Btrfs: change core code of btrfs to support the device replace operations
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61         struct list_head        list;
62         struct reada_control    *rc;
63         u64                     generation;
64 };
65
66 struct reada_extent {
67         u64                     logical;
68         struct btrfs_key        top;
69         u32                     blocksize;
70         int                     err;
71         struct list_head        extctl;
72         int                     refcnt;
73         spinlock_t              lock;
74         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
75         int                     nzones;
76         struct btrfs_device     *scheduled_for;
77 };
78
79 struct reada_zone {
80         u64                     start;
81         u64                     end;
82         u64                     elems;
83         struct list_head        list;
84         spinlock_t              lock;
85         int                     locked;
86         struct btrfs_device     *device;
87         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
88                                                            * self */
89         int                     ndevs;
90         struct kref             refcnt;
91 };
92
93 struct reada_machine_work {
94         struct btrfs_work       work;
95         struct btrfs_fs_info    *fs_info;
96 };
97
98 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
99 static void reada_control_release(struct kref *kref);
100 static void reada_zone_release(struct kref *kref);
101 static void reada_start_machine(struct btrfs_fs_info *fs_info);
102 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
103
104 static int reada_add_block(struct reada_control *rc, u64 logical,
105                            struct btrfs_key *top, int level, u64 generation);
106
107 /* recurses */
108 /* in case of err, eb might be NULL */
109 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
110                             u64 start, int err)
111 {
112         int level = 0;
113         int nritems;
114         int i;
115         u64 bytenr;
116         u64 generation;
117         struct reada_extent *re;
118         struct btrfs_fs_info *fs_info = root->fs_info;
119         struct list_head list;
120         unsigned long index = start >> PAGE_CACHE_SHIFT;
121         struct btrfs_device *for_dev;
122
123         if (eb)
124                 level = btrfs_header_level(eb);
125
126         /* find extent */
127         spin_lock(&fs_info->reada_lock);
128         re = radix_tree_lookup(&fs_info->reada_tree, index);
129         if (re)
130                 re->refcnt++;
131         spin_unlock(&fs_info->reada_lock);
132
133         if (!re)
134                 return -1;
135
136         spin_lock(&re->lock);
137         /*
138          * just take the full list from the extent. afterwards we
139          * don't need the lock anymore
140          */
141         list_replace_init(&re->extctl, &list);
142         for_dev = re->scheduled_for;
143         re->scheduled_for = NULL;
144         spin_unlock(&re->lock);
145
146         if (err == 0) {
147                 nritems = level ? btrfs_header_nritems(eb) : 0;
148                 generation = btrfs_header_generation(eb);
149                 /*
150                  * FIXME: currently we just set nritems to 0 if this is a leaf,
151                  * effectively ignoring the content. In a next step we could
152                  * trigger more readahead depending from the content, e.g.
153                  * fetch the checksums for the extents in the leaf.
154                  */
155         } else {
156                 /*
157                  * this is the error case, the extent buffer has not been
158                  * read correctly. We won't access anything from it and
159                  * just cleanup our data structures. Effectively this will
160                  * cut the branch below this node from read ahead.
161                  */
162                 nritems = 0;
163                 generation = 0;
164         }
165
166         for (i = 0; i < nritems; i++) {
167                 struct reada_extctl *rec;
168                 u64 n_gen;
169                 struct btrfs_key key;
170                 struct btrfs_key next_key;
171
172                 btrfs_node_key_to_cpu(eb, &key, i);
173                 if (i + 1 < nritems)
174                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
175                 else
176                         next_key = re->top;
177                 bytenr = btrfs_node_blockptr(eb, i);
178                 n_gen = btrfs_node_ptr_generation(eb, i);
179
180                 list_for_each_entry(rec, &list, list) {
181                         struct reada_control *rc = rec->rc;
182
183                         /*
184                          * if the generation doesn't match, just ignore this
185                          * extctl. This will probably cut off a branch from
186                          * prefetch. Alternatively one could start a new (sub-)
187                          * prefetch for this branch, starting again from root.
