Merge tag 'v4.4.3'
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static const struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * btrfs_end_io_wq structs are used to do processing in task context when an IO
76  * is complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct btrfs_end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         enum btrfs_wq_endio_type metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 static struct kmem_cache *btrfs_end_io_wq_cache;
91
92 int __init btrfs_end_io_wq_init(void)
93 {
94         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95                                         sizeof(struct btrfs_end_io_wq),
96                                         0,
97                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98                                         NULL);
99         if (!btrfs_end_io_wq_cache)
100                 return -ENOMEM;
101         return 0;
102 }
103
104 void btrfs_end_io_wq_exit(void)
105 {
106         if (btrfs_end_io_wq_cache)
107                 kmem_cache_destroy(btrfs_end_io_wq_cache);
108 }
109
110 /*
111  * async submit bios are used to offload expensive checksumming
112  * onto the worker threads.  They checksum file and metadata bios
113  * just before they are sent down the IO stack.
114  */
115 struct async_submit_bio {
116         struct inode *inode;
117         struct bio *bio;
118         struct list_head list;
119         extent_submit_bio_hook_t *submit_bio_start;
120         extent_submit_bio_hook_t *submit_bio_done;
121         int rw;
122         int mirror_num;
123         unsigned long bio_flags;
124         /*
125          * bio_offset is optional, can be used if the pages in the bio
126          * can't tell us where in the file the bio should go
127          */
128         u64 bio_offset;
129         struct btrfs_work work;
130         int error;
131 };
132
133 /*
134  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135  * eb, the lockdep key is determined by the btrfs_root it belongs to and
136  * the level the eb occupies in the tree.
137  *
138  * Different roots are used for different purposes and may nest inside each
139  * other and they require separate keysets.  As lockdep keys should be
140  * static, assign keysets according to the purpose of the root as indicated
141  * by btrfs_root->objectid.  This ensures that all special purpose roots
142  * have separate keysets.
143  *
144  * Lock-nesting across peer nodes is always done with the immediate parent
145  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146  * subclass to avoid triggering lockdep warning in such cases.
147  *
148  * The key is set by the readpage_end_io_hook after the buffer has passed
149  * csum validation but before the pages are unlocked.  It is also set by
150  * btrfs_init_new_buffer on freshly allocated blocks.
151  *
152  * We also add a check to make sure the highest level of the tree is the
153  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154  * needs update as well.
155  */
156 #ifdef CONFIG_DEBUG_LOCK_ALLOC
157 # if BTRFS_MAX_LEVEL != 8
158 #  error
159 # endif
160
161 static struct btrfs_lockdep_keyset {
162         u64                     id;             /* root objectid */
163         const char              *name_stem;     /* lock name stem */
164         char                    names[BTRFS_MAX_LEVEL + 1][20];
165         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
166 } btrfs_lockdep_keysets[] = {
167         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
168         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
169         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
170         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
171         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
172         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
173         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
174         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
175         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
176         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
177         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
178         { .id = 0,                              .name_stem = "tree"     },
179 };
180
181 void __init btrfs_init_lockdep(void)
182 {
183         int i, j;
184
185         /* initialize lockdep class names */
186         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190                         snprintf(ks->names[j], sizeof(ks->names[j]),
191                                  "btrfs-%s-%02d", ks->name_stem, j);
192         }
193 }
194
195 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196                                     int level)
197 {
198         struct btrfs_lockdep_keyset *ks;
199
200         BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202         /* find the matching keyset, id 0 is the default entry */
203         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204                 if (ks->id == objectid)
205                         break;
206
207         lockdep_set_class_and_name(&eb->lock,
208                                    &ks->keys[level], ks->names[level]);
209 }
210
211 #endif
212
213 /*
214  * extents on the btree inode are pretty simple, there's one extent
215  * that covers the entire device
216  */
217 static struct extent_map *btree_get_extent(struct inode *inode,
218                 struct page *page, size_t pg_offset, u64 start, u64 len,
219                 int create)
220 {
221         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222         struct extent_map *em;
223         int ret;
224
225         read_lock(&em_tree->lock);
226         em = lookup_extent_mapping(em_tree, start, len);
227         if (em) {
228                 em->bdev =
229                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230                 read_unlock(&em_tree->lock);
231                 goto out;
232         }
233         read_unlock(&em_tree->lock);
234
235         em = alloc_extent_map();
236         if (!em) {
237                 em = ERR_PTR(-ENOMEM);
238                 goto out;
239         }
240         em->start = 0;
241         em->len = (u64)-1;
242         em->block_len = (u64)-1;
243         em->block_start = 0;
244         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246         write_lock(&em_tree->lock);
247         ret = add_extent_mapping(em_tree, em, 0);
248         if (ret == -EEXIST) {
249                 free_extent_map(em);
250                 em = lookup_extent_mapping(em_tree, start, len);
251                 if (!em)
252                         em = ERR_PTR(-EIO);
253         } else if (ret) {
254                 free_extent_map(em);
255                 em = ERR_PTR(ret);
256         }
257         write_unlock(&em_tree->lock);
258
259 out:
260         return em;
261 }
262
263 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264 {
265         return btrfs_crc32c(seed, data, len);
266 }
267
268 void btrfs_csum_final(u32 crc, char *result)
269 {
270         put_unaligned_le32(~crc, result);
271 }
272
273 /*
274  * compute the csum for a btree block, and either verify it or write it
275  * into the csum field of the block.
276  */
277 static int csum_tree_block(struct btrfs_fs_info *fs_info,
278                            struct extent_buffer *buf,
279                            int verify)
280 {
281         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282         char *result = NULL;
283         unsigned long len;
284         unsigned long cur_len;
285         unsigned long offset = BTRFS_CSUM_SIZE;
286         char *kaddr;
287         unsigned long map_start;
288         unsigned long map_len;
289         int err;
290         u32 crc = ~(u32)0;
291         unsigned long inline_result;
292
293         len = buf->len - offset;
294         while (len > 0) {
295                 err = map_private_extent_buffer(buf, offset, 32,
296                                         &kaddr, &map_start, &map_len);
297                 if (err)
298                         return 1;
299                 cur_len = min(len, map_len - (offset - map_start));
300                 crc = btrfs_csum_data(kaddr + offset - map_start,
301                                       crc, cur_len);
302                 len -= cur_len;
303                 offset += cur_len;
304         }
305         if (csum_size > sizeof(inline_result)) {
306                 result = kzalloc(csum_size, GFP_NOFS);
307                 if (!result)
308                         return 1;
309         } else {
310                 result = (char *)&inline_result;
311         }
312
313         btrfs_csum_final(crc, result);
314
315         if (verify) {
316                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317                         u32 val;
318                         u32 found = 0;
319                         memcpy(&found, result, csum_size);
320
321                         read_extent_buffer(buf, &val, 0, csum_size);
322                         btrfs_warn_rl(fs_info,
323                                 "%s checksum verify failed on %llu wanted %X found %X "
324                                 "level %d",
325                                 fs_info->sb->s_id, buf->start,
326                                 val, found, btrfs_header_level(buf));
327                         if (result != (char *)&inline_result)
328                                 kfree(result);
329                         return 1;
330                 }
331         } else {
332                 write_extent_buffer(buf, result, 0, csum_size);
333         }
334         if (result != (char *)&inline_result)
335                 kfree(result);
336         return 0;
337 }
338
339 /*
340  * we can't consider a given block up to date unless the transid of the
341  * block matches the transid in the parent node's pointer.  This is how we
342  * detect blocks that either didn't get written at all or got written
343  * in the wrong place.
344  */
345 static int verify_parent_transid(struct extent_io_tree *io_tree,
346                                  struct extent_buffer *eb, u64 parent_transid,
347                                  int atomic)
348 {
349         struct extent_state *cached_state = NULL;
350         int ret;
351         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354                 return 0;
355
356         if (atomic)
357                 return -EAGAIN;
358
359         if (need_lock) {
360                 btrfs_tree_read_lock(eb);
361                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362         }
363
364         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365                          0, &cached_state);
366         if (extent_buffer_uptodate(eb) &&
367             btrfs_header_generation(eb) == parent_transid) {
368                 ret = 0;
369                 goto out;
370         }
371         btrfs_err_rl(eb->fs_info,
372                 "parent transid verify failed on %llu wanted %llu found %llu",
373                         eb->start,
374                         parent_transid, btrfs_header_generation(eb));
375         ret = 1;
376
377         /*
378          * Things reading via commit roots that don't have normal protection,
379          * like send, can have a really old block in cache that may point at a
380          * block that has been free'd and re-allocated.  So don't clear uptodate
381          * if we find an eb that is under IO (dirty/writeback) because we could
382          * end up reading in the stale data and then writing it back out and
383          * making everybody very sad.
384          */
385         if (!extent_buffer_under_io(eb))
386                 clear_extent_buffer_uptodate(eb);
387 out:
388         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389                              &cached_state, GFP_NOFS);
390         if (need_lock)
391                 btrfs_tree_read_unlock_blocking(eb);
392         return ret;
393 }
394
395 /*
396  * Return 0 if the superblock checksum type matches the checksum value of that
397  * algorithm. Pass the raw disk superblock data.
398  */
399 static int btrfs_check_super_csum(char *raw_disk_sb)
400 {
401         struct btrfs_super_block *disk_sb =
402                 (struct btrfs_super_block *)raw_disk_sb;
403         u16 csum_type = btrfs_super_csum_type(disk_sb);
404         int ret = 0;
405
406         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407                 u32 crc = ~(u32)0;
408                 const int csum_size = sizeof(crc);
409                 char result[csum_size];
410
411                 /*
412                  * The super_block structure does not span the whole
413                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414                  * is filled with zeros and is included in the checkum.
415                  */
416                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418                 btrfs_csum_final(crc, result);
419
420                 if (memcmp(raw_disk_sb, result, csum_size))
421                         ret = 1;
422         }
423
424         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426                                 csum_type);
427                 ret = 1;
428         }
429
430         return ret;
431 }
432
433 /*
434  * helper to read a given tree block, doing retries as required when
435  * the checksums don't match and we have alternate mirrors to try.
436  */
437 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438                                           struct extent_buffer *eb,
439                                           u64 start, u64 parent_transid)
440 {
441         struct extent_io_tree *io_tree;
442         int failed = 0;
443         int ret;
444         int num_copies = 0;
445         int mirror_num = 0;
446         int failed_mirror = 0;
447
448         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450         while (1) {
451                 ret = read_extent_buffer_pages(io_tree, eb, start,
452                                                WAIT_COMPLETE,
453                                                btree_get_extent, mirror_num);
454                 if (!ret) {
455                         if (!verify_parent_transid(io_tree, eb,
456                                                    parent_transid, 0))
457                                 break;
458                         else
459                                 ret = -EIO;
460                 }
461
462                 /*
463                  * This buffer's crc is fine, but its contents are corrupted, so
464                  * there is no reason to read the other copies, they won't be
465                  * any less wrong.
466                  */
467                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468                         break;
469
470                 num_copies = btrfs_num_copies(root->fs_info,
471                                               eb->start, eb->len);
472                 if (num_copies == 1)
473                         break;
474
475                 if (!failed_mirror) {
476                         failed = 1;
477                         failed_mirror = eb->read_mirror;
478                 }
479
480                 mirror_num++;
481                 if (mirror_num == failed_mirror)
482                         mirror_num++;
483
484                 if (mirror_num > num_copies)
485                         break;
486         }
487
488         if (failed && !ret && failed_mirror)
489                 repair_eb_io_failure(root, eb, failed_mirror);
490
491         return ret;
492 }
493
494 /*
495  * checksum a dirty tree block before IO.  This has extra checks to make sure
496  * we only fill in the checksum field in the first page of a multi-page block
497  */
498
499 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500 {
501         u64 start = page_offset(page);
502         u64 found_start;
503         struct extent_buffer *eb;
504
505         eb = (struct extent_buffer *)page->private;
506         if (page != eb->pages[0])
507                 return 0;
508         found_start = btrfs_header_bytenr(eb);
509         if (WARN_ON(found_start != start || !PageUptodate(page)))
510                 return 0;
511         csum_tree_block(fs_info, eb, 0);
512         return 0;
513 }
514
515 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516                                  struct extent_buffer *eb)
517 {
518         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519         u8 fsid[BTRFS_UUID_SIZE];
520         int ret = 1;
521
522         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523         while (fs_devices) {
524                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525                         ret = 0;
526                         break;
527                 }
528                 fs_devices = fs_devices->seed;
529         }
530         return ret;
531 }
532
533 #define CORRUPT(reason, eb, root, slot)                         \
534         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
535                    "root=%llu, slot=%d", reason,                        \
536                btrfs_header_bytenr(eb), root->objectid, slot)
537
538 static noinline int check_leaf(struct btrfs_root *root,
539                                struct extent_buffer *leaf)
540 {
541         struct btrfs_key key;
542         struct btrfs_key leaf_key;
543         u32 nritems = btrfs_header_nritems(leaf);
544         int slot;
545
546         if (nritems == 0)
547                 return 0;
548
549         /* Check the 0 item */
550         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551             BTRFS_LEAF_DATA_SIZE(root)) {
552                 CORRUPT("invalid item offset size pair", leaf, root, 0);
553                 return -EIO;
554         }
555
556         /*
557          * Check to make sure each items keys are in the correct order and their
558          * offsets make sense.  We only have to loop through nritems-1 because
559          * we check the current slot against the next slot, which verifies the
560          * next slot's offset+size makes sense and that the current's slot
561          * offset is correct.
562          */
563         for (slot = 0; slot < nritems - 1; slot++) {
564                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567                 /* Make sure the keys are in the right order */
568                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569                         CORRUPT("bad key order", leaf, root, slot);
570                         return -EIO;
571                 }
572
573                 /*
574                  * Make sure the offset and ends are right, remember that the
575                  * item data starts at the end of the leaf and grows towards the
576                  * front.
577                  */
578                 if (btrfs_item_offset_nr(leaf, slot) !=
579                         btrfs_item_end_nr(leaf, slot + 1)) {
580                         CORRUPT("slot offset bad", leaf, root, slot);
581                         return -EIO;
582                 }
583
584                 /*
585                  * Check to make sure that we don't point outside of the leaf,
586                  * just incase all the items are consistent to eachother, but
587                  * all point outside of the leaf.
588                  */
589                 if (btrfs_item_end_nr(leaf, slot) >
590                     BTRFS_LEAF_DATA_SIZE(root)) {
591                         CORRUPT("slot end outside of leaf", leaf, root, slot);
592                         return -EIO;
593                 }
594         }
595
596         return 0;
597 }
598
599 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600                                       u64 phy_offset, struct page *page,
601                                       u64 start, u64 end, int mirror)
602 {
603         u64 found_start;
604         int found_level;
605         struct extent_buffer *eb;
606         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607         int ret = 0;
608         int reads_done;
609
610         if (!page->private)
611                 goto out;
612
613         eb = (struct extent_buffer *)page->private;
614
615         /* the pending IO might have been the only thing that kept this buffer
616          * in memory.  Make sure we have a ref for all this other checks
617          */
618         extent_buffer_get(eb);
619
620         reads_done = atomic_dec_and_test(&eb->io_pages);
621         if (!reads_done)
622                 goto err;
623
624         eb->read_mirror = mirror;
625         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626                 ret = -EIO;
627                 goto err;
628         }
629
630         found_start = btrfs_header_bytenr(eb);
631         if (found_start != eb->start) {
632                 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633                                found_start, eb->start);
634                 ret = -EIO;
635                 goto err;
636         }
637         if (check_tree_block_fsid(root->fs_info, eb)) {
638                 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639                                eb->start);
640                 ret = -EIO;
641                 goto err;
642         }
643         found_level = btrfs_header_level(eb);
644         if (found_level >= BTRFS_MAX_LEVEL) {
645                 btrfs_err(root->fs_info, "bad tree block level %d",
646                            (int)btrfs_header_level(eb));
647                 ret = -EIO;
648                 goto err;
649         }
650
651         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652                                        eb, found_level);
653
654         ret = csum_tree_block(root->fs_info, eb, 1);
655         if (ret) {
656                 ret = -EIO;
657                 goto err;
658         }
659
660         /*
661          * If this is a leaf block and it is corrupt, set the corrupt bit so
662          * that we don't try and read the other copies of this block, just
663          * return -EIO.
