Merge branch 'for-3.9' of git://linux-nfs.org/~bfields/linux
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / delayed-inode.c
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24
25 #define BTRFS_DELAYED_WRITEBACK         512
26 #define BTRFS_DELAYED_BACKGROUND        128
27 #define BTRFS_DELAYED_BATCH             16
28
29 static struct kmem_cache *delayed_node_cache;
30
31 int __init btrfs_delayed_inode_init(void)
32 {
33         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
34                                         sizeof(struct btrfs_delayed_node),
35                                         0,
36                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
37                                         NULL);
38         if (!delayed_node_cache)
39                 return -ENOMEM;
40         return 0;
41 }
42
43 void btrfs_delayed_inode_exit(void)
44 {
45         if (delayed_node_cache)
46                 kmem_cache_destroy(delayed_node_cache);
47 }
48
49 static inline void btrfs_init_delayed_node(
50                                 struct btrfs_delayed_node *delayed_node,
51                                 struct btrfs_root *root, u64 inode_id)
52 {
53         delayed_node->root = root;
54         delayed_node->inode_id = inode_id;
55         atomic_set(&delayed_node->refs, 0);
56         delayed_node->count = 0;
57         delayed_node->in_list = 0;
58         delayed_node->inode_dirty = 0;
59         delayed_node->ins_root = RB_ROOT;
60         delayed_node->del_root = RB_ROOT;
61         mutex_init(&delayed_node->mutex);
62         delayed_node->index_cnt = 0;
63         INIT_LIST_HEAD(&delayed_node->n_list);
64         INIT_LIST_HEAD(&delayed_node->p_list);
65         delayed_node->bytes_reserved = 0;
66         memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 }
68
69 static inline int btrfs_is_continuous_delayed_item(
70                                         struct btrfs_delayed_item *item1,
71                                         struct btrfs_delayed_item *item2)
72 {
73         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74             item1->key.objectid == item2->key.objectid &&
75             item1->key.type == item2->key.type &&
76             item1->key.offset + 1 == item2->key.offset)
77                 return 1;
78         return 0;
79 }
80
81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82                                                         struct btrfs_root *root)
83 {
84         return root->fs_info->delayed_root;
85 }
86
87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 {
89         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90         struct btrfs_root *root = btrfs_inode->root;
91         u64 ino = btrfs_ino(inode);
92         struct btrfs_delayed_node *node;
93
94         node = ACCESS_ONCE(btrfs_inode->delayed_node);
95         if (node) {
96                 atomic_inc(&node->refs);
97                 return node;
98         }
99
100         spin_lock(&root->inode_lock);
101         node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102         if (node) {
103                 if (btrfs_inode->delayed_node) {
104                         atomic_inc(&node->refs);        /* can be accessed */
105                         BUG_ON(btrfs_inode->delayed_node != node);
106                         spin_unlock(&root->inode_lock);
107                         return node;
108                 }
109                 btrfs_inode->delayed_node = node;
110                 atomic_inc(&node->refs);        /* can be accessed */
111                 atomic_inc(&node->refs);        /* cached in the inode */
112                 spin_unlock(&root->inode_lock);
113                 return node;
114         }
115         spin_unlock(&root->inode_lock);
116
117         return NULL;
118 }
119
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122                                                         struct inode *inode)
123 {
124         struct btrfs_delayed_node *node;
125         struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126         struct btrfs_root *root = btrfs_inode->root;
127         u64 ino = btrfs_ino(inode);
128         int ret;
129
130 again:
131         node = btrfs_get_delayed_node(inode);
132         if (node)
133                 return node;
134
135         node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136         if (!node)
137                 return ERR_PTR(-ENOMEM);
138         btrfs_init_delayed_node(node, root, ino);
139
140         atomic_inc(&node->refs);        /* cached in the btrfs inode */
141         atomic_inc(&node->refs);        /* can be accessed */
142
143         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144         if (ret) {
145                 kmem_cache_free(delayed_node_cache, node);
146                 return ERR_PTR(ret);
147         }
148
149         spin_lock(&root->inode_lock);
150         ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151         if (ret == -EEXIST) {
152                 kmem_cache_free(delayed_node_cache, node);
153                 spin_unlock(&root->inode_lock);
154                 radix_tree_preload_end();
155                 goto again;
156         }
157         btrfs_inode->delayed_node = node;
158         spin_unlock(&root->inode_lock);
159         radix_tree_preload_end();
160
161         return node;
162 }
163
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170                                      struct btrfs_delayed_node *node,
171                                      int mod)
172 {
173         spin_lock(&root->lock);
174         if (node->in_list) {
175                 if (!list_empty(&node->p_list))
176                         list_move_tail(&node->p_list, &root->prepare_list);
177                 else if (mod)
178                         list_add_tail(&node->p_list, &root->prepare_list);
179         } else {
180                 list_add_tail(&node->n_list, &root->node_list);
181                 list_add_tail(&node->p_list, &root->prepare_list);
182                 atomic_inc(&node->refs);        /* inserted into list */
183                 root->nodes++;
184                 node->in_list = 1;
185         }
186         spin_unlock(&root->lock);
187 }
188
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191                                        struct btrfs_delayed_node *node)
192 {
193         spin_lock(&root->lock);
194         if (node->in_list) {
195                 root->nodes--;
196                 atomic_dec(&node->refs);        /* not in the list */
197                 list_del_init(&node->n_list);
198                 if (!list_empty(&node->p_list))
199                         list_del_init(&node->p_list);
200                 node->in_list = 0;
201         }
202         spin_unlock(&root->lock);
203 }
204
205 struct btrfs_delayed_node *btrfs_first_delayed_node(
206                         struct btrfs_delayed_root *delayed_root)
207 {
208         struct list_head *p;
209         struct btrfs_delayed_node *node = NULL;
210
211         spin_lock(&delayed_root->lock);
212         if (list_empty(&delayed_root->node_list))
213                 goto out;
214
215         p = delayed_root->node_list.next;
216         node = list_entry(p, struct btrfs_delayed_node, n_list);
217         atomic_inc(&node->refs);
218 out:
219         spin_unlock(&delayed_root->lock);
220
221         return node;
222 }
223
224 struct btrfs_delayed_node *btrfs_next_delayed_node(
225                                                 struct btrfs_delayed_node *node)
226 {
227         struct btrfs_delayed_root *delayed_root;
228         struct list_head *p;
229         struct btrfs_delayed_node *next = NULL;
230
231         delayed_root = node->root->fs_info->delayed_root;
232         spin_lock(&delayed_root->lock);
233         if (!node->in_list) {   /* not in the list */
234                 if (list_empty(&delayed_root->node_list))
235                         goto out;
236                 p = delayed_root->node_list.next;
237         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
238                 goto out;
239         else
240                 p = node->n_list.next;
241
242         next = list_entry(p, struct btrfs_delayed_node, n_list);
243         atomic_inc(&next->refs);
244 out:
245         spin_unlock(&delayed_root->lock);
246
247         return next;
248 }
249
250 static void __btrfs_release_delayed_node(
251                                 struct btrfs_delayed_node *delayed_node,
252                                 int mod)
253 {
254         struct btrfs_delayed_root *delayed_root;
255
256         if (!delayed_node)
257                 return;
258
259         delayed_root = delayed_node->root->fs_info->delayed_root;
260
261         mutex_lock(&delayed_node->mutex);
262         if (delayed_node->count)
263                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
264         else
265                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
266         mutex_unlock(&delayed_node->mutex);
267
268         if (atomic_dec_and_test(&delayed_node->refs)) {
269                 struct btrfs_root *root = delayed_node->root;
270                 spin_lock(&root->inode_lock);
271                 if (atomic_read(&delayed_node->refs) == 0) {
272                         radix_tree_delete(&root->delayed_nodes_tree,
273                                           delayed_node->inode_id);
274                         kmem_cache_free(delayed_node_cache, delayed_node);
275                 }
276                 spin_unlock(&root->inode_lock);
277         }
278 }
279
