Btrfs: kill delay_iput arg to the wait_ordered functions
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "compat.h"
29 #include "hash.h"
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "transaction.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "math.h"
39
40 #undef SCRAMBLE_DELAYED_REFS
41
42 /*
43  * control flags for do_chunk_alloc's force field
44  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45  * if we really need one.
46  *
47  * CHUNK_ALLOC_LIMITED means to only try and allocate one
48  * if we have very few chunks already allocated.  This is
49  * used as part of the clustering code to help make sure
50  * we have a good pool of storage to cluster in, without
51  * filling the FS with empty chunks
52  *
53  * CHUNK_ALLOC_FORCE means it must try to allocate one
54  *
55  */
56 enum {
57         CHUNK_ALLOC_NO_FORCE = 0,
58         CHUNK_ALLOC_LIMITED = 1,
59         CHUNK_ALLOC_FORCE = 2,
60 };
61
62 /*
63  * Control how reservations are dealt with.
64  *
65  * RESERVE_FREE - freeing a reservation.
66  * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67  *   ENOSPC accounting
68  * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69  *   bytes_may_use as the ENOSPC accounting is done elsewhere
70  */
71 enum {
72         RESERVE_FREE = 0,
73         RESERVE_ALLOC = 1,
74         RESERVE_ALLOC_NO_ACCOUNT = 2,
75 };
76
77 static int update_block_group(struct btrfs_root *root,
78                               u64 bytenr, u64 num_bytes, int alloc);
79 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
80                                 struct btrfs_root *root,
81                                 u64 bytenr, u64 num_bytes, u64 parent,
82                                 u64 root_objectid, u64 owner_objectid,
83                                 u64 owner_offset, int refs_to_drop,
84                                 struct btrfs_delayed_extent_op *extra_op);
85 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
86                                     struct extent_buffer *leaf,
87                                     struct btrfs_extent_item *ei);
88 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
89                                       struct btrfs_root *root,
90                                       u64 parent, u64 root_objectid,
91                                       u64 flags, u64 owner, u64 offset,
92                                       struct btrfs_key *ins, int ref_mod);
93 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
94                                      struct btrfs_root *root,
95                                      u64 parent, u64 root_objectid,
96                                      u64 flags, struct btrfs_disk_key *key,
97                                      int level, struct btrfs_key *ins);
98 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
99                           struct btrfs_root *extent_root, u64 flags,
100                           int force);
101 static int find_next_key(struct btrfs_path *path, int level,
102                          struct btrfs_key *key);
103 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
104                             int dump_block_groups);
105 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
106                                        u64 num_bytes, int reserve);
107 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
108                                u64 num_bytes);
109 int btrfs_pin_extent(struct btrfs_root *root,
110                      u64 bytenr, u64 num_bytes, int reserved);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115         smp_mb();
116         return cache->cached == BTRFS_CACHE_FINISHED ||
117                 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122         return (cache->flags & bits) == bits;
123 }
124
125 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127         atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132         if (atomic_dec_and_test(&cache->count)) {
133                 WARN_ON(cache->pinned > 0);
134                 WARN_ON(cache->reserved > 0);
135                 kfree(cache->free_space_ctl);
136                 kfree(cache);
137         }
138 }
139
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145                                 struct btrfs_block_group_cache *block_group)
146 {
147         struct rb_node **p;
148         struct rb_node *parent = NULL;
149         struct btrfs_block_group_cache *cache;
150
151         spin_lock(&info->block_group_cache_lock);
152         p = &info->block_group_cache_tree.rb_node;
153
154         while (*p) {
155                 parent = *p;
156                 cache = rb_entry(parent, struct btrfs_block_group_cache,
157                                  cache_node);
158                 if (block_group->key.objectid < cache->key.objectid) {
159                         p = &(*p)->rb_left;
160                 } else if (block_group->key.objectid > cache->key.objectid) {
161                         p = &(*p)->rb_right;
162                 } else {
163                         spin_unlock(&info->block_group_cache_lock);
164                         return -EEXIST;
165                 }
166         }
167
168         rb_link_node(&block_group->cache_node, parent, p);
169         rb_insert_color(&block_group->cache_node,
170                         &info->block_group_cache_tree);
171
172         if (info->first_logical_byte > block_group->key.objectid)
173                 info->first_logical_byte = block_group->key.objectid;
174
175         spin_unlock(&info->block_group_cache_lock);
176
177         return 0;
178 }
179
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186                               int contains)
187 {
188         struct btrfs_block_group_cache *cache, *ret = NULL;
189         struct rb_node *n;
190         u64 end, start;
191
192         spin_lock(&info->block_group_cache_lock);
193         n = info->block_group_cache_tree.rb_node;
194
195         while (n) {
196                 cache = rb_entry(n, struct btrfs_block_group_cache,
197                                  cache_node);
198                 end = cache->key.objectid + cache->key.offset - 1;
199                 start = cache->key.objectid;
200
201                 if (bytenr < start) {
202                         if (!contains && (!ret || start < ret->key.objectid))
203                                 ret = cache;
204                         n = n->rb_left;
205                 } else if (bytenr > start) {
206                         if (contains && bytenr <= end) {
207                                 ret = cache;
208                                 break;
209                         }
210                         n = n->rb_right;
211                 } else {
212                         ret = cache;
213                         break;
214                 }
215         }
216         if (ret) {
217                 btrfs_get_block_group(ret);
218                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219                         info->first_logical_byte = ret->key.objectid;
220         }
221         spin_unlock(&info->block_group_cache_lock);
222
223         return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_root *root,
227                                u64 start, u64 num_bytes)
228 {
229         u64 end = start + num_bytes - 1;
230         set_extent_bits(&root->fs_info->freed_extents[0],
231                         start, end, EXTENT_UPTODATE, GFP_NOFS);
232         set_extent_bits(&root->fs_info->freed_extents[1],
233                         start, end, EXTENT_UPTODATE, GFP_NOFS);
234         return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_root *root,
238                                   struct btrfs_block_group_cache *cache)
239 {
240         u64 start, end;
241
242         start = cache->key.objectid;
243         end = start + cache->key.offset - 1;
244
245         clear_extent_bits(&root->fs_info->freed_extents[0],
246                           start, end, EXTENT_UPTODATE, GFP_NOFS);
247         clear_extent_bits(&root->fs_info->freed_extents[1],
248                           start, end, EXTENT_UPTODATE, GFP_NOFS);
249 }
250
251 static int exclude_super_stripes(struct btrfs_root *root,
252                                  struct btrfs_block_group_cache *cache)
253 {
254         u64 bytenr;
255         u64 *logical;
256         int stripe_len;
257         int i, nr, ret;
258
259         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261                 cache->bytes_super += stripe_len;
262                 ret = add_excluded_extent(root, cache->key.objectid,
263                                           stripe_len);
264                 if (ret)
265                         return ret;
266         }
267
268         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269                 bytenr = btrfs_sb_offset(i);
270                 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
271                                        cache->key.objectid, bytenr,
272                                        0, &logical, &nr, &stripe_len);
273                 if (ret)
274                         return ret;
275
276                 while (nr--) {
277                         u64 start, len;
278
279                         if (logical[nr] > cache->key.objectid +
280                             cache->key.offset)
281                                 continue;
282
283                         if (logical[nr] + stripe_len <= cache->key.objectid)
284                                 continue;
285
286                         start = logical[nr];
287                         if (start < cache->key.objectid) {
288                                 start = cache->key.objectid;
289                                 len = (logical[nr] + stripe_len) - start;
290                         } else {
291                                 len = min_t(u64, stripe_len,
292                                             cache->key.objectid +
293                                             cache->key.offset - start);
294                         }
295
296                         cache->bytes_super += len;
297                         ret = add_excluded_extent(root, start, len);
298                         if (ret) {
299                                 kfree(logical);
300                                 return ret;
301                         }
302                 }
303
304                 kfree(logical);
305         }
306         return 0;
307 }
308
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
311 {
312         struct btrfs_caching_control *ctl;
313
314         spin_lock(&cache->lock);
315         if (cache->cached != BTRFS_CACHE_STARTED) {
316                 spin_unlock(&cache->lock);
317                 return NULL;
318         }
319
320         /* We're loading it the fast way, so we don't have a caching_ctl. */
321         if (!cache->caching_ctl) {
322                 spin_unlock(&cache->lock);
323                 return NULL;
324         }
325
326         ctl = cache->caching_ctl;
327         atomic_inc(&ctl->count);
328         spin_unlock(&cache->lock);
329         return ctl;
330 }
331
332 static void put_caching_control(struct btrfs_caching_control *ctl)
333 {
334         if (atomic_dec_and_test(&ctl->count))
335                 kfree(ctl);
336 }
337
338 /*
339  * this is only called by cache_block_group, since we could have freed extents
340  * we need to check the pinned_extents for any extents that can't be used yet
341  * since their free space will be released as soon as the transaction commits.
342  */
343 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
344                               struct btrfs_fs_info *info, u64 start, u64 end)
345 {
346         u64 extent_start, extent_end, size, total_added = 0;
347         int ret;
348
349         while (start < end) {
350                 ret = find_first_extent_bit(info->pinned_extents, start,
351                                             &extent_start, &extent_end,
352                                             EXTENT_DIRTY | EXTENT_UPTODATE,
353                                             NULL);
354                 if (ret)
355                         break;
356
357                 if (extent_start <= start) {
358                         start = extent_end + 1;
359                 } else if (extent_start > start && extent_start < end) {
360                         size = extent_start - start;
361                         total_added += size;
362                         ret = btrfs_add_free_space(block_group, start,
363                                                    size);
364                         BUG_ON(ret); /* -ENOMEM or logic error */
365                         start = extent_end + 1;
366                 } else {
367                         break;
368                 }
369         }
370
371         if (start < end) {
372                 size = end - start;
373                 total_added += size;
374                 ret = btrfs_add_free_space(block_group, start, size);
375                 BUG_ON(ret); /* -ENOMEM or logic error */
376         }
377
378         return total_added;
379 }
380
381 static noinline void caching_thread(struct btrfs_work *work)
382 {
383         struct btrfs_block_group_cache *block_group;
384         struct btrfs_fs_info *fs_info;
385         struct btrfs_caching_control *caching_ctl;
386         struct btrfs_root *extent_root;
387         struct btrfs_path *path;
388         struct extent_buffer *leaf;
389         struct btrfs_key key;
390         u64 total_found = 0;
391         u64 last = 0;
392         u32 nritems;
393         int ret = -ENOMEM;
394
395         caching_ctl = container_of(work, struct btrfs_caching_control, work);
396         block_group = caching_ctl->block_group;
397         fs_info = block_group->fs_info;
398         extent_root = fs_info->extent_root;
399
400         path = btrfs_alloc_path();
401         if (!path)
402                 goto out;
403
404         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
405
406         /*
407          * We don't want to deadlock with somebody trying to allocate a new
408          * extent for the extent root while also trying to search the extent
409          * root to add free space.  So we skip locking and search the commit
410          * root, since its read-only
411          */
412         path->skip_locking = 1;
413         path->search_commit_root = 1;
414         path->reada = 1;
415
416         key.objectid = last;
417         key.offset = 0;
418         key.type = BTRFS_EXTENT_ITEM_KEY;
419 again:
420         mutex_lock(&caching_ctl->mutex);
421         /* need to make sure the commit_root doesn't disappear */
422         down_read(&fs_info->extent_commit_sem);
423
424 next:
425         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
426         if (ret < 0)
427                 goto err;
428
429         leaf = path->nodes[0];
430         nritems = btrfs_header_nritems(leaf);
431
432         while (1) {
433                 if (btrfs_fs_closing(fs_info) > 1) {
434                         last = (u64)-1;
435                         break;
436                 }
437
438                 if (path->slots[0] < nritems) {
439                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
440                 } else {
441                         ret = find_next_key(path, 0, &key);
442                         if (ret)
443                                 break;
444
445                         if (need_resched()) {
446                                 caching_ctl->progress = last;
447                                 btrfs_release_path(path);
448                                 up_read(&fs_info->extent_commit_sem);
449                                 mutex_unlock(&caching_ctl->mutex);
450                                 cond_resched();
451                                 goto again;
452                         }
453
454                         ret = btrfs_next_leaf(extent_root, path);
455                         if (ret < 0)
456                                 goto err;
457                         if (ret)
458                                 break;
459                         leaf = path->nodes[0];
460                         nritems = btrfs_header_nritems(leaf);
461                         continue;
462                 }
463
464                 if (key.objectid < last) {
465                         key.objectid = last;
466                         key.offset = 0;
467                         key.type = BTRFS_EXTENT_ITEM_KEY;
468
469                         caching_ctl->progress = last;
470                         btrfs_release_path(path);
471                         goto next;
472                 }
473
474                 if (key.objectid < block_group->key.objectid) {
475                         path->slots[0]++;
476                         continue;
477                 }
478
479                 if (key.objectid >= block_group->key.objectid +
480                     block_group->key.offset)
481                         break;
482
483                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
484                     key.type == BTRFS_METADATA_ITEM_KEY) {
485                         total_found += add_new_free_space(block_group,
486                                                           fs_info, last,
487                                                           key.objectid);
488                         if (key.type == BTRFS_METADATA_ITEM_KEY)
489                                 last = key.objectid +
490                                         fs_info->tree_root->leafsize;
491                         else
492                                 last = key.objectid + key.offset;
493
494                         if (total_found > (1024 * 1024 * 2)) {
495                                 total_found = 0;
496                                 wake_up(&caching_ctl->wait);
497                         }
498                 }
499                 path->slots[0]++;
500         }
501         ret = 0;
502
503         total_found += add_new_free_space(block_group, fs_info, last,
504                                           block_group->key.objectid +
505                                           block_group->key.offset);
506         caching_ctl->progress = (u64)-1;
507
508         spin_lock(&block_group->lock);
509         block_group->caching_ctl = NULL;
510         block_group->cached = BTRFS_CACHE_FINISHED;
511         spin_unlock(&block_group->lock);
512
513 err:
514         btrfs_free_path(path);
515         up_read(&fs_info->extent_commit_sem);
516
517         free_excluded_extents(extent_root, block_group);
518
519         mutex_unlock(&caching_ctl->mutex);
520 out:
521         if (ret) {
522                 spin_lock(&block_group->lock);
523                 block_group->caching_ctl = NULL;
524                 block_group->cached = BTRFS_CACHE_ERROR;
525                 spin_unlock(&block_group->lock);
526         }
527         wake_up(&caching_ctl->wait);
528
529         put_caching_control(caching_ctl);
530         btrfs_put_block_group(block_group);
531 }
532
533 static int cache_block_group(struct btrfs_block_group_cache *cache,
534                              int load_cache_only)
535 {
536         DEFINE_WAIT(wait);
537         struct btrfs_fs_info *fs_info = cache->fs_info;
538         struct btrfs_caching_control *caching_ctl;
539         int ret = 0;
540
541         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
542         if (!caching_ctl)
543                 return -ENOMEM;
544
545         INIT_LIST_HEAD(&caching_ctl->list);
546         mutex_init(&caching_ctl->mutex);
547         init_waitqueue_head(&caching_ctl->wait);
548         caching_ctl->block_group = cache;
549         caching_ctl->progress = cache->key.objectid;
550         atomic_set(&caching_ctl->count, 1);
551         caching_ctl->work.func = caching_thread;
552
553         spin_lock(&cache->lock);
554         /*
555          * This should be a rare occasion, but this could happen I think in the
556          * case where one thread starts to load the space cache info, and then
557          * some other thread starts a transaction commit which tries to do an
558          * allocation while the other thread is still loading the space cache
559          * info.  The previous loop should have kept us from choosing this block
560          * group, but if we've moved to the state where we will wait on caching
561          * block groups we need to first check if we're doing a fast load here,
562          * so we can wait for it to finish, otherwise we could end up allocating
563          * from a block group who's cache gets evicted for one reason or
564          * another.
565          */
566         while (cache->cached == BTRFS_CACHE_FAST) {
567                 struct btrfs_caching_control *ctl;
568
569                 ctl = cache->caching_ctl;
570                 atomic_inc(&ctl->count);
571                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572                 spin_unlock(&cache->lock);
573
574                 schedule();
575
576                 finish_wait(&ctl->wait, &wait);
577                 put_caching_control(ctl);
578                 spin_lock(&cache->lock);
579         }
580
581         if (cache->cached != BTRFS_CACHE_NO) {
582                 spin_unlock(&cache->lock);
583                 kfree(caching_ctl);
584                 return 0;
585         }
586         WARN_ON(cache->caching_ctl);
587         cache->caching_ctl = caching_ctl;
588         cache->cached = BTRFS_CACHE_FAST;
589         spin_unlock(&cache->lock);
590
591         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
592                 ret = load_free_space_cache(fs_info, cache);
593
594                 spin_lock(&cache->lock);
595                 if (ret == 1) {
596                         cache->caching_ctl = NULL;
597                         cache->cached = BTRFS_CACHE_FINISHED;
598                         cache->last_byte_to_unpin = (u64)-1;
599                 } else {
600                         if (load_cache_only) {
601                                 cache->caching_ctl = NULL;
602                                 cache->cached = BTRFS_CACHE_NO;
603                         } else {
604                                 cache->cached = BTRFS_CACHE_STARTED;
605                         }
606                 }
607                 spin_unlock(&cache->lock);
608                 wake_up(&caching_ctl->wait);
609                 if (ret == 1) {
610                         put_caching_control(caching_ctl);
611                         free_excluded_extents(fs_info->extent_root, cache);
612                         return 0;
613                 }
614         } else {
615                 /*
616                  * We are not going to do the fast caching, set cached to the
617                  * appropriate value and wakeup any waiters.
618                  */
619                 spin_lock(&cache->lock);
620                 if (load_cache_only) {
621                         cache->caching_ctl = NULL;
622                         cache->cached = BTRFS_CACHE_NO;
623                 } else {
624                         cache->cached = BTRFS_CACHE_STARTED;
625                 }
626                 spin_unlock(&cache->lock);
627                 wake_up(&caching_ctl->wait);
628         }
629
630         if (load_cache_only) {
631                 put_caching_control(caching_ctl);
632                 return 0;
633         }
634
635         down_write(&fs_info->extent_commit_sem);
636         atomic_inc(&caching_ctl->count);
637         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
638         up_write(&fs_info->extent_commit_sem);
639
640         btrfs_get_block_group(cache);
641
642         btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
643
644         return ret;
645 }
646
647 /*
648  * return the block group that starts at or after bytenr
649  */
650 static struct btrfs_block_group_cache *
651 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
652 {
653         struct btrfs_block_group_cache *cache;
654
655         cache = block_group_cache_tree_search(info, bytenr, 0);
656
657         return cache;
658 }
659
660 /*
661  * return the block group that contains the given bytenr
662  */
663 struct btrfs_block_group_cache *btrfs_lookup_block_group(
664                                                  struct btrfs_fs_info *info,
665                                                  u64 bytenr)
666 {
667         struct btrfs_block_group_cache *cache;
668
669         cache = block_group_cache_tree_search(info, bytenr, 1);
670
671         return cache;
672 }
673
674 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
675                                                   u64 flags)
676 {
677         struct list_head *head = &info->space_info;
678         struct btrfs_space_info *found;
679
680         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
681
682         rcu_read_lock();
683         list_for_each_entry_rcu(found, head, list) {
684                 if (found->flags & flags) {
685                         rcu_read_unlock();
686                         return found;
687                 }
688         }
689         rcu_read_unlock();
690         return NULL;
691 }
692
693 /*
694  * after adding space to the filesystem, we need to clear the full flags
695  * on all the space infos.
696  */
697 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
698 {
699         struct list_head *head = &info->space_info;
700         struct btrfs_space_info *found;
701
702         rcu_read_lock();
703         list_for_each_entry_rcu(found, head, list)
704                 found->full = 0;
705         rcu_read_unlock();
706 }
707
708 /* simple helper to search for an existing extent at a given offset */
709 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
710 {
711         int ret;
712         struct btrfs_key key;
713         struct btrfs_path *path;
714
715         path = btrfs_alloc_path();
716         if (!path)
717                 return -ENOMEM;
718
719         key.objectid = start;
720         key.offset = len;
721         key.type = BTRFS_EXTENT_ITEM_KEY;
722         ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
723                                 0, 0);
724         if (ret > 0) {
725                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
726                 if (key.objectid == start &&
727                     key.type == BTRFS_METADATA_ITEM_KEY)
728                         ret = 0;
729         }
730         btrfs_free_path(path);
731         return ret;
732 }
733
734 /*
735  * helper function to lookup reference count and flags of a tree block.
736  *
737  * the head node for delayed ref is used to store the sum of all the
738  * reference count modifications queued up in the rbtree. the head
739  * node may also store the extent flags to set. This way you can check
740  * to see what the reference count and extent flags would be if all of
741  * the delayed refs are not processed.
742  */
743 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744                              struct btrfs_root *root, u64 bytenr,
745                              u64 offset, int metadata, u64 *refs, u64 *flags)
746 {
747         struct btrfs_delayed_ref_head *head;
748         struct btrfs_delayed_ref_root *delayed_refs;
749         struct btrfs_path *path;
750         struct btrfs_extent_item *ei;
751         struct extent_buffer *leaf;
752         struct btrfs_key key;
753         u32 item_size;
754         u64 num_refs;
755         u64 extent_flags;
756         int ret;
757
758         /*
759          * If we don't have skinny metadata, don't bother doing anything
760          * different
761          */
762         if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
763                 offset = root->leafsize;
764                 metadata = 0;
765         }
766
767         path = btrfs_alloc_path();
768         if (!path)
769                 return -ENOMEM;
770
771         if (metadata) {
772                 key.objectid = bytenr;
773                 key.type = BTRFS_METADATA_ITEM_KEY;
774                 key.offset = offset;
775         } else {
776                 key.objectid = bytenr;
777                 key.type = BTRFS_EXTENT_ITEM_KEY;
778                 key.offset = offset;
779         }
780
781         if (!trans) {
782                 path->skip_locking = 1;
783                 path->search_commit_root = 1;
784         }
785 again:
786         ret = btrfs_search_slot(trans, root->fs_info->extent_root,
787                                 &key, path, 0, 0);
788         if (ret < 0)
789                 goto out_free;
790
791         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
792                 metadata = 0;
793                 if (path->slots[0]) {
794                         path->slots[0]--;
795                         btrfs_item_key_to_cpu(path->nodes[0], &key,
796                                               path->slots[0]);
797                         if (key.objectid == bytenr &&
798                             key.type == BTRFS_EXTENT_ITEM_KEY &&
799                             key.offset == root->leafsize)
800                                 ret = 0;
801                 }
802                 if (ret) {
803                         key.objectid = bytenr;
804                         key.type = BTRFS_EXTENT_ITEM_KEY;
805                         key.offset = root->leafsize;
806                         btrfs_release_path(path);
807                         goto again;
808                 }
809         }
810
811         if (ret == 0) {
812                 leaf = path->nodes[0];
813                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
814                 if (item_size >= sizeof(*ei)) {
815                         ei = btrfs_item_ptr(leaf, path->slots[0],
816                                             struct btrfs_extent_item);
817                         num_refs = btrfs_extent_refs(leaf, ei);
818                         extent_flags = btrfs_extent_flags(leaf, ei);
819                 } else {
820 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
821                         struct btrfs_extent_item_v0 *ei0;
822                         BUG_ON(item_size != sizeof(*ei0));
823                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
824                                              struct btrfs_extent_item_v0);
825                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
826                         /* FIXME: this isn't correct for data */
827                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
828 #else
829                         BUG();
830 #endif
831                 }
832                 BUG_ON(num_refs == 0);
833         } else {
834                 num_refs = 0;
835                 extent_flags = 0;
836                 ret = 0;
837         }
838
839         if (!trans)
840                 goto out;
841
842         delayed_refs = &trans->transaction->delayed_refs;
843         spin_lock(&delayed_refs->lock);
844         head = btrfs_find_delayed_ref_head(trans, bytenr);
845         if (head) {
846                 if (!mutex_trylock(&head->mutex)) {
847                         atomic_inc(&head->node.refs);
848                         spin_unlock(&delayed_refs->lock);
849
850                         btrfs_release_path(path);
851
852                         /*
853                          * Mutex was contended, block until it's released and try
854                          * again
855                          */
856                         mutex_lock(&head->mutex);
857                         mutex_unlock(&head->mutex);
858                         btrfs_put_delayed_ref(&head->node);
859                         goto again;
860                 }
861                 if (head->extent_op && head->extent_op->update_flags)
862                         extent_flags |= head->extent_op->flags_to_set;
863                 else
864                         BUG_ON(num_refs == 0);
865
866                 num_refs += head->node.ref_mod;
867                 mutex_unlock(&head->mutex);
868         }
869         spin_unlock(&delayed_refs->lock);
870 out:
871         WARN_ON(num_refs == 0);
872         if (refs)
873                 *refs = num_refs;
874         if (flags)
875                 *flags = extent_flags;
876 out_free:
877         btrfs_free_path(path);
878         return ret;
879 }
880
881 /*
882  * Back reference rules.  Back refs have three main goals:
883  *
884  * 1) differentiate between all holders of references to an extent so that
885  *    when a reference is dropped we can make sure it was a valid reference
886  *    before freeing the extent.
887  *
888  * 2) Provide enough information to quickly find the holders of an extent
889  *    if we notice a given block is corrupted or bad.
890  *
891  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
892  *    maintenance.  This is actually the same as #2, but with a slightly
893  *    different use case.
894  *
895  * There are two kinds of back refs. The implicit back refs is optimized
896  * for pointers in non-shared tree blocks. For a given pointer in a block,
897  * back refs of this kind provide information about the block's owner tree
898  * and the pointer's key. These information allow us to find the block by
899  * b-tree searching. The full back refs is for pointers in tree blocks not
900  * referenced by their owner trees. The location of tree block is recorded
901  * in the back refs. Actually the full back refs is generic, and can be
902  * used in all cases the implicit back refs is used. The major shortcoming
903  * of the full back refs is its overhead. Every time a tree block gets
904  * COWed, we have to update back refs entry for all pointers in it.
905  *
906  * For a newly allocated tree block, we use implicit back refs for
907  * pointers in it. This means most tree related operations only involve
908  * implicit back refs. For a tree block created in old transaction, the
909  * only way to drop a reference to it is COW it. So we can detect the
910  * event that tree block loses its owner tree's reference and do the
911  * back refs conversion.
912  *
913  * When a tree block is COW'd through a tree, there are four cases:
914  *
915  * The reference count of the block is one and the tree is the block's
916  * owner tree. Nothing to do in this case.
917  *
918  * The reference count of the block is one and the tree is not the
919  * block's owner tree. In this case, full back refs is used for pointers
920  * in the block. Remove these full back refs, add implicit back refs for
921  * every pointers in the new block.
922  *
923  * The reference count of the block is greater than one and the tree is
924  * the block's owner tree. In this case, implicit back refs is used for
925  * pointers in the block. Add full back refs for every pointers in the
926  * block, increase lower level extents' reference counts. The original
927  * implicit back refs are entailed to the new block.
928  *
929  * The reference count of the block is greater than one and the tree is
930  * not the block's owner tree. Add implicit back refs for every pointer in
931  * the new block, increase lower level extents' reference count.
932  *
933  * Back Reference Key composing:
934  *
935  * The key objectid corresponds to the first byte in the extent,
936  * The key type is used to differentiate between types of back refs.
937  * There are different meanings of the key offset for different types
938  * of back refs.
939  *
940  * File extents can be referenced by:
941  *
942  * - multiple snapshots, subvolumes, or different generations in one subvol
943  * - different files inside a single subvolume
944  * - different offsets inside a file (bookend extents in file.c)
945  *
946  * The extent ref structure for the implicit back refs has fields for:
947  *
948  * - Objectid of the subvolume root
949  * - objectid of the file holding the reference
950  * - original offset in the file
951  * - how many bookend extents
952  *
953  * The key offset for the implicit back refs is hash of the first
954  * three fields.
955  *
956  * The extent ref structure for the full back refs has field for:
957  *
958  * - number of pointers in the tree leaf
959  *
960  * The key offset for the implicit back refs is the first byte of
961  * the tree leaf
962  *
963  * When a file extent is allocated, The implicit back refs is used.
964  * the fields are filled in:
965  *
966  *     (root_key.objectid, inode objectid, offset in file, 1)
967  *
968  * When a file extent is removed file truncation, we find the
969  * corresponding implicit back refs and check the following fields:
970  *
971  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
972  *
973  * Btree extents can be referenced by:
974  *
975  * - Different subvolumes
976  *
977  * Both the implicit back refs and the full back refs for tree blocks
978  * only consist of key. The key offset for the implicit back refs is
979  * objectid of block's owner tree. The key offset for the full back refs
980  * is the first byte of parent block.
981  *
982  * When implicit back refs is used, information about the lowest key and
983  * level of the tree block are required. These information are stored in
984  * tree block info structure.