664          */
665         if (found_level == 0 && check_leaf(root, eb)) {
666                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667                 ret = -EIO;
668         }
669
670         if (!ret)
671                 set_extent_buffer_uptodate(eb);
672 err:
673         if (reads_done &&
674             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675                 btree_readahead_hook(root, eb, eb->start, ret);
676
677         if (ret) {
678                 /*
679                  * our io error hook is going to dec the io pages
680                  * again, we have to make sure it has something
681                  * to decrement
682                  */
683                 atomic_inc(&eb->io_pages);
684                 clear_extent_buffer_uptodate(eb);
685         }
686         free_extent_buffer(eb);
687 out:
688         return ret;
689 }
690
691 static int btree_io_failed_hook(struct page *page, int failed_mirror)
692 {
693         struct extent_buffer *eb;
694         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
696         eb = (struct extent_buffer *)page->private;
697         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
698         eb->read_mirror = failed_mirror;
699         atomic_dec(&eb->io_pages);
700         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
701                 btree_readahead_hook(root, eb, eb->start, -EIO);
702         return -EIO;    /* we fixed nothing */
703 }
704
705 static void end_workqueue_bio(struct bio *bio)
706 {
707         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
708         struct btrfs_fs_info *fs_info;
709         struct btrfs_workqueue *wq;
710         btrfs_work_func_t func;
711
712         fs_info = end_io_wq->info;
713         end_io_wq->error = bio->bi_error;
714
715         if (bio->bi_rw & REQ_WRITE) {
716                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717                         wq = fs_info->endio_meta_write_workers;
718                         func = btrfs_endio_meta_write_helper;
719                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720                         wq = fs_info->endio_freespace_worker;
721                         func = btrfs_freespace_write_helper;
722                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723                         wq = fs_info->endio_raid56_workers;
724                         func = btrfs_endio_raid56_helper;
725                 } else {
726                         wq = fs_info->endio_write_workers;
727                         func = btrfs_endio_write_helper;
728                 }
729         } else {
730                 if (unlikely(end_io_wq->metadata ==
731                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732                         wq = fs_info->endio_repair_workers;
733                         func = btrfs_endio_repair_helper;
734                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
735                         wq = fs_info->endio_raid56_workers;
736                         func = btrfs_endio_raid56_helper;
737                 } else if (end_io_wq->metadata) {
738                         wq = fs_info->endio_meta_workers;
739                         func = btrfs_endio_meta_helper;
740                 } else {
741                         wq = fs_info->endio_workers;
742                         func = btrfs_endio_helper;
743                 }
744         }
745
746         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747         btrfs_queue_work(wq, &end_io_wq->work);
748 }
749
750 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
751                         enum btrfs_wq_endio_type metadata)
752 {
753         struct btrfs_end_io_wq *end_io_wq;
754
755         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
756         if (!end_io_wq)
757                 return -ENOMEM;
758
759         end_io_wq->private = bio->bi_private;
760         end_io_wq->end_io = bio->bi_end_io;
761         end_io_wq->info = info;
762         end_io_wq->error = 0;
763         end_io_wq->bio = bio;
764         end_io_wq->metadata = metadata;
765
766         bio->bi_private = end_io_wq;
767         bio->bi_end_io = end_workqueue_bio;
768         return 0;
769 }
770
771 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
772 {
773         unsigned long limit = min_t(unsigned long,
774                                     info->thread_pool_size,
775                                     info->fs_devices->open_devices);
776         return 256 * limit;
777 }
778
779 static void run_one_async_start(struct btrfs_work *work)
780 {
781         struct async_submit_bio *async;
782         int ret;
783
784         async = container_of(work, struct  async_submit_bio, work);
785         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786                                       async->mirror_num, async->bio_flags,
787                                       async->bio_offset);
788         if (ret)
789                 async->error = ret;
790 }
791
792 static void run_one_async_done(struct btrfs_work *work)
793 {
794         struct btrfs_fs_info *fs_info;
795         struct async_submit_bio *async;
796         int limit;
797
798         async = container_of(work, struct  async_submit_bio, work);
799         fs_info = BTRFS_I(async->inode)->root->fs_info;
800
801         limit = btrfs_async_submit_limit(fs_info);
802         limit = limit * 2 / 3;
803
804         /*
805          * atomic_dec_return implies a barrier for waitqueue_active
806          */
807         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
808             waitqueue_active(&fs_info->async_submit_wait))
809                 wake_up(&fs_info->async_submit_wait);
810
811         /* If an error occured we just want to clean up the bio and move on */
812         if (async->error) {
813                 async->bio->bi_error = async->error;
814                 bio_endio(async->bio);
815                 return;
816         }
817
818         async->submit_bio_done(async->inode, async->rw, async->bio,
819                                async->mirror_num, async->bio_flags,
820                                async->bio_offset);
821 }
822
823 static void run_one_async_free(struct btrfs_work *work)
824 {
825         struct async_submit_bio *async;
826
827         async = container_of(work, struct  async_submit_bio, work);
828         kfree(async);
829 }
830
831 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832                         int rw, struct bio *bio, int mirror_num,
833                         unsigned long bio_flags,
834                         u64 bio_offset,
835                         extent_submit_bio_hook_t *submit_bio_start,
836                         extent_submit_bio_hook_t *submit_bio_done)
837 {
838         struct async_submit_bio *async;
839
840         async = kmalloc(sizeof(*async), GFP_NOFS);
841         if (!async)
842                 return -ENOMEM;
843
844         async->inode = inode;
845         async->rw = rw;
846         async->bio = bio;
847         async->mirror_num = mirror_num;
848         async->submit_bio_start = submit_bio_start;
849         async->submit_bio_done = submit_bio_done;
850
851         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
852                         run_one_async_done, run_one_async_free);
853
854         async->bio_flags = bio_flags;
855         async->bio_offset = bio_offset;
856
857         async->error = 0;
858
859         atomic_inc(&fs_info->nr_async_submits);
860
861         if (rw & REQ_SYNC)
862                 btrfs_set_work_high_priority(&async->work);
863
864         btrfs_queue_work(fs_info->workers, &async->work);
865
866         while (atomic_read(&fs_info->async_submit_draining) &&
867               atomic_read(&fs_info->nr_async_submits)) {
868                 wait_event(fs_info->async_submit_wait,
869                            (atomic_read(&fs_info->nr_async_submits) == 0));
870         }
871
872         return 0;
873 }
874
875 static int btree_csum_one_bio(struct bio *bio)
876 {
877         struct bio_vec *bvec;
878         struct btrfs_root *root;
879         int i, ret = 0;
880
881         bio_for_each_segment_all(bvec, bio, i) {
882                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
883                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
884                 if (ret)
885                         break;
886         }
887
888         return ret;
889 }
890
891 static int __btree_submit_bio_start(struct inode *inode, int rw,
892                                     struct bio *bio, int mirror_num,
893                                     unsigned long bio_flags,
894                                     u64 bio_offset)
895 {
896         /*
897          * when we're called for a write, we're already in the async
898          * submission context.  Just jump into btrfs_map_bio
899          */
900         return btree_csum_one_bio(bio);
901 }
902
903 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
904                                  int mirror_num, unsigned long bio_flags,
905                                  u64 bio_offset)
906 {
907         int ret;
908
909         /*
910          * when we're called for a write, we're already in the async
911          * submission context.  Just jump into btrfs_map_bio
912          */
913         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
914         if (ret) {
915                 bio->bi_error = ret;
916                 bio_endio(bio);
917         }
918         return ret;
919 }
920
921 static int check_async_write(struct inode *inode, unsigned long bio_flags)
922 {
923         if (bio_flags & EXTENT_BIO_TREE_LOG)
924                 return 0;
925 #ifdef CONFIG_X86
926         if (cpu_has_xmm4_2)
927                 return 0;
928 #endif
929         return 1;
930 }
931
932 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
933                                  int mirror_num, unsigned long bio_flags,
934                                  u64 bio_offset)
935 {
936         int async = check_async_write(inode, bio_flags);
937         int ret;
938
939         if (!(rw & REQ_WRITE)) {
940                 /*
941                  * called for a read, do the setup so that checksum validation
942                  * can happen in the async kernel threads
943                  */
944                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
945                                           bio, BTRFS_WQ_ENDIO_METADATA);
946                 if (ret)
947                         goto out_w_error;
948                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949                                     mirror_num, 0);
950         } else if (!async) {
951                 ret = btree_csum_one_bio(bio);
952                 if (ret)
953                         goto out_w_error;
954                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955                                     mirror_num, 0);
956         } else {
957                 /*
958                  * kthread helpers are used to submit writes so that
959                  * checksumming can happen in parallel across all CPUs
960                  */
961                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962                                           inode, rw, bio, mirror_num, 0,
963                                           bio_offset,
964                                           __btree_submit_bio_start,
965                                           __btree_submit_bio_done);
966         }
967
968         if (ret)
969                 goto out_w_error;
970         return 0;
971
972 out_w_error:
973         bio->bi_error = ret;
974         bio_endio(bio);
975         return ret;
976 }
977
978 #ifdef CONFIG_MIGRATION
979 static int btree_migratepage(struct address_space *mapping,
980                         struct page *newpage, struct page *page,
981                         enum migrate_mode mode)
982 {
983         /*
984          * we can't safely write a btree page from here,
985          * we haven't done the locking hook
986          */
987         if (PageDirty(page))
988                 return -EAGAIN;
989         /*
990          * Buffers may be managed in a filesystem specific way.
991          * We must have no buffers or drop them.
992          */
993         if (page_has_private(page) &&
994             !try_to_release_page(page, GFP_KERNEL))
995                 return -EAGAIN;
996         return migrate_page(mapping, newpage, page, mode);
997 }
998 #endif
999
1000
1001 static int btree_writepages(struct address_space *mapping,
1002                             struct writeback_control *wbc)
1003 {
1004         struct btrfs_fs_info *fs_info;
1005         int ret;
1006
1007         if (wbc->sync_mode == WB_SYNC_NONE) {
1008
1009                 if (wbc->for_kupdate)
1010                         return 0;
1011
1012                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1013                 /* this is a bit racy, but that's ok */
1014                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015                                              BTRFS_DIRTY_METADATA_THRESH);
1016                 if (ret < 0)
1017                         return 0;
1018         }
1019         return btree_write_cache_pages(mapping, wbc);
1020 }
1021
1022 static int btree_readpage(struct file *file, struct page *page)
1023 {
1024         struct extent_io_tree *tree;
1025         tree = &BTRFS_I(page->mapping->host)->io_tree;
1026         return extent_read_full_page(tree, page, btree_get_extent, 0);
1027 }
1028
1029 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1030 {
1031         if (PageWriteback(page) || PageDirty(page))
1032                 return 0;
1033
1034         return try_release_extent_buffer(page);
1035 }
1036
1037 static void btree_invalidatepage(struct page *page, unsigned int offset,
1038                                  unsigned int length)
1039 {
1040         struct extent_io_tree *tree;
1041         tree = &BTRFS_I(page->mapping->host)->io_tree;
1042         extent_invalidatepage(tree, page, offset);
1043         btree_releasepage(page, GFP_NOFS);
1044         if (PagePrivate(page)) {
1045                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046                            "page private not zero on page %llu",
1047                            (unsigned long long)page_offset(page));
1048                 ClearPagePrivate(page);
1049                 set_page_private(page, 0);
1050                 page_cache_release(page);
1051         }
1052 }
1053
1054 static int btree_set_page_dirty(struct page *page)
1055 {
1056 #ifdef DEBUG
1057         struct extent_buffer *eb;
1058
1059         BUG_ON(!PagePrivate(page));
1060         eb = (struct extent_buffer *)page->private;
1061         BUG_ON(!eb);
1062         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063         BUG_ON(!atomic_read(&eb->refs));
1064         btrfs_assert_tree_locked(eb);
1065 #endif
1066         return __set_page_dirty_nobuffers(page);
1067 }
1068
1069 static const struct address_space_operations btree_aops = {
1070         .readpage       = btree_readpage,
1071         .writepages     = btree_writepages,
1072         .releasepage    = btree_releasepage,
1073         .invalidatepage = btree_invalidatepage,
1074 #ifdef CONFIG_MIGRATION
1075         .migratepage    = btree_migratepage,
1076 #endif
1077         .set_page_dirty = btree_set_page_dirty,
1078 };
1079
1080 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1081 {
1082         struct extent_buffer *buf = NULL;
1083         struct inode *btree_inode = root->fs_info->btree_inode;
1084
1085         buf = btrfs_find_create_tree_block(root, bytenr);
1086         if (!buf)
1087                 return;
1088         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1089                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1090         free_extent_buffer(buf);
1091 }
1092
1093 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1094                          int mirror_num, struct extent_buffer **eb)
1095 {
1096         struct extent_buffer *buf = NULL;
1097         struct inode *btree_inode = root->fs_info->btree_inode;
1098         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099         int ret;
1100
1101         buf = btrfs_find_create_tree_block(root, bytenr);
1102         if (!buf)
1103                 return 0;
1104
1105         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108                                        btree_get_extent, mirror_num);
1109         if (ret) {
1110                 free_extent_buffer(buf);
1111                 return ret;
1112         }
1113
1114         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115                 free_extent_buffer(buf);
1116                 return -EIO;
1117         } else if (extent_buffer_uptodate(buf)) {
1118                 *eb = buf;
1119         } else {
1120                 free_extent_buffer(buf);
1121         }
1122         return 0;
1123 }
1124
1125 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1126                                             u64 bytenr)
1127 {
1128         return find_extent_buffer(fs_info, bytenr);
1129 }
1130
1131 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1132                                                  u64 bytenr)
1133 {
1134         if (btrfs_test_is_dummy_root(root))
1135                 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136         return alloc_extent_buffer(root->fs_info, bytenr);
1137 }
1138
1139
1140 int btrfs_write_tree_block(struct extent_buffer *buf)
1141 {
1142         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1143                                         buf->start + buf->len - 1);
1144 }
1145
1146 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147 {
1148         return filemap_fdatawait_range(buf->pages[0]->mapping,
1149                                        buf->start, buf->start + buf->len - 1);
1150 }
1151
1152 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1153                                       u64 parent_transid)
1154 {
1155         struct extent_buffer *buf = NULL;
1156         int ret;
1157
1158         buf = btrfs_find_create_tree_block(root, bytenr);
1159         if (!buf)
1160                 return ERR_PTR(-ENOMEM);
1161
1162         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1163         if (ret) {
1164                 free_extent_buffer(buf);
1165                 return ERR_PTR(ret);
1166         }
1167         return buf;
1168
1169 }
1170
1171 void clean_tree_block(struct btrfs_trans_handle *trans,
1172                       struct btrfs_fs_info *fs_info,
1173                       struct extent_buffer *buf)
1174 {
1175         if (btrfs_header_generation(buf) ==
1176             fs_info->running_transaction->transid) {
1177                 btrfs_assert_tree_locked(buf);
1178
1179                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1180                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181                                              -buf->len,
1182                                              fs_info->dirty_metadata_batch);
1183                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184                         btrfs_set_lock_blocking(buf);
1185                         clear_extent_buffer_dirty(buf);
1186                 }
1187         }
1188 }
1189
1190 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191 {
1192         struct btrfs_subvolume_writers *writers;
1193         int ret;
1194
1195         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196         if (!writers)
1197                 return ERR_PTR(-ENOMEM);
1198
1199         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1200         if (ret < 0) {
1201                 kfree(writers);
1202                 return ERR_PTR(ret);
1203         }
1204
1205         init_waitqueue_head(&writers->wait);
1206         return writers;
1207 }
1208
1209 static void
1210 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211 {
1212         percpu_counter_destroy(&writers->counter);
1213         kfree(writers);
1214 }
1215
1216 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1218                          u64 objectid)
1219 {
1220         root->node = NULL;
1221         root->commit_root = NULL;
1222         root->sectorsize = sectorsize;
1223         root->nodesize = nodesize;
1224         root->stripesize = stripesize;
1225         root->state = 0;
1226         root->orphan_cleanup_state = 0;
1227
1228         root->objectid = objectid;
1229         root->last_trans = 0;
1230         root->highest_objectid = 0;
1231         root->nr_delalloc_inodes = 0;
1232         root->nr_ordered_extents = 0;
1233         root->name = NULL;
1234         root->inode_tree = RB_ROOT;
1235         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1236         root->block_rsv = NULL;
1237         root->orphan_block_rsv = NULL;
1238
1239         INIT_LIST_HEAD(&root->dirty_list);
1240         INIT_LIST_HEAD(&root->root_list);
1241         INIT_LIST_HEAD(&root->delalloc_inodes);
