HID: picolcd: sanity check report size in raw_event() callback
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
69 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
70
71 static const char *btrfs_decode_error(int errno)
72 {
73         char *errstr = "unknown";
74
75         switch (errno) {
76         case -EIO:
77                 errstr = "IO failure";
78                 break;
79         case -ENOMEM:
80                 errstr = "Out of memory";
81                 break;
82         case -EROFS:
83                 errstr = "Readonly filesystem";
84                 break;
85         case -EEXIST:
86                 errstr = "Object already exists";
87                 break;
88         case -ENOSPC:
89                 errstr = "No space left";
90                 break;
91         case -ENOENT:
92                 errstr = "No such entry";
93                 break;
94         }
95
96         return errstr;
97 }
98
99 static void save_error_info(struct btrfs_fs_info *fs_info)
100 {
101         /*
102          * today we only save the error info into ram.  Long term we'll
103          * also send it down to the disk
104          */
105         set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
117                 sb->s_flags |= MS_RDONLY;
118                 btrfs_info(fs_info, "forced readonly");
119                 /*
120                  * Note that a running device replace operation is not
121                  * canceled here although there is no way to update
122                  * the progress. It would add the risk of a deadlock,
123                  * therefore the canceling is ommited. The only penalty
124                  * is that some I/O remains active until the procedure
125                  * completes. The next time when the filesystem is
126                  * mounted writeable again, the device replace
127                  * operation continues.
128                  */
129         }
130 }
131
132 #ifdef CONFIG_PRINTK
133 /*
134  * __btrfs_std_error decodes expected errors from the caller and
135  * invokes the approciate error response.
136  */
137 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
138                        unsigned int line, int errno, const char *fmt, ...)
139 {
140         struct super_block *sb = fs_info->sb;
141         const char *errstr;
142
143         /*
144          * Special case: if the error is EROFS, and we're already
145          * under MS_RDONLY, then it is safe here.
146          */
147         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
148                 return;
149
150         errstr = btrfs_decode_error(errno);
151         if (fmt) {
152                 struct va_format vaf;
153                 va_list args;
154
155                 va_start(args, fmt);
156                 vaf.fmt = fmt;
157                 vaf.va = &args;
158
159                 printk(KERN_CRIT
160                         "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
161                         sb->s_id, function, line, errno, errstr, &vaf);
162                 va_end(args);
163         } else {
164                 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
165                         sb->s_id, function, line, errno, errstr);
166         }
167
168         /* Don't go through full error handling during mount */
169         save_error_info(fs_info);
170         if (sb->s_flags & MS_BORN)
171                 btrfs_handle_error(fs_info);
172 }
173
174 static const char * const logtypes[] = {
175         "emergency",
176         "alert",
177         "critical",
178         "error",
179         "warning",
180         "notice",
181         "info",
182         "debug",
183 };
184
185 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
186 {
187         struct super_block *sb = fs_info->sb;
188         char lvl[4];
189         struct va_format vaf;
190         va_list args;
191         const char *type = logtypes[4];
192         int kern_level;
193
194         va_start(args, fmt);
195
196         kern_level = printk_get_level(fmt);
197         if (kern_level) {
198                 size_t size = printk_skip_level(fmt) - fmt;
199                 memcpy(lvl, fmt,  size);
200                 lvl[size] = '\0';
201                 fmt += size;
202                 type = logtypes[kern_level - '0'];
203         } else
204                 *lvl = '\0';
205
206         vaf.fmt = fmt;
207         vaf.va = &args;
208
209         printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
210
211         va_end(args);
212 }
213
214 #else
215
216 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
217                        unsigned int line, int errno, const char *fmt, ...)
218 {
219         struct super_block *sb = fs_info->sb;
220
221         /*
222          * Special case: if the error is EROFS, and we're already
223          * under MS_RDONLY, then it is safe here.
224          */
225         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
226                 return;
227
228         /* Don't go through full error handling during mount */
229         if (sb->s_flags & MS_BORN) {
230                 save_error_info(fs_info);
231                 btrfs_handle_error(fs_info);
232         }
233 }
234 #endif
235
236 /*
237  * We only mark the transaction aborted and then set the file system read-only.
238  * This will prevent new transactions from starting or trying to join this
239  * one.
240  *
241  * This means that error recovery at the call site is limited to freeing
242  * any local memory allocations and passing the error code up without
243  * further cleanup. The transaction should complete as it normally would
244  * in the call path but will return -EIO.
245  *
246  * We'll complete the cleanup in btrfs_end_transaction and
247  * btrfs_commit_transaction.
248  */
249 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
250                                struct btrfs_root *root, const char *function,
251                                unsigned int line, int errno)
252 {
253         /*
254          * Report first abort since mount
255          */
256         if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
257                                 &root->fs_info->fs_state)) {
258                 WARN(1, KERN_DEBUG "BTRFS: Transaction aborted (error %d)\n",
259                                 errno);
260         }
261         trans->aborted = errno;
262         /* Nothing used. The other threads that have joined this
263          * transaction may be able to continue. */
264         if (!trans->blocks_used) {
265                 const char *errstr;
266
267                 errstr = btrfs_decode_error(errno);
268                 btrfs_warn(root->fs_info,
269                            "%s:%d: Aborting unused transaction(%s).",
270                            function, line, errstr);
271                 return;
272         }
273         ACCESS_ONCE(trans->transaction->aborted) = errno;
274         /* Wake up anybody who may be waiting on this transaction */
275         wake_up(&root->fs_info->transaction_wait);
276         wake_up(&root->fs_info->transaction_blocked_wait);
277         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
278 }
279 /*
280  * __btrfs_panic decodes unexpected, fatal errors from the caller,
281  * issues an alert, and either panics or BUGs, depending on mount options.
282  */
283 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
284                    unsigned int line, int errno, const char *fmt, ...)
285 {
286         char *s_id = "<unknown>";
287         const char *errstr;
288         struct va_format vaf = { .fmt = fmt };
289         va_list args;
290
291         if (fs_info)
292                 s_id = fs_info->sb->s_id;
293
294         va_start(args, fmt);
295         vaf.va = &args;
296
297         errstr = btrfs_decode_error(errno);
298         if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
299                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
300                         s_id, function, line, &vaf, errno, errstr);
301
302         btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
303                    function, line, &vaf, errno, errstr);
304         va_end(args);
305         /* Caller calls BUG() */
306 }
307
308 static void btrfs_put_super(struct super_block *sb)
309 {
310         (void)close_ctree(btrfs_sb(sb)->tree_root);
311         /* FIXME: need to fix VFS to return error? */
312         /* AV: return it _where_?  ->put_super() can be triggered by any number
313          * of async events, up to and including delivery of SIGKILL to the
314          * last process that kept it busy.  Or segfault in the aforementioned
315          * process...  Whom would you report that to?