188                          * FIXME: move the generation check out of this loop
189                          */
190 #ifdef DEBUG
191                         if (rec->generation != generation) {
192                                 printk(KERN_DEBUG "generation mismatch for "
193                                                 "(%llu,%d,%llu) %llu != %llu\n",
194                                        key.objectid, key.type, key.offset,
195                                        rec->generation, generation);
196                         }
197 #endif
198                         if (rec->generation == generation &&
199                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
200                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
201                                 reada_add_block(rc, bytenr, &next_key,
202                                                 level - 1, n_gen);
203                 }
204         }
205         /*
206          * free extctl records
207          */
208         while (!list_empty(&list)) {
209                 struct reada_control *rc;
210                 struct reada_extctl *rec;
211
212                 rec = list_first_entry(&list, struct reada_extctl, list);
213                 list_del(&rec->list);
214                 rc = rec->rc;
215                 kfree(rec);
216
217                 kref_get(&rc->refcnt);
218                 if (atomic_dec_and_test(&rc->elems)) {
219                         kref_put(&rc->refcnt, reada_control_release);
220                         wake_up(&rc->wait);
221                 }
222                 kref_put(&rc->refcnt, reada_control_release);
223
224                 reada_extent_put(fs_info, re);  /* one ref for each entry */
225         }
226         reada_extent_put(fs_info, re);  /* our ref */
227         if (for_dev)
228                 atomic_dec(&for_dev->reada_in_flight);
229
230         return 0;
231 }
232
233 /*
234  * start is passed separately in case eb in NULL, which may be the case with
235  * failed I/O
236  */
237 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
238                          u64 start, int err)
239 {
240         int ret;
241
242         ret = __readahead_hook(root, eb, start, err);
243
244         reada_start_machine(root->fs_info);
245
246         return ret;
247 }
248
249 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
250                                           struct btrfs_device *dev, u64 logical,
251                                           struct btrfs_bio *bbio)
252 {
253         int ret;
254         struct reada_zone *zone;
255         struct btrfs_block_group_cache *cache = NULL;
256         u64 start;
257         u64 end;
258         int i;
259
260         zone = NULL;
261         spin_lock(&fs_info->reada_lock);
262         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
263                                      logical >> PAGE_CACHE_SHIFT, 1);
264         if (ret == 1)
265                 kref_get(&zone->refcnt);
266         spin_unlock(&fs_info->reada_lock);
267
268         if (ret == 1) {
269                 if (logical >= zone->start && logical < zone->end)
270                         return zone;
271                 spin_lock(&fs_info->reada_lock);
272                 kref_put(&zone->refcnt, reada_zone_release);
273                 spin_unlock(&fs_info->reada_lock);
274         }
275
276         cache = btrfs_lookup_block_group(fs_info, logical);
277         if (!cache)
278                 return NULL;
279
280         start = cache->key.objectid;
281         end = start + cache->key.offset - 1;
282         btrfs_put_block_group(cache);
283
284         zone = kzalloc(sizeof(*zone), GFP_NOFS);
285         if (!zone)
286                 return NULL;
287
288         zone->start = start;
289         zone->end = end;
290         INIT_LIST_HEAD(&zone->list);
291         spin_lock_init(&zone->lock);
292         zone->locked = 0;
293         kref_init(&zone->refcnt);
294         zone->elems = 0;
295         zone->device = dev; /* our device always sits at index 0 */
296         for (i = 0; i < bbio->num_stripes; ++i) {
297                 /* bounds have already been checked */
298                 zone->devs[i] = bbio->stripes[i].dev;
299         }
300         zone->ndevs = bbio->num_stripes;
301
302         spin_lock(&fs_info->reada_lock);
303         ret = radix_tree_insert(&dev->reada_zones,
304                                 (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
305                                 zone);
306
307         if (ret == -EEXIST) {
308                 kfree(zone);
309                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
310                                              logical >> PAGE_CACHE_SHIFT, 1);
311                 if (ret == 1)
312                         kref_get(&zone->refcnt);
313         }
314         spin_unlock(&fs_info->reada_lock);