985  */
986
987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
988 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
989                                   struct btrfs_root *root,
990                                   struct btrfs_path *path,
991                                   u64 owner, u32 extra_size)
992 {
993         struct btrfs_extent_item *item;
994         struct btrfs_extent_item_v0 *ei0;
995         struct btrfs_extent_ref_v0 *ref0;
996         struct btrfs_tree_block_info *bi;
997         struct extent_buffer *leaf;
998         struct btrfs_key key;
999         struct btrfs_key found_key;
1000         u32 new_size = sizeof(*item);
1001         u64 refs;
1002         int ret;
1003
1004         leaf = path->nodes[0];
1005         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1006
1007         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1008         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1009                              struct btrfs_extent_item_v0);
1010         refs = btrfs_extent_refs_v0(leaf, ei0);
1011
1012         if (owner == (u64)-1) {
1013                 while (1) {
1014                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1015                                 ret = btrfs_next_leaf(root, path);
1016                                 if (ret < 0)
1017                                         return ret;
1018                                 BUG_ON(ret > 0); /* Corruption */
1019                                 leaf = path->nodes[0];
1020                         }
1021                         btrfs_item_key_to_cpu(leaf, &found_key,
1022                                               path->slots[0]);
1023                         BUG_ON(key.objectid != found_key.objectid);
1024                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1025                                 path->slots[0]++;
1026                                 continue;
1027                         }
1028                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1029                                               struct btrfs_extent_ref_v0);
1030                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1031                         break;
1032                 }
1033         }
1034         btrfs_release_path(path);
1035
1036         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1037                 new_size += sizeof(*bi);
1038
1039         new_size -= sizeof(*ei0);
1040         ret = btrfs_search_slot(trans, root, &key, path,
1041                                 new_size + extra_size, 1);
1042         if (ret < 0)
1043                 return ret;
1044         BUG_ON(ret); /* Corruption */
1045
1046         btrfs_extend_item(root, path, new_size);
1047
1048         leaf = path->nodes[0];
1049         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1050         btrfs_set_extent_refs(leaf, item, refs);
1051         /* FIXME: get real generation */
1052         btrfs_set_extent_generation(leaf, item, 0);
1053         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1054                 btrfs_set_extent_flags(leaf, item,
1055                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1056                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1057                 bi = (struct btrfs_tree_block_info *)(item + 1);
1058                 /* FIXME: get first key of the block */
1059                 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1060                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1061         } else {
1062                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1063         }
1064         btrfs_mark_buffer_dirty(leaf);
1065         return 0;
1066 }
1067 #endif
1068
1069 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1070 {
1071         u32 high_crc = ~(u32)0;
1072         u32 low_crc = ~(u32)0;
1073         __le64 lenum;
1074
1075         lenum = cpu_to_le64(root_objectid);
1076         high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1077         lenum = cpu_to_le64(owner);
1078         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1079         lenum = cpu_to_le64(offset);
1080         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1081
1082         return ((u64)high_crc << 31) ^ (u64)low_crc;
1083 }
1084
1085 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1086                                      struct btrfs_extent_data_ref *ref)
1087 {
1088         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1089                                     btrfs_extent_data_ref_objectid(leaf, ref),
1090                                     btrfs_extent_data_ref_offset(leaf, ref));
1091 }
1092
1093 static int match_extent_data_ref(struct extent_buffer *leaf,
1094                                  struct btrfs_extent_data_ref *ref,
1095                                  u64 root_objectid, u64 owner, u64 offset)
1096 {
1097         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1098             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1099             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1100                 return 0;
1101         return 1;
1102 }
1103
1104 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1105                                            struct btrfs_root *root,
1106                                            struct btrfs_path *path,
1107                                            u64 bytenr, u64 parent,
1108                                            u64 root_objectid,
1109                                            u64 owner, u64 offset)
1110 {
1111         struct btrfs_key key;
1112         struct btrfs_extent_data_ref *ref;
1113         struct extent_buffer *leaf;
1114         u32 nritems;
1115         int ret;
1116         int recow;
1117         int err = -ENOENT;
1118
1119         key.objectid = bytenr;
1120         if (parent) {
1121                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1122                 key.offset = parent;
1123         } else {
1124                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1125                 key.offset = hash_extent_data_ref(root_objectid,
1126                                                   owner, offset);
1127         }
1128 again:
1129         recow = 0;
1130         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1131         if (ret < 0) {
1132                 err = ret;
1133                 goto fail;
1134         }
1135
1136         if (parent) {
1137                 if (!ret)
1138                         return 0;
1139 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1140                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1141                 btrfs_release_path(path);
1142                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1143                 if (ret < 0) {
1144                         err = ret;
1145                         goto fail;
1146                 }
1147                 if (!ret)
1148                         return 0;
1149 #endif
1150                 goto fail;
1151         }
1152
1153         leaf = path->nodes[0];
1154         nritems = btrfs_header_nritems(leaf);
1155         while (1) {
1156                 if (path->slots[0] >= nritems) {
1157                         ret = btrfs_next_leaf(root, path);
1158                         if (ret < 0)
1159                                 err = ret;
1160                         if (ret)
1161                                 goto fail;
1162
1163                         leaf = path->nodes[0];
1164                         nritems = btrfs_header_nritems(leaf);
1165                         recow = 1;
1166                 }
1167
1168                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1169                 if (key.objectid != bytenr ||
1170                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1171                         goto fail;
1172
1173                 ref = btrfs_item_ptr(leaf, path->slots[0],
1174                                      struct btrfs_extent_data_ref);
1175
1176                 if (match_extent_data_ref(leaf, ref, root_objectid,
1177                                           owner, offset)) {
1178                         if (recow) {
1179                                 btrfs_release_path(path);
1180                                 goto again;
1181                         }
1182                         err = 0;
1183                         break;
1184                 }
1185                 path->slots[0]++;
1186         }
1187 fail:
1188         return err;
1189 }
1190
1191 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1192                                            struct btrfs_root *root,
1193                                            struct btrfs_path *path,
1194                                            u64 bytenr, u64 parent,
1195                                            u64 root_objectid, u64 owner,
1196                                            u64 offset, int refs_to_add)
1197 {
1198         struct btrfs_key key;
1199         struct extent_buffer *leaf;
1200         u32 size;
1201         u32 num_refs;
1202         int ret;
1203
1204         key.objectid = bytenr;
1205         if (parent) {
1206                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1207                 key.offset = parent;
1208                 size = sizeof(struct btrfs_shared_data_ref);
1209         } else {
1210                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1211                 key.offset = hash_extent_data_ref(root_objectid,
1212                                                   owner, offset);
1213                 size = sizeof(struct btrfs_extent_data_ref);
1214         }
1215
1216         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1217         if (ret && ret != -EEXIST)
1218                 goto fail;
1219
1220         leaf = path->nodes[0];
1221         if (parent) {
1222                 struct btrfs_shared_data_ref *ref;
1223                 ref = btrfs_item_ptr(leaf, path->slots[0],
1224                                      struct btrfs_shared_data_ref);
1225                 if (ret == 0) {
1226                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1227                 } else {
1228                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1229                         num_refs += refs_to_add;
1230                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1231                 }
1232         } else {
1233                 struct btrfs_extent_data_ref *ref;
1234                 while (ret == -EEXIST) {
1235                         ref = btrfs_item_ptr(leaf, path->slots[0],
1236                                              struct btrfs_extent_data_ref);
1237                         if (match_extent_data_ref(leaf, ref, root_objectid,
1238                                                   owner, offset))
1239                                 break;
1240                         btrfs_release_path(path);
1241                         key.offset++;
1242                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1243                                                       size);
1244                         if (ret && ret != -EEXIST)
1245                                 goto fail;
1246
1247                         leaf = path->nodes[0];
1248                 }
1249                 ref = btrfs_item_ptr(leaf, path->slots[0],
1250                                      struct btrfs_extent_data_ref);
1251                 if (ret == 0) {
1252                         btrfs_set_extent_data_ref_root(leaf, ref,
1253                                                        root_objectid);
1254                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1255                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1256                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1257                 } else {
1258                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1259                         num_refs += refs_to_add;
1260                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1261                 }
1262         }
1263         btrfs_mark_buffer_dirty(leaf);
1264         ret = 0;
1265 fail:
1266         btrfs_release_path(path);
1267         return ret;
1268 }
1269
1270 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1271                                            struct btrfs_root *root,
1272                                            struct btrfs_path *path,
1273                                            int refs_to_drop)
1274 {
1275         struct btrfs_key key;
1276         struct btrfs_extent_data_ref *ref1 = NULL;
1277         struct btrfs_shared_data_ref *ref2 = NULL;
1278         struct extent_buffer *leaf;
1279         u32 num_refs = 0;
1280         int ret = 0;
1281
1282         leaf = path->nodes[0];
1283         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1284
1285         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1286                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1287                                       struct btrfs_extent_data_ref);
1288                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1289         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1290                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1291                                       struct btrfs_shared_data_ref);
1292                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1294         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1295                 struct btrfs_extent_ref_v0 *ref0;
1296                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1297                                       struct btrfs_extent_ref_v0);
1298                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1299 #endif
1300         } else {
1301                 BUG();
1302         }
1303
1304         BUG_ON(num_refs < refs_to_drop);
1305         num_refs -= refs_to_drop;
1306
1307         if (num_refs == 0) {
1308                 ret = btrfs_del_item(trans, root, path);
1309         } else {
1310                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1311                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1312                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1313                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1314 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1315                 else {
1316                         struct btrfs_extent_ref_v0 *ref0;
1317                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1318                                         struct btrfs_extent_ref_v0);
1319                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1320                 }
1321 #endif
1322                 btrfs_mark_buffer_dirty(leaf);
1323         }
1324         return ret;
1325 }
1326
1327 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1328                                           struct btrfs_path *path,
1329                                           struct btrfs_extent_inline_ref *iref)
1330 {
1331         struct btrfs_key key;
1332         struct extent_buffer *leaf;
1333         struct btrfs_extent_data_ref *ref1;
1334         struct btrfs_shared_data_ref *ref2;
1335         u32 num_refs = 0;
1336
1337         leaf = path->nodes[0];
1338         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1339         if (iref) {
1340                 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1341                     BTRFS_EXTENT_DATA_REF_KEY) {
1342                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1343                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344                 } else {
1345                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1346                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1347                 }
1348         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1349                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1350                                       struct btrfs_extent_data_ref);
1351                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1352         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1353                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1354                                       struct btrfs_shared_data_ref);
1355                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1358                 struct btrfs_extent_ref_v0 *ref0;
1359                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1360                                       struct btrfs_extent_ref_v0);
1361                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1362 #endif
1363         } else {
1364                 WARN_ON(1);
1365         }
1366         return num_refs;
1367 }
1368
1369 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1370                                           struct btrfs_root *root,
1371                                           struct btrfs_path *path,
1372                                           u64 bytenr, u64 parent,
1373                                           u64 root_objectid)
1374 {
1375         struct btrfs_key key;
1376         int ret;
1377
1378         key.objectid = bytenr;
1379         if (parent) {
1380                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1381                 key.offset = parent;
1382         } else {
1383                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1384                 key.offset = root_objectid;
1385         }
1386
1387         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388         if (ret > 0)
1389                 ret = -ENOENT;
1390 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1391         if (ret == -ENOENT && parent) {
1392                 btrfs_release_path(path);
1393                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1394                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1395                 if (ret > 0)
1396                         ret = -ENOENT;
1397         }
1398 #endif
1399         return ret;
1400 }
1401
1402 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1403                                           struct btrfs_root *root,
1404                                           struct btrfs_path *path,
1405                                           u64 bytenr, u64 parent,
1406                                           u64 root_objectid)
1407 {
1408         struct btrfs_key key;
1409         int ret;
1410
1411         key.objectid = bytenr;
1412         if (parent) {
1413                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1414                 key.offset = parent;
1415         } else {
1416                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1417                 key.offset = root_objectid;
1418         }
1419
1420         ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1421         btrfs_release_path(path);
1422         return ret;
1423 }
1424
1425 static inline int extent_ref_type(u64 parent, u64 owner)
1426 {
1427         int type;
1428         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1429                 if (parent > 0)
1430                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1431                 else
1432                         type = BTRFS_TREE_BLOCK_REF_KEY;
1433         } else {
1434                 if (parent > 0)
1435                         type = BTRFS_SHARED_DATA_REF_KEY;
1436                 else
1437                         type = BTRFS_EXTENT_DATA_REF_KEY;
1438         }
1439         return type;
1440 }
1441
1442 static int find_next_key(struct btrfs_path *path, int level,
1443                          struct btrfs_key *key)
1444
1445 {
1446         for (; level < BTRFS_MAX_LEVEL; level++) {
1447                 if (!path->nodes[level])
1448                         break;
1449                 if (path->slots[level] + 1 >=
1450                     btrfs_header_nritems(path->nodes[level]))
1451                         continue;
1452                 if (level == 0)
1453                         btrfs_item_key_to_cpu(path->nodes[level], key,
1454                                               path->slots[level] + 1);
1455                 else
1456                         btrfs_node_key_to_cpu(path->nodes[level], key,
1457                                               path->slots[level] + 1);
1458                 return 0;
1459         }
1460         return 1;
1461 }
1462
1463 /*
1464  * look for inline back ref. if back ref is found, *ref_ret is set
1465  * to the address of inline back ref, and 0 is returned.
1466  *
1467  * if back ref isn't found, *ref_ret is set to the address where it
1468  * should be inserted, and -ENOENT is returned.
1469  *
1470  * if insert is true and there are too many inline back refs, the path
1471  * points to the extent item, and -EAGAIN is returned.
1472  *
1473  * NOTE: inline back refs are ordered in the same way that back ref
1474  *       items in the tree are ordered.
1475  */
1476 static noinline_for_stack
1477 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1478                                  struct btrfs_root *root,
1479                                  struct btrfs_path *path,
1480                                  struct btrfs_extent_inline_ref **ref_ret,
1481                                  u64 bytenr, u64 num_bytes,
1482                                  u64 parent, u64 root_objectid,
1483                                  u64 owner, u64 offset, int insert)
1484 {
1485         struct btrfs_key key;
1486         struct extent_buffer *leaf;
1487         struct btrfs_extent_item *ei;
1488         struct btrfs_extent_inline_ref *iref;
1489         u64 flags;
1490         u64 item_size;
1491         unsigned long ptr;
1492         unsigned long end;
1493         int extra_size;
1494         int type;
1495         int want;
1496         int ret;
1497         int err = 0;
1498         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1499                                                  SKINNY_METADATA);
1500
1501         key.objectid = bytenr;
1502         key.type = BTRFS_EXTENT_ITEM_KEY;
1503         key.offset = num_bytes;
1504
1505         want = extent_ref_type(parent, owner);
1506         if (insert) {
1507                 extra_size = btrfs_extent_inline_ref_size(want);
1508                 path->keep_locks = 1;
1509         } else
1510                 extra_size = -1;
1511
1512         /*
1513          * Owner is our parent level, so we can just add one to get the level
1514          * for the block we are interested in.
1515          */
1516         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1517                 key.type = BTRFS_METADATA_ITEM_KEY;
1518                 key.offset = owner;
1519         }
1520
1521 again:
1522         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1523         if (ret < 0) {
1524                 err = ret;
1525                 goto out;
1526         }
1527
1528         /*
1529          * We may be a newly converted file system which still has the old fat
1530          * extent entries for metadata, so try and see if we have one of those.
1531          */
1532         if (ret > 0 && skinny_metadata) {
1533                 skinny_metadata = false;
1534                 if (path->slots[0]) {
1535                         path->slots[0]--;
1536                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1537                                               path->slots[0]);
1538                         if (key.objectid == bytenr &&
1539                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1540                             key.offset == num_bytes)
1541                                 ret = 0;
1542                 }
1543                 if (ret) {
1544                         key.type = BTRFS_EXTENT_ITEM_KEY;
1545                         key.offset = num_bytes;
1546                         btrfs_release_path(path);
1547                         goto again;
1548                 }
1549         }
1550
1551         if (ret && !insert) {
1552                 err = -ENOENT;
1553                 goto out;
1554         } else if (ret) {
1555                 err = -EIO;
1556                 WARN_ON(1);
1557                 goto out;
1558         }
1559
1560         leaf = path->nodes[0];
1561         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1562 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1563         if (item_size < sizeof(*ei)) {
1564                 if (!insert) {
1565                         err = -ENOENT;
1566                         goto out;
1567                 }
1568                 ret = convert_extent_item_v0(trans, root, path, owner,
1569                                              extra_size);
1570                 if (ret < 0) {
1571                         err = ret;
1572                         goto out;
1573                 }
1574                 leaf = path->nodes[0];
1575                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1576         }
1577 #endif
1578         BUG_ON(item_size < sizeof(*ei));
1579
1580         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1581         flags = btrfs_extent_flags(leaf, ei);
1582
1583         ptr = (unsigned long)(ei + 1);
1584         end = (unsigned long)ei + item_size;
1585
1586         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1587                 ptr += sizeof(struct btrfs_tree_block_info);
1588                 BUG_ON(ptr > end);
1589         }
1590
1591         err = -ENOENT;
1592         while (1) {
1593                 if (ptr >= end) {
1594                         WARN_ON(ptr > end);
1595                         break;
1596                 }
1597                 iref = (struct btrfs_extent_inline_ref *)ptr;
1598                 type = btrfs_extent_inline_ref_type(leaf, iref);
1599                 if (want < type)
1600                         break;
1601                 if (want > type) {
1602                         ptr += btrfs_extent_inline_ref_size(type);
1603                         continue;
1604                 }
1605
1606                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1607                         struct btrfs_extent_data_ref *dref;
1608                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1609                         if (match_extent_data_ref(leaf, dref, root_objectid,
1610                                                   owner, offset)) {
1611                                 err = 0;
1612                                 break;
1613                         }
1614                         if (hash_extent_data_ref_item(leaf, dref) <
1615                             hash_extent_data_ref(root_objectid, owner, offset))
1616                                 break;
1617                 } else {
1618                         u64 ref_offset;
1619                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1620                         if (parent > 0) {
1621                                 if (parent == ref_offset) {
1622                                         err = 0;
1623                                         break;
1624                                 }
1625                                 if (ref_offset < parent)
1626                                         break;
1627                         } else {
1628                                 if (root_objectid == ref_offset) {
1629                                         err = 0;
1630                                         break;
1631                                 }
1632                                 if (ref_offset < root_objectid)
1633                                         break;
1634                         }
1635                 }
1636                 ptr += btrfs_extent_inline_ref_size(type);
1637         }
1638         if (err == -ENOENT && insert) {
1639                 if (item_size + extra_size >=
1640                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1641                         err = -EAGAIN;
1642                         goto out;
1643                 }
1644                 /*
1645                  * To add new inline back ref, we have to make sure
1646                  * there is no corresponding back ref item.
1647                  * For simplicity, we just do not add new inline back
1648                  * ref if there is any kind of item for this block
1649                  */
1650                 if (find_next_key(path, 0, &key) == 0 &&
1651                     key.objectid == bytenr &&
1652                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1653                         err = -EAGAIN;
1654                         goto out;
1655                 }
1656         }
1657         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1658 out:
1659         if (insert) {
1660                 path->keep_locks = 0;
1661                 btrfs_unlock_up_safe(path, 1);
1662         }
1663         return err;
1664 }
1665
1666 /*
1667  * helper to add new inline back ref
1668  */
1669 static noinline_for_stack
1670 void setup_inline_extent_backref(struct btrfs_root *root,
1671                                  struct btrfs_path *path,
1672                                  struct btrfs_extent_inline_ref *iref,
1673                                  u64 parent, u64 root_objectid,
1674                                  u64 owner, u64 offset, int refs_to_add,
1675                                  struct btrfs_delayed_extent_op *extent_op)
1676 {
1677         struct extent_buffer *leaf;
1678         struct btrfs_extent_item *ei;
1679         unsigned long ptr;
1680         unsigned long end;
1681         unsigned long item_offset;
1682         u64 refs;
1683         int size;
1684         int type;
1685
1686         leaf = path->nodes[0];
1687         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688         item_offset = (unsigned long)iref - (unsigned long)ei;
1689
1690         type = extent_ref_type(parent, owner);
1691         size = btrfs_extent_inline_ref_size(type);
1692
1693         btrfs_extend_item(root, path, size);
1694
1695         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1696         refs = btrfs_extent_refs(leaf, ei);
1697         refs += refs_to_add;
1698         btrfs_set_extent_refs(leaf, ei, refs);
1699         if (extent_op)
1700                 __run_delayed_extent_op(extent_op, leaf, ei);
1701
1702         ptr = (unsigned long)ei + item_offset;
1703         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1704         if (ptr < end - size)
1705                 memmove_extent_buffer(leaf, ptr + size, ptr,
1706                                       end - size - ptr);
1707
1708         iref = (struct btrfs_extent_inline_ref *)ptr;
1709         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1710         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1711                 struct btrfs_extent_data_ref *dref;
1712                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1713                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1714                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1715                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1716                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1717         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1718                 struct btrfs_shared_data_ref *sref;
1719                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1720                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1721                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1722         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1723                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1724         } else {
1725                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1726         }
1727         btrfs_mark_buffer_dirty(leaf);
1728 }
1729
1730 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1731                                  struct btrfs_root *root,
1732                                  struct btrfs_path *path,
1733                                  struct btrfs_extent_inline_ref **ref_ret,
1734                                  u64 bytenr, u64 num_bytes, u64 parent,
1735                                  u64 root_objectid, u64 owner, u64 offset)
1736 {
1737         int ret;
1738
1739         ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1740                                            bytenr, num_bytes, parent,
1741                                            root_objectid, owner, offset, 0);
1742         if (ret != -ENOENT)
1743                 return ret;
1744
1745         btrfs_release_path(path);
1746         *ref_ret = NULL;
1747
1748         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1749                 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1750                                             root_objectid);
1751         } else {
1752                 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1753                                              root_objectid, owner, offset);
1754         }
1755         return ret;
1756 }
1757
1758 /*
1759  * helper to update/remove inline back ref
1760  */
1761 static noinline_for_stack
1762 void update_inline_extent_backref(struct btrfs_root *root,
1763                                   struct btrfs_path *path,
1764                                   struct btrfs_extent_inline_ref *iref,
1765                                   int refs_to_mod,
1766                                   struct btrfs_delayed_extent_op *extent_op)
1767 {
1768         struct extent_buffer *leaf;
1769         struct btrfs_extent_item *ei;
1770         struct btrfs_extent_data_ref *dref = NULL;
1771         struct btrfs_shared_data_ref *sref = NULL;
1772         unsigned long ptr;
1773         unsigned long end;
1774         u32 item_size;
1775         int size;
1776         int type;
1777         u64 refs;
1778
1779         leaf = path->nodes[0];
1780         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1781         refs = btrfs_extent_refs(leaf, ei);
1782         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1783         refs += refs_to_mod;
1784         btrfs_set_extent_refs(leaf, ei, refs);
1785         if (extent_op)
1786                 __run_delayed_extent_op(extent_op, leaf, ei);
1787
1788         type = btrfs_extent_inline_ref_type(leaf, iref);
1789
1790         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792                 refs = btrfs_extent_data_ref_count(leaf, dref);
1793         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795                 refs = btrfs_shared_data_ref_count(leaf, sref);
1796         } else {
1797                 refs = 1;
1798                 BUG_ON(refs_to_mod != -1);
1799         }
1800
1801         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802         refs += refs_to_mod;
1803
1804         if (refs > 0) {
1805                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807                 else
1808                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809         } else {
1810                 size =  btrfs_extent_inline_ref_size(type);
1811                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1812                 ptr = (unsigned long)iref;
1813                 end = (unsigned long)ei + item_size;
1814                 if (ptr + size < end)
1815                         memmove_extent_buffer(leaf, ptr, ptr + size,
1816                                               end - ptr - size);
1817                 item_size -= size;
1818                 btrfs_truncate_item(root, path, item_size, 1);
1819         }
1820         btrfs_mark_buffer_dirty(leaf);
1821 }
1822
1823 static noinline_for_stack
1824 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1825                                  struct btrfs_root *root,
1826                                  struct btrfs_path *path,
1827                                  u64 bytenr, u64 num_bytes, u64 parent,
1828                                  u64 root_objectid, u64 owner,
1829                                  u64 offset, int refs_to_add,
1830                                  struct btrfs_delayed_extent_op *extent_op)
1831 {
1832         struct btrfs_extent_inline_ref *iref;
1833         int ret;
1834
1835         ret = lookup_inline_extent_backref(trans, root, path, &iref,
1836                                            bytenr, num_bytes, parent,
1837                                            root_objectid, owner, offset, 1);
1838         if (ret == 0) {
1839                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1840                 update_inline_extent_backref(root, path, iref,
1841                                              refs_to_add, extent_op);
1842         } else if (ret == -ENOENT) {
1843                 setup_inline_extent_backref(root, path, iref, parent,
1844                                             root_objectid, owner, offset,
1845                                             refs_to_add, extent_op);
1846                 ret = 0;
1847         }
1848         return ret;
1849 }
1850
1851 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1852                                  struct btrfs_root *root,
1853                                  struct btrfs_path *path,
1854                                  u64 bytenr, u64 parent, u64 root_objectid,
1855                                  u64 owner, u64 offset, int refs_to_add)
1856 {
1857         int ret;
1858         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1859                 BUG_ON(refs_to_add != 1);
1860                 ret = insert_tree_block_ref(trans, root, path, bytenr,
1861                                             parent, root_objectid);
1862         } else {
1863                 ret = insert_extent_data_ref(trans, root, path, bytenr,
1864                                              parent, root_objectid,
1865                                              owner, offset, refs_to_add);
1866         }
1867         return ret;
1868 }
1869
1870 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1871                                  struct btrfs_root *root,
1872                                  struct btrfs_path *path,
1873                                  struct btrfs_extent_inline_ref *iref,
1874                                  int refs_to_drop, int is_data)
1875 {
1876         int ret = 0;
1877
1878         BUG_ON(!is_data && refs_to_drop != 1);
1879         if (iref) {
1880                 update_inline_extent_backref(root, path, iref,
1881                                              -refs_to_drop, NULL);
1882         } else if (is_data) {
1883                 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1884         } else {
1885                 ret = btrfs_del_item(trans, root, path);
1886         }
1887         return ret;
1888 }
1889
1890 static int btrfs_issue_discard(struct block_device *bdev,
1891                                 u64 start, u64 len)
1892 {
1893         return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1894 }
1895
1896 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1897                                 u64 num_bytes, u64 *actual_bytes)
1898 {
1899         int ret;
1900         u64 discarded_bytes = 0;
1901         struct btrfs_bio *bbio = NULL;
1902
1903
1904         /* Tell the block device(s) that the sectors can be discarded */
1905         ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
1906                               bytenr, &num_bytes, &bbio, 0);
1907         /* Error condition is -ENOMEM */
1908         if (!ret) {
1909                 struct btrfs_bio_stripe *stripe = bbio->stripes;
1910                 int i;
1911
1912
1913                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1914                         if (!stripe->dev->can_discard)
1915                                 continue;
1916
1917                         ret = btrfs_issue_discard(stripe->dev->bdev,
1918                                                   stripe->physical,
1919                                                   stripe->length);
1920                         if (!ret)
1921                                 discarded_bytes += stripe->length;
1922                         else if (ret != -EOPNOTSUPP)
1923                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1924
1925                         /*
1926                          * Just in case we get back EOPNOTSUPP for some reason,
1927                          * just ignore the return value so we don't screw up
1928                          * people calling discard_extent.
1929                          */
1930                         ret = 0;
1931                 }
1932                 kfree(bbio);
1933         }
1934
1935         if (actual_bytes)
1936                 *actual_bytes = discarded_bytes;
1937
1938
1939         if (ret == -EOPNOTSUPP)
1940                 ret = 0;
1941         return ret;
1942 }
1943
1944 /* Can return -ENOMEM */
1945 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1946                          struct btrfs_root *root,
1947                          u64 bytenr, u64 num_bytes, u64 parent,
1948                          u64 root_objectid, u64 owner, u64 offset, int for_cow)
1949 {
1950         int ret;
1951         struct btrfs_fs_info *fs_info = root->fs_info;
1952
1953         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1954                root_objectid == BTRFS_TREE_LOG_OBJECTID);
1955
1956         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1957                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1958                                         num_bytes,
1959                                         parent, root_objectid, (int)owner,
1960                                         BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1961         } else {
1962                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1963                                         num_bytes,
1964                                         parent, root_objectid, owner, offset,
1965                                         BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1966         }
1967         return ret;
1968 }
1969
1970 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1971                                   struct btrfs_root *root,
1972                                   u64 bytenr, u64 num_bytes,
1973                                   u64 parent, u64 root_objectid,
1974                                   u64 owner, u64 offset, int refs_to_add,
1975                                   struct btrfs_delayed_extent_op *extent_op)
1976 {
1977         struct btrfs_path *path;
1978         struct extent_buffer *leaf;
1979         struct btrfs_extent_item *item;
1980         u64 refs;
1981         int ret;
1982         int err = 0;
1983
1984         path = btrfs_alloc_path();
1985         if (!path)
1986                 return -ENOMEM;
1987
1988         path->reada = 1;
1989         path->leave_spinning = 1;
1990         /* this will setup the path even if it fails to insert the back ref */
1991         ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1992                                            path, bytenr, num_bytes, parent,
1993                                            root_objectid, owner, offset,
1994                                            refs_to_add, extent_op);
1995         if (ret == 0)
1996                 goto out;
1997
1998         if (ret != -EAGAIN) {
1999                 err = ret;
2000                 goto out;
2001         }
2002
2003         leaf = path->nodes[0];
2004         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2005         refs = btrfs_extent_refs(leaf, item);
2006         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2007         if (extent_op)
2008                 __run_delayed_extent_op(extent_op, leaf, item);
2009
2010         btrfs_mark_buffer_dirty(leaf);
2011         btrfs_release_path(path);
2012
2013         path->reada = 1;
2014         path->leave_spinning = 1;
2015
2016         /* now insert the actual backref */
2017         ret = insert_extent_backref(trans, root->fs_info->extent_root,
2018                                     path, bytenr, parent, root_objectid,
2019                                     owner, offset, refs_to_add);
2020         if (ret)
2021                 btrfs_abort_transaction(trans, root, ret);
2022 out:
2023         btrfs_free_path(path);
2024         return err;
2025 }
2026
2027 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2028                                 struct btrfs_root *root,
2029                                 struct btrfs_delayed_ref_node *node,
2030                                 struct btrfs_delayed_extent_op *extent_op,
2031                                 int insert_reserved)
2032 {
2033         int ret = 0;
2034         struct btrfs_delayed_data_ref *ref;
2035         struct btrfs_key ins;
2036         u64 parent = 0;
2037         u64 ref_root = 0;
2038         u64 flags = 0;
2039
2040         ins.objectid = node->bytenr;
2041         ins.offset = node->num_bytes;
2042         ins.type = BTRFS_EXTENT_ITEM_KEY;
2043
2044         ref = btrfs_delayed_node_to_data_ref(node);
2045         trace_run_delayed_data_ref(node, ref, node->action);
2046
2047         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2048                 parent = ref->parent;
2049         else
2050                 ref_root = ref->root;
2051
2052         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2053                 if (extent_op)
2054                         flags |= extent_op->flags_to_set;
2055                 ret = alloc_reserved_file_extent(trans, root,
2056                                                  parent, ref_root, flags,
2057                                                  ref->objectid, ref->offset,
2058                                                  &ins, node->ref_mod);
2059         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2060                 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2061                                              node->num_bytes, parent,
2062                                              ref_root, ref->objectid,
2063                                              ref->offset, node->ref_mod,
2064                                              extent_op);
2065         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2066                 ret = __btrfs_free_extent(trans, root, node->bytenr,
2067                                           node->num_bytes, parent,
2068                                           ref_root, ref->objectid,
2069                                           ref->offset, node->ref_mod,
2070                                           extent_op);
2071         } else {
2072                 BUG();
2073         }
2074         return ret;
2075 }
2076
2077 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2078                                     struct extent_buffer *leaf,
2079                                     struct btrfs_extent_item *ei)
2080 {
2081         u64 flags = btrfs_extent_flags(leaf, ei);
2082         if (extent_op->update_flags) {
2083                 flags |= extent_op->flags_to_set;
2084                 btrfs_set_extent_flags(leaf, ei, flags);
2085         }
2086
2087         if (extent_op->update_key) {
2088                 struct btrfs_tree_block_info *bi;
2089                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2090                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2091                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2092         }
2093 }
2094
2095 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2096                                  struct btrfs_root *root,
2097                                  struct btrfs_delayed_ref_node *node,
2098                                  struct btrfs_delayed_extent_op *extent_op)
2099 {
2100         struct btrfs_key key;
2101         struct btrfs_path *path;
2102         struct btrfs_extent_item *ei;
2103         struct extent_buffer *leaf;
2104         u32 item_size;
2105         int ret;
2106         int err = 0;
2107         int metadata = !extent_op->is_data;
2108
2109         if (trans->aborted)
2110                 return 0;
2111
2112         if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2113                 metadata = 0;
2114
2115         path = btrfs_alloc_path();
2116         if (!path)
2117                 return -ENOMEM;
2118
2119         key.objectid = node->bytenr;
2120
2121         if (metadata) {
2122                 key.type = BTRFS_METADATA_ITEM_KEY;
2123                 key.offset = extent_op->level;
2124         } else {
2125                 key.type = BTRFS_EXTENT_ITEM_KEY;
2126                 key.offset = node->num_bytes;
2127         }
2128
2129 again:
2130         path->reada = 1;
2131         path->leave_spinning = 1;
2132         ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2133                                 path, 0, 1);
2134         if (ret < 0) {
2135                 err = ret;
2136                 goto out;
2137         }
2138         if (ret > 0) {
2139                 if (metadata) {
2140                         btrfs_release_path(path);
2141                         metadata = 0;
2142
2143                         key.offset = node->num_bytes;
2144                         key.type = BTRFS_EXTENT_ITEM_KEY;
2145                         goto again;
2146                 }
2147                 err = -EIO;
2148                 goto out;
2149         }
2150
2151         leaf = path->nodes[0];
2152         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2153 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2154         if (item_size < sizeof(*ei)) {
2155                 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2156                                              path, (u64)-1, 0);
2157                 if (ret < 0) {
2158                         err = ret;
2159                         goto out;
2160                 }
2161                 leaf = path->nodes[0];
2162                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2163         }
2164 #endif
2165         BUG_ON(item_size < sizeof(*ei));
2166         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2167         __run_delayed_extent_op(extent_op, leaf, ei);
2168
2169         btrfs_mark_buffer_dirty(leaf);
2170 out:
2171         btrfs_free_path(path);
2172         return err;
2173 }
2174
2175 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2176                                 struct btrfs_root *root,
2177                                 struct btrfs_delayed_ref_node *node,
2178                                 struct btrfs_delayed_extent_op *extent_op,
2179                                 int insert_reserved)
2180 {
2181         int ret = 0;
2182         struct btrfs_delayed_tree_ref *ref;
2183         struct btrfs_key ins;
2184         u64 parent = 0;
2185         u64 ref_root = 0;
2186         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2187                                                  SKINNY_METADATA);
2188
2189         ref = btrfs_delayed_node_to_tree_ref(node);
2190         trace_run_delayed_tree_ref(node, ref, node->action);
2191
2192         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2193                 parent = ref->parent;
2194         else
2195                 ref_root = ref->root;
2196
2197         ins.objectid = node->bytenr;
2198         if (skinny_metadata) {
2199                 ins.offset = ref->level;
2200                 ins.type = BTRFS_METADATA_ITEM_KEY;
2201         } else {
2202                 ins.offset = node->num_bytes;
2203                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2204         }
2205
2206         BUG_ON(node->ref_mod != 1);
2207         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2208                 BUG_ON(!extent_op || !extent_op->update_flags);
2209                 ret = alloc_reserved_tree_block(trans, root,
2210                                                 parent, ref_root,
2211                                                 extent_op->flags_to_set,
2212                                                 &extent_op->key,
2213                                                 ref->level, &ins);
2214         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2215                 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2216                                              node->num_bytes, parent, ref_root,
2217                                              ref->level, 0, 1, extent_op);
2218         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2219                 ret = __btrfs_free_extent(trans, root, node->bytenr,
2220                                           node->num_bytes, parent, ref_root,
2221                                           ref->level, 0, 1, extent_op);
2222         } else {
2223                 BUG();
2224         }
2225         return ret;
2226 }
2227
2228 /* helper function to actually process a single delayed ref entry */
2229 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2230                                struct btrfs_root *root,
2231                                struct btrfs_delayed_ref_node *node,
2232                                struct btrfs_delayed_extent_op *extent_op,
2233                                int insert_reserved)
2234 {
2235         int ret = 0;
2236
2237         if (trans->aborted)
2238                 return 0;
2239
2240         if (btrfs_delayed_ref_is_head(node)) {
2241                 struct btrfs_delayed_ref_head *head;
2242                 /*
2243                  * we've hit the end of the chain and we were supposed
2244                  * to insert this extent into the tree.  But, it got
2245                  * deleted before we ever needed to insert it, so all
2246                  * we have to do is clean up the accounting
2247                  */
2248                 BUG_ON(extent_op);
2249                 head = btrfs_delayed_node_to_head(node);
2250                 trace_run_delayed_ref_head(node, head, node->action);
2251
2252                 if (insert_reserved) {
2253                         btrfs_pin_extent(root, node->bytenr,
2254                                          node->num_bytes, 1);
2255                         if (head->is_data) {
2256                                 ret = btrfs_del_csums(trans, root,
2257                                                       node->bytenr,
2258                                                       node->num_bytes);
2259                         }
2260                 }
2261                 return ret;
2262         }
2263
2264         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2265             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2266                 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2267                                            insert_reserved);
2268         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2269                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2270                 ret = run_delayed_data_ref(trans, root, node, extent_op,
2271                                            insert_reserved);
2272         else
2273                 BUG();
2274         return ret;
2275 }
2276
2277 static noinline struct btrfs_delayed_ref_node *
2278 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2279 {
2280         struct rb_node *node;
2281         struct btrfs_delayed_ref_node *ref;
2282         int action = BTRFS_ADD_DELAYED_REF;
2283 again:
2284         /*
2285          * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2286          * this prevents ref count from going down to zero when
2287          * there still are pending delayed ref.
2288          */
2289         node = rb_prev(&head->node.rb_node);
2290         while (1) {
2291                 if (!node)
2292                         break;
2293                 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2294                                 rb_node);
2295                 if (ref->bytenr != head->node.bytenr)
2296                         break;
2297                 if (ref->action == action)
2298                         return ref;
2299                 node = rb_prev(node);
2300         }
2301         if (action == BTRFS_ADD_DELAYED_REF) {
2302                 action = BTRFS_DROP_DELAYED_REF;
2303                 goto again;
2304         }
2305         return NULL;
2306 }
2307
2308 /*
2309  * Returns 0 on success or if called with an already aborted transaction.
2310  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2311  */
2312 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2313                                        struct btrfs_root *root,
2314                                        struct list_head *cluster)
2315 {
2316         struct btrfs_delayed_ref_root *delayed_refs;
2317         struct btrfs_delayed_ref_node *ref;
2318         struct btrfs_delayed_ref_head *locked_ref = NULL;
2319         struct btrfs_delayed_extent_op *extent_op;
2320         struct btrfs_fs_info *fs_info = root->fs_info;
2321         int ret;
2322         int count = 0;
2323         int must_insert_reserved = 0;
2324
2325         delayed_refs = &trans->transaction->delayed_refs;
2326         while (1) {
2327                 if (!locked_ref) {
2328                         /* pick a new head ref from the cluster list */
2329                         if (list_empty(cluster))
2330                                 break;
2331
2332                         locked_ref = list_entry(cluster->next,
2333                                      struct btrfs_delayed_ref_head, cluster);
2334
2335                         /* grab the lock that says we are going to process
2336                          * all the refs for this head */
2337                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2338
2339                         /*
2340                          * we may have dropped the spin lock to get the head
2341                          * mutex lock, and that might have given someone else
2342                          * time to free the head.  If that's true, it has been
2343                          * removed from our list and we can move on.
2344                          */
2345                         if (ret == -EAGAIN) {
2346                                 locked_ref = NULL;
2347                                 count++;
2348                                 continue;
2349                         }
2350                 }
2351
2352                 /*
2353                  * We need to try and merge add/drops of the same ref since we
2354                  * can run into issues with relocate dropping the implicit ref
2355                  * and then it being added back again before the drop can
2356                  * finish.  If we merged anything we need to re-loop so we can
2357                  * get a good ref.
2358                  */
2359                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2360                                          locked_ref);
2361
2362                 /*
2363                  * locked_ref is the head node, so we have to go one
2364                  * node back for any delayed ref updates
2365                  */
2366                 ref = select_delayed_ref(locked_ref);
2367
2368                 if (ref && ref->seq &&
2369                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2370                         /*
2371                          * there are still refs with lower seq numbers in the
2372                          * process of being added. Don't run this ref yet.
2373                          */
2374                         list_del_init(&locked_ref->cluster);
2375                         btrfs_delayed_ref_unlock(locked_ref);
2376                         locked_ref = NULL;
2377                         delayed_refs->num_heads_ready++;
2378                         spin_unlock(&delayed_refs->lock);
2379                         cond_resched();
2380                         spin_lock(&delayed_refs->lock);
2381                         continue;
2382                 }
2383
2384                 /*
2385                  * record the must insert reserved flag before we
2386                  * drop the spin lock.