1242         INIT_LIST_HEAD(&root->delalloc_root);
1243         INIT_LIST_HEAD(&root->ordered_extents);
1244         INIT_LIST_HEAD(&root->ordered_root);
1245         INIT_LIST_HEAD(&root->logged_list[0]);
1246         INIT_LIST_HEAD(&root->logged_list[1]);
1247         spin_lock_init(&root->orphan_lock);
1248         spin_lock_init(&root->inode_lock);
1249         spin_lock_init(&root->delalloc_lock);
1250         spin_lock_init(&root->ordered_extent_lock);
1251         spin_lock_init(&root->accounting_lock);
1252         spin_lock_init(&root->log_extents_lock[0]);
1253         spin_lock_init(&root->log_extents_lock[1]);
1254         mutex_init(&root->objectid_mutex);
1255         mutex_init(&root->log_mutex);
1256         mutex_init(&root->ordered_extent_mutex);
1257         mutex_init(&root->delalloc_mutex);
1258         init_waitqueue_head(&root->log_writer_wait);
1259         init_waitqueue_head(&root->log_commit_wait[0]);
1260         init_waitqueue_head(&root->log_commit_wait[1]);
1261         INIT_LIST_HEAD(&root->log_ctxs[0]);
1262         INIT_LIST_HEAD(&root->log_ctxs[1]);
1263         atomic_set(&root->log_commit[0], 0);
1264         atomic_set(&root->log_commit[1], 0);
1265         atomic_set(&root->log_writers, 0);
1266         atomic_set(&root->log_batch, 0);
1267         atomic_set(&root->orphan_inodes, 0);
1268         atomic_set(&root->refs, 1);
1269         atomic_set(&root->will_be_snapshoted, 0);
1270         atomic_set(&root->qgroup_meta_rsv, 0);
1271         root->log_transid = 0;
1272         root->log_transid_committed = -1;
1273         root->last_log_commit = 0;
1274         if (fs_info)
1275                 extent_io_tree_init(&root->dirty_log_pages,
1276                                      fs_info->btree_inode->i_mapping);
1277
1278         memset(&root->root_key, 0, sizeof(root->root_key));
1279         memset(&root->root_item, 0, sizeof(root->root_item));
1280         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1281         if (fs_info)
1282                 root->defrag_trans_start = fs_info->generation;
1283         else
1284                 root->defrag_trans_start = 0;
1285         root->root_key.objectid = objectid;
1286         root->anon_dev = 0;
1287
1288         spin_lock_init(&root->root_item_lock);
1289 }
1290
1291 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1292 {
1293         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1294         if (root)
1295                 root->fs_info = fs_info;
1296         return root;
1297 }
1298
1299 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1300 /* Should only be used by the testing infrastructure */
1301 struct btrfs_root *btrfs_alloc_dummy_root(void)
1302 {
1303         struct btrfs_root *root;
1304
1305         root = btrfs_alloc_root(NULL);
1306         if (!root)
1307                 return ERR_PTR(-ENOMEM);
1308         __setup_root(4096, 4096, 4096, root, NULL, 1);
1309         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1310         root->alloc_bytenr = 0;
1311
1312         return root;
1313 }
1314 #endif
1315
1316 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1317                                      struct btrfs_fs_info *fs_info,
1318                                      u64 objectid)
1319 {
1320         struct extent_buffer *leaf;
1321         struct btrfs_root *tree_root = fs_info->tree_root;
1322         struct btrfs_root *root;
1323         struct btrfs_key key;
1324         int ret = 0;
1325         uuid_le uuid;
1326
1327         root = btrfs_alloc_root(fs_info);
1328         if (!root)
1329                 return ERR_PTR(-ENOMEM);
1330
1331         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1332                 tree_root->stripesize, root, fs_info, objectid);
1333         root->root_key.objectid = objectid;
1334         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1335         root->root_key.offset = 0;
1336
1337         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1338         if (IS_ERR(leaf)) {
1339                 ret = PTR_ERR(leaf);
1340                 leaf = NULL;
1341                 goto fail;
1342         }
1343
1344         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1345         btrfs_set_header_bytenr(leaf, leaf->start);
1346         btrfs_set_header_generation(leaf, trans->transid);
1347         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1348         btrfs_set_header_owner(leaf, objectid);
1349         root->node = leaf;
1350
1351         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1352                             BTRFS_FSID_SIZE);
1353         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1354                             btrfs_header_chunk_tree_uuid(leaf),
1355                             BTRFS_UUID_SIZE);
1356         btrfs_mark_buffer_dirty(leaf);
1357
1358         root->commit_root = btrfs_root_node(root);
1359         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1360
1361         root->root_item.flags = 0;
1362         root->root_item.byte_limit = 0;
1363         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1364         btrfs_set_root_generation(&root->root_item, trans->transid);
1365         btrfs_set_root_level(&root->root_item, 0);
1366         btrfs_set_root_refs(&root->root_item, 1);
1367         btrfs_set_root_used(&root->root_item, leaf->len);
1368         btrfs_set_root_last_snapshot(&root->root_item, 0);
1369         btrfs_set_root_dirid(&root->root_item, 0);
1370         uuid_le_gen(&uuid);
1371         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1372         root->root_item.drop_level = 0;
1373
1374         key.objectid = objectid;
1375         key.type = BTRFS_ROOT_ITEM_KEY;
1376         key.offset = 0;
1377         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1378         if (ret)
1379                 goto fail;
1380
1381         btrfs_tree_unlock(leaf);
1382
1383         return root;
1384
1385 fail:
1386         if (leaf) {
1387                 btrfs_tree_unlock(leaf);
1388                 free_extent_buffer(root->commit_root);
1389                 free_extent_buffer(leaf);
1390         }
1391         kfree(root);
1392
1393         return ERR_PTR(ret);
1394 }
1395
1396 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1397                                          struct btrfs_fs_info *fs_info)
1398 {
1399         struct btrfs_root *root;
1400         struct btrfs_root *tree_root = fs_info->tree_root;
1401         struct extent_buffer *leaf;
1402
1403         root = btrfs_alloc_root(fs_info);
1404         if (!root)
1405                 return ERR_PTR(-ENOMEM);
1406
1407         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1408                      tree_root->stripesize, root, fs_info,
1409                      BTRFS_TREE_LOG_OBJECTID);
1410
1411         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1412         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1414
1415         /*
1416          * DON'T set REF_COWS for log trees
1417          *
1418          * log trees do not get reference counted because they go away
1419          * before a real commit is actually done.  They do store pointers
1420          * to file data extents, and those reference counts still get
1421          * updated (along with back refs to the log tree).
1422          */
1423
1424         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1425                         NULL, 0, 0, 0);
1426         if (IS_ERR(leaf)) {
1427                 kfree(root);
1428                 return ERR_CAST(leaf);
1429         }
1430
1431         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1432         btrfs_set_header_bytenr(leaf, leaf->start);
1433         btrfs_set_header_generation(leaf, trans->transid);
1434         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1435         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1436         root->node = leaf;
1437
1438         write_extent_buffer(root->node, root->fs_info->fsid,
1439                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1440         btrfs_mark_buffer_dirty(root->node);
1441         btrfs_tree_unlock(root->node);
1442         return root;
1443 }
1444
1445 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1446                              struct btrfs_fs_info *fs_info)
1447 {
1448         struct btrfs_root *log_root;
1449
1450         log_root = alloc_log_tree(trans, fs_info);
1451         if (IS_ERR(log_root))
1452                 return PTR_ERR(log_root);
1453         WARN_ON(fs_info->log_root_tree);
1454         fs_info->log_root_tree = log_root;
1455         return 0;
1456 }
1457
1458 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1459                        struct btrfs_root *root)
1460 {
1461         struct btrfs_root *log_root;
1462         struct btrfs_inode_item *inode_item;
1463
1464         log_root = alloc_log_tree(trans, root->fs_info);
1465         if (IS_ERR(log_root))
1466                 return PTR_ERR(log_root);
1467
1468         log_root->last_trans = trans->transid;
1469         log_root->root_key.offset = root->root_key.objectid;
1470
1471         inode_item = &log_root->root_item.inode;
1472         btrfs_set_stack_inode_generation(inode_item, 1);
1473         btrfs_set_stack_inode_size(inode_item, 3);
1474         btrfs_set_stack_inode_nlink(inode_item, 1);
1475         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1476         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1477
1478         btrfs_set_root_node(&log_root->root_item, log_root->node);
1479
1480         WARN_ON(root->log_root);
1481         root->log_root = log_root;
1482         root->log_transid = 0;
1483         root->log_transid_committed = -1;
1484         root->last_log_commit = 0;
1485         return 0;
1486 }
1487
1488 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1489                                                struct btrfs_key *key)
1490 {
1491         struct btrfs_root *root;
1492         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1493         struct btrfs_path *path;
1494         u64 generation;
1495         int ret;
1496
1497         path = btrfs_alloc_path();
1498         if (!path)
1499                 return ERR_PTR(-ENOMEM);
1500
1501         root = btrfs_alloc_root(fs_info);
1502         if (!root) {
1503                 ret = -ENOMEM;
1504                 goto alloc_fail;
1505         }
1506
1507         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1508                 tree_root->stripesize, root, fs_info, key->objectid);
1509
1510         ret = btrfs_find_root(tree_root, key, path,
1511                               &root->root_item, &root->root_key);
1512         if (ret) {
1513                 if (ret > 0)
1514                         ret = -ENOENT;
1515                 goto find_fail;
1516         }
1517
1518         generation = btrfs_root_generation(&root->root_item);
1519         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1520                                      generation);
1521         if (IS_ERR(root->node)) {
1522                 ret = PTR_ERR(root->node);
1523                 goto find_fail;
1524         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1525                 ret = -EIO;
1526                 free_extent_buffer(root->node);
1527                 goto find_fail;
1528         }
1529         root->commit_root = btrfs_root_node(root);
1530 out:
1531         btrfs_free_path(path);
1532         return root;
1533
1534 find_fail:
1535         kfree(root);
1536 alloc_fail:
1537         root = ERR_PTR(ret);
1538         goto out;
1539 }
1540
1541 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542                                       struct btrfs_key *location)
1543 {
1544         struct btrfs_root *root;
1545
1546         root = btrfs_read_tree_root(tree_root, location);
1547         if (IS_ERR(root))
1548                 return root;
1549
1550         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1551                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1552                 btrfs_check_and_init_root_item(&root->root_item);
1553         }
1554
1555         return root;
1556 }
1557
1558 int btrfs_init_fs_root(struct btrfs_root *root)
1559 {
1560         int ret;
1561         struct btrfs_subvolume_writers *writers;
1562
1563         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565                                         GFP_NOFS);
1566         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567                 ret = -ENOMEM;
1568                 goto fail;
1569         }
1570
1571         writers = btrfs_alloc_subvolume_writers();
1572         if (IS_ERR(writers)) {
1573                 ret = PTR_ERR(writers);
1574                 goto fail;
1575         }
1576         root->subv_writers = writers;
1577
1578         btrfs_init_free_ino_ctl(root);
1579         spin_lock_init(&root->ino_cache_lock);
1580         init_waitqueue_head(&root->ino_cache_wait);
1581
1582         ret = get_anon_bdev(&root->anon_dev);
1583         if (ret)
1584                 goto free_writers;
1585         return 0;
1586
1587 free_writers:
1588         btrfs_free_subvolume_writers(root->subv_writers);
1589 fail:
1590         kfree(root->free_ino_ctl);
1591         kfree(root->free_ino_pinned);
1592         return ret;
1593 }
1594
1595 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1596                                                u64 root_id)
1597 {
1598         struct btrfs_root *root;
1599
1600         spin_lock(&fs_info->fs_roots_radix_lock);
1601         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1602                                  (unsigned long)root_id);
1603         spin_unlock(&fs_info->fs_roots_radix_lock);
1604         return root;
1605 }
1606
1607 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1608                          struct btrfs_root *root)
1609 {
1610         int ret;
1611
1612         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1613         if (ret)
1614                 return ret;
1615
1616         spin_lock(&fs_info->fs_roots_radix_lock);
1617         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1618                                 (unsigned long)root->root_key.objectid,
1619                                 root);
1620         if (ret == 0)
1621                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1622         spin_unlock(&fs_info->fs_roots_radix_lock);
1623         radix_tree_preload_end();
1624
1625         return ret;
1626 }
1627
1628 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1629                                      struct btrfs_key *location,
1630                                      bool check_ref)
1631 {
1632         struct btrfs_root *root;
1633         struct btrfs_path *path;
1634         struct btrfs_key key;
1635         int ret;
1636
1637         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1638                 return fs_info->tree_root;
1639         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1640                 return fs_info->extent_root;
1641         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1642                 return fs_info->chunk_root;
1643         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1644                 return fs_info->dev_root;
1645         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1646                 return fs_info->csum_root;
1647         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1648                 return fs_info->quota_root ? fs_info->quota_root :
1649                                              ERR_PTR(-ENOENT);
1650         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1651                 return fs_info->uuid_root ? fs_info->uuid_root :
1652                                             ERR_PTR(-ENOENT);
1653 again:
1654         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1655         if (root) {
1656                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1657                         return ERR_PTR(-ENOENT);
1658                 return root;
1659         }
1660
1661         root = btrfs_read_fs_root(fs_info->tree_root, location);
1662         if (IS_ERR(root))
1663                 return root;
1664
1665         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1666                 ret = -ENOENT;
1667                 goto fail;
1668         }
1669
1670         ret = btrfs_init_fs_root(root);
1671         if (ret)
1672                 goto fail;
1673
1674         path = btrfs_alloc_path();
1675         if (!path) {
1676                 ret = -ENOMEM;
1677                 goto fail;
1678         }
1679         key.objectid = BTRFS_ORPHAN_OBJECTID;
1680         key.type = BTRFS_ORPHAN_ITEM_KEY;
1681         key.offset = location->objectid;
1682
1683         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1684         btrfs_free_path(path);
1685         if (ret < 0)
1686                 goto fail;
1687         if (ret == 0)
1688                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1689
1690         ret = btrfs_insert_fs_root(fs_info, root);
1691         if (ret) {
1692                 if (ret == -EEXIST) {
1693                         free_fs_root(root);
1694                         goto again;
1695                 }
1696                 goto fail;
1697         }
1698         return root;
1699 fail:
1700         free_fs_root(root);
1701         return ERR_PTR(ret);
1702 }
1703
1704 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1705 {
1706         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1707         int ret = 0;
1708         struct btrfs_device *device;
1709         struct backing_dev_info *bdi;
1710
1711         rcu_read_lock();
1712         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1713                 if (!device->bdev)
1714                         continue;
1715                 bdi = blk_get_backing_dev_info(device->bdev);
1716                 if (bdi_congested(bdi, bdi_bits)) {
1717                         ret = 1;
1718                         break;
1719                 }
1720         }
1721         rcu_read_unlock();
1722         return ret;
1723 }
1724
1725 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1726 {
1727         int err;
1728
1729         err = bdi_setup_and_register(bdi, "btrfs");
1730         if (err)
1731                 return err;
1732
1733         bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1734         bdi->congested_fn       = btrfs_congested_fn;
1735         bdi->congested_data     = info;
1736         bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1737         return 0;
1738 }
1739
1740 /*
1741  * called by the kthread helper functions to finally call the bio end_io
1742  * functions.  This is where read checksum verification actually happens
1743  */
1744 static void end_workqueue_fn(struct btrfs_work *work)
1745 {
1746         struct bio *bio;
1747         struct btrfs_end_io_wq *end_io_wq;
1748
1749         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1750         bio = end_io_wq->bio;
1751
1752         bio->bi_error = end_io_wq->error;
1753         bio->bi_private = end_io_wq->private;
1754         bio->bi_end_io = end_io_wq->end_io;
1755         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1756         bio_endio(bio);
1757 }
1758
1759 static int cleaner_kthread(void *arg)
1760 {
1761         struct btrfs_root *root = arg;
1762         int again;
1763         struct btrfs_trans_handle *trans;
1764
1765         do {
1766                 again = 0;
1767
1768                 /* Make the cleaner go to sleep early. */
1769                 if (btrfs_need_cleaner_sleep(root))
1770                         goto sleep;
1771
1772                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1773                         goto sleep;
1774
1775                 /*
1776                  * Avoid the problem that we change the status of the fs
1777                  * during the above check and trylock.
1778                  */
1779                 if (btrfs_need_cleaner_sleep(root)) {
1780                         mutex_unlock(&root->fs_info->cleaner_mutex);
1781                         goto sleep;
1782                 }
1783
1784                 btrfs_run_delayed_iputs(root);
1785                 again = btrfs_clean_one_deleted_snapshot(root);
1786                 mutex_unlock(&root->fs_info->cleaner_mutex);
1787
1788                 /*
1789                  * The defragger has dealt with the R/O remount and umount,
1790                  * needn't do anything special here.
1791                  */
1792                 btrfs_run_defrag_inodes(root->fs_info);
1793
1794                 /*
1795                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1796                  * with relocation (btrfs_relocate_chunk) and relocation
1797                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1798                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1799                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1800                  * unused block groups.