280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
281 {
282         __btrfs_release_delayed_node(node, 0);
283 }
284
285 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
286                                         struct btrfs_delayed_root *delayed_root)
287 {
288         struct list_head *p;
289         struct btrfs_delayed_node *node = NULL;
290
291         spin_lock(&delayed_root->lock);
292         if (list_empty(&delayed_root->prepare_list))
293                 goto out;
294
295         p = delayed_root->prepare_list.next;
296         list_del_init(p);
297         node = list_entry(p, struct btrfs_delayed_node, p_list);
298         atomic_inc(&node->refs);
299 out:
300         spin_unlock(&delayed_root->lock);
301
302         return node;
303 }
304
305 static inline void btrfs_release_prepared_delayed_node(
306                                         struct btrfs_delayed_node *node)
307 {
308         __btrfs_release_delayed_node(node, 1);
309 }
310
311 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
312 {
313         struct btrfs_delayed_item *item;
314         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
315         if (item) {
316                 item->data_len = data_len;
317                 item->ins_or_del = 0;
318                 item->bytes_reserved = 0;
319                 item->delayed_node = NULL;
320                 atomic_set(&item->refs, 1);
321         }
322         return item;
323 }
324
325 /*
326  * __btrfs_lookup_delayed_item - look up the delayed item by key
327  * @delayed_node: pointer to the delayed node
328  * @key:          the key to look up
329  * @prev:         used to store the prev item if the right item isn't found
330  * @next:         used to store the next item if the right item isn't found
331  *
332  * Note: if we don't find the right item, we will return the prev item and
333  * the next item.
334  */
335 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
336                                 struct rb_root *root,
337                                 struct btrfs_key *key,
338                                 struct btrfs_delayed_item **prev,
339                                 struct btrfs_delayed_item **next)
340 {
341         struct rb_node *node, *prev_node = NULL;
342         struct btrfs_delayed_item *delayed_item = NULL;
343         int ret = 0;
344
345         node = root->rb_node;
346
347         while (node) {
348                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
349                                         rb_node);
350                 prev_node = node;
351                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
352                 if (ret < 0)
353                         node = node->rb_right;
354                 else if (ret > 0)
355                         node = node->rb_left;
356                 else
357                         return delayed_item;
358         }
359
360         if (prev) {
361                 if (!prev_node)
362                         *prev = NULL;
363                 else if (ret < 0)
364                         *prev = delayed_item;
365                 else if ((node = rb_prev(prev_node)) != NULL) {
366                         *prev = rb_entry(node, struct btrfs_delayed_item,
367                                          rb_node);
368                 } else
369                         *prev = NULL;
370         }
371
372         if (next) {
373                 if (!prev_node)
374                         *next = NULL;
375                 else if (ret > 0)
376                         *next = delayed_item;
377                 else if ((node = rb_next(prev_node)) != NULL) {
378                         *next = rb_entry(node, struct btrfs_delayed_item,
379                                          rb_node);
380                 } else
381                         *next = NULL;
382         }
383         return NULL;
384 }
385
386 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
387                                         struct btrfs_delayed_node *delayed_node,
388                                         struct btrfs_key *key)
389 {
390         struct btrfs_delayed_item *item;
391
392         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
393                                            NULL, NULL);
394         return item;
395 }
396
397 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
398                                         struct btrfs_delayed_node *delayed_node,
399                                         struct btrfs_key *key)
400 {
401         struct btrfs_delayed_item *item;
402
403         item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
404                                            NULL, NULL);
405         return item;
406 }
407
408 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
409                                         struct btrfs_delayed_node *delayed_node,
410                                         struct btrfs_key *key)
411 {
412         struct btrfs_delayed_item *item, *next;
413
414         item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
415                                            NULL, &next);
416         if (!item)
417                 item = next;
418
419         return item;
420 }
421
422 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
423                                         struct btrfs_delayed_node *delayed_node,
424                                         struct btrfs_key *key)
425 {
426         struct btrfs_delayed_item *item, *next;
427
428         item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
429                                            NULL, &next);
430         if (!item)
431                 item = next;
432
433         return item;
434 }
435
436 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
437                                     struct btrfs_delayed_item *ins,
438                                     int action)
439 {
440         struct rb_node **p, *node;
441         struct rb_node *parent_node = NULL;
442         struct rb_root *root;
443         struct btrfs_delayed_item *item;
444         int cmp;
445
446         if (action == BTRFS_DELAYED_INSERTION_ITEM)
447                 root = &delayed_node->ins_root;
448         else if (action == BTRFS_DELAYED_DELETION_ITEM)
449                 root = &delayed_node->del_root;
450         else
451                 BUG();
452         p = &root->rb_node;
453         node = &ins->rb_node;
454
455         while (*p) {
456                 parent_node = *p;
457                 item = rb_entry(parent_node, struct btrfs_delayed_item,
458                                  rb_node);
459
460                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
461                 if (cmp < 0)
462                         p = &(*p)->rb_right;
463                 else if (cmp > 0)
464                         p = &(*p)->rb_left;
465                 else
466                         return -EEXIST;
467         }
468
469         rb_link_node(node, parent_node, p);
470         rb_insert_color(node, root);
471         ins->delayed_node = delayed_node;
472         ins->ins_or_del = action;
473
474         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
475             action == BTRFS_DELAYED_INSERTION_ITEM &&
476             ins->key.offset >= delayed_node->index_cnt)
477                         delayed_node->index_cnt = ins->key.offset + 1;
478
479         delayed_node->count++;
480         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
481         return 0;
482 }
483
484 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
485                                               struct btrfs_delayed_item *item)
486 {
487         return __btrfs_add_delayed_item(node, item,
488                                         BTRFS_DELAYED_INSERTION_ITEM);
489 }
490
491 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
492                                              struct btrfs_delayed_item *item)
493 {
494         return __btrfs_add_delayed_item(node, item,
495                                         BTRFS_DELAYED_DELETION_ITEM);
496 }
497
498 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
499 {
500         int seq = atomic_inc_return(&delayed_root->items_seq);
501         if ((atomic_dec_return(&delayed_root->items) <
502             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
503             waitqueue_active(&delayed_root->wait))
504                 wake_up(&delayed_root->wait);
505 }
506
507 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
508 {
509         struct rb_root *root;
510         struct btrfs_delayed_root *delayed_root;
511
512         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
513
514         BUG_ON(!delayed_root);
515         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
516                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
517
518         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
519                 root = &delayed_item->delayed_node->ins_root;
520         else
521                 root = &delayed_item->delayed_node->del_root;
522
523         rb_erase(&delayed_item->rb_node, root);
524         delayed_item->delayed_node->count--;
525
526         finish_one_item(delayed_root);
527 }
528
529 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
530 {
531         if (item) {
532                 __btrfs_remove_delayed_item(item);
533                 if (atomic_dec_and_test(&item->refs))
534                         kfree(item);
535         }
536 }
537
538 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
539                                         struct btrfs_delayed_node *delayed_node)