316          */
317 }
318
319 enum {
320         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
321         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
322         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
323         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
324         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
325         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
326         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
327         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
328         Opt_check_integrity, Opt_check_integrity_including_extent_data,
329         Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
330         Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
331         Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
332         Opt_datasum, Opt_treelog, Opt_noinode_cache,
333         Opt_err,
334 };
335
336 static match_table_t tokens = {
337         {Opt_degraded, "degraded"},
338         {Opt_subvol, "subvol=%s"},
339         {Opt_subvolid, "subvolid=%s"},
340         {Opt_device, "device=%s"},
341         {Opt_nodatasum, "nodatasum"},
342         {Opt_datasum, "datasum"},
343         {Opt_nodatacow, "nodatacow"},
344         {Opt_datacow, "datacow"},
345         {Opt_nobarrier, "nobarrier"},
346         {Opt_barrier, "barrier"},
347         {Opt_max_inline, "max_inline=%s"},
348         {Opt_alloc_start, "alloc_start=%s"},
349         {Opt_thread_pool, "thread_pool=%d"},
350         {Opt_compress, "compress"},
351         {Opt_compress_type, "compress=%s"},
352         {Opt_compress_force, "compress-force"},
353         {Opt_compress_force_type, "compress-force=%s"},
354         {Opt_ssd, "ssd"},
355         {Opt_ssd_spread, "ssd_spread"},
356         {Opt_nossd, "nossd"},
357         {Opt_acl, "acl"},
358         {Opt_noacl, "noacl"},
359         {Opt_notreelog, "notreelog"},
360         {Opt_treelog, "treelog"},
361         {Opt_flushoncommit, "flushoncommit"},
362         {Opt_noflushoncommit, "noflushoncommit"},
363         {Opt_ratio, "metadata_ratio=%d"},
364         {Opt_discard, "discard"},
365         {Opt_nodiscard, "nodiscard"},
366         {Opt_space_cache, "space_cache"},
367         {Opt_clear_cache, "clear_cache"},
368         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369         {Opt_enospc_debug, "enospc_debug"},
370         {Opt_noenospc_debug, "noenospc_debug"},
371         {Opt_subvolrootid, "subvolrootid=%d"},
372         {Opt_defrag, "autodefrag"},
373         {Opt_nodefrag, "noautodefrag"},
374         {Opt_inode_cache, "inode_cache"},
375         {Opt_noinode_cache, "noinode_cache"},
376         {Opt_no_space_cache, "nospace_cache"},
377         {Opt_recovery, "recovery"},
378         {Opt_skip_balance, "skip_balance"},
379         {Opt_check_integrity, "check_int"},
380         {Opt_check_integrity_including_extent_data, "check_int_data"},
381         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382         {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383         {Opt_fatal_errors, "fatal_errors=%s"},
384         {Opt_commit_interval, "commit=%d"},
385         {Opt_err, NULL},
386 };
387
388 /*
389  * Regular mount options parser.  Everything that is needed only when
390  * reading in a new superblock is parsed here.
391  * XXX JDM: This needs to be cleaned up for remount.
392  */
393 int btrfs_parse_options(struct btrfs_root *root, char *options)
394 {
395         struct btrfs_fs_info *info = root->fs_info;
396         substring_t args[MAX_OPT_ARGS];
397         char *p, *num, *orig = NULL;
398         u64 cache_gen;
399         int intarg;
400         int ret = 0;
401         char *compress_type;
402         bool compress_force = false;
403         bool compress = false;
404
405         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
406         if (cache_gen)
407                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
408
409         if (!options)
410                 goto out;
411
412         /*
413          * strsep changes the string, duplicate it because parse_options
414          * gets called twice
415          */
416         options = kstrdup(options, GFP_NOFS);
417         if (!options)
418                 return -ENOMEM;
419
420         orig = options;
421
422         while ((p = strsep(&options, ",")) != NULL) {
423                 int token;
424                 if (!*p)
425                         continue;
426
427                 token = match_token(p, tokens, args);
428                 switch (token) {
429                 case Opt_degraded:
430                         btrfs_info(root->fs_info, "allowing degraded mounts");
431                         btrfs_set_opt(info->mount_opt, DEGRADED);
432                         break;
433                 case Opt_subvol:
434                 case Opt_subvolid:
435                 case Opt_subvolrootid:
436                 case Opt_device:
437                         /*
438                          * These are parsed by btrfs_parse_early_options
439                          * and can be happily ignored here.
440                          */
441                         break;
442                 case Opt_nodatasum:
443                         btrfs_set_and_info(root, NODATASUM,
444                                            "setting nodatasum");
445                         break;
446                 case Opt_datasum:
447                         if (btrfs_test_opt(root, NODATASUM)) {
448                                 if (btrfs_test_opt(root, NODATACOW))
449                                         btrfs_info(root->fs_info, "setting datasum, datacow enabled");
450                                 else
451                                         btrfs_info(root->fs_info, "setting datasum");
452                         }
453                         btrfs_clear_opt(info->mount_opt, NODATACOW);
454                         btrfs_clear_opt(info->mount_opt, NODATASUM);
455                         break;
456                 case Opt_nodatacow:
457                         if (!btrfs_test_opt(root, NODATACOW)) {
458                                 if (!btrfs_test_opt(root, COMPRESS) ||
459                                     !btrfs_test_opt(root, FORCE_COMPRESS)) {
460                                         btrfs_info(root->fs_info,
461                                                    "setting nodatacow, compression disabled");
462                                 } else {
463                                         btrfs_info(root->fs_info, "setting nodatacow");
464                                 }
465                         }
466                         btrfs_clear_opt(info->mount_opt, COMPRESS);
467                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468                         btrfs_set_opt(info->mount_opt, NODATACOW);
469                         btrfs_set_opt(info->mount_opt, NODATASUM);
470                         break;
471                 case Opt_datacow:
472                         btrfs_clear_and_info(root, NODATACOW,
473                                              "setting datacow");
474                         break;
475                 case Opt_compress_force:
476                 case Opt_compress_force_type:
477                         compress_force = true;
478                         /* Fallthrough */
479                 case Opt_compress:
480                 case Opt_compress_type:
481                         compress = true;
482                         if (token == Opt_compress ||
483                             token == Opt_compress_force ||
484                             strcmp(args[0].from, "zlib") == 0) {
485                                 compress_type = "zlib";
486                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
487                                 btrfs_set_opt(info->mount_opt, COMPRESS);
488                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
489                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
490                         } else if (strcmp(args[0].from, "lzo") == 0) {
491                                 compress_type = "lzo";
492                                 info->compress_type = BTRFS_COMPRESS_LZO;
493                                 btrfs_set_opt(info->mount_opt, COMPRESS);
494                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
495                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
496                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
497                         } else if (strncmp(args[0].from, "no", 2) == 0) {
498                                 compress_type = "no";
499                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
500                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
501                                 compress_force = false;
502                         } else {
503                                 ret = -EINVAL;
504                                 goto out;
505                         }
506
507                         if (compress_force) {
508                                 btrfs_set_and_info(root, FORCE_COMPRESS,
509                                                    "force %s compression",
510                                                    compress_type);
511                         } else if (compress) {
512                                 if (!btrfs_test_opt(root, COMPRESS))
513                                         btrfs_info(root->fs_info,
514                                                    "btrfs: use %s compression",
515                                                    compress_type);
516                         }
517                         break;
518                 case Opt_ssd:
519                         btrfs_set_and_info(root, SSD,
520                                            "use ssd allocation scheme");
521                         break;
522                 case Opt_ssd_spread:
523                         btrfs_set_and_info(root, SSD_SPREAD,
524                                            "use spread ssd allocation scheme");
525                         btrfs_set_opt(info->mount_opt, SSD);
526                         break;
527                 case Opt_nossd:
528                         btrfs_set_and_info(root, NOSSD,
529                                              "not using ssd allocation scheme");
530                         btrfs_clear_opt(info->mount_opt, SSD);
531                         break;
532                 case Opt_barrier:
533                         btrfs_clear_and_info(root, NOBARRIER,
534                                              "turning on barriers");
535                         break;
536                 case Opt_nobarrier:
537                         btrfs_set_and_info(root, NOBARRIER,
538                                            "turning off barriers");
539                         break;
540                 case Opt_thread_pool:
541                         ret = match_int(&args[0], &intarg);
542                         if (ret) {
543                                 goto out;
544                         } else if (intarg > 0) {
545                                 info->thread_pool_size = intarg;
546                         } else {
