Merge branch 'for-3.3-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
31
32 #define BTRFS_ROOT_TRANS_TAG 0
33
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
35 {
36         WARN_ON(atomic_read(&transaction->use_count) == 0);
37         if (atomic_dec_and_test(&transaction->use_count)) {
38                 BUG_ON(!list_empty(&transaction->list));
39                 WARN_ON(transaction->delayed_refs.root.rb_node);
40                 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
41                 memset(transaction, 0, sizeof(*transaction));
42                 kmem_cache_free(btrfs_transaction_cachep, transaction);
43         }
44 }
45
46 static noinline void switch_commit_root(struct btrfs_root *root)
47 {
48         free_extent_buffer(root->commit_root);
49         root->commit_root = btrfs_root_node(root);
50 }
51
52 /*
53  * either allocate a new transaction or hop into the existing one
54  */
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
56 {
57         struct btrfs_transaction *cur_trans;
58
59         spin_lock(&root->fs_info->trans_lock);
60 loop:
61         if (root->fs_info->trans_no_join) {
62                 if (!nofail) {
63                         spin_unlock(&root->fs_info->trans_lock);
64                         return -EBUSY;
65                 }
66         }
67
68         cur_trans = root->fs_info->running_transaction;
69         if (cur_trans) {
70                 atomic_inc(&cur_trans->use_count);
71                 atomic_inc(&cur_trans->num_writers);
72                 cur_trans->num_joined++;
73                 spin_unlock(&root->fs_info->trans_lock);
74                 return 0;
75         }
76         spin_unlock(&root->fs_info->trans_lock);
77
78         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
79         if (!cur_trans)
80                 return -ENOMEM;
81
82         spin_lock(&root->fs_info->trans_lock);
83         if (root->fs_info->running_transaction) {
84                 /*
85                  * someone started a transaction after we unlocked.  Make sure
86                  * to redo the trans_no_join checks above
87                  */
88                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
89                 cur_trans = root->fs_info->running_transaction;
90                 goto loop;
91         }
92
93         atomic_set(&cur_trans->num_writers, 1);
94         cur_trans->num_joined = 0;
95         init_waitqueue_head(&cur_trans->writer_wait);
96         init_waitqueue_head(&cur_trans->commit_wait);
97         cur_trans->in_commit = 0;
98         cur_trans->blocked = 0;
99         /*
100          * One for this trans handle, one so it will live on until we
101          * commit the transaction.
102          */
103         atomic_set(&cur_trans->use_count, 2);
104         cur_trans->commit_done = 0;
105         cur_trans->start_time = get_seconds();
106
107         cur_trans->delayed_refs.root = RB_ROOT;
108         cur_trans->delayed_refs.num_entries = 0;
109         cur_trans->delayed_refs.num_heads_ready = 0;
110         cur_trans->delayed_refs.num_heads = 0;
111         cur_trans->delayed_refs.flushing = 0;
112         cur_trans->delayed_refs.run_delayed_start = 0;
113         cur_trans->delayed_refs.seq = 1;
114         init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
115         spin_lock_init(&cur_trans->commit_lock);
116         spin_lock_init(&cur_trans->delayed_refs.lock);
117         INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
118
119         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
120         list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
121         extent_io_tree_init(&cur_trans->dirty_pages,
122                              root->fs_info->btree_inode->i_mapping);
123         root->fs_info->generation++;
124         cur_trans->transid = root->fs_info->generation;
125         root->fs_info->running_transaction = cur_trans;
126         spin_unlock(&root->fs_info->trans_lock);
127
128         return 0;
129 }
130
131 /*
132  * this does all the record keeping required to make sure that a reference
133  * counted root is properly recorded in a given transaction.  This is required
134  * to make sure the old root from before we joined the transaction is deleted
135  * when the transaction commits
136  */
137 static int record_root_in_trans(struct btrfs_trans_handle *trans,
138                                struct btrfs_root *root)
139 {
140         if (root->ref_cows && root->last_trans < trans->transid) {
141                 WARN_ON(root == root->fs_info->extent_root);
142                 WARN_ON(root->commit_root != root->node);
143
144                 /*
145                  * see below for in_trans_setup usage rules
146                  * we have the reloc mutex held now, so there
147                  * is only one writer in this function
148                  */
149                 root->in_trans_setup = 1;
150
151                 /* make sure readers find in_trans_setup before
152                  * they find our root->last_trans update
153                  */
154                 smp_wmb();
155
156                 spin_lock(&root->fs_info->fs_roots_radix_lock);
157                 if (root->last_trans == trans->transid) {
158                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
159                         return 0;
160                 }
161                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
162                            (unsigned long)root->root_key.objectid,
163                            BTRFS_ROOT_TRANS_TAG);
164                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
165                 root->last_trans = trans->transid;
166
167                 /* this is pretty tricky.  We don't want to
168                  * take the relocation lock in btrfs_record_root_in_trans
169                  * unless we're really doing the first setup for this root in
170                  * this transaction.
171                  *
172                  * Normally we'd use root->last_trans as a flag to decide
173                  * if we want to take the expensive mutex.
174                  *
175                  * But, we have to set root->last_trans before we
176                  * init the relocation root, otherwise, we trip over warnings
177                  * in ctree.c.  The solution used here is to flag ourselves
178                  * with root->in_trans_setup.  When this is 1, we're still
179                  * fixing up the reloc trees and everyone must wait.