540 {
541         struct rb_node *p;
542         struct btrfs_delayed_item *item = NULL;
543
544         p = rb_first(&delayed_node->ins_root);
545         if (p)
546                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
547
548         return item;
549 }
550
551 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
552                                         struct btrfs_delayed_node *delayed_node)
553 {
554         struct rb_node *p;
555         struct btrfs_delayed_item *item = NULL;
556
557         p = rb_first(&delayed_node->del_root);
558         if (p)
559                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
560
561         return item;
562 }
563
564 struct btrfs_delayed_item *__btrfs_next_delayed_item(
565                                                 struct btrfs_delayed_item *item)
566 {
567         struct rb_node *p;
568         struct btrfs_delayed_item *next = NULL;
569
570         p = rb_next(&item->rb_node);
571         if (p)
572                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
573
574         return next;
575 }
576
577 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
578                                                    u64 root_id)
579 {
580         struct btrfs_key root_key;
581
582         if (root->objectid == root_id)
583                 return root;
584
585         root_key.objectid = root_id;
586         root_key.type = BTRFS_ROOT_ITEM_KEY;
587         root_key.offset = (u64)-1;
588         return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
589 }
590
591 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
592                                                struct btrfs_root *root,
593                                                struct btrfs_delayed_item *item)
594 {
595         struct btrfs_block_rsv *src_rsv;
596         struct btrfs_block_rsv *dst_rsv;
597         u64 num_bytes;
598         int ret;
599
600         if (!trans->bytes_reserved)
601                 return 0;
602
603         src_rsv = trans->block_rsv;
604         dst_rsv = &root->fs_info->delayed_block_rsv;
605
606         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
607         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
608         if (!ret) {
609                 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
610                                               item->key.objectid,
611                                               num_bytes, 1);
612                 item->bytes_reserved = num_bytes;
613         }
614
615         return ret;
616 }
617
618 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
619                                                 struct btrfs_delayed_item *item)
620 {
621         struct btrfs_block_rsv *rsv;
622
623         if (!item->bytes_reserved)
624                 return;
625
626         rsv = &root->fs_info->delayed_block_rsv;
627         trace_btrfs_space_reservation(root->fs_info, "delayed_item",
628                                       item->key.objectid, item->bytes_reserved,
629                                       0);
630         btrfs_block_rsv_release(root, rsv,
631                                 item->bytes_reserved);
632 }
633
634 static int btrfs_delayed_inode_reserve_metadata(
635                                         struct btrfs_trans_handle *trans,
636                                         struct btrfs_root *root,
637                                         struct inode *inode,
638                                         struct btrfs_delayed_node *node)
639 {
640         struct btrfs_block_rsv *src_rsv;
641         struct btrfs_block_rsv *dst_rsv;
642         u64 num_bytes;
643         int ret;
644         bool release = false;
645
646         src_rsv = trans->block_rsv;
647         dst_rsv = &root->fs_info->delayed_block_rsv;
648
649         num_bytes = btrfs_calc_trans_metadata_size(root, 1);
650
651         /*
652          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
653          * which doesn't reserve space for speed.  This is a problem since we
654          * still need to reserve space for this update, so try to reserve the
655          * space.
656          *
657          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
658          * we're accounted for.
659          */
660         if (!src_rsv || (!trans->bytes_reserved &&
661                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
662                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
663                                           BTRFS_RESERVE_NO_FLUSH);
664                 /*
665                  * Since we're under a transaction reserve_metadata_bytes could
666                  * try to commit the transaction which will make it return
667                  * EAGAIN to make us stop the transaction we have, so return
668                  * ENOSPC instead so that btrfs_dirty_inode knows what to do.
669                  */
670                 if (ret == -EAGAIN)
671                         ret = -ENOSPC;
672                 if (!ret) {
673                         node->bytes_reserved = num_bytes;
674                         trace_btrfs_space_reservation(root->fs_info,
675                                                       "delayed_inode",
676                                                       btrfs_ino(inode),
677                                                       num_bytes, 1);
678                 }
679                 return ret;
680         } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
681                 spin_lock(&BTRFS_I(inode)->lock);
682                 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
683                                        &BTRFS_I(inode)->runtime_flags)) {
684                         spin_unlock(&BTRFS_I(inode)->lock);
685                         release = true;
686                         goto migrate;
687                 }
688                 spin_unlock(&BTRFS_I(inode)->lock);
689
690                 /* Ok we didn't have space pre-reserved.  This shouldn't happen
691                  * too often but it can happen if we do delalloc to an existing
692                  * inode which gets dirtied because of the time update, and then
693                  * isn't touched again until after the transaction commits and
694                  * then we try to write out the data.  First try to be nice and
695                  * reserve something strictly for us.  If not be a pain and try
696                  * to steal from the delalloc block rsv.
697                  */
698                 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
699                                           BTRFS_RESERVE_NO_FLUSH);
700                 if (!ret)
701                         goto out;
702
703                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
704                 if (!ret)
705                         goto out;
706
707                 /*
708                  * Ok this is a problem, let's just steal from the global rsv
709                  * since this really shouldn't happen that often.
710                  */
711                 WARN_ON(1);
712                 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
713                                               dst_rsv, num_bytes);
714                 goto out;
715         }
716
717 migrate:
718         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
719
720 out:
721         /*
722          * Migrate only takes a reservation, it doesn't touch the size of the
723          * block_rsv.  This is to simplify people who don't normally have things
724          * migrated from their block rsv.  If they go to release their
725          * reservation, that will decrease the size as well, so if migrate
726          * reduced size we'd end up with a negative size.  But for the
727          * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
728          * but we could in fact do this reserve/migrate dance several times
729          * between the time we did the original reservation and we'd clean it
730          * up.  So to take care of this, release the space for the meta
731          * reservation here.  I think it may be time for a documentation page on
732          * how block rsvs. work.
733          */
734         if (!ret) {
735                 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
736                                               btrfs_ino(inode), num_bytes, 1);
737                 node->bytes_reserved = num_bytes;
738         }
739
740         if (release) {
741                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
742                                               btrfs_ino(inode), num_bytes, 0);
743                 btrfs_block_rsv_release(root, src_rsv, num_bytes);
744         }
745
746         return ret;
747 }
748
749 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
750                                                 struct btrfs_delayed_node *node)
751 {
752         struct btrfs_block_rsv *rsv;
753
754         if (!node->bytes_reserved)
755                 return;
756
757         rsv = &root->fs_info->delayed_block_rsv;
758         trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
759                                       node->inode_id, node->bytes_reserved, 0);
760         btrfs_block_rsv_release(root, rsv,
761                                 node->bytes_reserved);
762         node->bytes_reserved = 0;
763 }
764
765 /*
766  * This helper will insert some continuous items into the same leaf according
767  * to the free space of the leaf.