315
316         return zone;
317 }
318
319 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
320                                               u64 logical,
321                                               struct btrfs_key *top, int level)
322 {
323         int ret;
324         struct reada_extent *re = NULL;
325         struct reada_extent *re_exist = NULL;
326         struct btrfs_fs_info *fs_info = root->fs_info;
327         struct btrfs_bio *bbio = NULL;
328         struct btrfs_device *dev;
329         struct btrfs_device *prev_dev;
330         u32 blocksize;
331         u64 length;
332         int nzones = 0;
333         int i;
334         unsigned long index = logical >> PAGE_CACHE_SHIFT;
335         int dev_replace_is_ongoing;
336
337         spin_lock(&fs_info->reada_lock);
338         re = radix_tree_lookup(&fs_info->reada_tree, index);
339         if (re)
340                 re->refcnt++;
341         spin_unlock(&fs_info->reada_lock);
342
343         if (re)
344                 return re;
345
346         re = kzalloc(sizeof(*re), GFP_NOFS);
347         if (!re)
348                 return NULL;
349
350         blocksize = btrfs_level_size(root, level);
351         re->logical = logical;
352         re->blocksize = blocksize;
353         re->top = *top;
354         INIT_LIST_HEAD(&re->extctl);
355         spin_lock_init(&re->lock);
356         re->refcnt = 1;
357
358         /*
359          * map block
360          */
361         length = blocksize;
362         ret = btrfs_map_block(fs_info, REQ_WRITE, logical, &length, &bbio, 0);
363         if (ret || !bbio || length < blocksize)
364                 goto error;
365
366         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
367                 printk(KERN_ERR "btrfs readahead: more than %d copies not "
368                                 "supported", BTRFS_MAX_MIRRORS);
369                 goto error;
370         }
371
372         for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
373                 struct reada_zone *zone;
374
375                 dev = bbio->stripes[nzones].dev;
376                 zone = reada_find_zone(fs_info, dev, logical, bbio);
377                 if (!zone)
378                         break;
379
380                 re->zones[nzones] = zone;
381                 spin_lock(&zone->lock);
382                 if (!zone->elems)
383                         kref_get(&zone->refcnt);
384                 ++zone->elems;
385                 spin_unlock(&zone->lock);
386                 spin_lock(&fs_info->reada_lock);
387                 kref_put(&zone->refcnt, reada_zone_release);
388                 spin_unlock(&fs_info->reada_lock);
389         }
390         re->nzones = nzones;
391         if (nzones == 0) {
392                 /* not a single zone found, error and out */
393                 goto error;
394         }
395
396         /* insert extent in reada_tree + all per-device trees, all or nothing */
397         btrfs_dev_replace_lock(&fs_info->dev_replace);
398         spin_lock(&fs_info->reada_lock);
399         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
400         if (ret == -EEXIST) {
401                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
402                 BUG_ON(!re_exist);
403                 re_exist->refcnt++;
404                 spin_unlock(&fs_info->reada_lock);
405                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
406                 goto error;
407         }
408         if (ret) {
409                 spin_unlock(&fs_info->reada_lock);
410                 btrfs_dev_replace_unlock(&fs_info->dev_replace);
411                 goto error;
412         }
413         prev_dev = NULL;
414         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
415                         &fs_info->dev_replace);
416         for (i = 0; i < nzones; ++i) {
417                 dev = bbio->stripes[i].dev;
418                 if (dev == prev_dev) {
419                         /*
420                          * in case of DUP, just add the first zone. As both
421                          * are on the same device, there's nothing to gain
422                          * from adding both.
423                          * Also, it wouldn't work, as the tree is per device
424                          * and adding would fail with EEXIST
425                          */
426                         continue;
427                 }
428                 if (!dev->bdev) {
429                         /* cannot read ahead on missing device */
430                         continue;
431                 }
432                 if (dev_replace_is_ongoing &&
433                     dev == fs_info->dev_replace.tgtdev) {
434                         /*
435                          * as this device is selected for reading only as
436                          * a last resort, skip it for read ahead.