180                  *
181                  * When this is zero, they can trust root->last_trans and fly
182                  * through btrfs_record_root_in_trans without having to take the
183                  * lock.  smp_wmb() makes sure that all the writes above are
184                  * done before we pop in the zero below
185                  */
186                 btrfs_init_reloc_root(trans, root);
187                 smp_wmb();
188                 root->in_trans_setup = 0;
189         }
190         return 0;
191 }
192
193
194 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
195                                struct btrfs_root *root)
196 {
197         if (!root->ref_cows)
198                 return 0;
199
200         /*
201          * see record_root_in_trans for comments about in_trans_setup usage
202          * and barriers
203          */
204         smp_rmb();
205         if (root->last_trans == trans->transid &&
206             !root->in_trans_setup)
207                 return 0;
208
209         mutex_lock(&root->fs_info->reloc_mutex);
210         record_root_in_trans(trans, root);
211         mutex_unlock(&root->fs_info->reloc_mutex);
212
213         return 0;
214 }
215
216 /* wait for commit against the current transaction to become unblocked
217  * when this is done, it is safe to start a new transaction, but the current
218  * transaction might not be fully on disk.
219  */
220 static void wait_current_trans(struct btrfs_root *root)
221 {
222         struct btrfs_transaction *cur_trans;
223
224         spin_lock(&root->fs_info->trans_lock);
225         cur_trans = root->fs_info->running_transaction;
226         if (cur_trans && cur_trans->blocked) {
227                 atomic_inc(&cur_trans->use_count);
228                 spin_unlock(&root->fs_info->trans_lock);
229
230                 wait_event(root->fs_info->transaction_wait,
231                            !cur_trans->blocked);
232                 put_transaction(cur_trans);
233         } else {
234                 spin_unlock(&root->fs_info->trans_lock);
235         }
236 }
237
238 enum btrfs_trans_type {
239         TRANS_START,
240         TRANS_JOIN,
241         TRANS_USERSPACE,
242         TRANS_JOIN_NOLOCK,
243 };
244
245 static int may_wait_transaction(struct btrfs_root *root, int type)
246 {
247         if (root->fs_info->log_root_recovering)
248                 return 0;
249
250         if (type == TRANS_USERSPACE)
251                 return 1;
252
253         if (type == TRANS_START &&
254             !atomic_read(&root->fs_info->open_ioctl_trans))
255                 return 1;
256
257         return 0;
258 }
259
260 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
261                                                     u64 num_items, int type)
262 {
263         struct btrfs_trans_handle *h;
264         struct btrfs_transaction *cur_trans;
265         u64 num_bytes = 0;
266         int ret;
267
268         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
269                 return ERR_PTR(-EROFS);
270
271         if (current->journal_info) {
272                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
273                 h = current->journal_info;
274                 h->use_count++;
275                 h->orig_rsv = h->block_rsv;
276                 h->block_rsv = NULL;
277                 goto got_it;
278         }
279
280         /*
281          * Do the reservation before we join the transaction so we can do all
282          * the appropriate flushing if need be.
283          */
284         if (num_items > 0 && root != root->fs_info->chunk_root) {
285                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
286                 ret = btrfs_block_rsv_add(root,
287                                           &root->fs_info->trans_block_rsv,
288                                           num_bytes);
289                 if (ret)
290                         return ERR_PTR(ret);
291         }
292 again:
293         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
294         if (!h)
295                 return ERR_PTR(-ENOMEM);
296
297         if (may_wait_transaction(root, type))
298                 wait_current_trans(root);
299
300         do {
301                 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
302                 if (ret == -EBUSY)
303                         wait_current_trans(root);
304         } while (ret == -EBUSY);
305
306         if (ret < 0) {
307                 kmem_cache_free(btrfs_trans_handle_cachep, h);
308                 return ERR_PTR(ret);
309         }
310
311         cur_trans = root->fs_info->running_transaction;
312
313         h->transid = cur_trans->transid;
314         h->transaction = cur_trans;
315         h->blocks_used = 0;
316         h->bytes_reserved = 0;
317         h->delayed_ref_updates = 0;
318         h->use_count = 1;
319         h->block_rsv = NULL;
320         h->orig_rsv = NULL;
321
322         smp_mb();
323         if (cur_trans->blocked && may_wait_transaction(root, type)) {
324                 btrfs_commit_transaction(h, root);
325                 goto again;
326         }
327
328         if (num_bytes) {
329                 trace_btrfs_space_reservation(root->fs_info, "transaction",
330                                               (u64)(unsigned long)h,
331                                               num_bytes, 1);
332                 h->block_rsv = &root->fs_info->trans_block_rsv;
333                 h->bytes_reserved = num_bytes;
334         }
335
336 got_it:
337         btrfs_record_root_in_trans(h, root);
338
339         if (!current->journal_info && type != TRANS_USERSPACE)
340                 current->journal_info = h;
341         return h;
342 }
343
344 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
345                                                    int num_items)
