Merge branch 'drm-next-3.10' of git://people.freedesktop.org/~agd5f/linux into drm...
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45                                           u32 blocksize, u64 parent_transid,
46                                           u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48                                                 u64 bytenr, u32 blocksize,
49                                                 u64 time_seq);
50
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53         struct btrfs_path *path;
54         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55         return path;
56 }
57
58 /*
59  * set all locked nodes in the path to blocking locks.  This should
60  * be done before scheduling
61  */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64         int i;
65         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66                 if (!p->nodes[i] || !p->locks[i])
67                         continue;
68                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69                 if (p->locks[i] == BTRFS_READ_LOCK)
70                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
72                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73         }
74 }
75
76 /*
77  * reset all the locked nodes in the patch to spinning locks.
78  *
79  * held is used to keep lockdep happy, when lockdep is enabled
80  * we set held to a blocking lock before we go around and
81  * retake all the spinlocks in the path.  You can safely use NULL
82  * for held
83  */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85                                         struct extent_buffer *held, int held_rw)
86 {
87         int i;
88
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90         /* lockdep really cares that we take all of these spinlocks
91          * in the right order.  If any of the locks in the path are not
92          * currently blocking, it is going to complain.  So, make really
93          * really sure by forcing the path to blocking before we clear
94          * the path blocking.
95          */
96         if (held) {
97                 btrfs_set_lock_blocking_rw(held, held_rw);
98                 if (held_rw == BTRFS_WRITE_LOCK)
99                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100                 else if (held_rw == BTRFS_READ_LOCK)
101                         held_rw = BTRFS_READ_LOCK_BLOCKING;
102         }
103         btrfs_set_path_blocking(p);
104 #endif
105
106         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107                 if (p->nodes[i] && p->locks[i]) {
108                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110                                 p->locks[i] = BTRFS_WRITE_LOCK;
111                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112                                 p->locks[i] = BTRFS_READ_LOCK;
113                 }
114         }
115
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117         if (held)
118                 btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125         if (!p)
126                 return;
127         btrfs_release_path(p);
128         kmem_cache_free(btrfs_path_cachep, p);
129 }
130
131 /*
132  * path release drops references on the extent buffers in the path
133  * and it drops any locks held by this path
134  *
135  * It is safe to call this on paths that no locks or extent buffers held.
136  */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139         int i;
140
141         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142                 p->slots[i] = 0;
143                 if (!p->nodes[i])
144                         continue;
145                 if (p->locks[i]) {
146                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147                         p->locks[i] = 0;
148                 }
149                 free_extent_buffer(p->nodes[i]);
150                 p->nodes[i] = NULL;
151         }
152 }
153
154 /*
155  * safely gets a reference on the root node of a tree.  A lock
156  * is not taken, so a concurrent writer may put a different node
157  * at the root of the tree.  See btrfs_lock_root_node for the
158  * looping required.
159  *
160  * The extent buffer returned by this has a reference taken, so
161  * it won't disappear.  It may stop being the root of the tree
162  * at any time because there are no locks held.
163  */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166         struct extent_buffer *eb;
167
168         while (1) {
169                 rcu_read_lock();
170                 eb = rcu_dereference(root->node);
171
172                 /*
173                  * RCU really hurts here, we could free up the root node because
174                  * it was cow'ed but we may not get the new root node yet so do
175                  * the inc_not_zero dance and if it doesn't work then
176                  * synchronize_rcu and try again.
177                  */
178                 if (atomic_inc_not_zero(&eb->refs)) {
179                         rcu_read_unlock();
180                         break;
181                 }
182                 rcu_read_unlock();
183                 synchronize_rcu();
184         }
185         return eb;
186 }
187
188 /* loop around taking references on and locking the root node of the
189  * tree until you end up with a lock on the root.  A locked buffer
190  * is returned, with a reference held.
191  */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194         struct extent_buffer *eb;
195
196         while (1) {
197                 eb = btrfs_root_node(root);
198                 btrfs_tree_lock(eb);
199                 if (eb == root->node)
200                         break;
201                 btrfs_tree_unlock(eb);
202                 free_extent_buffer(eb);
203         }
204         return eb;
205 }
206
207 /* loop around taking references on and locking the root node of the
208  * tree until you end up with a lock on the root.  A locked buffer
209  * is returned, with a reference held.
210  */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213         struct extent_buffer *eb;
214
215         while (1) {
216                 eb = btrfs_root_node(root);
217                 btrfs_tree_read_lock(eb);
218                 if (eb == root->node)
219                         break;
220                 btrfs_tree_read_unlock(eb);
221                 free_extent_buffer(eb);
222         }
223         return eb;
224 }
225
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227  * put onto a simple dirty list.  transaction.c walks this to make sure they
228  * get properly updated on disk.
229  */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232         spin_lock(&root->fs_info->trans_lock);
233         if (root->track_dirty && list_empty(&root->dirty_list)) {
234                 list_add(&root->dirty_list,
235                          &root->fs_info->dirty_cowonly_roots);
236         }
237         spin_unlock(&root->fs_info->trans_lock);
238 }
239
240 /*
241  * used by snapshot creation to make a copy of a root for a tree with
242  * a given objectid.  The buffer with the new root node is returned in
243  * cow_ret, and this func returns zero on success or a negative error code.
244  */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246                       struct btrfs_root *root,
247                       struct extent_buffer *buf,
248                       struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250         struct extent_buffer *cow;
251         int ret = 0;
252         int level;
253         struct btrfs_disk_key disk_key;
254
255         WARN_ON(root->ref_cows && trans->transid !=
256                 root->fs_info->running_transaction->transid);
257         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258
259         level = btrfs_header_level(buf);
260         if (level == 0)
261                 btrfs_item_key(buf, &disk_key, 0);
262         else
263                 btrfs_node_key(buf, &disk_key, 0);
264
265         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266                                      new_root_objectid, &disk_key, level,
267                                      buf->start, 0);
268         if (IS_ERR(cow))
269                 return PTR_ERR(cow);
270
271         copy_extent_buffer(cow, buf, 0, 0, cow->len);
272         btrfs_set_header_bytenr(cow, cow->start);
273         btrfs_set_header_generation(cow, trans->transid);
274         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276                                      BTRFS_HEADER_FLAG_RELOC);
277         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279         else
280                 btrfs_set_header_owner(cow, new_root_objectid);
281
282         write_extent_buffer(cow, root->fs_info->fsid,
283                             (unsigned long)btrfs_header_fsid(cow),
284                             BTRFS_FSID_SIZE);
285
286         WARN_ON(btrfs_header_generation(buf) > trans->transid);
287         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289         else
290                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291
292         if (ret)
293                 return ret;
294
295         btrfs_mark_buffer_dirty(cow);
296         *cow_ret = cow;
297         return 0;
298 }
299
300 enum mod_log_op {
301         MOD_LOG_KEY_REPLACE,
302         MOD_LOG_KEY_ADD,
303         MOD_LOG_KEY_REMOVE,
304         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306         MOD_LOG_MOVE_KEYS,
307         MOD_LOG_ROOT_REPLACE,
308 };
309
310 struct tree_mod_move {
311         int dst_slot;
312         int nr_items;
313 };
314
315 struct tree_mod_root {
316         u64 logical;
317         u8 level;
318 };
319
320 struct tree_mod_elem {
321         struct rb_node node;
322         u64 index;              /* shifted logical */
323         u64 seq;
324         enum mod_log_op op;
325
326         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327         int slot;
328
329         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330         u64 generation;
331
332         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333         struct btrfs_disk_key key;
334         u64 blockptr;
335
336         /* this is used for op == MOD_LOG_MOVE_KEYS */
337         struct tree_mod_move move;
338
339         /* this is used for op == MOD_LOG_ROOT_REPLACE */
340         struct tree_mod_root old_root;
341 };
342
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345         read_lock(&fs_info->tree_mod_log_lock);
346 }
347
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350         read_unlock(&fs_info->tree_mod_log_lock);
351 }
352
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355         write_lock(&fs_info->tree_mod_log_lock);
356 }
357
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360         write_unlock(&fs_info->tree_mod_log_lock);
361 }
362
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372                            struct seq_list *elem)
373 {
374         u64 seq;
375
376         tree_mod_log_write_lock(fs_info);
377         spin_lock(&fs_info->tree_mod_seq_lock);
378         if (!elem->seq) {
379                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381         }
382         seq = btrfs_inc_tree_mod_seq(fs_info);
383         spin_unlock(&fs_info->tree_mod_seq_lock);
384         tree_mod_log_write_unlock(fs_info);
385
386         return seq;
387 }
388
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390                             struct seq_list *elem)
391 {
392         struct rb_root *tm_root;
393         struct rb_node *node;
394         struct rb_node *next;
395         struct seq_list *cur_elem;
396         struct tree_mod_elem *tm;
397         u64 min_seq = (u64)-1;
398         u64 seq_putting = elem->seq;
399
400         if (!seq_putting)
401                 return;
402
403         spin_lock(&fs_info->tree_mod_seq_lock);
404         list_del(&elem->list);
405         elem->seq = 0;
406
407         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408                 if (cur_elem->seq < min_seq) {
409                         if (seq_putting > cur_elem->seq) {
410                                 /*
411                                  * blocker with lower sequence number exists, we
412                                  * cannot remove anything from the log
413                                  */
414                                 spin_unlock(&fs_info->tree_mod_seq_lock);
415                                 return;
416                         }
417                         min_seq = cur_elem->seq;
418                 }
419         }
420         spin_unlock(&fs_info->tree_mod_seq_lock);
421
422         /*
423          * anything that's lower than the lowest existing (read: blocked)
424          * sequence number can be removed from the tree.
425          */
426         tree_mod_log_write_lock(fs_info);
427         tm_root = &fs_info->tree_mod_log;
428         for (node = rb_first(tm_root); node; node = next) {
429                 next = rb_next(node);
430                 tm = container_of(node, struct tree_mod_elem, node);
431                 if (tm->seq > min_seq)
432                         continue;
433                 rb_erase(node, tm_root);
434                 kfree(tm);
435         }
436         tree_mod_log_write_unlock(fs_info);
437 }
438
439 /*
440  * key order of the log:
441  *       index -> sequence
442  *
443  * the index is the shifted logical of the *new* root node for root replace
444  * operations, or the shifted logical of the affected block for all other
445  * operations.
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450         struct rb_root *tm_root;
451         struct rb_node **new;
452         struct rb_node *parent = NULL;
453         struct tree_mod_elem *cur;
454
455         BUG_ON(!tm || !tm->seq);
456
457         tm_root = &fs_info->tree_mod_log;
458         new = &tm_root->rb_node;
459         while (*new) {
460                 cur = container_of(*new, struct tree_mod_elem, node);
461                 parent = *new;
462                 if (cur->index < tm->index)
463                         new = &((*new)->rb_left);
464                 else if (cur->index > tm->index)
465                         new = &((*new)->rb_right);
466                 else if (cur->seq < tm->seq)
467                         new = &((*new)->rb_left);
468                 else if (cur->seq > tm->seq)
469                         new = &((*new)->rb_right);
470                 else {
471                         kfree(tm);
472                         return -EEXIST;
473                 }
474         }
475
476         rb_link_node(&tm->node, parent, new);
477         rb_insert_color(&tm->node, tm_root);
478         return 0;
479 }
480
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488                                     struct extent_buffer *eb) {
489         smp_mb();
490         if (list_empty(&(fs_info)->tree_mod_seq_list))
491                 return 1;
492         if (eb && btrfs_header_level(eb) == 0)
493                 return 1;
494
495         tree_mod_log_write_lock(fs_info);
496         if (list_empty(&fs_info->tree_mod_seq_list)) {
497                 /*
498                  * someone emptied the list while we were waiting for the lock.
499                  * we must not add to the list when no blocker exists.
500                  */
501                 tree_mod_log_write_unlock(fs_info);
502                 return 1;
503         }
504
505         return 0;
506 }
507
508 /*
509  * This allocates memory and gets a tree modification sequence number.
510  *
511  * Returns <0 on error.
512  * Returns >0 (the added sequence number) on success.
513  */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515                                  struct tree_mod_elem **tm_ret)
516 {
517         struct tree_mod_elem *tm;
518
519         /*
520          * once we switch from spin locks to something different, we should
521          * honor the flags parameter here.
522          */
523         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524         if (!tm)
525                 return -ENOMEM;
526
527         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528         return tm->seq;
529 }
530
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533                           struct extent_buffer *eb, int slot,
534                           enum mod_log_op op, gfp_t flags)
535 {
536         int ret;
537         struct tree_mod_elem *tm;
538
539         ret = tree_mod_alloc(fs_info, flags, &tm);
540         if (ret < 0)
541                 return ret;
542
543         tm->index = eb->start >> PAGE_CACHE_SHIFT;
544         if (op != MOD_LOG_KEY_ADD) {
545                 btrfs_node_key(eb, &tm->key, slot);
546                 tm->blockptr = btrfs_node_blockptr(eb, slot);
547         }
548         tm->op = op;
549         tm->slot = slot;
550         tm->generation = btrfs_node_ptr_generation(eb, slot);
551
552         return __tree_mod_log_insert(fs_info, tm);
553 }
554
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557                              struct extent_buffer *eb, int slot,
558                              enum mod_log_op op, gfp_t flags)
559 {
560         int ret;
561
562         if (tree_mod_dont_log(fs_info, eb))
563                 return 0;
564
565         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566
567         tree_mod_log_write_unlock(fs_info);
568         return ret;
569 }
570
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573                         int slot, enum mod_log_op op)
574 {
575         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580                              struct extent_buffer *eb, int slot,
581                              enum mod_log_op op)
582 {
583         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588                          struct extent_buffer *eb, int dst_slot, int src_slot,
589                          int nr_items, gfp_t flags)
590 {
591         struct tree_mod_elem *tm;
592         int ret;
593         int i;
594
595         if (tree_mod_dont_log(fs_info, eb))
596                 return 0;
597
598         /*
599          * When we override something during the move, we log these removals.
600          * This can only happen when we move towards the beginning of the
601          * buffer, i.e. dst_slot < src_slot.
602          */
603         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606                 BUG_ON(ret < 0);
607         }
608
609         ret = tree_mod_alloc(fs_info, flags, &tm);
610         if (ret < 0)
611                 goto out;
612
613         tm->index = eb->start >> PAGE_CACHE_SHIFT;
614         tm->slot = src_slot;
615         tm->move.dst_slot = dst_slot;
616         tm->move.nr_items = nr_items;
617         tm->op = MOD_LOG_MOVE_KEYS;
618
619         ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621         tree_mod_log_write_unlock(fs_info);
622         return ret;
623 }
624
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628         int i;
629         u32 nritems;
630         int ret;
631
632         if (btrfs_header_level(eb) == 0)
633                 return;
634
635         nritems = btrfs_header_nritems(eb);
636         for (i = nritems - 1; i >= 0; i--) {
637                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639                 BUG_ON(ret < 0);
640         }
641 }
642
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645                          struct extent_buffer *old_root,
646                          struct extent_buffer *new_root, gfp_t flags)
647 {
648         struct tree_mod_elem *tm;
649         int ret;
650
651         if (tree_mod_dont_log(fs_info, NULL))
652                 return 0;
653
654         __tree_mod_log_free_eb(fs_info, old_root);
655
656         ret = tree_mod_alloc(fs_info, flags, &tm);
657         if (ret < 0)
658                 goto out;
659
660         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
661         tm->old_root.logical = old_root->start;
662         tm->old_root.level = btrfs_header_level(old_root);
663         tm->generation = btrfs_header_generation(old_root);
664         tm->op = MOD_LOG_ROOT_REPLACE;
665
666         ret = __tree_mod_log_insert(fs_info, tm);
667 out:
668         tree_mod_log_write_unlock(fs_info);
669         return ret;
670 }
671
672 static struct tree_mod_elem *
673 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
674                       int smallest)
675 {
676         struct rb_root *tm_root;
677         struct rb_node *node;
678         struct tree_mod_elem *cur = NULL;
679         struct tree_mod_elem *found = NULL;
680         u64 index = start >> PAGE_CACHE_SHIFT;
681
682         tree_mod_log_read_lock(fs_info);
683         tm_root = &fs_info->tree_mod_log;
684         node = tm_root->rb_node;
685         while (node) {
686                 cur = container_of(node, struct tree_mod_elem, node);
687                 if (cur->index < index) {
688                         node = node->rb_left;
689                 } else if (cur->index > index) {
690                         node = node->rb_right;
691                 } else if (cur->seq < min_seq) {
692                         node = node->rb_left;
693                 } else if (!smallest) {
694                         /* we want the node with the highest seq */
695                         if (found)
696                                 BUG_ON(found->seq > cur->seq);
697                         found = cur;
698                         node = node->rb_left;
699                 } else if (cur->seq > min_seq) {
700                         /* we want the node with the smallest seq */
701                         if (found)
702                                 BUG_ON(found->seq < cur->seq);
703                         found = cur;
704                         node = node->rb_right;
705                 } else {
706                         found = cur;
707                         break;
708                 }
709         }
710         tree_mod_log_read_unlock(fs_info);
711
712         return found;
713 }
714
715 /*
716  * this returns the element from the log with the smallest time sequence
717  * value that's in the log (the oldest log item). any element with a time
718  * sequence lower than min_seq will be ignored.