2387                  */
2388                 must_insert_reserved = locked_ref->must_insert_reserved;
2389                 locked_ref->must_insert_reserved = 0;
2390
2391                 extent_op = locked_ref->extent_op;
2392                 locked_ref->extent_op = NULL;
2393
2394                 if (!ref) {
2395                         /* All delayed refs have been processed, Go ahead
2396                          * and send the head node to run_one_delayed_ref,
2397                          * so that any accounting fixes can happen
2398                          */
2399                         ref = &locked_ref->node;
2400
2401                         if (extent_op && must_insert_reserved) {
2402                                 btrfs_free_delayed_extent_op(extent_op);
2403                                 extent_op = NULL;
2404                         }
2405
2406                         if (extent_op) {
2407                                 spin_unlock(&delayed_refs->lock);
2408
2409                                 ret = run_delayed_extent_op(trans, root,
2410                                                             ref, extent_op);
2411                                 btrfs_free_delayed_extent_op(extent_op);
2412
2413                                 if (ret) {
2414                                         btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2415                                         spin_lock(&delayed_refs->lock);
2416                                         btrfs_delayed_ref_unlock(locked_ref);
2417                                         return ret;
2418                                 }
2419
2420                                 goto next;
2421                         }
2422                 }
2423
2424                 ref->in_tree = 0;
2425                 rb_erase(&ref->rb_node, &delayed_refs->root);
2426                 delayed_refs->num_entries--;
2427                 if (!btrfs_delayed_ref_is_head(ref)) {
2428                         /*
2429                          * when we play the delayed ref, also correct the
2430                          * ref_mod on head
2431                          */
2432                         switch (ref->action) {
2433                         case BTRFS_ADD_DELAYED_REF:
2434                         case BTRFS_ADD_DELAYED_EXTENT:
2435                                 locked_ref->node.ref_mod -= ref->ref_mod;
2436                                 break;
2437                         case BTRFS_DROP_DELAYED_REF:
2438                                 locked_ref->node.ref_mod += ref->ref_mod;
2439                                 break;
2440                         default:
2441                                 WARN_ON(1);
2442                         }
2443                 } else {
2444                         list_del_init(&locked_ref->cluster);
2445                 }
2446                 spin_unlock(&delayed_refs->lock);
2447
2448                 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2449                                           must_insert_reserved);
2450
2451                 btrfs_free_delayed_extent_op(extent_op);
2452                 if (ret) {
2453                         btrfs_delayed_ref_unlock(locked_ref);
2454                         btrfs_put_delayed_ref(ref);
2455                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2456                         spin_lock(&delayed_refs->lock);
2457                         return ret;
2458                 }
2459
2460                 /*
2461                  * If this node is a head, that means all the refs in this head
2462                  * have been dealt with, and we will pick the next head to deal
2463                  * with, so we must unlock the head and drop it from the cluster
2464                  * list before we release it.
2465                  */
2466                 if (btrfs_delayed_ref_is_head(ref)) {
2467                         btrfs_delayed_ref_unlock(locked_ref);
2468                         locked_ref = NULL;
2469                 }
2470                 btrfs_put_delayed_ref(ref);
2471                 count++;
2472 next:
2473                 cond_resched();
2474                 spin_lock(&delayed_refs->lock);
2475         }
2476         return count;
2477 }
2478
2479 #ifdef SCRAMBLE_DELAYED_REFS
2480 /*
2481  * Normally delayed refs get processed in ascending bytenr order. This
2482  * correlates in most cases to the order added. To expose dependencies on this
2483  * order, we start to process the tree in the middle instead of the beginning
2484  */
2485 static u64 find_middle(struct rb_root *root)
2486 {
2487         struct rb_node *n = root->rb_node;
2488         struct btrfs_delayed_ref_node *entry;
2489         int alt = 1;
2490         u64 middle;
2491         u64 first = 0, last = 0;
2492
2493         n = rb_first(root);
2494         if (n) {
2495                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2496                 first = entry->bytenr;
2497         }
2498         n = rb_last(root);
2499         if (n) {
2500                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2501                 last = entry->bytenr;
2502         }
2503         n = root->rb_node;
2504
2505         while (n) {
2506                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2507                 WARN_ON(!entry->in_tree);
2508
2509                 middle = entry->bytenr;
2510
2511                 if (alt)
2512                         n = n->rb_left;
2513                 else
2514                         n = n->rb_right;
2515
2516                 alt = 1 - alt;
2517         }
2518         return middle;
2519 }
2520 #endif
2521
2522 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2523                                          struct btrfs_fs_info *fs_info)
2524 {
2525         struct qgroup_update *qgroup_update;
2526         int ret = 0;
2527
2528         if (list_empty(&trans->qgroup_ref_list) !=
2529             !trans->delayed_ref_elem.seq) {
2530                 /* list without seq or seq without list */
2531                 btrfs_err(fs_info,
2532                         "qgroup accounting update error, list is%s empty, seq is %#x.%x",
2533                         list_empty(&trans->qgroup_ref_list) ? "" : " not",
2534                         (u32)(trans->delayed_ref_elem.seq >> 32),
2535                         (u32)trans->delayed_ref_elem.seq);
2536                 BUG();
2537         }
2538
2539         if (!trans->delayed_ref_elem.seq)
2540                 return 0;
2541
2542         while (!list_empty(&trans->qgroup_ref_list)) {
2543                 qgroup_update = list_first_entry(&trans->qgroup_ref_list,
2544                                                  struct qgroup_update, list);
2545                 list_del(&qgroup_update->list);
2546                 if (!ret)
2547                         ret = btrfs_qgroup_account_ref(
2548                                         trans, fs_info, qgroup_update->node,
2549                                         qgroup_update->extent_op);
2550                 kfree(qgroup_update);
2551         }
2552
2553         btrfs_put_tree_mod_seq(fs_info, &trans->delayed_ref_elem);
2554
2555         return ret;
2556 }
2557
2558 static int refs_newer(struct btrfs_delayed_ref_root *delayed_refs, int seq,
2559                       int count)
2560 {
2561         int val = atomic_read(&delayed_refs->ref_seq);
2562
2563         if (val < seq || val >= seq + count)
2564                 return 1;
2565         return 0;
2566 }
2567
2568 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2569 {
2570         u64 num_bytes;
2571
2572         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2573                              sizeof(struct btrfs_extent_inline_ref));
2574         if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2575                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2576
2577         /*
2578          * We don't ever fill up leaves all the way so multiply by 2 just to be
2579          * closer to what we're really going to want to ouse.
2580          */
2581         return div64_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2582 }
2583
2584 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2585                                        struct btrfs_root *root)
2586 {
2587         struct btrfs_block_rsv *global_rsv;
2588         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2589         u64 num_bytes;
2590         int ret = 0;
2591
2592         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2593         num_heads = heads_to_leaves(root, num_heads);
2594         if (num_heads > 1)
2595                 num_bytes += (num_heads - 1) * root->leafsize;
2596         num_bytes <<= 1;
2597         global_rsv = &root->fs_info->global_block_rsv;
2598
2599         /*
2600          * If we can't allocate any more chunks lets make sure we have _lots_ of
2601          * wiggle room since running delayed refs can create more delayed refs.
2602          */
2603         if (global_rsv->space_info->full)
2604                 num_bytes <<= 1;
2605
2606         spin_lock(&global_rsv->lock);
2607         if (global_rsv->reserved <= num_bytes)
2608                 ret = 1;
2609         spin_unlock(&global_rsv->lock);
2610         return ret;
2611 }
2612
2613 /*
2614  * this starts processing the delayed reference count updates and
2615  * extent insertions we have queued up so far.  count can be
2616  * 0, which means to process everything in the tree at the start
2617  * of the run (but not newly added entries), or it can be some target
2618  * number you'd like to process.
2619  *
2620  * Returns 0 on success or if called with an aborted transaction
2621  * Returns <0 on error and aborts the transaction
2622  */
2623 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2624                            struct btrfs_root *root, unsigned long count)
2625 {
2626         struct rb_node *node;
2627         struct btrfs_delayed_ref_root *delayed_refs;
2628         struct btrfs_delayed_ref_node *ref;
2629         struct list_head cluster;
2630         int ret;
2631         u64 delayed_start;
2632         int run_all = count == (unsigned long)-1;
2633         int run_most = 0;
2634         int loops;
2635
2636         /* We'll clean this up in btrfs_cleanup_transaction */
2637         if (trans->aborted)
2638                 return 0;
2639
2640         if (root == root->fs_info->extent_root)
2641                 root = root->fs_info->tree_root;
2642
2643         btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
2644
2645         delayed_refs = &trans->transaction->delayed_refs;
2646         INIT_LIST_HEAD(&cluster);
2647         if (count == 0) {
2648                 count = delayed_refs->num_entries * 2;
2649                 run_most = 1;
2650         }
2651
2652         if (!run_all && !run_most) {
2653                 int old;
2654                 int seq = atomic_read(&delayed_refs->ref_seq);
2655
2656 progress:
2657                 old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2658                 if (old) {
2659                         DEFINE_WAIT(__wait);
2660                         if (delayed_refs->flushing ||
2661                             !btrfs_should_throttle_delayed_refs(trans, root))
2662                                 return 0;
2663
2664                         prepare_to_wait(&delayed_refs->wait, &__wait,
2665                                         TASK_UNINTERRUPTIBLE);
2666
2667                         old = atomic_cmpxchg(&delayed_refs->procs_running_refs, 0, 1);
2668                         if (old) {
2669                                 schedule();
2670                                 finish_wait(&delayed_refs->wait, &__wait);
2671
2672                                 if (!refs_newer(delayed_refs, seq, 256))
2673                                         goto progress;
2674                                 else
2675                                         return 0;
2676                         } else {
2677                                 finish_wait(&delayed_refs->wait, &__wait);
2678                                 goto again;
2679                         }
2680                 }
2681
2682         } else {
2683                 atomic_inc(&delayed_refs->procs_running_refs);
2684         }
2685
2686 again:
2687         loops = 0;
2688         spin_lock(&delayed_refs->lock);
2689
2690 #ifdef SCRAMBLE_DELAYED_REFS
2691         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2692 #endif
2693
2694         while (1) {
2695                 if (!(run_all || run_most) &&
2696                     !btrfs_should_throttle_delayed_refs(trans, root))
2697                         break;
2698
2699                 /*
2700                  * go find something we can process in the rbtree.  We start at
2701                  * the beginning of the tree, and then build a cluster
2702                  * of refs to process starting at the first one we are able to
2703                  * lock
2704                  */
2705                 delayed_start = delayed_refs->run_delayed_start;
2706                 ret = btrfs_find_ref_cluster(trans, &cluster,
2707                                              delayed_refs->run_delayed_start);
2708                 if (ret)
2709                         break;
2710
2711                 ret = run_clustered_refs(trans, root, &cluster);
2712                 if (ret < 0) {
2713                         btrfs_release_ref_cluster(&cluster);
2714                         spin_unlock(&delayed_refs->lock);
2715                         btrfs_abort_transaction(trans, root, ret);
2716                         atomic_dec(&delayed_refs->procs_running_refs);
2717                         wake_up(&delayed_refs->wait);
2718                         return ret;
2719                 }
2720
2721                 atomic_add(ret, &delayed_refs->ref_seq);
2722
2723                 count -= min_t(unsigned long, ret, count);
2724
2725                 if (count == 0)
2726                         break;
2727
2728                 if (delayed_start >= delayed_refs->run_delayed_start) {
2729                         if (loops == 0) {
2730                                 /*
2731                                  * btrfs_find_ref_cluster looped. let's do one
2732                                  * more cycle. if we don't run any delayed ref
2733                                  * during that cycle (because we can't because
2734                                  * all of them are blocked), bail out.
2735                                  */
2736                                 loops = 1;
2737                         } else {
2738                                 /*
2739                                  * no runnable refs left, stop trying
2740                                  */
2741                                 BUG_ON(run_all);
2742                                 break;
2743                         }
2744                 }
2745                 if (ret) {
2746                         /* refs were run, let's reset staleness detection */
2747                         loops = 0;
2748                 }
2749         }
2750
2751         if (run_all) {
2752                 if (!list_empty(&trans->new_bgs)) {
2753                         spin_unlock(&delayed_refs->lock);
2754                         btrfs_create_pending_block_groups(trans, root);
2755                         spin_lock(&delayed_refs->lock);
2756                 }
2757
2758                 node = rb_first(&delayed_refs->root);
2759                 if (!node)
2760                         goto out;
2761                 count = (unsigned long)-1;
2762
2763                 while (node) {
2764                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
2765                                        rb_node);
2766                         if (btrfs_delayed_ref_is_head(ref)) {
2767                                 struct btrfs_delayed_ref_head *head;
2768
2769                                 head = btrfs_delayed_node_to_head(ref);
2770                                 atomic_inc(&ref->refs);
2771
2772                                 spin_unlock(&delayed_refs->lock);
2773                                 /*
2774                                  * Mutex was contended, block until it's
2775                                  * released and try again
2776                                  */
2777                                 mutex_lock(&head->mutex);
2778                                 mutex_unlock(&head->mutex);
2779
2780                                 btrfs_put_delayed_ref(ref);
2781                                 cond_resched();
2782                                 goto again;
2783                         }
2784                         node = rb_next(node);
2785                 }
2786                 spin_unlock(&delayed_refs->lock);
2787                 schedule_timeout(1);
2788                 goto again;
2789         }
2790 out:
2791         atomic_dec(&delayed_refs->procs_running_refs);
2792         smp_mb();
2793         if (waitqueue_active(&delayed_refs->wait))
2794                 wake_up(&delayed_refs->wait);
2795
2796         spin_unlock(&delayed_refs->lock);
2797         assert_qgroups_uptodate(trans);
2798         return 0;
2799 }
2800
2801 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2802                                 struct btrfs_root *root,
2803                                 u64 bytenr, u64 num_bytes, u64 flags,
2804                                 int level, int is_data)
2805 {
2806         struct btrfs_delayed_extent_op *extent_op;
2807         int ret;
2808
2809         extent_op = btrfs_alloc_delayed_extent_op();
2810         if (!extent_op)
2811                 return -ENOMEM;
2812
2813         extent_op->flags_to_set = flags;
2814         extent_op->update_flags = 1;
2815         extent_op->update_key = 0;
2816         extent_op->is_data = is_data ? 1 : 0;
2817         extent_op->level = level;
2818
2819         ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2820                                           num_bytes, extent_op);
2821         if (ret)
2822                 btrfs_free_delayed_extent_op(extent_op);
2823         return ret;
2824 }
2825
2826 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2827                                       struct btrfs_root *root,
2828                                       struct btrfs_path *path,
2829                                       u64 objectid, u64 offset, u64 bytenr)
2830 {
2831         struct btrfs_delayed_ref_head *head;
2832         struct btrfs_delayed_ref_node *ref;
2833         struct btrfs_delayed_data_ref *data_ref;
2834         struct btrfs_delayed_ref_root *delayed_refs;
2835         struct rb_node *node;
2836         int ret = 0;
2837
2838         ret = -ENOENT;
2839         delayed_refs = &trans->transaction->delayed_refs;
2840         spin_lock(&delayed_refs->lock);
2841         head = btrfs_find_delayed_ref_head(trans, bytenr);
2842         if (!head)
2843                 goto out;
2844
2845         if (!mutex_trylock(&head->mutex)) {
2846                 atomic_inc(&head->node.refs);
2847                 spin_unlock(&delayed_refs->lock);
2848
2849                 btrfs_release_path(path);
2850
2851                 /*
2852                  * Mutex was contended, block until it's released and let
2853                  * caller try again
2854                  */
2855                 mutex_lock(&head->mutex);
2856                 mutex_unlock(&head->mutex);
2857                 btrfs_put_delayed_ref(&head->node);
2858                 return -EAGAIN;
2859         }
2860
2861         node = rb_prev(&head->node.rb_node);
2862         if (!node)
2863                 goto out_unlock;
2864
2865         ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2866
2867         if (ref->bytenr != bytenr)
2868                 goto out_unlock;
2869
2870         ret = 1;
2871         if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2872                 goto out_unlock;
2873
2874         data_ref = btrfs_delayed_node_to_data_ref(ref);
2875
2876         node = rb_prev(node);
2877         if (node) {
2878                 int seq = ref->seq;
2879
2880                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2881                 if (ref->bytenr == bytenr && ref->seq == seq)
2882                         goto out_unlock;
2883         }
2884
2885         if (data_ref->root != root->root_key.objectid ||
2886             data_ref->objectid != objectid || data_ref->offset != offset)
2887                 goto out_unlock;
2888
2889         ret = 0;
2890 out_unlock:
2891         mutex_unlock(&head->mutex);
2892 out:
2893         spin_unlock(&delayed_refs->lock);
2894         return ret;
2895 }
2896
2897 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2898                                         struct btrfs_root *root,
2899                                         struct btrfs_path *path,
2900                                         u64 objectid, u64 offset, u64 bytenr)
2901 {
2902         struct btrfs_root *extent_root = root->fs_info->extent_root;
2903         struct extent_buffer *leaf;
2904         struct btrfs_extent_data_ref *ref;
2905         struct btrfs_extent_inline_ref *iref;
2906         struct btrfs_extent_item *ei;
2907         struct btrfs_key key;
2908         u32 item_size;
2909         int ret;
2910
2911         key.objectid = bytenr;
2912         key.offset = (u64)-1;
2913         key.type = BTRFS_EXTENT_ITEM_KEY;
2914
2915         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2916         if (ret < 0)
2917                 goto out;
2918         BUG_ON(ret == 0); /* Corruption */
2919
2920         ret = -ENOENT;
2921         if (path->slots[0] == 0)
2922                 goto out;
2923
2924         path->slots[0]--;
2925         leaf = path->nodes[0];
2926         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2927
2928         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2929                 goto out;
2930
2931         ret = 1;
2932         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2933 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2934         if (item_size < sizeof(*ei)) {
2935                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2936                 goto out;
2937         }
2938 #endif
2939         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2940
2941         if (item_size != sizeof(*ei) +
2942             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2943                 goto out;
2944
2945         if (btrfs_extent_generation(leaf, ei) <=
2946             btrfs_root_last_snapshot(&root->root_item))
2947                 goto out;
2948
2949         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2950         if (btrfs_extent_inline_ref_type(leaf, iref) !=
2951             BTRFS_EXTENT_DATA_REF_KEY)
2952                 goto out;
2953
2954         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2955         if (btrfs_extent_refs(leaf, ei) !=
2956             btrfs_extent_data_ref_count(leaf, ref) ||
2957             btrfs_extent_data_ref_root(leaf, ref) !=
2958             root->root_key.objectid ||
2959             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2960             btrfs_extent_data_ref_offset(leaf, ref) != offset)
2961                 goto out;
2962
2963         ret = 0;
2964 out:
2965         return ret;
2966 }
2967
2968 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2969                           struct btrfs_root *root,
2970                           u64 objectid, u64 offset, u64 bytenr)
2971 {
2972         struct btrfs_path *path;
2973         int ret;
2974         int ret2;
2975
2976         path = btrfs_alloc_path();
2977         if (!path)
2978                 return -ENOENT;
2979
2980         do {
2981                 ret = check_committed_ref(trans, root, path, objectid,
2982                                           offset, bytenr);
2983                 if (ret && ret != -ENOENT)
2984                         goto out;
2985
2986                 ret2 = check_delayed_ref(trans, root, path, objectid,
2987                                          offset, bytenr);
2988         } while (ret2 == -EAGAIN);
2989
2990         if (ret2 && ret2 != -ENOENT) {
2991                 ret = ret2;
2992                 goto out;
2993         }
2994
2995         if (ret != -ENOENT || ret2 != -ENOENT)
2996                 ret = 0;
2997 out:
2998         btrfs_free_path(path);
2999         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3000                 WARN_ON(ret > 0);
3001         return ret;
3002 }
3003
3004 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3005                            struct btrfs_root *root,
3006                            struct extent_buffer *buf,
3007                            int full_backref, int inc, int for_cow)
3008 {
3009         u64 bytenr;
3010         u64 num_bytes;
3011         u64 parent;
3012         u64 ref_root;
3013         u32 nritems;
3014         struct btrfs_key key;
3015         struct btrfs_file_extent_item *fi;
3016         int i;
3017         int level;
3018         int ret = 0;
3019         int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3020                             u64, u64, u64, u64, u64, u64, int);
3021
3022         ref_root = btrfs_header_owner(buf);
3023         nritems = btrfs_header_nritems(buf);
3024         level = btrfs_header_level(buf);
3025
3026         if (!root->ref_cows && level == 0)
3027                 return 0;
3028
3029         if (inc)
3030                 process_func = btrfs_inc_extent_ref;
3031         else
3032                 process_func = btrfs_free_extent;
3033
3034         if (full_backref)
3035                 parent = buf->start;
3036         else
3037                 parent = 0;
3038
3039         for (i = 0; i < nritems; i++) {
3040                 if (level == 0) {
3041                         btrfs_item_key_to_cpu(buf, &key, i);
3042                         if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
3043                                 continue;
3044                         fi = btrfs_item_ptr(buf, i,
3045                                             struct btrfs_file_extent_item);
3046                         if (btrfs_file_extent_type(buf, fi) ==
3047                             BTRFS_FILE_EXTENT_INLINE)
3048                                 continue;
3049                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3050                         if (bytenr == 0)
3051                                 continue;
3052
3053                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3054                         key.offset -= btrfs_file_extent_offset(buf, fi);
3055                         ret = process_func(trans, root, bytenr, num_bytes,
3056                                            parent, ref_root, key.objectid,
3057                                            key.offset, for_cow);
3058                         if (ret)
3059                                 goto fail;
3060                 } else {
3061                         bytenr = btrfs_node_blockptr(buf, i);
3062                         num_bytes = btrfs_level_size(root, level - 1);
3063                         ret = process_func(trans, root, bytenr, num_bytes,
3064                                            parent, ref_root, level - 1, 0,
3065                                            for_cow);
3066                         if (ret)
3067                                 goto fail;
3068                 }
3069         }
3070         return 0;
3071 fail:
3072         return ret;
3073 }
3074
3075 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3076                   struct extent_buffer *buf, int full_backref, int for_cow)
3077 {
3078         return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
3079 }
3080
3081 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3082                   struct extent_buffer *buf, int full_backref, int for_cow)
3083 {
3084         return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
3085 }
3086
3087 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3088                                  struct btrfs_root *root,
3089                                  struct btrfs_path *path,
3090                                  struct btrfs_block_group_cache *cache)
3091 {
3092         int ret;
3093         struct btrfs_root *extent_root = root->fs_info->extent_root;
3094         unsigned long bi;
3095         struct extent_buffer *leaf;
3096
3097         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3098         if (ret < 0)
3099                 goto fail;
3100         BUG_ON(ret); /* Corruption */
3101
3102         leaf = path->nodes[0];
3103         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3104         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3105         btrfs_mark_buffer_dirty(leaf);
3106         btrfs_release_path(path);
3107 fail:
3108         if (ret) {
3109                 btrfs_abort_transaction(trans, root, ret);
3110                 return ret;
3111         }
3112         return 0;
3113
3114 }
3115
3116 static struct btrfs_block_group_cache *
3117 next_block_group(struct btrfs_root *root,
3118                  struct btrfs_block_group_cache *cache)
3119 {
3120         struct rb_node *node;
3121         spin_lock(&root->fs_info->block_group_cache_lock);
3122         node = rb_next(&cache->cache_node);
3123         btrfs_put_block_group(cache);
3124         if (node) {
3125                 cache = rb_entry(node, struct btrfs_block_group_cache,
3126                                  cache_node);
3127                 btrfs_get_block_group(cache);
3128         } else
3129                 cache = NULL;
3130         spin_unlock(&root->fs_info->block_group_cache_lock);
3131         return cache;
3132 }
3133
3134 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3135                             struct btrfs_trans_handle *trans,
3136                             struct btrfs_path *path)
3137 {
3138         struct btrfs_root *root = block_group->fs_info->tree_root;
3139         struct inode *inode = NULL;
3140         u64 alloc_hint = 0;
3141         int dcs = BTRFS_DC_ERROR;
3142         int num_pages = 0;
3143         int retries = 0;
3144         int ret = 0;
3145
3146         /*
3147          * If this block group is smaller than 100 megs don't bother caching the
3148          * block group.
3149          */
3150         if (block_group->key.offset < (100 * 1024 * 1024)) {
3151                 spin_lock(&block_group->lock);
3152                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3153                 spin_unlock(&block_group->lock);
3154                 return 0;
3155         }
3156
3157 again:
3158         inode = lookup_free_space_inode(root, block_group, path);
3159         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3160                 ret = PTR_ERR(inode);
3161                 btrfs_release_path(path);
3162                 goto out;
3163         }
3164
3165         if (IS_ERR(inode)) {
3166                 BUG_ON(retries);
3167                 retries++;
3168
3169                 if (block_group->ro)
3170                         goto out_free;
3171
3172                 ret = create_free_space_inode(root, trans, block_group, path);
3173                 if (ret)
3174                         goto out_free;
3175                 goto again;
3176         }
3177
3178         /* We've already setup this transaction, go ahead and exit */
3179         if (block_group->cache_generation == trans->transid &&
3180             i_size_read(inode)) {
3181                 dcs = BTRFS_DC_SETUP;
3182                 goto out_put;
3183         }
3184
3185         /*
3186          * We want to set the generation to 0, that way if anything goes wrong
3187          * from here on out we know not to trust this cache when we load up next
3188          * time.
3189          */
3190         BTRFS_I(inode)->generation = 0;
3191         ret = btrfs_update_inode(trans, root, inode);
3192         WARN_ON(ret);
3193
3194         if (i_size_read(inode) > 0) {
3195                 ret = btrfs_check_trunc_cache_free_space(root,
3196                                         &root->fs_info->global_block_rsv);
3197                 if (ret)
3198                         goto out_put;
3199
3200                 ret = btrfs_truncate_free_space_cache(root, trans, path,
3201                                                       inode);
3202                 if (ret)
3203                         goto out_put;
3204         }
3205
3206         spin_lock(&block_group->lock);
3207         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3208             !btrfs_test_opt(root, SPACE_CACHE)) {
3209                 /*
3210                  * don't bother trying to write stuff out _if_
3211                  * a) we're not cached,
3212                  * b) we're with nospace_cache mount option.
3213                  */
3214                 dcs = BTRFS_DC_WRITTEN;
3215                 spin_unlock(&block_group->lock);
3216                 goto out_put;
3217         }
3218         spin_unlock(&block_group->lock);
3219
3220         /*
3221          * Try to preallocate enough space based on how big the block group is.
3222          * Keep in mind this has to include any pinned space which could end up
3223          * taking up quite a bit since it's not folded into the other space
3224          * cache.
3225          */
3226         num_pages = (int)div64_u64(block_group->key.offset, 256 * 1024 * 1024);
3227         if (!num_pages)
3228                 num_pages = 1;
3229
3230         num_pages *= 16;
3231         num_pages *= PAGE_CACHE_SIZE;
3232
3233         ret = btrfs_check_data_free_space(inode, num_pages);
3234         if (ret)
3235                 goto out_put;
3236
3237         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3238                                               num_pages, num_pages,
3239                                               &alloc_hint);
3240         if (!ret)
3241                 dcs = BTRFS_DC_SETUP;
3242         btrfs_free_reserved_data_space(inode, num_pages);
3243
3244 out_put:
3245         iput(inode);
3246 out_free:
3247         btrfs_release_path(path);
3248 out:
3249         spin_lock(&block_group->lock);
3250         if (!ret && dcs == BTRFS_DC_SETUP)
3251                 block_group->cache_generation = trans->transid;
3252         block_group->disk_cache_state = dcs;
3253         spin_unlock(&block_group->lock);
3254
3255         return ret;
3256 }
3257
3258 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3259                                    struct btrfs_root *root)
3260 {
3261         struct btrfs_block_group_cache *cache;
3262         int err = 0;
3263         struct btrfs_path *path;
3264         u64 last = 0;
3265
3266         path = btrfs_alloc_path();
3267         if (!path)
3268                 return -ENOMEM;
3269
3270 again:
3271         while (1) {
3272                 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3273                 while (cache) {
3274                         if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3275                                 break;
3276                         cache = next_block_group(root, cache);
3277                 }
3278                 if (!cache) {
3279                         if (last == 0)
3280                                 break;
3281                         last = 0;
3282                         continue;
3283                 }
3284                 err = cache_save_setup(cache, trans, path);
3285                 last = cache->key.objectid + cache->key.offset;
3286                 btrfs_put_block_group(cache);
3287         }
3288
3289         while (1) {
3290                 if (last == 0) {
3291                         err = btrfs_run_delayed_refs(trans, root,
3292                                                      (unsigned long)-1);
3293                         if (err) /* File system offline */
3294                                 goto out;
3295                 }
3296
3297                 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3298                 while (cache) {
3299                         if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
3300                                 btrfs_put_block_group(cache);
3301                                 goto again;
3302                         }
3303
3304                         if (cache->dirty)
3305                                 break;
3306                         cache = next_block_group(root, cache);
3307                 }
3308                 if (!cache) {
3309                         if (last == 0)
3310                                 break;
3311                         last = 0;
3312                         continue;
3313                 }
3314
3315                 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3316                         cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3317                 cache->dirty = 0;
3318                 last = cache->key.objectid + cache->key.offset;
3319
3320                 err = write_one_cache_group(trans, root, path, cache);
3321                 if (err) /* File system offline */
3322                         goto out;
3323
3324                 btrfs_put_block_group(cache);
3325         }
3326
3327         while (1) {
3328                 /*
3329                  * I don't think this is needed since we're just marking our
3330                  * preallocated extent as written, but just in case it can't
3331                  * hurt.
3332                  */
3333                 if (last == 0) {
3334                         err = btrfs_run_delayed_refs(trans, root,
3335                                                      (unsigned long)-1);
3336                         if (err) /* File system offline */
3337                                 goto out;
3338                 }
3339
3340                 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3341                 while (cache) {
3342                         /*
3343                          * Really this shouldn't happen, but it could if we
3344                          * couldn't write the entire preallocated extent and
3345                          * splitting the extent resulted in a new block.
3346                          */
3347                         if (cache->dirty) {
3348                                 btrfs_put_block_group(cache);
3349                                 goto again;
3350                         }
3351                         if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3352                                 break;
3353                         cache = next_block_group(root, cache);
3354                 }
3355                 if (!cache) {
3356                         if (last == 0)
3357                                 break;
3358                         last = 0;
3359                         continue;
3360                 }
3361
3362                 err = btrfs_write_out_cache(root, trans, cache, path);
3363
3364                 /*
3365                  * If we didn't have an error then the cache state is still
3366                  * NEED_WRITE, so we can set it to WRITTEN.
3367                  */
3368                 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3369                         cache->disk_cache_state = BTRFS_DC_WRITTEN;
3370                 last = cache->key.objectid + cache->key.offset;
3371                 btrfs_put_block_group(cache);
3372         }
3373 out:
3374
3375         btrfs_free_path(path);
3376         return err;
3377 }
3378
3379 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3380 {
3381         struct btrfs_block_group_cache *block_group;
3382         int readonly = 0;
3383
3384         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3385         if (!block_group || block_group->ro)
3386                 readonly = 1;
3387         if (block_group)
3388                 btrfs_put_block_group(block_group);
3389         return readonly;
3390 }
3391
3392 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3393                              u64 total_bytes, u64 bytes_used,
3394                              struct btrfs_space_info **space_info)
3395 {
3396         struct btrfs_space_info *found;
3397         int i;
3398         int factor;
3399         int ret;
3400
3401         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3402                      BTRFS_BLOCK_GROUP_RAID10))
3403                 factor = 2;
3404         else
3405                 factor = 1;
3406
3407         found = __find_space_info(info, flags);
3408         if (found) {
3409                 spin_lock(&found->lock);
3410                 found->total_bytes += total_bytes;
3411                 found->disk_total += total_bytes * factor;
3412                 found->bytes_used += bytes_used;
3413                 found->disk_used += bytes_used * factor;
3414                 found->full = 0;
3415                 spin_unlock(&found->lock);
3416                 *space_info = found;
3417                 return 0;
3418         }
3419         found = kzalloc(sizeof(*found), GFP_NOFS);
3420         if (!found)
3421                 return -ENOMEM;
3422
3423         ret = percpu_counter_init(&found->total_bytes_pinned, 0);
3424         if (ret) {
3425                 kfree(found);
3426                 return ret;
3427         }
3428
3429         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3430                 INIT_LIST_HEAD(&found->block_groups[i]);
3431         init_rwsem(&found->groups_sem);
3432         spin_lock_init(&found->lock);
3433         found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3434         found->total_bytes = total_bytes;
3435         found->disk_total = total_bytes * factor;
3436         found->bytes_used = bytes_used;
3437         found->disk_used = bytes_used * factor;
3438         found->bytes_pinned = 0;
3439         found->bytes_reserved = 0;
3440         found->bytes_readonly = 0;
3441         found->bytes_may_use = 0;
3442         found->full = 0;
3443         found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3444         found->chunk_alloc = 0;
3445         found->flush = 0;
3446         init_waitqueue_head(&found->wait);
3447         *space_info = found;
3448         list_add_rcu(&found->list, &info->space_info);
3449         if (flags & BTRFS_BLOCK_GROUP_DATA)
3450                 info->data_sinfo = found;
3451         return 0;
3452 }
3453
3454 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3455 {
3456         u64 extra_flags = chunk_to_extended(flags) &
3457                                 BTRFS_EXTENDED_PROFILE_MASK;
3458
3459         write_seqlock(&fs_info->profiles_lock);
3460         if (flags & BTRFS_BLOCK_GROUP_DATA)
3461                 fs_info->avail_data_alloc_bits |= extra_flags;
3462         if (flags & BTRFS_BLOCK_GROUP_METADATA)
3463                 fs_info->avail_metadata_alloc_bits |= extra_flags;
3464         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3465                 fs_info->avail_system_alloc_bits |= extra_flags;
3466         write_sequnlock(&fs_info->profiles_lock);
3467 }
3468
3469 /*
3470  * returns target flags in extended format or 0 if restripe for this
3471  * chunk_type is not in progress
3472  *
3473  * should be called with either volume_mutex or balance_lock held
3474  */
3475 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3476 {
3477         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3478         u64 target = 0;
3479
3480         if (!bctl)
3481                 return 0;
3482
3483         if (flags & BTRFS_BLOCK_GROUP_DATA &&
3484             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3485                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3486         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3487                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3488                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3489         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3490                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3491                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3492         }
3493
3494         return target;
3495 }
3496
3497 /*
3498  * @flags: available profiles in extended format (see ctree.h)
3499  *
3500  * Returns reduced profile in chunk format.  If profile changing is in
3501  * progress (either running or paused) picks the target profile (if it's
3502  * already available), otherwise falls back to plain reducing.
3503  */
3504 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3505 {
3506         /*
3507          * we add in the count of missing devices because we want
3508          * to make sure that any RAID levels on a degraded FS
3509          * continue to be honored.