346 {
347         return start_transaction(root, num_items, TRANS_START);
348 }
349 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
350 {
351         return start_transaction(root, 0, TRANS_JOIN);
352 }
353
354 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
355 {
356         return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
357 }
358
359 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
360 {
361         return start_transaction(root, 0, TRANS_USERSPACE);
362 }
363
364 /* wait for a transaction commit to be fully complete */
365 static noinline void wait_for_commit(struct btrfs_root *root,
366                                     struct btrfs_transaction *commit)
367 {
368         wait_event(commit->commit_wait, commit->commit_done);
369 }
370
371 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
372 {
373         struct btrfs_transaction *cur_trans = NULL, *t;
374         int ret;
375
376         ret = 0;
377         if (transid) {
378                 if (transid <= root->fs_info->last_trans_committed)
379                         goto out;
380
381                 /* find specified transaction */
382                 spin_lock(&root->fs_info->trans_lock);
383                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
384                         if (t->transid == transid) {
385                                 cur_trans = t;
386                                 atomic_inc(&cur_trans->use_count);
387                                 break;
388                         }
389                         if (t->transid > transid)
390                                 break;
391                 }
392                 spin_unlock(&root->fs_info->trans_lock);
393                 ret = -EINVAL;
394                 if (!cur_trans)
395                         goto out;  /* bad transid */
396         } else {
397                 /* find newest transaction that is committing | committed */
398                 spin_lock(&root->fs_info->trans_lock);
399                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
400                                             list) {
401                         if (t->in_commit) {
402                                 if (t->commit_done)
403                                         break;
404                                 cur_trans = t;
405                                 atomic_inc(&cur_trans->use_count);
406                                 break;
407                         }
408                 }
409                 spin_unlock(&root->fs_info->trans_lock);
410                 if (!cur_trans)
411                         goto out;  /* nothing committing|committed */
412         }
413
414         wait_for_commit(root, cur_trans);
415
416         put_transaction(cur_trans);
417         ret = 0;
418 out:
419         return ret;
420 }
421
422 void btrfs_throttle(struct btrfs_root *root)
423 {
424         if (!atomic_read(&root->fs_info->open_ioctl_trans))
425                 wait_current_trans(root);
426 }
427
428 static int should_end_transaction(struct btrfs_trans_handle *trans,
429                                   struct btrfs_root *root)
430 {
431         int ret;
432
433         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
434         return ret ? 1 : 0;
435 }
436
437 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
438                                  struct btrfs_root *root)
439 {
440         struct btrfs_transaction *cur_trans = trans->transaction;
441         struct btrfs_block_rsv *rsv = trans->block_rsv;
442         int updates;
443
444         smp_mb();
445         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
446                 return 1;
447
448         /*
449          * We need to do this in case we're deleting csums so the global block
450          * rsv get's used instead of the csum block rsv.
451          */
452         trans->block_rsv = NULL;
453
454         updates = trans->delayed_ref_updates;
455         trans->delayed_ref_updates = 0;
456         if (updates)
457                 btrfs_run_delayed_refs(trans, root, updates);
458
459         trans->block_rsv = rsv;
460
461         return should_end_transaction(trans, root);
462 }
463
464 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
465                           struct btrfs_root *root, int throttle, int lock)
466 {
467         struct btrfs_transaction *cur_trans = trans->transaction;
468         struct btrfs_fs_info *info = root->fs_info;
469         int count = 0;
470
471         if (--trans->use_count) {
472                 trans->block_rsv = trans->orig_rsv;
473                 return 0;
474         }
475
476         btrfs_trans_release_metadata(trans, root);
477         trans->block_rsv = NULL;
478         while (count < 2) {
479                 unsigned long cur = trans->delayed_ref_updates;
480                 trans->delayed_ref_updates = 0;
481                 if (cur &&
482                     trans->transaction->delayed_refs.num_heads_ready > 64) {
483                         trans->delayed_ref_updates = 0;
484                         btrfs_run_delayed_refs(trans, root, cur);
485                 } else {
486                         break;
487                 }
488                 count++;
489         }
490
491         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
492             should_end_transaction(trans, root)) {
493                 trans->transaction->blocked = 1;
494                 smp_wmb();
495         }
496
497         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
498                 if (throttle) {
499                         /*
500                          * We may race with somebody else here so end up having
501                          * to call end_transaction on ourselves again, so inc
502                          * our use_count.