719  */
720 static struct tree_mod_elem *
721 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
722                            u64 min_seq)
723 {
724         return __tree_mod_log_search(fs_info, start, min_seq, 1);
725 }
726
727 /*
728  * this returns the element from the log with the largest time sequence
729  * value that's in the log (the most recent log item). any element with
730  * a time sequence lower than min_seq will be ignored.
731  */
732 static struct tree_mod_elem *
733 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
734 {
735         return __tree_mod_log_search(fs_info, start, min_seq, 0);
736 }
737
738 static noinline void
739 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
740                      struct extent_buffer *src, unsigned long dst_offset,
741                      unsigned long src_offset, int nr_items, int log_removal)
742 {
743         int ret;
744         int i;
745
746         if (tree_mod_dont_log(fs_info, NULL))
747                 return;
748
749         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
750                 tree_mod_log_write_unlock(fs_info);
751                 return;
752         }
753
754         for (i = 0; i < nr_items; i++) {
755                 if (log_removal) {
756                         ret = tree_mod_log_insert_key_locked(fs_info, src,
757                                                         i + src_offset,
758                                                         MOD_LOG_KEY_REMOVE);
759                         BUG_ON(ret < 0);
760                 }
761                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
762                                                      i + dst_offset,
763                                                      MOD_LOG_KEY_ADD);
764                 BUG_ON(ret < 0);
765         }
766
767         tree_mod_log_write_unlock(fs_info);
768 }
769
770 static inline void
771 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
772                      int dst_offset, int src_offset, int nr_items)
773 {
774         int ret;
775         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
776                                        nr_items, GFP_NOFS);
777         BUG_ON(ret < 0);
778 }
779
780 static noinline void
781 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
782                           struct extent_buffer *eb, int slot, int atomic)
783 {
784         int ret;
785
786         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
787                                            MOD_LOG_KEY_REPLACE,
788                                            atomic ? GFP_ATOMIC : GFP_NOFS);
789         BUG_ON(ret < 0);
790 }
791
792 static noinline void
793 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
794 {
795         if (tree_mod_dont_log(fs_info, eb))
796                 return;
797
798         __tree_mod_log_free_eb(fs_info, eb);
799
800         tree_mod_log_write_unlock(fs_info);
801 }
802
803 static noinline void
804 tree_mod_log_set_root_pointer(struct btrfs_root *root,
805                               struct extent_buffer *new_root_node)
806 {
807         int ret;
808         ret = tree_mod_log_insert_root(root->fs_info, root->node,
809                                        new_root_node, GFP_NOFS);
810         BUG_ON(ret < 0);
811 }
812
813 /*
814  * check if the tree block can be shared by multiple trees
815  */
816 int btrfs_block_can_be_shared(struct btrfs_root *root,
817                               struct extent_buffer *buf)
818 {
819         /*
820          * Tree blocks not in refernece counted trees and tree roots
821          * are never shared. If a block was allocated after the last
822          * snapshot and the block was not allocated by tree relocation,
823          * we know the block is not shared.
824          */
825         if (root->ref_cows &&
826             buf != root->node && buf != root->commit_root &&
827             (btrfs_header_generation(buf) <=
828              btrfs_root_last_snapshot(&root->root_item) ||
829              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
830                 return 1;
831 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
832         if (root->ref_cows &&
833             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
834                 return 1;
835 #endif
836         return 0;
837 }
838
839 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
840                                        struct btrfs_root *root,
841                                        struct extent_buffer *buf,
842                                        struct extent_buffer *cow,
843                                        int *last_ref)
844 {
845         u64 refs;
846         u64 owner;
847         u64 flags;
848         u64 new_flags = 0;
849         int ret;
850
851         /*
852          * Backrefs update rules:
853          *
854          * Always use full backrefs for extent pointers in tree block
855          * allocated by tree relocation.
856          *
857          * If a shared tree block is no longer referenced by its owner
858          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
859          * use full backrefs for extent pointers in tree block.
860          *
861          * If a tree block is been relocating
862          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
863          * use full backrefs for extent pointers in tree block.
864          * The reason for this is some operations (such as drop tree)
865          * are only allowed for blocks use full backrefs.
866          */
867
868         if (btrfs_block_can_be_shared(root, buf)) {
869                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
870                                                buf->len, &refs, &flags);
871                 if (ret)
872                         return ret;
873                 if (refs == 0) {
874                         ret = -EROFS;
875                         btrfs_std_error(root->fs_info, ret);
876                         return ret;
877                 }
878         } else {
879                 refs = 1;
880                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
881                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
882                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883                 else
884                         flags = 0;
885         }
886
887         owner = btrfs_header_owner(buf);
888         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
889                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
890
891         if (refs > 1) {
892                 if ((owner == root->root_key.objectid ||
893                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
894                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
895                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
896                         BUG_ON(ret); /* -ENOMEM */
897
898                         if (root->root_key.objectid ==
899                             BTRFS_TREE_RELOC_OBJECTID) {
900                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
901                                 BUG_ON(ret); /* -ENOMEM */
902                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
903                                 BUG_ON(ret); /* -ENOMEM */
904                         }
905                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
906                 } else {
907
908                         if (root->root_key.objectid ==
909                             BTRFS_TREE_RELOC_OBJECTID)
910                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
911                         else
912                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
913                         BUG_ON(ret); /* -ENOMEM */
914                 }
915                 if (new_flags != 0) {
916                         ret = btrfs_set_disk_extent_flags(trans, root,
917                                                           buf->start,
918                                                           buf->len,
919                                                           new_flags, 0);
920                         if (ret)
921                                 return ret;
922                 }
923         } else {
924                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
925                         if (root->root_key.objectid ==
926                             BTRFS_TREE_RELOC_OBJECTID)
927                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
928                         else
929                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
930                         BUG_ON(ret); /* -ENOMEM */
931                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
932                         BUG_ON(ret); /* -ENOMEM */
933                 }
934                 clean_tree_block(trans, root, buf);
935                 *last_ref = 1;
936         }
937         return 0;
938 }
939
940 /*
941  * does the dirty work in cow of a single block.  The parent block (if
942  * supplied) is updated to point to the new cow copy.  The new buffer is marked
943  * dirty and returned locked.  If you modify the block it needs to be marked
944  * dirty again.
945  *
946  * search_start -- an allocation hint for the new block
947  *
948  * empty_size -- a hint that you plan on doing more cow.  This is the size in
949  * bytes the allocator should try to find free next to the block it returns.
950  * This is just a hint and may be ignored by the allocator.
951  */
952 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
953                              struct btrfs_root *root,
954                              struct extent_buffer *buf,
955                              struct extent_buffer *parent, int parent_slot,
956                              struct extent_buffer **cow_ret,
957                              u64 search_start, u64 empty_size)
958 {
959         struct btrfs_disk_key disk_key;
960         struct extent_buffer *cow;
961         int level, ret;
962         int last_ref = 0;
963         int unlock_orig = 0;
964         u64 parent_start;
965
966         if (*cow_ret == buf)
967                 unlock_orig = 1;
968
969         btrfs_assert_tree_locked(buf);
970
971         WARN_ON(root->ref_cows && trans->transid !=
972                 root->fs_info->running_transaction->transid);
973         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
974
975         level = btrfs_header_level(buf);
976
977         if (level == 0)
978                 btrfs_item_key(buf, &disk_key, 0);
979         else
980                 btrfs_node_key(buf, &disk_key, 0);
981
982         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
983                 if (parent)
984                         parent_start = parent->start;
985                 else
986                         parent_start = 0;
987         } else
988                 parent_start = 0;
989
990         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
991                                      root->root_key.objectid, &disk_key,
992                                      level, search_start, empty_size);
993         if (IS_ERR(cow))
994                 return PTR_ERR(cow);
995
996         /* cow is set to blocking by btrfs_init_new_buffer */
997
998         copy_extent_buffer(cow, buf, 0, 0, cow->len);
999         btrfs_set_header_bytenr(cow, cow->start);
1000         btrfs_set_header_generation(cow, trans->transid);
1001         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1002         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1003                                      BTRFS_HEADER_FLAG_RELOC);
1004         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1005                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1006         else
1007                 btrfs_set_header_owner(cow, root->root_key.objectid);
1008
1009         write_extent_buffer(cow, root->fs_info->fsid,
1010                             (unsigned long)btrfs_header_fsid(cow),
1011                             BTRFS_FSID_SIZE);
1012
1013         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1014         if (ret) {
1015                 btrfs_abort_transaction(trans, root, ret);
1016                 return ret;
1017         }
1018
1019         if (root->ref_cows)
1020                 btrfs_reloc_cow_block(trans, root, buf, cow);
1021
1022         if (buf == root->node) {
1023                 WARN_ON(parent && parent != buf);
1024                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1025                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1026                         parent_start = buf->start;
1027                 else
1028                         parent_start = 0;
1029
1030                 extent_buffer_get(cow);
1031                 tree_mod_log_set_root_pointer(root, cow);
1032                 rcu_assign_pointer(root->node, cow);
1033
1034                 btrfs_free_tree_block(trans, root, buf, parent_start,
1035                                       last_ref);
1036                 free_extent_buffer(buf);
1037                 add_root_to_dirty_list(root);
1038         } else {
1039                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1040                         parent_start = parent->start;
1041                 else
1042                         parent_start = 0;
1043
1044                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1045                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1046                                         MOD_LOG_KEY_REPLACE);
1047                 btrfs_set_node_blockptr(parent, parent_slot,
1048                                         cow->start);
1049                 btrfs_set_node_ptr_generation(parent, parent_slot,
1050                                               trans->transid);
1051                 btrfs_mark_buffer_dirty(parent);
1052                 tree_mod_log_free_eb(root->fs_info, buf);
1053                 btrfs_free_tree_block(trans, root, buf, parent_start,
1054                                       last_ref);
1055         }
1056         if (unlock_orig)
1057                 btrfs_tree_unlock(buf);
1058         free_extent_buffer_stale(buf);
1059         btrfs_mark_buffer_dirty(cow);
1060         *cow_ret = cow;
1061         return 0;
1062 }
1063
1064 /*
1065  * returns the logical address of the oldest predecessor of the given root.
1066  * entries older than time_seq are ignored.
1067  */
1068 static struct tree_mod_elem *
1069 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1070                            struct btrfs_root *root, u64 time_seq)
1071 {
1072         struct tree_mod_elem *tm;
1073         struct tree_mod_elem *found = NULL;
1074         u64 root_logical = root->node->start;
1075         int looped = 0;
1076
1077         if (!time_seq)
1078                 return 0;
1079
1080         /*
1081          * the very last operation that's logged for a root is the replacement
1082          * operation (if it is replaced at all). this has the index of the *new*
1083          * root, making it the very first operation that's logged for this root.
1084          */
1085         while (1) {
1086                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1087                                                 time_seq);
1088                 if (!looped && !tm)
1089                         return 0;
1090                 /*
1091                  * if there are no tree operation for the oldest root, we simply
1092                  * return it. this should only happen if that (old) root is at
1093                  * level 0.
1094                  */
1095                 if (!tm)
1096                         break;
1097
1098                 /*
1099                  * if there's an operation that's not a root replacement, we
1100                  * found the oldest version of our root. normally, we'll find a
1101                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1102                  */
1103                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1104                         break;
1105
1106                 found = tm;
1107                 root_logical = tm->old_root.logical;
1108                 BUG_ON(root_logical == root->node->start);
1109                 looped = 1;
1110         }
1111
1112         /* if there's no old root to return, return what we found instead */
1113         if (!found)
1114                 found = tm;
1115
1116         return found;
1117 }
1118
1119 /*
1120  * tm is a pointer to the first operation to rewind within eb. then, all
1121  * previous operations will be rewinded (until we reach something older than
1122  * time_seq).
1123  */
1124 static void
1125 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1126                       struct tree_mod_elem *first_tm)
1127 {
1128         u32 n;
1129         struct rb_node *next;
1130         struct tree_mod_elem *tm = first_tm;
1131         unsigned long o_dst;
1132         unsigned long o_src;
1133         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1134
1135         n = btrfs_header_nritems(eb);
1136         while (tm && tm->seq >= time_seq) {
1137                 /*
1138                  * all the operations are recorded with the operator used for
1139                  * the modification. as we're going backwards, we do the
1140                  * opposite of each operation here.
1141                  */
1142                 switch (tm->op) {
1143                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1144                         BUG_ON(tm->slot < n);
1145                         /* Fallthrough */
1146                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1147                 case MOD_LOG_KEY_REMOVE:
1148                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1149                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1150                         btrfs_set_node_ptr_generation(eb, tm->slot,
1151                                                       tm->generation);
1152                         n++;
1153                         break;
1154                 case MOD_LOG_KEY_REPLACE:
1155                         BUG_ON(tm->slot >= n);
1156                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1157                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1158                         btrfs_set_node_ptr_generation(eb, tm->slot,
1159                                                       tm->generation);
1160                         break;
1161                 case MOD_LOG_KEY_ADD:
1162                         /* if a move operation is needed it's in the log */
1163                         n--;
1164                         break;
1165                 case MOD_LOG_MOVE_KEYS:
1166                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1167                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1168                         memmove_extent_buffer(eb, o_dst, o_src,
1169                                               tm->move.nr_items * p_size);
1170                         break;
1171                 case MOD_LOG_ROOT_REPLACE:
1172                         /*
1173                          * this operation is special. for roots, this must be
1174                          * handled explicitly before rewinding.
1175                          * for non-roots, this operation may exist if the node
1176                          * was a root: root A -> child B; then A gets empty and
1177                          * B is promoted to the new root. in the mod log, we'll
1178                          * have a root-replace operation for B, a tree block
1179                          * that is no root. we simply ignore that operation.
1180                          */
1181                         break;
1182                 }
1183                 next = rb_next(&tm->node);
1184                 if (!next)
1185                         break;
1186                 tm = container_of(next, struct tree_mod_elem, node);
1187                 if (tm->index != first_tm->index)
1188                         break;
1189         }
1190         btrfs_set_header_nritems(eb, n);
1191 }
1192
1193 static struct extent_buffer *
1194 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1195                     u64 time_seq)
1196 {
1197         struct extent_buffer *eb_rewin;
1198         struct tree_mod_elem *tm;
1199
1200         if (!time_seq)
1201                 return eb;
1202
1203         if (btrfs_header_level(eb) == 0)
1204                 return eb;
1205
1206         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1207         if (!tm)
1208                 return eb;
1209
1210         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1211                 BUG_ON(tm->slot != 0);
1212                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1213                                                 fs_info->tree_root->nodesize);
1214                 BUG_ON(!eb_rewin);
1215                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1216                 btrfs_set_header_backref_rev(eb_rewin,
1217                                              btrfs_header_backref_rev(eb));
1218                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1219                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1220         } else {
1221                 eb_rewin = btrfs_clone_extent_buffer(eb);
1222                 BUG_ON(!eb_rewin);
1223         }
1224
1225         extent_buffer_get(eb_rewin);
1226         free_extent_buffer(eb);
1227
1228         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1229         WARN_ON(btrfs_header_nritems(eb_rewin) >
1230                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1231
1232         return eb_rewin;
1233 }
1234
1235 /*
1236  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1237  * value. If there are no changes, the current root->root_node is returned. If
1238  * anything changed in between, there's a fresh buffer allocated on which the
1239  * rewind operations are done. In any case, the returned buffer is read locked.
1240  * Returns NULL on error (with no locks held).