547                                 ret = -EINVAL;
548                                 goto out;
549                         }
550                         break;
551                 case Opt_max_inline:
552                         num = match_strdup(&args[0]);
553                         if (num) {
554                                 info->max_inline = memparse(num, NULL);
555                                 kfree(num);
556
557                                 if (info->max_inline) {
558                                         info->max_inline = min_t(u64,
559                                                 info->max_inline,
560                                                 root->sectorsize);
561                                 }
562                                 btrfs_info(root->fs_info, "max_inline at %llu",
563                                         info->max_inline);
564                         } else {
565                                 ret = -ENOMEM;
566                                 goto out;
567                         }
568                         break;
569                 case Opt_alloc_start:
570                         num = match_strdup(&args[0]);
571                         if (num) {
572                                 mutex_lock(&info->chunk_mutex);
573                                 info->alloc_start = memparse(num, NULL);
574                                 mutex_unlock(&info->chunk_mutex);
575                                 kfree(num);
576                                 btrfs_info(root->fs_info, "allocations start at %llu",
577                                         info->alloc_start);
578                         } else {
579                                 ret = -ENOMEM;
580                                 goto out;
581                         }
582                         break;
583                 case Opt_acl:
584 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
585                         root->fs_info->sb->s_flags |= MS_POSIXACL;
586                         break;
587 #else
588                         btrfs_err(root->fs_info,
589                                 "support for ACL not compiled in!");
590                         ret = -EINVAL;
591                         goto out;
592 #endif
593                 case Opt_noacl:
594                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
595                         break;
596                 case Opt_notreelog:
597                         btrfs_set_and_info(root, NOTREELOG,
598                                            "disabling tree log");
599                         break;
600                 case Opt_treelog:
601                         btrfs_clear_and_info(root, NOTREELOG,
602                                              "enabling tree log");
603                         break;
604                 case Opt_flushoncommit:
605                         btrfs_set_and_info(root, FLUSHONCOMMIT,
606                                            "turning on flush-on-commit");
607                         break;
608                 case Opt_noflushoncommit:
609                         btrfs_clear_and_info(root, FLUSHONCOMMIT,
610                                              "turning off flush-on-commit");
611                         break;
612                 case Opt_ratio:
613                         ret = match_int(&args[0], &intarg);
614                         if (ret) {
615                                 goto out;
616                         } else if (intarg >= 0) {
617                                 info->metadata_ratio = intarg;
618                                 btrfs_info(root->fs_info, "metadata ratio %d",
619                                        info->metadata_ratio);
620                         } else {
621                                 ret = -EINVAL;
622                                 goto out;
623                         }
624                         break;
625                 case Opt_discard:
626                         btrfs_set_and_info(root, DISCARD,
627                                            "turning on discard");
628                         break;
629                 case Opt_nodiscard:
630                         btrfs_clear_and_info(root, DISCARD,
631                                              "turning off discard");
632                         break;
633                 case Opt_space_cache:
634                         btrfs_set_and_info(root, SPACE_CACHE,
635                                            "enabling disk space caching");
636                         break;
637                 case Opt_rescan_uuid_tree:
638                         btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
639                         break;
640                 case Opt_no_space_cache:
641                         btrfs_clear_and_info(root, SPACE_CACHE,
642                                              "disabling disk space caching");
643                         break;
644                 case Opt_inode_cache:
645                         btrfs_set_and_info(root, CHANGE_INODE_CACHE,
646                                            "enabling inode map caching");
647                         break;
648                 case Opt_noinode_cache:
649                         btrfs_clear_and_info(root, CHANGE_INODE_CACHE,
650                                              "disabling inode map caching");
651                         break;
652                 case Opt_clear_cache:
653                         btrfs_set_and_info(root, CLEAR_CACHE,
654                                            "force clearing of disk cache");
655                         break;
656                 case Opt_user_subvol_rm_allowed:
657                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
658                         break;
659                 case Opt_enospc_debug:
660                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
661                         break;
662                 case Opt_noenospc_debug:
663                         btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
664                         break;
665                 case Opt_defrag:
666                         btrfs_set_and_info(root, AUTO_DEFRAG,
667                                            "enabling auto defrag");
668                         break;
669                 case Opt_nodefrag:
670                         btrfs_clear_and_info(root, AUTO_DEFRAG,
671                                              "disabling auto defrag");
672                         break;
673                 case Opt_recovery:
674                         btrfs_info(root->fs_info, "enabling auto recovery");
675                         btrfs_set_opt(info->mount_opt, RECOVERY);
676                         break;
677                 case Opt_skip_balance:
678                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
679                         break;
680 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
681                 case Opt_check_integrity_including_extent_data:
682                         btrfs_info(root->fs_info,
683                                    "enabling check integrity including extent data");
684                         btrfs_set_opt(info->mount_opt,
685                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
686                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
687                         break;
688                 case Opt_check_integrity:
689                         btrfs_info(root->fs_info, "enabling check integrity");
690                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
691                         break;
692                 case Opt_check_integrity_print_mask:
693                         ret = match_int(&args[0], &intarg);
694                         if (ret) {
695                                 goto out;
696                         } else if (intarg >= 0) {
697                                 info->check_integrity_print_mask = intarg;
698                                 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
699                                        info->check_integrity_print_mask);
700                         } else {
701                                 ret = -EINVAL;
702                                 goto out;
703                         }
704                         break;
705 #else
706                 case Opt_check_integrity_including_extent_data:
707                 case Opt_check_integrity:
708                 case Opt_check_integrity_print_mask:
709                         btrfs_err(root->fs_info,
710                                 "support for check_integrity* not compiled in!");
711                         ret = -EINVAL;
712                         goto out;
713 #endif
714                 case Opt_fatal_errors:
715                         if (strcmp(args[0].from, "panic") == 0)
716                                 btrfs_set_opt(info->mount_opt,
717                                               PANIC_ON_FATAL_ERROR);
718                         else if (strcmp(args[0].from, "bug") == 0)
719                                 btrfs_clear_opt(info->mount_opt,
720                                               PANIC_ON_FATAL_ERROR);
721                         else {
722                                 ret = -EINVAL;
723                                 goto out;
724                         }
725                         break;
726                 case Opt_commit_interval:
727                         intarg = 0;
728                         ret = match_int(&args[0], &intarg);
729                         if (ret < 0) {
730                                 btrfs_err(root->fs_info, "invalid commit interval");
731                                 ret = -EINVAL;
732                                 goto out;
733                         }
734                         if (intarg > 0) {
735                                 if (intarg > 300) {
736                                         btrfs_warn(root->fs_info, "excessive commit interval %d",
737                                                         intarg);
738                                 }
739                                 info->commit_interval = intarg;
740                         } else {
741                                 btrfs_info(root->fs_info, "using default commit interval %ds",
742                                     BTRFS_DEFAULT_COMMIT_INTERVAL);
743                                 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
744                         }
745                         break;
746                 case Opt_err:
747                         btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
748                         ret = -EINVAL;
749                         goto out;
750                 default:
751                         break;
752                 }
753         }
754 out:
755         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
756                 btrfs_info(root->fs_info, "disk space caching is enabled");
757         kfree(orig);
758         return ret;
759 }
760
761 /*
762  * Parse mount options that are required early in the mount process.
763  *
764  * All other options will be parsed on much later in the mount process and
765  * only when we need to allocate a new super block.