437                          */
438                         continue;
439                 }
440                 prev_dev = dev;
441                 ret = radix_tree_insert(&dev->reada_extents, index, re);
442                 if (ret) {
443                         while (--i >= 0) {
444                                 dev = bbio->stripes[i].dev;
445                                 BUG_ON(dev == NULL);
446                                 /* ignore whether the entry was inserted */
447                                 radix_tree_delete(&dev->reada_extents, index);
448                         }
449                         BUG_ON(fs_info == NULL);
450                         radix_tree_delete(&fs_info->reada_tree, index);
451                         spin_unlock(&fs_info->reada_lock);
452                         btrfs_dev_replace_unlock(&fs_info->dev_replace);
453                         goto error;
454                 }
455         }
456         spin_unlock(&fs_info->reada_lock);
457         btrfs_dev_replace_unlock(&fs_info->dev_replace);
458
459         kfree(bbio);
460         return re;
461
462 error:
463         while (nzones) {
464                 struct reada_zone *zone;
465
466                 --nzones;
467                 zone = re->zones[nzones];
468                 kref_get(&zone->refcnt);
469                 spin_lock(&zone->lock);
470                 --zone->elems;
471                 if (zone->elems == 0) {
472                         /*
473                          * no fs_info->reada_lock needed, as this can't be
474                          * the last ref
475                          */
476                         kref_put(&zone->refcnt, reada_zone_release);
477                 }
478                 spin_unlock(&zone->lock);
479
480                 spin_lock(&fs_info->reada_lock);
481                 kref_put(&zone->refcnt, reada_zone_release);
482                 spin_unlock(&fs_info->reada_lock);
483         }
484         kfree(bbio);
485         kfree(re);
486         return re_exist;
487 }
488
489 static void reada_extent_put(struct btrfs_fs_info *fs_info,
490                              struct reada_extent *re)
491 {
492         int i;
493         unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
494
495         spin_lock(&fs_info->reada_lock);
496         if (--re->refcnt) {
497                 spin_unlock(&fs_info->reada_lock);
498                 return;
499         }
500
501         radix_tree_delete(&fs_info->reada_tree, index);
502         for (i = 0; i < re->nzones; ++i) {
503                 struct reada_zone *zone = re->zones[i];
504
505                 radix_tree_delete(&zone->device->reada_extents, index);
506         }
507
508         spin_unlock(&fs_info->reada_lock);
509
510         for (i = 0; i < re->nzones; ++i) {
511                 struct reada_zone *zone = re->zones[i];
512
513                 kref_get(&zone->refcnt);
514                 spin_lock(&zone->lock);
515                 --zone->elems;
516                 if (zone->elems == 0) {
517                         /* no fs_info->reada_lock needed, as this can't be
518                          * the last ref */
519                         kref_put(&zone->refcnt, reada_zone_release);
520                 }
521                 spin_unlock(&zone->lock);
522
523                 spin_lock(&fs_info->reada_lock);
524                 kref_put(&zone->refcnt, reada_zone_release);
525                 spin_unlock(&fs_info->reada_lock);
526         }
527         if (re->scheduled_for)
528                 atomic_dec(&re->scheduled_for->reada_in_flight);
529
530         kfree(re);
531 }
532
533 static void reada_zone_release(struct kref *kref)
534 {
535         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
536
537         radix_tree_delete(&zone->device->reada_zones,
538                           zone->end >> PAGE_CACHE_SHIFT);
539
540         kfree(zone);
541 }
542
543 static void reada_control_release(struct kref *kref)
544 {
545         struct reada_control *rc = container_of(kref, struct reada_control,
546                                                 refcnt);
547
548         kfree(rc);
549 }
550
551 static int reada_add_block(struct reada_control *rc, u64 logical,
552                            struct btrfs_key *top, int level, u64 generation)
553 {
554         struct btrfs_root *root = rc->root;
555         struct reada_extent *re;
556         struct reada_extctl *rec;
557
558         re = reada_find_extent(root, logical, top, level); /* takes one ref */
559         if (!re)
560                 return -1;
561
562         rec = kzalloc(sizeof(*rec), GFP_NOFS);
563         if (!rec) {
564                 reada_extent_put(root->fs_info, re);
565                 return -1;
566         }
567
568         rec->rc = rc;
569         rec->generation = generation;
570         atomic_inc(&rc->elems);
571
572         spin_lock(&re->lock);
573         list_add_tail(&rec->list, &re->extctl);
574         spin_unlock(&re->lock);
575
576         /* leave the ref on the extent */
577
578         return 0;
579 }
580
581 /*
582  * called with fs_info->reada_lock held
583  */