1801                  */
1802                 btrfs_delete_unused_bgs(root->fs_info);
1803 sleep:
1804                 if (!try_to_freeze() && !again) {
1805                         set_current_state(TASK_INTERRUPTIBLE);
1806                         if (!kthread_should_stop())
1807                                 schedule();
1808                         __set_current_state(TASK_RUNNING);
1809                 }
1810         } while (!kthread_should_stop());
1811
1812         /*
1813          * Transaction kthread is stopped before us and wakes us up.
1814          * However we might have started a new transaction and COWed some
1815          * tree blocks when deleting unused block groups for example. So
1816          * make sure we commit the transaction we started to have a clean
1817          * shutdown when evicting the btree inode - if it has dirty pages
1818          * when we do the final iput() on it, eviction will trigger a
1819          * writeback for it which will fail with null pointer dereferences
1820          * since work queues and other resources were already released and
1821          * destroyed by the time the iput/eviction/writeback is made.
1822          */
1823         trans = btrfs_attach_transaction(root);
1824         if (IS_ERR(trans)) {
1825                 if (PTR_ERR(trans) != -ENOENT)
1826                         btrfs_err(root->fs_info,
1827                                   "cleaner transaction attach returned %ld",
1828                                   PTR_ERR(trans));
1829         } else {
1830                 int ret;
1831
1832                 ret = btrfs_commit_transaction(trans, root);
1833                 if (ret)
1834                         btrfs_err(root->fs_info,
1835                                   "cleaner open transaction commit returned %d",
1836                                   ret);
1837         }
1838
1839         return 0;
1840 }
1841
1842 static int transaction_kthread(void *arg)
1843 {
1844         struct btrfs_root *root = arg;
1845         struct btrfs_trans_handle *trans;
1846         struct btrfs_transaction *cur;
1847         u64 transid;
1848         unsigned long now;
1849         unsigned long delay;
1850         bool cannot_commit;
1851
1852         do {
1853                 cannot_commit = false;
1854                 delay = HZ * root->fs_info->commit_interval;
1855                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1856
1857                 spin_lock(&root->fs_info->trans_lock);
1858                 cur = root->fs_info->running_transaction;
1859                 if (!cur) {
1860                         spin_unlock(&root->fs_info->trans_lock);
1861                         goto sleep;
1862                 }
1863
1864                 now = get_seconds();
1865                 if (cur->state < TRANS_STATE_BLOCKED &&
1866                     (now < cur->start_time ||
1867                      now - cur->start_time < root->fs_info->commit_interval)) {
1868                         spin_unlock(&root->fs_info->trans_lock);
1869                         delay = HZ * 5;
1870                         goto sleep;
1871                 }
1872                 transid = cur->transid;
1873                 spin_unlock(&root->fs_info->trans_lock);
1874
1875                 /* If the file system is aborted, this will always fail. */
1876                 trans = btrfs_attach_transaction(root);
1877                 if (IS_ERR(trans)) {
1878                         if (PTR_ERR(trans) != -ENOENT)
1879                                 cannot_commit = true;
1880                         goto sleep;
1881                 }
1882                 if (transid == trans->transid) {
1883                         btrfs_commit_transaction(trans, root);
1884                 } else {
1885                         btrfs_end_transaction(trans, root);
1886                 }
1887 sleep:
1888                 wake_up_process(root->fs_info->cleaner_kthread);
1889                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1890
1891                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1892                                       &root->fs_info->fs_state)))
1893                         btrfs_cleanup_transaction(root);
1894                 if (!try_to_freeze()) {
1895                         set_current_state(TASK_INTERRUPTIBLE);
1896                         if (!kthread_should_stop() &&
1897                             (!btrfs_transaction_blocked(root->fs_info) ||
1898                              cannot_commit))
1899                                 schedule_timeout(delay);
1900                         __set_current_state(TASK_RUNNING);
1901                 }
1902         } while (!kthread_should_stop());
1903         return 0;
1904 }
1905
1906 /*
1907  * this will find the highest generation in the array of
1908  * root backups.  The index of the highest array is returned,
1909  * or -1 if we can't find anything.
1910  *
1911  * We check to make sure the array is valid by comparing the
1912  * generation of the latest  root in the array with the generation
1913  * in the super block.  If they don't match we pitch it.
1914  */
1915 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1916 {
1917         u64 cur;
1918         int newest_index = -1;
1919         struct btrfs_root_backup *root_backup;
1920         int i;
1921
1922         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1923                 root_backup = info->super_copy->super_roots + i;
1924                 cur = btrfs_backup_tree_root_gen(root_backup);
1925                 if (cur == newest_gen)
1926                         newest_index = i;
1927         }
1928
1929         /* check to see if we actually wrapped around */
1930         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1931                 root_backup = info->super_copy->super_roots;
1932                 cur = btrfs_backup_tree_root_gen(root_backup);
1933                 if (cur == newest_gen)
1934                         newest_index = 0;
1935         }
1936         return newest_index;
1937 }
1938
1939
1940 /*
1941  * find the oldest backup so we know where to store new entries
1942  * in the backup array.  This will set the backup_root_index
1943  * field in the fs_info struct
1944  */
1945 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1946                                      u64 newest_gen)
1947 {
1948         int newest_index = -1;
1949
1950         newest_index = find_newest_super_backup(info, newest_gen);
1951         /* if there was garbage in there, just move along */
1952         if (newest_index == -1) {
1953                 info->backup_root_index = 0;
1954         } else {
1955                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1956         }
1957 }
1958
1959 /*
1960  * copy all the root pointers into the super backup array.
1961  * this will bump the backup pointer by one when it is
1962  * done
1963  */
1964 static void backup_super_roots(struct btrfs_fs_info *info)
1965 {
1966         int next_backup;
1967         struct btrfs_root_backup *root_backup;
1968         int last_backup;
1969
1970         next_backup = info->backup_root_index;
1971         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1972                 BTRFS_NUM_BACKUP_ROOTS;
1973
1974         /*
1975          * just overwrite the last backup if we're at the same generation
1976          * this happens only at umount
1977          */
1978         root_backup = info->super_for_commit->super_roots + last_backup;
1979         if (btrfs_backup_tree_root_gen(root_backup) ==
1980             btrfs_header_generation(info->tree_root->node))
1981                 next_backup = last_backup;
1982
1983         root_backup = info->super_for_commit->super_roots + next_backup;
1984
1985         /*
1986          * make sure all of our padding and empty slots get zero filled
1987          * regardless of which ones we use today
1988          */
1989         memset(root_backup, 0, sizeof(*root_backup));
1990
1991         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1992
1993         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1994         btrfs_set_backup_tree_root_gen(root_backup,
1995                                btrfs_header_generation(info->tree_root->node));
1996
1997         btrfs_set_backup_tree_root_level(root_backup,
1998                                btrfs_header_level(info->tree_root->node));
1999
2000         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2001         btrfs_set_backup_chunk_root_gen(root_backup,
2002                                btrfs_header_generation(info->chunk_root->node));
2003         btrfs_set_backup_chunk_root_level(root_backup,
2004                                btrfs_header_level(info->chunk_root->node));
2005
2006         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2007         btrfs_set_backup_extent_root_gen(root_backup,
2008                                btrfs_header_generation(info->extent_root->node));
2009         btrfs_set_backup_extent_root_level(root_backup,
2010                                btrfs_header_level(info->extent_root->node));
2011
2012         /*
2013          * we might commit during log recovery, which happens before we set
2014          * the fs_root.  Make sure it is valid before we fill it in.
2015          */
2016         if (info->fs_root && info->fs_root->node) {
2017                 btrfs_set_backup_fs_root(root_backup,
2018                                          info->fs_root->node->start);
2019                 btrfs_set_backup_fs_root_gen(root_backup,
2020                                btrfs_header_generation(info->fs_root->node));
2021                 btrfs_set_backup_fs_root_level(root_backup,
2022                                btrfs_header_level(info->fs_root->node));
2023         }
2024
2025         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2026         btrfs_set_backup_dev_root_gen(root_backup,
2027                                btrfs_header_generation(info->dev_root->node));
2028         btrfs_set_backup_dev_root_level(root_backup,
2029                                        btrfs_header_level(info->dev_root->node));
2030
2031         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2032         btrfs_set_backup_csum_root_gen(root_backup,
2033                                btrfs_header_generation(info->csum_root->node));
2034         btrfs_set_backup_csum_root_level(root_backup,
2035                                btrfs_header_level(info->csum_root->node));
2036
2037         btrfs_set_backup_total_bytes(root_backup,
2038                              btrfs_super_total_bytes(info->super_copy));
2039         btrfs_set_backup_bytes_used(root_backup,
2040                              btrfs_super_bytes_used(info->super_copy));
2041         btrfs_set_backup_num_devices(root_backup,
2042                              btrfs_super_num_devices(info->super_copy));
2043
2044         /*
2045          * if we don't copy this out to the super_copy, it won't get remembered
2046          * for the next commit
2047          */
2048         memcpy(&info->super_copy->super_roots,
2049                &info->super_for_commit->super_roots,
2050                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2051 }
2052
2053 /*
2054  * this copies info out of the root backup array and back into
2055  * the in-memory super block.  It is meant to help iterate through
2056  * the array, so you send it the number of backups you've already
2057  * tried and the last backup index you used.
2058  *
2059  * this returns -1 when it has tried all the backups
2060  */
2061 static noinline int next_root_backup(struct btrfs_fs_info *info,
2062                                      struct btrfs_super_block *super,
2063                                      int *num_backups_tried, int *backup_index)
2064 {
2065         struct btrfs_root_backup *root_backup;
2066         int newest = *backup_index;
2067
2068         if (*num_backups_tried == 0) {
2069                 u64 gen = btrfs_super_generation(super);
2070
2071                 newest = find_newest_super_backup(info, gen);
2072                 if (newest == -1)
2073                         return -1;
2074
2075                 *backup_index = newest;
2076                 *num_backups_tried = 1;
2077         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2078                 /* we've tried all the backups, all done */
2079                 return -1;
2080         } else {
2081                 /* jump to the next oldest backup */
2082                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2083                         BTRFS_NUM_BACKUP_ROOTS;
2084                 *backup_index = newest;
2085                 *num_backups_tried += 1;
2086         }
2087         root_backup = super->super_roots + newest;
2088
2089         btrfs_set_super_generation(super,
2090                                    btrfs_backup_tree_root_gen(root_backup));
2091         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2092         btrfs_set_super_root_level(super,
2093                                    btrfs_backup_tree_root_level(root_backup));
2094         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2095
2096         /*
2097          * fixme: the total bytes and num_devices need to match or we should
2098          * need a fsck
2099          */
2100         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2101         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2102         return 0;
2103 }
2104
2105 /* helper to cleanup workers */
2106 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2107 {
2108         btrfs_destroy_workqueue(fs_info->fixup_workers);
2109         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2110         btrfs_destroy_workqueue(fs_info->workers);
2111         btrfs_destroy_workqueue(fs_info->endio_workers);
2112         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2113         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2114         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2115         btrfs_destroy_workqueue(fs_info->rmw_workers);
2116         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2117         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2118         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2119         btrfs_destroy_workqueue(fs_info->submit_workers);
2120         btrfs_destroy_workqueue(fs_info->delayed_workers);
2121         btrfs_destroy_workqueue(fs_info->caching_workers);
2122         btrfs_destroy_workqueue(fs_info->readahead_workers);
2123         btrfs_destroy_workqueue(fs_info->flush_workers);
2124         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2125         btrfs_destroy_workqueue(fs_info->extent_workers);
2126 }
2127
2128 static void free_root_extent_buffers(struct btrfs_root *root)
2129 {
2130         if (root) {
2131                 free_extent_buffer(root->node);
2132                 free_extent_buffer(root->commit_root);
2133                 root->node = NULL;
2134                 root->commit_root = NULL;
2135         }
2136 }
2137
2138 /* helper to cleanup tree roots */
2139 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2140 {
2141         free_root_extent_buffers(info->tree_root);
2142
2143         free_root_extent_buffers(info->dev_root);
2144         free_root_extent_buffers(info->extent_root);
2145         free_root_extent_buffers(info->csum_root);
2146         free_root_extent_buffers(info->quota_root);
2147         free_root_extent_buffers(info->uuid_root);
2148         if (chunk_root)
2149                 free_root_extent_buffers(info->chunk_root);
2150 }
2151
2152 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2153 {
2154         int ret;
2155         struct btrfs_root *gang[8];
2156         int i;
2157
2158         while (!list_empty(&fs_info->dead_roots)) {
2159                 gang[0] = list_entry(fs_info->dead_roots.next,
2160                                      struct btrfs_root, root_list);
2161                 list_del(&gang[0]->root_list);
2162
2163                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2164                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2165                 } else {
2166                         free_extent_buffer(gang[0]->node);
2167                         free_extent_buffer(gang[0]->commit_root);
2168                         btrfs_put_fs_root(gang[0]);
2169                 }
2170         }
2171
2172         while (1) {
2173                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2174                                              (void **)gang, 0,
2175                                              ARRAY_SIZE(gang));
2176                 if (!ret)
2177                         break;
2178                 for (i = 0; i < ret; i++)
2179                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2180         }
2181
2182         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2183                 btrfs_free_log_root_tree(NULL, fs_info);
2184                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2185                                             fs_info->pinned_extents);
2186         }
2187 }
2188
2189 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2190 {
2191         mutex_init(&fs_info->scrub_lock);
2192         atomic_set(&fs_info->scrubs_running, 0);
2193         atomic_set(&fs_info->scrub_pause_req, 0);
2194         atomic_set(&fs_info->scrubs_paused, 0);
2195         atomic_set(&fs_info->scrub_cancel_req, 0);
2196         init_waitqueue_head(&fs_info->scrub_pause_wait);
2197         fs_info->scrub_workers_refcnt = 0;
2198 }
2199
2200 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2201 {
2202         spin_lock_init(&fs_info->balance_lock);
2203         mutex_init(&fs_info->balance_mutex);
2204         atomic_set(&fs_info->balance_running, 0);
2205         atomic_set(&fs_info->balance_pause_req, 0);
2206         atomic_set(&fs_info->balance_cancel_req, 0);
2207         fs_info->balance_ctl = NULL;
2208         init_waitqueue_head(&fs_info->balance_wait_q);
2209 }
2210
2211 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2212                                    struct btrfs_root *tree_root)
2213 {
2214         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2215         set_nlink(fs_info->btree_inode, 1);
2216         /*
2217          * we set the i_size on the btree inode to the max possible int.
