pass through all the delayed refs we have so far
1269          * any runnings procs may add more while we are here
1270          */
1271         ret = btrfs_run_delayed_refs(trans, root, 0);
1272         if (ret)
1273                 goto cleanup_transaction;
1274
1275         cur_trans = trans->transaction;
1276
1277         /*
1278          * set the flushing flag so procs in this transaction have to
1279          * start sending their work down.
1280          */
1281         cur_trans->delayed_refs.flushing = 1;
1282
1283         ret = btrfs_run_delayed_refs(trans, root, 0);
1284         if (ret)
1285                 goto cleanup_transaction;
1286
1287         spin_lock(&cur_trans->commit_lock);
1288         if (cur_trans->in_commit) {
1289                 spin_unlock(&cur_trans->commit_lock);
1290                 atomic_inc(&cur_trans->use_count);
1291                 ret = btrfs_end_transaction(trans, root);
1292
1293                 wait_for_commit(root, cur_trans);
1294
1295                 put_transaction(cur_trans);
1296
1297                 return ret;
1298         }
1299
1300         trans->transaction->in_commit = 1;
1301         trans->transaction->blocked = 1;
1302         spin_unlock(&cur_trans->commit_lock);
1303         wake_up(&root->fs_info->transaction_blocked_wait);
1304
1305         spin_lock(&root->fs_info->trans_lock);
1306         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1307                 prev_trans = list_entry(cur_trans->list.prev,
1308                                         struct btrfs_transaction, list);
1309                 if (!prev_trans->commit_done) {
1310                         atomic_inc(&prev_trans->use_count);
1311                         spin_unlock(&root->fs_info->trans_lock);
1312
1313                         wait_for_commit(root, prev_trans);
1314
1315                         put_transaction(prev_trans);
1316                 } else {
1317                         spin_unlock(&root->fs_info->trans_lock);
1318                 }
1319         } else {
1320                 spin_unlock(&root->fs_info->trans_lock);
1321         }
1322
1323         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1324                 should_grow = 1;
1325
1326         do {
1327                 int snap_pending = 0;
1328
1329                 joined = cur_trans->num_joined;
1330                 if (!list_empty(&trans->transaction->pending_snapshots))
1331                         snap_pending = 1;
1332
1333                 WARN_ON(cur_trans != trans->transaction);
1334
1335                 if (flush_on_commit || snap_pending) {
1336                         btrfs_start_delalloc_inodes(root, 1);
1337                         btrfs_wait_ordered_extents(root, 0, 1);
1338                 }
1339
1340                 ret = btrfs_run_delayed_items(trans, root);
1341                 if (ret)
1342                         goto cleanup_transaction;
1343
1344                 /*
1345                  * rename don't use btrfs_join_transaction, so, once we
1346                  * set the transaction to blocked above, we aren't going
1347                  * to get any new ordered operations.  We can safely run
1348                  * it here and no for sure that nothing new will be added
1349                  * to the list
1350                  */
1351                 btrfs_run_ordered_operations(root, 1);
1352
1353                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1354                                 TASK_UNINTERRUPTIBLE);
1355
1356                 if (atomic_read(&cur_trans->num_writers) > 1)
1357                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1358                 else if (should_grow)
1359                         schedule_timeout(1);
1360
1361                 finish_wait(&cur_trans->writer_wait, &wait);
1362         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1363                  (should_grow && cur_trans->num_joined != joined));
1364
1365         /*
1366          * Ok now we need to make sure to block out any other joins while we
1367          * commit the transaction.  We could have started a join before setting
1368          * no_join so make sure to wait for num_writers to == 1 again.
1369          */
1370         spin_lock(&root->fs_info->trans_lock);
1371         root->fs_info->trans_no_join = 1;
1372         spin_unlock(&root->fs_info->trans_lock);
1373         wait_event(cur_trans->writer_wait,
1374                    atomic_read(&cur_trans->num_writers) == 1);
1375
1376         /*
1377          * the reloc mutex makes sure that we stop
1378          * the balancing code from coming in and moving
1379          * extents around in the middle of the commit
1380          */
1381         mutex_lock(&root->fs_info->reloc_mutex);
1382
1383         ret = btrfs_run_delayed_items(trans, root);
1384         if (ret) {
1385                 mutex_unlock(&root->fs_info->reloc_mutex);
1386                 goto cleanup_transaction;
1387         }
1388
1389         ret = create_pending_snapshots(trans, root->fs_info);
1390         if (ret) {
1391                 mutex_unlock(&root->fs_info->reloc_mutex);
1392                 goto cleanup_transaction;
1393         }
1394
1395         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1396         if (ret) {
1397                 mutex_unlock(&root->fs_info->reloc_mutex);
1398                 goto cleanup_transaction;
1399         }
1400
1401         /*
1402          * make sure none of the code above managed to slip in a
1403          * delayed item
1404          */
1405         btrfs_assert_delayed_root_empty(root);
1406
1407         WARN_ON(cur_trans != trans->transaction);
1408
1409         btrfs_scrub_pause(root);
1410         /* btrfs_commit_tree_roots is responsible for getting the
1411          * various roots consistent with each other.  Every pointer
1412          * in the tree of tree roots has to point to the most up to date
1413          * root for every subvolume and other tree.  So, we have to keep
1414          * the tree logging code from jumping in and changing any
1415          * of the trees.