3510          */
3511         u64 num_devices = root->fs_info->fs_devices->rw_devices +
3512                 root->fs_info->fs_devices->missing_devices;
3513         u64 target;
3514         u64 tmp;
3515
3516         /*
3517          * see if restripe for this chunk_type is in progress, if so
3518          * try to reduce to the target profile
3519          */
3520         spin_lock(&root->fs_info->balance_lock);
3521         target = get_restripe_target(root->fs_info, flags);
3522         if (target) {
3523                 /* pick target profile only if it's already available */
3524                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3525                         spin_unlock(&root->fs_info->balance_lock);
3526                         return extended_to_chunk(target);
3527                 }
3528         }
3529         spin_unlock(&root->fs_info->balance_lock);
3530
3531         /* First, mask out the RAID levels which aren't possible */
3532         if (num_devices == 1)
3533                 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3534                            BTRFS_BLOCK_GROUP_RAID5);
3535         if (num_devices < 3)
3536                 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
3537         if (num_devices < 4)
3538                 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3539
3540         tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3541                        BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3542                        BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3543         flags &= ~tmp;
3544
3545         if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3546                 tmp = BTRFS_BLOCK_GROUP_RAID6;
3547         else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3548                 tmp = BTRFS_BLOCK_GROUP_RAID5;
3549         else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3550                 tmp = BTRFS_BLOCK_GROUP_RAID10;
3551         else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3552                 tmp = BTRFS_BLOCK_GROUP_RAID1;
3553         else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3554                 tmp = BTRFS_BLOCK_GROUP_RAID0;
3555
3556         return extended_to_chunk(flags | tmp);
3557 }
3558
3559 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3560 {
3561         unsigned seq;
3562
3563         do {
3564                 seq = read_seqbegin(&root->fs_info->profiles_lock);
3565
3566                 if (flags & BTRFS_BLOCK_GROUP_DATA)
3567                         flags |= root->fs_info->avail_data_alloc_bits;
3568                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3569                         flags |= root->fs_info->avail_system_alloc_bits;
3570                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3571                         flags |= root->fs_info->avail_metadata_alloc_bits;
3572         } while (read_seqretry(&root->fs_info->profiles_lock, seq));
3573
3574         return btrfs_reduce_alloc_profile(root, flags);
3575 }
3576
3577 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3578 {
3579         u64 flags;
3580         u64 ret;
3581
3582         if (data)
3583                 flags = BTRFS_BLOCK_GROUP_DATA;
3584         else if (root == root->fs_info->chunk_root)
3585                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3586         else
3587                 flags = BTRFS_BLOCK_GROUP_METADATA;
3588
3589         ret = get_alloc_profile(root, flags);
3590         return ret;
3591 }
3592
3593 /*
3594  * This will check the space that the inode allocates from to make sure we have
3595  * enough space for bytes.
3596  */
3597 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3598 {
3599         struct btrfs_space_info *data_sinfo;
3600         struct btrfs_root *root = BTRFS_I(inode)->root;
3601         struct btrfs_fs_info *fs_info = root->fs_info;
3602         u64 used;
3603         int ret = 0, committed = 0, alloc_chunk = 1;
3604
3605         /* make sure bytes are sectorsize aligned */
3606         bytes = ALIGN(bytes, root->sectorsize);
3607
3608         if (root == root->fs_info->tree_root ||
3609             BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3610                 alloc_chunk = 0;
3611                 committed = 1;
3612         }
3613
3614         data_sinfo = fs_info->data_sinfo;
3615         if (!data_sinfo)
3616                 goto alloc;
3617
3618 again:
3619         /* make sure we have enough space to handle the data first */
3620         spin_lock(&data_sinfo->lock);
3621         used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3622                 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3623                 data_sinfo->bytes_may_use;
3624
3625         if (used + bytes > data_sinfo->total_bytes) {
3626                 struct btrfs_trans_handle *trans;
3627
3628                 /*
3629                  * if we don't have enough free bytes in this space then we need
3630                  * to alloc a new chunk.
3631                  */
3632                 if (!data_sinfo->full && alloc_chunk) {
3633                         u64 alloc_target;
3634
3635                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3636                         spin_unlock(&data_sinfo->lock);
3637 alloc:
3638                         alloc_target = btrfs_get_alloc_profile(root, 1);
3639                         trans = btrfs_join_transaction(root);
3640                         if (IS_ERR(trans))
3641                                 return PTR_ERR(trans);
3642
3643                         ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3644                                              alloc_target,
3645                                              CHUNK_ALLOC_NO_FORCE);
3646                         btrfs_end_transaction(trans, root);
3647                         if (ret < 0) {
3648                                 if (ret != -ENOSPC)
3649                                         return ret;
3650                                 else
3651                                         goto commit_trans;
3652                         }
3653
3654                         if (!data_sinfo)
3655                                 data_sinfo = fs_info->data_sinfo;
3656
3657                         goto again;
3658                 }
3659
3660                 /*
3661                  * If we don't have enough pinned space to deal with this
3662                  * allocation don't bother committing the transaction.
3663                  */
3664                 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
3665                                            bytes) < 0)
3666                         committed = 1;
3667                 spin_unlock(&data_sinfo->lock);
3668
3669                 /* commit the current transaction and try again */
3670 commit_trans:
3671                 if (!committed &&
3672                     !atomic_read(&root->fs_info->open_ioctl_trans)) {
3673                         committed = 1;
3674
3675                         trans = btrfs_join_transaction(root);
3676                         if (IS_ERR(trans))
3677                                 return PTR_ERR(trans);
3678                         ret = btrfs_commit_transaction(trans, root);
3679                         if (ret)
3680                                 return ret;
3681                         goto again;
3682                 }
3683
3684                 return -ENOSPC;
3685         }
3686         data_sinfo->bytes_may_use += bytes;
3687         trace_btrfs_space_reservation(root->fs_info, "space_info",
3688                                       data_sinfo->flags, bytes, 1);
3689         spin_unlock(&data_sinfo->lock);
3690
3691         return 0;
3692 }
3693
3694 /*
3695  * Called if we need to clear a data reservation for this inode.
3696  */
3697 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3698 {
3699         struct btrfs_root *root = BTRFS_I(inode)->root;
3700         struct btrfs_space_info *data_sinfo;
3701
3702         /* make sure bytes are sectorsize aligned */
3703         bytes = ALIGN(bytes, root->sectorsize);
3704
3705         data_sinfo = root->fs_info->data_sinfo;
3706         spin_lock(&data_sinfo->lock);
3707         WARN_ON(data_sinfo->bytes_may_use < bytes);
3708         data_sinfo->bytes_may_use -= bytes;
3709         trace_btrfs_space_reservation(root->fs_info, "space_info",
3710                                       data_sinfo->flags, bytes, 0);
3711         spin_unlock(&data_sinfo->lock);
3712 }
3713
3714 static void force_metadata_allocation(struct btrfs_fs_info *info)
3715 {
3716         struct list_head *head = &info->space_info;
3717         struct btrfs_space_info *found;
3718
3719         rcu_read_lock();
3720         list_for_each_entry_rcu(found, head, list) {
3721                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3722                         found->force_alloc = CHUNK_ALLOC_FORCE;
3723         }
3724         rcu_read_unlock();
3725 }
3726
3727 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
3728 {
3729         return (global->size << 1);
3730 }
3731
3732 static int should_alloc_chunk(struct btrfs_root *root,
3733                               struct btrfs_space_info *sinfo, int force)
3734 {
3735         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3736         u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3737         u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3738         u64 thresh;
3739
3740         if (force == CHUNK_ALLOC_FORCE)
3741                 return 1;
3742
3743         /*
3744          * We need to take into account the global rsv because for all intents
3745          * and purposes it's used space.  Don't worry about locking the
3746          * global_rsv, it doesn't change except when the transaction commits.
3747          */
3748         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3749                 num_allocated += calc_global_rsv_need_space(global_rsv);
3750
3751         /*
3752          * in limited mode, we want to have some free space up to
3753          * about 1% of the FS size.
3754          */
3755         if (force == CHUNK_ALLOC_LIMITED) {
3756                 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3757                 thresh = max_t(u64, 64 * 1024 * 1024,
3758                                div_factor_fine(thresh, 1));
3759
3760                 if (num_bytes - num_allocated < thresh)
3761                         return 1;
3762         }
3763
3764         if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
3765                 return 0;
3766         return 1;
3767 }
3768
3769 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3770 {
3771         u64 num_dev;
3772
3773         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
3774                     BTRFS_BLOCK_GROUP_RAID0 |
3775                     BTRFS_BLOCK_GROUP_RAID5 |
3776                     BTRFS_BLOCK_GROUP_RAID6))
3777                 num_dev = root->fs_info->fs_devices->rw_devices;
3778         else if (type & BTRFS_BLOCK_GROUP_RAID1)
3779                 num_dev = 2;
3780         else
3781                 num_dev = 1;    /* DUP or single */
3782
3783         /* metadata for updaing devices and chunk tree */
3784         return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3785 }
3786
3787 static void check_system_chunk(struct btrfs_trans_handle *trans,
3788                                struct btrfs_root *root, u64 type)
3789 {
3790         struct btrfs_space_info *info;
3791         u64 left;
3792         u64 thresh;
3793
3794         info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3795         spin_lock(&info->lock);
3796         left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3797                 info->bytes_reserved - info->bytes_readonly;
3798         spin_unlock(&info->lock);
3799
3800         thresh = get_system_chunk_thresh(root, type);
3801         if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3802                 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
3803                         left, thresh, type);
3804                 dump_space_info(info, 0, 0);
3805         }
3806
3807         if (left < thresh) {
3808                 u64 flags;
3809
3810                 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3811                 btrfs_alloc_chunk(trans, root, flags);
3812         }
3813 }
3814
3815 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3816                           struct btrfs_root *extent_root, u64 flags, int force)
3817 {
3818         struct btrfs_space_info *space_info;
3819         struct btrfs_fs_info *fs_info = extent_root->fs_info;
3820         int wait_for_alloc = 0;
3821         int ret = 0;
3822
3823         /* Don't re-enter if we're already allocating a chunk */
3824         if (trans->allocating_chunk)
3825                 return -ENOSPC;
3826
3827         space_info = __find_space_info(extent_root->fs_info, flags);
3828         if (!space_info) {
3829                 ret = update_space_info(extent_root->fs_info, flags,
3830                                         0, 0, &space_info);
3831                 BUG_ON(ret); /* -ENOMEM */
3832         }
3833         BUG_ON(!space_info); /* Logic error */
3834
3835 again:
3836         spin_lock(&space_info->lock);
3837         if (force < space_info->force_alloc)
3838                 force = space_info->force_alloc;
3839         if (space_info->full) {
3840                 if (should_alloc_chunk(extent_root, space_info, force))
3841                         ret = -ENOSPC;
3842                 else
3843                         ret = 0;
3844                 spin_unlock(&space_info->lock);
3845                 return ret;
3846         }
3847
3848         if (!should_alloc_chunk(extent_root, space_info, force)) {
3849                 spin_unlock(&space_info->lock);
3850                 return 0;
3851         } else if (space_info->chunk_alloc) {
3852                 wait_for_alloc = 1;
3853         } else {
3854                 space_info->chunk_alloc = 1;
3855         }
3856
3857         spin_unlock(&space_info->lock);
3858
3859         mutex_lock(&fs_info->chunk_mutex);
3860
3861         /*
3862          * The chunk_mutex is held throughout the entirety of a chunk
3863          * allocation, so once we've acquired the chunk_mutex we know that the
3864          * other guy is done and we need to recheck and see if we should
3865          * allocate.
3866          */
3867         if (wait_for_alloc) {
3868                 mutex_unlock(&fs_info->chunk_mutex);
3869                 wait_for_alloc = 0;
3870                 goto again;
3871         }
3872
3873         trans->allocating_chunk = true;
3874
3875         /*
3876          * If we have mixed data/metadata chunks we want to make sure we keep
3877          * allocating mixed chunks instead of individual chunks.
3878          */
3879         if (btrfs_mixed_space_info(space_info))
3880                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3881
3882         /*
3883          * if we're doing a data chunk, go ahead and make sure that
3884          * we keep a reasonable number of metadata chunks allocated in the
3885          * FS as well.
3886          */
3887         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3888                 fs_info->data_chunk_allocations++;
3889                 if (!(fs_info->data_chunk_allocations %
3890                       fs_info->metadata_ratio))
3891                         force_metadata_allocation(fs_info);
3892         }
3893
3894         /*
3895          * Check if we have enough space in SYSTEM chunk because we may need
3896          * to update devices.
3897          */
3898         check_system_chunk(trans, extent_root, flags);
3899
3900         ret = btrfs_alloc_chunk(trans, extent_root, flags);
3901         trans->allocating_chunk = false;
3902
3903         spin_lock(&space_info->lock);
3904         if (ret < 0 && ret != -ENOSPC)
3905                 goto out;
3906         if (ret)
3907                 space_info->full = 1;
3908         else
3909                 ret = 1;
3910
3911         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3912 out:
3913         space_info->chunk_alloc = 0;
3914         spin_unlock(&space_info->lock);
3915         mutex_unlock(&fs_info->chunk_mutex);
3916         return ret;
3917 }
3918
3919 static int can_overcommit(struct btrfs_root *root,
3920                           struct btrfs_space_info *space_info, u64 bytes,
3921                           enum btrfs_reserve_flush_enum flush)
3922 {
3923         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3924         u64 profile = btrfs_get_alloc_profile(root, 0);
3925         u64 space_size;
3926         u64 avail;
3927         u64 used;
3928
3929         used = space_info->bytes_used + space_info->bytes_reserved +
3930                 space_info->bytes_pinned + space_info->bytes_readonly;
3931
3932         /*
3933          * We only want to allow over committing if we have lots of actual space
3934          * free, but if we don't have enough space to handle the global reserve
3935          * space then we could end up having a real enospc problem when trying
3936          * to allocate a chunk or some other such important allocation.
3937          */
3938         spin_lock(&global_rsv->lock);
3939         space_size = calc_global_rsv_need_space(global_rsv);
3940         spin_unlock(&global_rsv->lock);
3941         if (used + space_size >= space_info->total_bytes)
3942                 return 0;
3943
3944         used += space_info->bytes_may_use;
3945
3946         spin_lock(&root->fs_info->free_chunk_lock);
3947         avail = root->fs_info->free_chunk_space;
3948         spin_unlock(&root->fs_info->free_chunk_lock);
3949
3950         /*
3951          * If we have dup, raid1 or raid10 then only half of the free
3952          * space is actually useable.  For raid56, the space info used
3953          * doesn't include the parity drive, so we don't have to
3954          * change the math
3955          */
3956         if (profile & (BTRFS_BLOCK_GROUP_DUP |
3957                        BTRFS_BLOCK_GROUP_RAID1 |
3958                        BTRFS_BLOCK_GROUP_RAID10))
3959                 avail >>= 1;
3960
3961         /*
3962          * If we aren't flushing all things, let us overcommit up to
3963          * 1/2th of the space. If we can flush, don't let us overcommit
3964          * too much, let it overcommit up to 1/8 of the space.
3965          */
3966         if (flush == BTRFS_RESERVE_FLUSH_ALL)
3967                 avail >>= 3;
3968         else
3969                 avail >>= 1;
3970
3971         if (used + bytes < space_info->total_bytes + avail)
3972                 return 1;
3973         return 0;
3974 }
3975
3976 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
3977                                          unsigned long nr_pages)
3978 {
3979         struct super_block *sb = root->fs_info->sb;
3980
3981         if (down_read_trylock(&sb->s_umount)) {
3982                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
3983                 up_read(&sb->s_umount);
3984         } else {
3985                 /*
3986                  * We needn't worry the filesystem going from r/w to r/o though
3987                  * we don't acquire ->s_umount mutex, because the filesystem
3988                  * should guarantee the delalloc inodes list be empty after
3989                  * the filesystem is readonly(all dirty pages are written to
3990                  * the disk).
3991                  */
3992                 btrfs_start_all_delalloc_inodes(root->fs_info, 0);
3993                 if (!current->journal_info)
3994                         btrfs_wait_all_ordered_extents(root->fs_info);
3995         }
3996 }
3997
3998 /*
3999  * shrink metadata reservation for delalloc
4000  */
4001 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4002                             bool wait_ordered)
4003 {
4004         struct btrfs_block_rsv *block_rsv;
4005         struct btrfs_space_info *space_info;
4006         struct btrfs_trans_handle *trans;
4007         u64 delalloc_bytes;
4008         u64 max_reclaim;
4009         long time_left;
4010         unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
4011         int loops = 0;
4012         enum btrfs_reserve_flush_enum flush;
4013
4014         trans = (struct btrfs_trans_handle *)current->journal_info;
4015         block_rsv = &root->fs_info->delalloc_block_rsv;
4016         space_info = block_rsv->space_info;
4017
4018         smp_mb();
4019         delalloc_bytes = percpu_counter_sum_positive(
4020                                                 &root->fs_info->delalloc_bytes);
4021         if (delalloc_bytes == 0) {
4022                 if (trans)
4023                         return;
4024                 btrfs_wait_all_ordered_extents(root->fs_info);
4025                 return;
4026         }
4027
4028         while (delalloc_bytes && loops < 3) {
4029                 max_reclaim = min(delalloc_bytes, to_reclaim);
4030                 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
4031                 btrfs_writeback_inodes_sb_nr(root, nr_pages);
4032                 /*
4033                  * We need to wait for the async pages to actually start before
4034                  * we do anything.
4035                  */
4036                 wait_event(root->fs_info->async_submit_wait,
4037                            !atomic_read(&root->fs_info->async_delalloc_pages));
4038
4039                 if (!trans)
4040                         flush = BTRFS_RESERVE_FLUSH_ALL;
4041                 else
4042                         flush = BTRFS_RESERVE_NO_FLUSH;
4043                 spin_lock(&space_info->lock);
4044                 if (can_overcommit(root, space_info, orig, flush)) {
4045                         spin_unlock(&space_info->lock);
4046                         break;
4047                 }
4048                 spin_unlock(&space_info->lock);
4049
4050                 loops++;
4051                 if (wait_ordered && !trans) {
4052                         btrfs_wait_all_ordered_extents(root->fs_info);
4053                 } else {
4054                         time_left = schedule_timeout_killable(1);
4055                         if (time_left)
4056                                 break;
4057                 }
4058                 smp_mb();
4059                 delalloc_bytes = percpu_counter_sum_positive(
4060                                                 &root->fs_info->delalloc_bytes);
4061         }
4062 }
4063
4064 /**
4065  * maybe_commit_transaction - possibly commit the transaction if its ok to
4066  * @root - the root we're allocating for
4067  * @bytes - the number of bytes we want to reserve
4068  * @force - force the commit
4069  *
4070  * This will check to make sure that committing the transaction will actually
4071  * get us somewhere and then commit the transaction if it does.  Otherwise it
4072  * will return -ENOSPC.
4073  */
4074 static int may_commit_transaction(struct btrfs_root *root,
4075                                   struct btrfs_space_info *space_info,
4076                                   u64 bytes, int force)
4077 {
4078         struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4079         struct btrfs_trans_handle *trans;
4080
4081         trans = (struct btrfs_trans_handle *)current->journal_info;
4082         if (trans)
4083                 return -EAGAIN;
4084
4085         if (force)
4086                 goto commit;
4087
4088         /* See if there is enough pinned space to make this reservation */
4089         spin_lock(&space_info->lock);
4090         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4091                                    bytes) >= 0) {
4092                 spin_unlock(&space_info->lock);
4093                 goto commit;
4094         }
4095         spin_unlock(&space_info->lock);
4096
4097         /*
4098          * See if there is some space in the delayed insertion reservation for
4099          * this reservation.
4100          */
4101         if (space_info != delayed_rsv->space_info)
4102                 return -ENOSPC;
4103
4104         spin_lock(&space_info->lock);
4105         spin_lock(&delayed_rsv->lock);
4106         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4107                                    bytes - delayed_rsv->size) >= 0) {
4108                 spin_unlock(&delayed_rsv->lock);
4109                 spin_unlock(&space_info->lock);
4110                 return -ENOSPC;
4111         }
4112         spin_unlock(&delayed_rsv->lock);
4113         spin_unlock(&space_info->lock);
4114
4115 commit:
4116         trans = btrfs_join_transaction(root);
4117         if (IS_ERR(trans))
4118                 return -ENOSPC;
4119
4120         return btrfs_commit_transaction(trans, root);
4121 }
4122
4123 enum flush_state {
4124         FLUSH_DELAYED_ITEMS_NR  =       1,
4125         FLUSH_DELAYED_ITEMS     =       2,
4126         FLUSH_DELALLOC          =       3,
4127         FLUSH_DELALLOC_WAIT     =       4,
4128         ALLOC_CHUNK             =       5,
4129         COMMIT_TRANS            =       6,
4130 };
4131
4132 static int flush_space(struct btrfs_root *root,
4133                        struct btrfs_space_info *space_info, u64 num_bytes,
4134                        u64 orig_bytes, int state)
4135 {
4136         struct btrfs_trans_handle *trans;
4137         int nr;
4138         int ret = 0;
4139
4140         switch (state) {
4141         case FLUSH_DELAYED_ITEMS_NR:
4142         case FLUSH_DELAYED_ITEMS:
4143                 if (state == FLUSH_DELAYED_ITEMS_NR) {
4144                         u64 bytes = btrfs_calc_trans_metadata_size(root, 1);
4145
4146                         nr = (int)div64_u64(num_bytes, bytes);
4147                         if (!nr)
4148                                 nr = 1;
4149                         nr *= 2;
4150                 } else {
4151                         nr = -1;
4152                 }
4153                 trans = btrfs_join_transaction(root);
4154                 if (IS_ERR(trans)) {
4155                         ret = PTR_ERR(trans);
4156                         break;
4157                 }
4158                 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4159                 btrfs_end_transaction(trans, root);
4160                 break;
4161         case FLUSH_DELALLOC:
4162         case FLUSH_DELALLOC_WAIT:
4163                 shrink_delalloc(root, num_bytes, orig_bytes,
4164                                 state == FLUSH_DELALLOC_WAIT);
4165                 break;
4166         case ALLOC_CHUNK:
4167                 trans = btrfs_join_transaction(root);
4168                 if (IS_ERR(trans)) {
4169                         ret = PTR_ERR(trans);
4170                         break;
4171                 }
4172                 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4173                                      btrfs_get_alloc_profile(root, 0),
4174                                      CHUNK_ALLOC_NO_FORCE);
4175                 btrfs_end_transaction(trans, root);
4176                 if (ret == -ENOSPC)
4177                         ret = 0;
4178                 break;
4179         case COMMIT_TRANS:
4180                 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4181                 break;
4182         default:
4183                 ret = -ENOSPC;
4184                 break;
4185         }
4186
4187         return ret;
4188 }
4189 /**
4190  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4191  * @root - the root we're allocating for
4192  * @block_rsv - the block_rsv we're allocating for
4193  * @orig_bytes - the number of bytes we want
4194  * @flush - whether or not we can flush to make our reservation
4195  *
4196  * This will reserve orgi_bytes number of bytes from the space info associated
4197  * with the block_rsv.  If there is not enough space it will make an attempt to
4198  * flush out space to make room.  It will do this by flushing delalloc if
4199  * possible or committing the transaction.  If flush is 0 then no attempts to
4200  * regain reservations will be made and this will fail if there is not enough
4201  * space already.
4202  */
4203 static int reserve_metadata_bytes(struct btrfs_root *root,
4204                                   struct btrfs_block_rsv *block_rsv,
4205                                   u64 orig_bytes,
4206                                   enum btrfs_reserve_flush_enum flush)
4207 {
4208         struct btrfs_space_info *space_info = block_rsv->space_info;
4209         u64 used;
4210         u64 num_bytes = orig_bytes;
4211         int flush_state = FLUSH_DELAYED_ITEMS_NR;
4212         int ret = 0;
4213         bool flushing = false;
4214
4215 again:
4216         ret = 0;
4217         spin_lock(&space_info->lock);
4218         /*
4219          * We only want to wait if somebody other than us is flushing and we
4220          * are actually allowed to flush all things.
4221          */
4222         while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4223                space_info->flush) {
4224                 spin_unlock(&space_info->lock);
4225                 /*
4226                  * If we have a trans handle we can't wait because the flusher
4227                  * may have to commit the transaction, which would mean we would
4228                  * deadlock since we are waiting for the flusher to finish, but
4229                  * hold the current transaction open.
4230                  */
4231                 if (current->journal_info)
4232                         return -EAGAIN;
4233                 ret = wait_event_killable(space_info->wait, !space_info->flush);
4234                 /* Must have been killed, return */
4235                 if (ret)
4236                         return -EINTR;
4237
4238                 spin_lock(&space_info->lock);
4239         }
4240
4241         ret = -ENOSPC;
4242         used = space_info->bytes_used + space_info->bytes_reserved +
4243                 space_info->bytes_pinned + space_info->bytes_readonly +
4244                 space_info->bytes_may_use;
4245
4246         /*
4247          * The idea here is that we've not already over-reserved the block group
4248          * then we can go ahead and save our reservation first and then start
4249          * flushing if we need to.  Otherwise if we've already overcommitted
4250          * lets start flushing stuff first and then come back and try to make
4251          * our reservation.
4252          */
4253         if (used <= space_info->total_bytes) {
4254                 if (used + orig_bytes <= space_info->total_bytes) {
4255                         space_info->bytes_may_use += orig_bytes;
4256                         trace_btrfs_space_reservation(root->fs_info,
4257                                 "space_info", space_info->flags, orig_bytes, 1);
4258                         ret = 0;
4259                 } else {
4260                         /*
4261                          * Ok set num_bytes to orig_bytes since we aren't
4262                          * overocmmitted, this way we only try and reclaim what
4263                          * we need.
4264                          */
4265                         num_bytes = orig_bytes;
4266                 }
4267         } else {
4268                 /*
4269                  * Ok we're over committed, set num_bytes to the overcommitted
4270                  * amount plus the amount of bytes that we need for this
4271                  * reservation.
4272                  */
4273                 num_bytes = used - space_info->total_bytes +
4274                         (orig_bytes * 2);
4275         }
4276
4277         if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4278                 space_info->bytes_may_use += orig_bytes;
4279                 trace_btrfs_space_reservation(root->fs_info, "space_info",
4280                                               space_info->flags, orig_bytes,
4281                                               1);
4282                 ret = 0;
4283         }
4284
4285         /*
4286          * Couldn't make our reservation, save our place so while we're trying
4287          * to reclaim space we can actually use it instead of somebody else
4288          * stealing it from us.
4289          *
4290          * We make the other tasks wait for the flush only when we can flush
4291          * all things.
4292          */
4293         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
4294                 flushing = true;
4295                 space_info->flush = 1;
4296         }
4297
4298         spin_unlock(&space_info->lock);
4299
4300         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
4301                 goto out;
4302
4303         ret = flush_space(root, space_info, num_bytes, orig_bytes,
4304                           flush_state);
4305         flush_state++;
4306
4307         /*
4308          * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4309          * would happen. So skip delalloc flush.
4310          */
4311         if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4312             (flush_state == FLUSH_DELALLOC ||
4313              flush_state == FLUSH_DELALLOC_WAIT))
4314                 flush_state = ALLOC_CHUNK;
4315
4316         if (!ret)
4317                 goto again;
4318         else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4319                  flush_state < COMMIT_TRANS)
4320                 goto again;
4321         else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4322                  flush_state <= COMMIT_TRANS)
4323                 goto again;
4324
4325 out:
4326         if (ret == -ENOSPC &&
4327             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4328                 struct btrfs_block_rsv *global_rsv =
4329                         &root->fs_info->global_block_rsv;
4330
4331                 if (block_rsv != global_rsv &&
4332                     !block_rsv_use_bytes(global_rsv, orig_bytes))
4333                         ret = 0;
4334         }
4335         if (flushing) {
4336                 spin_lock(&space_info->lock);
4337                 space_info->flush = 0;
4338                 wake_up_all(&space_info->wait);
4339                 spin_unlock(&space_info->lock);
4340         }
4341         return ret;
4342 }
4343
4344 static struct btrfs_block_rsv *get_block_rsv(
4345                                         const struct btrfs_trans_handle *trans,
4346                                         const struct btrfs_root *root)
4347 {
4348         struct btrfs_block_rsv *block_rsv = NULL;
4349
4350         if (root->ref_cows)
4351                 block_rsv = trans->block_rsv;
4352
4353         if (root == root->fs_info->csum_root && trans->adding_csums)
4354                 block_rsv = trans->block_rsv;
4355
4356         if (root == root->fs_info->uuid_root)
4357                 block_rsv = trans->block_rsv;
4358
4359         if (!block_rsv)
4360                 block_rsv = root->block_rsv;
4361
4362         if (!block_rsv)
4363                 block_rsv = &root->fs_info->empty_block_rsv;
4364
4365         return block_rsv;
4366 }
4367
4368 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4369                                u64 num_bytes)
4370 {
4371         int ret = -ENOSPC;
4372         spin_lock(&block_rsv->lock);
4373         if (block_rsv->reserved >= num_bytes) {
4374                 block_rsv->reserved -= num_bytes;
4375                 if (block_rsv->reserved < block_rsv->size)
4376                         block_rsv->full = 0;
4377                 ret = 0;
4378         }
4379         spin_unlock(&block_rsv->lock);
4380         return ret;
4381 }
4382
4383 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4384                                 u64 num_bytes, int update_size)
4385 {
4386         spin_lock(&block_rsv->lock);
4387         block_rsv->reserved += num_bytes;
4388         if (update_size)
4389                 block_rsv->size += num_bytes;
4390         else if (block_rsv->reserved >= block_rsv->size)
4391                 block_rsv->full = 1;
4392         spin_unlock(&block_rsv->lock);
4393 }
4394
4395 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4396                              struct btrfs_block_rsv *dest, u64 num_bytes,
4397                              int min_factor)
4398 {
4399         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4400         u64 min_bytes;
4401
4402         if (global_rsv->space_info != dest->space_info)
4403                 return -ENOSPC;
4404
4405         spin_lock(&global_rsv->lock);
4406         min_bytes = div_factor(global_rsv->size, min_factor);
4407         if (global_rsv->reserved < min_bytes + num_bytes) {
4408                 spin_unlock(&global_rsv->lock);
4409                 return -ENOSPC;
4410         }
4411         global_rsv->reserved -= num_bytes;
4412         if (global_rsv->reserved < global_rsv->size)
4413                 global_rsv->full = 0;
4414         spin_unlock(&global_rsv->lock);
4415
4416         block_rsv_add_bytes(dest, num_bytes, 1);
4417         return 0;
4418 }
4419
4420 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4421                                     struct btrfs_block_rsv *block_rsv,
4422                                     struct btrfs_block_rsv *dest, u64 num_bytes)
4423 {
4424         struct btrfs_space_info *space_info = block_rsv->space_info;
4425
4426         spin_lock(&block_rsv->lock);
4427         if (num_bytes == (u64)-1)
4428                 num_bytes = block_rsv->size;
4429         block_rsv->size -= num_bytes;
4430         if (block_rsv->reserved >= block_rsv->size) {
4431                 num_bytes = block_rsv->reserved - block_rsv->size;
4432                 block_rsv->reserved = block_rsv->size;
4433                 block_rsv->full = 1;
4434         } else {
4435                 num_bytes = 0;
4436         }
4437         spin_unlock(&block_rsv->lock);
4438
4439         if (num_bytes > 0) {
4440                 if (dest) {
4441                         spin_lock(&dest->lock);
4442                         if (!dest->full) {
4443                                 u64 bytes_to_add;
4444
4445                                 bytes_to_add = dest->size - dest->reserved;
4446                                 bytes_to_add = min(num_bytes, bytes_to_add);
4447                                 dest->reserved += bytes_to_add;
4448                                 if (dest->reserved >= dest->size)
4449                                         dest->full = 1;
4450                                 num_bytes -= bytes_to_add;
4451                         }
4452                         spin_unlock(&dest->lock);
4453                 }
4454                 if (num_bytes) {
4455                         spin_lock(&space_info->lock);
4456                         space_info->bytes_may_use -= num_bytes;
4457                         trace_btrfs_space_reservation(fs_info, "space_info",
4458                                         space_info->flags, num_bytes, 0);
4459                         space_info->reservation_progress++;
4460                         spin_unlock(&space_info->lock);
4461                 }
4462         }
4463 }
4464
4465 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4466                                    struct btrfs_block_rsv *dst, u64 num_bytes)
4467 {
4468         int ret;
4469
4470         ret = block_rsv_use_bytes(src, num_bytes);
4471         if (ret)
4472                 return ret;
4473
4474         block_rsv_add_bytes(dst, num_bytes, 1);
4475         return 0;
4476 }
4477
4478 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
4479 {
4480         memset(rsv, 0, sizeof(*rsv));
4481         spin_lock_init(&rsv->lock);
4482         rsv->type = type;
4483 }
4484
4485 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4486                                               unsigned short type)
4487 {
4488         struct btrfs_block_rsv *block_rsv;
4489         struct btrfs_fs_info *fs_info = root->fs_info;
4490
4491         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4492         if (!block_rsv)
4493                 return NULL;
4494
4495         btrfs_init_block_rsv(block_rsv, type);
4496         block_rsv->space_info = __find_space_info(fs_info,
4497                                                   BTRFS_BLOCK_GROUP_METADATA);
4498         return block_rsv;
4499 }
4500
4501 void btrfs_free_block_rsv(struct btrfs_root *root,
4502                           struct btrfs_block_rsv *rsv)
4503 {
4504         if (!rsv)
4505                 return;
4506         btrfs_block_rsv_release(root, rsv, (u64)-1);
4507         kfree(rsv);
4508 }
4509
4510 int btrfs_block_rsv_add(struct btrfs_root *root,
4511                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4512                         enum btrfs_reserve_flush_enum flush)
4513 {
4514         int ret;
4515
4516         if (num_bytes == 0)
4517                 return 0;
4518
4519         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4520         if (!ret) {
4521                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4522                 return 0;
4523         }
4524
4525         return ret;
4526 }
4527
4528 int btrfs_block_rsv_check(struct btrfs_root *root,
4529                           struct btrfs_block_rsv *block_rsv, int min_factor)
4530 {
4531         u64 num_bytes = 0;
4532         int ret = -ENOSPC;
4533
4534         if (!block_rsv)
4535                 return 0;
4536
4537         spin_lock(&block_rsv->lock);
4538         num_bytes = div_factor(block_rsv->size, min_factor);
4539         if (block_rsv->reserved >= num_bytes)
4540                 ret = 0;
4541         spin_unlock(&block_rsv->lock);
4542
4543         return ret;
4544 }
4545
4546 int btrfs_block_rsv_refill(struct btrfs_root *root,
4547                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4548                            enum btrfs_reserve_flush_enum flush)
4549 {
4550         u64 num_bytes = 0;
4551         int ret = -ENOSPC;
4552
4553         if (!block_rsv)
4554                 return 0;
4555
4556         spin_lock(&block_rsv->lock);
4557         num_bytes = min_reserved;
4558         if (block_rsv->reserved >= num_bytes)
4559                 ret = 0;
4560         else
4561                 num_bytes -= block_rsv->reserved;
4562         spin_unlock(&block_rsv->lock);
4563
4564         if (!ret)
4565                 return 0;
4566
4567         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4568         if (!ret) {
4569                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4570                 return 0;
4571         }
4572
4573         return ret;
4574 }
4575
4576 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4577                             struct btrfs_block_rsv *dst_rsv,
4578                             u64 num_bytes)
4579 {
4580         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4581 }
4582
4583 void btrfs_block_rsv_release(struct btrfs_root *root,
4584                              struct btrfs_block_rsv *block_rsv,
4585                              u64 num_bytes)
4586 {
4587         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4588         if (global_rsv->full || global_rsv == block_rsv ||
4589             block_rsv->space_info != global_rsv->space_info)
4590                 global_rsv = NULL;
4591         block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4592                                 num_bytes);
4593 }
4594
4595 /*
4596  * helper to calculate size of global block reservation.