503                          */
504                         trans->use_count++;
505                         return btrfs_commit_transaction(trans, root);
506                 } else {
507                         wake_up_process(info->transaction_kthread);
508                 }
509         }
510
511         WARN_ON(cur_trans != info->running_transaction);
512         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
513         atomic_dec(&cur_trans->num_writers);
514
515         smp_mb();
516         if (waitqueue_active(&cur_trans->writer_wait))
517                 wake_up(&cur_trans->writer_wait);
518         put_transaction(cur_trans);
519
520         if (current->journal_info == trans)
521                 current->journal_info = NULL;
522         memset(trans, 0, sizeof(*trans));
523         kmem_cache_free(btrfs_trans_handle_cachep, trans);
524
525         if (throttle)
526                 btrfs_run_delayed_iputs(root);
527
528         return 0;
529 }
530
531 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
532                           struct btrfs_root *root)
533 {
534         int ret;
535
536         ret = __btrfs_end_transaction(trans, root, 0, 1);
537         if (ret)
538                 return ret;
539         return 0;
540 }
541
542 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
543                                    struct btrfs_root *root)
544 {
545         int ret;
546
547         ret = __btrfs_end_transaction(trans, root, 1, 1);
548         if (ret)
549                 return ret;
550         return 0;
551 }
552
553 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
554                                  struct btrfs_root *root)
555 {
556         int ret;
557
558         ret = __btrfs_end_transaction(trans, root, 0, 0);
559         if (ret)
560                 return ret;
561         return 0;
562 }
563
564 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
565                                 struct btrfs_root *root)
566 {
567         return __btrfs_end_transaction(trans, root, 1, 1);
568 }
569
570 /*
571  * when btree blocks are allocated, they have some corresponding bits set for
572  * them in one of two extent_io trees.  This is used to make sure all of
573  * those extents are sent to disk but does not wait on them
574  */
575 int btrfs_write_marked_extents(struct btrfs_root *root,
576                                struct extent_io_tree *dirty_pages, int mark)
577 {
578         int err = 0;
579         int werr = 0;
580         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
581         u64 start = 0;
582         u64 end;
583
584         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
585                                       mark)) {
586                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
587                                    GFP_NOFS);
588                 err = filemap_fdatawrite_range(mapping, start, end);
589                 if (err)
590                         werr = err;
591                 cond_resched();
592                 start = end + 1;
593         }
594         if (err)
595                 werr = err;
596         return werr;
597 }
598
599 /*
600  * when btree blocks are allocated, they have some corresponding bits set for
601  * them in one of two extent_io trees.  This is used to make sure all of
602  * those extents are on disk for transaction or log commit.  We wait
603  * on all the pages and clear them from the dirty pages state tree
604  */
605 int btrfs_wait_marked_extents(struct btrfs_root *root,
606                               struct extent_io_tree *dirty_pages, int mark)
607 {
608         int err = 0;
609         int werr = 0;
610         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
611         u64 start = 0;
612         u64 end;
613
614         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
615                                       EXTENT_NEED_WAIT)) {
616                 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
617                 err = filemap_fdatawait_range(mapping, start, end);
618                 if (err)
619                         werr = err;
620                 cond_resched();
621                 start = end + 1;
622         }
623         if (err)
624                 werr = err;
625         return werr;
626 }
627
628 /*
629  * when btree blocks are allocated, they have some corresponding bits set for
630  * them in one of two extent_io trees.  This is used to make sure all of
631  * those extents are on disk for transaction or log commit
632  */
633 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
634                                 struct extent_io_tree *dirty_pages, int mark)
635 {
636         int ret;
637         int ret2;
638
639         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
640         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
641
642         if (ret)
643                 return ret;
644         if (ret2)
645                 return ret2;
646         return 0;
647 }
648
649 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
650                                      struct btrfs_root *root)
651 {
652         if (!trans || !trans->transaction) {
653                 struct inode *btree_inode;
654                 btree_inode = root->fs_info->btree_inode;
655                 return filemap_write_and_wait(btree_inode->i_mapping);
656         }
657         return btrfs_write_and_wait_marked_extents(root,
658                                            &trans->transaction->dirty_pages,
659                                            EXTENT_DIRTY);
660 }
661
662 /*
663  * this is used to update the root pointer in the tree of tree roots.
664  *
665  * But, in the case of the extent allocation tree, updating the root
666  * pointer may allocate blocks which may change the root of the extent
667  * allocation tree.
668  *
669  * So, this loops and repeats and makes sure the cowonly root didn't
670  * change while the root pointer was being updated in the metadata.
671  */
672 static int update_cowonly_root(struct btrfs_trans_handle *trans,
673                                struct btrfs_root *root)
674 {
675         int ret;
676         u64 old_root_bytenr;
677         u64 old_root_used;
678         struct btrfs_root *tree_root = root->fs_info->tree_root;
679
680         old_root_used = btrfs_root_used(&root->root_item);
681         btrfs_write_dirty_block_groups(trans, root);
682
683         while (1) {
684                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
685                 if (old_root_bytenr == root->node->start &&
686                     old_root_used == btrfs_root_used(&root->root_item))
687                         break;
688
689                 btrfs_set_root_node(&root->root_item, root->node);
690                 ret = btrfs_update_root(trans, tree_root,
691                                         &root->root_key,
692                                         &root->root_item);
693                 BUG_ON(ret);
694