766  */
767 static int btrfs_parse_early_options(const char *options, fmode_t flags,
768                 void *holder, char **subvol_name, u64 *subvol_objectid,
769                 struct btrfs_fs_devices **fs_devices)
770 {
771         substring_t args[MAX_OPT_ARGS];
772         char *device_name, *opts, *orig, *p;
773         char *num = NULL;
774         int error = 0;
775
776         if (!options)
777                 return 0;
778
779         /*
780          * strsep changes the string, duplicate it because parse_options
781          * gets called twice
782          */
783         opts = kstrdup(options, GFP_KERNEL);
784         if (!opts)
785                 return -ENOMEM;
786         orig = opts;
787
788         while ((p = strsep(&opts, ",")) != NULL) {
789                 int token;
790                 if (!*p)
791                         continue;
792
793                 token = match_token(p, tokens, args);
794                 switch (token) {
795                 case Opt_subvol:
796                         kfree(*subvol_name);
797                         *subvol_name = match_strdup(&args[0]);
798                         if (!*subvol_name) {
799                                 error = -ENOMEM;
800                                 goto out;
801                         }
802                         break;
803                 case Opt_subvolid:
804                         num = match_strdup(&args[0]);
805                         if (num) {
806                                 *subvol_objectid = memparse(num, NULL);
807                                 kfree(num);
808                                 /* we want the original fs_tree */
809                                 if (!*subvol_objectid)
810                                         *subvol_objectid =
811                                                 BTRFS_FS_TREE_OBJECTID;
812                         } else {
813                                 error = -EINVAL;
814                                 goto out;
815                         }
816                         break;
817                 case Opt_subvolrootid:
818                         printk(KERN_WARNING
819                                 "BTRFS: 'subvolrootid' mount option is deprecated and has "
820                                 "no effect\n");
821                         break;
822                 case Opt_device:
823                         device_name = match_strdup(&args[0]);
824                         if (!device_name) {
825                                 error = -ENOMEM;
826                                 goto out;
827                         }
828                         error = btrfs_scan_one_device(device_name,
829                                         flags, holder, fs_devices);
830                         kfree(device_name);
831                         if (error)
832                                 goto out;
833                         break;
834                 default:
835                         break;
836                 }
837         }
838
839 out:
840         kfree(orig);
841         return error;
842 }
843
844 static struct dentry *get_default_root(struct super_block *sb,
845                                        u64 subvol_objectid)
846 {
847         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
848         struct btrfs_root *root = fs_info->tree_root;
849         struct btrfs_root *new_root;
850         struct btrfs_dir_item *di;
851         struct btrfs_path *path;
852         struct btrfs_key location;
853         struct inode *inode;
854         struct dentry *dentry;
855         u64 dir_id;
856         int new = 0;
857
858         /*
859          * We have a specific subvol we want to mount, just setup location and
860          * go look up the root.
861          */
862         if (subvol_objectid) {
863                 location.objectid = subvol_objectid;
864                 location.type = BTRFS_ROOT_ITEM_KEY;
865                 location.offset = (u64)-1;
866                 goto find_root;
867         }
868
869         path = btrfs_alloc_path();
870         if (!path)
871                 return ERR_PTR(-ENOMEM);
872         path->leave_spinning = 1;
873
874         /*
875          * Find the "default" dir item which points to the root item that we
876          * will mount by default if we haven't been given a specific subvolume
877          * to mount.
878          */
879         dir_id = btrfs_super_root_dir(fs_info->super_copy);
880         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
881         if (IS_ERR(di)) {
882                 btrfs_free_path(path);
883                 return ERR_CAST(di);
884         }
885         if (!di) {
886                 /*
887                  * Ok the default dir item isn't there.  This is weird since
888                  * it's always been there, but don't freak out, just try and
889                  * mount to root most subvolume.
890                  */
891                 btrfs_free_path(path);
892                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
893                 new_root = fs_info->fs_root;
894                 goto setup_root;
895         }
896
897         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
898         btrfs_free_path(path);
899
900 find_root:
901         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
902         if (IS_ERR(new_root))
903                 return ERR_CAST(new_root);
904
905         dir_id = btrfs_root_dirid(&new_root->root_item);
906 setup_root:
907         location.objectid = dir_id;
908         location.type = BTRFS_INODE_ITEM_KEY;
909         location.offset = 0;
910
911         inode = btrfs_iget(sb, &location, new_root, &new);
912         if (IS_ERR(inode))
913                 return ERR_CAST(inode);
914
915         /*
916          * If we're just mounting the root most subvol put the inode and return
917          * a reference to the dentry.  We will have already gotten a reference
918          * to the inode in btrfs_fill_super so we're good to go.
919          */
920         if (!new && sb->s_root->d_inode == inode) {
921                 iput(inode);
922                 return dget(sb->s_root);
923         }
924
925         dentry = d_obtain_alias(inode);
926         if (!IS_ERR(dentry)) {
927                 spin_lock(&dentry->d_lock);
928                 dentry->d_flags &= ~DCACHE_DISCONNECTED;
929                 spin_unlock(&dentry->d_lock);
930         }
931         return dentry;
932 }
933
934 static int btrfs_fill_super(struct super_block *sb,
935                             struct btrfs_fs_devices *fs_devices,
936                             void *data, int silent)
937 {
938         struct inode *inode;
939         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
940         struct btrfs_key key;
941         int err;
942
943         sb->s_maxbytes = MAX_LFS_FILESIZE;
944         sb->s_magic = BTRFS_SUPER_MAGIC;
945         sb->s_op = &btrfs_super_ops;
946         sb->s_d_op = &btrfs_dentry_operations;
947         sb->s_export_op = &btrfs_export_ops;
948         sb->s_xattr = btrfs_xattr_handlers;
949         sb->s_time_gran = 1;
950 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
951         sb->s_flags |= MS_POSIXACL;
952 #endif
953         sb->s_flags |= MS_I_VERSION;
954         err = open_ctree(sb, fs_devices, (char *)data);
955         if (err) {
956                 printk(KERN_ERR "BTRFS: open_ctree failed\n");
957                 return err;
958         }
959
960         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
961         key.type = BTRFS_INODE_ITEM_KEY;
962         key.offset = 0;
963         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
964         if (IS_ERR(inode)) {
965                 err = PTR_ERR(inode);
966                 goto fail_close;
967         }
968
969         sb->s_root = d_make_root(inode);
970         if (!sb->s_root) {
971                 err = -ENOMEM;
972                 goto fail_close;
973         }
974
975         save_mount_options(sb, data);
976         cleancache_init_fs(sb);
977         sb->s_flags |= MS_ACTIVE;
978         return 0;
979
980 fail_close:
981         close_ctree(fs_info->tree_root);
982         return err;
983 }
984
985 int btrfs_sync_fs(struct super_block *sb, int wait)
986 {
987         struct btrfs_trans_handle *trans;
988         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
989         struct btrfs_root *root = fs_info->tree_root;
990
991         trace_btrfs_sync_fs(wait);
992
993         if (!wait) {
994                 filemap_flush(fs_info->btree_inode->i_mapping);
995                 return 0;
996         }
997
998         btrfs_wait_ordered_roots(fs_info, -1);
999
1000         trans = btrfs_attach_transaction_barrier(root);
1001         if (IS_ERR(trans)) {
1002                 /* no transaction, don't bother */
1003                 if (PTR_ERR(trans) == -ENOENT)
1004                         return 0;
1005                 return PTR_ERR(trans);
1006         }
1007         return btrfs_commit_transaction(trans, root);
1008 }
1009
1010 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1011 {
1012         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1013         struct btrfs_root *root = info->tree_root;
1014         char *compress_type;
1015
1016         if (btrfs_test_opt(root, DEGRADED))
1017                 seq_puts(seq, ",degraded");
1018         if (btrfs_test_opt(root, NODATASUM))
1019                 seq_puts(seq, ",nodatasum");
1020         if (btrfs_test_opt(root, NODATACOW))
1021                 seq_puts(seq, ",nodatacow");
1022         if (btrfs_test_opt(root, NOBARRIER))
1023                 seq_puts(seq, ",nobarrier");
1024         if (info->max_inline != 8192 * 1024)
1025                 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1026         if (info->alloc_start != 0)