2218          * the real end of the address space is determined by all of
2219          * the devices in the system
2220          */
2221         fs_info->btree_inode->i_size = OFFSET_MAX;
2222         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2223
2224         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2225         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2226                              fs_info->btree_inode->i_mapping);
2227         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2228         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2229
2230         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2231
2232         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2233         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2234                sizeof(struct btrfs_key));
2235         set_bit(BTRFS_INODE_DUMMY,
2236                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2237         btrfs_insert_inode_hash(fs_info->btree_inode);
2238 }
2239
2240 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2241 {
2242         fs_info->dev_replace.lock_owner = 0;
2243         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2244         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2245         mutex_init(&fs_info->dev_replace.lock_management_lock);
2246         mutex_init(&fs_info->dev_replace.lock);
2247         init_waitqueue_head(&fs_info->replace_wait);
2248 }
2249
2250 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2251 {
2252         spin_lock_init(&fs_info->qgroup_lock);
2253         mutex_init(&fs_info->qgroup_ioctl_lock);
2254         fs_info->qgroup_tree = RB_ROOT;
2255         fs_info->qgroup_op_tree = RB_ROOT;
2256         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2257         fs_info->qgroup_seq = 1;
2258         fs_info->quota_enabled = 0;
2259         fs_info->pending_quota_state = 0;
2260         fs_info->qgroup_ulist = NULL;
2261         mutex_init(&fs_info->qgroup_rescan_lock);
2262 }
2263
2264 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2265                 struct btrfs_fs_devices *fs_devices)
2266 {
2267         int max_active = fs_info->thread_pool_size;
2268         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2269
2270         fs_info->workers =
2271                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2272                                       max_active, 16);
2273
2274         fs_info->delalloc_workers =
2275                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2276
2277         fs_info->flush_workers =
2278                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2279
2280         fs_info->caching_workers =
2281                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2282
2283         /*
2284          * a higher idle thresh on the submit workers makes it much more
2285          * likely that bios will be send down in a sane order to the
2286          * devices
2287          */
2288         fs_info->submit_workers =
2289                 btrfs_alloc_workqueue("submit", flags,
2290                                       min_t(u64, fs_devices->num_devices,
2291                                             max_active), 64);
2292
2293         fs_info->fixup_workers =
2294                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2295
2296         /*
2297          * endios are largely parallel and should have a very
2298          * low idle thresh
2299          */
2300         fs_info->endio_workers =
2301                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2302         fs_info->endio_meta_workers =
2303                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2304         fs_info->endio_meta_write_workers =
2305                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2306         fs_info->endio_raid56_workers =
2307                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2308         fs_info->endio_repair_workers =
2309                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2310         fs_info->rmw_workers =
2311                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2312         fs_info->endio_write_workers =
2313                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2314         fs_info->endio_freespace_worker =
2315                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2316         fs_info->delayed_workers =
2317                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2318         fs_info->readahead_workers =
2319                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2320         fs_info->qgroup_rescan_workers =
2321                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2322         fs_info->extent_workers =
2323                 btrfs_alloc_workqueue("extent-refs", flags,
2324                                       min_t(u64, fs_devices->num_devices,
2325                                             max_active), 8);
2326
2327         if (!(fs_info->workers && fs_info->delalloc_workers &&
2328               fs_info->submit_workers && fs_info->flush_workers &&
2329               fs_info->endio_workers && fs_info->endio_meta_workers &&
2330               fs_info->endio_meta_write_workers &&
2331               fs_info->endio_repair_workers &&
2332               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2333               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2334               fs_info->caching_workers && fs_info->readahead_workers &&
2335               fs_info->fixup_workers && fs_info->delayed_workers &&
2336               fs_info->extent_workers &&
2337               fs_info->qgroup_rescan_workers)) {
2338                 return -ENOMEM;
2339         }
2340
2341         return 0;
2342 }
2343
2344 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2345                             struct btrfs_fs_devices *fs_devices)
2346 {
2347         int ret;
2348         struct btrfs_root *tree_root = fs_info->tree_root;
2349         struct btrfs_root *log_tree_root;
2350         struct btrfs_super_block *disk_super = fs_info->super_copy;
2351         u64 bytenr = btrfs_super_log_root(disk_super);
2352
2353         if (fs_devices->rw_devices == 0) {
2354                 btrfs_warn(fs_info, "log replay required on RO media");
2355                 return -EIO;
2356         }
2357
2358         log_tree_root = btrfs_alloc_root(fs_info);
2359         if (!log_tree_root)
2360                 return -ENOMEM;
2361
2362         __setup_root(tree_root->nodesize, tree_root->sectorsize,
2363                         tree_root->stripesize, log_tree_root, fs_info,
2364                         BTRFS_TREE_LOG_OBJECTID);
2365
2366         log_tree_root->node = read_tree_block(tree_root, bytenr,
2367                         fs_info->generation + 1);
2368         if (IS_ERR(log_tree_root->node)) {
2369                 btrfs_warn(fs_info, "failed to read log tree");
2370                 ret = PTR_ERR(log_tree_root->node);
2371                 kfree(log_tree_root);
2372                 return ret;
2373         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2374                 btrfs_err(fs_info, "failed to read log tree");
2375                 free_extent_buffer(log_tree_root->node);
2376                 kfree(log_tree_root);
2377                 return -EIO;
2378         }
2379         /* returns with log_tree_root freed on success */
2380         ret = btrfs_recover_log_trees(log_tree_root);
2381         if (ret) {
2382                 btrfs_std_error(tree_root->fs_info, ret,
2383                             "Failed to recover log tree");
2384                 free_extent_buffer(log_tree_root->node);
2385                 kfree(log_tree_root);
2386                 return ret;
2387         }
2388
2389         if (fs_info->sb->s_flags & MS_RDONLY) {
2390                 ret = btrfs_commit_super(tree_root);
2391                 if (ret)
2392                         return ret;
2393         }
2394
2395         return 0;
2396 }
2397
2398 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2399                             struct btrfs_root *tree_root)
2400 {
2401         struct btrfs_root *root;
2402         struct btrfs_key location;
2403         int ret;
2404
2405         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2406         location.type = BTRFS_ROOT_ITEM_KEY;
2407         location.offset = 0;
2408
2409         root = btrfs_read_tree_root(tree_root, &location);
2410         if (IS_ERR(root))
2411                 return PTR_ERR(root);
2412         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2413         fs_info->extent_root = root;
2414
2415         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2416         root = btrfs_read_tree_root(tree_root, &location);
2417         if (IS_ERR(root))
2418                 return PTR_ERR(root);
2419         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2420         fs_info->dev_root = root;
2421         btrfs_init_devices_late(fs_info);
2422
2423         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2424         root = btrfs_read_tree_root(tree_root, &location);
2425         if (IS_ERR(root))
2426                 return PTR_ERR(root);
2427         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2428         fs_info->csum_root = root;
2429
2430         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2431         root = btrfs_read_tree_root(tree_root, &location);
2432         if (!IS_ERR(root)) {
2433                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2434                 fs_info->quota_enabled = 1;
2435                 fs_info->pending_quota_state = 1;
2436                 fs_info->quota_root = root;
2437         }
2438
2439         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2440         root = btrfs_read_tree_root(tree_root, &location);
2441         if (IS_ERR(root)) {
2442                 ret = PTR_ERR(root);
2443                 if (ret != -ENOENT)
2444                         return ret;
2445         } else {
2446                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2447                 fs_info->uuid_root = root;
2448         }
2449
2450         return 0;
2451 }
2452
2453 int open_ctree(struct super_block *sb,
2454                struct btrfs_fs_devices *fs_devices,
2455                char *options)
2456 {
2457         u32 sectorsize;
2458         u32 nodesize;
2459         u32 stripesize;
2460         u64 generation;
2461         u64 features;
2462         struct btrfs_key location;
2463         struct buffer_head *bh;
2464         struct btrfs_super_block *disk_super;
2465         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2466         struct btrfs_root *tree_root;
2467         struct btrfs_root *chunk_root;
2468         int ret;
2469         int err = -EINVAL;
2470         int num_backups_tried = 0;
2471         int backup_index = 0;
2472         int max_active;
2473
2474         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2475         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2476         if (!tree_root || !chunk_root) {
2477                 err = -ENOMEM;
2478                 goto fail;
2479         }
2480
2481         ret = init_srcu_struct(&fs_info->subvol_srcu);
2482         if (ret) {
2483                 err = ret;
2484                 goto fail;
2485         }
2486
2487         ret = setup_bdi(fs_info, &fs_info->bdi);
2488         if (ret) {
2489                 err = ret;
2490                 goto fail_srcu;
2491         }
2492
2493         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2494         if (ret) {
2495                 err = ret;
2496                 goto fail_bdi;
2497         }
2498         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2499                                         (1 + ilog2(nr_cpu_ids));
2500
2501         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2502         if (ret) {
2503                 err = ret;
2504                 goto fail_dirty_metadata_bytes;
2505         }
2506
2507         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2508         if (ret) {
2509                 err = ret;
2510                 goto fail_delalloc_bytes;
2511         }
2512
2513         fs_info->btree_inode = new_inode(sb);
2514         if (!fs_info->btree_inode) {
2515                 err = -ENOMEM;
2516                 goto fail_bio_counter;
2517         }
2518
2519         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2520
2521         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2522         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2523         INIT_LIST_HEAD(&fs_info->trans_list);
2524         INIT_LIST_HEAD(&fs_info->dead_roots);
2525         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2526         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2527         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2528         spin_lock_init(&fs_info->delalloc_root_lock);
2529         spin_lock_init(&fs_info->trans_lock);
2530         spin_lock_init(&fs_info->fs_roots_radix_lock);
2531         spin_lock_init(&fs_info->delayed_iput_lock);
2532         spin_lock_init(&fs_info->defrag_inodes_lock);
2533         spin_lock_init(&fs_info->free_chunk_lock);
2534         spin_lock_init(&fs_info->tree_mod_seq_lock);
2535         spin_lock_init(&fs_info->super_lock);
2536         spin_lock_init(&fs_info->qgroup_op_lock);
2537         spin_lock_init(&fs_info->buffer_lock);
2538         spin_lock_init(&fs_info->unused_bgs_lock);
2539         rwlock_init(&fs_info->tree_mod_log_lock);
2540         mutex_init(&fs_info->unused_bg_unpin_mutex);
2541         mutex_init(&fs_info->delete_unused_bgs_mutex);
2542         mutex_init(&fs_info->reloc_mutex);
2543         mutex_init(&fs_info->delalloc_root_mutex);
2544         seqlock_init(&fs_info->profiles_lock);
2545         init_rwsem(&fs_info->delayed_iput_sem);
2546
2547         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2548         INIT_LIST_HEAD(&fs_info->space_info);
2549         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2550         INIT_LIST_HEAD(&fs_info->unused_bgs);
2551         btrfs_mapping_init(&fs_info->mapping_tree);
2552         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2553                              BTRFS_BLOCK_RSV_GLOBAL);
2554         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2555                              BTRFS_BLOCK_RSV_DELALLOC);
2556         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2557         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2558         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2559         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2560                              BTRFS_BLOCK_RSV_DELOPS);
2561         atomic_set(&fs_info->nr_async_submits, 0);
2562         atomic_set(&fs_info->async_delalloc_pages, 0);
2563         atomic_set(&fs_info->async_submit_draining, 0);
2564         atomic_set(&fs_info->nr_async_bios, 0);
2565         atomic_set(&fs_info->defrag_running, 0);
2566         atomic_set(&fs_info->qgroup_op_seq, 0);
2567         atomic64_set(&fs_info->tree_mod_seq, 0);
2568         fs_info->sb = sb;
2569         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2570         fs_info->metadata_ratio = 0;
2571         fs_info->defrag_inodes = RB_ROOT;
2572         fs_info->free_chunk_space = 0;
2573         fs_info->tree_mod_log = RB_ROOT;
2574         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2575         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2576         /* readahead state */
2577         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2578         spin_lock_init(&fs_info->reada_lock);
2579
2580         fs_info->thread_pool_size = min_t(unsigned long,
2581                                           num_online_cpus() + 2, 8);
2582
2583         INIT_LIST_HEAD(&fs_info->ordered_roots);
2584         spin_lock_init(&fs_info->ordered_root_lock);
2585         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2586                                         GFP_NOFS);
2587         if (!fs_info->delayed_root) {
2588                 err = -ENOMEM;
2589                 goto fail_iput;
2590         }
2591         btrfs_init_delayed_root(fs_info->delayed_root);
2592
2593         btrfs_init_scrub(fs_info);
2594 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2595         fs_info->check_integrity_print_mask = 0;
2596 #endif
2597         btrfs_init_balance(fs_info);
2598         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2599
2600         sb->s_blocksize = 4096;
2601         sb->s_blocksize_bits = blksize_bits(4096);
2602         sb->s_bdi = &fs_info->bdi;
2603
2604         btrfs_init_btree_inode(fs_info, tree_root);
2605
2606         spin_lock_init(&fs_info->block_group_cache_lock);
2607         fs_info->block_group_cache_tree = RB_ROOT;
2608         fs_info->first_logical_byte = (u64)-1;
2609
2610         extent_io_tree_init(&fs_info->freed_extents[0],
2611                              fs_info->btree_inode->i_mapping);
2612         extent_io_tree_init(&fs_info->freed_extents[1],
2613                              fs_info->btree_inode->i_mapping);
2614         fs_info->pinned_extents = &fs_info->freed_extents[0];
2615         fs_info->do_barriers = 1;
2616
2617
2618         mutex_init(&fs_info->ordered_operations_mutex);
2619         mutex_init(&fs_info->tree_log_mutex);
2620         mutex_init(&fs_info->chunk_mutex);
2621         mutex_init(&fs_info->transaction_kthread_mutex);
2622         mutex_init(&fs_info->cleaner_mutex);
2623         mutex_init(&fs_info->volume_mutex);
2624         mutex_init(&fs_info->ro_block_group_mutex);
2625         init_rwsem(&fs_info->commit_root_sem);
2626         init_rwsem(&fs_info->cleanup_work_sem);
2627         init_rwsem(&fs_info->subvol_sem);
2628         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2629
2630         btrfs_init_dev_replace_locks(fs_info);
2631         btrfs_init_qgroup(fs_info);
2632
2633         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2634         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2635
2636         init_waitqueue_head(&fs_info->transaction_throttle);
2637         init_waitqueue_head(&fs_info->transaction_wait);
2638         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2639         init_waitqueue_head(&fs_info->async_submit_wait);
2640
2641         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2642
2643         ret = btrfs_alloc_stripe_hash_table(fs_info);
2644         if (ret) {
2645                 err = ret;
2646                 goto fail_alloc;
2647         }
2648
2649         __setup_root(4096, 4096, 4096, tree_root,
2650                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2651
2652         invalidate_bdev(fs_devices->latest_bdev);
2653
2654         /*
2655          * Read super block and check the signature bytes only
2656          */
2657         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2658         if (IS_ERR(bh)) {
2659                 err = PTR_ERR(bh);
2660                 goto fail_alloc;
2661         }
2662
2663         /*
2664          * We want to check superblock checksum, the type is stored inside.
2665          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2666          */
2667         if (btrfs_check_super_csum(bh->b_data)) {
2668                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2669                 err = -EINVAL;
2670                 goto fail_alloc;
2671         }
2672
2673         /*
2674          * super_copy is zeroed at allocation time and we never touch the
2675          * following bytes up to INFO_SIZE, the checksum is calculated from
2676          * the whole block of INFO_SIZE
2677          */
2678         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2679         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2680                sizeof(*fs_info->super_for_commit));
2681         brelse(bh);
2682
2683         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2684
2685         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2686         if (ret) {
2687                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2688                 err = -EINVAL;
2689                 goto fail_alloc;
2690         }
2691
2692         disk_super = fs_info->super_copy;
2693         if (!btrfs_super_root(disk_super))
2694                 goto fail_alloc;
2695
2696         /* check FS state, whether FS is broken. */
2697         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2698                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2699
2700         /*
2701          * run through our array of backup supers and setup
2702          * our ring pointer to the oldest one
2703          */
2704         generation = btrfs_super_generation(disk_super);
2705         find_oldest_super_backup(fs_info, generation);
2706
2707         /*
2708          * In the long term, we'll store the compression type in the super
2709          * block, and it'll be used for per file compression control.
2710          */
2711         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2712
2713         ret = btrfs_parse_options(tree_root, options);
2714         if (ret) {
2715                 err = ret;
2716                 goto fail_alloc;
2717         }
2718
2719         features = btrfs_super_incompat_flags(disk_super) &
2720                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2721         if (features) {
2722                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2723                        "unsupported optional features (%Lx).\n",
2724                        features);
2725                 err = -EINVAL;
2726                 goto fail_alloc;
2727         }
2728
2729         /*
2730          * Leafsize and nodesize were always equal, this is only a sanity check.
2731          */
2732         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2733             btrfs_super_nodesize(disk_super)) {
2734                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2735                        "blocksizes don't match.  node %d leaf %d\n",
2736                        btrfs_super_nodesize(disk_super),
2737                        le32_to_cpu(disk_super->__unused_leafsize));
2738                 err = -EINVAL;
2739                 goto fail_alloc;
2740         }
2741         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2742                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2743                        "blocksize (%d) was too large\n",
2744                        btrfs_super_nodesize(disk_super));
2745                 err = -EINVAL;
2746                 goto fail_alloc;
2747         }
2748
2749         features = btrfs_super_incompat_flags(disk_super);
2750         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2751         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2752                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2753
2754         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2755                 printk(KERN_INFO "BTRFS: has skinny extents\n");
2756
2757         /*
2758          * flag our filesystem as having big metadata blocks if
2759          * they are bigger than the page size
2760          */
2761         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2762                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2763                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2764                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2765         }
2766
2767         nodesize = btrfs_super_nodesize(disk_super);
2768         sectorsize = btrfs_super_sectorsize(disk_super);
2769         stripesize = btrfs_super_stripesize(disk_super);
2770         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2771         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2772
2773         /*
2774          * mixed block groups end up with duplicate but slightly offset
2775          * extent buffers for the same range.  It leads to corruptions
2776          */
2777         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2778             (sectorsize != nodesize)) {
2779                 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2780                                 "are not allowed for mixed block groups on %s\n",
2781                                 sb->s_id);
2782                 goto fail_alloc;
2783         }
2784
2785         /*
2786          * Needn't use the lock because there is no other task which will
2787          * update the flag.