695                 old_root_used = btrfs_root_used(&root->root_item);
696                 ret = btrfs_write_dirty_block_groups(trans, root);
697                 BUG_ON(ret);
698         }
699
700         if (root != root->fs_info->extent_root)
701                 switch_commit_root(root);
702
703         return 0;
704 }
705
706 /*
707  * update all the cowonly tree roots on disk
708  */
709 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
710                                          struct btrfs_root *root)
711 {
712         struct btrfs_fs_info *fs_info = root->fs_info;
713         struct list_head *next;
714         struct extent_buffer *eb;
715         int ret;
716
717         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
718         BUG_ON(ret);
719
720         eb = btrfs_lock_root_node(fs_info->tree_root);
721         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
722         btrfs_tree_unlock(eb);
723         free_extent_buffer(eb);
724
725         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
726         BUG_ON(ret);
727
728         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
729                 next = fs_info->dirty_cowonly_roots.next;
730                 list_del_init(next);
731                 root = list_entry(next, struct btrfs_root, dirty_list);
732
733                 update_cowonly_root(trans, root);
734         }
735
736         down_write(&fs_info->extent_commit_sem);
737         switch_commit_root(fs_info->extent_root);
738         up_write(&fs_info->extent_commit_sem);
739
740         return 0;
741 }
742
743 /*
744  * dead roots are old snapshots that need to be deleted.  This allocates
745  * a dirty root struct and adds it into the list of dead roots that need to
746  * be deleted
747  */
748 int btrfs_add_dead_root(struct btrfs_root *root)
749 {
750         spin_lock(&root->fs_info->trans_lock);
751         list_add(&root->root_list, &root->fs_info->dead_roots);
752         spin_unlock(&root->fs_info->trans_lock);
753         return 0;
754 }
755
756 /*
757  * update all the cowonly tree roots on disk
758  */
759 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
760                                     struct btrfs_root *root)
761 {
762         struct btrfs_root *gang[8];
763         struct btrfs_fs_info *fs_info = root->fs_info;
764         int i;
765         int ret;
766         int err = 0;
767
768         spin_lock(&fs_info->fs_roots_radix_lock);
769         while (1) {
770                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
771                                                  (void **)gang, 0,
772                                                  ARRAY_SIZE(gang),
773                                                  BTRFS_ROOT_TRANS_TAG);
774                 if (ret == 0)
775                         break;
776                 for (i = 0; i < ret; i++) {
777                         root = gang[i];
778                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
779                                         (unsigned long)root->root_key.objectid,
780                                         BTRFS_ROOT_TRANS_TAG);
781                         spin_unlock(&fs_info->fs_roots_radix_lock);
782
783                         btrfs_free_log(trans, root);
784                         btrfs_update_reloc_root(trans, root);
785                         btrfs_orphan_commit_root(trans, root);
786
787                         btrfs_save_ino_cache(root, trans);
788
789                         /* see comments in should_cow_block() */
790                         root->force_cow = 0;
791                         smp_wmb();
792
793                         if (root->commit_root != root->node) {
794                                 mutex_lock(&root->fs_commit_mutex);
795                                 switch_commit_root(root);
796                                 btrfs_unpin_free_ino(root);
797                                 mutex_unlock(&root->fs_commit_mutex);
798
799                                 btrfs_set_root_node(&root->root_item,
800                                                     root->node);
801                         }
802
803                         err = btrfs_update_root(trans, fs_info->tree_root,
804                                                 &root->root_key,
805                                                 &root->root_item);
806                         spin_lock(&fs_info->fs_roots_radix_lock);
807                         if (err)
808                                 break;
809                 }
810         }
811         spin_unlock(&fs_info->fs_roots_radix_lock);
812         return err;
813 }
814
815 /*
816  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
817  * otherwise every leaf in the btree is read and defragged.
818  */
819 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
820 {
821         struct btrfs_fs_info *info = root->fs_info;
822         struct btrfs_trans_handle *trans;
823         int ret;
824         unsigned long nr;
825
826         if (xchg(&root->defrag_running, 1))
827                 return 0;
828
829         while (1) {
830                 trans = btrfs_start_transaction(root, 0);
831                 if (IS_ERR(trans))
832                         return PTR_ERR(trans);
833
834                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
835
836                 nr = trans->blocks_used;
837                 btrfs_end_transaction(trans, root);
838                 btrfs_btree_balance_dirty(info->tree_root, nr);
839                 cond_resched();
840
841                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
842                         break;
843         }
844         root->defrag_running = 0;
845         return ret;
846 }
847
848 /*
849  * new snapshots need to be created at a very specific time in the
850  * transaction commit.  This does the actual creation
851  */
852 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
853                                    struct btrfs_fs_info *fs_info,
854                                    struct btrfs_pending_snapshot *pending)
855 {
856         struct btrfs_key key;
857         struct btrfs_root_item *new_root_item;
858         struct btrfs_root *tree_root = fs_info->tree_root;
859         struct btrfs_root *root = pending->root;
860         struct btrfs_root *parent_root;
861         struct btrfs_block_rsv *rsv;
862         struct inode *parent_inode;
863         struct dentry *parent;
864         struct dentry *dentry;
865         struct extent_buffer *tmp;
866         struct extent_buffer *old;
867         int ret;
868         u64 to_reserve = 0;
869         u64 index = 0;
870         u64 objectid;
871         u64 root_flags;
872
873         rsv = trans->block_rsv;
874
875         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
876         if (!new_root_item) {
877                 pending->error = -ENOMEM;
878                 goto fail;
879         }
880
881         ret = btrfs_find_free_objectid(tree_root, &objectid);