768  */
769 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
770                                 struct btrfs_root *root,
771                                 struct btrfs_path *path,
772                                 struct btrfs_delayed_item *item)
773 {
774         struct btrfs_delayed_item *curr, *next;
775         int free_space;
776         int total_data_size = 0, total_size = 0;
777         struct extent_buffer *leaf;
778         char *data_ptr;
779         struct btrfs_key *keys;
780         u32 *data_size;
781         struct list_head head;
782         int slot;
783         int nitems;
784         int i;
785         int ret = 0;
786
787         BUG_ON(!path->nodes[0]);
788
789         leaf = path->nodes[0];
790         free_space = btrfs_leaf_free_space(root, leaf);
791         INIT_LIST_HEAD(&head);
792
793         next = item;
794         nitems = 0;
795
796         /*
797          * count the number of the continuous items that we can insert in batch
798          */
799         while (total_size + next->data_len + sizeof(struct btrfs_item) <=
800                free_space) {
801                 total_data_size += next->data_len;
802                 total_size += next->data_len + sizeof(struct btrfs_item);
803                 list_add_tail(&next->tree_list, &head);
804                 nitems++;
805
806                 curr = next;
807                 next = __btrfs_next_delayed_item(curr);
808                 if (!next)
809                         break;
810
811                 if (!btrfs_is_continuous_delayed_item(curr, next))
812                         break;
813         }
814
815         if (!nitems) {
816                 ret = 0;
817                 goto out;
818         }
819
820         /*
821          * we need allocate some memory space, but it might cause the task
822          * to sleep, so we set all locked nodes in the path to blocking locks
823          * first.
824          */
825         btrfs_set_path_blocking(path);
826
827         keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
828         if (!keys) {
829                 ret = -ENOMEM;
830                 goto out;
831         }
832
833         data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
834         if (!data_size) {
835                 ret = -ENOMEM;
836                 goto error;
837         }
838
839         /* get keys of all the delayed items */
840         i = 0;
841         list_for_each_entry(next, &head, tree_list) {
842                 keys[i] = next->key;
843                 data_size[i] = next->data_len;
844                 i++;
845         }
846
847         /* reset all the locked nodes in the patch to spinning locks. */
848         btrfs_clear_path_blocking(path, NULL, 0);
849
850         /* insert the keys of the items */
851         setup_items_for_insert(trans, root, path, keys, data_size,
852                                total_data_size, total_size, nitems);
853
854         /* insert the dir index items */
855         slot = path->slots[0];
856         list_for_each_entry_safe(curr, next, &head, tree_list) {
857                 data_ptr = btrfs_item_ptr(leaf, slot, char);
858                 write_extent_buffer(leaf, &curr->data,
859                                     (unsigned long)data_ptr,
860                                     curr->data_len);
861                 slot++;
862
863                 btrfs_delayed_item_release_metadata(root, curr);
864
865                 list_del(&curr->tree_list);
866                 btrfs_release_delayed_item(curr);
867         }
868
869 error:
870         kfree(data_size);
871         kfree(keys);
872 out:
873         return ret;
874 }
875
876 /*
877  * This helper can just do simple insertion that needn't extend item for new
878  * data, such as directory name index insertion, inode insertion.
879  */
880 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
881                                      struct btrfs_root *root,
882                                      struct btrfs_path *path,
883                                      struct btrfs_delayed_item *delayed_item)
884 {
885         struct extent_buffer *leaf;
886         char *ptr;
887         int ret;
888
889         ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
890                                       delayed_item->data_len);
891         if (ret < 0 && ret != -EEXIST)
892                 return ret;
893
894         leaf = path->nodes[0];
895
896         ptr = btrfs_item_ptr(leaf, path->slots[0], char);
897
898         write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
899                             delayed_item->data_len);
900         btrfs_mark_buffer_dirty(leaf);
901
902         btrfs_delayed_item_release_metadata(root, delayed_item);
903         return 0;
904 }
905
906 /*
907  * we insert an item first, then if there are some continuous items, we try
908  * to insert those items into the same leaf.
909  */
910 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
911                                       struct btrfs_path *path,
912                                       struct btrfs_root *root,
913                                       struct btrfs_delayed_node *node)
914 {
915         struct btrfs_delayed_item *curr, *prev;
916         int ret = 0;
917
918 do_again:
919         mutex_lock(&node->mutex);
920         curr = __btrfs_first_delayed_insertion_item(node);
921         if (!curr)
922                 goto insert_end;
923
924         ret = btrfs_insert_delayed_item(trans, root, path, curr);
925         if (ret < 0) {
926                 btrfs_release_path(path);
927                 goto insert_end;
928         }
929
930         prev = curr;
931         curr = __btrfs_next_delayed_item(prev);
932         if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
933                 /* insert the continuous items into the same leaf */
934                 path->slots[0]++;
935                 btrfs_batch_insert_items(trans, root, path, curr);
936         }
937         btrfs_release_delayed_item(prev);
938         btrfs_mark_buffer_dirty(path->nodes[0]);
939
940         btrfs_release_path(path);
941         mutex_unlock(&node->mutex);
942         goto do_again;
943
944 insert_end:
945         mutex_unlock(&node->mutex);
946         return ret;
947 }
948
949 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
950                                     struct btrfs_root *root,
951                                     struct btrfs_path *path,
952                                     struct btrfs_delayed_item *item)
953 {
954         struct btrfs_delayed_item *curr, *next;
955         struct extent_buffer *leaf;
956         struct btrfs_key key;
957         struct list_head head;
958         int nitems, i, last_item;
959         int ret = 0;
960
961         BUG_ON(!path->nodes[0]);
962
963         leaf = path->nodes[0];
964
965         i = path->slots[0];
966         last_item = btrfs_header_nritems(leaf) - 1;
967         if (i > last_item)
968                 return -ENOENT; /* FIXME: Is errno suitable? */
969
970         next = item;
971         INIT_LIST_HEAD(&head);
972         btrfs_item_key_to_cpu(leaf, &key, i);
973         nitems = 0;
974         /*
975          * count the number of the dir index items that we can delete in batch
976          */
977         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
978                 list_add_tail(&next->tree_list, &head);
979                 nitems++;
980
981                 curr = next;
982                 next = __btrfs_next_delayed_item(curr);
983                 if (!next)
984                         break;
985
986                 if (!btrfs_is_continuous_delayed_item(curr, next))
987                         break;
988
989                 i++;
990                 if (i > last_item)
991                         break;
992                 btrfs_item_key_to_cpu(leaf, &key, i);
993         }
994
995         if (!nitems)
996                 return 0;
997
998         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
999         if (ret)
1000                 goto out;
1001
1002         list_for_each_entry_safe(curr, next, &head, tree_list) {
1003                 btrfs_delayed_item_release_metadata(root, curr);
1004                 list_del(&curr->tree_list);
1005                 btrfs_release_delayed_item(curr);
1006         }
1007
1008 out:
1009         return ret;
1010 }
1011
1012 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1013                                       struct btrfs_path *path,
1014                                       struct btrfs_root *root,
1015                                       struct btrfs_delayed_node *node)
1016 {
1017         struct btrfs_delayed_item *curr, *prev;
1018         int ret = 0;
1019
1020 do_again:
1021         mutex_lock(&node->mutex);
1022         curr = __btrfs_first_delayed_deletion_item(node);
1023         if (!curr)
1024                 goto delete_fail;
1025
1026         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1027         if (ret < 0)
1028                 goto delete_fail;
1029         else if (ret > 0) {
1030                 /*
1031                  * can't find the item which the node points to, so this node
1032                  * is invalid, just drop it.