584 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
585 {
586         int i;
587         unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
588
589         for (i = 0; i < zone->ndevs; ++i) {
590                 struct reada_zone *peer;
591                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
592                 if (peer && peer->device != zone->device)
593                         peer->locked = lock;
594         }
595 }
596
597 /*
598  * called with fs_info->reada_lock held
599  */
600 static int reada_pick_zone(struct btrfs_device *dev)
601 {
602         struct reada_zone *top_zone = NULL;
603         struct reada_zone *top_locked_zone = NULL;
604         u64 top_elems = 0;
605         u64 top_locked_elems = 0;
606         unsigned long index = 0;
607         int ret;
608
609         if (dev->reada_curr_zone) {
610                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
611                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
612                 dev->reada_curr_zone = NULL;
613         }
614         /* pick the zone with the most elements */
615         while (1) {
616                 struct reada_zone *zone;
617
618                 ret = radix_tree_gang_lookup(&dev->reada_zones,
619                                              (void **)&zone, index, 1);
620                 if (ret == 0)
621                         break;
622                 index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
623                 if (zone->locked) {
624                         if (zone->elems > top_locked_elems) {
625                                 top_locked_elems = zone->elems;
626                                 top_locked_zone = zone;
627                         }
628                 } else {
629                         if (zone->elems > top_elems) {
630                                 top_elems = zone->elems;
631                                 top_zone = zone;
632                         }
633                 }
634         }
635         if (top_zone)
636                 dev->reada_curr_zone = top_zone;
637         else if (top_locked_zone)
638                 dev->reada_curr_zone = top_locked_zone;
639         else
640                 return 0;
641
642         dev->reada_next = dev->reada_curr_zone->start;
643         kref_get(&dev->reada_curr_zone->refcnt);
644         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
645
646         return 1;
647 }
648
649 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
650                                    struct btrfs_device *dev)
651 {
652         struct reada_extent *re = NULL;
653         int mirror_num = 0;
654         struct extent_buffer *eb = NULL;
655         u64 logical;
656         u32 blocksize;
657         int ret;
658         int i;
659         int need_kick = 0;
660
661         spin_lock(&fs_info->reada_lock);
662         if (dev->reada_curr_zone == NULL) {
663                 ret = reada_pick_zone(dev);
664                 if (!ret) {
665                         spin_unlock(&fs_info->reada_lock);
666                         return 0;
667                 }
668         }
669         /*
670          * FIXME currently we issue the reads one extent at a time. If we have
671          * a contiguous block of extents, we could also coagulate them or use
672          * plugging to speed things up
673          */
674         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
675                                      dev->reada_next >> PAGE_CACHE_SHIFT, 1);
676         if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
677                 ret = reada_pick_zone(dev);
678                 if (!ret) {
679                         spin_unlock(&fs_info->reada_lock);
680                         return 0;
681                 }
682                 re = NULL;
683                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
684                                         dev->reada_next >> PAGE_CACHE_SHIFT, 1);
685         }
686         if (ret == 0) {
687                 spin_unlock(&fs_info->reada_lock);
688                 return 0;
689         }
690         dev->reada_next = re->logical + re->blocksize;
691         re->refcnt++;
692
693         spin_unlock(&fs_info->reada_lock);
694
695         /*
696          * find mirror num
697          */
698         for (i = 0; i < re->nzones; ++i) {
699                 if (re->zones[i]->device == dev) {
700                         mirror_num = i + 1;
701                         break;
702                 }
703         }
704         logical = re->logical;
705         blocksize = re->blocksize;
706
707         spin_lock(&re->lock);
708         if (re->scheduled_for == NULL) {
709                 re->scheduled_for = dev;
710                 need_kick = 1;
711         }
712         spin_unlock(&re->lock);
713
714         reada_extent_put(fs_info, re);
715
716         if (!need_kick)
717                 return 0;
718
719         atomic_inc(&dev->reada_in_flight);
720         ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
721                          mirror_num, &eb);
722         if (ret)