882         if (ret) {
883                 pending->error = ret;
884                 goto fail;
885         }
886
887         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
888
889         if (to_reserve > 0) {
890                 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
891                                                   to_reserve);
892                 if (ret) {
893                         pending->error = ret;
894                         goto fail;
895                 }
896         }
897
898         key.objectid = objectid;
899         key.offset = (u64)-1;
900         key.type = BTRFS_ROOT_ITEM_KEY;
901
902         trans->block_rsv = &pending->block_rsv;
903
904         dentry = pending->dentry;
905         parent = dget_parent(dentry);
906         parent_inode = parent->d_inode;
907         parent_root = BTRFS_I(parent_inode)->root;
908         record_root_in_trans(trans, parent_root);
909
910         /*
911          * insert the directory item
912          */
913         ret = btrfs_set_inode_index(parent_inode, &index);
914         BUG_ON(ret);
915         ret = btrfs_insert_dir_item(trans, parent_root,
916                                 dentry->d_name.name, dentry->d_name.len,
917                                 parent_inode, &key,
918                                 BTRFS_FT_DIR, index);
919         if (ret) {
920                 pending->error = -EEXIST;
921                 dput(parent);
922                 goto fail;
923         }
924
925         btrfs_i_size_write(parent_inode, parent_inode->i_size +
926                                          dentry->d_name.len * 2);
927         ret = btrfs_update_inode(trans, parent_root, parent_inode);
928         BUG_ON(ret);
929
930         /*
931          * pull in the delayed directory update
932          * and the delayed inode item
933          * otherwise we corrupt the FS during
934          * snapshot
935          */
936         ret = btrfs_run_delayed_items(trans, root);
937         BUG_ON(ret);
938
939         record_root_in_trans(trans, root);
940         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
941         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
942         btrfs_check_and_init_root_item(new_root_item);
943
944         root_flags = btrfs_root_flags(new_root_item);
945         if (pending->readonly)
946                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
947         else
948                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
949         btrfs_set_root_flags(new_root_item, root_flags);
950
951         old = btrfs_lock_root_node(root);
952         btrfs_cow_block(trans, root, old, NULL, 0, &old);
953         btrfs_set_lock_blocking(old);
954
955         btrfs_copy_root(trans, root, old, &tmp, objectid);
956         btrfs_tree_unlock(old);
957         free_extent_buffer(old);
958
959         /* see comments in should_cow_block() */
960         root->force_cow = 1;
961         smp_wmb();
962
963         btrfs_set_root_node(new_root_item, tmp);
964         /* record when the snapshot was created in key.offset */
965         key.offset = trans->transid;
966         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
967         btrfs_tree_unlock(tmp);
968         free_extent_buffer(tmp);
969         BUG_ON(ret);
970
971         /*
972          * insert root back/forward references
973          */
974         ret = btrfs_add_root_ref(trans, tree_root, objectid,
975                                  parent_root->root_key.objectid,
976                                  btrfs_ino(parent_inode), index,
977                                  dentry->d_name.name, dentry->d_name.len);
978         BUG_ON(ret);
979         dput(parent);
980
981         key.offset = (u64)-1;
982         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
983         BUG_ON(IS_ERR(pending->snap));
984
985         btrfs_reloc_post_snapshot(trans, pending);
986 fail:
987         kfree(new_root_item);
988         trans->block_rsv = rsv;
989         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
990         return 0;
991 }
992
993 /*
994  * create all the snapshots we've scheduled for creation
995  */
996 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
997                                              struct btrfs_fs_info *fs_info)
998 {
999         struct btrfs_pending_snapshot *pending;
1000         struct list_head *head = &trans->transaction->pending_snapshots;
1001
1002         list_for_each_entry(pending, head, list)
1003                 create_pending_snapshot(trans, fs_info, pending);
1004         return 0;
1005 }
1006
1007 static void update_super_roots(struct btrfs_root *root)
1008 {
1009         struct btrfs_root_item *root_item;
1010         struct btrfs_super_block *super;
1011
1012         super = root->fs_info->super_copy;
1013
1014         root_item = &root->fs_info->chunk_root->root_item;
1015         super->chunk_root = root_item->bytenr;
1016         super->chunk_root_generation = root_item->generation;
1017         super->chunk_root_level = root_item->level;
1018
1019         root_item = &root->fs_info->tree_root->root_item;
1020         super->root = root_item->bytenr;
1021         super->generation = root_item->generation;
1022         super->root_level = root_item->level;
1023         if (btrfs_test_opt(root, SPACE_CACHE))
1024                 super->cache_generation = root_item->generation;
1025 }
1026
1027 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1028 {
1029         int ret = 0;
1030         spin_lock(&info->trans_lock);
1031         if (info->running_transaction)
1032                 ret = info->running_transaction->in_commit;
1033         spin_unlock(&info->trans_lock);
1034         return ret;
1035 }
1036
1037 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1038 {
1039         int ret = 0;
1040         spin_lock(&info->trans_lock);
1041         if (info->running_transaction)
1042                 ret = info->running_transaction->blocked;
1043         spin_unlock(&info->trans_lock);
1044         return ret;
1045 }
1046
1047 /*
1048  * wait for the current transaction commit to start and block subsequent
1049  * transaction joins
1050  */
1051 static void wait_current_trans_commit_start(struct btrfs_root *root,
1052                                             struct btrfs_transaction *trans)
1053 {
1054         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1055 }
1056
1057 /*
1058  * wait for the current transaction to start and then become unblocked.
1059  * caller holds ref.
1060  */
1061 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1062                                          struct btrfs_transaction *trans)
1063 {
1064         wait_event(root->fs_info->transaction_wait,
1065                    trans->commit_done || (trans->in_commit && !trans->blocked));
1066 }
1067
1068 /*
1069  * commit transactions asynchronously. once btrfs_commit_transaction_async
1070  * returns, any subsequent transaction will not be allowed to join.