1241  */
1242 static inline struct extent_buffer *
1243 get_old_root(struct btrfs_root *root, u64 time_seq)
1244 {
1245         struct tree_mod_elem *tm;
1246         struct extent_buffer *eb;
1247         struct extent_buffer *old;
1248         struct tree_mod_root *old_root = NULL;
1249         u64 old_generation = 0;
1250         u64 logical;
1251         u32 blocksize;
1252
1253         eb = btrfs_read_lock_root_node(root);
1254         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1255         if (!tm)
1256                 return root->node;
1257
1258         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1259                 old_root = &tm->old_root;
1260                 old_generation = tm->generation;
1261                 logical = old_root->logical;
1262         } else {
1263                 logical = root->node->start;
1264         }
1265
1266         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1267         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1268                 btrfs_tree_read_unlock(root->node);
1269                 free_extent_buffer(root->node);
1270                 blocksize = btrfs_level_size(root, old_root->level);
1271                 old = read_tree_block(root, logical, blocksize, 0);
1272                 if (!old) {
1273                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1274                                 logical);
1275                         WARN_ON(1);
1276                 } else {
1277                         eb = btrfs_clone_extent_buffer(old);
1278                         free_extent_buffer(old);
1279                 }
1280         } else if (old_root) {
1281                 btrfs_tree_read_unlock(root->node);
1282                 free_extent_buffer(root->node);
1283                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1284         } else {
1285                 eb = btrfs_clone_extent_buffer(root->node);
1286                 btrfs_tree_read_unlock(root->node);
1287                 free_extent_buffer(root->node);
1288         }
1289
1290         if (!eb)
1291                 return NULL;
1292         extent_buffer_get(eb);
1293         btrfs_tree_read_lock(eb);
1294         if (old_root) {
1295                 btrfs_set_header_bytenr(eb, eb->start);
1296                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1297                 btrfs_set_header_owner(eb, root->root_key.objectid);
1298                 btrfs_set_header_level(eb, old_root->level);
1299                 btrfs_set_header_generation(eb, old_generation);
1300         }
1301         if (tm)
1302                 __tree_mod_log_rewind(eb, time_seq, tm);
1303         else
1304                 WARN_ON(btrfs_header_level(eb) != 0);
1305         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1306
1307         return eb;
1308 }
1309
1310 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1311 {
1312         struct tree_mod_elem *tm;
1313         int level;
1314
1315         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1316         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1317                 level = tm->old_root.level;
1318         } else {
1319                 rcu_read_lock();
1320                 level = btrfs_header_level(root->node);
1321                 rcu_read_unlock();
1322         }
1323
1324         return level;
1325 }
1326
1327 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1328                                    struct btrfs_root *root,
1329                                    struct extent_buffer *buf)
1330 {
1331         /* ensure we can see the force_cow */
1332         smp_rmb();
1333
1334         /*
1335          * We do not need to cow a block if
1336          * 1) this block is not created or changed in this transaction;
1337          * 2) this block does not belong to TREE_RELOC tree;
1338          * 3) the root is not forced COW.
1339          *
1340          * What is forced COW:
1341          *    when we create snapshot during commiting the transaction,
1342          *    after we've finished coping src root, we must COW the shared
1343          *    block to ensure the metadata consistency.
1344          */
1345         if (btrfs_header_generation(buf) == trans->transid &&
1346             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1347             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1348               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1349             !root->force_cow)
1350                 return 0;
1351         return 1;
1352 }
1353
1354 /*
1355  * cows a single block, see __btrfs_cow_block for the real work.
1356  * This version of it has extra checks so that a block isn't cow'd more than
1357  * once per transaction, as long as it hasn't been written yet
1358  */
1359 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1360                     struct btrfs_root *root, struct extent_buffer *buf,
1361                     struct extent_buffer *parent, int parent_slot,
1362                     struct extent_buffer **cow_ret)
1363 {
1364         u64 search_start;
1365         int ret;
1366
1367         if (trans->transaction != root->fs_info->running_transaction)
1368                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1369                        (unsigned long long)trans->transid,
1370                        (unsigned long long)
1371                        root->fs_info->running_transaction->transid);
1372
1373         if (trans->transid != root->fs_info->generation)
1374                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1375                        (unsigned long long)trans->transid,
1376                        (unsigned long long)root->fs_info->generation);
1377
1378         if (!should_cow_block(trans, root, buf)) {
1379                 *cow_ret = buf;
1380                 return 0;
1381         }
1382
1383         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1384
1385         if (parent)
1386                 btrfs_set_lock_blocking(parent);
1387         btrfs_set_lock_blocking(buf);
1388
1389         ret = __btrfs_cow_block(trans, root, buf, parent,
1390                                  parent_slot, cow_ret, search_start, 0);
1391
1392         trace_btrfs_cow_block(root, buf, *cow_ret);
1393
1394         return ret;
1395 }
1396
1397 /*
1398  * helper function for defrag to decide if two blocks pointed to by a
1399  * node are actually close by
1400  */
1401 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1402 {
1403         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1404                 return 1;
1405         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1406                 return 1;
1407         return 0;
1408 }
1409
1410 /*
1411  * compare two keys in a memcmp fashion
1412  */
1413 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1414 {
1415         struct btrfs_key k1;
1416
1417         btrfs_disk_key_to_cpu(&k1, disk);
1418
1419         return btrfs_comp_cpu_keys(&k1, k2);
1420 }
1421
1422 /*
1423  * same as comp_keys only with two btrfs_key's
1424  */
1425 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1426 {
1427         if (k1->objectid > k2->objectid)
1428                 return 1;
1429         if (k1->objectid < k2->objectid)
1430                 return -1;
1431         if (k1->type > k2->type)
1432                 return 1;
1433         if (k1->type < k2->type)
1434                 return -1;
1435         if (k1->offset > k2->offset)
1436                 return 1;
1437         if (k1->offset < k2->offset)
1438                 return -1;
1439         return 0;
1440 }
1441
1442 /*
1443  * this is used by the defrag code to go through all the
1444  * leaves pointed to by a node and reallocate them so that
1445  * disk order is close to key order
1446  */
1447 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1448                        struct btrfs_root *root, struct extent_buffer *parent,
1449                        int start_slot, u64 *last_ret,
1450                        struct btrfs_key *progress)
1451 {
1452         struct extent_buffer *cur;
1453         u64 blocknr;
1454         u64 gen;
1455         u64 search_start = *last_ret;
1456         u64 last_block = 0;
1457         u64 other;
1458         u32 parent_nritems;
1459         int end_slot;
1460         int i;
1461         int err = 0;
1462         int parent_level;
1463         int uptodate;
1464         u32 blocksize;
1465         int progress_passed = 0;
1466         struct btrfs_disk_key disk_key;
1467
1468         parent_level = btrfs_header_level(parent);
1469
1470         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1471         WARN_ON(trans->transid != root->fs_info->generation);
1472
1473         parent_nritems = btrfs_header_nritems(parent);
1474         blocksize = btrfs_level_size(root, parent_level - 1);
1475         end_slot = parent_nritems;
1476
1477         if (parent_nritems == 1)
1478                 return 0;
1479
1480         btrfs_set_lock_blocking(parent);
1481
1482         for (i = start_slot; i < end_slot; i++) {
1483                 int close = 1;
1484
1485                 btrfs_node_key(parent, &disk_key, i);
1486                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1487                         continue;
1488
1489                 progress_passed = 1;
1490                 blocknr = btrfs_node_blockptr(parent, i);
1491                 gen = btrfs_node_ptr_generation(parent, i);
1492                 if (last_block == 0)
1493                         last_block = blocknr;
1494
1495                 if (i > 0) {
1496                         other = btrfs_node_blockptr(parent, i - 1);
1497                         close = close_blocks(blocknr, other, blocksize);
1498                 }
1499                 if (!close && i < end_slot - 2) {
1500                         other = btrfs_node_blockptr(parent, i + 1);
1501                         close = close_blocks(blocknr, other, blocksize);
1502                 }
1503                 if (close) {
1504                         last_block = blocknr;
1505                         continue;
1506                 }
1507
1508                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1509                 if (cur)
1510                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1511                 else
1512                         uptodate = 0;
1513                 if (!cur || !uptodate) {
1514                         if (!cur) {
1515                                 cur = read_tree_block(root, blocknr,
1516                                                          blocksize, gen);
1517                                 if (!cur)
1518                                         return -EIO;
1519                         } else if (!uptodate) {
1520                                 err = btrfs_read_buffer(cur, gen);
1521                                 if (err) {
1522                                         free_extent_buffer(cur);
1523                                         return err;
1524                                 }
1525                         }
1526                 }
1527                 if (search_start == 0)
1528                         search_start = last_block;
1529
1530                 btrfs_tree_lock(cur);
1531                 btrfs_set_lock_blocking(cur);
1532                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1533                                         &cur, search_start,
1534                                         min(16 * blocksize,
1535                                             (end_slot - i) * blocksize));
1536                 if (err) {
1537                         btrfs_tree_unlock(cur);
1538                         free_extent_buffer(cur);
1539                         break;
1540                 }
1541                 search_start = cur->start;
1542                 last_block = cur->start;
1543                 *last_ret = search_start;
1544                 btrfs_tree_unlock(cur);
1545                 free_extent_buffer(cur);
1546         }
1547         return err;
1548 }
1549
1550 /*
1551  * The leaf data grows from end-to-front in the node.
1552  * this returns the address of the start of the last item,
1553  * which is the stop of the leaf data stack
1554  */
1555 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1556                                          struct extent_buffer *leaf)
1557 {
1558         u32 nr = btrfs_header_nritems(leaf);
1559         if (nr == 0)
1560                 return BTRFS_LEAF_DATA_SIZE(root);
1561         return btrfs_item_offset_nr(leaf, nr - 1);
1562 }
1563
1564
1565 /*
1566  * search for key in the extent_buffer.  The items start at offset p,
1567  * and they are item_size apart.  There are 'max' items in p.
1568  *
1569  * the slot in the array is returned via slot, and it points to
1570  * the place where you would insert key if it is not found in
1571  * the array.
1572  *
1573  * slot may point to max if the key is bigger than all of the keys
1574  */
1575 static noinline int generic_bin_search(struct extent_buffer *eb,
1576                                        unsigned long p,
1577                                        int item_size, struct btrfs_key *key,
1578                                        int max, int *slot)
1579 {
1580         int low = 0;
1581         int high = max;
1582         int mid;
1583         int ret;
1584         struct btrfs_disk_key *tmp = NULL;
1585         struct btrfs_disk_key unaligned;
1586         unsigned long offset;
1587         char *kaddr = NULL;
1588         unsigned long map_start = 0;
1589         unsigned long map_len = 0;
1590         int err;
1591
1592         while (low < high) {
1593                 mid = (low + high) / 2;
1594                 offset = p + mid * item_size;
1595
1596                 if (!kaddr || offset < map_start ||
1597                     (offset + sizeof(struct btrfs_disk_key)) >
1598                     map_start + map_len) {
1599
1600                         err = map_private_extent_buffer(eb, offset,
1601                                                 sizeof(struct btrfs_disk_key),
1602                                                 &kaddr, &map_start, &map_len);
1603
1604                         if (!err) {
1605                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1606                                                         map_start);
1607                         } else {
1608                                 read_extent_buffer(eb, &unaligned,
1609                                                    offset, sizeof(unaligned));
1610                                 tmp = &unaligned;
1611                         }
1612
1613                 } else {
1614                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1615                                                         map_start);
1616                 }
1617                 ret = comp_keys(tmp, key);
1618
1619                 if (ret < 0)
1620                         low = mid + 1;
1621                 else if (ret > 0)
1622                         high = mid;
1623                 else {
1624                         *slot = mid;
1625                         return 0;
1626                 }
1627         }
1628         *slot = low;
1629         return 1;
1630 }
1631
1632 /*
1633  * simple bin_search frontend that does the right thing for
1634  * leaves vs nodes
1635  */
1636 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1637                       int level, int *slot)
1638 {
1639         if (level == 0)
1640                 return generic_bin_search(eb,
1641                                           offsetof(struct btrfs_leaf, items),
1642                                           sizeof(struct btrfs_item),
1643                                           key, btrfs_header_nritems(eb),
1644                                           slot);
1645         else
1646                 return generic_bin_search(eb,
1647                                           offsetof(struct btrfs_node, ptrs),
1648                                           sizeof(struct btrfs_key_ptr),
1649                                           key, btrfs_header_nritems(eb),
1650                                           slot);
1651 }
1652
1653 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1654                      int level, int *slot)
1655 {
1656         return bin_search(eb, key, level, slot);
1657 }
1658
1659 static void root_add_used(struct btrfs_root *root, u32 size)
1660 {
1661         spin_lock(&root->accounting_lock);
1662         btrfs_set_root_used(&root->root_item,
1663                             btrfs_root_used(&root->root_item) + size);
1664         spin_unlock(&root->accounting_lock);
1665 }
1666
1667 static void root_sub_used(struct btrfs_root *root, u32 size)
1668 {
1669         spin_lock(&root->accounting_lock);
1670         btrfs_set_root_used(&root->root_item,
1671                             btrfs_root_used(&root->root_item) - size);
1672         spin_unlock(&root->accounting_lock);
1673 }
1674
1675 /* given a node and slot number, this reads the blocks it points to.  The
1676  * extent buffer is returned with a reference taken (but unlocked).
1677  * NULL is returned on error.
1678  */
1679 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1680                                    struct extent_buffer *parent, int slot)
1681 {
1682         int level = btrfs_header_level(parent);
1683         if (slot < 0)
1684                 return NULL;
1685         if (slot >= btrfs_header_nritems(parent))
1686                 return NULL;
1687
1688         BUG_ON(level == 0);
1689
1690         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1691                        btrfs_level_size(root, level - 1),
1692                        btrfs_node_ptr_generation(parent, slot));
1693 }
1694
1695 /*
1696  * node level balancing, used to make sure nodes are in proper order for
1697  * item deletion.  We balance from the top down, so we have to make sure
1698  * that a deletion won't leave an node completely empty later on.
1699  */
1700 static noinline int balance_level(struct btrfs_trans_handle *trans,
1701                          struct btrfs_root *root,
1702                          struct btrfs_path *path, int level)
1703 {
1704         struct extent_buffer *right = NULL;
1705         struct extent_buffer *mid;
1706         struct extent_buffer *left = NULL;
1707         struct extent_buffer *parent = NULL;
1708         int ret = 0;
1709         int wret;
1710         int pslot;
1711         int orig_slot = path->slots[level];
1712         u64 orig_ptr;
1713
1714         if (level == 0)
1715                 return 0;
1716
1717         mid = path->nodes[level];
1718
1719         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1720                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1721         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1722
1723         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1724
1725         if (level < BTRFS_MAX_LEVEL - 1) {
1726                 parent = path->nodes[level + 1];
1727                 pslot = path->slots[level + 1];
1728         }
1729
1730         /*
1731          * deal with the case where there is only one pointer in the root
1732          * by promoting the node below to a root
1733          */
1734         if (!parent) {
1735                 struct extent_buffer *child;
1736
1737                 if (btrfs_header_nritems(mid) != 1)
1738                         return 0;
1739
1740                 /* promote the child to a root */
1741                 child = read_node_slot(root, mid, 0);
1742                 if (!child) {
1743                         ret = -EROFS;
1744                         btrfs_std_error(root->fs_info, ret);
1745                         goto enospc;
1746                 }
1747
1748                 btrfs_tree_lock(child);
1749                 btrfs_set_lock_blocking(child);
1750                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1751                 if (ret) {
1752                         btrfs_tree_unlock(child);
1753                         free_extent_buffer(child);
1754                         goto enospc;
1755                 }
1756
1757                 tree_mod_log_set_root_pointer(root, child);
1758                 rcu_assign_pointer(root->node, child);
1759
1760                 add_root_to_dirty_list(root);
1761                 btrfs_tree_unlock(child);
1762
1763                 path->locks[level] = 0;
1764                 path->nodes[level] = NULL;
1765                 clean_tree_block(trans, root, mid);
1766                 btrfs_tree_unlock(mid);
1767                 /* once for the path */
1768                 free_extent_buffer(mid);
1769
1770                 root_sub_used(root, mid->len);
1771                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1772                 /* once for the root ptr */
1773                 free_extent_buffer_stale(mid);
1774                 return 0;
1775         }
1776         if (btrfs_header_nritems(mid) >
1777             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1778                 return 0;
1779
1780         left = read_node_slot(root, parent, pslot - 1);
1781         if (left) {
1782                 btrfs_tree_lock(left);
1783                 btrfs_set_lock_blocking(left);
1784                 wret = btrfs_cow_block(trans, root, left,
1785                                        parent, pslot - 1, &left);
1786                 if (wret) {
1787                         ret = wret;
1788                         goto enospc;
1789                 }
1790         }
1791         right = read_node_slot(root, parent, pslot + 1);
1792         if (right) {
1793                 btrfs_tree_lock(right);
1794                 btrfs_set_lock_blocking(right);
1795                 wret = btrfs_cow_block(trans, root, right,
1796                                        parent, pslot + 1, &right);
1797                 if (wret) {
1798                         ret = wret;
1799                         goto enospc;
1800                 }
1801         }
1802
1803         /* first, try to make some room in the middle buffer */
1804         if (left) {
1805                 orig_slot += btrfs_header_nritems(left);
1806                 wret = push_node_left(trans, root, left, mid, 1);
1807                 if (wret < 0)
1808                         ret = wret;
1809         }
1810
1811         /*
1812          * then try to empty the right most buffer into the middle
1813          */
1814         if (right) {
1815                 wret = push_node_left(trans, root, mid, right, 1);
1816                 if (wret < 0 && wret != -ENOSPC)
1817                         ret = wret;
1818                 if (btrfs_header_nritems(right) == 0) {
1819                         clean_tree_block(trans, root, right);
1820                         btrfs_tree_unlock(right);
1821                         del_ptr(trans, root, path, level + 1, pslot + 1);
1822                         root_sub_used(root, right->len);
1823                         btrfs_free_tree_block(trans, root, right, 0, 1);
1824                         free_extent_buffer_stale(right);
1825                         right = NULL;
1826                 } else {
1827                         struct btrfs_disk_key right_key;
1828                         btrfs_node_key(right, &right_key, 0);
1829                         tree_mod_log_set_node_key(root->fs_info, parent,
1830                                                   pslot + 1, 0);
1831                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1832                         btrfs_mark_buffer_dirty(parent);
1833                 }
1834         }
1835         if (btrfs_header_nritems(mid) == 1) {
1836                 /*
1837                  * we're not allowed to leave a node with one item in the
1838                  * tree during a delete.  A deletion from lower in the tree
1839                  * could try to delete the only pointer in this node.