4597  * the desired value is sum of space used by extent tree,
4598  * checksum tree and root tree
4599  */
4600 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4601 {
4602         struct btrfs_space_info *sinfo;
4603         u64 num_bytes;
4604         u64 meta_used;
4605         u64 data_used;
4606         int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4607
4608         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4609         spin_lock(&sinfo->lock);
4610         data_used = sinfo->bytes_used;
4611         spin_unlock(&sinfo->lock);
4612
4613         sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4614         spin_lock(&sinfo->lock);
4615         if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4616                 data_used = 0;
4617         meta_used = sinfo->bytes_used;
4618         spin_unlock(&sinfo->lock);
4619
4620         num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4621                     csum_size * 2;
4622         num_bytes += div64_u64(data_used + meta_used, 50);
4623
4624         if (num_bytes * 3 > meta_used)
4625                 num_bytes = div64_u64(meta_used, 3);
4626
4627         return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4628 }
4629
4630 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4631 {
4632         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4633         struct btrfs_space_info *sinfo = block_rsv->space_info;
4634         u64 num_bytes;
4635
4636         num_bytes = calc_global_metadata_size(fs_info);
4637
4638         spin_lock(&sinfo->lock);
4639         spin_lock(&block_rsv->lock);
4640
4641         block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4642
4643         num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4644                     sinfo->bytes_reserved + sinfo->bytes_readonly +
4645                     sinfo->bytes_may_use;
4646
4647         if (sinfo->total_bytes > num_bytes) {
4648                 num_bytes = sinfo->total_bytes - num_bytes;
4649                 block_rsv->reserved += num_bytes;
4650                 sinfo->bytes_may_use += num_bytes;
4651                 trace_btrfs_space_reservation(fs_info, "space_info",
4652                                       sinfo->flags, num_bytes, 1);
4653         }
4654
4655         if (block_rsv->reserved >= block_rsv->size) {
4656                 num_bytes = block_rsv->reserved - block_rsv->size;
4657                 sinfo->bytes_may_use -= num_bytes;
4658                 trace_btrfs_space_reservation(fs_info, "space_info",
4659                                       sinfo->flags, num_bytes, 0);
4660                 sinfo->reservation_progress++;
4661                 block_rsv->reserved = block_rsv->size;
4662                 block_rsv->full = 1;
4663         }
4664
4665         spin_unlock(&block_rsv->lock);
4666         spin_unlock(&sinfo->lock);
4667 }
4668
4669 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4670 {
4671         struct btrfs_space_info *space_info;
4672
4673         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4674         fs_info->chunk_block_rsv.space_info = space_info;
4675
4676         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4677         fs_info->global_block_rsv.space_info = space_info;
4678         fs_info->delalloc_block_rsv.space_info = space_info;
4679         fs_info->trans_block_rsv.space_info = space_info;
4680         fs_info->empty_block_rsv.space_info = space_info;
4681         fs_info->delayed_block_rsv.space_info = space_info;
4682
4683         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4684         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4685         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4686         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4687         if (fs_info->quota_root)
4688                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
4689         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4690
4691         update_global_block_rsv(fs_info);
4692 }
4693
4694 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4695 {
4696         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4697                                 (u64)-1);
4698         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4699         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4700         WARN_ON(fs_info->trans_block_rsv.size > 0);
4701         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4702         WARN_ON(fs_info->chunk_block_rsv.size > 0);
4703         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4704         WARN_ON(fs_info->delayed_block_rsv.size > 0);
4705         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4706 }
4707
4708 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4709                                   struct btrfs_root *root)
4710 {
4711         if (!trans->block_rsv)
4712                 return;
4713
4714         if (!trans->bytes_reserved)
4715                 return;
4716
4717         trace_btrfs_space_reservation(root->fs_info, "transaction",
4718                                       trans->transid, trans->bytes_reserved, 0);
4719         btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4720         trans->bytes_reserved = 0;
4721 }
4722
4723 /* Can only return 0 or -ENOSPC */
4724 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4725                                   struct inode *inode)
4726 {
4727         struct btrfs_root *root = BTRFS_I(inode)->root;
4728         struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4729         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4730
4731         /*
4732          * We need to hold space in order to delete our orphan item once we've
4733          * added it, so this takes the reservation so we can release it later
4734          * when we are truly done with the orphan item.
4735          */
4736         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4737         trace_btrfs_space_reservation(root->fs_info, "orphan",
4738                                       btrfs_ino(inode), num_bytes, 1);
4739         return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4740 }
4741
4742 void btrfs_orphan_release_metadata(struct inode *inode)
4743 {
4744         struct btrfs_root *root = BTRFS_I(inode)->root;
4745         u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4746         trace_btrfs_space_reservation(root->fs_info, "orphan",
4747                                       btrfs_ino(inode), num_bytes, 0);
4748         btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4749 }
4750
4751 /*
4752  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4753  * root: the root of the parent directory
4754  * rsv: block reservation
4755  * items: the number of items that we need do reservation
4756  * qgroup_reserved: used to return the reserved size in qgroup
4757  *
4758  * This function is used to reserve the space for snapshot/subvolume
4759  * creation and deletion. Those operations are different with the
4760  * common file/directory operations, they change two fs/file trees
4761  * and root tree, the number of items that the qgroup reserves is
4762  * different with the free space reservation. So we can not use
4763  * the space reseravtion mechanism in start_transaction().
4764  */
4765 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
4766                                      struct btrfs_block_rsv *rsv,
4767                                      int items,
4768                                      u64 *qgroup_reserved,
4769                                      bool use_global_rsv)
4770 {
4771         u64 num_bytes;
4772         int ret;
4773         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4774
4775         if (root->fs_info->quota_enabled) {
4776                 /* One for parent inode, two for dir entries */
4777                 num_bytes = 3 * root->leafsize;
4778                 ret = btrfs_qgroup_reserve(root, num_bytes);
4779                 if (ret)
4780                         return ret;
4781         } else {
4782                 num_bytes = 0;
4783         }
4784
4785         *qgroup_reserved = num_bytes;
4786
4787         num_bytes = btrfs_calc_trans_metadata_size(root, items);
4788         rsv->space_info = __find_space_info(root->fs_info,
4789                                             BTRFS_BLOCK_GROUP_METADATA);
4790         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
4791                                   BTRFS_RESERVE_FLUSH_ALL);
4792
4793         if (ret == -ENOSPC && use_global_rsv)
4794                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
4795
4796         if (ret) {
4797                 if (*qgroup_reserved)
4798                         btrfs_qgroup_free(root, *qgroup_reserved);
4799         }
4800
4801         return ret;
4802 }
4803
4804 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
4805                                       struct btrfs_block_rsv *rsv,
4806                                       u64 qgroup_reserved)
4807 {
4808         btrfs_block_rsv_release(root, rsv, (u64)-1);
4809         if (qgroup_reserved)
4810                 btrfs_qgroup_free(root, qgroup_reserved);
4811 }
4812
4813 /**
4814  * drop_outstanding_extent - drop an outstanding extent
4815  * @inode: the inode we're dropping the extent for
4816  *
4817  * This is called when we are freeing up an outstanding extent, either called
4818  * after an error or after an extent is written.  This will return the number of
4819  * reserved extents that need to be freed.  This must be called with
4820  * BTRFS_I(inode)->lock held.
4821  */
4822 static unsigned drop_outstanding_extent(struct inode *inode)
4823 {
4824         unsigned drop_inode_space = 0;
4825         unsigned dropped_extents = 0;
4826
4827         BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4828         BTRFS_I(inode)->outstanding_extents--;
4829
4830         if (BTRFS_I(inode)->outstanding_extents == 0 &&
4831             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4832                                &BTRFS_I(inode)->runtime_flags))
4833                 drop_inode_space = 1;
4834
4835         /*
4836          * If we have more or the same amount of outsanding extents than we have
4837          * reserved then we need to leave the reserved extents count alone.
4838          */
4839         if (BTRFS_I(inode)->outstanding_extents >=
4840             BTRFS_I(inode)->reserved_extents)
4841                 return drop_inode_space;
4842
4843         dropped_extents = BTRFS_I(inode)->reserved_extents -
4844                 BTRFS_I(inode)->outstanding_extents;
4845         BTRFS_I(inode)->reserved_extents -= dropped_extents;
4846         return dropped_extents + drop_inode_space;
4847 }
4848
4849 /**
4850  * calc_csum_metadata_size - return the amount of metada space that must be
4851  *      reserved/free'd for the given bytes.
4852  * @inode: the inode we're manipulating
4853  * @num_bytes: the number of bytes in question
4854  * @reserve: 1 if we are reserving space, 0 if we are freeing space
4855  *
4856  * This adjusts the number of csum_bytes in the inode and then returns the
4857  * correct amount of metadata that must either be reserved or freed.  We
4858  * calculate how many checksums we can fit into one leaf and then divide the
4859  * number of bytes that will need to be checksumed by this value to figure out
4860  * how many checksums will be required.  If we are adding bytes then the number
4861  * may go up and we will return the number of additional bytes that must be
4862  * reserved.  If it is going down we will return the number of bytes that must
4863  * be freed.
4864  *
4865  * This must be called with BTRFS_I(inode)->lock held.
4866  */
4867 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4868                                    int reserve)
4869 {
4870         struct btrfs_root *root = BTRFS_I(inode)->root;
4871         u64 csum_size;
4872         int num_csums_per_leaf;
4873         int num_csums;
4874         int old_csums;
4875
4876         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4877             BTRFS_I(inode)->csum_bytes == 0)
4878                 return 0;
4879
4880         old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4881         if (reserve)
4882                 BTRFS_I(inode)->csum_bytes += num_bytes;
4883         else
4884                 BTRFS_I(inode)->csum_bytes -= num_bytes;
4885         csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4886         num_csums_per_leaf = (int)div64_u64(csum_size,
4887                                             sizeof(struct btrfs_csum_item) +
4888                                             sizeof(struct btrfs_disk_key));
4889         num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4890         num_csums = num_csums + num_csums_per_leaf - 1;
4891         num_csums = num_csums / num_csums_per_leaf;
4892
4893         old_csums = old_csums + num_csums_per_leaf - 1;
4894         old_csums = old_csums / num_csums_per_leaf;
4895
4896         /* No change, no need to reserve more */
4897         if (old_csums == num_csums)
4898                 return 0;
4899
4900         if (reserve)
4901                 return btrfs_calc_trans_metadata_size(root,
4902                                                       num_csums - old_csums);
4903
4904         return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4905 }
4906
4907 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4908 {
4909         struct btrfs_root *root = BTRFS_I(inode)->root;
4910         struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4911         u64 to_reserve = 0;
4912         u64 csum_bytes;
4913         unsigned nr_extents = 0;
4914         int extra_reserve = 0;
4915         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
4916         int ret = 0;
4917         bool delalloc_lock = true;
4918         u64 to_free = 0;
4919         unsigned dropped;
4920
4921         /* If we are a free space inode we need to not flush since we will be in
4922          * the middle of a transaction commit.  We also don't need the delalloc
4923          * mutex since we won't race with anybody.  We need this mostly to make
4924          * lockdep shut its filthy mouth.
4925          */
4926         if (btrfs_is_free_space_inode(inode)) {
4927                 flush = BTRFS_RESERVE_NO_FLUSH;
4928                 delalloc_lock = false;
4929         }
4930
4931         if (flush != BTRFS_RESERVE_NO_FLUSH &&
4932             btrfs_transaction_in_commit(root->fs_info))
4933                 schedule_timeout(1);
4934
4935         if (delalloc_lock)
4936                 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4937
4938         num_bytes = ALIGN(num_bytes, root->sectorsize);
4939
4940         spin_lock(&BTRFS_I(inode)->lock);
4941         BTRFS_I(inode)->outstanding_extents++;
4942
4943         if (BTRFS_I(inode)->outstanding_extents >
4944             BTRFS_I(inode)->reserved_extents)
4945                 nr_extents = BTRFS_I(inode)->outstanding_extents -
4946                         BTRFS_I(inode)->reserved_extents;
4947
4948         /*
4949          * Add an item to reserve for updating the inode when we complete the
4950          * delalloc io.
4951          */
4952         if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4953                       &BTRFS_I(inode)->runtime_flags)) {
4954                 nr_extents++;
4955                 extra_reserve = 1;
4956         }
4957
4958         to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4959         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4960         csum_bytes = BTRFS_I(inode)->csum_bytes;
4961         spin_unlock(&BTRFS_I(inode)->lock);
4962
4963         if (root->fs_info->quota_enabled) {
4964                 ret = btrfs_qgroup_reserve(root, num_bytes +
4965                                            nr_extents * root->leafsize);
4966                 if (ret)
4967                         goto out_fail;
4968         }
4969
4970         ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4971         if (unlikely(ret)) {
4972                 if (root->fs_info->quota_enabled)
4973                         btrfs_qgroup_free(root, num_bytes +
4974                                                 nr_extents * root->leafsize);
4975                 goto out_fail;
4976         }
4977
4978         spin_lock(&BTRFS_I(inode)->lock);
4979         if (extra_reserve) {
4980                 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4981                         &BTRFS_I(inode)->runtime_flags);
4982                 nr_extents--;
4983         }
4984         BTRFS_I(inode)->reserved_extents += nr_extents;
4985         spin_unlock(&BTRFS_I(inode)->lock);
4986
4987         if (delalloc_lock)
4988                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4989
4990         if (to_reserve)
4991                 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4992                                               btrfs_ino(inode), to_reserve, 1);
4993         block_rsv_add_bytes(block_rsv, to_reserve, 1);
4994
4995         return 0;
4996
4997 out_fail:
4998         spin_lock(&BTRFS_I(inode)->lock);
4999         dropped = drop_outstanding_extent(inode);
5000         /*
5001          * If the inodes csum_bytes is the same as the original
5002          * csum_bytes then we know we haven't raced with any free()ers
5003          * so we can just reduce our inodes csum bytes and carry on.
5004          */
5005         if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5006                 calc_csum_metadata_size(inode, num_bytes, 0);
5007         } else {
5008                 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5009                 u64 bytes;
5010
5011                 /*
5012                  * This is tricky, but first we need to figure out how much we
5013                  * free'd from any free-ers that occured during this
5014                  * reservation, so we reset ->csum_bytes to the csum_bytes
5015                  * before we dropped our lock, and then call the free for the
5016                  * number of bytes that were freed while we were trying our
5017                  * reservation.
5018                  */
5019                 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5020                 BTRFS_I(inode)->csum_bytes = csum_bytes;
5021                 to_free = calc_csum_metadata_size(inode, bytes, 0);
5022
5023
5024                 /*
5025                  * Now we need to see how much we would have freed had we not
5026                  * been making this reservation and our ->csum_bytes were not
5027                  * artificially inflated.
5028                  */
5029                 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5030                 bytes = csum_bytes - orig_csum_bytes;
5031                 bytes = calc_csum_metadata_size(inode, bytes, 0);
5032
5033                 /*
5034                  * Now reset ->csum_bytes to what it should be.  If bytes is
5035                  * more than to_free then we would have free'd more space had we
5036                  * not had an artificially high ->csum_bytes, so we need to free
5037                  * the remainder.  If bytes is the same or less then we don't
5038                  * need to do anything, the other free-ers did the correct
5039                  * thing.
5040                  */
5041                 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5042                 if (bytes > to_free)
5043                         to_free = bytes - to_free;
5044                 else
5045                         to_free = 0;
5046         }
5047         spin_unlock(&BTRFS_I(inode)->lock);
5048         if (dropped)
5049                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5050
5051         if (to_free) {
5052                 btrfs_block_rsv_release(root, block_rsv, to_free);
5053                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5054                                               btrfs_ino(inode), to_free, 0);
5055         }
5056         if (delalloc_lock)
5057                 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5058         return ret;
5059 }
5060
5061 /**
5062  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5063  * @inode: the inode to release the reservation for
5064  * @num_bytes: the number of bytes we're releasing
5065  *
5066  * This will release the metadata reservation for an inode.  This can be called
5067  * once we complete IO for a given set of bytes to release their metadata
5068  * reservations.
5069  */
5070 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5071 {
5072         struct btrfs_root *root = BTRFS_I(inode)->root;
5073         u64 to_free = 0;
5074         unsigned dropped;
5075
5076         num_bytes = ALIGN(num_bytes, root->sectorsize);
5077         spin_lock(&BTRFS_I(inode)->lock);
5078         dropped = drop_outstanding_extent(inode);
5079
5080         if (num_bytes)
5081                 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5082         spin_unlock(&BTRFS_I(inode)->lock);
5083         if (dropped > 0)
5084                 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5085
5086         trace_btrfs_space_reservation(root->fs_info, "delalloc",
5087                                       btrfs_ino(inode), to_free, 0);
5088         if (root->fs_info->quota_enabled) {
5089                 btrfs_qgroup_free(root, num_bytes +
5090                                         dropped * root->leafsize);
5091         }
5092
5093         btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5094                                 to_free);
5095 }
5096
5097 /**
5098  * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5099  * @inode: inode we're writing to
5100  * @num_bytes: the number of bytes we want to allocate
5101  *
5102  * This will do the following things
5103  *
5104  * o reserve space in the data space info for num_bytes
5105  * o reserve space in the metadata space info based on number of outstanding
5106  *   extents and how much csums will be needed
5107  * o add to the inodes ->delalloc_bytes
5108  * o add it to the fs_info's delalloc inodes list.
5109  *
5110  * This will return 0 for success and -ENOSPC if there is no space left.
5111  */
5112 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5113 {
5114         int ret;
5115
5116         ret = btrfs_check_data_free_space(inode, num_bytes);
5117         if (ret)
5118                 return ret;
5119
5120         ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5121         if (ret) {
5122                 btrfs_free_reserved_data_space(inode, num_bytes);
5123                 return ret;
5124         }
5125
5126         return 0;
5127 }
5128
5129 /**
5130  * btrfs_delalloc_release_space - release data and metadata space for delalloc
5131  * @inode: inode we're releasing space for
5132  * @num_bytes: the number of bytes we want to free up
5133  *
5134  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5135  * called in the case that we don't need the metadata AND data reservations
5136  * anymore.  So if there is an error or we insert an inline extent.
5137  *
5138  * This function will release the metadata space that was not used and will
5139  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5140  * list if there are no delalloc bytes left.
5141  */
5142 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5143 {
5144         btrfs_delalloc_release_metadata(inode, num_bytes);
5145         btrfs_free_reserved_data_space(inode, num_bytes);
5146 }
5147
5148 static int update_block_group(struct btrfs_root *root,
5149                               u64 bytenr, u64 num_bytes, int alloc)
5150 {
5151         struct btrfs_block_group_cache *cache = NULL;
5152         struct btrfs_fs_info *info = root->fs_info;
5153         u64 total = num_bytes;
5154         u64 old_val;
5155         u64 byte_in_group;
5156         int factor;
5157
5158         /* block accounting for super block */
5159         spin_lock(&info->delalloc_root_lock);
5160         old_val = btrfs_super_bytes_used(info->super_copy);
5161         if (alloc)
5162                 old_val += num_bytes;
5163         else
5164                 old_val -= num_bytes;
5165         btrfs_set_super_bytes_used(info->super_copy, old_val);
5166         spin_unlock(&info->delalloc_root_lock);
5167
5168         while (total) {
5169                 cache = btrfs_lookup_block_group(info, bytenr);
5170                 if (!cache)
5171                         return -ENOENT;
5172                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5173                                     BTRFS_BLOCK_GROUP_RAID1 |
5174                                     BTRFS_BLOCK_GROUP_RAID10))
5175                         factor = 2;
5176                 else
5177                         factor = 1;
5178                 /*
5179                  * If this block group has free space cache written out, we
5180                  * need to make sure to load it if we are removing space.  This
5181                  * is because we need the unpinning stage to actually add the
5182                  * space back to the block group, otherwise we will leak space.
5183                  */
5184                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
5185                         cache_block_group(cache, 1);
5186
5187                 byte_in_group = bytenr - cache->key.objectid;
5188                 WARN_ON(byte_in_group > cache->key.offset);
5189
5190                 spin_lock(&cache->space_info->lock);
5191                 spin_lock(&cache->lock);
5192
5193                 if (btrfs_test_opt(root, SPACE_CACHE) &&
5194                     cache->disk_cache_state < BTRFS_DC_CLEAR)
5195                         cache->disk_cache_state = BTRFS_DC_CLEAR;
5196
5197                 cache->dirty = 1;
5198                 old_val = btrfs_block_group_used(&cache->item);
5199                 num_bytes = min(total, cache->key.offset - byte_in_group);
5200                 if (alloc) {
5201                         old_val += num_bytes;
5202                         btrfs_set_block_group_used(&cache->item, old_val);
5203                         cache->reserved -= num_bytes;
5204                         cache->space_info->bytes_reserved -= num_bytes;
5205                         cache->space_info->bytes_used += num_bytes;
5206                         cache->space_info->disk_used += num_bytes * factor;
5207                         spin_unlock(&cache->lock);
5208                         spin_unlock(&cache->space_info->lock);
5209                 } else {
5210                         old_val -= num_bytes;
5211                         btrfs_set_block_group_used(&cache->item, old_val);
5212                         cache->pinned += num_bytes;
5213                         cache->space_info->bytes_pinned += num_bytes;
5214                         cache->space_info->bytes_used -= num_bytes;
5215                         cache->space_info->disk_used -= num_bytes * factor;
5216                         spin_unlock(&cache->lock);
5217                         spin_unlock(&cache->space_info->lock);
5218
5219                         set_extent_dirty(info->pinned_extents,
5220                                          bytenr, bytenr + num_bytes - 1,
5221                                          GFP_NOFS | __GFP_NOFAIL);
5222                 }
5223                 btrfs_put_block_group(cache);
5224                 total -= num_bytes;
5225                 bytenr += num_bytes;
5226         }
5227         return 0;
5228 }
5229
5230 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5231 {
5232         struct btrfs_block_group_cache *cache;
5233         u64 bytenr;
5234
5235         spin_lock(&root->fs_info->block_group_cache_lock);
5236         bytenr = root->fs_info->first_logical_byte;
5237         spin_unlock(&root->fs_info->block_group_cache_lock);
5238
5239         if (bytenr < (u64)-1)
5240                 return bytenr;
5241
5242         cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5243         if (!cache)
5244                 return 0;
5245
5246         bytenr = cache->key.objectid;
5247         btrfs_put_block_group(cache);
5248
5249         return bytenr;
5250 }
5251
5252 static int pin_down_extent(struct btrfs_root *root,
5253                            struct btrfs_block_group_cache *cache,
5254                            u64 bytenr, u64 num_bytes, int reserved)
5255 {
5256         spin_lock(&cache->space_info->lock);
5257         spin_lock(&cache->lock);
5258         cache->pinned += num_bytes;
5259         cache->space_info->bytes_pinned += num_bytes;
5260         if (reserved) {
5261                 cache->reserved -= num_bytes;
5262                 cache->space_info->bytes_reserved -= num_bytes;
5263         }
5264         spin_unlock(&cache->lock);
5265         spin_unlock(&cache->space_info->lock);
5266
5267         set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5268                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
5269         return 0;
5270 }
5271
5272 /*
5273  * this function must be called within transaction
5274  */
5275 int btrfs_pin_extent(struct btrfs_root *root,
5276                      u64 bytenr, u64 num_bytes, int reserved)
5277 {
5278         struct btrfs_block_group_cache *cache;
5279
5280         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5281         BUG_ON(!cache); /* Logic error */
5282
5283         pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5284
5285         btrfs_put_block_group(cache);
5286         return 0;
5287 }
5288
5289 /*
5290  * this function must be called within transaction
5291  */
5292 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
5293                                     u64 bytenr, u64 num_bytes)
5294 {
5295         struct btrfs_block_group_cache *cache;
5296         int ret;
5297
5298         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
5299         if (!cache)
5300                 return -EINVAL;
5301
5302         /*
5303          * pull in the free space cache (if any) so that our pin
5304          * removes the free space from the cache.  We have load_only set
5305          * to one because the slow code to read in the free extents does check
5306          * the pinned extents.
5307          */
5308         cache_block_group(cache, 1);
5309
5310         pin_down_extent(root, cache, bytenr, num_bytes, 0);
5311
5312         /* remove us from the free space cache (if we're there at all) */
5313         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
5314         btrfs_put_block_group(cache);
5315         return ret;
5316 }
5317
5318 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5319 {
5320         int ret;
5321         struct btrfs_block_group_cache *block_group;
5322         struct btrfs_caching_control *caching_ctl;
5323
5324         block_group = btrfs_lookup_block_group(root->fs_info, start);
5325         if (!block_group)
5326                 return -EINVAL;
5327
5328         cache_block_group(block_group, 0);
5329         caching_ctl = get_caching_control(block_group);
5330
5331         if (!caching_ctl) {
5332                 /* Logic error */
5333                 BUG_ON(!block_group_cache_done(block_group));
5334                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5335         } else {
5336                 mutex_lock(&caching_ctl->mutex);
5337
5338                 if (start >= caching_ctl->progress) {
5339                         ret = add_excluded_extent(root, start, num_bytes);
5340                 } else if (start + num_bytes <= caching_ctl->progress) {
5341                         ret = btrfs_remove_free_space(block_group,
5342                                                       start, num_bytes);
5343                 } else {
5344                         num_bytes = caching_ctl->progress - start;
5345                         ret = btrfs_remove_free_space(block_group,
5346                                                       start, num_bytes);
5347                         if (ret)
5348                                 goto out_lock;
5349
5350                         num_bytes = (start + num_bytes) -
5351                                 caching_ctl->progress;
5352                         start = caching_ctl->progress;
5353                         ret = add_excluded_extent(root, start, num_bytes);
5354                 }
5355 out_lock:
5356                 mutex_unlock(&caching_ctl->mutex);
5357                 put_caching_control(caching_ctl);
5358         }
5359         btrfs_put_block_group(block_group);
5360         return ret;
5361 }
5362
5363 int btrfs_exclude_logged_extents(struct btrfs_root *log,
5364                                  struct extent_buffer *eb)
5365 {
5366         struct btrfs_file_extent_item *item;
5367         struct btrfs_key key;
5368         int found_type;
5369         int i;
5370
5371         if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5372                 return 0;
5373
5374         for (i = 0; i < btrfs_header_nritems(eb); i++) {
5375                 btrfs_item_key_to_cpu(eb, &key, i);
5376                 if (key.type != BTRFS_EXTENT_DATA_KEY)
5377                         continue;
5378                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5379                 found_type = btrfs_file_extent_type(eb, item);
5380                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5381                         continue;
5382                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5383                         continue;
5384                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5385                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5386                 __exclude_logged_extent(log, key.objectid, key.offset);
5387         }
5388
5389         return 0;
5390 }
5391
5392 /**
5393  * btrfs_update_reserved_bytes - update the block_group and space info counters
5394  * @cache:      The cache we are manipulating
5395  * @num_bytes:  The number of bytes in question
5396  * @reserve:    One of the reservation enums
5397  *
5398  * This is called by the allocator when it reserves space, or by somebody who is
5399  * freeing space that was never actually used on disk.  For example if you
5400  * reserve some space for a new leaf in transaction A and before transaction A
5401  * commits you free that leaf, you call this with reserve set to 0 in order to
5402  * clear the reservation.
5403  *
5404  * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5405  * ENOSPC accounting.  For data we handle the reservation through clearing the
5406  * delalloc bits in the io_tree.  We have to do this since we could end up
5407  * allocating less disk space for the amount of data we have reserved in the
5408  * case of compression.
5409  *
5410  * If this is a reservation and the block group has become read only we cannot
5411  * make the reservation and return -EAGAIN, otherwise this function always
5412  * succeeds.
5413  */
5414 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
5415                                        u64 num_bytes, int reserve)
5416 {
5417         struct btrfs_space_info *space_info = cache->space_info;
5418         int ret = 0;
5419
5420         spin_lock(&space_info->lock);
5421         spin_lock(&cache->lock);
5422         if (reserve != RESERVE_FREE) {
5423                 if (cache->ro) {
5424                         ret = -EAGAIN;
5425                 } else {
5426                         cache->reserved += num_bytes;
5427                         space_info->bytes_reserved += num_bytes;
5428                         if (reserve == RESERVE_ALLOC) {
5429                                 trace_btrfs_space_reservation(cache->fs_info,
5430                                                 "space_info", space_info->flags,
5431                                                 num_bytes, 0);
5432                                 space_info->bytes_may_use -= num_bytes;
5433                         }
5434                 }
5435         } else {
5436                 if (cache->ro)
5437                         space_info->bytes_readonly += num_bytes;
5438                 cache->reserved -= num_bytes;
5439                 space_info->bytes_reserved -= num_bytes;
5440                 space_info->reservation_progress++;
5441         }
5442         spin_unlock(&cache->lock);
5443         spin_unlock(&space_info->lock);
5444         return ret;
5445 }
5446
5447 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
5448                                 struct btrfs_root *root)
5449 {
5450         struct btrfs_fs_info *fs_info = root->fs_info;
5451         struct btrfs_caching_control *next;
5452         struct btrfs_caching_control *caching_ctl;
5453         struct btrfs_block_group_cache *cache;
5454         struct btrfs_space_info *space_info;
5455
5456         down_write(&fs_info->extent_commit_sem);
5457
5458         list_for_each_entry_safe(caching_ctl, next,
5459                                  &fs_info->caching_block_groups, list) {
5460                 cache = caching_ctl->block_group;
5461                 if (block_group_cache_done(cache)) {
5462                         cache->last_byte_to_unpin = (u64)-1;
5463                         list_del_init(&caching_ctl->list);
5464                         put_caching_control(caching_ctl);
5465                 } else {
5466                         cache->last_byte_to_unpin = caching_ctl->progress;
5467                 }
5468         }
5469
5470         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5471                 fs_info->pinned_extents = &fs_info->freed_extents[1];
5472         else
5473                 fs_info->pinned_extents = &fs_info->freed_extents[0];
5474
5475         up_write(&fs_info->extent_commit_sem);
5476
5477         list_for_each_entry_rcu(space_info, &fs_info->space_info, list)
5478                 percpu_counter_set(&space_info->total_bytes_pinned, 0);
5479
5480         update_global_block_rsv(fs_info);
5481 }
5482
5483 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
5484 {
5485         struct btrfs_fs_info *fs_info = root->fs_info;
5486         struct btrfs_block_group_cache *cache = NULL;
5487         struct btrfs_space_info *space_info;
5488         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5489         u64 len;
5490         bool readonly;
5491
5492         while (start <= end) {
5493                 readonly = false;
5494                 if (!cache ||
5495                     start >= cache->key.objectid + cache->key.offset) {
5496                         if (cache)
5497                                 btrfs_put_block_group(cache);
5498                         cache = btrfs_lookup_block_group(fs_info, start);
5499                         BUG_ON(!cache); /* Logic error */
5500                 }
5501
5502                 len = cache->key.objectid + cache->key.offset - start;
5503                 len = min(len, end + 1 - start);
5504
5505                 if (start < cache->last_byte_to_unpin) {
5506                         len = min(len, cache->last_byte_to_unpin - start);
5507                         btrfs_add_free_space(cache, start, len);
5508                 }
5509
5510                 start += len;
5511                 space_info = cache->space_info;
5512
5513                 spin_lock(&space_info->lock);
5514                 spin_lock(&cache->lock);
5515                 cache->pinned -= len;
5516                 space_info->bytes_pinned -= len;
5517                 if (cache->ro) {
5518                         space_info->bytes_readonly += len;
5519                         readonly = true;
5520                 }
5521                 spin_unlock(&cache->lock);
5522                 if (!readonly && global_rsv->space_info == space_info) {
5523                         spin_lock(&global_rsv->lock);
5524                         if (!global_rsv->full) {
5525                                 len = min(len, global_rsv->size -
5526                                           global_rsv->reserved);
5527                                 global_rsv->reserved += len;
5528                                 space_info->bytes_may_use += len;
5529                                 if (global_rsv->reserved >= global_rsv->size)
5530                                         global_rsv->full = 1;
5531                         }
5532                         spin_unlock(&global_rsv->lock);
5533                 }
5534                 spin_unlock(&space_info->lock);
5535         }
5536
5537         if (cache)
5538                 btrfs_put_block_group(cache);
5539         return 0;
5540 }
5541
5542 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
5543                                struct btrfs_root *root)
5544 {
5545         struct btrfs_fs_info *fs_info = root->fs_info;
5546         struct extent_io_tree *unpin;
5547         u64 start;
5548         u64 end;
5549         int ret;
5550
5551         if (trans->aborted)
5552                 return 0;
5553
5554         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5555                 unpin = &fs_info->freed_extents[1];
5556         else
5557                 unpin = &fs_info->freed_extents[0];
5558
5559         while (1) {
5560                 ret = find_first_extent_bit(unpin, 0, &start, &end,
5561                                             EXTENT_DIRTY, NULL);
5562                 if (ret)
5563                         break;
5564
5565                 if (btrfs_test_opt(root, DISCARD))
5566                         ret = btrfs_discard_extent(root, start,
5567                                                    end + 1 - start, NULL);
5568
5569                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
5570                 unpin_extent_range(root, start, end);
5571                 cond_resched();
5572         }
5573
5574         return 0;
5575 }
5576
5577 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
5578                              u64 owner, u64 root_objectid)
5579 {
5580         struct btrfs_space_info *space_info;
5581         u64 flags;
5582
5583         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5584                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
5585                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
5586                 else
5587                         flags = BTRFS_BLOCK_GROUP_METADATA;
5588         } else {
5589                 flags = BTRFS_BLOCK_GROUP_DATA;
5590         }
5591
5592         space_info = __find_space_info(fs_info, flags);
5593         BUG_ON(!space_info); /* Logic bug */
5594         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
5595 }
5596
5597
5598 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
5599                                 struct btrfs_root *root,
5600                                 u64 bytenr, u64 num_bytes, u64 parent,
5601                                 u64 root_objectid, u64 owner_objectid,
5602                                 u64 owner_offset, int refs_to_drop,
5603                                 struct btrfs_delayed_extent_op *extent_op)
5604 {
5605         struct btrfs_key key;
5606         struct btrfs_path *path;
5607         struct btrfs_fs_info *info = root->fs_info;
5608         struct btrfs_root *extent_root = info->extent_root;
5609         struct extent_buffer *leaf;
5610         struct btrfs_extent_item *ei;
5611         struct btrfs_extent_inline_ref *iref;
5612         int ret;
5613         int is_data;
5614         int extent_slot = 0;
5615         int found_extent = 0;
5616         int num_to_del = 1;
5617         u32 item_size;
5618         u64 refs;
5619         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
5620                                                  SKINNY_METADATA);
5621
5622         path = btrfs_alloc_path();
5623         if (!path)
5624                 return -ENOMEM;
5625
5626         path->reada = 1;
5627         path->leave_spinning = 1;
5628
5629         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
5630         BUG_ON(!is_data && refs_to_drop != 1);
5631
5632         if (is_data)
5633                 skinny_metadata = 0;
5634
5635         ret = lookup_extent_backref(trans, extent_root, path, &iref,
5636                                     bytenr, num_bytes, parent,
5637                                     root_objectid, owner_objectid,
5638                                     owner_offset);
5639         if (ret == 0) {
5640                 extent_slot = path->slots[0];
5641                 while (extent_slot >= 0) {
5642                         btrfs_item_key_to_cpu(path->nodes[0], &key,
5643                                               extent_slot);
5644                         if (key.objectid != bytenr)
5645                                 break;
5646                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
5647                             key.offset == num_bytes) {
5648                                 found_extent = 1;
5649                                 break;
5650                         }
5651                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
5652                             key.offset == owner_objectid) {
5653                                 found_extent = 1;
5654                                 break;
5655                         }
5656                         if (path->slots[0] - extent_slot > 5)
5657                                 break;
5658                         extent_slot--;
5659                 }
5660 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5661                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
5662                 if (found_extent && item_size < sizeof(*ei))
5663                         found_extent = 0;
5664 #endif
5665                 if (!found_extent) {
5666                         BUG_ON(iref);
5667                         ret = remove_extent_backref(trans, extent_root, path,
5668                                                     NULL, refs_to_drop,
5669                                                     is_data);
5670                         if (ret) {
5671                                 btrfs_abort_transaction(trans, extent_root, ret);
5672                                 goto out;
5673                         }
5674                         btrfs_release_path(path);
5675                         path->leave_spinning = 1;
5676
5677                         key.objectid = bytenr;
5678                         key.type = BTRFS_EXTENT_ITEM_KEY;
5679                         key.offset = num_bytes;
5680
5681                         if (!is_data && skinny_metadata) {
5682                                 key.type = BTRFS_METADATA_ITEM_KEY;
5683                                 key.offset = owner_objectid;
5684                         }
5685
5686                         ret = btrfs_search_slot(trans, extent_root,
5687                                                 &key, path, -1, 1);
5688                         if (ret > 0 && skinny_metadata && path->slots[0]) {
5689                                 /*
5690                                  * Couldn't find our skinny metadata item,
5691                                  * see if we have ye olde extent item.