1033                  */
1034                 prev = curr;
1035                 curr = __btrfs_next_delayed_item(prev);
1036                 btrfs_release_delayed_item(prev);
1037                 ret = 0;
1038                 btrfs_release_path(path);
1039                 if (curr) {
1040                         mutex_unlock(&node->mutex);
1041                         goto do_again;
1042                 } else
1043                         goto delete_fail;
1044         }
1045
1046         btrfs_batch_delete_items(trans, root, path, curr);
1047         btrfs_release_path(path);
1048         mutex_unlock(&node->mutex);
1049         goto do_again;
1050
1051 delete_fail:
1052         btrfs_release_path(path);
1053         mutex_unlock(&node->mutex);
1054         return ret;
1055 }
1056
1057 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1058 {
1059         struct btrfs_delayed_root *delayed_root;
1060
1061         if (delayed_node && delayed_node->inode_dirty) {
1062                 BUG_ON(!delayed_node->root);
1063                 delayed_node->inode_dirty = 0;
1064                 delayed_node->count--;
1065
1066                 delayed_root = delayed_node->root->fs_info->delayed_root;
1067                 finish_one_item(delayed_root);
1068         }
1069 }
1070
1071 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1072                                         struct btrfs_root *root,
1073                                         struct btrfs_path *path,
1074                                         struct btrfs_delayed_node *node)
1075 {
1076         struct btrfs_key key;
1077         struct btrfs_inode_item *inode_item;
1078         struct extent_buffer *leaf;
1079         int ret;
1080
1081         key.objectid = node->inode_id;
1082         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1083         key.offset = 0;
1084
1085         ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1086         if (ret > 0) {
1087                 btrfs_release_path(path);
1088                 return -ENOENT;
1089         } else if (ret < 0) {
1090                 return ret;
1091         }
1092
1093         btrfs_unlock_up_safe(path, 1);
1094         leaf = path->nodes[0];
1095         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1096                                     struct btrfs_inode_item);
1097         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1098                             sizeof(struct btrfs_inode_item));
1099         btrfs_mark_buffer_dirty(leaf);
1100         btrfs_release_path(path);
1101
1102         btrfs_delayed_inode_release_metadata(root, node);
1103         btrfs_release_delayed_inode(node);
1104
1105         return 0;
1106 }
1107
1108 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1109                                              struct btrfs_root *root,
1110                                              struct btrfs_path *path,
1111                                              struct btrfs_delayed_node *node)
1112 {
1113         int ret;
1114
1115         mutex_lock(&node->mutex);
1116         if (!node->inode_dirty) {
1117                 mutex_unlock(&node->mutex);
1118                 return 0;
1119         }
1120
1121         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1122         mutex_unlock(&node->mutex);
1123         return ret;
1124 }
1125
1126 static inline int
1127 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1128                                    struct btrfs_path *path,
1129                                    struct btrfs_delayed_node *node)
1130 {
1131         int ret;
1132
1133         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1134         if (ret)
1135                 return ret;
1136
1137         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1138         if (ret)
1139                 return ret;
1140
1141         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1142         return ret;
1143 }
1144
1145 /*
1146  * Called when committing the transaction.
1147  * Returns 0 on success.
1148  * Returns < 0 on error and returns with an aborted transaction with any
1149  * outstanding delayed items cleaned up.
1150  */
1151 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1152                                      struct btrfs_root *root, int nr)
1153 {
1154         struct btrfs_delayed_root *delayed_root;
1155         struct btrfs_delayed_node *curr_node, *prev_node;
1156         struct btrfs_path *path;
1157         struct btrfs_block_rsv *block_rsv;
1158         int ret = 0;
1159         bool count = (nr > 0);
1160
1161         if (trans->aborted)
1162                 return -EIO;
1163
1164         path = btrfs_alloc_path();
1165         if (!path)
1166                 return -ENOMEM;
1167         path->leave_spinning = 1;
1168
1169         block_rsv = trans->block_rsv;
1170         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1171
1172         delayed_root = btrfs_get_delayed_root(root);
1173
1174         curr_node = btrfs_first_delayed_node(delayed_root);
1175         while (curr_node && (!count || (count && nr--))) {
1176                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1177                                                          curr_node);
1178                 if (ret) {
1179                         btrfs_release_delayed_node(curr_node);
1180                         curr_node = NULL;
1181                         btrfs_abort_transaction(trans, root, ret);
1182                         break;
1183                 }
1184
1185                 prev_node = curr_node;
1186                 curr_node = btrfs_next_delayed_node(curr_node);
1187                 btrfs_release_delayed_node(prev_node);
1188         }
1189
1190         if (curr_node)
1191                 btrfs_release_delayed_node(curr_node);
1192         btrfs_free_path(path);
1193         trans->block_rsv = block_rsv;
1194
1195         return ret;
1196 }
1197
1198 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1199                             struct btrfs_root *root)
1200 {
1201         return __btrfs_run_delayed_items(trans, root, -1);
1202 }
1203
1204 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1205                                struct btrfs_root *root, int nr)
1206 {
1207         return __btrfs_run_delayed_items(trans, root, nr);
1208 }
1209
1210 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1211                                      struct inode *inode)
1212 {
1213         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1214         struct btrfs_path *path;
1215         struct btrfs_block_rsv *block_rsv;
1216         int ret;
1217
1218         if (!delayed_node)
1219                 return 0;
1220
1221         mutex_lock(&delayed_node->mutex);
1222         if (!delayed_node->count) {
1223                 mutex_unlock(&delayed_node->mutex);
1224                 btrfs_release_delayed_node(delayed_node);
1225                 return 0;
1226         }
1227         mutex_unlock(&delayed_node->mutex);
1228
1229         path = btrfs_alloc_path();
1230         if (!path)
1231                 return -ENOMEM;
1232         path->leave_spinning = 1;
1233
1234         block_rsv = trans->block_rsv;
1235         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1236
1237         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1238
1239         btrfs_release_delayed_node(delayed_node);
1240         btrfs_free_path(path);
1241         trans->block_rsv = block_rsv;
1242
1243         return ret;
1244 }
1245
1246 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1247 {
1248         struct btrfs_trans_handle *trans;
1249         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1250         struct btrfs_path *path;
1251         struct btrfs_block_rsv *block_rsv;
1252         int ret;
1253
1254         if (!delayed_node)
1255                 return 0;
1256
1257         mutex_lock(&delayed_node->mutex);
1258         if (!delayed_node->inode_dirty) {
1259                 mutex_unlock(&delayed_node->mutex);
1260                 btrfs_release_delayed_node(delayed_node);
1261                 return 0;
1262         }
1263         mutex_unlock(&delayed_node->mutex);
1264
1265         trans = btrfs_join_transaction(delayed_node->root);
1266         if (IS_ERR(trans)) {
1267                 ret = PTR_ERR(trans);
1268                 goto out;
1269         }
1270
1271         path = btrfs_alloc_path();
1272         if (!path) {
1273                 ret = -ENOMEM;
1274                 goto trans_out;
1275         }
1276         path->leave_spinning = 1;
1277
1278         block_rsv = trans->block_rsv;
1279         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1280