1027                 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1028         if (info->thread_pool_size !=  min_t(unsigned long,
1029                                              num_online_cpus() + 2, 8))
1030                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1031         if (btrfs_test_opt(root, COMPRESS)) {
1032                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1033                         compress_type = "zlib";
1034                 else
1035                         compress_type = "lzo";
1036                 if (btrfs_test_opt(root, FORCE_COMPRESS))
1037                         seq_printf(seq, ",compress-force=%s", compress_type);
1038                 else
1039                         seq_printf(seq, ",compress=%s", compress_type);
1040         }
1041         if (btrfs_test_opt(root, NOSSD))
1042                 seq_puts(seq, ",nossd");
1043         if (btrfs_test_opt(root, SSD_SPREAD))
1044                 seq_puts(seq, ",ssd_spread");
1045         else if (btrfs_test_opt(root, SSD))
1046                 seq_puts(seq, ",ssd");
1047         if (btrfs_test_opt(root, NOTREELOG))
1048                 seq_puts(seq, ",notreelog");
1049         if (btrfs_test_opt(root, FLUSHONCOMMIT))
1050                 seq_puts(seq, ",flushoncommit");
1051         if (btrfs_test_opt(root, DISCARD))
1052                 seq_puts(seq, ",discard");
1053         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1054                 seq_puts(seq, ",noacl");
1055         if (btrfs_test_opt(root, SPACE_CACHE))
1056                 seq_puts(seq, ",space_cache");
1057         else
1058                 seq_puts(seq, ",nospace_cache");
1059         if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1060                 seq_puts(seq, ",rescan_uuid_tree");
1061         if (btrfs_test_opt(root, CLEAR_CACHE))
1062                 seq_puts(seq, ",clear_cache");
1063         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1064                 seq_puts(seq, ",user_subvol_rm_allowed");
1065         if (btrfs_test_opt(root, ENOSPC_DEBUG))
1066                 seq_puts(seq, ",enospc_debug");
1067         if (btrfs_test_opt(root, AUTO_DEFRAG))
1068                 seq_puts(seq, ",autodefrag");
1069         if (btrfs_test_opt(root, INODE_MAP_CACHE))
1070                 seq_puts(seq, ",inode_cache");
1071         if (btrfs_test_opt(root, SKIP_BALANCE))
1072                 seq_puts(seq, ",skip_balance");
1073         if (btrfs_test_opt(root, RECOVERY))
1074                 seq_puts(seq, ",recovery");
1075 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1076         if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1077                 seq_puts(seq, ",check_int_data");
1078         else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1079                 seq_puts(seq, ",check_int");
1080         if (info->check_integrity_print_mask)
1081                 seq_printf(seq, ",check_int_print_mask=%d",
1082                                 info->check_integrity_print_mask);
1083 #endif
1084         if (info->metadata_ratio)
1085                 seq_printf(seq, ",metadata_ratio=%d",
1086                                 info->metadata_ratio);
1087         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1088                 seq_puts(seq, ",fatal_errors=panic");
1089         if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1090                 seq_printf(seq, ",commit=%d", info->commit_interval);
1091         return 0;
1092 }
1093
1094 static int btrfs_test_super(struct super_block *s, void *data)
1095 {
1096         struct btrfs_fs_info *p = data;
1097         struct btrfs_fs_info *fs_info = btrfs_sb(s);
1098
1099         return fs_info->fs_devices == p->fs_devices;
1100 }
1101
1102 static int btrfs_set_super(struct super_block *s, void *data)
1103 {
1104         int err = set_anon_super(s, data);
1105         if (!err)
1106                 s->s_fs_info = data;
1107         return err;
1108 }
1109
1110 /*
1111  * subvolumes are identified by ino 256
1112  */
1113 static inline int is_subvolume_inode(struct inode *inode)
1114 {
1115         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1116                 return 1;
1117         return 0;
1118 }
1119
1120 /*
1121  * This will strip out the subvol=%s argument for an argument string and add
1122  * subvolid=0 to make sure we get the actual tree root for path walking to the
1123  * subvol we want.
1124  */
1125 static char *setup_root_args(char *args)
1126 {
1127         unsigned len = strlen(args) + 2 + 1;
1128         char *src, *dst, *buf;
1129
1130         /*
1131          * We need the same args as before, but with this substitution:
1132          * s!subvol=[^,]+!subvolid=0!
1133          *
1134          * Since the replacement string is up to 2 bytes longer than the
1135          * original, allocate strlen(args) + 2 + 1 bytes.
1136          */
1137
1138         src = strstr(args, "subvol=");
1139         /* This shouldn't happen, but just in case.. */
1140         if (!src)
1141                 return NULL;
1142
1143         buf = dst = kmalloc(len, GFP_NOFS);
1144         if (!buf)
1145                 return NULL;
1146
1147         /*
1148          * If the subvol= arg is not at the start of the string,
1149          * copy whatever precedes it into buf.
1150          */
1151         if (src != args) {
1152                 *src++ = '\0';
1153                 strcpy(buf, args);
1154                 dst += strlen(args);
1155         }
1156
1157         strcpy(dst, "subvolid=0");
1158         dst += strlen("subvolid=0");
1159
1160         /*
1161          * If there is a "," after the original subvol=... string,
1162          * copy that suffix into our buffer.  Otherwise, we're done.
1163          */
1164         src = strchr(src, ',');
1165         if (src)
1166                 strcpy(dst, src);
1167
1168         return buf;
1169 }
1170
1171 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1172                                    const char *device_name, char *data)
1173 {
1174         struct dentry *root;
1175         struct vfsmount *mnt;
1176         char *newargs;
1177
1178         newargs = setup_root_args(data);
1179         if (!newargs)
1180                 return ERR_PTR(-ENOMEM);
1181         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1182                              newargs);
1183
1184         if (PTR_RET(mnt) == -EBUSY) {
1185                 if (flags & MS_RDONLY) {
1186                         mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1187                                              newargs);
1188                 } else {
1189                         int r;
1190                         mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1191                                              newargs);
1192                         if (IS_ERR(mnt)) {
1193                                 kfree(newargs);
1194                                 return ERR_CAST(mnt);
1195                         }
1196
1197                         r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1198                         if (r < 0) {
1199                                 /* FIXME: release vfsmount mnt ??*/
1200                                 kfree(newargs);
1201                                 return ERR_PTR(r);
1202                         }
1203                 }
1204         }
1205
1206         kfree(newargs);
1207
1208         if (IS_ERR(mnt))
1209                 return ERR_CAST(mnt);
1210
1211         root = mount_subtree(mnt, subvol_name);
1212
1213         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1214                 struct super_block *s = root->d_sb;
1215                 dput(root);
1216                 root = ERR_PTR(-EINVAL);
1217                 deactivate_locked_super(s);
1218                 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
1219                                 subvol_name);
1220         }
1221
1222         return root;
1223 }
1224
1225 /*
1226  * Find a superblock for the given device / mount point.
1227  *
1228  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1229  *        for multiple device setup.  Make sure to keep it in sync.
1230  */
1231 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1232                 const char *device_name, void *data)
1233 {
1234         struct block_device *bdev = NULL;
1235         struct super_block *s;
1236         struct dentry *root;
1237         struct btrfs_fs_devices *fs_devices = NULL;
1238         struct btrfs_fs_info *fs_info = NULL;
1239         fmode_t mode = FMODE_READ;
1240         char *subvol_name = NULL;
1241         u64 subvol_objectid = 0;
1242         int error = 0;
1243
1244         if (!(flags & MS_RDONLY))
1245                 mode |= FMODE_WRITE;
1246
1247         error = btrfs_parse_early_options(data, mode, fs_type,
1248                                           &subvol_name, &subvol_objectid,
1249                                           &fs_devices);
1250         if (error) {
1251                 kfree(subvol_name);
1252                 return ERR_PTR(error);
1253         }
1254
1255         if (subvol_name) {
1256                 root = mount_subvol(subvol_name, flags, device_name, data);
1257                 kfree(subvol_name);
1258                 return root;
1259         }
1260
1261         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1262         if (error)
1263                 return ERR_PTR(error);
1264
1265         /*
1266          * Setup a dummy root and fs_info for test/set super.  This is because
1267          * we don't actually fill this stuff out until open_ctree, but we need
1268          * it for searching for existing supers, so this lets us do that and
1269          * then open_ctree will properly initialize everything later.