5692                                  */
5693                                 path->slots[0]--;
5694                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
5695                                                       path->slots[0]);
5696                                 if (key.objectid == bytenr &&
5697                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
5698                                     key.offset == num_bytes)
5699                                         ret = 0;
5700                         }
5701
5702                         if (ret > 0 && skinny_metadata) {
5703                                 skinny_metadata = false;
5704                                 key.type = BTRFS_EXTENT_ITEM_KEY;
5705                                 key.offset = num_bytes;
5706                                 btrfs_release_path(path);
5707                                 ret = btrfs_search_slot(trans, extent_root,
5708                                                         &key, path, -1, 1);
5709                         }
5710
5711                         if (ret) {
5712                                 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5713                                         ret, bytenr);
5714                                 if (ret > 0)
5715                                         btrfs_print_leaf(extent_root,
5716                                                          path->nodes[0]);
5717                         }
5718                         if (ret < 0) {
5719                                 btrfs_abort_transaction(trans, extent_root, ret);
5720                                 goto out;
5721                         }
5722                         extent_slot = path->slots[0];
5723                 }
5724         } else if (ret == -ENOENT) {
5725                 btrfs_print_leaf(extent_root, path->nodes[0]);
5726                 WARN_ON(1);
5727                 btrfs_err(info,
5728                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
5729                         bytenr, parent, root_objectid, owner_objectid,
5730                         owner_offset);
5731         } else {
5732                 btrfs_abort_transaction(trans, extent_root, ret);
5733                 goto out;
5734         }
5735
5736         leaf = path->nodes[0];
5737         item_size = btrfs_item_size_nr(leaf, extent_slot);
5738 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5739         if (item_size < sizeof(*ei)) {
5740                 BUG_ON(found_extent || extent_slot != path->slots[0]);
5741                 ret = convert_extent_item_v0(trans, extent_root, path,
5742                                              owner_objectid, 0);
5743                 if (ret < 0) {
5744                         btrfs_abort_transaction(trans, extent_root, ret);
5745                         goto out;
5746                 }
5747
5748                 btrfs_release_path(path);
5749                 path->leave_spinning = 1;
5750
5751                 key.objectid = bytenr;
5752                 key.type = BTRFS_EXTENT_ITEM_KEY;
5753                 key.offset = num_bytes;
5754
5755                 ret = btrfs_search_slot(trans, extent_root, &key, path,
5756                                         -1, 1);
5757                 if (ret) {
5758                         btrfs_err(info, "umm, got %d back from search, was looking for %llu",
5759                                 ret, bytenr);
5760                         btrfs_print_leaf(extent_root, path->nodes[0]);
5761                 }
5762                 if (ret < 0) {
5763                         btrfs_abort_transaction(trans, extent_root, ret);
5764                         goto out;
5765                 }
5766
5767                 extent_slot = path->slots[0];
5768                 leaf = path->nodes[0];
5769                 item_size = btrfs_item_size_nr(leaf, extent_slot);
5770         }
5771 #endif
5772         BUG_ON(item_size < sizeof(*ei));
5773         ei = btrfs_item_ptr(leaf, extent_slot,
5774                             struct btrfs_extent_item);
5775         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
5776             key.type == BTRFS_EXTENT_ITEM_KEY) {
5777                 struct btrfs_tree_block_info *bi;
5778                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5779                 bi = (struct btrfs_tree_block_info *)(ei + 1);
5780                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5781         }
5782
5783         refs = btrfs_extent_refs(leaf, ei);
5784         if (refs < refs_to_drop) {
5785                 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
5786                           "for bytenr %Lu\n", refs_to_drop, refs, bytenr);
5787                 ret = -EINVAL;
5788                 btrfs_abort_transaction(trans, extent_root, ret);
5789                 goto out;
5790         }
5791         refs -= refs_to_drop;
5792
5793         if (refs > 0) {
5794                 if (extent_op)
5795                         __run_delayed_extent_op(extent_op, leaf, ei);
5796                 /*
5797                  * In the case of inline back ref, reference count will
5798                  * be updated by remove_extent_backref
5799                  */
5800                 if (iref) {
5801                         BUG_ON(!found_extent);
5802                 } else {
5803                         btrfs_set_extent_refs(leaf, ei, refs);
5804                         btrfs_mark_buffer_dirty(leaf);
5805                 }
5806                 if (found_extent) {
5807                         ret = remove_extent_backref(trans, extent_root, path,
5808                                                     iref, refs_to_drop,
5809                                                     is_data);
5810                         if (ret) {
5811                                 btrfs_abort_transaction(trans, extent_root, ret);
5812                                 goto out;
5813                         }
5814                 }
5815                 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
5816                                  root_objectid);
5817         } else {
5818                 if (found_extent) {
5819                         BUG_ON(is_data && refs_to_drop !=
5820                                extent_data_ref_count(root, path, iref));
5821                         if (iref) {
5822                                 BUG_ON(path->slots[0] != extent_slot);
5823                         } else {
5824                                 BUG_ON(path->slots[0] != extent_slot + 1);
5825                                 path->slots[0] = extent_slot;
5826                                 num_to_del = 2;
5827                         }
5828                 }
5829
5830                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5831                                       num_to_del);
5832                 if (ret) {
5833                         btrfs_abort_transaction(trans, extent_root, ret);
5834                         goto out;
5835                 }
5836                 btrfs_release_path(path);
5837
5838                 if (is_data) {
5839                         ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5840                         if (ret) {
5841                                 btrfs_abort_transaction(trans, extent_root, ret);
5842                                 goto out;
5843                         }
5844                 }
5845
5846                 ret = update_block_group(root, bytenr, num_bytes, 0);
5847                 if (ret) {
5848                         btrfs_abort_transaction(trans, extent_root, ret);
5849                         goto out;
5850                 }
5851         }
5852 out:
5853         btrfs_free_path(path);
5854         return ret;
5855 }
5856
5857 /*
5858  * when we free an block, it is possible (and likely) that we free the last
5859  * delayed ref for that extent as well.  This searches the delayed ref tree for
5860  * a given extent, and if there are no other delayed refs to be processed, it
5861  * removes it from the tree.
5862  */
5863 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5864                                       struct btrfs_root *root, u64 bytenr)
5865 {
5866         struct btrfs_delayed_ref_head *head;
5867         struct btrfs_delayed_ref_root *delayed_refs;
5868         struct btrfs_delayed_ref_node *ref;
5869         struct rb_node *node;
5870         int ret = 0;
5871
5872         delayed_refs = &trans->transaction->delayed_refs;
5873         spin_lock(&delayed_refs->lock);
5874         head = btrfs_find_delayed_ref_head(trans, bytenr);
5875         if (!head)
5876                 goto out;
5877
5878         node = rb_prev(&head->node.rb_node);
5879         if (!node)
5880                 goto out;
5881
5882         ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5883
5884         /* there are still entries for this ref, we can't drop it */
5885         if (ref->bytenr == bytenr)
5886                 goto out;
5887
5888         if (head->extent_op) {
5889                 if (!head->must_insert_reserved)
5890                         goto out;
5891                 btrfs_free_delayed_extent_op(head->extent_op);
5892                 head->extent_op = NULL;
5893         }
5894
5895         /*
5896          * waiting for the lock here would deadlock.  If someone else has it
5897          * locked they are already in the process of dropping it anyway
5898          */
5899         if (!mutex_trylock(&head->mutex))
5900                 goto out;
5901
5902         /*
5903          * at this point we have a head with no other entries.  Go
5904          * ahead and process it.
5905          */
5906         head->node.in_tree = 0;
5907         rb_erase(&head->node.rb_node, &delayed_refs->root);
5908
5909         delayed_refs->num_entries--;
5910
5911         /*
5912          * we don't take a ref on the node because we're removing it from the
5913          * tree, so we just steal the ref the tree was holding.
5914          */
5915         delayed_refs->num_heads--;
5916         if (list_empty(&head->cluster))
5917                 delayed_refs->num_heads_ready--;
5918
5919         list_del_init(&head->cluster);
5920         spin_unlock(&delayed_refs->lock);
5921
5922         BUG_ON(head->extent_op);
5923         if (head->must_insert_reserved)
5924                 ret = 1;
5925
5926         mutex_unlock(&head->mutex);
5927         btrfs_put_delayed_ref(&head->node);
5928         return ret;
5929 out:
5930         spin_unlock(&delayed_refs->lock);
5931         return 0;
5932 }
5933
5934 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5935                            struct btrfs_root *root,
5936                            struct extent_buffer *buf,
5937                            u64 parent, int last_ref)
5938 {
5939         struct btrfs_block_group_cache *cache = NULL;
5940         int pin = 1;
5941         int ret;
5942
5943         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5944                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5945                                         buf->start, buf->len,
5946                                         parent, root->root_key.objectid,
5947                                         btrfs_header_level(buf),
5948                                         BTRFS_DROP_DELAYED_REF, NULL, 0);
5949                 BUG_ON(ret); /* -ENOMEM */
5950         }
5951
5952         if (!last_ref)
5953                 return;
5954
5955         cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5956
5957         if (btrfs_header_generation(buf) == trans->transid) {
5958                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5959                         ret = check_ref_cleanup(trans, root, buf->start);
5960                         if (!ret)
5961                                 goto out;
5962                 }
5963
5964                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5965                         pin_down_extent(root, cache, buf->start, buf->len, 1);
5966                         goto out;
5967                 }
5968
5969                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5970
5971                 btrfs_add_free_space(cache, buf->start, buf->len);
5972                 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5973                 pin = 0;
5974         }
5975 out:
5976         if (pin)
5977                 add_pinned_bytes(root->fs_info, buf->len,
5978                                  btrfs_header_level(buf),
5979                                  root->root_key.objectid);
5980
5981         /*
5982          * Deleting the buffer, clear the corrupt flag since it doesn't matter
5983          * anymore.
5984          */
5985         clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5986         btrfs_put_block_group(cache);
5987 }
5988
5989 /* Can return -ENOMEM */
5990 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5991                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5992                       u64 owner, u64 offset, int for_cow)
5993 {
5994         int ret;
5995         struct btrfs_fs_info *fs_info = root->fs_info;
5996
5997         add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
5998
5999         /*
6000          * tree log blocks never actually go into the extent allocation
6001          * tree, just update pinning info and exit early.
6002          */
6003         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6004                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
6005                 /* unlocks the pinned mutex */
6006                 btrfs_pin_extent(root, bytenr, num_bytes, 1);
6007                 ret = 0;
6008         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6009                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6010                                         num_bytes,
6011                                         parent, root_objectid, (int)owner,
6012                                         BTRFS_DROP_DELAYED_REF, NULL, for_cow);
6013         } else {
6014                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6015                                                 num_bytes,
6016                                                 parent, root_objectid, owner,
6017                                                 offset, BTRFS_DROP_DELAYED_REF,
6018                                                 NULL, for_cow);
6019         }
6020         return ret;
6021 }
6022
6023 static u64 stripe_align(struct btrfs_root *root,
6024                         struct btrfs_block_group_cache *cache,
6025                         u64 val, u64 num_bytes)
6026 {
6027         u64 ret = ALIGN(val, root->stripesize);
6028         return ret;
6029 }
6030
6031 /*
6032  * when we wait for progress in the block group caching, its because
6033  * our allocation attempt failed at least once.  So, we must sleep
6034  * and let some progress happen before we try again.
6035  *
6036  * This function will sleep at least once waiting for new free space to
6037  * show up, and then it will check the block group free space numbers
6038  * for our min num_bytes.  Another option is to have it go ahead
6039  * and look in the rbtree for a free extent of a given size, but this
6040  * is a good start.
6041  *
6042  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6043  * any of the information in this block group.
6044  */
6045 static noinline void
6046 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6047                                 u64 num_bytes)
6048 {
6049         struct btrfs_caching_control *caching_ctl;
6050
6051         caching_ctl = get_caching_control(cache);
6052         if (!caching_ctl)
6053                 return;
6054
6055         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
6056                    (cache->free_space_ctl->free_space >= num_bytes));
6057
6058         put_caching_control(caching_ctl);
6059 }
6060
6061 static noinline int
6062 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6063 {
6064         struct btrfs_caching_control *caching_ctl;
6065         int ret = 0;
6066
6067         caching_ctl = get_caching_control(cache);
6068         if (!caching_ctl)
6069                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
6070
6071         wait_event(caching_ctl->wait, block_group_cache_done(cache));
6072         if (cache->cached == BTRFS_CACHE_ERROR)
6073                 ret = -EIO;
6074         put_caching_control(caching_ctl);
6075         return ret;
6076 }
6077
6078 int __get_raid_index(u64 flags)
6079 {
6080         if (flags & BTRFS_BLOCK_GROUP_RAID10)
6081                 return BTRFS_RAID_RAID10;
6082         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
6083                 return BTRFS_RAID_RAID1;
6084         else if (flags & BTRFS_BLOCK_GROUP_DUP)
6085                 return BTRFS_RAID_DUP;
6086         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
6087                 return BTRFS_RAID_RAID0;
6088         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
6089                 return BTRFS_RAID_RAID5;
6090         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
6091                 return BTRFS_RAID_RAID6;
6092
6093         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
6094 }
6095
6096 static int get_block_group_index(struct btrfs_block_group_cache *cache)
6097 {
6098         return __get_raid_index(cache->flags);
6099 }
6100
6101 enum btrfs_loop_type {
6102         LOOP_CACHING_NOWAIT = 0,
6103         LOOP_CACHING_WAIT = 1,
6104         LOOP_ALLOC_CHUNK = 2,
6105         LOOP_NO_EMPTY_SIZE = 3,
6106 };
6107
6108 /*
6109  * walks the btree of allocated extents and find a hole of a given size.
6110  * The key ins is changed to record the hole:
6111  * ins->objectid == start position
6112  * ins->flags = BTRFS_EXTENT_ITEM_KEY
6113  * ins->offset == the size of the hole.
6114  * Any available blocks before search_start are skipped.
6115  *
6116  * If there is no suitable free space, we will record the max size of
6117  * the free space extent currently.
6118  */
6119 static noinline int find_free_extent(struct btrfs_root *orig_root,
6120                                      u64 num_bytes, u64 empty_size,
6121                                      u64 hint_byte, struct btrfs_key *ins,
6122                                      u64 flags)
6123 {
6124         int ret = 0;
6125         struct btrfs_root *root = orig_root->fs_info->extent_root;
6126         struct btrfs_free_cluster *last_ptr = NULL;
6127         struct btrfs_block_group_cache *block_group = NULL;
6128         struct btrfs_block_group_cache *used_block_group;
6129         u64 search_start = 0;
6130         u64 max_extent_size = 0;
6131         int empty_cluster = 2 * 1024 * 1024;
6132         struct btrfs_space_info *space_info;
6133         int loop = 0;
6134         int index = __get_raid_index(flags);
6135         int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
6136                 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
6137         bool found_uncached_bg = false;
6138         bool failed_cluster_refill = false;
6139         bool failed_alloc = false;
6140         bool use_cluster = true;
6141         bool have_caching_bg = false;
6142
6143         WARN_ON(num_bytes < root->sectorsize);
6144         btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
6145         ins->objectid = 0;
6146         ins->offset = 0;
6147
6148         trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
6149
6150         space_info = __find_space_info(root->fs_info, flags);
6151         if (!space_info) {
6152                 btrfs_err(root->fs_info, "No space info for %llu", flags);
6153                 return -ENOSPC;
6154         }
6155
6156         /*
6157          * If the space info is for both data and metadata it means we have a
6158          * small filesystem and we can't use the clustering stuff.
6159          */
6160         if (btrfs_mixed_space_info(space_info))
6161                 use_cluster = false;
6162
6163         if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
6164                 last_ptr = &root->fs_info->meta_alloc_cluster;
6165                 if (!btrfs_test_opt(root, SSD))
6166                         empty_cluster = 64 * 1024;
6167         }
6168
6169         if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
6170             btrfs_test_opt(root, SSD)) {
6171                 last_ptr = &root->fs_info->data_alloc_cluster;
6172         }
6173
6174         if (last_ptr) {
6175                 spin_lock(&last_ptr->lock);
6176                 if (last_ptr->block_group)
6177                         hint_byte = last_ptr->window_start;
6178                 spin_unlock(&last_ptr->lock);
6179         }
6180
6181         search_start = max(search_start, first_logical_byte(root, 0));
6182         search_start = max(search_start, hint_byte);
6183
6184         if (!last_ptr)
6185                 empty_cluster = 0;
6186
6187         if (search_start == hint_byte) {
6188                 block_group = btrfs_lookup_block_group(root->fs_info,
6189                                                        search_start);
6190                 used_block_group = block_group;
6191                 /*
6192                  * we don't want to use the block group if it doesn't match our
6193                  * allocation bits, or if its not cached.
6194                  *
6195                  * However if we are re-searching with an ideal block group
6196                  * picked out then we don't care that the block group is cached.
6197                  */
6198                 if (block_group && block_group_bits(block_group, flags) &&
6199                     block_group->cached != BTRFS_CACHE_NO) {
6200                         down_read(&space_info->groups_sem);
6201                         if (list_empty(&block_group->list) ||
6202                             block_group->ro) {
6203                                 /*
6204                                  * someone is removing this block group,
6205                                  * we can't jump into the have_block_group
6206                                  * target because our list pointers are not
6207                                  * valid
6208                                  */
6209                                 btrfs_put_block_group(block_group);
6210                                 up_read(&space_info->groups_sem);
6211                         } else {
6212                                 index = get_block_group_index(block_group);
6213                                 goto have_block_group;
6214                         }
6215                 } else if (block_group) {
6216                         btrfs_put_block_group(block_group);
6217                 }
6218         }
6219 search:
6220         have_caching_bg = false;
6221         down_read(&space_info->groups_sem);
6222         list_for_each_entry(block_group, &space_info->block_groups[index],
6223                             list) {
6224                 u64 offset;
6225                 int cached;
6226
6227                 used_block_group = block_group;
6228                 btrfs_get_block_group(block_group);
6229                 search_start = block_group->key.objectid;
6230
6231                 /*
6232                  * this can happen if we end up cycling through all the
6233                  * raid types, but we want to make sure we only allocate
6234                  * for the proper type.
6235                  */
6236                 if (!block_group_bits(block_group, flags)) {
6237                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
6238                                 BTRFS_BLOCK_GROUP_RAID1 |
6239                                 BTRFS_BLOCK_GROUP_RAID5 |
6240                                 BTRFS_BLOCK_GROUP_RAID6 |
6241                                 BTRFS_BLOCK_GROUP_RAID10;
6242
6243                         /*
6244                          * if they asked for extra copies and this block group
6245                          * doesn't provide them, bail.  This does allow us to
6246                          * fill raid0 from raid1.
6247                          */
6248                         if ((flags & extra) && !(block_group->flags & extra))
6249                                 goto loop;
6250                 }
6251
6252 have_block_group:
6253                 cached = block_group_cache_done(block_group);
6254                 if (unlikely(!cached)) {
6255                         found_uncached_bg = true;
6256                         ret = cache_block_group(block_group, 0);
6257                         BUG_ON(ret < 0);
6258                         ret = 0;
6259                 }
6260
6261                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6262                         goto loop;
6263                 if (unlikely(block_group->ro))
6264                         goto loop;
6265
6266                 /*
6267                  * Ok we want to try and use the cluster allocator, so
6268                  * lets look there
6269                  */
6270                 if (last_ptr) {
6271                         unsigned long aligned_cluster;
6272                         /*
6273                          * the refill lock keeps out other
6274                          * people trying to start a new cluster
6275                          */
6276                         spin_lock(&last_ptr->refill_lock);
6277                         used_block_group = last_ptr->block_group;
6278                         if (used_block_group != block_group &&
6279                             (!used_block_group ||
6280                              used_block_group->ro ||
6281                              !block_group_bits(used_block_group, flags))) {
6282                                 used_block_group = block_group;
6283                                 goto refill_cluster;
6284                         }
6285
6286                         if (used_block_group != block_group)
6287                                 btrfs_get_block_group(used_block_group);
6288
6289                         offset = btrfs_alloc_from_cluster(used_block_group,
6290                                                 last_ptr,
6291                                                 num_bytes,
6292                                                 used_block_group->key.objectid,
6293                                                 &max_extent_size);
6294                         if (offset) {
6295                                 /* we have a block, we're done */
6296                                 spin_unlock(&last_ptr->refill_lock);
6297                                 trace_btrfs_reserve_extent_cluster(root,
6298                                         block_group, search_start, num_bytes);
6299                                 goto checks;
6300                         }
6301
6302                         WARN_ON(last_ptr->block_group != used_block_group);
6303                         if (used_block_group != block_group) {
6304                                 btrfs_put_block_group(used_block_group);
6305                                 used_block_group = block_group;
6306                         }
6307 refill_cluster:
6308                         BUG_ON(used_block_group != block_group);
6309                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6310                          * set up a new clusters, so lets just skip it
6311                          * and let the allocator find whatever block
6312                          * it can find.  If we reach this point, we
6313                          * will have tried the cluster allocator
6314                          * plenty of times and not have found
6315                          * anything, so we are likely way too
6316                          * fragmented for the clustering stuff to find
6317                          * anything.
6318                          *
6319                          * However, if the cluster is taken from the
6320                          * current block group, release the cluster
6321                          * first, so that we stand a better chance of
6322                          * succeeding in the unclustered
6323                          * allocation.  */
6324                         if (loop >= LOOP_NO_EMPTY_SIZE &&
6325                             last_ptr->block_group != block_group) {
6326                                 spin_unlock(&last_ptr->refill_lock);
6327                                 goto unclustered_alloc;
6328                         }
6329
6330                         /*
6331                          * this cluster didn't work out, free it and
6332                          * start over
6333                          */
6334                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
6335
6336                         if (loop >= LOOP_NO_EMPTY_SIZE) {
6337                                 spin_unlock(&last_ptr->refill_lock);
6338                                 goto unclustered_alloc;
6339                         }
6340
6341                         aligned_cluster = max_t(unsigned long,
6342                                                 empty_cluster + empty_size,
6343                                               block_group->full_stripe_len);
6344
6345                         /* allocate a cluster in this block group */
6346                         ret = btrfs_find_space_cluster(root, block_group,
6347                                                        last_ptr, search_start,
6348                                                        num_bytes,
6349                                                        aligned_cluster);
6350                         if (ret == 0) {
6351                                 /*
6352                                  * now pull our allocation out of this
6353                                  * cluster
6354                                  */
6355                                 offset = btrfs_alloc_from_cluster(block_group,
6356                                                         last_ptr,
6357                                                         num_bytes,
6358                                                         search_start,
6359                                                         &max_extent_size);
6360                                 if (offset) {
6361                                         /* we found one, proceed */
6362                                         spin_unlock(&last_ptr->refill_lock);
6363                                         trace_btrfs_reserve_extent_cluster(root,
6364                                                 block_group, search_start,
6365                                                 num_bytes);
6366                                         goto checks;
6367                                 }
6368                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
6369                                    && !failed_cluster_refill) {
6370                                 spin_unlock(&last_ptr->refill_lock);
6371
6372                                 failed_cluster_refill = true;
6373                                 wait_block_group_cache_progress(block_group,
6374                                        num_bytes + empty_cluster + empty_size);
6375                                 goto have_block_group;
6376                         }
6377
6378                         /*
6379                          * at this point we either didn't find a cluster
6380                          * or we weren't able to allocate a block from our
6381                          * cluster.  Free the cluster we've been trying
6382                          * to use, and go to the next block group
6383                          */
6384                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
6385                         spin_unlock(&last_ptr->refill_lock);
6386                         goto loop;
6387                 }
6388
6389 unclustered_alloc:
6390                 spin_lock(&block_group->free_space_ctl->tree_lock);
6391                 if (cached &&
6392                     block_group->free_space_ctl->free_space <
6393                     num_bytes + empty_cluster + empty_size) {
6394                         if (block_group->free_space_ctl->free_space >
6395                             max_extent_size)
6396                                 max_extent_size =
6397                                         block_group->free_space_ctl->free_space;
6398                         spin_unlock(&block_group->free_space_ctl->tree_lock);
6399                         goto loop;
6400                 }
6401                 spin_unlock(&block_group->free_space_ctl->tree_lock);
6402
6403                 offset = btrfs_find_space_for_alloc(block_group, search_start,
6404                                                     num_bytes, empty_size,
6405                                                     &max_extent_size);
6406                 /*
6407                  * If we didn't find a chunk, and we haven't failed on this
6408                  * block group before, and this block group is in the middle of
6409                  * caching and we are ok with waiting, then go ahead and wait
6410                  * for progress to be made, and set failed_alloc to true.
6411                  *
6412                  * If failed_alloc is true then we've already waited on this
6413                  * block group once and should move on to the next block group.
6414                  */
6415                 if (!offset && !failed_alloc && !cached &&
6416                     loop > LOOP_CACHING_NOWAIT) {
6417                         wait_block_group_cache_progress(block_group,
6418                                                 num_bytes + empty_size);
6419                         failed_alloc = true;
6420                         goto have_block_group;
6421                 } else if (!offset) {
6422                         if (!cached)
6423                                 have_caching_bg = true;
6424                         goto loop;
6425                 }
6426 checks:
6427                 search_start = stripe_align(root, used_block_group,
6428                                             offset, num_bytes);
6429
6430                 /* move on to the next group */
6431                 if (search_start + num_bytes >
6432                     used_block_group->key.objectid + used_block_group->key.offset) {
6433                         btrfs_add_free_space(used_block_group, offset, num_bytes);
6434                         goto loop;
6435                 }
6436
6437                 if (offset < search_start)
6438                         btrfs_add_free_space(used_block_group, offset,
6439                                              search_start - offset);
6440                 BUG_ON(offset > search_start);
6441
6442                 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
6443                                                   alloc_type);
6444                 if (ret == -EAGAIN) {
6445                         btrfs_add_free_space(used_block_group, offset, num_bytes);
6446                         goto loop;
6447                 }
6448
6449                 /* we are all good, lets return */
6450                 ins->objectid = search_start;
6451                 ins->offset = num_bytes;
6452
6453                 trace_btrfs_reserve_extent(orig_root, block_group,
6454                                            search_start, num_bytes);
6455                 if (used_block_group != block_group)
6456                         btrfs_put_block_group(used_block_group);
6457                 btrfs_put_block_group(block_group);
6458                 break;
6459 loop:
6460                 failed_cluster_refill = false;
6461                 failed_alloc = false;
6462                 BUG_ON(index != get_block_group_index(block_group));
6463                 if (used_block_group != block_group)
6464                         btrfs_put_block_group(used_block_group);
6465                 btrfs_put_block_group(block_group);
6466         }
6467         up_read(&space_info->groups_sem);
6468
6469         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
6470                 goto search;
6471
6472         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
6473                 goto search;
6474
6475         /*
6476          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6477          *                      caching kthreads as we move along
6478          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6479          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6480          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6481          *                      again
6482          */
6483         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
6484                 index = 0;
6485                 loop++;
6486                 if (loop == LOOP_ALLOC_CHUNK) {
6487                         struct btrfs_trans_handle *trans;
6488
6489                         trans = btrfs_join_transaction(root);
6490                         if (IS_ERR(trans)) {
6491                                 ret = PTR_ERR(trans);
6492                                 goto out;
6493                         }
6494
6495                         ret = do_chunk_alloc(trans, root, flags,
6496                                              CHUNK_ALLOC_FORCE);
6497                         /*
6498                          * Do not bail out on ENOSPC since we
6499                          * can do more things.
6500                          */
6501                         if (ret < 0 && ret != -ENOSPC)
6502                                 btrfs_abort_transaction(trans,
6503                                                         root, ret);
6504                         else
6505                                 ret = 0;
6506                         btrfs_end_transaction(trans, root);
6507                         if (ret)
6508                                 goto out;
6509                 }
6510
6511                 if (loop == LOOP_NO_EMPTY_SIZE) {
6512                         empty_size = 0;
6513                         empty_cluster = 0;
6514                 }
6515
6516                 goto search;
6517         } else if (!ins->objectid) {
6518                 ret = -ENOSPC;
6519         } else if (ins->objectid) {
6520                 ret = 0;
6521         }
6522 out:
6523         if (ret == -ENOSPC)
6524                 ins->offset = max_extent_size;
6525         return ret;
6526 }
6527
6528 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
6529                             int dump_block_groups)
6530 {
6531         struct btrfs_block_group_cache *cache;
6532         int index = 0;
6533
6534         spin_lock(&info->lock);
6535         printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
6536                info->flags,
6537                info->total_bytes - info->bytes_used - info->bytes_pinned -
6538                info->bytes_reserved - info->bytes_readonly,
6539                (info->full) ? "" : "not ");
6540         printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
6541                "reserved=%llu, may_use=%llu, readonly=%llu\n",
6542                info->total_bytes, info->bytes_used, info->bytes_pinned,
6543                info->bytes_reserved, info->bytes_may_use,
6544                info->bytes_readonly);
6545         spin_unlock(&info->lock);
6546
6547         if (!dump_block_groups)
6548                 return;
6549
6550         down_read(&info->groups_sem);
6551 again:
6552         list_for_each_entry(cache, &info->block_groups[index], list) {
6553                 spin_lock(&cache->lock);
6554                 printk(KERN_INFO "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s\n",
6555                        cache->key.objectid, cache->key.offset,
6556                        btrfs_block_group_used(&cache->item), cache->pinned,
6557                        cache->reserved, cache->ro ? "[readonly]" : "");
6558                 btrfs_dump_free_space(cache, bytes);
6559                 spin_unlock(&cache->lock);
6560         }
6561         if (++index < BTRFS_NR_RAID_TYPES)
6562                 goto again;
6563         up_read(&info->groups_sem);
6564 }
6565
6566 int btrfs_reserve_extent(struct btrfs_root *root,
6567                          u64 num_bytes, u64 min_alloc_size,
6568                          u64 empty_size, u64 hint_byte,
6569                          struct btrfs_key *ins, int is_data)
6570 {
6571         bool final_tried = false;
6572         u64 flags;
6573         int ret;
6574
6575         flags = btrfs_get_alloc_profile(root, is_data);
6576 again:
6577         WARN_ON(num_bytes < root->sectorsize);
6578         ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
6579                                flags);
6580
6581         if (ret == -ENOSPC) {
6582                 if (!final_tried && ins->offset) {
6583                         num_bytes = min(num_bytes >> 1, ins->offset);
6584                         num_bytes = round_down(num_bytes, root->sectorsize);
6585                         num_bytes = max(num_bytes, min_alloc_size);
6586                         if (num_bytes == min_alloc_size)
6587                                 final_tried = true;
6588                         goto again;
6589                 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6590                         struct btrfs_space_info *sinfo;
6591
6592                         sinfo = __find_space_info(root->fs_info, flags);
6593                         btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
6594                                 flags, num_bytes);
6595                         if (sinfo)
6596                                 dump_space_info(sinfo, num_bytes, 1);
6597                 }
6598         }
6599
6600         trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
6601
6602         return ret;
6603 }
6604
6605 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
6606                                         u64 start, u64 len, int pin)
6607 {
6608         struct btrfs_block_group_cache *cache;
6609         int ret = 0;
6610
6611         cache = btrfs_lookup_block_group(root->fs_info, start);
6612         if (!cache) {
6613                 btrfs_err(root->fs_info, "Unable to find block group for %llu",
6614                         start);
6615                 return -ENOSPC;
6616         }
6617
6618         if (btrfs_test_opt(root, DISCARD))
6619                 ret = btrfs_discard_extent(root, start, len, NULL);
6620
6621         if (pin)
6622                 pin_down_extent(root, cache, start, len, 1);
6623         else {
6624                 btrfs_add_free_space(cache, start, len);
6625                 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
6626         }
6627         btrfs_put_block_group(cache);
6628
6629         trace_btrfs_reserved_extent_free(root, start, len);
6630
6631         return ret;
6632 }
6633
6634 int btrfs_free_reserved_extent(struct btrfs_root *root,
6635                                         u64 start, u64 len)
6636 {
6637         return __btrfs_free_reserved_extent(root, start, len, 0);
6638 }
6639
6640 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
6641                                        u64 start, u64 len)
6642 {
6643         return __btrfs_free_reserved_extent(root, start, len, 1);
6644 }
6645
6646 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6647                                       struct btrfs_root *root,
6648                                       u64 parent, u64 root_objectid,
6649                                       u64 flags, u64 owner, u64 offset,
6650                                       struct btrfs_key *ins, int ref_mod)
6651 {
6652         int ret;
6653         struct btrfs_fs_info *fs_info = root->fs_info;
6654         struct btrfs_extent_item *extent_item;
6655         struct btrfs_extent_inline_ref *iref;
6656         struct btrfs_path *path;
6657         struct extent_buffer *leaf;
6658         int type;
6659         u32 size;
6660
6661         if (parent > 0)
6662                 type = BTRFS_SHARED_DATA_REF_KEY;
6663         else
6664                 type = BTRFS_EXTENT_DATA_REF_KEY;
6665
6666         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
6667
6668         path = btrfs_alloc_path();
6669         if (!path)
6670                 return -ENOMEM;
6671
6672         path->leave_spinning = 1;
6673         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6674                                       ins, size);
6675         if (ret) {
6676                 btrfs_free_path(path);
6677                 return ret;
6678         }
6679
6680         leaf = path->nodes[0];
6681         extent_item = btrfs_item_ptr(leaf, path->slots[0],
6682                                      struct btrfs_extent_item);
6683         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
6684         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6685         btrfs_set_extent_flags(leaf, extent_item,
6686                                flags | BTRFS_EXTENT_FLAG_DATA);
6687
6688         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6689         btrfs_set_extent_inline_ref_type(leaf, iref, type);
6690         if (parent > 0) {
6691                 struct btrfs_shared_data_ref *ref;
6692                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
6693                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6694                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
6695         } else {
6696                 struct btrfs_extent_data_ref *ref;
6697                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
6698                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
6699                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
6700                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
6701                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
6702         }
6703
6704         btrfs_mark_buffer_dirty(path->nodes[0]);
6705         btrfs_free_path(path);
6706
6707         ret = update_block_group(root, ins->objectid, ins->offset, 1);
6708         if (ret) { /* -ENOENT, logic error */
6709                 btrfs_err(fs_info, "update block group failed for %llu %llu",
6710                         ins->objectid, ins->offset);
6711                 BUG();
6712         }
6713         return ret;
6714 }
6715
6716 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6717                                      struct btrfs_root *root,
6718                                      u64 parent, u64 root_objectid,
6719                                      u64 flags, struct btrfs_disk_key *key,
6720                                      int level, struct btrfs_key *ins)
6721 {
6722         int ret;
6723         struct btrfs_fs_info *fs_info = root->fs_info;
6724         struct btrfs_extent_item *extent_item;
6725         struct btrfs_tree_block_info *block_info;
6726         struct btrfs_extent_inline_ref *iref;
6727         struct btrfs_path *path;
6728         struct extent_buffer *leaf;
6729         u32 size = sizeof(*extent_item) + sizeof(*iref);
6730         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6731                                                  SKINNY_METADATA);
6732
6733         if (!skinny_metadata)
6734                 size += sizeof(*block_info);
6735
6736         path = btrfs_alloc_path();
6737         if (!path)
6738                 return -ENOMEM;
6739
6740         path->leave_spinning = 1;
6741         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6742                                       ins, size);
6743         if (ret) {
6744                 btrfs_free_path(path);
6745                 return ret;
6746         }
6747
6748         leaf = path->nodes[0];
6749         extent_item = btrfs_item_ptr(leaf, path->slots[0],
6750                                      struct btrfs_extent_item);
6751         btrfs_set_extent_refs(leaf, extent_item, 1);
6752         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6753         btrfs_set_extent_flags(leaf, extent_item,
6754                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6755
6756         if (skinny_metadata) {
6757                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
6758         } else {
6759                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6760                 btrfs_set_tree_block_key(leaf, block_info, key);
6761                 btrfs_set_tree_block_level(leaf, block_info, level);
6762                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6763         }
6764
6765         if (parent > 0) {
6766                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6767                 btrfs_set_extent_inline_ref_type(leaf, iref,
6768                                                  BTRFS_SHARED_BLOCK_REF_KEY);
6769                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6770         } else {
6771                 btrfs_set_extent_inline_ref_type(leaf, iref,
6772                                                  BTRFS_TREE_BLOCK_REF_KEY);
6773                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6774         }
6775
6776         btrfs_mark_buffer_dirty(leaf);
6777         btrfs_free_path(path);
6778
6779         ret = update_block_group(root, ins->objectid, root->leafsize, 1);
6780         if (ret) { /* -ENOENT, logic error */
6781                 btrfs_err(fs_info, "update block group failed for %llu %llu",
6782                         ins->objectid, ins->offset);
6783                 BUG();
6784         }
6785         return ret;
6786 }
6787
6788 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6789                                      struct btrfs_root *root,
6790                                      u64 root_objectid, u64 owner,
6791                                      u64 offset, struct btrfs_key *ins)
6792 {
6793         int ret;
6794
6795         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6796
6797         ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6798                                          ins->offset, 0,
6799                                          root_objectid, owner, offset,
6800                                          BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6801         return ret;
6802 }
6803
6804 /*
6805  * this is used by the tree logging recovery code.  It records that
6806  * an extent has been allocated and makes sure to clear the free
6807  * space cache bits as well
6808  */
6809 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6810                                    struct btrfs_root *root,
6811                                    u64 root_objectid, u64 owner, u64 offset,
6812                                    struct btrfs_key *ins)
6813 {
6814         int ret;
6815         struct btrfs_block_group_cache *block_group;
6816
6817         /*
6818          * Mixed block groups will exclude before processing the log so we only
6819          * need to do the exlude dance if this fs isn't mixed.