723                 __readahead_hook(fs_info->extent_root, NULL, logical, ret);
724         else if (eb)
725                 __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
726
727         if (eb)
728                 free_extent_buffer(eb);
729
730         return 1;
731
732 }
733
734 static void reada_start_machine_worker(struct btrfs_work *work)
735 {
736         struct reada_machine_work *rmw;
737         struct btrfs_fs_info *fs_info;
738         int old_ioprio;
739
740         rmw = container_of(work, struct reada_machine_work, work);
741         fs_info = rmw->fs_info;
742
743         kfree(rmw);
744
745         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
746                                        task_nice_ioprio(current));
747         set_task_ioprio(current, BTRFS_IOPRIO_READA);
748         __reada_start_machine(fs_info);
749         set_task_ioprio(current, old_ioprio);
750 }
751
752 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
753 {
754         struct btrfs_device *device;
755         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
756         u64 enqueued;
757         u64 total = 0;
758         int i;
759
760         do {
761                 enqueued = 0;
762                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
763                         if (atomic_read(&device->reada_in_flight) <
764                             MAX_IN_FLIGHT)
765                                 enqueued += reada_start_machine_dev(fs_info,
766                                                                     device);
767                 }
768                 total += enqueued;
769         } while (enqueued && total < 10000);
770
771         if (enqueued == 0)
772                 return;
773
774         /*
775          * If everything is already in the cache, this is effectively single
776          * threaded. To a) not hold the caller for too long and b) to utilize
777          * more cores, we broke the loop above after 10000 iterations and now
778          * enqueue to workers to finish it. This will distribute the load to
779          * the cores.
780          */
781         for (i = 0; i < 2; ++i)
782                 reada_start_machine(fs_info);
783 }
784
785 static void reada_start_machine(struct btrfs_fs_info *fs_info)
786 {
787         struct reada_machine_work *rmw;
788
789         rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
790         if (!rmw) {
791                 /* FIXME we cannot handle this properly right now */
792                 BUG();
793         }
794         rmw->work.func = reada_start_machine_worker;
795         rmw->fs_info = fs_info;
796
797         btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
798 }
799
800 #ifdef DEBUG
801 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
802 {
803         struct btrfs_device *device;
804         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
805         unsigned long index;
806         int ret;
807         int i;
808         int j;
809         int cnt;
810
811         spin_lock(&fs_info->reada_lock);
812         list_for_each_entry(device, &fs_devices->devices, dev_list) {
813                 printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
814                         atomic_read(&device->reada_in_flight));
815                 index = 0;
816                 while (1) {
817                         struct reada_zone *zone;
818                         ret = radix_tree_gang_lookup(&device->reada_zones,
819                                                      (void **)&zone, index, 1);
820                         if (ret == 0)
821                                 break;
822                         printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
823                                 "%d devs", zone->start, zone->end, zone->elems,
824                                 zone->locked);
825                         for (j = 0; j < zone->ndevs; ++j) {
826                                 printk(KERN_CONT " %lld",
827                                         zone->devs[j]->devid);
828                         }
829                         if (device->reada_curr_zone == zone)
830                                 printk(KERN_CONT " curr off %llu",
831                                         device->reada_next - zone->start);
832                         printk(KERN_CONT "\n");
833                         index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
834                 }
835                 cnt = 0;
836                 index = 0;
837                 while (all) {
838                         struct reada_extent *re = NULL;
839
840                         ret = radix_tree_gang_lookup(&device->reada_extents,
841                                                      (void **)&re, index, 1);
842                         if (ret == 0)
843                                 break;
844                         printk(KERN_DEBUG
845                                 "  re: logical %llu size %u empty %d for %lld",
846                                 re->logical, re->blocksize,
847                                 list_empty(&re->extctl), re->scheduled_for ?