1281         mutex_lock(&delayed_node->mutex);
1282         if (delayed_node->inode_dirty)
1283                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1284                                                    path, delayed_node);
1285         else
1286                 ret = 0;
1287         mutex_unlock(&delayed_node->mutex);
1288
1289         btrfs_free_path(path);
1290         trans->block_rsv = block_rsv;
1291 trans_out:
1292         btrfs_end_transaction(trans, delayed_node->root);
1293         btrfs_btree_balance_dirty(delayed_node->root);
1294 out:
1295         btrfs_release_delayed_node(delayed_node);
1296
1297         return ret;
1298 }
1299
1300 void btrfs_remove_delayed_node(struct inode *inode)
1301 {
1302         struct btrfs_delayed_node *delayed_node;
1303
1304         delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1305         if (!delayed_node)
1306                 return;
1307
1308         BTRFS_I(inode)->delayed_node = NULL;
1309         btrfs_release_delayed_node(delayed_node);
1310 }
1311
1312 struct btrfs_async_delayed_work {
1313         struct btrfs_delayed_root *delayed_root;
1314         int nr;
1315         struct btrfs_work work;
1316 };
1317
1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1319 {
1320         struct btrfs_async_delayed_work *async_work;
1321         struct btrfs_delayed_root *delayed_root;
1322         struct btrfs_trans_handle *trans;
1323         struct btrfs_path *path;
1324         struct btrfs_delayed_node *delayed_node = NULL;
1325         struct btrfs_root *root;
1326         struct btrfs_block_rsv *block_rsv;
1327         int total_done = 0;
1328
1329         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1330         delayed_root = async_work->delayed_root;
1331
1332         path = btrfs_alloc_path();
1333         if (!path)
1334                 goto out;
1335
1336 again:
1337         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1338                 goto free_path;
1339
1340         delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1341         if (!delayed_node)
1342                 goto free_path;
1343
1344         path->leave_spinning = 1;
1345         root = delayed_node->root;
1346
1347         trans = btrfs_join_transaction(root);
1348         if (IS_ERR(trans))
1349                 goto release_path;
1350
1351         block_rsv = trans->block_rsv;
1352         trans->block_rsv = &root->fs_info->delayed_block_rsv;
1353
1354         __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1355         /*
1356          * Maybe new delayed items have been inserted, so we need requeue
1357          * the work. Besides that, we must dequeue the empty delayed nodes
1358          * to avoid the race between delayed items balance and the worker.
1359          * The race like this:
1360          *      Task1                           Worker thread
1361          *                                      count == 0, needn't requeue
1362          *                                        also needn't insert the
1363          *                                        delayed node into prepare
1364          *                                        list again.
1365          *      add lots of delayed items
1366          *      queue the delayed node
1367          *        already in the list,
1368          *        and not in the prepare
1369          *        list, it means the delayed
1370          *        node is being dealt with
1371          *        by the worker.
1372          *      do delayed items balance
1373          *        the delayed node is being
1374          *        dealt with by the worker
1375          *        now, just wait.
1376          *                                      the worker goto idle.
1377          * Task1 will sleep until the transaction is commited.
1378          */
1379         mutex_lock(&delayed_node->mutex);
1380         btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
1381         mutex_unlock(&delayed_node->mutex);
1382
1383         trans->block_rsv = block_rsv;
1384         btrfs_end_transaction_dmeta(trans, root);
1385         btrfs_btree_balance_dirty_nodelay(root);
1386
1387 release_path:
1388         btrfs_release_path(path);
1389         total_done++;
1390
1391         btrfs_release_prepared_delayed_node(delayed_node);
1392         if (async_work->nr == 0 || total_done < async_work->nr)
1393                 goto again;
1394
1395 free_path:
1396         btrfs_free_path(path);
1397 out:
1398         wake_up(&delayed_root->wait);
1399         kfree(async_work);
1400 }
1401
1402
1403 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1404                                      struct btrfs_root *root, int nr)
1405 {
1406         struct btrfs_async_delayed_work *async_work;
1407
1408         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1409                 return 0;
1410
1411         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1412         if (!async_work)
1413                 return -ENOMEM;
1414
1415         async_work->delayed_root = delayed_root;
1416         async_work->work.func = btrfs_async_run_delayed_root;
1417         async_work->work.flags = 0;
1418         async_work->nr = nr;
1419
1420         btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
1421         return 0;
1422 }
1423
1424 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1425 {
1426         struct btrfs_delayed_root *delayed_root;
1427         delayed_root = btrfs_get_delayed_root(root);
1428         WARN_ON(btrfs_first_delayed_node(delayed_root));
1429 }
1430
1431 static int refs_newer(struct btrfs_delayed_root *delayed_root,
1432                       int seq, int count)
1433 {
1434         int val = atomic_read(&delayed_root->items_seq);
1435
1436         if (val < seq || val >= seq + count)
1437                 return 1;
1438         return 0;
1439 }
1440
1441 void btrfs_balance_delayed_items(struct btrfs_root *root)
1442 {
1443         struct btrfs_delayed_root *delayed_root;
1444         int seq;
1445
1446         delayed_root = btrfs_get_delayed_root(root);
1447
1448         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1449                 return;
1450
1451         seq = atomic_read(&delayed_root->items_seq);
1452
1453         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1454                 int ret;
1455                 DEFINE_WAIT(__wait);
1456
1457                 ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1458                 if (ret)
1459                         return;
1460
1461                 while (1) {
1462                         prepare_to_wait(&delayed_root->wait, &__wait,
1463                                         TASK_INTERRUPTIBLE);
1464
1465                         if (refs_newer(delayed_root, seq,
1466                                        BTRFS_DELAYED_BATCH) ||
1467                             atomic_read(&delayed_root->items) <
1468                             BTRFS_DELAYED_BACKGROUND) {
1469                                 break;
1470                         }
1471                         if (!signal_pending(current))
1472                                 schedule();
1473                         else
1474                                 break;
1475                 }
1476                 finish_wait(&delayed_root->wait, &__wait);
1477         }
1478
1479         btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1480 }
1481
1482 /* Will return 0 or -ENOMEM */
1483 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1484                                    struct btrfs_root *root, const char *name,
1485                                    int name_len, struct inode *dir,
1486                                    struct btrfs_disk_key *disk_key, u8 type,
1487                                    u64 index)
1488 {
1489         struct btrfs_delayed_node *delayed_node;
1490         struct btrfs_delayed_item *delayed_item;
1491         struct btrfs_dir_item *dir_item;
1492         int ret;
1493
1494         delayed_node = btrfs_get_or_create_delayed_node(dir);
1495         if (IS_ERR(delayed_node))
1496                 return PTR_ERR(delayed_node);
1497
1498         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1499         if (!delayed_item) {
1500                 ret = -ENOMEM;
1501                 goto release_node;
1502         }
1503
1504         delayed_item->key.objectid = btrfs_ino(dir);
1505         btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1506         delayed_item->key.offset = index;
1507
1508         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1509         dir_item->location = *disk_key;
1510         dir_item->transid = cpu_to_le64(trans->transid);