6820          */
6821         if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
6822                 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
6823                 if (ret)
6824                         return ret;
6825         }
6826
6827         block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6828         if (!block_group)
6829                 return -EINVAL;
6830
6831         ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6832                                           RESERVE_ALLOC_NO_ACCOUNT);
6833         BUG_ON(ret); /* logic error */
6834         ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6835                                          0, owner, offset, ins, 1);
6836         btrfs_put_block_group(block_group);
6837         return ret;
6838 }
6839
6840 static struct extent_buffer *
6841 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6842                       u64 bytenr, u32 blocksize, int level)
6843 {
6844         struct extent_buffer *buf;
6845
6846         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6847         if (!buf)
6848                 return ERR_PTR(-ENOMEM);
6849         btrfs_set_header_generation(buf, trans->transid);
6850         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6851         btrfs_tree_lock(buf);
6852         clean_tree_block(trans, root, buf);
6853         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6854
6855         btrfs_set_lock_blocking(buf);
6856         btrfs_set_buffer_uptodate(buf);
6857
6858         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6859                 /*
6860                  * we allow two log transactions at a time, use different
6861                  * EXENT bit to differentiate dirty pages.
6862                  */
6863                 if (root->log_transid % 2 == 0)
6864                         set_extent_dirty(&root->dirty_log_pages, buf->start,
6865                                         buf->start + buf->len - 1, GFP_NOFS);
6866                 else
6867                         set_extent_new(&root->dirty_log_pages, buf->start,
6868                                         buf->start + buf->len - 1, GFP_NOFS);
6869         } else {
6870                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6871                          buf->start + buf->len - 1, GFP_NOFS);
6872         }
6873         trans->blocks_used++;
6874         /* this returns a buffer locked for blocking */
6875         return buf;
6876 }
6877
6878 static struct btrfs_block_rsv *
6879 use_block_rsv(struct btrfs_trans_handle *trans,
6880               struct btrfs_root *root, u32 blocksize)
6881 {
6882         struct btrfs_block_rsv *block_rsv;
6883         struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6884         int ret;
6885         bool global_updated = false;
6886
6887         block_rsv = get_block_rsv(trans, root);
6888
6889         if (unlikely(block_rsv->size == 0))
6890                 goto try_reserve;
6891 again:
6892         ret = block_rsv_use_bytes(block_rsv, blocksize);
6893         if (!ret)
6894                 return block_rsv;
6895
6896         if (block_rsv->failfast)
6897                 return ERR_PTR(ret);
6898
6899         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
6900                 global_updated = true;
6901                 update_global_block_rsv(root->fs_info);
6902                 goto again;
6903         }
6904
6905         if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
6906                 static DEFINE_RATELIMIT_STATE(_rs,
6907                                 DEFAULT_RATELIMIT_INTERVAL * 10,
6908                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
6909                 if (__ratelimit(&_rs))
6910                         WARN(1, KERN_DEBUG
6911                                 "btrfs: block rsv returned %d\n", ret);
6912         }
6913 try_reserve:
6914         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
6915                                      BTRFS_RESERVE_NO_FLUSH);
6916         if (!ret)
6917                 return block_rsv;
6918         /*
6919          * If we couldn't reserve metadata bytes try and use some from
6920          * the global reserve if its space type is the same as the global
6921          * reservation.
6922          */
6923         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
6924             block_rsv->space_info == global_rsv->space_info) {
6925                 ret = block_rsv_use_bytes(global_rsv, blocksize);
6926                 if (!ret)
6927                         return global_rsv;
6928         }
6929         return ERR_PTR(ret);
6930 }
6931
6932 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6933                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
6934 {
6935         block_rsv_add_bytes(block_rsv, blocksize, 0);
6936         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6937 }
6938
6939 /*
6940  * finds a free extent and does all the dirty work required for allocation
6941  * returns the key for the extent through ins, and a tree buffer for
6942  * the first block of the extent through buf.
6943  *
6944  * returns the tree buffer or NULL.
6945  */
6946 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6947                                         struct btrfs_root *root, u32 blocksize,
6948                                         u64 parent, u64 root_objectid,
6949                                         struct btrfs_disk_key *key, int level,
6950                                         u64 hint, u64 empty_size)
6951 {
6952         struct btrfs_key ins;
6953         struct btrfs_block_rsv *block_rsv;
6954         struct extent_buffer *buf;
6955         u64 flags = 0;
6956         int ret;
6957         bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6958                                                  SKINNY_METADATA);
6959
6960         block_rsv = use_block_rsv(trans, root, blocksize);
6961         if (IS_ERR(block_rsv))
6962                 return ERR_CAST(block_rsv);
6963
6964         ret = btrfs_reserve_extent(root, blocksize, blocksize,
6965                                    empty_size, hint, &ins, 0);
6966         if (ret) {
6967                 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6968                 return ERR_PTR(ret);
6969         }
6970
6971         buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6972                                     blocksize, level);
6973         BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6974
6975         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6976                 if (parent == 0)
6977                         parent = ins.objectid;
6978                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6979         } else
6980                 BUG_ON(parent > 0);
6981
6982         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6983                 struct btrfs_delayed_extent_op *extent_op;
6984                 extent_op = btrfs_alloc_delayed_extent_op();
6985                 BUG_ON(!extent_op); /* -ENOMEM */
6986                 if (key)
6987                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
6988                 else
6989                         memset(&extent_op->key, 0, sizeof(extent_op->key));
6990                 extent_op->flags_to_set = flags;
6991                 if (skinny_metadata)
6992                         extent_op->update_key = 0;
6993                 else
6994                         extent_op->update_key = 1;
6995                 extent_op->update_flags = 1;
6996                 extent_op->is_data = 0;
6997                 extent_op->level = level;
6998
6999                 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7000                                         ins.objectid,
7001                                         ins.offset, parent, root_objectid,
7002                                         level, BTRFS_ADD_DELAYED_EXTENT,
7003                                         extent_op, 0);
7004                 BUG_ON(ret); /* -ENOMEM */
7005         }
7006         return buf;
7007 }
7008
7009 struct walk_control {
7010         u64 refs[BTRFS_MAX_LEVEL];
7011         u64 flags[BTRFS_MAX_LEVEL];
7012         struct btrfs_key update_progress;
7013         int stage;
7014         int level;
7015         int shared_level;
7016         int update_ref;
7017         int keep_locks;
7018         int reada_slot;
7019         int reada_count;
7020         int for_reloc;
7021 };
7022
7023 #define DROP_REFERENCE  1
7024 #define UPDATE_BACKREF  2
7025
7026 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7027                                      struct btrfs_root *root,
7028                                      struct walk_control *wc,
7029                                      struct btrfs_path *path)
7030 {
7031         u64 bytenr;
7032         u64 generation;
7033         u64 refs;
7034         u64 flags;
7035         u32 nritems;
7036         u32 blocksize;
7037         struct btrfs_key key;
7038         struct extent_buffer *eb;
7039         int ret;
7040         int slot;
7041         int nread = 0;
7042
7043         if (path->slots[wc->level] < wc->reada_slot) {
7044                 wc->reada_count = wc->reada_count * 2 / 3;
7045                 wc->reada_count = max(wc->reada_count, 2);
7046         } else {
7047                 wc->reada_count = wc->reada_count * 3 / 2;
7048                 wc->reada_count = min_t(int, wc->reada_count,
7049                                         BTRFS_NODEPTRS_PER_BLOCK(root));
7050         }
7051
7052         eb = path->nodes[wc->level];
7053         nritems = btrfs_header_nritems(eb);
7054         blocksize = btrfs_level_size(root, wc->level - 1);
7055
7056         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7057                 if (nread >= wc->reada_count)
7058                         break;
7059
7060                 cond_resched();
7061                 bytenr = btrfs_node_blockptr(eb, slot);
7062                 generation = btrfs_node_ptr_generation(eb, slot);
7063
7064                 if (slot == path->slots[wc->level])
7065                         goto reada;
7066
7067                 if (wc->stage == UPDATE_BACKREF &&
7068                     generation <= root->root_key.offset)
7069                         continue;
7070
7071                 /* We don't lock the tree block, it's OK to be racy here */
7072                 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7073                                                wc->level - 1, 1, &refs,
7074                                                &flags);
7075                 /* We don't care about errors in readahead. */
7076                 if (ret < 0)
7077                         continue;
7078                 BUG_ON(refs == 0);
7079
7080                 if (wc->stage == DROP_REFERENCE) {
7081                         if (refs == 1)
7082                                 goto reada;
7083
7084                         if (wc->level == 1 &&
7085                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7086                                 continue;
7087                         if (!wc->update_ref ||
7088                             generation <= root->root_key.offset)
7089                                 continue;
7090                         btrfs_node_key_to_cpu(eb, &key, slot);
7091                         ret = btrfs_comp_cpu_keys(&key,
7092                                                   &wc->update_progress);
7093                         if (ret < 0)
7094                                 continue;
7095                 } else {
7096                         if (wc->level == 1 &&
7097                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7098                                 continue;
7099                 }
7100 reada:
7101                 ret = readahead_tree_block(root, bytenr, blocksize,
7102                                            generation);
7103                 if (ret)
7104                         break;
7105                 nread++;
7106         }
7107         wc->reada_slot = slot;
7108 }
7109
7110 /*
7111  * helper to process tree block while walking down the tree.
7112  *
7113  * when wc->stage == UPDATE_BACKREF, this function updates
7114  * back refs for pointers in the block.
7115  *
7116  * NOTE: return value 1 means we should stop walking down.
7117  */
7118 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
7119                                    struct btrfs_root *root,
7120                                    struct btrfs_path *path,
7121                                    struct walk_control *wc, int lookup_info)
7122 {
7123         int level = wc->level;
7124         struct extent_buffer *eb = path->nodes[level];
7125         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7126         int ret;
7127
7128         if (wc->stage == UPDATE_BACKREF &&
7129             btrfs_header_owner(eb) != root->root_key.objectid)
7130                 return 1;
7131
7132         /*
7133          * when reference count of tree block is 1, it won't increase
7134          * again. once full backref flag is set, we never clear it.
7135          */
7136         if (lookup_info &&
7137             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7138              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
7139                 BUG_ON(!path->locks[level]);
7140                 ret = btrfs_lookup_extent_info(trans, root,
7141                                                eb->start, level, 1,
7142                                                &wc->refs[level],
7143                                                &wc->flags[level]);
7144                 BUG_ON(ret == -ENOMEM);
7145                 if (ret)
7146                         return ret;
7147                 BUG_ON(wc->refs[level] == 0);
7148         }
7149
7150         if (wc->stage == DROP_REFERENCE) {
7151                 if (wc->refs[level] > 1)
7152                         return 1;
7153
7154                 if (path->locks[level] && !wc->keep_locks) {
7155                         btrfs_tree_unlock_rw(eb, path->locks[level]);
7156                         path->locks[level] = 0;
7157                 }
7158                 return 0;
7159         }
7160
7161         /* wc->stage == UPDATE_BACKREF */
7162         if (!(wc->flags[level] & flag)) {
7163                 BUG_ON(!path->locks[level]);
7164                 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
7165                 BUG_ON(ret); /* -ENOMEM */
7166                 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
7167                 BUG_ON(ret); /* -ENOMEM */
7168                 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
7169                                                   eb->len, flag,
7170                                                   btrfs_header_level(eb), 0);
7171                 BUG_ON(ret); /* -ENOMEM */
7172                 wc->flags[level] |= flag;
7173         }
7174
7175         /*
7176          * the block is shared by multiple trees, so it's not good to
7177          * keep the tree lock
7178          */
7179         if (path->locks[level] && level > 0) {
7180                 btrfs_tree_unlock_rw(eb, path->locks[level]);
7181                 path->locks[level] = 0;
7182         }
7183         return 0;
7184 }
7185
7186 /*
7187  * helper to process tree block pointer.
7188  *
7189  * when wc->stage == DROP_REFERENCE, this function checks
7190  * reference count of the block pointed to. if the block
7191  * is shared and we need update back refs for the subtree
7192  * rooted at the block, this function changes wc->stage to
7193  * UPDATE_BACKREF. if the block is shared and there is no
7194  * need to update back, this function drops the reference
7195  * to the block.
7196  *
7197  * NOTE: return value 1 means we should stop walking down.
7198  */
7199 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
7200                                  struct btrfs_root *root,
7201                                  struct btrfs_path *path,
7202                                  struct walk_control *wc, int *lookup_info)
7203 {
7204         u64 bytenr;
7205         u64 generation;
7206         u64 parent;
7207         u32 blocksize;
7208         struct btrfs_key key;
7209         struct extent_buffer *next;
7210         int level = wc->level;
7211         int reada = 0;
7212         int ret = 0;
7213
7214         generation = btrfs_node_ptr_generation(path->nodes[level],
7215                                                path->slots[level]);
7216         /*
7217          * if the lower level block was created before the snapshot
7218          * was created, we know there is no need to update back refs
7219          * for the subtree
7220          */
7221         if (wc->stage == UPDATE_BACKREF &&
7222             generation <= root->root_key.offset) {
7223                 *lookup_info = 1;
7224                 return 1;
7225         }
7226
7227         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
7228         blocksize = btrfs_level_size(root, level - 1);
7229
7230         next = btrfs_find_tree_block(root, bytenr, blocksize);
7231         if (!next) {
7232                 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
7233                 if (!next)
7234                         return -ENOMEM;
7235                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
7236                                                level - 1);
7237                 reada = 1;
7238         }
7239         btrfs_tree_lock(next);
7240         btrfs_set_lock_blocking(next);
7241
7242         ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
7243                                        &wc->refs[level - 1],
7244                                        &wc->flags[level - 1]);
7245         if (ret < 0) {
7246                 btrfs_tree_unlock(next);
7247                 return ret;
7248         }
7249
7250         if (unlikely(wc->refs[level - 1] == 0)) {
7251                 btrfs_err(root->fs_info, "Missing references.");
7252                 BUG();
7253         }
7254         *lookup_info = 0;
7255
7256         if (wc->stage == DROP_REFERENCE) {
7257                 if (wc->refs[level - 1] > 1) {
7258                         if (level == 1 &&
7259                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7260                                 goto skip;
7261
7262                         if (!wc->update_ref ||
7263                             generation <= root->root_key.offset)
7264                                 goto skip;
7265
7266                         btrfs_node_key_to_cpu(path->nodes[level], &key,
7267                                               path->slots[level]);
7268                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
7269                         if (ret < 0)
7270                                 goto skip;
7271
7272                         wc->stage = UPDATE_BACKREF;
7273                         wc->shared_level = level - 1;
7274                 }
7275         } else {
7276                 if (level == 1 &&
7277                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7278                         goto skip;
7279         }
7280
7281         if (!btrfs_buffer_uptodate(next, generation, 0)) {
7282                 btrfs_tree_unlock(next);
7283                 free_extent_buffer(next);
7284                 next = NULL;
7285                 *lookup_info = 1;
7286         }
7287
7288         if (!next) {
7289                 if (reada && level == 1)
7290                         reada_walk_down(trans, root, wc, path);
7291                 next = read_tree_block(root, bytenr, blocksize, generation);
7292                 if (!next || !extent_buffer_uptodate(next)) {
7293                         free_extent_buffer(next);
7294                         return -EIO;
7295                 }
7296                 btrfs_tree_lock(next);
7297                 btrfs_set_lock_blocking(next);
7298         }
7299
7300         level--;
7301         BUG_ON(level != btrfs_header_level(next));
7302         path->nodes[level] = next;
7303         path->slots[level] = 0;
7304         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7305         wc->level = level;
7306         if (wc->level == 1)
7307                 wc->reada_slot = 0;
7308         return 0;
7309 skip:
7310         wc->refs[level - 1] = 0;
7311         wc->flags[level - 1] = 0;
7312         if (wc->stage == DROP_REFERENCE) {
7313                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
7314                         parent = path->nodes[level]->start;
7315                 } else {
7316                         BUG_ON(root->root_key.objectid !=
7317                                btrfs_header_owner(path->nodes[level]));
7318                         parent = 0;
7319                 }
7320
7321                 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
7322                                 root->root_key.objectid, level - 1, 0, 0);
7323                 BUG_ON(ret); /* -ENOMEM */
7324         }
7325         btrfs_tree_unlock(next);
7326         free_extent_buffer(next);
7327         *lookup_info = 1;
7328         return 1;
7329 }
7330
7331 /*
7332  * helper to process tree block while walking up the tree.
7333  *
7334  * when wc->stage == DROP_REFERENCE, this function drops
7335  * reference count on the block.
7336  *
7337  * when wc->stage == UPDATE_BACKREF, this function changes
7338  * wc->stage back to DROP_REFERENCE if we changed wc->stage
7339  * to UPDATE_BACKREF previously while processing the block.
7340  *
7341  * NOTE: return value 1 means we should stop walking up.
7342  */
7343 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
7344                                  struct btrfs_root *root,
7345                                  struct btrfs_path *path,
7346                                  struct walk_control *wc)
7347 {
7348         int ret;
7349         int level = wc->level;
7350         struct extent_buffer *eb = path->nodes[level];
7351         u64 parent = 0;
7352
7353         if (wc->stage == UPDATE_BACKREF) {
7354                 BUG_ON(wc->shared_level < level);
7355                 if (level < wc->shared_level)
7356                         goto out;
7357
7358                 ret = find_next_key(path, level + 1, &wc->update_progress);
7359                 if (ret > 0)
7360                         wc->update_ref = 0;
7361
7362                 wc->stage = DROP_REFERENCE;
7363                 wc->shared_level = -1;
7364                 path->slots[level] = 0;
7365
7366                 /*
7367                  * check reference count again if the block isn't locked.
7368                  * we should start walking down the tree again if reference
7369                  * count is one.
7370                  */
7371                 if (!path->locks[level]) {
7372                         BUG_ON(level == 0);
7373                         btrfs_tree_lock(eb);
7374                         btrfs_set_lock_blocking(eb);
7375                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7376
7377                         ret = btrfs_lookup_extent_info(trans, root,
7378                                                        eb->start, level, 1,
7379                                                        &wc->refs[level],
7380                                                        &wc->flags[level]);
7381                         if (ret < 0) {
7382                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
7383                                 path->locks[level] = 0;
7384                                 return ret;
7385                         }
7386                         BUG_ON(wc->refs[level] == 0);
7387                         if (wc->refs[level] == 1) {
7388                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
7389                                 path->locks[level] = 0;
7390                                 return 1;
7391                         }
7392                 }
7393         }
7394
7395         /* wc->stage == DROP_REFERENCE */
7396         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
7397
7398         if (wc->refs[level] == 1) {
7399                 if (level == 0) {
7400                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7401                                 ret = btrfs_dec_ref(trans, root, eb, 1,
7402                                                     wc->for_reloc);
7403                         else
7404                                 ret = btrfs_dec_ref(trans, root, eb, 0,
7405                                                     wc->for_reloc);
7406                         BUG_ON(ret); /* -ENOMEM */
7407                 }
7408                 /* make block locked assertion in clean_tree_block happy */
7409                 if (!path->locks[level] &&
7410                     btrfs_header_generation(eb) == trans->transid) {
7411                         btrfs_tree_lock(eb);
7412                         btrfs_set_lock_blocking(eb);
7413                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7414                 }
7415                 clean_tree_block(trans, root, eb);
7416         }
7417
7418         if (eb == root->node) {
7419                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7420                         parent = eb->start;
7421                 else
7422                         BUG_ON(root->root_key.objectid !=
7423                                btrfs_header_owner(eb));
7424         } else {
7425                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
7426                         parent = path->nodes[level + 1]->start;
7427                 else
7428                         BUG_ON(root->root_key.objectid !=
7429                                btrfs_header_owner(path->nodes[level + 1]));
7430         }
7431
7432         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
7433 out:
7434         wc->refs[level] = 0;
7435         wc->flags[level] = 0;
7436         return 0;
7437 }
7438
7439 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
7440                                    struct btrfs_root *root,
7441                                    struct btrfs_path *path,
7442                                    struct walk_control *wc)
7443 {
7444         int level = wc->level;
7445         int lookup_info = 1;
7446         int ret;
7447
7448         while (level >= 0) {
7449                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
7450                 if (ret > 0)
7451                         break;
7452
7453                 if (level == 0)
7454                         break;
7455
7456                 if (path->slots[level] >=
7457                     btrfs_header_nritems(path->nodes[level]))
7458                         break;
7459
7460                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
7461                 if (ret > 0) {
7462                         path->slots[level]++;
7463                         continue;
7464                 } else if (ret < 0)
7465                         return ret;
7466                 level = wc->level;
7467         }
7468         return 0;
7469 }
7470
7471 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
7472                                  struct btrfs_root *root,
7473                                  struct btrfs_path *path,
7474                                  struct walk_control *wc, int max_level)
7475 {
7476         int level = wc->level;
7477         int ret;
7478
7479         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
7480         while (level < max_level && path->nodes[level]) {
7481                 wc->level = level;
7482                 if (path->slots[level] + 1 <
7483                     btrfs_header_nritems(path->nodes[level])) {
7484                         path->slots[level]++;
7485                         return 0;
7486                 } else {
7487                         ret = walk_up_proc(trans, root, path, wc);
7488                         if (ret > 0)
7489                                 return 0;
7490
7491                         if (path->locks[level]) {
7492                                 btrfs_tree_unlock_rw(path->nodes[level],
7493                                                      path->locks[level]);
7494                                 path->locks[level] = 0;
7495                         }
7496                         free_extent_buffer(path->nodes[level]);
7497                         path->nodes[level] = NULL;
7498                         level++;
7499                 }
7500         }
7501         return 1;
7502 }
7503
7504 /*
7505  * drop a subvolume tree.
7506  *
7507  * this function traverses the tree freeing any blocks that only
7508  * referenced by the tree.
7509  *
7510  * when a shared tree block is found. this function decreases its
7511  * reference count by one. if update_ref is true, this function
7512  * also make sure backrefs for the shared block and all lower level
7513  * blocks are properly updated.
7514  *
7515  * If called with for_reloc == 0, may exit early with -EAGAIN
7516  */
7517 int btrfs_drop_snapshot(struct btrfs_root *root,
7518                          struct btrfs_block_rsv *block_rsv, int update_ref,
7519                          int for_reloc)
7520 {
7521         struct btrfs_path *path;
7522         struct btrfs_trans_handle *trans;
7523         struct btrfs_root *tree_root = root->fs_info->tree_root;
7524         struct btrfs_root_item *root_item = &root->root_item;
7525         struct walk_control *wc;
7526         struct btrfs_key key;
7527         int err = 0;
7528         int ret;
7529         int level;
7530         bool root_dropped = false;
7531
7532         path = btrfs_alloc_path();
7533         if (!path) {
7534                 err = -ENOMEM;
7535                 goto out;
7536         }
7537
7538         wc = kzalloc(sizeof(*wc), GFP_NOFS);
7539         if (!wc) {
7540                 btrfs_free_path(path);
7541                 err = -ENOMEM;
7542                 goto out;
7543         }
7544
7545         trans = btrfs_start_transaction(tree_root, 0);
7546         if (IS_ERR(trans)) {
7547                 err = PTR_ERR(trans);
7548                 goto out_free;
7549         }
7550
7551         if (block_rsv)
7552                 trans->block_rsv = block_rsv;
7553
7554         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
7555                 level = btrfs_header_level(root->node);
7556                 path->nodes[level] = btrfs_lock_root_node(root);
7557                 btrfs_set_lock_blocking(path->nodes[level]);
7558                 path->slots[level] = 0;
7559                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7560                 memset(&wc->update_progress, 0,
7561                        sizeof(wc->update_progress));
7562         } else {
7563                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
7564                 memcpy(&wc->update_progress, &key,
7565                        sizeof(wc->update_progress));
7566
7567                 level = root_item->drop_level;
7568                 BUG_ON(level == 0);
7569                 path->lowest_level = level;
7570                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7571                 path->lowest_level = 0;
7572                 if (ret < 0) {
7573                         err = ret;
7574                         goto out_end_trans;
7575                 }
7576                 WARN_ON(ret > 0);
7577
7578                 /*
7579                  * unlock our path, this is safe because only this
7580                  * function is allowed to delete this snapshot
7581                  */
7582                 btrfs_unlock_up_safe(path, 0);
7583
7584                 level = btrfs_header_level(root->node);
7585                 while (1) {
7586                         btrfs_tree_lock(path->nodes[level]);
7587                         btrfs_set_lock_blocking(path->nodes[level]);
7588                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7589
7590                         ret = btrfs_lookup_extent_info(trans, root,
7591                                                 path->nodes[level]->start,
7592                                                 level, 1, &wc->refs[level],
7593                                                 &wc->flags[level]);
7594                         if (ret < 0) {
7595                                 err = ret;
7596                                 goto out_end_trans;
7597                         }
7598                         BUG_ON(wc->refs[level] == 0);
7599
7600                         if (level == root_item->drop_level)
7601                                 break;
7602
7603                         btrfs_tree_unlock(path->nodes[level]);
7604                         path->locks[level] = 0;
7605                         WARN_ON(wc->refs[level] != 1);
7606                         level--;
7607                 }
7608         }
7609
7610         wc->level = level;
7611         wc->shared_level = -1;
7612         wc->stage = DROP_REFERENCE;
7613         wc->update_ref = update_ref;
7614         wc->keep_locks = 0;
7615         wc->for_reloc = for_reloc;
7616         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7617
7618         while (1) {
7619
7620                 ret = walk_down_tree(trans, root, path, wc);
7621                 if (ret < 0) {
7622                         err = ret;
7623                         break;
7624                 }
7625
7626                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
7627                 if (ret < 0) {
7628                         err = ret;
7629                         break;
7630                 }
7631
7632                 if (ret > 0) {
7633                         BUG_ON(wc->stage != DROP_REFERENCE);
7634                         break;
7635                 }
7636
7637                 if (wc->stage == DROP_REFERENCE) {
7638                         level = wc->level;
7639                         btrfs_node_key(path->nodes[level],
7640                                        &root_item->drop_progress,
7641                                        path->slots[level]);
7642                         root_item->drop_level = level;
7643                 }
7644
7645                 BUG_ON(wc->level == 0);
7646                 if (btrfs_should_end_transaction(trans, tree_root) ||
7647                     (!for_reloc && btrfs_need_cleaner_sleep(root))) {
7648                         ret = btrfs_update_root(trans, tree_root,
7649                                                 &root->root_key,
7650                                                 root_item);
7651                         if (ret) {
7652                                 btrfs_abort_transaction(trans, tree_root, ret);
7653                                 err = ret;
7654                                 goto out_end_trans;
7655                         }
7656
7657                         btrfs_end_transaction_throttle(trans, tree_root);
7658                         if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
7659                                 pr_debug("btrfs: drop snapshot early exit\n");
7660                                 err = -EAGAIN;
7661                                 goto out_free;
7662                         }
7663
7664                         trans = btrfs_start_transaction(tree_root, 0);
7665                         if (IS_ERR(trans)) {
7666                                 err = PTR_ERR(trans);
7667                                 goto out_free;
7668                         }
7669                         if (block_rsv)
7670                                 trans->block_rsv = block_rsv;
7671                 }
7672         }
7673         btrfs_release_path(path);
7674         if (err)
7675                 goto out_end_trans;
7676
7677         ret = btrfs_del_root(trans, tree_root, &root->root_key);
7678         if (ret) {
7679                 btrfs_abort_transaction(trans, tree_root, ret);
7680                 goto out_end_trans;
7681         }
7682
7683         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
7684                 ret = btrfs_find_root(tree_root, &root->root_key, path,
7685                                       NULL, NULL);
7686                 if (ret < 0) {
7687                         btrfs_abort_transaction(trans, tree_root, ret);
7688                         err = ret;
7689                         goto out_end_trans;
7690                 } else if (ret > 0) {
7691                         /* if we fail to delete the orphan item this time
7692                          * around, it'll get picked up the next time.
7693                          *
7694                          * The most common failure here is just -ENOENT.
7695                          */
7696                         btrfs_del_orphan_item(trans, tree_root,
7697                                               root->root_key.objectid);
7698                 }
7699         }
7700
7701         if (root->in_radix) {
7702                 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
7703         } else {
7704                 free_extent_buffer(root->node);
7705                 free_extent_buffer(root->commit_root);
7706                 btrfs_put_fs_root(root);
7707         }
7708         root_dropped = true;
7709 out_end_trans:
7710         btrfs_end_transaction_throttle(trans, tree_root);
7711 out_free:
7712         kfree(wc);
7713         btrfs_free_path(path);
7714 out:
7715         /*
7716          * So if we need to stop dropping the snapshot for whatever reason we
7717          * need to make sure to add it back to the dead root list so that we
7718          * keep trying to do the work later.  This also cleans up roots if we
7719          * don't have it in the radix (like when we recover after a power fail
7720          * or unmount) so we don't leak memory.
7721          */
7722         if (!for_reloc && root_dropped == false)
7723                 btrfs_add_dead_root(root);
7724         if (err)
7725                 btrfs_std_error(root->fs_info, err);
7726         return err;
7727 }
7728
7729 /*
7730  * drop subtree rooted at tree block 'node'.
7731  *
7732  * NOTE: this function will unlock and release tree block 'node'
7733  * only used by relocation code
7734  */
7735 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7736                         struct btrfs_root *root,
7737                         struct extent_buffer *node,
7738                         struct extent_buffer *parent)
7739 {
7740         struct btrfs_path *path;
7741         struct walk_control *wc;
7742         int level;
7743         int parent_level;
7744         int ret = 0;
7745         int wret;
7746
7747         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7748
7749         path = btrfs_alloc_path();
7750         if (!path)
7751                 return -ENOMEM;
7752
7753         wc = kzalloc(sizeof(*wc), GFP_NOFS);
7754         if (!wc) {
7755                 btrfs_free_path(path);
7756                 return -ENOMEM;
7757         }
7758
7759         btrfs_assert_tree_locked(parent);
7760         parent_level = btrfs_header_level(parent);
7761         extent_buffer_get(parent);
7762         path->nodes[parent_level] = parent;
7763         path->slots[parent_level] = btrfs_header_nritems(parent);
7764
7765         btrfs_assert_tree_locked(node);
7766         level = btrfs_header_level(node);
7767         path->nodes[level] = node;
7768         path->slots[level] = 0;
7769         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7770
7771         wc->refs[parent_level] = 1;
7772         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7773         wc->level = level;
7774         wc->shared_level = -1;
7775         wc->stage = DROP_REFERENCE;
7776         wc->update_ref = 0;
7777         wc->keep_locks = 1;
7778         wc->for_reloc = 1;
7779         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7780
7781         while (1) {
7782                 wret = walk_down_tree(trans, root, path, wc);
7783                 if (wret < 0) {
7784                         ret = wret;
7785                         break;
7786                 }
7787
7788                 wret = walk_up_tree(trans, root, path, wc, parent_level);
7789                 if (wret < 0)
7790                         ret = wret;
7791                 if (wret != 0)
7792                         break;
7793         }
7794
7795         kfree(wc);
7796         btrfs_free_path(path);
7797         return ret;
7798 }
7799
7800 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7801 {
7802         u64 num_devices;
7803         u64 stripped;
7804
7805         /*
7806          * if restripe for this chunk_type is on pick target profile and
7807          * return, otherwise do the usual balance
7808          */
7809         stripped = get_restripe_target(root->fs_info, flags);
7810         if (stripped)
7811                 return extended_to_chunk(stripped);
7812
7813         /*
7814          * we add in the count of missing devices because we want
7815          * to make sure that any RAID levels on a degraded FS
7816          * continue to be honored.