1840                  * So, pull some keys from the left.
1841                  * There has to be a left pointer at this point because
1842                  * otherwise we would have pulled some pointers from the
1843                  * right
1844                  */
1845                 if (!left) {
1846                         ret = -EROFS;
1847                         btrfs_std_error(root->fs_info, ret);
1848                         goto enospc;
1849                 }
1850                 wret = balance_node_right(trans, root, mid, left);
1851                 if (wret < 0) {
1852                         ret = wret;
1853                         goto enospc;
1854                 }
1855                 if (wret == 1) {
1856                         wret = push_node_left(trans, root, left, mid, 1);
1857                         if (wret < 0)
1858                                 ret = wret;
1859                 }
1860                 BUG_ON(wret == 1);
1861         }
1862         if (btrfs_header_nritems(mid) == 0) {
1863                 clean_tree_block(trans, root, mid);
1864                 btrfs_tree_unlock(mid);
1865                 del_ptr(trans, root, path, level + 1, pslot);
1866                 root_sub_used(root, mid->len);
1867                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1868                 free_extent_buffer_stale(mid);
1869                 mid = NULL;
1870         } else {
1871                 /* update the parent key to reflect our changes */
1872                 struct btrfs_disk_key mid_key;
1873                 btrfs_node_key(mid, &mid_key, 0);
1874                 tree_mod_log_set_node_key(root->fs_info, parent,
1875                                           pslot, 0);
1876                 btrfs_set_node_key(parent, &mid_key, pslot);
1877                 btrfs_mark_buffer_dirty(parent);
1878         }
1879
1880         /* update the path */
1881         if (left) {
1882                 if (btrfs_header_nritems(left) > orig_slot) {
1883                         extent_buffer_get(left);
1884                         /* left was locked after cow */
1885                         path->nodes[level] = left;
1886                         path->slots[level + 1] -= 1;
1887                         path->slots[level] = orig_slot;
1888                         if (mid) {
1889                                 btrfs_tree_unlock(mid);
1890                                 free_extent_buffer(mid);
1891                         }
1892                 } else {
1893                         orig_slot -= btrfs_header_nritems(left);
1894                         path->slots[level] = orig_slot;
1895                 }
1896         }
1897         /* double check we haven't messed things up */
1898         if (orig_ptr !=
1899             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1900                 BUG();
1901 enospc:
1902         if (right) {
1903                 btrfs_tree_unlock(right);
1904                 free_extent_buffer(right);
1905         }
1906         if (left) {
1907                 if (path->nodes[level] != left)
1908                         btrfs_tree_unlock(left);
1909                 free_extent_buffer(left);
1910         }
1911         return ret;
1912 }
1913
1914 /* Node balancing for insertion.  Here we only split or push nodes around
1915  * when they are completely full.  This is also done top down, so we
1916  * have to be pessimistic.
1917  */
1918 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1919                                           struct btrfs_root *root,
1920                                           struct btrfs_path *path, int level)
1921 {
1922         struct extent_buffer *right = NULL;
1923         struct extent_buffer *mid;
1924         struct extent_buffer *left = NULL;
1925         struct extent_buffer *parent = NULL;
1926         int ret = 0;
1927         int wret;
1928         int pslot;
1929         int orig_slot = path->slots[level];
1930
1931         if (level == 0)
1932                 return 1;
1933
1934         mid = path->nodes[level];
1935         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1936
1937         if (level < BTRFS_MAX_LEVEL - 1) {
1938                 parent = path->nodes[level + 1];
1939                 pslot = path->slots[level + 1];
1940         }
1941
1942         if (!parent)
1943                 return 1;
1944
1945         left = read_node_slot(root, parent, pslot - 1);
1946
1947         /* first, try to make some room in the middle buffer */
1948         if (left) {
1949                 u32 left_nr;
1950
1951                 btrfs_tree_lock(left);
1952                 btrfs_set_lock_blocking(left);
1953
1954                 left_nr = btrfs_header_nritems(left);
1955                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1956                         wret = 1;
1957                 } else {
1958                         ret = btrfs_cow_block(trans, root, left, parent,
1959                                               pslot - 1, &left);
1960                         if (ret)
1961                                 wret = 1;
1962                         else {
1963                                 wret = push_node_left(trans, root,
1964                                                       left, mid, 0);
1965                         }
1966                 }
1967                 if (wret < 0)
1968                         ret = wret;
1969                 if (wret == 0) {
1970                         struct btrfs_disk_key disk_key;
1971                         orig_slot += left_nr;
1972                         btrfs_node_key(mid, &disk_key, 0);
1973                         tree_mod_log_set_node_key(root->fs_info, parent,
1974                                                   pslot, 0);
1975                         btrfs_set_node_key(parent, &disk_key, pslot);
1976                         btrfs_mark_buffer_dirty(parent);
1977                         if (btrfs_header_nritems(left) > orig_slot) {
1978                                 path->nodes[level] = left;
1979                                 path->slots[level + 1] -= 1;
1980                                 path->slots[level] = orig_slot;
1981                                 btrfs_tree_unlock(mid);
1982                                 free_extent_buffer(mid);
1983                         } else {
1984                                 orig_slot -=
1985                                         btrfs_header_nritems(left);
1986                                 path->slots[level] = orig_slot;
1987                                 btrfs_tree_unlock(left);
1988                                 free_extent_buffer(left);
1989                         }
1990                         return 0;
1991                 }
1992                 btrfs_tree_unlock(left);
1993                 free_extent_buffer(left);
1994         }
1995         right = read_node_slot(root, parent, pslot + 1);
1996
1997         /*
1998          * then try to empty the right most buffer into the middle
1999          */
2000         if (right) {
2001                 u32 right_nr;
2002
2003                 btrfs_tree_lock(right);
2004                 btrfs_set_lock_blocking(right);
2005
2006                 right_nr = btrfs_header_nritems(right);
2007                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2008                         wret = 1;
2009                 } else {
2010                         ret = btrfs_cow_block(trans, root, right,
2011                                               parent, pslot + 1,
2012                                               &right);
2013                         if (ret)
2014                                 wret = 1;
2015                         else {
2016                                 wret = balance_node_right(trans, root,
2017                                                           right, mid);
2018                         }
2019                 }
2020                 if (wret < 0)
2021                         ret = wret;
2022                 if (wret == 0) {
2023                         struct btrfs_disk_key disk_key;
2024
2025                         btrfs_node_key(right, &disk_key, 0);
2026                         tree_mod_log_set_node_key(root->fs_info, parent,
2027                                                   pslot + 1, 0);
2028                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2029                         btrfs_mark_buffer_dirty(parent);
2030
2031                         if (btrfs_header_nritems(mid) <= orig_slot) {
2032                                 path->nodes[level] = right;
2033                                 path->slots[level + 1] += 1;
2034                                 path->slots[level] = orig_slot -
2035                                         btrfs_header_nritems(mid);
2036                                 btrfs_tree_unlock(mid);
2037                                 free_extent_buffer(mid);
2038                         } else {
2039                                 btrfs_tree_unlock(right);
2040                                 free_extent_buffer(right);
2041                         }
2042                         return 0;
2043                 }
2044                 btrfs_tree_unlock(right);
2045                 free_extent_buffer(right);
2046         }
2047         return 1;
2048 }
2049
2050 /*
2051  * readahead one full node of leaves, finding things that are close
2052  * to the block in 'slot', and triggering ra on them.
2053  */
2054 static void reada_for_search(struct btrfs_root *root,
2055                              struct btrfs_path *path,
2056                              int level, int slot, u64 objectid)
2057 {
2058         struct extent_buffer *node;
2059         struct btrfs_disk_key disk_key;
2060         u32 nritems;
2061         u64 search;
2062         u64 target;
2063         u64 nread = 0;
2064         u64 gen;
2065         int direction = path->reada;
2066         struct extent_buffer *eb;
2067         u32 nr;
2068         u32 blocksize;
2069         u32 nscan = 0;
2070
2071         if (level != 1)
2072                 return;
2073
2074         if (!path->nodes[level])
2075                 return;
2076
2077         node = path->nodes[level];
2078
2079         search = btrfs_node_blockptr(node, slot);
2080         blocksize = btrfs_level_size(root, level - 1);
2081         eb = btrfs_find_tree_block(root, search, blocksize);
2082         if (eb) {
2083                 free_extent_buffer(eb);
2084                 return;
2085         }
2086
2087         target = search;
2088
2089         nritems = btrfs_header_nritems(node);
2090         nr = slot;
2091
2092         while (1) {
2093                 if (direction < 0) {
2094                         if (nr == 0)
2095                                 break;
2096                         nr--;
2097                 } else if (direction > 0) {
2098                         nr++;
2099                         if (nr >= nritems)
2100                                 break;
2101                 }
2102                 if (path->reada < 0 && objectid) {
2103                         btrfs_node_key(node, &disk_key, nr);
2104                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2105                                 break;
2106                 }
2107                 search = btrfs_node_blockptr(node, nr);
2108                 if ((search <= target && target - search <= 65536) ||
2109                     (search > target && search - target <= 65536)) {
2110                         gen = btrfs_node_ptr_generation(node, nr);
2111                         readahead_tree_block(root, search, blocksize, gen);
2112                         nread += blocksize;
2113                 }
2114                 nscan++;
2115                 if ((nread > 65536 || nscan > 32))
2116                         break;
2117         }
2118 }
2119
2120 /*
2121  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2122  * cache
2123  */
2124 static noinline int reada_for_balance(struct btrfs_root *root,
2125                                       struct btrfs_path *path, int level)
2126 {
2127         int slot;
2128         int nritems;
2129         struct extent_buffer *parent;
2130         struct extent_buffer *eb;
2131         u64 gen;
2132         u64 block1 = 0;
2133         u64 block2 = 0;
2134         int ret = 0;
2135         int blocksize;
2136
2137         parent = path->nodes[level + 1];
2138         if (!parent)
2139                 return 0;
2140
2141         nritems = btrfs_header_nritems(parent);
2142         slot = path->slots[level + 1];
2143         blocksize = btrfs_level_size(root, level);
2144
2145         if (slot > 0) {
2146                 block1 = btrfs_node_blockptr(parent, slot - 1);
2147                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2148                 eb = btrfs_find_tree_block(root, block1, blocksize);
2149                 /*
2150                  * if we get -eagain from btrfs_buffer_uptodate, we
2151                  * don't want to return eagain here.  That will loop
2152                  * forever
2153                  */
2154                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2155                         block1 = 0;
2156                 free_extent_buffer(eb);
2157         }
2158         if (slot + 1 < nritems) {
2159                 block2 = btrfs_node_blockptr(parent, slot + 1);
2160                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2161                 eb = btrfs_find_tree_block(root, block2, blocksize);
2162                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2163                         block2 = 0;
2164                 free_extent_buffer(eb);
2165         }
2166         if (block1 || block2) {
2167                 ret = -EAGAIN;
2168
2169                 /* release the whole path */
2170                 btrfs_release_path(path);
2171
2172                 /* read the blocks */
2173                 if (block1)
2174                         readahead_tree_block(root, block1, blocksize, 0);
2175                 if (block2)
2176                         readahead_tree_block(root, block2, blocksize, 0);
2177
2178                 if (block1) {
2179                         eb = read_tree_block(root, block1, blocksize, 0);
2180                         free_extent_buffer(eb);
2181                 }
2182                 if (block2) {
2183                         eb = read_tree_block(root, block2, blocksize, 0);
2184                         free_extent_buffer(eb);
2185                 }
2186         }
2187         return ret;
2188 }
2189
2190
2191 /*
2192  * when we walk down the tree, it is usually safe to unlock the higher layers
2193  * in the tree.  The exceptions are when our path goes through slot 0, because
2194  * operations on the tree might require changing key pointers higher up in the
2195  * tree.
2196  *
2197  * callers might also have set path->keep_locks, which tells this code to keep
2198  * the lock if the path points to the last slot in the block.  This is part of
2199  * walking through the tree, and selecting the next slot in the higher block.
2200  *
2201  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2202  * if lowest_unlock is 1, level 0 won't be unlocked
2203  */
2204 static noinline void unlock_up(struct btrfs_path *path, int level,
2205                                int lowest_unlock, int min_write_lock_level,
2206                                int *write_lock_level)
2207 {
2208         int i;
2209         int skip_level = level;
2210         int no_skips = 0;
2211         struct extent_buffer *t;
2212
2213         if (path->really_keep_locks)
2214                 return;
2215
2216         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2217                 if (!path->nodes[i])
2218                         break;
2219                 if (!path->locks[i])
2220                         break;
2221                 if (!no_skips && path->slots[i] == 0) {
2222                         skip_level = i + 1;
2223                         continue;
2224                 }
2225                 if (!no_skips && path->keep_locks) {
2226                         u32 nritems;
2227                         t = path->nodes[i];
2228                         nritems = btrfs_header_nritems(t);
2229                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2230                                 skip_level = i + 1;
2231                                 continue;
2232                         }
2233                 }
2234                 if (skip_level < i && i >= lowest_unlock)
2235                         no_skips = 1;
2236
2237                 t = path->nodes[i];
2238                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2239                         btrfs_tree_unlock_rw(t, path->locks[i]);
2240                         path->locks[i] = 0;
2241                         if (write_lock_level &&
2242                             i > min_write_lock_level &&
2243                             i <= *write_lock_level) {
2244                                 *write_lock_level = i - 1;
2245                         }
2246                 }
2247         }
2248 }
2249
2250 /*
2251  * This releases any locks held in the path starting at level and
2252  * going all the way up to the root.
2253  *
2254  * btrfs_search_slot will keep the lock held on higher nodes in a few
2255  * corner cases, such as COW of the block at slot zero in the node.  This
2256  * ignores those rules, and it should only be called when there are no
2257  * more updates to be done higher up in the tree.
2258  */
2259 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2260 {
2261         int i;
2262
2263         if (path->keep_locks || path->really_keep_locks)
2264                 return;
2265
2266         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2267                 if (!path->nodes[i])
2268                         continue;
2269                 if (!path->locks[i])
2270                         continue;
2271                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2272                 path->locks[i] = 0;
2273         }
2274 }
2275
2276 /*
2277  * helper function for btrfs_search_slot.  The goal is to find a block
2278  * in cache without setting the path to blocking.  If we find the block
2279  * we return zero and the path is unchanged.
2280  *
2281  * If we can't find the block, we set the path blocking and do some
2282  * reada.  -EAGAIN is returned and the search must be repeated.
2283  */
2284 static int
2285 read_block_for_search(struct btrfs_trans_handle *trans,
2286                        struct btrfs_root *root, struct btrfs_path *p,
2287                        struct extent_buffer **eb_ret, int level, int slot,
2288                        struct btrfs_key *key, u64 time_seq)
2289 {
2290         u64 blocknr;
2291         u64 gen;
2292         u32 blocksize;
2293         struct extent_buffer *b = *eb_ret;
2294         struct extent_buffer *tmp;
2295         int ret;
2296
2297         blocknr = btrfs_node_blockptr(b, slot);
2298         gen = btrfs_node_ptr_generation(b, slot);
2299         blocksize = btrfs_level_size(root, level - 1);
2300
2301         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2302         if (tmp) {
2303                 /* first we do an atomic uptodate check */
2304                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2305                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2306                                 /*
2307                                  * we found an up to date block without
2308                                  * sleeping, return
2309                                  * right away
2310                                  */
2311                                 *eb_ret = tmp;
2312                                 return 0;
2313                         }
2314                         /* the pages were up to date, but we failed
2315                          * the generation number check.  Do a full
2316                          * read for the generation number that is correct.