1416          *
1417          * At this point in the commit, there can't be any tree-log
1418          * writers, but a little lower down we drop the trans mutex
1419          * and let new people in.  By holding the tree_log_mutex
1420          * from now until after the super is written, we avoid races
1421          * with the tree-log code.
1422          */
1423         mutex_lock(&root->fs_info->tree_log_mutex);
1424
1425         ret = commit_fs_roots(trans, root);
1426         if (ret) {
1427                 mutex_unlock(&root->fs_info->tree_log_mutex);
1428                 mutex_unlock(&root->fs_info->reloc_mutex);
1429                 goto cleanup_transaction;
1430         }
1431
1432         /* commit_fs_roots gets rid of all the tree log roots, it is now
1433          * safe to free the root of tree log roots
1434          */
1435         btrfs_free_log_root_tree(trans, root->fs_info);
1436
1437         ret = commit_cowonly_roots(trans, root);
1438         if (ret) {
1439                 mutex_unlock(&root->fs_info->tree_log_mutex);
1440                 mutex_unlock(&root->fs_info->reloc_mutex);
1441                 goto cleanup_transaction;
1442         }
1443
1444         btrfs_prepare_extent_commit(trans, root);
1445
1446         cur_trans = root->fs_info->running_transaction;
1447
1448         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1449                             root->fs_info->tree_root->node);
1450         switch_commit_root(root->fs_info->tree_root);
1451
1452         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1453                             root->fs_info->chunk_root->node);
1454         switch_commit_root(root->fs_info->chunk_root);
1455
1456         update_super_roots(root);
1457
1458         if (!root->fs_info->log_root_recovering) {
1459                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1460                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1461         }
1462
1463         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1464                sizeof(*root->fs_info->super_copy));
1465
1466         trans->transaction->blocked = 0;
1467         spin_lock(&root->fs_info->trans_lock);
1468         root->fs_info->running_transaction = NULL;
1469         root->fs_info->trans_no_join = 0;
1470         spin_unlock(&root->fs_info->trans_lock);
1471         mutex_unlock(&root->fs_info->reloc_mutex);
1472
1473         wake_up(&root->fs_info->transaction_wait);
1474
1475         ret = btrfs_write_and_wait_transaction(trans, root);
1476         if (ret) {
1477                 btrfs_error(root->fs_info, ret,
1478                             "Error while writing out transaction.");
1479                 mutex_unlock(&root->fs_info->tree_log_mutex);
1480                 goto cleanup_transaction;
1481         }
1482
1483         ret = write_ctree_super(trans, root, 0);
1484         if (ret) {
1485                 mutex_unlock(&root->fs_info->tree_log_mutex);
1486                 goto cleanup_transaction;
1487         }
1488
1489         /*
1490          * the super is written, we can safely allow the tree-loggers
1491          * to go about their business
1492          */
1493         mutex_unlock(&root->fs_info->tree_log_mutex);
1494
1495         btrfs_finish_extent_commit(trans, root);
1496
1497         cur_trans->commit_done = 1;
1498
1499         root->fs_info->last_trans_committed = cur_trans->transid;
1500
1501         wake_up(&cur_trans->commit_wait);
1502
1503         spin_lock(&root->fs_info->trans_lock);
1504         list_del_init(&cur_trans->list);
1505         spin_unlock(&root->fs_info->trans_lock);
1506
1507         put_transaction(cur_trans);
1508         put_transaction(cur_trans);
1509
1510         trace_btrfs_transaction_commit(root);
1511
1512         btrfs_scrub_continue(root);
1513
1514         if (current->journal_info == trans)
1515                 current->journal_info = NULL;
1516
1517         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1518
1519         if (current != root->fs_info->transaction_kthread)
1520                 btrfs_run_delayed_iputs(root);
1521
1522         return ret;
1523
1524 cleanup_transaction:
1525         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1526 //      WARN_ON(1);
1527         if (current->journal_info == trans)
1528                 current->journal_info = NULL;
1529         cleanup_transaction(trans, root);
1530
1531         return ret;
1532 }
1533
1534 /*
1535  * interface function to delete all the snapshots we have scheduled for deletion
1536  */
1537 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1538 {
1539         LIST_HEAD(list);
1540         struct btrfs_fs_info *fs_info = root->fs_info;
1541
1542         spin_lock(&fs_info->trans_lock);
1543         list_splice_init(&fs_info->dead_roots, &list);
1544         spin_unlock(&fs_info->trans_lock);
1545
1546         while (!list_empty(&list)) {
1547                 int ret;
1548
1549                 root = list_entry(list.next, struct btrfs_root, root_list);
1550                 list_del(&root->root_list);
1551
1552                 btrfs_kill_all_delayed_nodes(root);
1553
1554                 if (btrfs_header_backref_rev(root->node) <
1555                     BTRFS_MIXED_BACKREF_REV)
1556                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1557                 else
1558                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1559                 BUG_ON(ret < 0);
1560         }
1561         return 0;
1562 }