7817          */
7818         num_devices = root->fs_info->fs_devices->rw_devices +
7819                 root->fs_info->fs_devices->missing_devices;
7820
7821         stripped = BTRFS_BLOCK_GROUP_RAID0 |
7822                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
7823                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7824
7825         if (num_devices == 1) {
7826                 stripped |= BTRFS_BLOCK_GROUP_DUP;
7827                 stripped = flags & ~stripped;
7828
7829                 /* turn raid0 into single device chunks */
7830                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7831                         return stripped;
7832
7833                 /* turn mirroring into duplication */
7834                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7835                              BTRFS_BLOCK_GROUP_RAID10))
7836                         return stripped | BTRFS_BLOCK_GROUP_DUP;
7837         } else {
7838                 /* they already had raid on here, just return */
7839                 if (flags & stripped)
7840                         return flags;
7841
7842                 stripped |= BTRFS_BLOCK_GROUP_DUP;
7843                 stripped = flags & ~stripped;
7844
7845                 /* switch duplicated blocks with raid1 */
7846                 if (flags & BTRFS_BLOCK_GROUP_DUP)
7847                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
7848
7849                 /* this is drive concat, leave it alone */
7850         }
7851
7852         return flags;
7853 }
7854
7855 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7856 {
7857         struct btrfs_space_info *sinfo = cache->space_info;
7858         u64 num_bytes;
7859         u64 min_allocable_bytes;
7860         int ret = -ENOSPC;
7861
7862
7863         /*
7864          * We need some metadata space and system metadata space for
7865          * allocating chunks in some corner cases until we force to set
7866          * it to be readonly.
7867          */
7868         if ((sinfo->flags &
7869              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7870             !force)
7871                 min_allocable_bytes = 1 * 1024 * 1024;
7872         else
7873                 min_allocable_bytes = 0;
7874
7875         spin_lock(&sinfo->lock);
7876         spin_lock(&cache->lock);
7877
7878         if (cache->ro) {
7879                 ret = 0;
7880                 goto out;
7881         }
7882
7883         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7884                     cache->bytes_super - btrfs_block_group_used(&cache->item);
7885
7886         if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7887             sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7888             min_allocable_bytes <= sinfo->total_bytes) {
7889                 sinfo->bytes_readonly += num_bytes;
7890                 cache->ro = 1;
7891                 ret = 0;
7892         }
7893 out:
7894         spin_unlock(&cache->lock);
7895         spin_unlock(&sinfo->lock);
7896         return ret;
7897 }
7898
7899 int btrfs_set_block_group_ro(struct btrfs_root *root,
7900                              struct btrfs_block_group_cache *cache)
7901
7902 {
7903         struct btrfs_trans_handle *trans;
7904         u64 alloc_flags;
7905         int ret;
7906
7907         BUG_ON(cache->ro);
7908
7909         trans = btrfs_join_transaction(root);
7910         if (IS_ERR(trans))
7911                 return PTR_ERR(trans);
7912
7913         alloc_flags = update_block_group_flags(root, cache->flags);
7914         if (alloc_flags != cache->flags) {
7915                 ret = do_chunk_alloc(trans, root, alloc_flags,
7916                                      CHUNK_ALLOC_FORCE);
7917                 if (ret < 0)
7918                         goto out;
7919         }
7920
7921         ret = set_block_group_ro(cache, 0);
7922         if (!ret)
7923                 goto out;
7924         alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7925         ret = do_chunk_alloc(trans, root, alloc_flags,
7926                              CHUNK_ALLOC_FORCE);
7927         if (ret < 0)
7928                 goto out;
7929         ret = set_block_group_ro(cache, 0);
7930 out:
7931         btrfs_end_transaction(trans, root);
7932         return ret;
7933 }
7934
7935 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7936                             struct btrfs_root *root, u64 type)
7937 {
7938         u64 alloc_flags = get_alloc_profile(root, type);
7939         return do_chunk_alloc(trans, root, alloc_flags,
7940                               CHUNK_ALLOC_FORCE);
7941 }
7942
7943 /*
7944  * helper to account the unused space of all the readonly block group in the
7945  * list. takes mirrors into account.
7946  */
7947 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7948 {
7949         struct btrfs_block_group_cache *block_group;
7950         u64 free_bytes = 0;
7951         int factor;
7952
7953         list_for_each_entry(block_group, groups_list, list) {
7954                 spin_lock(&block_group->lock);
7955
7956                 if (!block_group->ro) {
7957                         spin_unlock(&block_group->lock);
7958                         continue;
7959                 }
7960
7961                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7962                                           BTRFS_BLOCK_GROUP_RAID10 |
7963                                           BTRFS_BLOCK_GROUP_DUP))
7964                         factor = 2;
7965                 else
7966                         factor = 1;
7967
7968                 free_bytes += (block_group->key.offset -
7969                                btrfs_block_group_used(&block_group->item)) *
7970                                factor;
7971
7972                 spin_unlock(&block_group->lock);
7973         }
7974
7975         return free_bytes;
7976 }
7977
7978 /*
7979  * helper to account the unused space of all the readonly block group in the
7980  * space_info. takes mirrors into account.
7981  */
7982 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7983 {
7984         int i;
7985         u64 free_bytes = 0;
7986
7987         spin_lock(&sinfo->lock);
7988
7989         for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7990                 if (!list_empty(&sinfo->block_groups[i]))
7991                         free_bytes += __btrfs_get_ro_block_group_free_space(
7992                                                 &sinfo->block_groups[i]);
7993
7994         spin_unlock(&sinfo->lock);
7995
7996         return free_bytes;
7997 }
7998
7999 void btrfs_set_block_group_rw(struct btrfs_root *root,
8000                               struct btrfs_block_group_cache *cache)
8001 {
8002         struct btrfs_space_info *sinfo = cache->space_info;
8003         u64 num_bytes;
8004
8005         BUG_ON(!cache->ro);
8006
8007         spin_lock(&sinfo->lock);
8008         spin_lock(&cache->lock);
8009         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8010                     cache->bytes_super - btrfs_block_group_used(&cache->item);
8011         sinfo->bytes_readonly -= num_bytes;
8012         cache->ro = 0;
8013         spin_unlock(&cache->lock);
8014         spin_unlock(&sinfo->lock);
8015 }
8016
8017 /*
8018  * checks to see if its even possible to relocate this block group.
8019  *
8020  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8021  * ok to go ahead and try.
8022  */
8023 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
8024 {
8025         struct btrfs_block_group_cache *block_group;
8026         struct btrfs_space_info *space_info;
8027         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8028         struct btrfs_device *device;
8029         struct btrfs_trans_handle *trans;
8030         u64 min_free;
8031         u64 dev_min = 1;
8032         u64 dev_nr = 0;
8033         u64 target;
8034         int index;
8035         int full = 0;
8036         int ret = 0;
8037
8038         block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
8039
8040         /* odd, couldn't find the block group, leave it alone */
8041         if (!block_group)
8042                 return -1;
8043
8044         min_free = btrfs_block_group_used(&block_group->item);
8045
8046         /* no bytes used, we're good */
8047         if (!min_free)
8048                 goto out;
8049
8050         space_info = block_group->space_info;
8051         spin_lock(&space_info->lock);
8052
8053         full = space_info->full;
8054
8055         /*
8056          * if this is the last block group we have in this space, we can't
8057          * relocate it unless we're able to allocate a new chunk below.
8058          *
8059          * Otherwise, we need to make sure we have room in the space to handle
8060          * all of the extents from this block group.  If we can, we're good
8061          */
8062         if ((space_info->total_bytes != block_group->key.offset) &&
8063             (space_info->bytes_used + space_info->bytes_reserved +
8064              space_info->bytes_pinned + space_info->bytes_readonly +
8065              min_free < space_info->total_bytes)) {
8066                 spin_unlock(&space_info->lock);
8067                 goto out;
8068         }
8069         spin_unlock(&space_info->lock);
8070
8071         /*
8072          * ok we don't have enough space, but maybe we have free space on our
8073          * devices to allocate new chunks for relocation, so loop through our
8074          * alloc devices and guess if we have enough space.  if this block
8075          * group is going to be restriped, run checks against the target
8076          * profile instead of the current one.
8077          */
8078         ret = -1;
8079
8080         /*
8081          * index:
8082          *      0: raid10
8083          *      1: raid1
8084          *      2: dup
8085          *      3: raid0
8086          *      4: single
8087          */
8088         target = get_restripe_target(root->fs_info, block_group->flags);
8089         if (target) {
8090                 index = __get_raid_index(extended_to_chunk(target));
8091         } else {
8092                 /*
8093                  * this is just a balance, so if we were marked as full
8094                  * we know there is no space for a new chunk
8095                  */
8096                 if (full)
8097                         goto out;
8098
8099                 index = get_block_group_index(block_group);
8100         }
8101
8102         if (index == BTRFS_RAID_RAID10) {
8103                 dev_min = 4;
8104                 /* Divide by 2 */
8105                 min_free >>= 1;
8106         } else if (index == BTRFS_RAID_RAID1) {
8107                 dev_min = 2;
8108         } else if (index == BTRFS_RAID_DUP) {
8109                 /* Multiply by 2 */
8110                 min_free <<= 1;
8111         } else if (index == BTRFS_RAID_RAID0) {
8112                 dev_min = fs_devices->rw_devices;
8113                 do_div(min_free, dev_min);
8114         }
8115
8116         /* We need to do this so that we can look at pending chunks */
8117         trans = btrfs_join_transaction(root);
8118         if (IS_ERR(trans)) {
8119                 ret = PTR_ERR(trans);
8120                 goto out;
8121         }
8122
8123         mutex_lock(&root->fs_info->chunk_mutex);
8124         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
8125                 u64 dev_offset;
8126
8127                 /*
8128                  * check to make sure we can actually find a chunk with enough
8129                  * space to fit our block group in.
8130                  */
8131                 if (device->total_bytes > device->bytes_used + min_free &&
8132                     !device->is_tgtdev_for_dev_replace) {
8133                         ret = find_free_dev_extent(trans, device, min_free,
8134                                                    &dev_offset, NULL);
8135                         if (!ret)
8136                                 dev_nr++;
8137
8138                         if (dev_nr >= dev_min)
8139                                 break;
8140
8141                         ret = -1;
8142                 }
8143         }
8144         mutex_unlock(&root->fs_info->chunk_mutex);
8145         btrfs_end_transaction(trans, root);
8146 out:
8147         btrfs_put_block_group(block_group);
8148         return ret;
8149 }
8150
8151 static int find_first_block_group(struct btrfs_root *root,
8152                 struct btrfs_path *path, struct btrfs_key *key)
8153 {
8154         int ret = 0;
8155         struct btrfs_key found_key;
8156         struct extent_buffer *leaf;
8157         int slot;
8158
8159         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
8160         if (ret < 0)
8161                 goto out;
8162
8163         while (1) {
8164                 slot = path->slots[0];
8165                 leaf = path->nodes[0];
8166                 if (slot >= btrfs_header_nritems(leaf)) {
8167                         ret = btrfs_next_leaf(root, path);
8168                         if (ret == 0)
8169                                 continue;
8170                         if (ret < 0)
8171                                 goto out;
8172                         break;
8173                 }
8174                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
8175
8176                 if (found_key.objectid >= key->objectid &&
8177                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
8178                         ret = 0;
8179                         goto out;
8180                 }
8181                 path->slots[0]++;
8182         }
8183 out:
8184         return ret;
8185 }
8186
8187 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
8188 {
8189         struct btrfs_block_group_cache *block_group;
8190         u64 last = 0;
8191
8192         while (1) {
8193                 struct inode *inode;
8194
8195                 block_group = btrfs_lookup_first_block_group(info, last);
8196                 while (block_group) {
8197                         spin_lock(&block_group->lock);
8198                         if (block_group->iref)
8199                                 break;
8200                         spin_unlock(&block_group->lock);
8201                         block_group = next_block_group(info->tree_root,
8202                                                        block_group);
8203                 }
8204                 if (!block_group) {
8205                         if (last == 0)
8206                                 break;
8207                         last = 0;
8208                         continue;
8209                 }
8210
8211                 inode = block_group->inode;
8212                 block_group->iref = 0;
8213                 block_group->inode = NULL;
8214                 spin_unlock(&block_group->lock);
8215                 iput(inode);
8216                 last = block_group->key.objectid + block_group->key.offset;
8217                 btrfs_put_block_group(block_group);
8218         }
8219 }
8220
8221 int btrfs_free_block_groups(struct btrfs_fs_info *info)
8222 {
8223         struct btrfs_block_group_cache *block_group;
8224         struct btrfs_space_info *space_info;
8225         struct btrfs_caching_control *caching_ctl;
8226         struct rb_node *n;
8227
8228         down_write(&info->extent_commit_sem);
8229         while (!list_empty(&info->caching_block_groups)) {
8230                 caching_ctl = list_entry(info->caching_block_groups.next,
8231                                          struct btrfs_caching_control, list);
8232                 list_del(&caching_ctl->list);
8233                 put_caching_control(caching_ctl);
8234         }
8235         up_write(&info->extent_commit_sem);
8236
8237         spin_lock(&info->block_group_cache_lock);
8238         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
8239                 block_group = rb_entry(n, struct btrfs_block_group_cache,
8240                                        cache_node);
8241                 rb_erase(&block_group->cache_node,
8242                          &info->block_group_cache_tree);
8243                 spin_unlock(&info->block_group_cache_lock);
8244
8245                 down_write(&block_group->space_info->groups_sem);
8246                 list_del(&block_group->list);
8247                 up_write(&block_group->space_info->groups_sem);
8248
8249                 if (block_group->cached == BTRFS_CACHE_STARTED)
8250                         wait_block_group_cache_done(block_group);
8251
8252                 /*
8253                  * We haven't cached this block group, which means we could
8254                  * possibly have excluded extents on this block group.
8255                  */
8256                 if (block_group->cached == BTRFS_CACHE_NO ||
8257                     block_group->cached == BTRFS_CACHE_ERROR)
8258                         free_excluded_extents(info->extent_root, block_group);
8259
8260                 btrfs_remove_free_space_cache(block_group);
8261                 btrfs_put_block_group(block_group);
8262
8263                 spin_lock(&info->block_group_cache_lock);
8264         }
8265         spin_unlock(&info->block_group_cache_lock);
8266
8267         /* now that all the block groups are freed, go through and
8268          * free all the space_info structs.  This is only called during
8269          * the final stages of unmount, and so we know nobody is
8270          * using them.  We call synchronize_rcu() once before we start,
8271          * just to be on the safe side.
8272          */
8273         synchronize_rcu();
8274
8275         release_global_block_rsv(info);
8276
8277         while(!list_empty(&info->space_info)) {
8278                 space_info = list_entry(info->space_info.next,
8279                                         struct btrfs_space_info,
8280                                         list);
8281                 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
8282                         if (space_info->bytes_pinned > 0 ||
8283                             space_info->bytes_reserved > 0 ||
8284                             space_info->bytes_may_use > 0) {
8285                                 WARN_ON(1);
8286                                 dump_space_info(space_info, 0, 0);
8287                         }
8288                 }
8289                 percpu_counter_destroy(&space_info->total_bytes_pinned);
8290                 list_del(&space_info->list);
8291                 kfree(space_info);
8292         }
8293         return 0;
8294 }
8295
8296 static void __link_block_group(struct btrfs_space_info *space_info,
8297                                struct btrfs_block_group_cache *cache)
8298 {
8299         int index = get_block_group_index(cache);
8300
8301         down_write(&space_info->groups_sem);
8302         list_add_tail(&cache->list, &space_info->block_groups[index]);
8303         up_write(&space_info->groups_sem);
8304 }
8305
8306 int btrfs_read_block_groups(struct btrfs_root *root)
8307 {
8308         struct btrfs_path *path;
8309         int ret;
8310         struct btrfs_block_group_cache *cache;
8311         struct btrfs_fs_info *info = root->fs_info;
8312         struct btrfs_space_info *space_info;
8313         struct btrfs_key key;
8314         struct btrfs_key found_key;
8315         struct extent_buffer *leaf;
8316         int need_clear = 0;
8317         u64 cache_gen;
8318
8319         root = info->extent_root;
8320         key.objectid = 0;
8321         key.offset = 0;
8322         btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
8323         path = btrfs_alloc_path();
8324         if (!path)
8325                 return -ENOMEM;
8326         path->reada = 1;
8327
8328         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
8329         if (btrfs_test_opt(root, SPACE_CACHE) &&
8330             btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
8331                 need_clear = 1;
8332         if (btrfs_test_opt(root, CLEAR_CACHE))
8333                 need_clear = 1;
8334
8335         while (1) {
8336                 ret = find_first_block_group(root, path, &key);
8337                 if (ret > 0)
8338                         break;
8339                 if (ret != 0)
8340                         goto error;
8341                 leaf = path->nodes[0];
8342                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
8343                 cache = kzalloc(sizeof(*cache), GFP_NOFS);
8344                 if (!cache) {
8345                         ret = -ENOMEM;
8346                         goto error;
8347                 }
8348                 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8349                                                 GFP_NOFS);
8350                 if (!cache->free_space_ctl) {
8351                         kfree(cache);
8352                         ret = -ENOMEM;
8353                         goto error;
8354                 }
8355
8356                 atomic_set(&cache->count, 1);
8357                 spin_lock_init(&cache->lock);
8358                 cache->fs_info = info;
8359                 INIT_LIST_HEAD(&cache->list);
8360                 INIT_LIST_HEAD(&cache->cluster_list);
8361
8362                 if (need_clear) {
8363                         /*
8364                          * When we mount with old space cache, we need to
8365                          * set BTRFS_DC_CLEAR and set dirty flag.
8366                          *
8367                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
8368                          *    truncate the old free space cache inode and
8369                          *    setup a new one.
8370                          * b) Setting 'dirty flag' makes sure that we flush
8371                          *    the new space cache info onto disk.
8372                          */
8373                         cache->disk_cache_state = BTRFS_DC_CLEAR;
8374                         if (btrfs_test_opt(root, SPACE_CACHE))
8375                                 cache->dirty = 1;
8376                 }
8377
8378                 read_extent_buffer(leaf, &cache->item,
8379                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
8380                                    sizeof(cache->item));
8381                 memcpy(&cache->key, &found_key, sizeof(found_key));
8382
8383                 key.objectid = found_key.objectid + found_key.offset;
8384                 btrfs_release_path(path);
8385                 cache->flags = btrfs_block_group_flags(&cache->item);
8386                 cache->sectorsize = root->sectorsize;
8387                 cache->full_stripe_len = btrfs_full_stripe_len(root,
8388                                                &root->fs_info->mapping_tree,
8389                                                found_key.objectid);
8390                 btrfs_init_free_space_ctl(cache);
8391
8392                 /*
8393                  * We need to exclude the super stripes now so that the space
8394                  * info has super bytes accounted for, otherwise we'll think
8395                  * we have more space than we actually do.
8396                  */
8397                 ret = exclude_super_stripes(root, cache);
8398                 if (ret) {
8399                         /*
8400                          * We may have excluded something, so call this just in
8401                          * case.
8402                          */
8403                         free_excluded_extents(root, cache);
8404                         kfree(cache->free_space_ctl);
8405                         kfree(cache);
8406                         goto error;
8407                 }
8408
8409                 /*
8410                  * check for two cases, either we are full, and therefore
8411                  * don't need to bother with the caching work since we won't
8412                  * find any space, or we are empty, and we can just add all
8413                  * the space in and be done with it.  This saves us _alot_ of
8414                  * time, particularly in the full case.
8415                  */
8416                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
8417                         cache->last_byte_to_unpin = (u64)-1;
8418                         cache->cached = BTRFS_CACHE_FINISHED;
8419                         free_excluded_extents(root, cache);
8420                 } else if (btrfs_block_group_used(&cache->item) == 0) {
8421                         cache->last_byte_to_unpin = (u64)-1;
8422                         cache->cached = BTRFS_CACHE_FINISHED;
8423                         add_new_free_space(cache, root->fs_info,
8424                                            found_key.objectid,
8425                                            found_key.objectid +
8426                                            found_key.offset);
8427                         free_excluded_extents(root, cache);
8428                 }
8429
8430                 ret = btrfs_add_block_group_cache(root->fs_info, cache);
8431                 if (ret) {
8432                         btrfs_remove_free_space_cache(cache);
8433                         btrfs_put_block_group(cache);
8434                         goto error;
8435                 }
8436
8437                 ret = update_space_info(info, cache->flags, found_key.offset,
8438                                         btrfs_block_group_used(&cache->item),
8439                                         &space_info);
8440                 if (ret) {
8441                         btrfs_remove_free_space_cache(cache);
8442                         spin_lock(&info->block_group_cache_lock);
8443                         rb_erase(&cache->cache_node,
8444                                  &info->block_group_cache_tree);
8445                         spin_unlock(&info->block_group_cache_lock);
8446                         btrfs_put_block_group(cache);
8447                         goto error;
8448                 }
8449
8450                 cache->space_info = space_info;
8451                 spin_lock(&cache->space_info->lock);
8452                 cache->space_info->bytes_readonly += cache->bytes_super;
8453                 spin_unlock(&cache->space_info->lock);
8454
8455                 __link_block_group(space_info, cache);
8456
8457                 set_avail_alloc_bits(root->fs_info, cache->flags);
8458                 if (btrfs_chunk_readonly(root, cache->key.objectid))
8459                         set_block_group_ro(cache, 1);
8460         }
8461
8462         list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
8463                 if (!(get_alloc_profile(root, space_info->flags) &
8464                       (BTRFS_BLOCK_GROUP_RAID10 |
8465                        BTRFS_BLOCK_GROUP_RAID1 |
8466                        BTRFS_BLOCK_GROUP_RAID5 |
8467                        BTRFS_BLOCK_GROUP_RAID6 |
8468                        BTRFS_BLOCK_GROUP_DUP)))
8469                         continue;
8470                 /*
8471                  * avoid allocating from un-mirrored block group if there are
8472                  * mirrored block groups.
8473                  */
8474                 list_for_each_entry(cache,
8475                                 &space_info->block_groups[BTRFS_RAID_RAID0],
8476                                 list)
8477                         set_block_group_ro(cache, 1);
8478                 list_for_each_entry(cache,
8479                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
8480                                 list)
8481                         set_block_group_ro(cache, 1);
8482         }
8483
8484         init_global_block_rsv(info);
8485         ret = 0;
8486 error:
8487         btrfs_free_path(path);
8488         return ret;
8489 }
8490
8491 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
8492                                        struct btrfs_root *root)
8493 {
8494         struct btrfs_block_group_cache *block_group, *tmp;
8495         struct btrfs_root *extent_root = root->fs_info->extent_root;
8496         struct btrfs_block_group_item item;
8497         struct btrfs_key key;
8498         int ret = 0;
8499
8500         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs,
8501                                  new_bg_list) {
8502                 list_del_init(&block_group->new_bg_list);
8503
8504                 if (ret)
8505                         continue;
8506
8507                 spin_lock(&block_group->lock);
8508                 memcpy(&item, &block_group->item, sizeof(item));
8509                 memcpy(&key, &block_group->key, sizeof(key));
8510                 spin_unlock(&block_group->lock);
8511
8512                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
8513                                         sizeof(item));
8514                 if (ret)
8515                         btrfs_abort_transaction(trans, extent_root, ret);
8516                 ret = btrfs_finish_chunk_alloc(trans, extent_root,
8517                                                key.objectid, key.offset);
8518                 if (ret)
8519                         btrfs_abort_transaction(trans, extent_root, ret);
8520         }
8521 }
8522
8523 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
8524                            struct btrfs_root *root, u64 bytes_used,
8525                            u64 type, u64 chunk_objectid, u64 chunk_offset,
8526                            u64 size)
8527 {
8528         int ret;
8529         struct btrfs_root *extent_root;
8530         struct btrfs_block_group_cache *cache;
8531
8532         extent_root = root->fs_info->extent_root;
8533
8534         root->fs_info->last_trans_log_full_commit = trans->transid;
8535
8536         cache = kzalloc(sizeof(*cache), GFP_NOFS);
8537         if (!cache)
8538                 return -ENOMEM;
8539         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
8540                                         GFP_NOFS);
8541         if (!cache->free_space_ctl) {
8542                 kfree(cache);
8543                 return -ENOMEM;
8544         }
8545
8546         cache->key.objectid = chunk_offset;
8547         cache->key.offset = size;
8548         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
8549         cache->sectorsize = root->sectorsize;
8550         cache->fs_info = root->fs_info;
8551         cache->full_stripe_len = btrfs_full_stripe_len(root,
8552                                                &root->fs_info->mapping_tree,
8553                                                chunk_offset);
8554
8555         atomic_set(&cache->count, 1);
8556         spin_lock_init(&cache->lock);
8557         INIT_LIST_HEAD(&cache->list);
8558         INIT_LIST_HEAD(&cache->cluster_list);
8559         INIT_LIST_HEAD(&cache->new_bg_list);
8560
8561         btrfs_init_free_space_ctl(cache);
8562
8563         btrfs_set_block_group_used(&cache->item, bytes_used);
8564         btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
8565         cache->flags = type;
8566         btrfs_set_block_group_flags(&cache->item, type);
8567
8568         cache->last_byte_to_unpin = (u64)-1;
8569         cache->cached = BTRFS_CACHE_FINISHED;
8570         ret = exclude_super_stripes(root, cache);
8571         if (ret) {
8572                 /*
8573                  * We may have excluded something, so call this just in
8574                  * case.
8575                  */
8576                 free_excluded_extents(root, cache);
8577                 kfree(cache->free_space_ctl);
8578                 kfree(cache);
8579                 return ret;
8580         }
8581
8582         add_new_free_space(cache, root->fs_info, chunk_offset,
8583                            chunk_offset + size);
8584
8585         free_excluded_extents(root, cache);
8586
8587         ret = btrfs_add_block_group_cache(root->fs_info, cache);
8588         if (ret) {
8589                 btrfs_remove_free_space_cache(cache);
8590                 btrfs_put_block_group(cache);
8591                 return ret;
8592         }
8593
8594         ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
8595                                 &cache->space_info);
8596         if (ret) {
8597                 btrfs_remove_free_space_cache(cache);
8598                 spin_lock(&root->fs_info->block_group_cache_lock);
8599                 rb_erase(&cache->cache_node,
8600                          &root->fs_info->block_group_cache_tree);
8601                 spin_unlock(&root->fs_info->block_group_cache_lock);
8602                 btrfs_put_block_group(cache);
8603                 return ret;
8604         }
8605         update_global_block_rsv(root->fs_info);
8606
8607         spin_lock(&cache->space_info->lock);
8608         cache->space_info->bytes_readonly += cache->bytes_super;
8609         spin_unlock(&cache->space_info->lock);
8610
8611         __link_block_group(cache->space_info, cache);
8612
8613         list_add_tail(&cache->new_bg_list, &trans->new_bgs);
8614
8615         set_avail_alloc_bits(extent_root->fs_info, type);
8616
8617         return 0;
8618 }
8619
8620 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
8621 {
8622         u64 extra_flags = chunk_to_extended(flags) &
8623                                 BTRFS_EXTENDED_PROFILE_MASK;
8624
8625         write_seqlock(&fs_info->profiles_lock);
8626         if (flags & BTRFS_BLOCK_GROUP_DATA)
8627                 fs_info->avail_data_alloc_bits &= ~extra_flags;
8628         if (flags & BTRFS_BLOCK_GROUP_METADATA)
8629                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
8630         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
8631                 fs_info->avail_system_alloc_bits &= ~extra_flags;
8632         write_sequnlock(&fs_info->profiles_lock);
8633 }
8634
8635 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
8636                              struct btrfs_root *root, u64 group_start)
8637 {
8638         struct btrfs_path *path;
8639         struct btrfs_block_group_cache *block_group;
8640         struct btrfs_free_cluster *cluster;
8641         struct btrfs_root *tree_root = root->fs_info->tree_root;
8642         struct btrfs_key key;
8643         struct inode *inode;
8644         int ret;
8645         int index;
8646         int factor;
8647
8648         root = root->fs_info->extent_root;
8649
8650         block_group = btrfs_lookup_block_group(root->fs_info, group_start);
8651         BUG_ON(!block_group);
8652         BUG_ON(!block_group->ro);
8653
8654         /*
8655          * Free the reserved super bytes from this block group before
8656          * remove it.
8657          */
8658         free_excluded_extents(root, block_group);
8659
8660         memcpy(&key, &block_group->key, sizeof(key));
8661         index = get_block_group_index(block_group);
8662         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
8663                                   BTRFS_BLOCK_GROUP_RAID1 |
8664                                   BTRFS_BLOCK_GROUP_RAID10))
8665                 factor = 2;
8666         else
8667                 factor = 1;
8668
8669         /* make sure this block group isn't part of an allocation cluster */
8670         cluster = &root->fs_info->data_alloc_cluster;
8671         spin_lock(&cluster->refill_lock);
8672         btrfs_return_cluster_to_free_space(block_group, cluster);
8673         spin_unlock(&cluster->refill_lock);
8674
8675         /*
8676          * make sure this block group isn't part of a metadata
8677          * allocation cluster
8678          */
8679         cluster = &root->fs_info->meta_alloc_cluster;
8680         spin_lock(&cluster->refill_lock);
8681         btrfs_return_cluster_to_free_space(block_group, cluster);
8682         spin_unlock(&cluster->refill_lock);
8683
8684         path = btrfs_alloc_path();
8685         if (!path) {
8686                 ret = -ENOMEM;
8687                 goto out;
8688         }
8689
8690         inode = lookup_free_space_inode(tree_root, block_group, path);
8691         if (!IS_ERR(inode)) {
8692                 ret = btrfs_orphan_add(trans, inode);
8693                 if (ret) {
8694                         btrfs_add_delayed_iput(inode);
8695                         goto out;
8696                 }
8697                 clear_nlink(inode);
8698                 /* One for the block groups ref */
8699                 spin_lock(&block_group->lock);
8700                 if (block_group->iref) {
8701                         block_group->iref = 0;
8702                         block_group->inode = NULL;
8703                         spin_unlock(&block_group->lock);
8704                         iput(inode);
8705                 } else {
8706                         spin_unlock(&block_group->lock);
8707                 }
8708                 /* One for our lookup ref */
8709                 btrfs_add_delayed_iput(inode);
8710         }
8711
8712         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
8713         key.offset = block_group->key.objectid;
8714         key.type = 0;
8715
8716         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
8717         if (ret < 0)
8718                 goto out;
8719         if (ret > 0)
8720                 btrfs_release_path(path);
8721         if (ret == 0) {
8722                 ret = btrfs_del_item(trans, tree_root, path);
8723                 if (ret)
8724                         goto out;
8725                 btrfs_release_path(path);
8726         }
8727
8728         spin_lock(&root->fs_info->block_group_cache_lock);
8729         rb_erase(&block_group->cache_node,
8730                  &root->fs_info->block_group_cache_tree);
8731
8732         if (root->fs_info->first_logical_byte == block_group->key.objectid)
8733                 root->fs_info->first_logical_byte = (u64)-1;
8734         spin_unlock(&root->fs_info->block_group_cache_lock);
8735
8736         down_write(&block_group->space_info->groups_sem);
8737         /*
8738          * we must use list_del_init so people can check to see if they
8739          * are still on the list after taking the semaphore
8740          */
8741         list_del_init(&block_group->list);
8742         if (list_empty(&block_group->space_info->block_groups[index]))
8743                 clear_avail_alloc_bits(root->fs_info, block_group->flags);
8744         up_write(&block_group->space_info->groups_sem);
8745
8746         if (block_group->cached == BTRFS_CACHE_STARTED)
8747                 wait_block_group_cache_done(block_group);
8748
8749         btrfs_remove_free_space_cache(block_group);
8750
8751         spin_lock(&block_group->space_info->lock);
8752         block_group->space_info->total_bytes -= block_group->key.offset;
8753         block_group->space_info->bytes_readonly -= block_group->key.offset;
8754         block_group->space_info->disk_total -= block_group->key.offset * factor;
8755         spin_unlock(&block_group->space_info->lock);
8756
8757         memcpy(&key, &block_group->key, sizeof(key));
8758
8759         btrfs_clear_space_info_full(root->fs_info);
8760
8761         btrfs_put_block_group(block_group);
8762         btrfs_put_block_group(block_group);
8763
8764         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8765         if (ret > 0)
8766                 ret = -EIO;
8767         if (ret < 0)
8768                 goto out;
8769
8770         ret = btrfs_del_item(trans, root, path);
8771 out:
8772         btrfs_free_path(path);
8773         return ret;
8774 }
8775
8776 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
8777 {
8778         struct btrfs_space_info *space_info;
8779         struct btrfs_super_block *disk_super;
8780         u64 features;
8781         u64 flags;
8782         int mixed = 0;
8783         int ret;
8784
8785         disk_super = fs_info->super_copy;
8786         if (!btrfs_super_root(disk_super))
8787                 return 1;
8788
8789         features = btrfs_super_incompat_flags(disk_super);
8790         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
8791                 mixed = 1;
8792
8793         flags = BTRFS_BLOCK_GROUP_SYSTEM;
8794         ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8795         if (ret)
8796                 goto out;
8797
8798         if (mixed) {
8799                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
8800                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8801         } else {
8802                 flags = BTRFS_BLOCK_GROUP_METADATA;
8803                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8804                 if (ret)
8805                         goto out;
8806
8807                 flags = BTRFS_BLOCK_GROUP_DATA;
8808                 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
8809         }
8810 out:
8811         return ret;
8812 }
8813
8814 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
8815 {
8816         return unpin_extent_range(root, start, end);
8817 }
8818
8819 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
8820                                u64 num_bytes, u64 *actual_bytes)
8821 {
8822         return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
8823 }
8824
8825 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
8826 {
8827         struct btrfs_fs_info *fs_info = root->fs_info;
8828         struct btrfs_block_group_cache *cache = NULL;
8829         u64 group_trimmed;
8830         u64 start;
8831         u64 end;
8832         u64 trimmed = 0;
8833         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
8834         int ret = 0;
8835
8836         /*
8837          * try to trim all FS space, our block group may start from non-zero.
8838          */
8839         if (range->len == total_bytes)
8840                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
8841         else
8842                 cache = btrfs_lookup_block_group(fs_info, range->start);
8843
8844         while (cache) {
8845                 if (cache->key.objectid >= (range->start + range->len)) {
8846                         btrfs_put_block_group(cache);
8847                         break;
8848                 }
8849
8850                 start = max(range->start, cache->key.objectid);
8851                 end = min(range->start + range->len,
8852                                 cache->key.objectid + cache->key.offset);
8853
8854                 if (end - start >= range->minlen) {
8855                         if (!block_group_cache_done(cache)) {
8856                                 ret = cache_block_group(cache, 0);
8857                                 if (ret) {
8858                                         btrfs_put_block_group(cache);
8859                                         break;
8860                                 }
8861                                 ret = wait_block_group_cache_done(cache);
8862                                 if (ret) {
8863                                         btrfs_put_block_group(cache);
8864                                         break;
8865                                 }
8866                         }
8867                         ret = btrfs_trim_block_group(cache,
8868                                                      &group_trimmed,
8869                                                      start,
8870                                                      end,
8871                                                      range->minlen);
8872
8873                         trimmed += group_trimmed;
8874                         if (ret) {
8875                                 btrfs_put_block_group(cache);
8876                                 break;
8877                         }
8878                 }
8879
8880                 cache = next_block_group(fs_info->tree_root, cache);
8881         }
8882
8883         range->len = trimmed;
8884         return ret;
8885 }