2317                          * We must do this without dropping locks so
2318                          * we can trust our generation number
2319                          */
2320                         free_extent_buffer(tmp);
2321                         btrfs_set_path_blocking(p);
2322
2323                         /* now we're allowed to do a blocking uptodate check */
2324                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2325                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2326                                 *eb_ret = tmp;
2327                                 return 0;
2328                         }
2329                         free_extent_buffer(tmp);
2330                         btrfs_release_path(p);
2331                         return -EIO;
2332                 }
2333         }
2334
2335         /*
2336          * reduce lock contention at high levels
2337          * of the btree by dropping locks before
2338          * we read.  Don't release the lock on the current
2339          * level because we need to walk this node to figure
2340          * out which blocks to read.
2341          */
2342         btrfs_unlock_up_safe(p, level + 1);
2343         btrfs_set_path_blocking(p);
2344
2345         free_extent_buffer(tmp);
2346         if (p->reada)
2347                 reada_for_search(root, p, level, slot, key->objectid);
2348
2349         btrfs_release_path(p);
2350
2351         ret = -EAGAIN;
2352         tmp = read_tree_block(root, blocknr, blocksize, 0);
2353         if (tmp) {
2354                 /*
2355                  * If the read above didn't mark this buffer up to date,
2356                  * it will never end up being up to date.  Set ret to EIO now
2357                  * and give up so that our caller doesn't loop forever
2358                  * on our EAGAINs.
2359                  */
2360                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2361                         ret = -EIO;
2362                 free_extent_buffer(tmp);
2363         }
2364         return ret;
2365 }
2366
2367 /*
2368  * helper function for btrfs_search_slot.  This does all of the checks
2369  * for node-level blocks and does any balancing required based on
2370  * the ins_len.
2371  *
2372  * If no extra work was required, zero is returned.  If we had to
2373  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2374  * start over
2375  */
2376 static int
2377 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2378                        struct btrfs_root *root, struct btrfs_path *p,
2379                        struct extent_buffer *b, int level, int ins_len,
2380                        int *write_lock_level)
2381 {
2382         int ret;
2383         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2384             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2385                 int sret;
2386
2387                 if (*write_lock_level < level + 1) {
2388                         *write_lock_level = level + 1;
2389                         btrfs_release_path(p);
2390                         goto again;
2391                 }
2392
2393                 sret = reada_for_balance(root, p, level);
2394                 if (sret)
2395                         goto again;
2396
2397                 btrfs_set_path_blocking(p);
2398                 sret = split_node(trans, root, p, level);
2399                 btrfs_clear_path_blocking(p, NULL, 0);
2400
2401                 BUG_ON(sret > 0);
2402                 if (sret) {
2403                         ret = sret;
2404                         goto done;
2405                 }
2406                 b = p->nodes[level];
2407         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2408                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2409                 int sret;
2410
2411                 if (*write_lock_level < level + 1) {
2412                         *write_lock_level = level + 1;
2413                         btrfs_release_path(p);
2414                         goto again;
2415                 }
2416
2417                 sret = reada_for_balance(root, p, level);
2418                 if (sret)
2419                         goto again;
2420
2421                 btrfs_set_path_blocking(p);
2422                 sret = balance_level(trans, root, p, level);
2423                 btrfs_clear_path_blocking(p, NULL, 0);
2424
2425                 if (sret) {
2426                         ret = sret;
2427                         goto done;
2428                 }
2429                 b = p->nodes[level];
2430                 if (!b) {
2431                         btrfs_release_path(p);
2432                         goto again;
2433                 }
2434                 BUG_ON(btrfs_header_nritems(b) == 1);
2435         }
2436         return 0;
2437
2438 again:
2439         ret = -EAGAIN;
2440 done:
2441         return ret;
2442 }
2443
2444 /*
2445  * look for key in the tree.  path is filled in with nodes along the way
2446  * if key is found, we return zero and you can find the item in the leaf
2447  * level of the path (level 0)
2448  *
2449  * If the key isn't found, the path points to the slot where it should
2450  * be inserted, and 1 is returned.  If there are other errors during the
2451  * search a negative error number is returned.
2452  *
2453  * if ins_len > 0, nodes and leaves will be split as we walk down the
2454  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2455  * possible)
2456  */
2457 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2458                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2459                       ins_len, int cow)
2460 {
2461         struct extent_buffer *b;
2462         int slot;
2463         int ret;
2464         int err;
2465         int level;
2466         int lowest_unlock = 1;
2467         int root_lock;
2468         /* everything at write_lock_level or lower must be write locked */
2469         int write_lock_level = 0;
2470         u8 lowest_level = 0;
2471         int min_write_lock_level;
2472
2473         lowest_level = p->lowest_level;
2474         WARN_ON(lowest_level && ins_len > 0);
2475         WARN_ON(p->nodes[0] != NULL);
2476
2477         if (ins_len < 0) {
2478                 lowest_unlock = 2;
2479
2480                 /* when we are removing items, we might have to go up to level
2481                  * two as we update tree pointers  Make sure we keep write
2482                  * for those levels as well
2483                  */
2484                 write_lock_level = 2;
2485         } else if (ins_len > 0) {
2486                 /*
2487                  * for inserting items, make sure we have a write lock on
2488                  * level 1 so we can update keys
2489                  */
2490                 write_lock_level = 1;
2491         }
2492
2493         if (!cow)
2494                 write_lock_level = -1;
2495
2496         if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
2497                 write_lock_level = BTRFS_MAX_LEVEL;
2498
2499         min_write_lock_level = write_lock_level;
2500
2501 again:
2502         /*
2503          * we try very hard to do read locks on the root
2504          */
2505         root_lock = BTRFS_READ_LOCK;
2506         level = 0;
2507         if (p->search_commit_root) {
2508                 /*
2509                  * the commit roots are read only
2510                  * so we always do read locks
2511                  */
2512                 b = root->commit_root;
2513                 extent_buffer_get(b);
2514                 level = btrfs_header_level(b);
2515                 if (!p->skip_locking)
2516                         btrfs_tree_read_lock(b);
2517         } else {
2518                 if (p->skip_locking) {
2519                         b = btrfs_root_node(root);
2520                         level = btrfs_header_level(b);
2521                 } else {
2522                         /* we don't know the level of the root node
2523                          * until we actually have it read locked
2524                          */
2525                         b = btrfs_read_lock_root_node(root);
2526                         level = btrfs_header_level(b);
2527                         if (level <= write_lock_level) {
2528                                 /* whoops, must trade for write lock */
2529                                 btrfs_tree_read_unlock(b);
2530                                 free_extent_buffer(b);
2531                                 b = btrfs_lock_root_node(root);
2532                                 root_lock = BTRFS_WRITE_LOCK;
2533
2534                                 /* the level might have changed, check again */
2535                                 level = btrfs_header_level(b);
2536                         }
2537                 }
2538         }
2539         p->nodes[level] = b;
2540         if (!p->skip_locking)
2541                 p->locks[level] = root_lock;
2542
2543         while (b) {
2544                 level = btrfs_header_level(b);
2545
2546                 /*
2547                  * setup the path here so we can release it under lock
2548                  * contention with the cow code
2549                  */
2550                 if (cow) {
2551                         /*
2552                          * if we don't really need to cow this block
2553                          * then we don't want to set the path blocking,
2554                          * so we test it here
2555                          */
2556                         if (!should_cow_block(trans, root, b))
2557                                 goto cow_done;
2558
2559                         btrfs_set_path_blocking(p);
2560
2561                         /*
2562                          * must have write locks on this node and the
2563                          * parent
2564                          */
2565                         if (level > write_lock_level ||
2566                             (level + 1 > write_lock_level &&
2567                             level + 1 < BTRFS_MAX_LEVEL &&
2568                             p->nodes[level + 1])) {
2569                                 write_lock_level = level + 1;
2570                                 btrfs_release_path(p);
2571                                 goto again;
2572                         }
2573
2574                         err = btrfs_cow_block(trans, root, b,
2575                                               p->nodes[level + 1],
2576                                               p->slots[level + 1], &b);
2577                         if (err) {
2578                                 ret = err;
2579                                 goto done;
2580                         }
2581                 }
2582 cow_done:
2583                 BUG_ON(!cow && ins_len);
2584
2585                 p->nodes[level] = b;
2586                 btrfs_clear_path_blocking(p, NULL, 0);
2587
2588                 /*
2589                  * we have a lock on b and as long as we aren't changing
2590                  * the tree, there is no way to for the items in b to change.
2591                  * It is safe to drop the lock on our parent before we
2592                  * go through the expensive btree search on b.
2593                  *
2594                  * If cow is true, then we might be changing slot zero,
2595                  * which may require changing the parent.  So, we can't
2596                  * drop the lock until after we know which slot we're
2597                  * operating on.
2598                  */
2599                 if (!cow)
2600                         btrfs_unlock_up_safe(p, level + 1);
2601
2602                 ret = bin_search(b, key, level, &slot);
2603
2604                 if (level != 0) {
2605                         int dec = 0;
2606                         if (ret && slot > 0) {
2607                                 dec = 1;
2608                                 slot -= 1;
2609                         }
2610                         p->slots[level] = slot;
2611                         err = setup_nodes_for_search(trans, root, p, b, level,
2612                                              ins_len, &write_lock_level);
2613                         if (err == -EAGAIN)
2614                                 goto again;
2615                         if (err) {
2616                                 ret = err;
2617                                 goto done;
2618                         }
2619                         b = p->nodes[level];
2620                         slot = p->slots[level];
2621
2622                         /*
2623                          * slot 0 is special, if we change the key
2624                          * we have to update the parent pointer
2625                          * which means we must have a write lock
2626                          * on the parent
2627                          */
2628                         if (slot == 0 && cow &&
2629                             write_lock_level < level + 1) {
2630                                 write_lock_level = level + 1;
2631                                 btrfs_release_path(p);
2632                                 goto again;
2633                         }
2634
2635                         unlock_up(p, level, lowest_unlock,
2636                                   min_write_lock_level, &write_lock_level);
2637
2638                         if (level == lowest_level) {
2639                                 if (dec)
2640                                         p->slots[level]++;
2641                                 goto done;
2642                         }
2643
2644                         err = read_block_for_search(trans, root, p,
2645                                                     &b, level, slot, key, 0);
2646                         if (err == -EAGAIN)
2647                                 goto again;
2648                         if (err) {
2649                                 ret = err;
2650                                 goto done;
2651                         }
2652
2653                         if (!p->skip_locking) {
2654                                 level = btrfs_header_level(b);
2655                                 if (level <= write_lock_level) {
2656                                         err = btrfs_try_tree_write_lock(b);
2657                                         if (!err) {
2658                                                 btrfs_set_path_blocking(p);
2659                                                 btrfs_tree_lock(b);
2660                                                 btrfs_clear_path_blocking(p, b,
2661                                                                   BTRFS_WRITE_LOCK);
2662                                         }
2663                                         p->locks[level] = BTRFS_WRITE_LOCK;
2664                                 } else {
2665                                         err = btrfs_try_tree_read_lock(b);
2666                                         if (!err) {
2667                                                 btrfs_set_path_blocking(p);
2668                                                 btrfs_tree_read_lock(b);
2669                                                 btrfs_clear_path_blocking(p, b,
2670                                                                   BTRFS_READ_LOCK);
2671                                         }
2672                                         p->locks[level] = BTRFS_READ_LOCK;
2673                                 }
2674                                 p->nodes[level] = b;
2675                         }
2676                 } else {
2677                         p->slots[level] = slot;
2678                         if (ins_len > 0 &&
2679                             btrfs_leaf_free_space(root, b) < ins_len) {
2680                                 if (write_lock_level < 1) {
2681                                         write_lock_level = 1;
2682                                         btrfs_release_path(p);
2683                                         goto again;
2684                                 }
2685
2686                                 btrfs_set_path_blocking(p);
2687                                 err = split_leaf(trans, root, key,
2688                                                  p, ins_len, ret == 0);
2689                                 btrfs_clear_path_blocking(p, NULL, 0);
2690
2691                                 BUG_ON(err > 0);
2692                                 if (err) {
2693                                         ret = err;
2694                                         goto done;
2695                                 }
2696                         }
2697                         if (!p->search_for_split)
2698                                 unlock_up(p, level, lowest_unlock,
2699                                           min_write_lock_level, &write_lock_level);
2700                         goto done;
2701                 }
2702         }
2703         ret = 1;
2704 done:
2705         /*
2706          * we don't really know what they plan on doing with the path
2707          * from here on, so for now just mark it as blocking
2708          */
2709         if (!p->leave_spinning)
2710                 btrfs_set_path_blocking(p);
2711         if (ret < 0)
2712                 btrfs_release_path(p);
2713         return ret;
2714 }
2715
2716 /*
2717  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2718  * current state of the tree together with the operations recorded in the tree
2719  * modification log to search for the key in a previous version of this tree, as
2720  * denoted by the time_seq parameter.
2721  *
2722  * Naturally, there is no support for insert, delete or cow operations.
2723  *
2724  * The resulting path and return value will be set up as if we called
2725  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2726  */
2727 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2728                           struct btrfs_path *p, u64 time_seq)
2729 {
2730         struct extent_buffer *b;
2731         int slot;
2732         int ret;
2733         int err;
2734         int level;
2735         int lowest_unlock = 1;
2736         u8 lowest_level = 0;
2737
2738         lowest_level = p->lowest_level;
2739         WARN_ON(p->nodes[0] != NULL);
2740
2741         if (p->search_commit_root) {
2742                 BUG_ON(time_seq);
2743                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2744         }
2745
2746 again:
2747         b = get_old_root(root, time_seq);
2748         level = btrfs_header_level(b);
2749         p->locks[level] = BTRFS_READ_LOCK;
2750
2751         while (b) {
2752                 level = btrfs_header_level(b);
2753                 p->nodes[level] = b;
2754                 btrfs_clear_path_blocking(p, NULL, 0);
2755
2756                 /*
2757                  * we have a lock on b and as long as we aren't changing
2758                  * the tree, there is no way to for the items in b to change.
2759                  * It is safe to drop the lock on our parent before we
2760                  * go through the expensive btree search on b.
2761                  */
2762                 btrfs_unlock_up_safe(p, level + 1);
2763
2764                 ret = bin_search(b, key, level, &slot);
2765
2766                 if (level != 0) {
2767                         int dec = 0;
2768                         if (ret && slot > 0) {
2769                                 dec = 1;
2770                                 slot -= 1;
2771                         }
2772                         p->slots[level] = slot;
2773                         unlock_up(p, level, lowest_unlock, 0, NULL);
2774
2775                         if (level == lowest_level) {
2776                                 if (dec)
2777                                         p->slots[level]++;
2778                                 goto done;
2779                         }
2780
2781                         err = read_block_for_search(NULL, root, p, &b, level,
2782                                                     slot, key, time_seq);
2783                         if (err == -EAGAIN)
2784                                 goto again;
2785                         if (err) {
2786                                 ret = err;
2787                                 goto done;
2788                         }
2789
2790                         level = btrfs_header_level(b);
2791                         err = btrfs_try_tree_read_lock(b);
2792                         if (!err) {
2793                                 btrfs_set_path_blocking(p);
2794                                 btrfs_tree_read_lock(b);
2795                                 btrfs_clear_path_blocking(p, b,
2796                                                           BTRFS_READ_LOCK);
2797                         }
2798                         p->locks[level] = BTRFS_READ_LOCK;
2799                         p->nodes[level] = b;
2800                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2801                         if (b != p->nodes[level]) {
2802                                 btrfs_tree_unlock_rw(p->nodes[level],
2803                                                      p->locks[level]);
2804                                 p->locks[level] = 0;
2805                                 p->nodes[level] = b;
2806                         }
2807                 } else {
2808                         p->slots[level] = slot;
2809                         unlock_up(p, level, lowest_unlock, 0, NULL);
2810                         goto done;
2811                 }
2812         }
2813         ret = 1;
2814 done:
2815         if (!p->leave_spinning)
2816                 btrfs_set_path_blocking(p);
2817         if (ret < 0)
2818                 btrfs_release_path(p);
2819
2820         return ret;
2821 }
2822
2823 /*
2824  * helper to use instead of search slot if no exact match is needed but
2825  * instead the next or previous item should be returned.
2826  * When find_higher is true, the next higher item is returned, the next lower
2827  * otherwise.
2828  * When return_any and find_higher are both true, and no higher item is found,
2829  * return the next lower instead.
2830  * When return_any is true and find_higher is false, and no lower item is found,
2831  * return the next higher instead.