1511         dir_item->data_len = 0;
1512         dir_item->name_len = cpu_to_le16(name_len);
1513         dir_item->type = type;
1514         memcpy((char *)(dir_item + 1), name, name_len);
1515
1516         ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1517         /*
1518          * we have reserved enough space when we start a new transaction,
1519          * so reserving metadata failure is impossible
1520          */
1521         BUG_ON(ret);
1522
1523
1524         mutex_lock(&delayed_node->mutex);
1525         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1526         if (unlikely(ret)) {
1527                 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1528                                 "the insertion tree of the delayed node"
1529                                 "(root id: %llu, inode id: %llu, errno: %d)\n",
1530                                 name,
1531                                 (unsigned long long)delayed_node->root->objectid,
1532                                 (unsigned long long)delayed_node->inode_id,
1533                                 ret);
1534                 BUG();
1535         }
1536         mutex_unlock(&delayed_node->mutex);
1537
1538 release_node:
1539         btrfs_release_delayed_node(delayed_node);
1540         return ret;
1541 }
1542
1543 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1544                                                struct btrfs_delayed_node *node,
1545                                                struct btrfs_key *key)
1546 {
1547         struct btrfs_delayed_item *item;
1548
1549         mutex_lock(&node->mutex);
1550         item = __btrfs_lookup_delayed_insertion_item(node, key);
1551         if (!item) {
1552                 mutex_unlock(&node->mutex);
1553                 return 1;
1554         }
1555
1556         btrfs_delayed_item_release_metadata(root, item);
1557         btrfs_release_delayed_item(item);
1558         mutex_unlock(&node->mutex);
1559         return 0;
1560 }
1561
1562 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1563                                    struct btrfs_root *root, struct inode *dir,
1564                                    u64 index)
1565 {
1566         struct btrfs_delayed_node *node;
1567         struct btrfs_delayed_item *item;
1568         struct btrfs_key item_key;
1569         int ret;
1570
1571         node = btrfs_get_or_create_delayed_node(dir);
1572         if (IS_ERR(node))
1573                 return PTR_ERR(node);
1574
1575         item_key.objectid = btrfs_ino(dir);
1576         btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1577         item_key.offset = index;
1578
1579         ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1580         if (!ret)
1581                 goto end;
1582
1583         item = btrfs_alloc_delayed_item(0);
1584         if (!item) {
1585                 ret = -ENOMEM;
1586                 goto end;
1587         }
1588
1589         item->key = item_key;
1590
1591         ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1592         /*
1593          * we have reserved enough space when we start a new transaction,
1594          * so reserving metadata failure is impossible.
1595          */
1596         BUG_ON(ret);
1597
1598         mutex_lock(&node->mutex);
1599         ret = __btrfs_add_delayed_deletion_item(node, item);
1600         if (unlikely(ret)) {
1601                 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1602                                 "into the deletion tree of the delayed node"
1603                                 "(root id: %llu, inode id: %llu, errno: %d)\n",
1604                                 (unsigned long long)index,
1605                                 (unsigned long long)node->root->objectid,
1606                                 (unsigned long long)node->inode_id,
1607                                 ret);
1608                 BUG();
1609         }
1610         mutex_unlock(&node->mutex);
1611 end:
1612         btrfs_release_delayed_node(node);
1613         return ret;
1614 }
1615
1616 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1617 {
1618         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1619
1620         if (!delayed_node)
1621                 return -ENOENT;
1622
1623         /*
1624          * Since we have held i_mutex of this directory, it is impossible that
1625          * a new directory index is added into the delayed node and index_cnt
1626          * is updated now. So we needn't lock the delayed node.
1627          */
1628         if (!delayed_node->index_cnt) {
1629                 btrfs_release_delayed_node(delayed_node);
1630                 return -EINVAL;
1631         }
1632
1633         BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1634         btrfs_release_delayed_node(delayed_node);
1635         return 0;
1636 }
1637
1638 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1639                              struct list_head *del_list)
1640 {
1641         struct btrfs_delayed_node *delayed_node;
1642         struct btrfs_delayed_item *item;
1643
1644         delayed_node = btrfs_get_delayed_node(inode);
1645         if (!delayed_node)
1646                 return;
1647
1648         mutex_lock(&delayed_node->mutex);
1649         item = __btrfs_first_delayed_insertion_item(delayed_node);
1650         while (item) {
1651                 atomic_inc(&item->refs);
1652                 list_add_tail(&item->readdir_list, ins_list);
1653                 item = __btrfs_next_delayed_item(item);
1654         }
1655
1656         item = __btrfs_first_delayed_deletion_item(delayed_node);
1657         while (item) {
1658                 atomic_inc(&item->refs);
1659                 list_add_tail(&item->readdir_list, del_list);
1660                 item = __btrfs_next_delayed_item(item);
1661         }
1662         mutex_unlock(&delayed_node->mutex);
1663         /*
1664          * This delayed node is still cached in the btrfs inode, so refs
1665          * must be > 1 now, and we needn't check it is going to be freed
1666          * or not.
1667          *
1668          * Besides that, this function is used to read dir, we do not
1669          * insert/delete delayed items in this period. So we also needn't
1670          * requeue or dequeue this delayed node.
1671          */
1672         atomic_dec(&delayed_node->refs);
1673 }
1674
1675 void btrfs_put_delayed_items(struct list_head *ins_list,
1676                              struct list_head *del_list)
1677 {
1678         struct btrfs_delayed_item *curr, *next;
1679
1680         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1681                 list_del(&curr->readdir_list);
1682                 if (atomic_dec_and_test(&curr->refs))
1683                         kfree(curr);
1684         }
1685
1686         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1687                 list_del(&curr->readdir_list);
1688                 if (atomic_dec_and_test(&curr->refs))
1689                         kfree(curr);
1690         }
1691 }
1692
1693 int btrfs_should_delete_dir_index(struct list_head *del_list,
1694                                   u64 index)
1695 {
1696         struct btrfs_delayed_item *curr, *next;
1697         int ret;
1698
1699         if (list_empty(del_list))
1700                 return 0;
1701
1702         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1703                 if (curr->key.offset > index)
1704                         break;
1705
1706                 list_del(&curr->readdir_list);
1707                 ret = (curr->key.offset == index);
1708
1709                 if (atomic_dec_and_test(&curr->refs))
1710                         kfree(curr);
1711
1712                 if (ret)
1713                         return 1;
1714                 else
1715                         continue;
1716         }
1717         return 0;
1718 }
1719
1720 /*
1721  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1722  *
1723  */
1724 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1725                                     filldir_t filldir,
1726                                     struct list_head *ins_list)
1727 {
1728         struct btrfs_dir_item *di;
1729         struct btrfs_delayed_item *curr, *next;
1730         struct btrfs_key location;
1731         char *name;
1732         int name_len;
1733         int over = 0;
1734         unsigned char d_type;
1735
1736         if (list_empty(ins_list))
1737                 return 0;
1738
1739         /*
1740          * Changing the data of the delayed item is impossible. So
1741          * we needn't lock them. And we have held i_mutex of the
1742          * directory, nobody can delete any directory indexes now.