1071  */
1072 struct btrfs_async_commit {
1073         struct btrfs_trans_handle *newtrans;
1074         struct btrfs_root *root;
1075         struct delayed_work work;
1076 };
1077
1078 static void do_async_commit(struct work_struct *work)
1079 {
1080         struct btrfs_async_commit *ac =
1081                 container_of(work, struct btrfs_async_commit, work.work);
1082
1083         btrfs_commit_transaction(ac->newtrans, ac->root);
1084         kfree(ac);
1085 }
1086
1087 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1088                                    struct btrfs_root *root,
1089                                    int wait_for_unblock)
1090 {
1091         struct btrfs_async_commit *ac;
1092         struct btrfs_transaction *cur_trans;
1093
1094         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1095         if (!ac)
1096                 return -ENOMEM;
1097
1098         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1099         ac->root = root;
1100         ac->newtrans = btrfs_join_transaction(root);
1101         if (IS_ERR(ac->newtrans)) {
1102                 int err = PTR_ERR(ac->newtrans);
1103                 kfree(ac);
1104                 return err;
1105         }
1106
1107         /* take transaction reference */
1108         cur_trans = trans->transaction;
1109         atomic_inc(&cur_trans->use_count);
1110
1111         btrfs_end_transaction(trans, root);
1112         schedule_delayed_work(&ac->work, 0);
1113
1114         /* wait for transaction to start and unblock */
1115         if (wait_for_unblock)
1116                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1117         else
1118                 wait_current_trans_commit_start(root, cur_trans);
1119
1120         if (current->journal_info == trans)
1121                 current->journal_info = NULL;
1122
1123         put_transaction(cur_trans);
1124         return 0;
1125 }
1126
1127 /*
1128  * btrfs_transaction state sequence:
1129  *    in_commit = 0, blocked = 0  (initial)
1130  *    in_commit = 1, blocked = 1
1131  *    blocked = 0
1132  *    commit_done = 1
1133  */
1134 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1135                              struct btrfs_root *root)
1136 {
1137         unsigned long joined = 0;
1138         struct btrfs_transaction *cur_trans;
1139         struct btrfs_transaction *prev_trans = NULL;
1140         DEFINE_WAIT(wait);
1141         int ret;
1142         int should_grow = 0;
1143         unsigned long now = get_seconds();
1144         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1145
1146         btrfs_run_ordered_operations(root, 0);
1147
1148         btrfs_trans_release_metadata(trans, root);
1149         trans->block_rsv = NULL;
1150
1151         /* make a pass through all the delayed refs we have so far
1152          * any runnings procs may add more while we are here
1153          */
1154         ret = btrfs_run_delayed_refs(trans, root, 0);
1155         BUG_ON(ret);
1156
1157         cur_trans = trans->transaction;
1158         /*
1159          * set the flushing flag so procs in this transaction have to
1160          * start sending their work down.
1161          */
1162         cur_trans->delayed_refs.flushing = 1;
1163
1164         ret = btrfs_run_delayed_refs(trans, root, 0);
1165         BUG_ON(ret);
1166
1167         spin_lock(&cur_trans->commit_lock);
1168         if (cur_trans->in_commit) {
1169                 spin_unlock(&cur_trans->commit_lock);
1170                 atomic_inc(&cur_trans->use_count);
1171                 btrfs_end_transaction(trans, root);
1172
1173                 wait_for_commit(root, cur_trans);
1174
1175                 put_transaction(cur_trans);
1176
1177                 return 0;
1178         }
1179
1180         trans->transaction->in_commit = 1;
1181         trans->transaction->blocked = 1;
1182         spin_unlock(&cur_trans->commit_lock);
1183         wake_up(&root->fs_info->transaction_blocked_wait);
1184
1185         spin_lock(&root->fs_info->trans_lock);
1186         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1187                 prev_trans = list_entry(cur_trans->list.prev,
1188                                         struct btrfs_transaction, list);
1189                 if (!prev_trans->commit_done) {
1190                         atomic_inc(&prev_trans->use_count);
1191                         spin_unlock(&root->fs_info->trans_lock);
1192
1193                         wait_for_commit(root, prev_trans);
1194
1195                         put_transaction(prev_trans);
1196                 } else {
1197                         spin_unlock(&root->fs_info->trans_lock);
1198                 }
1199         } else {
1200                 spin_unlock(&root->fs_info->trans_lock);
1201         }
1202
1203         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1204                 should_grow = 1;
1205
1206         do {
1207                 int snap_pending = 0;
1208
1209                 joined = cur_trans->num_joined;
1210                 if (!list_empty(&trans->transaction->pending_snapshots))
1211                         snap_pending = 1;
1212
1213                 WARN_ON(cur_trans != trans->transaction);
1214
1215                 if (flush_on_commit || snap_pending) {
1216                         btrfs_start_delalloc_inodes(root, 1);
1217                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1218                         BUG_ON(ret);
1219                 }
1220
1221                 ret = btrfs_run_delayed_items(trans, root);
1222                 BUG_ON(ret);
1223
1224                 /*
1225                  * rename don't use btrfs_join_transaction, so, once we
1226                  * set the transaction to blocked above, we aren't going
1227                  * to get any new ordered operations.  We can safely run
1228                  * it here and no for sure that nothing new will be added
1229                  * to the list
1230                  */
1231                 btrfs_run_ordered_operations(root, 1);
1232
1233                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1234                                 TASK_UNINTERRUPTIBLE);
1235
1236                 if (atomic_read(&cur_trans->num_writers) > 1)
1237                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1238                 else if (should_grow)
1239                         schedule_timeout(1);
1240
1241                 finish_wait(&cur_trans->writer_wait, &wait);
1242         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1243                  (should_grow && cur_trans->num_joined != joined));
1244
1245         /*
1246          * Ok now we need to make sure to block out any other joins while we
1247          * commit the transaction.  We could have started a join before setting
1248          * no_join so make sure to wait for num_writers to == 1 again.