2832  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2833  * < 0 on error
2834  */
2835 int btrfs_search_slot_for_read(struct btrfs_root *root,
2836                                struct btrfs_key *key, struct btrfs_path *p,
2837                                int find_higher, int return_any)
2838 {
2839         int ret;
2840         struct extent_buffer *leaf;
2841
2842 again:
2843         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2844         if (ret <= 0)
2845                 return ret;
2846         /*
2847          * a return value of 1 means the path is at the position where the
2848          * item should be inserted. Normally this is the next bigger item,
2849          * but in case the previous item is the last in a leaf, path points
2850          * to the first free slot in the previous leaf, i.e. at an invalid
2851          * item.
2852          */
2853         leaf = p->nodes[0];
2854
2855         if (find_higher) {
2856                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2857                         ret = btrfs_next_leaf(root, p);
2858                         if (ret <= 0)
2859                                 return ret;
2860                         if (!return_any)
2861                                 return 1;
2862                         /*
2863                          * no higher item found, return the next
2864                          * lower instead
2865                          */
2866                         return_any = 0;
2867                         find_higher = 0;
2868                         btrfs_release_path(p);
2869                         goto again;
2870                 }
2871         } else {
2872                 if (p->slots[0] == 0) {
2873                         ret = btrfs_prev_leaf(root, p);
2874                         if (ret < 0)
2875                                 return ret;
2876                         if (!ret) {
2877                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2878                                 return 0;
2879                         }
2880                         if (!return_any)
2881                                 return 1;
2882                         /*
2883                          * no lower item found, return the next
2884                          * higher instead
2885                          */
2886                         return_any = 0;
2887                         find_higher = 1;
2888                         btrfs_release_path(p);
2889                         goto again;
2890                 } else {
2891                         --p->slots[0];
2892                 }
2893         }
2894         return 0;
2895 }
2896
2897 /*
2898  * adjust the pointers going up the tree, starting at level
2899  * making sure the right key of each node is points to 'key'.
2900  * This is used after shifting pointers to the left, so it stops
2901  * fixing up pointers when a given leaf/node is not in slot 0 of the
2902  * higher levels
2903  *
2904  */
2905 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2906                            struct btrfs_root *root, struct btrfs_path *path,
2907                            struct btrfs_disk_key *key, int level)
2908 {
2909         int i;
2910         struct extent_buffer *t;
2911
2912         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2913                 int tslot = path->slots[i];
2914                 if (!path->nodes[i])
2915                         break;
2916                 t = path->nodes[i];
2917                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2918                 btrfs_set_node_key(t, key, tslot);
2919                 btrfs_mark_buffer_dirty(path->nodes[i]);
2920                 if (tslot != 0)
2921                         break;
2922         }
2923 }
2924
2925 /*
2926  * update item key.
2927  *
2928  * This function isn't completely safe. It's the caller's responsibility
2929  * that the new key won't break the order
2930  */
2931 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2932                              struct btrfs_root *root, struct btrfs_path *path,
2933                              struct btrfs_key *new_key)
2934 {
2935         struct btrfs_disk_key disk_key;
2936         struct extent_buffer *eb;
2937         int slot;
2938
2939         eb = path->nodes[0];
2940         slot = path->slots[0];
2941         if (slot > 0) {
2942                 btrfs_item_key(eb, &disk_key, slot - 1);
2943                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2944         }
2945         if (slot < btrfs_header_nritems(eb) - 1) {
2946                 btrfs_item_key(eb, &disk_key, slot + 1);
2947                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2948         }
2949
2950         btrfs_cpu_key_to_disk(&disk_key, new_key);
2951         btrfs_set_item_key(eb, &disk_key, slot);
2952         btrfs_mark_buffer_dirty(eb);
2953         if (slot == 0)
2954                 fixup_low_keys(trans, root, path, &disk_key, 1);
2955 }
2956
2957 /*
2958  * try to push data from one node into the next node left in the
2959  * tree.
2960  *
2961  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2962  * error, and > 0 if there was no room in the left hand block.
2963  */
2964 static int push_node_left(struct btrfs_trans_handle *trans,
2965                           struct btrfs_root *root, struct extent_buffer *dst,
2966                           struct extent_buffer *src, int empty)
2967 {
2968         int push_items = 0;
2969         int src_nritems;
2970         int dst_nritems;
2971         int ret = 0;
2972
2973         src_nritems = btrfs_header_nritems(src);
2974         dst_nritems = btrfs_header_nritems(dst);
2975         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2976         WARN_ON(btrfs_header_generation(src) != trans->transid);
2977         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2978
2979         if (!empty && src_nritems <= 8)
2980                 return 1;
2981
2982         if (push_items <= 0)
2983                 return 1;
2984
2985         if (empty) {
2986                 push_items = min(src_nritems, push_items);
2987                 if (push_items < src_nritems) {
2988                         /* leave at least 8 pointers in the node if
2989                          * we aren't going to empty it
2990                          */
2991                         if (src_nritems - push_items < 8) {
2992                                 if (push_items <= 8)
2993                                         return 1;
2994                                 push_items -= 8;
2995                         }
2996                 }
2997         } else
2998                 push_items = min(src_nritems - 8, push_items);
2999
3000         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3001                              push_items, 1);
3002         copy_extent_buffer(dst, src,
3003                            btrfs_node_key_ptr_offset(dst_nritems),
3004                            btrfs_node_key_ptr_offset(0),
3005                            push_items * sizeof(struct btrfs_key_ptr));
3006
3007         if (push_items < src_nritems) {
3008                 /*
3009                  * don't call tree_mod_log_eb_move here, key removal was already
3010                  * fully logged by tree_mod_log_eb_copy above.
3011                  */
3012                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3013                                       btrfs_node_key_ptr_offset(push_items),
3014                                       (src_nritems - push_items) *
3015                                       sizeof(struct btrfs_key_ptr));
3016         }
3017         btrfs_set_header_nritems(src, src_nritems - push_items);
3018         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3019         btrfs_mark_buffer_dirty(src);
3020         btrfs_mark_buffer_dirty(dst);
3021
3022         return ret;
3023 }
3024
3025 /*
3026  * try to push data from one node into the next node right in the
3027  * tree.
3028  *
3029  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3030  * error, and > 0 if there was no room in the right hand block.
3031  *
3032  * this will  only push up to 1/2 the contents of the left node over
3033  */
3034 static int balance_node_right(struct btrfs_trans_handle *trans,
3035                               struct btrfs_root *root,
3036                               struct extent_buffer *dst,
3037                               struct extent_buffer *src)
3038 {
3039         int push_items = 0;
3040         int max_push;
3041         int src_nritems;
3042         int dst_nritems;
3043         int ret = 0;
3044
3045         WARN_ON(btrfs_header_generation(src) != trans->transid);
3046         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3047
3048         src_nritems = btrfs_header_nritems(src);
3049         dst_nritems = btrfs_header_nritems(dst);
3050         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3051         if (push_items <= 0)
3052                 return 1;
3053
3054         if (src_nritems < 4)
3055                 return 1;
3056
3057         max_push = src_nritems / 2 + 1;
3058         /* don't try to empty the node */
3059         if (max_push >= src_nritems)
3060                 return 1;
3061
3062         if (max_push < push_items)
3063                 push_items = max_push;
3064
3065         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3066         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3067                                       btrfs_node_key_ptr_offset(0),
3068                                       (dst_nritems) *
3069                                       sizeof(struct btrfs_key_ptr));
3070
3071         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3072                              src_nritems - push_items, push_items, 1);
3073         copy_extent_buffer(dst, src,
3074                            btrfs_node_key_ptr_offset(0),
3075                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3076                            push_items * sizeof(struct btrfs_key_ptr));
3077
3078         btrfs_set_header_nritems(src, src_nritems - push_items);
3079         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3080
3081         btrfs_mark_buffer_dirty(src);
3082         btrfs_mark_buffer_dirty(dst);
3083
3084         return ret;
3085 }
3086
3087 /*
3088  * helper function to insert a new root level in the tree.
3089  * A new node is allocated, and a single item is inserted to
3090  * point to the existing root
3091  *
3092  * returns zero on success or < 0 on failure.
3093  */
3094 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3095                            struct btrfs_root *root,
3096                            struct btrfs_path *path, int level)
3097 {
3098         u64 lower_gen;
3099         struct extent_buffer *lower;
3100         struct extent_buffer *c;
3101         struct extent_buffer *old;
3102         struct btrfs_disk_key lower_key;
3103
3104         BUG_ON(path->nodes[level]);
3105         BUG_ON(path->nodes[level-1] != root->node);
3106
3107         lower = path->nodes[level-1];
3108         if (level == 1)
3109                 btrfs_item_key(lower, &lower_key, 0);
3110         else
3111                 btrfs_node_key(lower, &lower_key, 0);
3112
3113         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3114                                    root->root_key.objectid, &lower_key,
3115                                    level, root->node->start, 0);
3116         if (IS_ERR(c))
3117                 return PTR_ERR(c);
3118
3119         root_add_used(root, root->nodesize);
3120
3121         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3122         btrfs_set_header_nritems(c, 1);
3123         btrfs_set_header_level(c, level);
3124         btrfs_set_header_bytenr(c, c->start);
3125         btrfs_set_header_generation(c, trans->transid);
3126         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3127         btrfs_set_header_owner(c, root->root_key.objectid);
3128
3129         write_extent_buffer(c, root->fs_info->fsid,
3130                             (unsigned long)btrfs_header_fsid(c),
3131                             BTRFS_FSID_SIZE);
3132
3133         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3134                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3135                             BTRFS_UUID_SIZE);
3136
3137         btrfs_set_node_key(c, &lower_key, 0);
3138         btrfs_set_node_blockptr(c, 0, lower->start);
3139         lower_gen = btrfs_header_generation(lower);
3140         WARN_ON(lower_gen != trans->transid);
3141
3142         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3143
3144         btrfs_mark_buffer_dirty(c);
3145
3146         old = root->node;
3147         tree_mod_log_set_root_pointer(root, c);
3148         rcu_assign_pointer(root->node, c);
3149
3150         /* the super has an extra ref to root->node */
3151         free_extent_buffer(old);
3152
3153         add_root_to_dirty_list(root);
3154         extent_buffer_get(c);
3155         path->nodes[level] = c;
3156         path->locks[level] = BTRFS_WRITE_LOCK;
3157         path->slots[level] = 0;
3158         return 0;
3159 }
3160
3161 /*
3162  * worker function to insert a single pointer in a node.
3163  * the node should have enough room for the pointer already
3164  *
3165  * slot and level indicate where you want the key to go, and
3166  * blocknr is the block the key points to.
3167  */
3168 static void insert_ptr(struct btrfs_trans_handle *trans,
3169                        struct btrfs_root *root, struct btrfs_path *path,
3170                        struct btrfs_disk_key *key, u64 bytenr,
3171                        int slot, int level)
3172 {
3173         struct extent_buffer *lower;
3174         int nritems;
3175         int ret;
3176
3177         BUG_ON(!path->nodes[level]);
3178         btrfs_assert_tree_locked(path->nodes[level]);
3179         lower = path->nodes[level];
3180         nritems = btrfs_header_nritems(lower);
3181         BUG_ON(slot > nritems);
3182         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3183         if (slot != nritems) {
3184                 if (level)
3185                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3186                                              slot, nritems - slot);
3187                 memmove_extent_buffer(lower,
3188                               btrfs_node_key_ptr_offset(slot + 1),
3189                               btrfs_node_key_ptr_offset(slot),
3190                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3191         }
3192         if (level) {
3193                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3194                                               MOD_LOG_KEY_ADD);
3195                 BUG_ON(ret < 0);
3196         }
3197         btrfs_set_node_key(lower, key, slot);
3198         btrfs_set_node_blockptr(lower, slot, bytenr);
3199         WARN_ON(trans->transid == 0);
3200         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3201         btrfs_set_header_nritems(lower, nritems + 1);
3202         btrfs_mark_buffer_dirty(lower);
3203 }
3204
3205 /*
3206  * split the node at the specified level in path in two.
3207  * The path is corrected to point to the appropriate node after the split
3208  *
3209  * Before splitting this tries to make some room in the node by pushing
3210  * left and right, if either one works, it returns right away.