1743          */
1744         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1745                 list_del(&curr->readdir_list);
1746
1747                 if (curr->key.offset < filp->f_pos) {
1748                         if (atomic_dec_and_test(&curr->refs))
1749                                 kfree(curr);
1750                         continue;
1751                 }
1752
1753                 filp->f_pos = curr->key.offset;
1754
1755                 di = (struct btrfs_dir_item *)curr->data;
1756                 name = (char *)(di + 1);
1757                 name_len = le16_to_cpu(di->name_len);
1758
1759                 d_type = btrfs_filetype_table[di->type];
1760                 btrfs_disk_key_to_cpu(&location, &di->location);
1761
1762                 over = filldir(dirent, name, name_len, curr->key.offset,
1763                                location.objectid, d_type);
1764
1765                 if (atomic_dec_and_test(&curr->refs))
1766                         kfree(curr);
1767
1768                 if (over)
1769                         return 1;
1770         }
1771         return 0;
1772 }
1773
1774 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1775                          generation, 64);
1776 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1777                          sequence, 64);
1778 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1779                          transid, 64);
1780 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1781 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1782                          nbytes, 64);
1783 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1784                          block_group, 64);
1785 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1786 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1787 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1788 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1789 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1790 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1791
1792 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1793 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1794
1795 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1796                                   struct btrfs_inode_item *inode_item,
1797                                   struct inode *inode)
1798 {
1799         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1800         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1801         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1802         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1803         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1804         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1805         btrfs_set_stack_inode_generation(inode_item,
1806                                          BTRFS_I(inode)->generation);
1807         btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1808         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1809         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1810         btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1811         btrfs_set_stack_inode_block_group(inode_item, 0);
1812
1813         btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1814                                      inode->i_atime.tv_sec);
1815         btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1816                                       inode->i_atime.tv_nsec);
1817
1818         btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1819                                      inode->i_mtime.tv_sec);
1820         btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1821                                       inode->i_mtime.tv_nsec);
1822
1823         btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1824                                      inode->i_ctime.tv_sec);
1825         btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1826                                       inode->i_ctime.tv_nsec);
1827 }
1828
1829 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1830 {
1831         struct btrfs_delayed_node *delayed_node;
1832         struct btrfs_inode_item *inode_item;
1833         struct btrfs_timespec *tspec;
1834
1835         delayed_node = btrfs_get_delayed_node(inode);
1836         if (!delayed_node)
1837                 return -ENOENT;
1838
1839         mutex_lock(&delayed_node->mutex);
1840         if (!delayed_node->inode_dirty) {
1841                 mutex_unlock(&delayed_node->mutex);
1842                 btrfs_release_delayed_node(delayed_node);
1843                 return -ENOENT;
1844         }
1845
1846         inode_item = &delayed_node->inode_item;
1847
1848         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1849         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1850         btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1851         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1852         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1853         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1854         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1855         inode->i_version = btrfs_stack_inode_sequence(inode_item);
1856         inode->i_rdev = 0;
1857         *rdev = btrfs_stack_inode_rdev(inode_item);
1858         BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1859
1860         tspec = btrfs_inode_atime(inode_item);
1861         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1862         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1863
1864         tspec = btrfs_inode_mtime(inode_item);
1865         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1866         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1867
1868         tspec = btrfs_inode_ctime(inode_item);
1869         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1870         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1871
1872         inode->i_generation = BTRFS_I(inode)->generation;
1873         BTRFS_I(inode)->index_cnt = (u64)-1;
1874
1875         mutex_unlock(&delayed_node->mutex);
1876         btrfs_release_delayed_node(delayed_node);
1877         return 0;
1878 }
1879
1880 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1881                                struct btrfs_root *root, struct inode *inode)
1882 {
1883         struct btrfs_delayed_node *delayed_node;
1884         int ret = 0;
1885
1886         delayed_node = btrfs_get_or_create_delayed_node(inode);
1887         if (IS_ERR(delayed_node))
1888                 return PTR_ERR(delayed_node);
1889
1890         mutex_lock(&delayed_node->mutex);
1891         if (delayed_node->inode_dirty) {
1892                 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1893                 goto release_node;
1894         }
1895
1896         ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1897                                                    delayed_node);
1898         if (ret)
1899                 goto release_node;
1900
1901         fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1902         delayed_node->inode_dirty = 1;
1903         delayed_node->count++;
1904         atomic_inc(&root->fs_info->delayed_root->items);
1905 release_node:
1906         mutex_unlock(&delayed_node->mutex);
1907         btrfs_release_delayed_node(delayed_node);
1908         return ret;
1909 }
1910
1911 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1912 {
1913         struct btrfs_root *root = delayed_node->root;
1914         struct btrfs_delayed_item *curr_item, *prev_item;
1915
1916         mutex_lock(&delayed_node->mutex);
1917         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1918         while (curr_item) {
1919                 btrfs_delayed_item_release_metadata(root, curr_item);
1920                 prev_item = curr_item;
1921                 curr_item = __btrfs_next_delayed_item(prev_item);
1922                 btrfs_release_delayed_item(prev_item);
1923         }
1924
1925         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1926         while (curr_item) {
1927                 btrfs_delayed_item_release_metadata(root, curr_item);
1928                 prev_item = curr_item;
1929                 curr_item = __btrfs_next_delayed_item(prev_item);
1930                 btrfs_release_delayed_item(prev_item);
1931         }
1932
1933         if (delayed_node->inode_dirty) {
1934                 btrfs_delayed_inode_release_metadata(root, delayed_node);
1935                 btrfs_release_delayed_inode(delayed_node);
1936         }
1937         mutex_unlock(&delayed_node->mutex);
1938 }
1939
1940 void btrfs_kill_delayed_inode_items(struct inode *inode)
1941 {
1942         struct btrfs_delayed_node *delayed_node;
1943
1944         delayed_node = btrfs_get_delayed_node(inode);
1945         if (!delayed_node)
1946                 return;
1947
1948         __btrfs_kill_delayed_node(delayed_node);
1949         btrfs_release_delayed_node(delayed_node);
1950 }
1951
1952 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1953 {
1954         u64 inode_id = 0;
1955         struct btrfs_delayed_node *delayed_nodes[8];
1956         int i, n;
1957
1958         while (1) {
1959                 spin_lock(&root->inode_lock);
1960                 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1961                                            (void **)delayed_nodes, inode_id,
1962                                            ARRAY_SIZE(delayed_nodes));
1963                 if (!n) {
1964                         spin_unlock(&root->inode_lock);
1965                         break;
1966                 }
1967
1968                 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1969
1970                 for (i = 0; i < n; i++)
1971                         atomic_inc(&delayed_nodes[i]->refs);
1972                 spin_unlock(&root->inode_lock);
1973
1974                 for (i = 0; i < n; i++) {
1975                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1976                         btrfs_release_delayed_node(delayed_nodes[i]);
1977                 }
1978         }
1979 }
1980
1981 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1982 {
1983         struct btrfs_delayed_root *delayed_root;
1984         struct btrfs_delayed_node *curr_node, *prev_node;
1985
1986         delayed_root = btrfs_get_delayed_root(root);
1987
1988         curr_node = btrfs_first_delayed_node(delayed_root);
1989         while (curr_node) {
1990                 __btrfs_kill_delayed_node(curr_node);
1991
1992                 prev_node = curr_node;
1993                 curr_node = btrfs_next_delayed_node(curr_node);
1994                 btrfs_release_delayed_node(prev_node);
1995         }
1996 }
1997