1270          */
1271         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1272         if (!fs_info)
1273                 return ERR_PTR(-ENOMEM);
1274
1275         fs_info->fs_devices = fs_devices;
1276
1277         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1278         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1279         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1280                 error = -ENOMEM;
1281                 goto error_fs_info;
1282         }
1283
1284         error = btrfs_open_devices(fs_devices, mode, fs_type);
1285         if (error)
1286                 goto error_fs_info;
1287
1288         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1289                 error = -EACCES;
1290                 goto error_close_devices;
1291         }
1292
1293         bdev = fs_devices->latest_bdev;
1294         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1295                  fs_info);
1296         if (IS_ERR(s)) {
1297                 error = PTR_ERR(s);
1298                 goto error_close_devices;
1299         }
1300
1301         if (s->s_root) {
1302                 btrfs_close_devices(fs_devices);
1303                 free_fs_info(fs_info);
1304                 if ((flags ^ s->s_flags) & MS_RDONLY)
1305                         error = -EBUSY;
1306         } else {
1307                 char b[BDEVNAME_SIZE];
1308
1309                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1310                 btrfs_sb(s)->bdev_holder = fs_type;
1311                 error = btrfs_fill_super(s, fs_devices, data,
1312                                          flags & MS_SILENT ? 1 : 0);
1313         }
1314
1315         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1316         if (IS_ERR(root))
1317                 deactivate_locked_super(s);
1318
1319         return root;
1320
1321 error_close_devices:
1322         btrfs_close_devices(fs_devices);
1323 error_fs_info:
1324         free_fs_info(fs_info);
1325         return ERR_PTR(error);
1326 }
1327
1328 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1329                                      int new_pool_size, int old_pool_size)
1330 {
1331         if (new_pool_size == old_pool_size)
1332                 return;
1333
1334         fs_info->thread_pool_size = new_pool_size;
1335
1336         btrfs_info(fs_info, "resize thread pool %d -> %d",
1337                old_pool_size, new_pool_size);
1338
1339         btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1340         btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1341         btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1342         btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1343         btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1344         btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1345         btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1346                                 new_pool_size);
1347         btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1348         btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1349         btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1350         btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1351         btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1352                                 new_pool_size);
1353 }
1354
1355 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1356 {
1357         set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1358 }
1359
1360 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1361                                        unsigned long old_opts, int flags)
1362 {
1363         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1364             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1365              (flags & MS_RDONLY))) {
1366                 /* wait for any defraggers to finish */
1367                 wait_event(fs_info->transaction_wait,
1368                            (atomic_read(&fs_info->defrag_running) == 0));
1369                 if (flags & MS_RDONLY)
1370                         sync_filesystem(fs_info->sb);
1371         }
1372 }
1373
1374 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1375                                          unsigned long old_opts)
1376 {
1377         /*
1378          * We need cleanup all defragable inodes if the autodefragment is
1379          * close or the fs is R/O.
1380          */
1381         if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1382             (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1383              (fs_info->sb->s_flags & MS_RDONLY))) {
1384                 btrfs_cleanup_defrag_inodes(fs_info);
1385         }
1386
1387         clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1388 }
1389
1390 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1391 {
1392         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1393         struct btrfs_root *root = fs_info->tree_root;
1394         unsigned old_flags = sb->s_flags;
1395         unsigned long old_opts = fs_info->mount_opt;
1396         unsigned long old_compress_type = fs_info->compress_type;
1397         u64 old_max_inline = fs_info->max_inline;
1398         u64 old_alloc_start = fs_info->alloc_start;
1399         int old_thread_pool_size = fs_info->thread_pool_size;
1400         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1401         int ret;
1402
1403         sync_filesystem(sb);
1404         btrfs_remount_prepare(fs_info);
1405
1406         ret = btrfs_parse_options(root, data);
1407         if (ret) {
1408                 ret = -EINVAL;
1409                 goto restore;
1410         }
1411
1412         btrfs_remount_begin(fs_info, old_opts, *flags);
1413         btrfs_resize_thread_pool(fs_info,
1414                 fs_info->thread_pool_size, old_thread_pool_size);
1415
1416         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1417                 goto out;
1418
1419         if (*flags & MS_RDONLY) {
1420                 /*
1421                  * this also happens on 'umount -rf' or on shutdown, when
1422                  * the filesystem is busy.
1423                  */
1424                 cancel_work_sync(&fs_info->async_reclaim_work);
1425
1426                 /* wait for the uuid_scan task to finish */
1427                 down(&fs_info->uuid_tree_rescan_sem);
1428                 /* avoid complains from lockdep et al. */
1429                 up(&fs_info->uuid_tree_rescan_sem);
1430
1431                 sb->s_flags |= MS_RDONLY;
1432
1433                 btrfs_dev_replace_suspend_for_unmount(fs_info);
1434                 btrfs_scrub_cancel(fs_info);
1435                 btrfs_pause_balance(fs_info);
1436
1437                 ret = btrfs_commit_super(root);
1438                 if (ret)
1439                         goto restore;
1440         } else {
1441                 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1442                         btrfs_err(fs_info,
1443                                 "Remounting read-write after error is not allowed");
1444                         ret = -EINVAL;
1445                         goto restore;
1446                 }
1447                 if (fs_info->fs_devices->rw_devices == 0) {
1448                         ret = -EACCES;
1449                         goto restore;
1450                 }
1451
1452                 if (fs_info->fs_devices->missing_devices >
1453                      fs_info->num_tolerated_disk_barrier_failures &&
1454                     !(*flags & MS_RDONLY)) {
1455                         btrfs_warn(fs_info,
1456                                 "too many missing devices, writeable remount is not allowed");
1457                         ret = -EACCES;
1458                         goto restore;
1459                 }
1460
1461                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1462                         ret = -EINVAL;
1463                         goto restore;
1464                 }
1465
1466                 ret = btrfs_cleanup_fs_roots(fs_info);
1467                 if (ret)
1468                         goto restore;
1469
1470                 /* recover relocation */
1471                 mutex_lock(&fs_info->cleaner_mutex);
1472                 ret = btrfs_recover_relocation(root);
1473                 mutex_unlock(&fs_info->cleaner_mutex);
1474                 if (ret)
1475                         goto restore;
1476
1477                 ret = btrfs_resume_balance_async(fs_info);
1478                 if (ret)
1479                         goto restore;
1480
1481                 ret = btrfs_resume_dev_replace_async(fs_info);
1482                 if (ret) {
1483                         btrfs_warn(fs_info, "failed to resume dev_replace");
1484                         goto restore;
1485                 }
1486
1487                 if (!fs_info->uuid_root) {
1488                         btrfs_info(fs_info, "creating UUID tree");
1489                         ret = btrfs_create_uuid_tree(fs_info);
1490                         if (ret) {
1491                                 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
1492                                 goto restore;
1493                         }
1494                 }
1495                 sb->s_flags &= ~MS_RDONLY;
1496         }
1497 out:
1498         wake_up_process(fs_info->transaction_kthread);
1499         btrfs_remount_cleanup(fs_info, old_opts);
1500         return 0;
1501
1502 restore:
1503         /* We've hit an error - don't reset MS_RDONLY */
1504         if (sb->s_flags & MS_RDONLY)
1505                 old_flags |= MS_RDONLY;
1506         sb->s_flags = old_flags;
1507         fs_info->mount_opt = old_opts;
1508         fs_info->compress_type = old_compress_type;
1509         fs_info->max_inline = old_max_inline;
1510         mutex_lock(&fs_info->chunk_mutex);
1511         fs_info->alloc_start = old_alloc_start;
1512         mutex_unlock(&fs_info->chunk_mutex);
1513         btrfs_resize_thread_pool(fs_info,
1514                 old_thread_pool_size, fs_info->thread_pool_size);
1515         fs_info->metadata_ratio = old_metadata_ratio;
1516         btrfs_remount_cleanup(fs_info, old_opts);
1517         return ret;
1518 }
1519
1520 /* Used to sort the devices by max_avail(descending sort) */
1521 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1522                                        const void *dev_info2)
1523 {
1524         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1525             ((struct btrfs_device_info *)dev_info2)->max_avail)
1526                 return -1;
1527         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1528                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1529                 return 1;
1530         else
1531         return 0;
1532 }
1533
1534 /*
1535  * sort the devices by max_avail, in which max free extent size of each device
1536  * is stored.(Descending Sort)
1537  */
1538 static inline void btrfs_descending_sort_devices(
1539                                         struct btrfs_device_info *devices,
1540                                         size_t nr_devices)
1541 {
1542         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1543              btrfs_cmp_device_free_bytes, NULL);
1544 }
1545
1546 /*
1547  * The helper to calc the free space on the devices that can be used to store
1548  * file data.