3211  *
3212  * returns 0 on success and < 0 on failure
3213  */
3214 static noinline int split_node(struct btrfs_trans_handle *trans,
3215                                struct btrfs_root *root,
3216                                struct btrfs_path *path, int level)
3217 {
3218         struct extent_buffer *c;
3219         struct extent_buffer *split;
3220         struct btrfs_disk_key disk_key;
3221         int mid;
3222         int ret;
3223         u32 c_nritems;
3224         int tree_mod_log_removal = 1;
3225
3226         c = path->nodes[level];
3227         WARN_ON(btrfs_header_generation(c) != trans->transid);
3228         if (c == root->node) {
3229                 /* trying to split the root, lets make a new one */
3230                 ret = insert_new_root(trans, root, path, level + 1);
3231                 /*
3232                  * removal of root nodes has been logged by
3233                  * tree_mod_log_set_root_pointer due to locking
3234                  */
3235                 tree_mod_log_removal = 0;
3236                 if (ret)
3237                         return ret;
3238         } else {
3239                 ret = push_nodes_for_insert(trans, root, path, level);
3240                 c = path->nodes[level];
3241                 if (!ret && btrfs_header_nritems(c) <
3242                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3243                         return 0;
3244                 if (ret < 0)
3245                         return ret;
3246         }
3247
3248         c_nritems = btrfs_header_nritems(c);
3249         mid = (c_nritems + 1) / 2;
3250         btrfs_node_key(c, &disk_key, mid);
3251
3252         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3253                                         root->root_key.objectid,
3254                                         &disk_key, level, c->start, 0);
3255         if (IS_ERR(split))
3256                 return PTR_ERR(split);
3257
3258         root_add_used(root, root->nodesize);
3259
3260         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3261         btrfs_set_header_level(split, btrfs_header_level(c));
3262         btrfs_set_header_bytenr(split, split->start);
3263         btrfs_set_header_generation(split, trans->transid);
3264         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3265         btrfs_set_header_owner(split, root->root_key.objectid);
3266         write_extent_buffer(split, root->fs_info->fsid,
3267                             (unsigned long)btrfs_header_fsid(split),
3268                             BTRFS_FSID_SIZE);
3269         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3270                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3271                             BTRFS_UUID_SIZE);
3272
3273         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid,
3274                              tree_mod_log_removal);
3275         copy_extent_buffer(split, c,
3276                            btrfs_node_key_ptr_offset(0),
3277                            btrfs_node_key_ptr_offset(mid),
3278                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3279         btrfs_set_header_nritems(split, c_nritems - mid);
3280         btrfs_set_header_nritems(c, mid);
3281         ret = 0;
3282
3283         btrfs_mark_buffer_dirty(c);
3284         btrfs_mark_buffer_dirty(split);
3285
3286         insert_ptr(trans, root, path, &disk_key, split->start,
3287                    path->slots[level + 1] + 1, level + 1);
3288
3289         if (path->slots[level] >= mid) {
3290                 path->slots[level] -= mid;
3291                 btrfs_tree_unlock(c);
3292                 free_extent_buffer(c);
3293                 path->nodes[level] = split;
3294                 path->slots[level + 1] += 1;
3295         } else {
3296                 btrfs_tree_unlock(split);
3297                 free_extent_buffer(split);
3298         }
3299         return ret;
3300 }
3301
3302 /*
3303  * how many bytes are required to store the items in a leaf.  start
3304  * and nr indicate which items in the leaf to check.  This totals up the
3305  * space used both by the item structs and the item data
3306  */
3307 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3308 {
3309         struct btrfs_item *start_item;
3310         struct btrfs_item *end_item;
3311         struct btrfs_map_token token;
3312         int data_len;
3313         int nritems = btrfs_header_nritems(l);
3314         int end = min(nritems, start + nr) - 1;
3315
3316         if (!nr)
3317                 return 0;
3318         btrfs_init_map_token(&token);
3319         start_item = btrfs_item_nr(l, start);
3320         end_item = btrfs_item_nr(l, end);
3321         data_len = btrfs_token_item_offset(l, start_item, &token) +
3322                 btrfs_token_item_size(l, start_item, &token);
3323         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3324         data_len += sizeof(struct btrfs_item) * nr;
3325         WARN_ON(data_len < 0);
3326         return data_len;
3327 }
3328
3329 /*
3330  * The space between the end of the leaf items and
3331  * the start of the leaf data.  IOW, how much room
3332  * the leaf has left for both items and data
3333  */
3334 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3335                                    struct extent_buffer *leaf)
3336 {
3337         int nritems = btrfs_header_nritems(leaf);
3338         int ret;
3339         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3340         if (ret < 0) {
3341                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3342                        "used %d nritems %d\n",
3343                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3344                        leaf_space_used(leaf, 0, nritems), nritems);
3345         }
3346         return ret;
3347 }
3348
3349 /*
3350  * min slot controls the lowest index we're willing to push to the
3351  * right.  We'll push up to and including min_slot, but no lower
3352  */
3353 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3354                                       struct btrfs_root *root,
3355                                       struct btrfs_path *path,
3356                                       int data_size, int empty,
3357                                       struct extent_buffer *right,
3358                                       int free_space, u32 left_nritems,
3359                                       u32 min_slot)
3360 {
3361         struct extent_buffer *left = path->nodes[0];
3362         struct extent_buffer *upper = path->nodes[1];
3363         struct btrfs_map_token token;
3364         struct btrfs_disk_key disk_key;
3365         int slot;
3366         u32 i;
3367         int push_space = 0;
3368         int push_items = 0;
3369         struct btrfs_item *item;
3370         u32 nr;
3371         u32 right_nritems;
3372         u32 data_end;
3373         u32 this_item_size;
3374
3375         btrfs_init_map_token(&token);
3376
3377         if (empty)
3378                 nr = 0;
3379         else
3380                 nr = max_t(u32, 1, min_slot);
3381
3382         if (path->slots[0] >= left_nritems)
3383                 push_space += data_size;
3384
3385         slot = path->slots[1];
3386         i = left_nritems - 1;
3387         while (i >= nr) {
3388                 item = btrfs_item_nr(left, i);
3389
3390                 if (!empty && push_items > 0) {
3391                         if (path->slots[0] > i)
3392                                 break;
3393                         if (path->slots[0] == i) {
3394                                 int space = btrfs_leaf_free_space(root, left);
3395                                 if (space + push_space * 2 > free_space)
3396                                         break;
3397                         }
3398                 }
3399
3400                 if (path->slots[0] == i)
3401                         push_space += data_size;
3402
3403                 this_item_size = btrfs_item_size(left, item);
3404                 if (this_item_size + sizeof(*item) + push_space > free_space)
3405                         break;
3406
3407                 push_items++;
3408                 push_space += this_item_size + sizeof(*item);
3409                 if (i == 0)
3410                         break;
3411                 i--;
3412         }
3413
3414         if (push_items == 0)
3415                 goto out_unlock;
3416
3417         WARN_ON(!empty && push_items == left_nritems);
3418
3419         /* push left to right */
3420         right_nritems = btrfs_header_nritems(right);
3421
3422         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3423         push_space -= leaf_data_end(root, left);
3424
3425         /* make room in the right data area */
3426         data_end = leaf_data_end(root, right);
3427         memmove_extent_buffer(right,
3428                               btrfs_leaf_data(right) + data_end - push_space,
3429                               btrfs_leaf_data(right) + data_end,
3430                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3431
3432         /* copy from the left data area */
3433         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3434                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3435                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3436                      push_space);
3437
3438         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3439                               btrfs_item_nr_offset(0),
3440                               right_nritems * sizeof(struct btrfs_item));
3441
3442         /* copy the items from left to right */
3443         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3444                    btrfs_item_nr_offset(left_nritems - push_items),
3445                    push_items * sizeof(struct btrfs_item));
3446
3447         /* update the item pointers */
3448         right_nritems += push_items;
3449         btrfs_set_header_nritems(right, right_nritems);
3450         push_space = BTRFS_LEAF_DATA_SIZE(root);
3451         for (i = 0; i < right_nritems; i++) {
3452                 item = btrfs_item_nr(right, i);
3453                 push_space -= btrfs_token_item_size(right, item, &token);
3454                 btrfs_set_token_item_offset(right, item, push_space, &token);
3455         }
3456
3457         left_nritems -= push_items;
3458         btrfs_set_header_nritems(left, left_nritems);
3459
3460         if (left_nritems)
3461                 btrfs_mark_buffer_dirty(left);
3462         else
3463                 clean_tree_block(trans, root, left);
3464
3465         btrfs_mark_buffer_dirty(right);
3466
3467         btrfs_item_key(right, &disk_key, 0);
3468         btrfs_set_node_key(upper, &disk_key, slot + 1);
3469         btrfs_mark_buffer_dirty(upper);
3470
3471         /* then fixup the leaf pointer in the path */
3472         if (path->slots[0] >= left_nritems) {
3473                 path->slots[0] -= left_nritems;
3474                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3475                         clean_tree_block(trans, root, path->nodes[0]);
3476                 btrfs_tree_unlock(path->nodes[0]);
3477                 free_extent_buffer(path->nodes[0]);
3478                 path->nodes[0] = right;
3479                 path->slots[1] += 1;
3480         } else {
3481                 btrfs_tree_unlock(right);
3482                 free_extent_buffer(right);
3483         }
3484         return 0;
3485
3486 out_unlock:
3487         btrfs_tree_unlock(right);
3488         free_extent_buffer(right);
3489         return 1;
3490 }
3491
3492 /*
3493  * push some data in the path leaf to the right, trying to free up at
3494  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3495  *
3496  * returns 1 if the push failed because the other node didn't have enough
3497  * room, 0 if everything worked out and < 0 if there were major errors.
3498  *
3499  * this will push starting from min_slot to the end of the leaf.  It won't
3500  * push any slot lower than min_slot
3501  */
3502 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3503                            *root, struct btrfs_path *path,
3504                            int min_data_size, int data_size,
3505                            int empty, u32 min_slot)
3506 {
3507         struct extent_buffer *left = path->nodes[0];
3508         struct extent_buffer *right;
3509         struct extent_buffer *upper;
3510         int slot;
3511         int free_space;
3512         u32 left_nritems;
3513         int ret;
3514
3515         if (!path->nodes[1])
3516                 return 1;
3517
3518         slot = path->slots[1];
3519         upper = path->nodes[1];
3520         if (slot >= btrfs_header_nritems(upper) - 1)
3521                 return 1;
3522
3523         btrfs_assert_tree_locked(path->nodes[1]);
3524
3525         right = read_node_slot(root, upper, slot + 1);
3526         if (right == NULL)
3527                 return 1;
3528
3529         btrfs_tree_lock(right);
3530         btrfs_set_lock_blocking(right);
3531
3532         free_space = btrfs_leaf_free_space(root, right);
3533         if (free_space < data_size)
3534                 goto out_unlock;
3535
3536         /* cow and double check */
3537         ret = btrfs_cow_block(trans, root, right, upper,
3538                               slot + 1, &right);
3539         if (ret)
3540                 goto out_unlock;
3541
3542         free_space = btrfs_leaf_free_space(root, right);
3543         if (free_space < data_size)
3544                 goto out_unlock;
3545
3546         left_nritems = btrfs_header_nritems(left);
3547         if (left_nritems == 0)
3548                 goto out_unlock;
3549
3550         return __push_leaf_right(trans, root, path, min_data_size, empty,
3551                                 right, free_space, left_nritems, min_slot);
3552 out_unlock:
3553         btrfs_tree_unlock(right);
3554         free_extent_buffer(right);
3555         return 1;
3556 }
3557
3558 /*
3559  * push some data in the path leaf to the left, trying to free up at
3560  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3561  *
3562  * max_slot can put a limit on how far into the leaf we'll push items.  The
3563  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3564  * items
3565  */
3566 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3567                                      struct btrfs_root *root,
3568                                      struct btrfs_path *path, int data_size,
3569                                      int empty, struct extent_buffer *left,
3570                                      int free_space, u32 right_nritems,
3571                                      u32 max_slot)
3572 {
3573         struct btrfs_disk_key disk_key;
3574         struct extent_buffer *right = path->nodes[0];
3575         int i;
3576         int push_space = 0;
3577         int push_items = 0;
3578         struct btrfs_item *item;
3579         u32 old_left_nritems;
3580         u32 nr;
3581         int ret = 0;
3582         u32 this_item_size;
3583         u32 old_left_item_size;
3584         struct btrfs_map_token token;
3585
3586         btrfs_init_map_token(&token);
3587
3588         if (empty)
3589                 nr = min(right_nritems, max_slot);
3590         else
3591                 nr = min(right_nritems - 1, max_slot);
3592
3593         for (i = 0; i < nr; i++) {
3594                 item = btrfs_item_nr(right, i);
3595
3596                 if (!empty && push_items > 0) {
3597                         if (path->slots[0] < i)
3598                                 break;
3599                         if (path->slots[0] == i) {
3600                                 int space = btrfs_leaf_free_space(root, right);
3601                                 if (space + push_space * 2 > free_space)
3602                                         break;
3603                         }
3604                 }
3605
3606                 if (path->slots[0] == i)
3607                         push_space += data_size;
3608
3609                 this_item_size = btrfs_item_size(right, item);
3610                 if (this_item_size + sizeof(*item) + push_space > free_space)
3611                         break;
3612
3613                 push_items++;
3614                 push_space += this_item_size + sizeof(*item);
3615         }
3616
3617         if (push_items == 0) {
3618                 ret = 1;
3619                 goto out;
3620         }
3621         if (!empty && push_items == btrfs_header_nritems(right))
3622                 WARN_ON(1);
3623
3624         /* push data from right to left */
3625         copy_extent_buffer(left, right,
3626                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3627                            btrfs_item_nr_offset(0),
3628                            push_items * sizeof(struct btrfs_item));
3629
3630         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3631                      btrfs_item_offset_nr(right, push_items - 1);
3632
3633         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3634                      leaf_data_end(root, left) - push_space,
3635                      btrfs_leaf_data(right) +
3636                      btrfs_item_offset_nr(right, push_items - 1),
3637                      push_space);
3638         old_left_nritems = btrfs_header_nritems(left);
3639         BUG_ON(old_left_nritems <= 0);
3640
3641         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3642         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3643                 u32 ioff;
3644
3645                 item = btrfs_item_nr(left, i);
3646
3647                 ioff = btrfs_token_item_offset(left, item, &token);
3648                 btrfs_set_token_item_offset(left, item,
3649                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3650                       &token);
3651         }
3652         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3653
3654         /* fixup right node */
3655         if (push_items > right_nritems)
3656                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3657                        right_nritems);
3658
3659         if (push_items < right_nritems) {
3660                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3661                                                   leaf_data_end(root, right);
3662                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3663                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3664                                       btrfs_leaf_data(right) +
3665                                       leaf_data_end(root, right), push_space);
3666
3667                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3668                               btrfs_item_nr_offset(push_items),
3669                              (btrfs_header_nritems(right) - push_items) *
3670                              sizeof(struct btrfs_item));
3671         }
3672         right_nritems -= push_items;
3673         btrfs_set_header_nritems(right, right_nritems);
3674         push_space = BTRFS_LEAF_DATA_SIZE(root);
3675         for (i = 0; i < right_nritems; i++) {
3676                 item = btrfs_item_nr(right, i);
3677
3678                 push_space = push_space - btrfs_token_item_size(right,
3679                                                                 item, &token);
3680                 btrfs_set_token_item_offset(right, item, push_space, &token);
3681         }
3682
3683         btrfs_mark_buffer_dirty(left);
3684         if (right_nritems)
3685                 btrfs_mark_buffer_dirty(right);
3686         else
3687                 clean_tree_block(trans, root, right);
3688
3689         btrfs_item_key(right, &disk_key, 0);
3690         fixup_low_keys(trans, root, path, &disk_key, 1);
3691
3692         /* then fixup the leaf pointer in the path */
3693         if (path->slots[0] < push_items) {
3694                 path->slots[0] += old_left_nritems;
3695                 btrfs_tree_unlock(path->nodes[0]);
3696                 free_extent_buffer(path->nodes[0]);
3697                 path->nodes[0] = left;
3698                 path->slots[1] -= 1;
3699         } else {
3700                 btrfs_tree_unlock(left);
3701                 free_extent_buffer(left);
3702                 path->slots[0] -= push_items;
3703         }
3704         BUG_ON(path->slots[0] < 0);
3705         return ret;
3706 out:
3707         btrfs_tree_unlock(left);
3708         free_extent_buffer(left);
3709         return ret;
3710 }
3711
3712 /*
3713  * push some data in the path leaf to the left, trying to free up at
3714  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3715  *
3716  * max_slot can put a limit on how far into the leaf we'll push items.  The
3717  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3718  * items
3719  */
3720 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3721                           *root, struct btrfs_path *path, int min_data_size,
3722                           int data_size, int empty, u32 max_slot)
3723 {
3724         struct extent_buffer *right = path->nodes[0];
3725         struct extent_buffer *left;
3726         int slot;
3727         int free_space;
3728         u32 right_nritems;
3729         int ret = 0;
3730
3731         slot = path->slots[1];
3732         if (slot == 0)
3733                 return 1;
3734         if (!path->nodes[1])
3735                 return 1;
3736
3737         right_nritems = btrfs_header_nritems(right);
3738         if (right_nritems == 0)
3739                 return 1;
3740
3741         btrfs_assert_tree_locked(path->nodes[1]);
3742
3743         left = read_node_slot(root, path->nodes[1], slot - 1);
3744         if (left == NULL)
3745                 return 1;
3746
3747         btrfs_tree_lock(left);
3748         btrfs_set_lock_blocking(left);
3749
3750         free_space = btrfs_leaf_free_space(root, left);
3751         if (free_space < data_size) {
3752                 ret = 1;
3753                 goto out;
3754         }
3755
3756         /* cow and double check */
3757         ret = btrfs_cow_block(trans, root, left,
3758                               path->nodes[1], slot - 1, &left);
3759         if (ret) {
3760                 /* we hit -ENOSPC, but it isn't fatal here */
3761                 if (ret == -ENOSPC)
3762                         ret = 1;
3763                 goto out;
3764         }
3765
3766         free_space = btrfs_leaf_free_space(root, left);
3767         if (free_space < data_size) {
3768                 ret = 1;
3769                 goto out;
3770         }
3771
3772         return __push_leaf_left(trans, root, path, min_data_size,
3773                                empty, left, free_space, right_nritems,
3774                                max_slot);
3775 out:
3776         btrfs_tree_unlock(left);
3777         free_extent_buffer(left);
3778         return ret;
3779 }
3780
3781 /*
3782  * split the path's leaf in two, making sure there is at least data_size
3783  * available for the resulting leaf level of the path.
3784  */
3785 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3786                                     struct btrfs_root *root,
3787                                     struct btrfs_path *path,
3788                                     struct extent_buffer *l,
3789                                     struct extent_buffer *right,
3790                                     int slot, int mid, int nritems)
3791 {
3792         int data_copy_size;
3793         int rt_data_off;
3794         int i;
3795         struct btrfs_disk_key disk_key;
3796         struct btrfs_map_token token;
3797
3798         btrfs_init_map_token(&token);
3799
3800         nritems = nritems - mid;
3801         btrfs_set_header_nritems(right, nritems);
3802         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3803
3804         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3805                            btrfs_item_nr_offset(mid),
3806                            nritems * sizeof(struct btrfs_item));
3807
3808         copy_extent_buffer(right, l,
3809                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3810                      data_copy_size, btrfs_leaf_data(l) +
3811                      leaf_data_end(root, l), data_copy_size);
3812
3813         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3814                       btrfs_item_end_nr(l, mid);
3815
3816         for (i = 0; i < nritems; i++) {
3817                 struct btrfs_item *item = btrfs_item_nr(right, i);
3818                 u32 ioff;
3819
3820                 ioff = btrfs_token_item_offset(right, item, &token);
3821                 btrfs_set_token_item_offset(right, item,
3822                                             ioff + rt_data_off, &token);
3823         }
3824
3825         btrfs_set_header_nritems(l, mid);
3826         btrfs_item_key(right, &disk_key, 0);
3827         insert_ptr(trans, root, path, &disk_key, right->start,
3828                    path->slots[1] + 1, 1);
3829
3830         btrfs_mark_buffer_dirty(right);
3831         btrfs_mark_buffer_dirty(l);
3832         BUG_ON(path->slots[0] != slot);
3833
3834         if (mid <= slot) {
3835                 btrfs_tree_unlock(path->nodes[0]);
3836                 free_extent_buffer(path->nodes[0]);
3837                 path->nodes[0] = right;
3838                 path->slots[0] -= mid;
3839                 path->slots[1] += 1;
3840         } else {
3841                 btrfs_tree_unlock(right);
3842                 free_extent_buffer(right);
3843         }
3844
3845         BUG_ON(path->slots[0] < 0);
3846 }
3847
3848 /*
3849  * double splits happen when we need to insert a big item in the middle
3850  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3851  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3852  *          A                 B                 C
3853  *
3854  * We avoid this by trying to push the items on either side of our target
3855  * into the adjacent leaves.  If all goes well we can avoid the double split
3856  * completely.