1249          */
1250         spin_lock(&root->fs_info->trans_lock);
1251         root->fs_info->trans_no_join = 1;
1252         spin_unlock(&root->fs_info->trans_lock);
1253         wait_event(cur_trans->writer_wait,
1254                    atomic_read(&cur_trans->num_writers) == 1);
1255
1256         /*
1257          * the reloc mutex makes sure that we stop
1258          * the balancing code from coming in and moving
1259          * extents around in the middle of the commit
1260          */
1261         mutex_lock(&root->fs_info->reloc_mutex);
1262
1263         ret = btrfs_run_delayed_items(trans, root);
1264         BUG_ON(ret);
1265
1266         ret = create_pending_snapshots(trans, root->fs_info);
1267         BUG_ON(ret);
1268
1269         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1270         BUG_ON(ret);
1271
1272         /*
1273          * make sure none of the code above managed to slip in a
1274          * delayed item
1275          */
1276         btrfs_assert_delayed_root_empty(root);
1277
1278         WARN_ON(cur_trans != trans->transaction);
1279
1280         btrfs_scrub_pause(root);
1281         /* btrfs_commit_tree_roots is responsible for getting the
1282          * various roots consistent with each other.  Every pointer
1283          * in the tree of tree roots has to point to the most up to date
1284          * root for every subvolume and other tree.  So, we have to keep
1285          * the tree logging code from jumping in and changing any
1286          * of the trees.
1287          *
1288          * At this point in the commit, there can't be any tree-log
1289          * writers, but a little lower down we drop the trans mutex
1290          * and let new people in.  By holding the tree_log_mutex
1291          * from now until after the super is written, we avoid races
1292          * with the tree-log code.
1293          */
1294         mutex_lock(&root->fs_info->tree_log_mutex);
1295
1296         ret = commit_fs_roots(trans, root);
1297         BUG_ON(ret);
1298
1299         /* commit_fs_roots gets rid of all the tree log roots, it is now
1300          * safe to free the root of tree log roots
1301          */
1302         btrfs_free_log_root_tree(trans, root->fs_info);
1303
1304         ret = commit_cowonly_roots(trans, root);
1305         BUG_ON(ret);
1306
1307         btrfs_prepare_extent_commit(trans, root);
1308
1309         cur_trans = root->fs_info->running_transaction;
1310
1311         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1312                             root->fs_info->tree_root->node);
1313         switch_commit_root(root->fs_info->tree_root);
1314
1315         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1316                             root->fs_info->chunk_root->node);
1317         switch_commit_root(root->fs_info->chunk_root);
1318
1319         update_super_roots(root);
1320
1321         if (!root->fs_info->log_root_recovering) {
1322                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1323                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1324         }
1325
1326         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1327                sizeof(*root->fs_info->super_copy));
1328
1329         trans->transaction->blocked = 0;
1330         spin_lock(&root->fs_info->trans_lock);
1331         root->fs_info->running_transaction = NULL;
1332         root->fs_info->trans_no_join = 0;
1333         spin_unlock(&root->fs_info->trans_lock);
1334         mutex_unlock(&root->fs_info->reloc_mutex);
1335
1336         wake_up(&root->fs_info->transaction_wait);
1337
1338         ret = btrfs_write_and_wait_transaction(trans, root);
1339         BUG_ON(ret);
1340         write_ctree_super(trans, root, 0);
1341
1342         /*
1343          * the super is written, we can safely allow the tree-loggers
1344          * to go about their business
1345          */
1346         mutex_unlock(&root->fs_info->tree_log_mutex);
1347
1348         btrfs_finish_extent_commit(trans, root);
1349
1350         cur_trans->commit_done = 1;
1351
1352         root->fs_info->last_trans_committed = cur_trans->transid;
1353
1354         wake_up(&cur_trans->commit_wait);
1355
1356         spin_lock(&root->fs_info->trans_lock);
1357         list_del_init(&cur_trans->list);
1358         spin_unlock(&root->fs_info->trans_lock);
1359
1360         put_transaction(cur_trans);
1361         put_transaction(cur_trans);
1362
1363         trace_btrfs_transaction_commit(root);
1364
1365         btrfs_scrub_continue(root);
1366
1367         if (current->journal_info == trans)
1368                 current->journal_info = NULL;
1369
1370         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1371
1372         if (current != root->fs_info->transaction_kthread)
1373                 btrfs_run_delayed_iputs(root);
1374
1375         return ret;
1376 }
1377
1378 /*
1379  * interface function to delete all the snapshots we have scheduled for deletion
1380  */
1381 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1382 {
1383         LIST_HEAD(list);
1384         struct btrfs_fs_info *fs_info = root->fs_info;
1385
1386         spin_lock(&fs_info->trans_lock);
1387         list_splice_init(&fs_info->dead_roots, &list);
1388         spin_unlock(&fs_info->trans_lock);
1389
1390         while (!list_empty(&list)) {
1391                 root = list_entry(list.next, struct btrfs_root, root_list);
1392                 list_del(&root->root_list);
1393
1394                 btrfs_kill_all_delayed_nodes(root);
1395
1396                 if (btrfs_header_backref_rev(root->node) <
1397                     BTRFS_MIXED_BACKREF_REV)
1398                         btrfs_drop_snapshot(root, NULL, 0, 0);
1399                 else
1400                         btrfs_drop_snapshot(root, NULL, 1, 0);
1401         }
1402         return 0;
1403 }