1549  */
1550 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1551 {
1552         struct btrfs_fs_info *fs_info = root->fs_info;
1553         struct btrfs_device_info *devices_info;
1554         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1555         struct btrfs_device *device;
1556         u64 skip_space;
1557         u64 type;
1558         u64 avail_space;
1559         u64 used_space;
1560         u64 min_stripe_size;
1561         int min_stripes = 1, num_stripes = 1;
1562         int i = 0, nr_devices;
1563         int ret;
1564
1565         nr_devices = fs_info->fs_devices->open_devices;
1566         BUG_ON(!nr_devices);
1567
1568         devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1569                                GFP_NOFS);
1570         if (!devices_info)
1571                 return -ENOMEM;
1572
1573         /* calc min stripe number for data space alloction */
1574         type = btrfs_get_alloc_profile(root, 1);
1575         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1576                 min_stripes = 2;
1577                 num_stripes = nr_devices;
1578         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1579                 min_stripes = 2;
1580                 num_stripes = 2;
1581         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1582                 min_stripes = 4;
1583                 num_stripes = 4;
1584         }
1585
1586         if (type & BTRFS_BLOCK_GROUP_DUP)
1587                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1588         else
1589                 min_stripe_size = BTRFS_STRIPE_LEN;
1590
1591         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1592                 if (!device->in_fs_metadata || !device->bdev ||
1593                     device->is_tgtdev_for_dev_replace)
1594                         continue;
1595
1596                 avail_space = device->total_bytes - device->bytes_used;
1597
1598                 /* align with stripe_len */
1599                 do_div(avail_space, BTRFS_STRIPE_LEN);
1600                 avail_space *= BTRFS_STRIPE_LEN;
1601
1602                 /*
1603                  * In order to avoid overwritting the superblock on the drive,
1604                  * btrfs starts at an offset of at least 1MB when doing chunk
1605                  * allocation.
1606                  */
1607                 skip_space = 1024 * 1024;
1608
1609                 /* user can set the offset in fs_info->alloc_start. */
1610                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1611                     device->total_bytes)
1612                         skip_space = max(fs_info->alloc_start, skip_space);
1613
1614                 /*
1615                  * btrfs can not use the free space in [0, skip_space - 1],
1616                  * we must subtract it from the total. In order to implement
1617                  * it, we account the used space in this range first.
1618                  */
1619                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1620                                                      &used_space);
1621                 if (ret) {
1622                         kfree(devices_info);
1623                         return ret;
1624                 }
1625
1626                 /* calc the free space in [0, skip_space - 1] */
1627                 skip_space -= used_space;
1628
1629                 /*
1630                  * we can use the free space in [0, skip_space - 1], subtract
1631                  * it from the total.
1632                  */
1633                 if (avail_space && avail_space >= skip_space)
1634                         avail_space -= skip_space;
1635                 else
1636                         avail_space = 0;
1637
1638                 if (avail_space < min_stripe_size)
1639                         continue;
1640
1641                 devices_info[i].dev = device;
1642                 devices_info[i].max_avail = avail_space;
1643
1644                 i++;
1645         }
1646
1647         nr_devices = i;
1648
1649         btrfs_descending_sort_devices(devices_info, nr_devices);
1650
1651         i = nr_devices - 1;
1652         avail_space = 0;
1653         while (nr_devices >= min_stripes) {
1654                 if (num_stripes > nr_devices)
1655                         num_stripes = nr_devices;
1656
1657                 if (devices_info[i].max_avail >= min_stripe_size) {
1658                         int j;
1659                         u64 alloc_size;
1660
1661                         avail_space += devices_info[i].max_avail * num_stripes;
1662                         alloc_size = devices_info[i].max_avail;
1663                         for (j = i + 1 - num_stripes; j <= i; j++)
1664                                 devices_info[j].max_avail -= alloc_size;
1665                 }
1666                 i--;
1667                 nr_devices--;
1668         }
1669
1670         kfree(devices_info);
1671         *free_bytes = avail_space;
1672         return 0;
1673 }
1674
1675 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1676 {
1677         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1678         struct btrfs_super_block *disk_super = fs_info->super_copy;
1679         struct list_head *head = &fs_info->space_info;
1680         struct btrfs_space_info *found;
1681         u64 total_used = 0;
1682         u64 total_free_data = 0;
1683         int bits = dentry->d_sb->s_blocksize_bits;
1684         __be32 *fsid = (__be32 *)fs_info->fsid;
1685         int ret;
1686
1687         /* holding chunk_muext to avoid allocating new chunks */
1688         mutex_lock(&fs_info->chunk_mutex);
1689         rcu_read_lock();
1690         list_for_each_entry_rcu(found, head, list) {
1691                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1692                         total_free_data += found->disk_total - found->disk_used;
1693                         total_free_data -=
1694                                 btrfs_account_ro_block_groups_free_space(found);
1695                 }
1696
1697                 total_used += found->disk_used;
1698         }
1699         rcu_read_unlock();
1700
1701         buf->f_namelen = BTRFS_NAME_LEN;
1702         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1703         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1704         buf->f_bsize = dentry->d_sb->s_blocksize;
1705         buf->f_type = BTRFS_SUPER_MAGIC;
1706         buf->f_bavail = total_free_data;
1707         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1708         if (ret) {
1709                 mutex_unlock(&fs_info->chunk_mutex);
1710                 return ret;
1711         }
1712         buf->f_bavail += total_free_data;
1713         buf->f_bavail = buf->f_bavail >> bits;
1714         mutex_unlock(&fs_info->chunk_mutex);
1715
1716         /* We treat it as constant endianness (it doesn't matter _which_)
1717            because we want the fsid to come out the same whether mounted
1718            on a big-endian or little-endian host */
1719         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1720         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1721         /* Mask in the root object ID too, to disambiguate subvols */
1722         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1723         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1724
1725         return 0;
1726 }
1727
1728 static void btrfs_kill_super(struct super_block *sb)
1729 {
1730         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1731         kill_anon_super(sb);
1732         free_fs_info(fs_info);
1733 }
1734
1735 static struct file_system_type btrfs_fs_type = {
1736         .owner          = THIS_MODULE,
1737         .name           = "btrfs",
1738         .mount          = btrfs_mount,
1739         .kill_sb        = btrfs_kill_super,
1740         .fs_flags       = FS_REQUIRES_DEV,
1741 };
1742 MODULE_ALIAS_FS("btrfs");
1743
1744 /*
1745  * used by btrfsctl to scan devices when no FS is mounted
1746  */
1747 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1748                                 unsigned long arg)
1749 {
1750         struct btrfs_ioctl_vol_args *vol;
1751         struct btrfs_fs_devices *fs_devices;
1752         int ret = -ENOTTY;
1753
1754         if (!capable(CAP_SYS_ADMIN))
1755                 return -EPERM;
1756
1757         vol = memdup_user((void __user *)arg, sizeof(*vol));
1758         if (IS_ERR(vol))
1759                 return PTR_ERR(vol);