2788          */
2789         btrfs_set_super_incompat_flags(disk_super, features);
2790
2791         features = btrfs_super_compat_ro_flags(disk_super) &
2792                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2793         if (!(sb->s_flags & MS_RDONLY) && features) {
2794                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2795                        "unsupported option features (%Lx).\n",
2796                        features);
2797                 err = -EINVAL;
2798                 goto fail_alloc;
2799         }
2800
2801         max_active = fs_info->thread_pool_size;
2802
2803         ret = btrfs_init_workqueues(fs_info, fs_devices);
2804         if (ret) {
2805                 err = ret;
2806                 goto fail_sb_buffer;
2807         }
2808
2809         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2810         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2811                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2812
2813         tree_root->nodesize = nodesize;
2814         tree_root->sectorsize = sectorsize;
2815         tree_root->stripesize = stripesize;
2816
2817         sb->s_blocksize = sectorsize;
2818         sb->s_blocksize_bits = blksize_bits(sectorsize);
2819
2820         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2821                 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2822                 goto fail_sb_buffer;
2823         }
2824
2825         if (sectorsize != PAGE_SIZE) {
2826                 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2827                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2828                 goto fail_sb_buffer;
2829         }
2830
2831         mutex_lock(&fs_info->chunk_mutex);
2832         ret = btrfs_read_sys_array(tree_root);
2833         mutex_unlock(&fs_info->chunk_mutex);
2834         if (ret) {
2835                 printk(KERN_ERR "BTRFS: failed to read the system "
2836                        "array on %s\n", sb->s_id);
2837                 goto fail_sb_buffer;
2838         }
2839
2840         generation = btrfs_super_chunk_root_generation(disk_super);
2841
2842         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2843                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2844
2845         chunk_root->node = read_tree_block(chunk_root,
2846                                            btrfs_super_chunk_root(disk_super),
2847                                            generation);
2848         if (IS_ERR(chunk_root->node) ||
2849             !extent_buffer_uptodate(chunk_root->node)) {
2850                 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2851                        sb->s_id);
2852                 if (!IS_ERR(chunk_root->node))
2853                         free_extent_buffer(chunk_root->node);
2854                 chunk_root->node = NULL;
2855                 goto fail_tree_roots;
2856         }
2857         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2858         chunk_root->commit_root = btrfs_root_node(chunk_root);
2859
2860         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2861            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2862
2863         ret = btrfs_read_chunk_tree(chunk_root);
2864         if (ret) {
2865                 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2866                        sb->s_id);
2867                 goto fail_tree_roots;
2868         }
2869
2870         /*
2871          * keep the device that is marked to be the target device for the
2872          * dev_replace procedure
2873          */
2874         btrfs_close_extra_devices(fs_devices, 0);
2875
2876         if (!fs_devices->latest_bdev) {
2877                 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2878                        sb->s_id);
2879                 goto fail_tree_roots;
2880         }
2881
2882 retry_root_backup:
2883         generation = btrfs_super_generation(disk_super);
2884
2885         tree_root->node = read_tree_block(tree_root,
2886                                           btrfs_super_root(disk_super),
2887                                           generation);
2888         if (IS_ERR(tree_root->node) ||
2889             !extent_buffer_uptodate(tree_root->node)) {
2890                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2891                        sb->s_id);
2892                 if (!IS_ERR(tree_root->node))
2893                         free_extent_buffer(tree_root->node);
2894                 tree_root->node = NULL;
2895                 goto recovery_tree_root;
2896         }
2897
2898         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2899         tree_root->commit_root = btrfs_root_node(tree_root);
2900         btrfs_set_root_refs(&tree_root->root_item, 1);
2901
2902         ret = btrfs_read_roots(fs_info, tree_root);
2903         if (ret)
2904                 goto recovery_tree_root;
2905
2906         fs_info->generation = generation;
2907         fs_info->last_trans_committed = generation;
2908
2909         ret = btrfs_recover_balance(fs_info);
2910         if (ret) {
2911                 printk(KERN_ERR "BTRFS: failed to recover balance\n");
2912                 goto fail_block_groups;
2913         }
2914
2915         ret = btrfs_init_dev_stats(fs_info);
2916         if (ret) {
2917                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2918                        ret);
2919                 goto fail_block_groups;
2920         }
2921
2922         ret = btrfs_init_dev_replace(fs_info);
2923         if (ret) {
2924                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2925                 goto fail_block_groups;
2926         }
2927
2928         btrfs_close_extra_devices(fs_devices, 1);
2929
2930         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2931         if (ret) {
2932                 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2933                 goto fail_block_groups;
2934         }
2935
2936         ret = btrfs_sysfs_add_device(fs_devices);
2937         if (ret) {
2938                 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2939                 goto fail_fsdev_sysfs;
2940         }
2941
2942         ret = btrfs_sysfs_add_mounted(fs_info);
2943         if (ret) {
2944                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2945                 goto fail_fsdev_sysfs;
2946         }
2947
2948         ret = btrfs_init_space_info(fs_info);
2949         if (ret) {
2950                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2951                 goto fail_sysfs;
2952         }
2953
2954         ret = btrfs_read_block_groups(fs_info->extent_root);
2955         if (ret) {
2956                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2957                 goto fail_sysfs;
2958         }
2959         fs_info->num_tolerated_disk_barrier_failures =
2960                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2961         if (fs_info->fs_devices->missing_devices >
2962              fs_info->num_tolerated_disk_barrier_failures &&
2963             !(sb->s_flags & MS_RDONLY)) {
2964                 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2965                         fs_info->fs_devices->missing_devices,
2966                         fs_info->num_tolerated_disk_barrier_failures);
2967                 goto fail_sysfs;
2968         }
2969
2970         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2971                                                "btrfs-cleaner");
2972         if (IS_ERR(fs_info->cleaner_kthread))
2973                 goto fail_sysfs;
2974
2975         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2976                                                    tree_root,
2977                                                    "btrfs-transaction");
2978         if (IS_ERR(fs_info->transaction_kthread))
2979                 goto fail_cleaner;
2980
2981         if (!btrfs_test_opt(tree_root, SSD) &&
2982             !btrfs_test_opt(tree_root, NOSSD) &&
2983             !fs_info->fs_devices->rotating) {
2984                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2985                        "mode\n");
2986                 btrfs_set_opt(fs_info->mount_opt, SSD);
2987         }
2988
2989         /*
2990          * Mount does not set all options immediatelly, we can do it now and do
2991          * not have to wait for transaction commit
2992          */
2993         btrfs_apply_pending_changes(fs_info);
2994
2995 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2996         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2997                 ret = btrfsic_mount(tree_root, fs_devices,
2998                                     btrfs_test_opt(tree_root,
2999                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3000                                     1 : 0,
3001                                     fs_info->check_integrity_print_mask);
3002                 if (ret)
3003                         printk(KERN_WARNING "BTRFS: failed to initialize"
3004                                " integrity check module %s\n", sb->s_id);
3005         }
3006 #endif
3007         ret = btrfs_read_qgroup_config(fs_info);
3008         if (ret)
3009                 goto fail_trans_kthread;
3010
3011         /* do not make disk changes in broken FS */
3012         if (btrfs_super_log_root(disk_super) != 0) {
3013                 ret = btrfs_replay_log(fs_info, fs_devices);
3014                 if (ret) {
3015                         err = ret;
3016                         goto fail_qgroup;
3017                 }
3018         }
3019
3020         ret = btrfs_find_orphan_roots(tree_root);
3021         if (ret)
3022                 goto fail_qgroup;
3023
3024         if (!(sb->s_flags & MS_RDONLY)) {
3025                 ret = btrfs_cleanup_fs_roots(fs_info);
3026                 if (ret)
3027                         goto fail_qgroup;
3028
3029                 mutex_lock(&fs_info->cleaner_mutex);
3030                 ret = btrfs_recover_relocation(tree_root);
3031                 mutex_unlock(&fs_info->cleaner_mutex);
3032                 if (ret < 0) {
3033                         printk(KERN_WARNING
3034                                "BTRFS: failed to recover relocation\n");
3035                         err = -EINVAL;
3036                         goto fail_qgroup;
3037                 }
3038         }
3039
3040         location.objectid = BTRFS_FS_TREE_OBJECTID;
3041         location.type = BTRFS_ROOT_ITEM_KEY;
3042         location.offset = 0;
3043
3044         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3045         if (IS_ERR(fs_info->fs_root)) {
3046                 err = PTR_ERR(fs_info->fs_root);
3047                 goto fail_qgroup;
3048         }
3049
3050         if (sb->s_flags & MS_RDONLY)
3051                 return 0;
3052
3053         down_read(&fs_info->cleanup_work_sem);
3054         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3055             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3056                 up_read(&fs_info->cleanup_work_sem);
3057                 close_ctree(tree_root);
3058                 return ret;
3059         }
3060         up_read(&fs_info->cleanup_work_sem);
3061
3062         ret = btrfs_resume_balance_async(fs_info);
3063         if (ret) {
3064                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3065                 close_ctree(tree_root);
3066                 return ret;
3067         }
3068
3069         ret = btrfs_resume_dev_replace_async(fs_info);
3070         if (ret) {
3071                 pr_warn("BTRFS: failed to resume dev_replace\n");
3072                 close_ctree(tree_root);
3073                 return ret;
3074         }
3075
3076         btrfs_qgroup_rescan_resume(fs_info);
3077
3078         if (!fs_info->uuid_root) {
3079                 pr_info("BTRFS: creating UUID tree\n");
3080                 ret = btrfs_create_uuid_tree(fs_info);
3081                 if (ret) {
3082                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
3083                                 ret);
3084                         close_ctree(tree_root);
3085                         return ret;
3086                 }
3087         } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3088                    fs_info->generation !=
3089                                 btrfs_super_uuid_tree_generation(disk_super)) {
3090                 pr_info("BTRFS: checking UUID tree\n");
3091                 ret = btrfs_check_uuid_tree(fs_info);
3092                 if (ret) {
3093                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
3094                                 ret);
3095                         close_ctree(tree_root);
3096                         return ret;
3097                 }
3098         } else {
3099                 fs_info->update_uuid_tree_gen = 1;
3100         }
3101
3102         fs_info->open = 1;
3103
3104         return 0;
3105
3106 fail_qgroup:
3107         btrfs_free_qgroup_config(fs_info);
3108 fail_trans_kthread:
3109         kthread_stop(fs_info->transaction_kthread);
3110         btrfs_cleanup_transaction(fs_info->tree_root);
3111         btrfs_free_fs_roots(fs_info);
3112 fail_cleaner:
3113         kthread_stop(fs_info->cleaner_kthread);
3114
3115         /*
3116          * make sure we're done with the btree inode before we stop our
3117          * kthreads
3118          */
3119         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3120
3121 fail_sysfs:
3122         btrfs_sysfs_remove_mounted(fs_info);
3123
3124 fail_fsdev_sysfs:
3125         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3126
3127 fail_block_groups:
3128         btrfs_put_block_group_cache(fs_info);
3129         btrfs_free_block_groups(fs_info);
3130
3131 fail_tree_roots:
3132         free_root_pointers(fs_info, 1);
3133         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3134
3135 fail_sb_buffer:
3136         btrfs_stop_all_workers(fs_info);
3137 fail_alloc:
3138 fail_iput:
3139         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3140
3141         iput(fs_info->btree_inode);
3142 fail_bio_counter:
3143         percpu_counter_destroy(&fs_info->bio_counter);
3144 fail_delalloc_bytes:
3145         percpu_counter_destroy(&fs_info->delalloc_bytes);
3146 fail_dirty_metadata_bytes:
3147         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3148 fail_bdi:
3149         bdi_destroy(&fs_info->bdi);
3150 fail_srcu:
3151         cleanup_srcu_struct(&fs_info->subvol_srcu);
3152 fail:
3153         btrfs_free_stripe_hash_table(fs_info);
3154         btrfs_close_devices(fs_info->fs_devices);
3155         return err;
3156
3157 recovery_tree_root:
3158         if (!btrfs_test_opt(tree_root, RECOVERY))
3159                 goto fail_tree_roots;
3160
3161         free_root_pointers(fs_info, 0);
3162
3163         /* don't use the log in recovery mode, it won't be valid */
3164         btrfs_set_super_log_root(disk_super, 0);
3165
3166         /* we can't trust the free space cache either */
3167         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3168
3169         ret = next_root_backup(fs_info, fs_info->super_copy,
3170                                &num_backups_tried, &backup_index);
3171         if (ret == -1)
3172                 goto fail_block_groups;
3173         goto retry_root_backup;
3174 }
3175
3176 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3177 {
3178         if (uptodate) {
3179                 set_buffer_uptodate(bh);
3180         } else {
3181                 struct btrfs_device *device = (struct btrfs_device *)
3182                         bh->b_private;
3183
3184                 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3185                                 "lost page write due to IO error on %s",
3186                                           rcu_str_deref(device->name));
3187                 /* note, we dont' set_buffer_write_io_error because we have
3188                  * our own ways of dealing with the IO errors
3189                  */
3190                 clear_buffer_uptodate(bh);
3191                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3192         }
3193         unlock_buffer(bh);
3194         put_bh(bh);
3195 }
3196
3197 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3198                         struct buffer_head **bh_ret)
3199 {
3200         struct buffer_head *bh;
3201         struct btrfs_super_block *super;
3202         u64 bytenr;
3203
3204         bytenr = btrfs_sb_offset(copy_num);
3205         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3206                 return -EINVAL;
3207
3208         bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3209         /*
3210          * If we fail to read from the underlying devices, as of now
3211          * the best option we have is to mark it EIO.
3212          */
3213         if (!bh)
3214                 return -EIO;
3215
3216         super = (struct btrfs_super_block *)bh->b_data;
3217         if (btrfs_super_bytenr(super) != bytenr ||
3218                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3219                 brelse(bh);
3220                 return -EINVAL;
3221         }
3222
3223         *bh_ret = bh;
3224         return 0;
3225 }
3226
3227
3228 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3229 {
3230         struct buffer_head *bh;
3231         struct buffer_head *latest = NULL;
3232         struct btrfs_super_block *super;
3233         int i;
3234         u64 transid = 0;
3235         int ret = -EINVAL;
3236
3237         /* we would like to check all the supers, but that would make
3238          * a btrfs mount succeed after a mkfs from a different FS.
3239          * So, we need to add a special mount option to scan for
3240          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3241          */
3242         for (i = 0; i < 1; i++) {
3243                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3244                 if (ret)
3245                         continue;
3246
3247                 super = (struct btrfs_super_block *)bh->b_data;
3248
3249                 if (!latest || btrfs_super_generation(super) > transid) {
3250                         brelse(latest);
3251                         latest = bh;
3252                         transid = btrfs_super_generation(super);
3253                 } else {
3254                         brelse(bh);
3255                 }
3256         }
3257
3258         if (!latest)
3259                 return ERR_PTR(ret);
3260
3261         return latest;
3262 }
3263
3264 /*
3265  * this should be called twice, once with wait == 0 and
3266  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3267  * we write are pinned.
3268  *
3269  * They are released when wait == 1 is done.
3270  * max_mirrors must be the same for both runs, and it indicates how
3271  * many supers on this one device should be written.
3272  *
3273  * max_mirrors == 0 means to write them all.
3274  */
3275 static int write_dev_supers(struct btrfs_device *device,
3276                             struct btrfs_super_block *sb,
3277                             int do_barriers, int wait, int max_mirrors)
3278 {
3279         struct buffer_head *bh;
3280         int i;
3281         int ret;
3282         int errors = 0;
3283         u32 crc;
3284         u64 bytenr;
3285
3286         if (max_mirrors == 0)
3287                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3288
3289         for (i = 0; i < max_mirrors; i++) {
3290                 bytenr = btrfs_sb_offset(i);
3291                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3292                     device->commit_total_bytes)
3293                         break;
3294
3295                 if (wait) {
3296                         bh = __find_get_block(device->bdev, bytenr / 4096,
3297                                               BTRFS_SUPER_INFO_SIZE);
3298                         if (!bh) {
3299                                 errors++;
3300                                 continue;
3301                         }
3302                         wait_on_buffer(bh);
3303                         if (!buffer_uptodate(bh))
3304                                 errors++;
3305
3306                         /* drop our reference */
3307                         brelse(bh);
3308
3309                         /* drop the reference from the wait == 0 run */
3310                         brelse(bh);
3311                         continue;
3312                 } else {
3313                         btrfs_set_super_bytenr(sb, bytenr);
3314
3315                         crc = ~(u32)0;
3316                         crc = btrfs_csum_data((char *)sb +
3317                                               BTRFS_CSUM_SIZE, crc,
3318                                               BTRFS_SUPER_INFO_SIZE -
3319                                               BTRFS_CSUM_SIZE);
3320                         btrfs_csum_final(crc, sb->csum);
3321
3322                         /*
3323                          * one reference for us, and we leave it for the
3324                          * caller
3325                          */
3326                         bh = __getblk(device->bdev, bytenr / 4096,
3327                                       BTRFS_SUPER_INFO_SIZE);
3328                         if (!bh) {
3329                                 btrfs_err(device->dev_root->fs_info,
3330                                     "couldn't get super buffer head for bytenr %llu",
3331                                     bytenr);
3332                                 errors++;
3333                                 continue;
3334                         }
3335
3336                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3337
3338                         /* one reference for submit_bh */
3339                         get_bh(bh);
3340
3341                         set_buffer_uptodate(bh);
3342                         lock_buffer(bh);
3343                         bh->b_end_io = btrfs_end_buffer_write_sync;
3344                         bh->b_private = device;
3345                 }
3346
3347                 /*
3348                  * we fua the first super.  The others we allow
3349                  * to go down lazy.