848                                 re->scheduled_for->devid : -1);
849
850                         for (i = 0; i < re->nzones; ++i) {
851                                 printk(KERN_CONT " zone %llu-%llu devs",
852                                         re->zones[i]->start,
853                                         re->zones[i]->end);
854                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
855                                         printk(KERN_CONT " %lld",
856                                                 re->zones[i]->devs[j]->devid);
857                                 }
858                         }
859                         printk(KERN_CONT "\n");
860                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
861                         if (++cnt > 15)
862                                 break;
863                 }
864         }
865
866         index = 0;
867         cnt = 0;
868         while (all) {
869                 struct reada_extent *re = NULL;
870
871                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
872                                              index, 1);
873                 if (ret == 0)
874                         break;
875                 if (!re->scheduled_for) {
876                         index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
877                         continue;
878                 }
879                 printk(KERN_DEBUG
880                         "re: logical %llu size %u list empty %d for %lld",
881                         re->logical, re->blocksize, list_empty(&re->extctl),
882                         re->scheduled_for ? re->scheduled_for->devid : -1);
883                 for (i = 0; i < re->nzones; ++i) {
884                         printk(KERN_CONT " zone %llu-%llu devs",
885                                 re->zones[i]->start,
886                                 re->zones[i]->end);
887                         for (i = 0; i < re->nzones; ++i) {
888                                 printk(KERN_CONT " zone %llu-%llu devs",
889                                         re->zones[i]->start,
890                                         re->zones[i]->end);
891                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
892                                         printk(KERN_CONT " %lld",
893                                                 re->zones[i]->devs[j]->devid);
894                                 }
895                         }
896                 }
897                 printk(KERN_CONT "\n");
898                 index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
899         }
900         spin_unlock(&fs_info->reada_lock);
901 }
902 #endif
903
904 /*
905  * interface
906  */
907 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
908                         struct btrfs_key *key_start, struct btrfs_key *key_end)
909 {
910         struct reada_control *rc;
911         u64 start;
912         u64 generation;
913         int level;
914         struct extent_buffer *node;
915         static struct btrfs_key max_key = {
916                 .objectid = (u64)-1,
917                 .type = (u8)-1,
918                 .offset = (u64)-1
919         };
920
921         rc = kzalloc(sizeof(*rc), GFP_NOFS);
922         if (!rc)
923                 return ERR_PTR(-ENOMEM);
924
925         rc->root = root;
926         rc->key_start = *key_start;
927         rc->key_end = *key_end;
928         atomic_set(&rc->elems, 0);
929         init_waitqueue_head(&rc->wait);
930         kref_init(&rc->refcnt);
931         kref_get(&rc->refcnt); /* one ref for having elements */
932
933         node = btrfs_root_node(root);
934         start = node->start;
935         level = btrfs_header_level(node);
936         generation = btrfs_header_generation(node);
937         free_extent_buffer(node);
938
939         if (reada_add_block(rc, start, &max_key, level, generation)) {
940                 kfree(rc);
941                 return ERR_PTR(-ENOMEM);
942         }
943
944         reada_start_machine(root->fs_info);
945
946         return rc;
947 }
948
949 #ifdef DEBUG
950 int btrfs_reada_wait(void *handle)
951 {
952         struct reada_control *rc = handle;
953
954         while (atomic_read(&rc->elems)) {
955                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
956                                    5 * HZ);
957                 dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
958         }
959
960         dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
961
962         kref_put(&rc->refcnt, reada_control_release);
963
964         return 0;
965 }
966 #else
967 int btrfs_reada_wait(void *handle)
968 {
969         struct reada_control *rc = handle;
970
971         while (atomic_read(&rc->elems)) {
972                 wait_event(rc->wait, atomic_read(&rc->elems) == 0);
973         }
974
975         kref_put(&rc->refcnt, reada_control_release);
976
977         return 0;
978 }
979 #endif
980
981 void btrfs_reada_detach(void *handle)
982 {
983         struct reada_control *rc = handle;
984
985         kref_put(&rc->refcnt, reada_control_release);
986 }