1760
1761         switch (cmd) {
1762         case BTRFS_IOC_SCAN_DEV:
1763                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1764                                             &btrfs_fs_type, &fs_devices);
1765                 break;
1766         case BTRFS_IOC_DEVICES_READY:
1767                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1768                                             &btrfs_fs_type, &fs_devices);
1769                 if (ret)
1770                         break;
1771                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1772                 break;
1773         }
1774
1775         kfree(vol);
1776         return ret;
1777 }
1778
1779 static int btrfs_freeze(struct super_block *sb)
1780 {
1781         struct btrfs_trans_handle *trans;
1782         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1783
1784         trans = btrfs_attach_transaction_barrier(root);
1785         if (IS_ERR(trans)) {
1786                 /* no transaction, don't bother */
1787                 if (PTR_ERR(trans) == -ENOENT)
1788                         return 0;
1789                 return PTR_ERR(trans);
1790         }
1791         return btrfs_commit_transaction(trans, root);
1792 }
1793
1794 static int btrfs_unfreeze(struct super_block *sb)
1795 {
1796         return 0;
1797 }
1798
1799 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1800 {
1801         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1802         struct btrfs_fs_devices *cur_devices;
1803         struct btrfs_device *dev, *first_dev = NULL;
1804         struct list_head *head;
1805         struct rcu_string *name;
1806
1807         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1808         cur_devices = fs_info->fs_devices;
1809         while (cur_devices) {
1810                 head = &cur_devices->devices;
1811                 list_for_each_entry(dev, head, dev_list) {
1812                         if (dev->missing)
1813                                 continue;
1814                         if (!dev->name)
1815                                 continue;
1816                         if (!first_dev || dev->devid < first_dev->devid)
1817                                 first_dev = dev;
1818                 }
1819                 cur_devices = cur_devices->seed;
1820         }
1821
1822         if (first_dev) {
1823                 rcu_read_lock();
1824                 name = rcu_dereference(first_dev->name);
1825                 seq_escape(m, name->str, " \t\n\\");
1826                 rcu_read_unlock();
1827         } else {
1828                 WARN_ON(1);
1829         }
1830         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1831         return 0;
1832 }
1833
1834 static const struct super_operations btrfs_super_ops = {
1835         .drop_inode     = btrfs_drop_inode,
1836         .evict_inode    = btrfs_evict_inode,
1837         .put_super      = btrfs_put_super,
1838         .sync_fs        = btrfs_sync_fs,
1839         .show_options   = btrfs_show_options,
1840         .show_devname   = btrfs_show_devname,
1841         .write_inode    = btrfs_write_inode,
1842         .alloc_inode    = btrfs_alloc_inode,
1843         .destroy_inode  = btrfs_destroy_inode,
1844         .statfs         = btrfs_statfs,
1845         .remount_fs     = btrfs_remount,
1846         .freeze_fs      = btrfs_freeze,
1847         .unfreeze_fs    = btrfs_unfreeze,
1848 };
1849
1850 static const struct file_operations btrfs_ctl_fops = {
1851         .unlocked_ioctl  = btrfs_control_ioctl,
1852         .compat_ioctl = btrfs_control_ioctl,
1853         .owner   = THIS_MODULE,
1854         .llseek = noop_llseek,
1855 };
1856
1857 static struct miscdevice btrfs_misc = {
1858         .minor          = BTRFS_MINOR,
1859         .name           = "btrfs-control",
1860         .fops           = &btrfs_ctl_fops
1861 };
1862
1863 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1864 MODULE_ALIAS("devname:btrfs-control");
1865
1866 static int btrfs_interface_init(void)
1867 {
1868         return misc_register(&btrfs_misc);
1869 }
1870
1871 static void btrfs_interface_exit(void)
1872 {
1873         if (misc_deregister(&btrfs_misc) < 0)
1874                 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
1875 }
1876
1877 static void btrfs_print_info(void)
1878 {
1879         printk(KERN_INFO "Btrfs loaded"
1880 #ifdef CONFIG_BTRFS_DEBUG
1881                         ", debug=on"
1882 #endif
1883 #ifdef CONFIG_BTRFS_ASSERT
1884                         ", assert=on"
1885 #endif
1886 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1887                         ", integrity-checker=on"
1888 #endif
1889                         "\n");
1890 }
1891
1892 static int btrfs_run_sanity_tests(void)
1893 {
1894         int ret;
1895
1896         ret = btrfs_init_test_fs();
1897         if (ret)
1898                 return ret;
1899
1900         ret = btrfs_test_free_space_cache();
1901         if (ret)
1902                 goto out;
1903         ret = btrfs_test_extent_buffer_operations();
1904         if (ret)
1905                 goto out;
1906         ret = btrfs_test_extent_io();
1907         if (ret)
1908                 goto out;
1909         ret = btrfs_test_inodes();
1910         if (ret)
1911                 goto out;
1912         ret = btrfs_test_qgroups();
1913 out:
1914         btrfs_destroy_test_fs();
1915         return ret;
1916 }
1917
1918 static int __init init_btrfs_fs(void)
1919 {
1920         int err;
1921
1922         err = btrfs_hash_init();
1923         if (err)
1924                 return err;
1925
1926         btrfs_props_init();
1927
1928         err = btrfs_init_sysfs();
1929         if (err)
1930                 goto free_hash;
1931
1932         btrfs_init_compress();
1933
1934         err = btrfs_init_cachep();
1935         if (err)
1936                 goto free_compress;
1937
1938         err = extent_io_init();
1939         if (err)
1940                 goto free_cachep;
1941
1942         err = extent_map_init();
1943         if (err)
1944                 goto free_extent_io;
1945
1946         err = ordered_data_init();
1947         if (err)
1948                 goto free_extent_map;
1949
1950         err = btrfs_delayed_inode_init();
1951         if (err)
1952                 goto free_ordered_data;
1953
1954         err = btrfs_auto_defrag_init();
1955         if (err)
1956                 goto free_delayed_inode;
1957
1958         err = btrfs_delayed_ref_init();
1959         if (err)
1960                 goto free_auto_defrag;
1961
1962         err = btrfs_prelim_ref_init();
1963         if (err)
1964                 goto free_prelim_ref;
1965
1966         err = btrfs_interface_init();
1967         if (err)
1968                 goto free_delayed_ref;
1969
1970         btrfs_init_lockdep();
1971
1972         btrfs_print_info();
1973
1974         err = btrfs_run_sanity_tests();
1975         if (err)
1976                 goto unregister_ioctl;
1977
1978         err = register_filesystem(&btrfs_fs_type);
1979         if (err)
1980                 goto unregister_ioctl;
1981
1982         return 0;
1983
1984 unregister_ioctl:
1985         btrfs_interface_exit();
1986 free_prelim_ref:
1987         btrfs_prelim_ref_exit();
1988 free_delayed_ref:
1989         btrfs_delayed_ref_exit();
1990 free_auto_defrag:
1991         btrfs_auto_defrag_exit();
1992 free_delayed_inode:
1993         btrfs_delayed_inode_exit();
1994 free_ordered_data:
1995         ordered_data_exit();
1996 free_extent_map:
1997         extent_map_exit();
1998 free_extent_io:
1999         extent_io_exit();
2000 free_cachep:
2001         btrfs_destroy_cachep();
2002 free_compress:
2003         btrfs_exit_compress();
2004         btrfs_exit_sysfs();
2005 free_hash:
2006         btrfs_hash_exit();
2007         return err;
2008 }
2009
2010 static void __exit exit_btrfs_fs(void)
2011 {
2012         btrfs_destroy_cachep();
2013         btrfs_delayed_ref_exit();
2014         btrfs_auto_defrag_exit();
2015         btrfs_delayed_inode_exit();
2016         btrfs_prelim_ref_exit();
2017         ordered_data_exit();
2018         extent_map_exit();
2019         extent_io_exit();
2020         btrfs_interface_exit();
2021         unregister_filesystem(&btrfs_fs_type);
2022         btrfs_exit_sysfs();
2023         btrfs_cleanup_fs_uuids();
2024         btrfs_exit_compress();
2025         btrfs_hash_exit();
2026 }
2027
2028 late_initcall(init_btrfs_fs);
2029 module_exit(exit_btrfs_fs)
2030
2031 MODULE_LICENSE("GPL");