3350                  */
3351                 if (i == 0)
3352                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3353                 else
3354                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3355                 if (ret)
3356                         errors++;
3357         }
3358         return errors < i ? 0 : -1;
3359 }
3360
3361 /*
3362  * endio for the write_dev_flush, this will wake anyone waiting
3363  * for the barrier when it is done
3364  */
3365 static void btrfs_end_empty_barrier(struct bio *bio)
3366 {
3367         if (bio->bi_private)
3368                 complete(bio->bi_private);
3369         bio_put(bio);
3370 }
3371
3372 /*
3373  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3374  * sent down.  With wait == 1, it waits for the previous flush.
3375  *
3376  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3377  * capable
3378  */
3379 static int write_dev_flush(struct btrfs_device *device, int wait)
3380 {
3381         struct bio *bio;
3382         int ret = 0;
3383
3384         if (device->nobarriers)
3385                 return 0;
3386
3387         if (wait) {
3388                 bio = device->flush_bio;
3389                 if (!bio)
3390                         return 0;
3391
3392                 wait_for_completion(&device->flush_wait);
3393
3394                 if (bio->bi_error) {
3395                         ret = bio->bi_error;
3396                         btrfs_dev_stat_inc_and_print(device,
3397                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3398                 }
3399
3400                 /* drop the reference from the wait == 0 run */
3401                 bio_put(bio);
3402                 device->flush_bio = NULL;
3403
3404                 return ret;
3405         }
3406
3407         /*
3408          * one reference for us, and we leave it for the
3409          * caller
3410          */
3411         device->flush_bio = NULL;
3412         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3413         if (!bio)
3414                 return -ENOMEM;
3415
3416         bio->bi_end_io = btrfs_end_empty_barrier;
3417         bio->bi_bdev = device->bdev;
3418         init_completion(&device->flush_wait);
3419         bio->bi_private = &device->flush_wait;
3420         device->flush_bio = bio;
3421
3422         bio_get(bio);
3423         btrfsic_submit_bio(WRITE_FLUSH, bio);
3424
3425         return 0;
3426 }
3427
3428 /*
3429  * send an empty flush down to each device in parallel,
3430  * then wait for them
3431  */
3432 static int barrier_all_devices(struct btrfs_fs_info *info)
3433 {
3434         struct list_head *head;
3435         struct btrfs_device *dev;
3436         int errors_send = 0;
3437         int errors_wait = 0;
3438         int ret;
3439
3440         /* send down all the barriers */
3441         head = &info->fs_devices->devices;
3442         list_for_each_entry_rcu(dev, head, dev_list) {
3443                 if (dev->missing)
3444                         continue;
3445                 if (!dev->bdev) {
3446                         errors_send++;
3447                         continue;
3448                 }
3449                 if (!dev->in_fs_metadata || !dev->writeable)
3450                         continue;
3451
3452                 ret = write_dev_flush(dev, 0);
3453                 if (ret)
3454                         errors_send++;
3455         }
3456
3457         /* wait for all the barriers */
3458         list_for_each_entry_rcu(dev, head, dev_list) {
3459                 if (dev->missing)
3460                         continue;
3461                 if (!dev->bdev) {
3462                         errors_wait++;
3463                         continue;
3464                 }
3465                 if (!dev->in_fs_metadata || !dev->writeable)
3466                         continue;
3467
3468                 ret = write_dev_flush(dev, 1);
3469                 if (ret)
3470                         errors_wait++;
3471         }
3472         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3473             errors_wait > info->num_tolerated_disk_barrier_failures)
3474                 return -EIO;
3475         return 0;
3476 }
3477
3478 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3479 {
3480         int raid_type;
3481         int min_tolerated = INT_MAX;
3482
3483         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3484             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3485                 min_tolerated = min(min_tolerated,
3486                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3487                                     tolerated_failures);
3488
3489         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3490                 if (raid_type == BTRFS_RAID_SINGLE)
3491                         continue;
3492                 if (!(flags & btrfs_raid_group[raid_type]))
3493                         continue;
3494                 min_tolerated = min(min_tolerated,
3495                                     btrfs_raid_array[raid_type].
3496                                     tolerated_failures);
3497         }
3498
3499         if (min_tolerated == INT_MAX) {
3500                 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3501                 min_tolerated = 0;
3502         }
3503
3504         return min_tolerated;
3505 }
3506
3507 int btrfs_calc_num_tolerated_disk_barrier_failures(
3508         struct btrfs_fs_info *fs_info)
3509 {
3510         struct btrfs_ioctl_space_info space;
3511         struct btrfs_space_info *sinfo;
3512         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3513                        BTRFS_BLOCK_GROUP_SYSTEM,
3514                        BTRFS_BLOCK_GROUP_METADATA,
3515                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3516         int i;
3517         int c;
3518         int num_tolerated_disk_barrier_failures =
3519                 (int)fs_info->fs_devices->num_devices;
3520
3521         for (i = 0; i < ARRAY_SIZE(types); i++) {
3522                 struct btrfs_space_info *tmp;
3523
3524                 sinfo = NULL;
3525                 rcu_read_lock();
3526                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3527                         if (tmp->flags == types[i]) {
3528                                 sinfo = tmp;
3529                                 break;
3530                         }
3531                 }
3532                 rcu_read_unlock();
3533
3534                 if (!sinfo)
3535                         continue;
3536
3537                 down_read(&sinfo->groups_sem);
3538                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3539                         u64 flags;
3540
3541                         if (list_empty(&sinfo->block_groups[c]))
3542                                 continue;
3543
3544                         btrfs_get_block_group_info(&sinfo->block_groups[c],
3545                                                    &space);
3546                         if (space.total_bytes == 0 || space.used_bytes == 0)
3547                                 continue;
3548                         flags = space.flags;
3549
3550                         num_tolerated_disk_barrier_failures = min(
3551                                 num_tolerated_disk_barrier_failures,
3552                                 btrfs_get_num_tolerated_disk_barrier_failures(
3553                                         flags));
3554                 }
3555                 up_read(&sinfo->groups_sem);
3556         }
3557
3558         return num_tolerated_disk_barrier_failures;
3559 }
3560
3561 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3562 {
3563         struct list_head *head;
3564         struct btrfs_device *dev;
3565         struct btrfs_super_block *sb;
3566         struct btrfs_dev_item *dev_item;
3567         int ret;
3568         int do_barriers;
3569         int max_errors;
3570         int total_errors = 0;
3571         u64 flags;
3572
3573         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3574         backup_super_roots(root->fs_info);
3575
3576         sb = root->fs_info->super_for_commit;
3577         dev_item = &sb->dev_item;
3578
3579         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3580         head = &root->fs_info->fs_devices->devices;
3581         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3582
3583         if (do_barriers) {
3584                 ret = barrier_all_devices(root->fs_info);
3585                 if (ret) {
3586                         mutex_unlock(
3587                                 &root->fs_info->fs_devices->device_list_mutex);
3588                         btrfs_std_error(root->fs_info, ret,
3589                                     "errors while submitting device barriers.");
3590                         return ret;
3591                 }
3592         }
3593
3594         list_for_each_entry_rcu(dev, head, dev_list) {
3595                 if (!dev->bdev) {
3596                         total_errors++;
3597                         continue;
3598                 }
3599                 if (!dev->in_fs_metadata || !dev->writeable)
3600                         continue;
3601
3602                 btrfs_set_stack_device_generation(dev_item, 0);
3603                 btrfs_set_stack_device_type(dev_item, dev->type);
3604                 btrfs_set_stack_device_id(dev_item, dev->devid);
3605                 btrfs_set_stack_device_total_bytes(dev_item,
3606                                                    dev->commit_total_bytes);
3607                 btrfs_set_stack_device_bytes_used(dev_item,
3608                                                   dev->commit_bytes_used);
3609                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3610                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3611                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3612                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3613                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3614
3615                 flags = btrfs_super_flags(sb);
3616                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3617
3618                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3619                 if (ret)
3620                         total_errors++;
3621         }
3622         if (total_errors > max_errors) {
3623                 btrfs_err(root->fs_info, "%d errors while writing supers",
3624                        total_errors);
3625                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3626
3627                 /* FUA is masked off if unsupported and can't be the reason */
3628                 btrfs_std_error(root->fs_info, -EIO,
3629                             "%d errors while writing supers", total_errors);
3630                 return -EIO;
3631         }
3632
3633         total_errors = 0;
3634         list_for_each_entry_rcu(dev, head, dev_list) {
3635                 if (!dev->bdev)
3636                         continue;
3637                 if (!dev->in_fs_metadata || !dev->writeable)
3638                         continue;
3639
3640                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3641                 if (ret)
3642                         total_errors++;
3643         }
3644         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3645         if (total_errors > max_errors) {
3646                 btrfs_std_error(root->fs_info, -EIO,
3647                             "%d errors while writing supers", total_errors);
3648                 return -EIO;
3649         }
3650         return 0;
3651 }
3652
3653 int write_ctree_super(struct btrfs_trans_handle *trans,
3654                       struct btrfs_root *root, int max_mirrors)
3655 {
3656         return write_all_supers(root, max_mirrors);
3657 }
3658
3659 /* Drop a fs root from the radix tree and free it. */
3660 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3661                                   struct btrfs_root *root)
3662 {
3663         spin_lock(&fs_info->fs_roots_radix_lock);
3664         radix_tree_delete(&fs_info->fs_roots_radix,
3665                           (unsigned long)root->root_key.objectid);
3666         spin_unlock(&fs_info->fs_roots_radix_lock);
3667
3668         if (btrfs_root_refs(&root->root_item) == 0)
3669                 synchronize_srcu(&fs_info->subvol_srcu);
3670
3671         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3672                 btrfs_free_log(NULL, root);
3673
3674         if (root->free_ino_pinned)
3675                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3676         if (root->free_ino_ctl)
3677                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3678         free_fs_root(root);
3679 }
3680
3681 static void free_fs_root(struct btrfs_root *root)
3682 {
3683         iput(root->ino_cache_inode);
3684         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3685         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3686         root->orphan_block_rsv = NULL;
3687         if (root->anon_dev)
3688                 free_anon_bdev(root->anon_dev);
3689         if (root->subv_writers)
3690                 btrfs_free_subvolume_writers(root->subv_writers);
3691         free_extent_buffer(root->node);
3692         free_extent_buffer(root->commit_root);
3693         kfree(root->free_ino_ctl);
3694         kfree(root->free_ino_pinned);
3695         kfree(root->name);
3696         btrfs_put_fs_root(root);
3697 }
3698
3699 void btrfs_free_fs_root(struct btrfs_root *root)
3700 {
3701         free_fs_root(root);
3702 }
3703
3704 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3705 {
3706         u64 root_objectid = 0;
3707         struct btrfs_root *gang[8];
3708         int i = 0;
3709         int err = 0;
3710         unsigned int ret = 0;
3711         int index;
3712
3713         while (1) {
3714                 index = srcu_read_lock(&fs_info->subvol_srcu);
3715                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3716                                              (void **)gang, root_objectid,
3717                                              ARRAY_SIZE(gang));
3718                 if (!ret) {
3719                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3720                         break;
3721                 }
3722                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3723
3724                 for (i = 0; i < ret; i++) {
3725                         /* Avoid to grab roots in dead_roots */
3726                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3727                                 gang[i] = NULL;
3728                                 continue;
3729                         }
3730                         /* grab all the search result for later use */
3731                         gang[i] = btrfs_grab_fs_root(gang[i]);
3732                 }
3733                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3734
3735                 for (i = 0; i < ret; i++) {
3736                         if (!gang[i])
3737                                 continue;
3738                         root_objectid = gang[i]->root_key.objectid;
3739                         err = btrfs_orphan_cleanup(gang[i]);
3740                         if (err)
3741                                 break;
3742                         btrfs_put_fs_root(gang[i]);
3743                 }
3744                 root_objectid++;
3745         }
3746
3747         /* release the uncleaned roots due to error */
3748         for (; i < ret; i++) {
3749                 if (gang[i])
3750                         btrfs_put_fs_root(gang[i]);
3751         }
3752         return err;
3753 }
3754
3755 int btrfs_commit_super(struct btrfs_root *root)
3756 {
3757         struct btrfs_trans_handle *trans;
3758
3759         mutex_lock(&root->fs_info->cleaner_mutex);
3760         btrfs_run_delayed_iputs(root);
3761         mutex_unlock(&root->fs_info->cleaner_mutex);
3762         wake_up_process(root->fs_info->cleaner_kthread);
3763
3764         /* wait until ongoing cleanup work done */
3765         down_write(&root->fs_info->cleanup_work_sem);
3766         up_write(&root->fs_info->cleanup_work_sem);
3767
3768         trans = btrfs_join_transaction(root);
3769         if (IS_ERR(trans))
3770                 return PTR_ERR(trans);
3771         return btrfs_commit_transaction(trans, root);
3772 }
3773
3774 void close_ctree(struct btrfs_root *root)
3775 {
3776         struct btrfs_fs_info *fs_info = root->fs_info;
3777         int ret;
3778
3779         fs_info->closing = 1;
3780         smp_mb();
3781
3782         /* wait for the qgroup rescan worker to stop */
3783         btrfs_qgroup_wait_for_completion(fs_info);
3784
3785         /* wait for the uuid_scan task to finish */
3786         down(&fs_info->uuid_tree_rescan_sem);
3787         /* avoid complains from lockdep et al., set sem back to initial state */
3788         up(&fs_info->uuid_tree_rescan_sem);
3789
3790         /* pause restriper - we want to resume on mount */
3791         btrfs_pause_balance(fs_info);
3792
3793         btrfs_dev_replace_suspend_for_unmount(fs_info);
3794
3795         btrfs_scrub_cancel(fs_info);
3796
3797         /* wait for any defraggers to finish */
3798         wait_event(fs_info->transaction_wait,
3799                    (atomic_read(&fs_info->defrag_running) == 0));
3800
3801         /* clear out the rbtree of defraggable inodes */
3802         btrfs_cleanup_defrag_inodes(fs_info);
3803
3804         cancel_work_sync(&fs_info->async_reclaim_work);
3805
3806         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3807                 /*
3808                  * If the cleaner thread is stopped and there are
3809                  * block groups queued for removal, the deletion will be
3810                  * skipped when we quit the cleaner thread.
3811                  */
3812                 btrfs_delete_unused_bgs(root->fs_info);
3813
3814                 ret = btrfs_commit_super(root);
3815                 if (ret)
3816                         btrfs_err(fs_info, "commit super ret %d", ret);
3817         }
3818
3819         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3820                 btrfs_error_commit_super(root);
3821
3822         kthread_stop(fs_info->transaction_kthread);
3823         kthread_stop(fs_info->cleaner_kthread);
3824
3825         fs_info->closing = 2;
3826         smp_mb();
3827
3828         btrfs_free_qgroup_config(fs_info);
3829
3830         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3831                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3832                        percpu_counter_sum(&fs_info->delalloc_bytes));
3833         }
3834
3835         btrfs_sysfs_remove_mounted(fs_info);
3836         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3837
3838         btrfs_free_fs_roots(fs_info);
3839
3840         btrfs_put_block_group_cache(fs_info);
3841
3842         btrfs_free_block_groups(fs_info);
3843
3844         /*
3845          * we must make sure there is not any read request to
3846          * submit after we stopping all workers.
3847          */
3848         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3849         btrfs_stop_all_workers(fs_info);
3850
3851         fs_info->open = 0;
3852         free_root_pointers(fs_info, 1);
3853
3854         iput(fs_info->btree_inode);
3855
3856 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3857         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3858                 btrfsic_unmount(root, fs_info->fs_devices);
3859 #endif
3860
3861         btrfs_close_devices(fs_info->fs_devices);
3862         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3863
3864         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3865         percpu_counter_destroy(&fs_info->delalloc_bytes);
3866         percpu_counter_destroy(&fs_info->bio_counter);
3867         bdi_destroy(&fs_info->bdi);
3868         cleanup_srcu_struct(&fs_info->subvol_srcu);
3869
3870         btrfs_free_stripe_hash_table(fs_info);
3871
3872         __btrfs_free_block_rsv(root->orphan_block_rsv);
3873         root->orphan_block_rsv = NULL;
3874
3875         lock_chunks(root);
3876         while (!list_empty(&fs_info->pinned_chunks)) {
3877                 struct extent_map *em;
3878
3879                 em = list_first_entry(&fs_info->pinned_chunks,
3880                                       struct extent_map, list);
3881                 list_del_init(&em->list);
3882                 free_extent_map(em);
3883         }
3884         unlock_chunks(root);
3885 }
3886
3887 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3888                           int atomic)
3889 {
3890         int ret;
3891         struct inode *btree_inode = buf->pages[0]->mapping->host;
3892
3893         ret = extent_buffer_uptodate(buf);
3894         if (!ret)
3895                 return ret;
3896
3897         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3898                                     parent_transid, atomic);
3899         if (ret == -EAGAIN)
3900                 return ret;
3901         return !ret;
3902 }
3903
3904 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3905 {
3906         return set_extent_buffer_uptodate(buf);
3907 }
3908
3909 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3910 {
3911         struct btrfs_root *root;
3912         u64 transid = btrfs_header_generation(buf);
3913         int was_dirty;
3914
3915 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3916         /*
3917          * This is a fast path so only do this check if we have sanity tests
3918          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3919          * outside of the sanity tests.
3920          */
3921         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3922                 return;
3923 #endif
3924         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3925         btrfs_assert_tree_locked(buf);
3926         if (transid != root->fs_info->generation)
3927                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3928                        "found %llu running %llu\n",
3929                         buf->start, transid, root->fs_info->generation);
3930         was_dirty = set_extent_buffer_dirty(buf);
3931         if (!was_dirty)
3932                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3933                                      buf->len,
3934                                      root->fs_info->dirty_metadata_batch);
3935 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3936         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3937                 btrfs_print_leaf(root, buf);
3938                 ASSERT(0);
3939         }
3940 #endif
3941 }
3942
3943 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3944                                         int flush_delayed)
3945 {
3946         /*
3947          * looks as though older kernels can get into trouble with
3948          * this code, they end up stuck in balance_dirty_pages forever
3949          */
3950         int ret;
3951
3952         if (current->flags & PF_MEMALLOC)
3953                 return;
3954
3955         if (flush_delayed)
3956                 btrfs_balance_delayed_items(root);
3957
3958         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3959                                      BTRFS_DIRTY_METADATA_THRESH);
3960         if (ret > 0) {
3961                 balance_dirty_pages_ratelimited(
3962                                    root->fs_info->btree_inode->i_mapping);
3963         }
3964         return;
3965 }
3966
3967 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3968 {
3969         __btrfs_btree_balance_dirty(root, 1);
3970 }
3971
3972 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3973 {
3974         __btrfs_btree_balance_dirty(root, 0);
3975 }
3976
3977 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3978 {
3979         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3980         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3981 }
3982
3983 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3984                               int read_only)
3985 {
3986         struct btrfs_super_block *sb = fs_info->super_copy;
3987         int ret = 0;
3988
3989         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3990                 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3991                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3992                 ret = -EINVAL;
3993         }
3994         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3995                 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3996                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3997                 ret = -EINVAL;
3998         }
3999         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4000                 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4001                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4002                 ret = -EINVAL;
4003         }
4004
4005         /*
4006          * The common minimum, we don't know if we can trust the nodesize/sectorsize
4007          * items yet, they'll be verified later. Issue just a warning.
4008          */
4009         if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
4010                 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4011                                 btrfs_super_root(sb));
4012         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
4013                 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4014                                 btrfs_super_chunk_root(sb));
4015         if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
4016                 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4017                                 btrfs_super_log_root(sb));
4018
4019         /*
4020          * Check the lower bound, the alignment and other constraints are
4021          * checked later.
4022          */
4023         if (btrfs_super_nodesize(sb) < 4096) {
4024                 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4025                                 btrfs_super_nodesize(sb));
4026                 ret = -EINVAL;
4027         }
4028         if (btrfs_super_sectorsize(sb) < 4096) {
4029                 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4030                                 btrfs_super_sectorsize(sb));
4031                 ret = -EINVAL;
4032         }
4033
4034         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4035                 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4036                                 fs_info->fsid, sb->dev_item.fsid);
4037                 ret = -EINVAL;
4038         }
4039
4040         /*
4041          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4042          * done later
4043          */
4044         if (btrfs_super_num_devices(sb) > (1UL << 31))
4045                 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4046                                 btrfs_super_num_devices(sb));
4047         if (btrfs_super_num_devices(sb) == 0) {
4048                 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4049                 ret = -EINVAL;
4050         }
4051
4052         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4053                 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4054                                 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4055                 ret = -EINVAL;
4056         }
4057
4058         /*
4059          * Obvious sys_chunk_array corruptions, it must hold at least one key
4060          * and one chunk
4061          */
4062         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4063                 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4064                                 btrfs_super_sys_array_size(sb),
4065                                 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4066                 ret = -EINVAL;
4067         }
4068         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4069                         + sizeof(struct btrfs_chunk)) {
4070                 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4071                                 btrfs_super_sys_array_size(sb),
4072                                 sizeof(struct btrfs_disk_key)
4073                                 + sizeof(struct btrfs_chunk));
4074                 ret = -EINVAL;
4075         }
4076
4077         /*
4078          * The generation is a global counter, we'll trust it more than the others
4079          * but it's still possible that it's the one that's wrong.
4080          */
4081         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4082                 printk(KERN_WARNING
4083                         "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4084                         btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4085         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4086             && btrfs_super_cache_generation(sb) != (u64)-1)
4087                 printk(KERN_WARNING
4088                         "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4089                         btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4090
4091         return ret;
4092 }
4093
4094 static void btrfs_error_commit_super(struct btrfs_root *root)
4095 {
4096         mutex_lock(&root->fs_info->cleaner_mutex);
4097         btrfs_run_delayed_iputs(root);
4098         mutex_unlock(&root->fs_info->cleaner_mutex);
4099
4100         down_write(&root->fs_info->cleanup_work_sem);
4101         up_write(&root->fs_info->cleanup_work_sem);
4102
4103         /* cleanup FS via transaction */
4104         btrfs_cleanup_transaction(root);
4105 }
4106
4107 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4108 {
4109         struct btrfs_ordered_extent *ordered;
4110
4111         spin_lock(&root->ordered_extent_lock);
4112         /*
4113          * This will just short circuit the ordered completion stuff which will
4114          * make sure the ordered extent gets properly cleaned up.
4115          */
4116         list_for_each_entry(ordered, &root->ordered_extents,
4117                             root_extent_list)
4118                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4119         spin_unlock(&root->ordered_extent_lock);
4120 }
4121
4122 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4123 {
4124         struct btrfs_root *root;
4125         struct list_head splice;
4126
4127         INIT_LIST_HEAD(&splice);
4128
4129         spin_lock(&fs_info->ordered_root_lock);
4130         list_splice_init(&fs_info->ordered_roots, &splice);
4131         while (!list_empty(&splice)) {
4132                 root = list_first_entry(&splice, struct btrfs_root,
4133                                         ordered_root);
4134                 list_move_tail(&root->ordered_root,
4135                                &fs_info->ordered_roots);
4136
4137                 spin_unlock(&fs_info->ordered_root_lock);
4138                 btrfs_destroy_ordered_extents(root);
4139
4140                 cond_resched();
4141                 spin_lock(&fs_info->ordered_root_lock);
4142         }
4143         spin_unlock(&fs_info->ordered_root_lock);
4144 }
4145
4146 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4147                                       struct btrfs_root *root)
4148 {
4149         struct rb_node *node;
4150         struct btrfs_delayed_ref_root *delayed_refs;
4151         struct btrfs_delayed_ref_node *ref;
4152         int ret = 0;
4153
4154         delayed_refs = &trans->delayed_refs;
4155
4156         spin_lock(&delayed_refs->lock);
4157         if (atomic_read(&delayed_refs->num_entries) == 0) {
4158                 spin_unlock(&delayed_refs->lock);
4159                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4160                 return ret;
4161         }
4162
4163         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4164                 struct btrfs_delayed_ref_head *head;
4165                 struct btrfs_delayed_ref_node *tmp;
4166                 bool pin_bytes = false;
4167
4168                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4169                                 href_node);
4170                 if (!mutex_trylock(&head->mutex)) {
4171                         atomic_inc(&head->node.refs);
4172                         spin_unlock(&delayed_refs->lock);
4173
4174                         mutex_lock(&head->mutex);
4175                         mutex_unlock(&head->mutex);
4176                         btrfs_put_delayed_ref(&head->node);
4177                         spin_lock(&delayed_refs->lock);
4178                         continue;
4179                 }
4180                 spin_lock(&head->lock);
4181                 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4182                                                  list) {
4183                         ref->in_tree = 0;
4184                         list_del(&ref->list);
4185                         atomic_dec(&delayed_refs->num_entries);
4186                         btrfs_put_delayed_ref(ref);
4187                 }
4188                 if (head->must_insert_reserved)
4189                         pin_bytes = true;
4190                 btrfs_free_delayed_extent_op(head->extent_op);
4191                 delayed_refs->num_heads--;
4192                 if (head->processing == 0)
4193                         delayed_refs->num_heads_ready--;
4194                 atomic_dec(&delayed_refs->num_entries);
4195                 head->node.in_tree = 0;
4196                 rb_erase(&head->href_node, &delayed_refs->href_root);
4197                 spin_unlock(&head->lock);
4198                 spin_unlock(&delayed_refs->lock);
4199                 mutex_unlock(&head->mutex);
4200
4201                 if (pin_bytes)
4202                         btrfs_pin_extent(root, head->node.bytenr,
4203                                          head->node.num_bytes, 1);
4204                 btrfs_put_delayed_ref(&head->node);
4205                 cond_resched();
4206                 spin_lock(&delayed_refs->lock);
4207         }
4208
4209         spin_unlock(&delayed_refs->lock);
4210
4211         return ret;
4212 }
4213
4214 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4215 {
4216         struct btrfs_inode *btrfs_inode;
4217         struct list_head splice;
4218
4219         INIT_LIST_HEAD(&splice);
4220
4221         spin_lock(&root->delalloc_lock);
4222         list_splice_init(&root->delalloc_inodes, &splice);
4223
4224         while (!list_empty(&splice)) {
4225                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4226                                                delalloc_inodes);
4227
4228                 list_del_init(&btrfs_inode->delalloc_inodes);
4229                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4230                           &btrfs_inode->runtime_flags);
4231                 spin_unlock(&root->delalloc_lock);
4232
4233                 btrfs_invalidate_inodes(btrfs_inode->root);
4234
4235                 spin_lock(&root->delalloc_lock);
4236         }
4237
4238         spin_unlock(&root->delalloc_lock);
4239 }
4240
4241 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4242 {
4243         struct btrfs_root *root;
4244         struct list_head splice;
4245
4246         INIT_LIST_HEAD(&splice);
4247
4248         spin_lock(&fs_info->delalloc_root_lock);
4249         list_splice_init(&fs_info->delalloc_roots, &splice);
4250         while (!list_empty(&splice)) {
4251                 root = list_first_entry(&splice, struct btrfs_root,
4252                                          delalloc_root);
4253                 list_del_init(&root->delalloc_root);
4254                 root = btrfs_grab_fs_root(root);
4255                 BUG_ON(!root);
4256                 spin_unlock(&fs_info->delalloc_root_lock);
4257
4258                 btrfs_destroy_delalloc_inodes(root);
4259                 btrfs_put_fs_root(root);
4260
4261                 spin_lock(&fs_info->delalloc_root_lock);
4262         }
4263         spin_unlock(&fs_info->delalloc_root_lock);
4264 }
4265
4266 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4267                                         struct extent_io_tree *dirty_pages,
4268                                         int mark)
4269 {
4270         int ret;
4271         struct extent_buffer *eb;
4272         u64 start = 0;
4273         u64 end;
4274
4275         while (1) {
4276                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4277                                             mark, NULL);
4278                 if (ret)
4279                         break;
4280
4281                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4282                 while (start <= end) {
4283                         eb = btrfs_find_tree_block(root->fs_info, start);
4284                         start += root->nodesize;
4285                         if (!eb)
4286                                 continue;
4287                         wait_on_extent_buffer_writeback(eb);
4288
4289                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4290                                                &eb->bflags))
4291                                 clear_extent_buffer_dirty(eb);
4292                         free_extent_buffer_stale(eb);
4293                 }
4294         }
4295
4296         return ret;
4297 }
4298
4299 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4300                                        struct extent_io_tree *pinned_extents)
4301 {
4302         struct extent_io_tree *unpin;
4303         u64 start;
4304         u64 end;
4305         int ret;
4306         bool loop = true;
4307
4308         unpin = pinned_extents;
4309 again:
4310         while (1) {
4311                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4312                                             EXTENT_DIRTY, NULL);
4313                 if (ret)
4314                         break;
4315
4316                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4317                 btrfs_error_unpin_extent_range(root, start, end);
4318                 cond_resched();
4319         }
4320
4321         if (loop) {
4322                 if (unpin == &root->fs_info->freed_extents[0])
4323                         unpin = &root->fs_info->freed_extents[1];
4324                 else
4325                         unpin = &root->fs_info->freed_extents[0];
4326                 loop = false;
4327                 goto again;
4328         }
4329
4330         return 0;
4331 }
4332
4333 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4334                                    struct btrfs_root *root)
4335 {
4336         btrfs_destroy_delayed_refs(cur_trans, root);
4337
4338         cur_trans->state = TRANS_STATE_COMMIT_START;
4339         wake_up(&root->fs_info->transaction_blocked_wait);
4340
4341         cur_trans->state = TRANS_STATE_UNBLOCKED;
4342         wake_up(&root->fs_info->transaction_wait);
4343
4344         btrfs_destroy_delayed_inodes(root);
4345         btrfs_assert_delayed_root_empty(root);
4346
4347         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4348                                      EXTENT_DIRTY);
4349         btrfs_destroy_pinned_extent(root,
4350                                     root->fs_info->pinned_extents);
4351
4352         cur_trans->state =TRANS_STATE_COMPLETED;
4353         wake_up(&cur_trans->commit_wait);
4354
4355         /*
4356         memset(cur_trans, 0, sizeof(*cur_trans));
4357         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4358         */
4359 }
4360
4361 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4362 {
4363         struct btrfs_transaction *t;
4364
4365         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4366
4367         spin_lock(&root->fs_info->trans_lock);
4368         while (!list_empty(&root->fs_info->trans_list)) {
4369                 t = list_first_entry(&root->fs_info->trans_list,
4370                                      struct btrfs_transaction, list);
4371                 if (t->state >= TRANS_STATE_COMMIT_START) {
4372                         atomic_inc(&t->use_count);
4373                         spin_unlock(&root->fs_info->trans_lock);
4374                         btrfs_wait_for_commit(root, t->transid);
4375                         btrfs_put_transaction(t);
4376                         spin_lock(&root->fs_info->trans_lock);
4377                         continue;
4378                 }
4379                 if (t == root->fs_info->running_transaction) {
4380                         t->state = TRANS_STATE_COMMIT_DOING;
4381                         spin_unlock(&root->fs_info->trans_lock);
4382                         /*
4383                          * We wait for 0 num_writers since we don't hold a trans
4384                          * handle open currently for this transaction.
4385                          */
4386                         wait_event(t->writer_wait,
4387                                    atomic_read(&t->num_writers) == 0);
4388                 } else {
4389                         spin_unlock(&root->fs_info->trans_lock);
4390                 }
4391                 btrfs_cleanup_one_transaction(t, root);
4392
4393                 spin_lock(&root->fs_info->trans_lock);
4394                 if (t == root->fs_info->running_transaction)
4395                         root->fs_info->running_transaction = NULL;
4396                 list_del_init(&t->list);
4397                 spin_unlock(&root->fs_info->trans_lock);
4398
4399                 btrfs_put_transaction(t);
4400                 trace_btrfs_transaction_commit(root);
4401                 spin_lock(&root->fs_info->trans_lock);
4402         }
4403         spin_unlock(&root->fs_info->trans_lock);
4404         btrfs_destroy_all_ordered_extents(root->fs_info);
4405         btrfs_destroy_delayed_inodes(root);
4406         btrfs_assert_delayed_root_empty(root);
4407         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4408         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4409         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4410
4411         return 0;
4412 }
4413
4414 static const struct extent_io_ops btree_extent_io_ops = {
4415         .readpage_end_io_hook = btree_readpage_end_io_hook,
4416         .readpage_io_failed_hook = btree_io_failed_hook,
4417         .submit_bio_hook = btree_submit_bio_hook,
4418         /* note we're sharing with inode.c for the merge bio hook */
4419         .merge_bio_hook = btrfs_merge_bio_hook,
4420 };