3857  */
3858 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3859                                           struct btrfs_root *root,
3860                                           struct btrfs_path *path,
3861                                           int data_size)
3862 {
3863         int ret;
3864         int progress = 0;
3865         int slot;
3866         u32 nritems;
3867
3868         slot = path->slots[0];
3869
3870         /*
3871          * try to push all the items after our slot into the
3872          * right leaf
3873          */
3874         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3875         if (ret < 0)
3876                 return ret;
3877
3878         if (ret == 0)
3879                 progress++;
3880
3881         nritems = btrfs_header_nritems(path->nodes[0]);
3882         /*
3883          * our goal is to get our slot at the start or end of a leaf.  If
3884          * we've done so we're done
3885          */
3886         if (path->slots[0] == 0 || path->slots[0] == nritems)
3887                 return 0;
3888
3889         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3890                 return 0;
3891
3892         /* try to push all the items before our slot into the next leaf */
3893         slot = path->slots[0];
3894         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3895         if (ret < 0)
3896                 return ret;
3897
3898         if (ret == 0)
3899                 progress++;
3900
3901         if (progress)
3902                 return 0;
3903         return 1;
3904 }
3905
3906 /*
3907  * split the path's leaf in two, making sure there is at least data_size
3908  * available for the resulting leaf level of the path.
3909  *
3910  * returns 0 if all went well and < 0 on failure.
3911  */
3912 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3913                                struct btrfs_root *root,
3914                                struct btrfs_key *ins_key,
3915                                struct btrfs_path *path, int data_size,
3916                                int extend)
3917 {
3918         struct btrfs_disk_key disk_key;
3919         struct extent_buffer *l;
3920         u32 nritems;
3921         int mid;
3922         int slot;
3923         struct extent_buffer *right;
3924         int ret = 0;
3925         int wret;
3926         int split;
3927         int num_doubles = 0;
3928         int tried_avoid_double = 0;
3929
3930         l = path->nodes[0];
3931         slot = path->slots[0];
3932         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3933             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3934                 return -EOVERFLOW;
3935
3936         /* first try to make some room by pushing left and right */
3937         if (data_size) {
3938                 wret = push_leaf_right(trans, root, path, data_size,
3939                                        data_size, 0, 0);
3940                 if (wret < 0)
3941                         return wret;
3942                 if (wret) {
3943                         wret = push_leaf_left(trans, root, path, data_size,
3944                                               data_size, 0, (u32)-1);
3945                         if (wret < 0)
3946                                 return wret;
3947                 }
3948                 l = path->nodes[0];
3949
3950                 /* did the pushes work? */
3951                 if (btrfs_leaf_free_space(root, l) >= data_size)
3952                         return 0;
3953         }
3954
3955         if (!path->nodes[1]) {
3956                 ret = insert_new_root(trans, root, path, 1);
3957                 if (ret)
3958                         return ret;
3959         }
3960 again:
3961         split = 1;
3962         l = path->nodes[0];
3963         slot = path->slots[0];
3964         nritems = btrfs_header_nritems(l);
3965         mid = (nritems + 1) / 2;
3966
3967         if (mid <= slot) {
3968                 if (nritems == 1 ||
3969                     leaf_space_used(l, mid, nritems - mid) + data_size >
3970                         BTRFS_LEAF_DATA_SIZE(root)) {
3971                         if (slot >= nritems) {
3972                                 split = 0;
3973                         } else {
3974                                 mid = slot;
3975                                 if (mid != nritems &&
3976                                     leaf_space_used(l, mid, nritems - mid) +
3977                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3978                                         if (data_size && !tried_avoid_double)
3979                                                 goto push_for_double;
3980                                         split = 2;
3981                                 }
3982                         }
3983                 }
3984         } else {
3985                 if (leaf_space_used(l, 0, mid) + data_size >
3986                         BTRFS_LEAF_DATA_SIZE(root)) {
3987                         if (!extend && data_size && slot == 0) {
3988                                 split = 0;
3989                         } else if ((extend || !data_size) && slot == 0) {
3990                                 mid = 1;
3991                         } else {
3992                                 mid = slot;
3993                                 if (mid != nritems &&
3994                                     leaf_space_used(l, mid, nritems - mid) +
3995                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3996                                         if (data_size && !tried_avoid_double)
3997                                                 goto push_for_double;
3998                                         split = 2 ;
3999                                 }
4000                         }
4001                 }
4002         }
4003
4004         if (split == 0)
4005                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4006         else
4007                 btrfs_item_key(l, &disk_key, mid);
4008
4009         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4010                                         root->root_key.objectid,
4011                                         &disk_key, 0, l->start, 0);
4012         if (IS_ERR(right))
4013                 return PTR_ERR(right);
4014
4015         root_add_used(root, root->leafsize);
4016
4017         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4018         btrfs_set_header_bytenr(right, right->start);
4019         btrfs_set_header_generation(right, trans->transid);
4020         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4021         btrfs_set_header_owner(right, root->root_key.objectid);
4022         btrfs_set_header_level(right, 0);
4023         write_extent_buffer(right, root->fs_info->fsid,
4024                             (unsigned long)btrfs_header_fsid(right),
4025                             BTRFS_FSID_SIZE);
4026
4027         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4028                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4029                             BTRFS_UUID_SIZE);
4030
4031         if (split == 0) {
4032                 if (mid <= slot) {
4033                         btrfs_set_header_nritems(right, 0);
4034                         insert_ptr(trans, root, path, &disk_key, right->start,
4035                                    path->slots[1] + 1, 1);
4036                         btrfs_tree_unlock(path->nodes[0]);
4037                         free_extent_buffer(path->nodes[0]);
4038                         path->nodes[0] = right;
4039                         path->slots[0] = 0;
4040                         path->slots[1] += 1;
4041                 } else {
4042                         btrfs_set_header_nritems(right, 0);
4043                         insert_ptr(trans, root, path, &disk_key, right->start,
4044                                           path->slots[1], 1);
4045                         btrfs_tree_unlock(path->nodes[0]);
4046                         free_extent_buffer(path->nodes[0]);
4047                         path->nodes[0] = right;
4048                         path->slots[0] = 0;
4049                         if (path->slots[1] == 0)
4050                                 fixup_low_keys(trans, root, path,
4051                                                &disk_key, 1);
4052                 }
4053                 btrfs_mark_buffer_dirty(right);
4054                 return ret;
4055         }
4056
4057         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4058
4059         if (split == 2) {
4060                 BUG_ON(num_doubles != 0);
4061                 num_doubles++;
4062                 goto again;
4063         }
4064
4065         return 0;
4066
4067 push_for_double:
4068         push_for_double_split(trans, root, path, data_size);
4069         tried_avoid_double = 1;
4070         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4071                 return 0;
4072         goto again;
4073 }
4074
4075 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4076                                          struct btrfs_root *root,
4077                                          struct btrfs_path *path, int ins_len)
4078 {
4079         struct btrfs_key key;
4080         struct extent_buffer *leaf;
4081         struct btrfs_file_extent_item *fi;
4082         u64 extent_len = 0;
4083         u32 item_size;
4084         int ret;
4085
4086         leaf = path->nodes[0];
4087         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4088
4089         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4090                key.type != BTRFS_EXTENT_CSUM_KEY);
4091
4092         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4093                 return 0;
4094
4095         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4096         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4097                 fi = btrfs_item_ptr(leaf, path->slots[0],
4098                                     struct btrfs_file_extent_item);
4099                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4100         }
4101         btrfs_release_path(path);
4102
4103         path->keep_locks = 1;
4104         path->search_for_split = 1;
4105         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4106         path->search_for_split = 0;
4107         if (ret < 0)
4108                 goto err;
4109
4110         ret = -EAGAIN;
4111         leaf = path->nodes[0];
4112         /* if our item isn't there or got smaller, return now */
4113         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4114                 goto err;
4115
4116         /* the leaf has  changed, it now has room.  return now */
4117         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4118                 goto err;
4119
4120         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4121                 fi = btrfs_item_ptr(leaf, path->slots[0],
4122                                     struct btrfs_file_extent_item);
4123                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4124                         goto err;
4125         }
4126
4127         btrfs_set_path_blocking(path);
4128         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4129         if (ret)
4130                 goto err;
4131
4132         path->keep_locks = 0;
4133         btrfs_unlock_up_safe(path, 1);
4134         return 0;
4135 err:
4136         path->keep_locks = 0;
4137         return ret;
4138 }
4139
4140 static noinline int split_item(struct btrfs_trans_handle *trans,
4141                                struct btrfs_root *root,
4142                                struct btrfs_path *path,
4143                                struct btrfs_key *new_key,
4144                                unsigned long split_offset)
4145 {
4146         struct extent_buffer *leaf;
4147         struct btrfs_item *item;
4148         struct btrfs_item *new_item;
4149         int slot;
4150         char *buf;
4151         u32 nritems;
4152         u32 item_size;
4153         u32 orig_offset;
4154         struct btrfs_disk_key disk_key;
4155
4156         leaf = path->nodes[0];
4157         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4158
4159         btrfs_set_path_blocking(path);
4160
4161         item = btrfs_item_nr(leaf, path->slots[0]);
4162         orig_offset = btrfs_item_offset(leaf, item);
4163         item_size = btrfs_item_size(leaf, item);
4164
4165         buf = kmalloc(item_size, GFP_NOFS);
4166         if (!buf)
4167                 return -ENOMEM;
4168
4169         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4170                             path->slots[0]), item_size);
4171
4172         slot = path->slots[0] + 1;
4173         nritems = btrfs_header_nritems(leaf);
4174         if (slot != nritems) {
4175                 /* shift the items */
4176                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4177                                 btrfs_item_nr_offset(slot),
4178                                 (nritems - slot) * sizeof(struct btrfs_item));
4179         }
4180
4181         btrfs_cpu_key_to_disk(&disk_key, new_key);
4182         btrfs_set_item_key(leaf, &disk_key, slot);
4183
4184         new_item = btrfs_item_nr(leaf, slot);
4185
4186         btrfs_set_item_offset(leaf, new_item, orig_offset);
4187         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4188
4189         btrfs_set_item_offset(leaf, item,
4190                               orig_offset + item_size - split_offset);
4191         btrfs_set_item_size(leaf, item, split_offset);
4192
4193         btrfs_set_header_nritems(leaf, nritems + 1);
4194
4195         /* write the data for the start of the original item */
4196         write_extent_buffer(leaf, buf,
4197                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4198                             split_offset);
4199
4200         /* write the data for the new item */
4201         write_extent_buffer(leaf, buf + split_offset,
4202                             btrfs_item_ptr_offset(leaf, slot),
4203                             item_size - split_offset);
4204         btrfs_mark_buffer_dirty(leaf);
4205
4206         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4207         kfree(buf);
4208         return 0;
4209 }
4210
4211 /*
4212  * This function splits a single item into two items,
4213  * giving 'new_key' to the new item and splitting the
4214  * old one at split_offset (from the start of the item).
4215  *
4216  * The path may be released by this operation.  After
4217  * the split, the path is pointing to the old item.  The
4218  * new item is going to be in the same node as the old one.
4219  *
4220  * Note, the item being split must be smaller enough to live alone on
4221  * a tree block with room for one extra struct btrfs_item
4222  *
4223  * This allows us to split the item in place, keeping a lock on the
4224  * leaf the entire time.
4225  */
4226 int btrfs_split_item(struct btrfs_trans_handle *trans,
4227                      struct btrfs_root *root,
4228                      struct btrfs_path *path,
4229                      struct btrfs_key *new_key,
4230                      unsigned long split_offset)
4231 {
4232         int ret;
4233         ret = setup_leaf_for_split(trans, root, path,
4234                                    sizeof(struct btrfs_item));
4235         if (ret)
4236                 return ret;
4237
4238         ret = split_item(trans, root, path, new_key, split_offset);
4239         return ret;
4240 }
4241
4242 /*
4243  * This function duplicate a item, giving 'new_key' to the new item.
4244  * It guarantees both items live in the same tree leaf and the new item
4245  * is contiguous with the original item.
4246  *
4247  * This allows us to split file extent in place, keeping a lock on the
4248  * leaf the entire time.
4249  */
4250 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4251                          struct btrfs_root *root,
4252                          struct btrfs_path *path,
4253                          struct btrfs_key *new_key)
4254 {
4255         struct extent_buffer *leaf;
4256         int ret;
4257         u32 item_size;
4258
4259         leaf = path->nodes[0];
4260         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4261         ret = setup_leaf_for_split(trans, root, path,
4262                                    item_size + sizeof(struct btrfs_item));
4263         if (ret)
4264                 return ret;
4265
4266         path->slots[0]++;
4267         setup_items_for_insert(trans, root, path, new_key, &item_size,
4268                                item_size, item_size +
4269                                sizeof(struct btrfs_item), 1);
4270         leaf = path->nodes[0];
4271         memcpy_extent_buffer(leaf,
4272                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4273                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4274                              item_size);
4275         return 0;
4276 }
4277
4278 /*
4279  * make the item pointed to by the path smaller.  new_size indicates
4280  * how small to make it, and from_end tells us if we just chop bytes
4281  * off the end of the item or if we shift the item to chop bytes off
4282  * the front.
4283  */
4284 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4285                          struct btrfs_root *root,
4286                          struct btrfs_path *path,
4287                          u32 new_size, int from_end)
4288 {
4289         int slot;
4290         struct extent_buffer *leaf;
4291         struct btrfs_item *item;
4292         u32 nritems;
4293         unsigned int data_end;
4294         unsigned int old_data_start;
4295         unsigned int old_size;
4296         unsigned int size_diff;
4297         int i;
4298         struct btrfs_map_token token;
4299
4300         btrfs_init_map_token(&token);
4301
4302         leaf = path->nodes[0];
4303         slot = path->slots[0];
4304
4305         old_size = btrfs_item_size_nr(leaf, slot);
4306         if (old_size == new_size)
4307                 return;
4308
4309         nritems = btrfs_header_nritems(leaf);
4310         data_end = leaf_data_end(root, leaf);
4311
4312         old_data_start = btrfs_item_offset_nr(leaf, slot);
4313
4314         size_diff = old_size - new_size;
4315
4316         BUG_ON(slot < 0);
4317         BUG_ON(slot >= nritems);
4318
4319         /*
4320          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4321          */
4322         /* first correct the data pointers */
4323         for (i = slot; i < nritems; i++) {
4324                 u32 ioff;
4325                 item = btrfs_item_nr(leaf, i);
4326
4327                 ioff = btrfs_token_item_offset(leaf, item, &token);
4328                 btrfs_set_token_item_offset(leaf, item,
4329                                             ioff + size_diff, &token);
4330         }
4331
4332         /* shift the data */
4333         if (from_end) {
4334                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4335                               data_end + size_diff, btrfs_leaf_data(leaf) +
4336                               data_end, old_data_start + new_size - data_end);
4337         } else {
4338                 struct btrfs_disk_key disk_key;
4339                 u64 offset;
4340
4341                 btrfs_item_key(leaf, &disk_key, slot);
4342
4343                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4344                         unsigned long ptr;
4345                         struct btrfs_file_extent_item *fi;
4346
4347                         fi = btrfs_item_ptr(leaf, slot,
4348                                             struct btrfs_file_extent_item);
4349                         fi = (struct btrfs_file_extent_item *)(
4350                              (unsigned long)fi - size_diff);
4351
4352                         if (btrfs_file_extent_type(leaf, fi) ==
4353                             BTRFS_FILE_EXTENT_INLINE) {
4354                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4355                                 memmove_extent_buffer(leaf, ptr,
4356                                       (unsigned long)fi,
4357                                       offsetof(struct btrfs_file_extent_item,
4358                                                  disk_bytenr));
4359                         }
4360                 }
4361
4362                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4363                               data_end + size_diff, btrfs_leaf_data(leaf) +
4364                               data_end, old_data_start - data_end);
4365
4366                 offset = btrfs_disk_key_offset(&disk_key);
4367                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4368                 btrfs_set_item_key(leaf, &disk_key, slot);
4369                 if (slot == 0)
4370                         fixup_low_keys(trans, root, path, &disk_key, 1);
4371         }
4372
4373         item = btrfs_item_nr(leaf, slot);
4374         btrfs_set_item_size(leaf, item, new_size);
4375         btrfs_mark_buffer_dirty(leaf);
4376
4377         if (btrfs_leaf_free_space(root, leaf) < 0) {
4378                 btrfs_print_leaf(root, leaf);
4379                 BUG();
4380         }
4381 }
4382
4383 /*
4384  * make the item pointed to by the path bigger, data_size is the new size.
4385  */
4386 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4387                        struct btrfs_root *root, struct btrfs_path *path,
4388                        u32 data_size)
4389 {
4390         int slot;
4391         struct extent_buffer *leaf;
4392         struct btrfs_item *item;
4393         u32 nritems;
4394         unsigned int data_end;
4395         unsigned int old_data;
4396         unsigned int old_size;
4397         int i;
4398         struct btrfs_map_token token;
4399
4400         btrfs_init_map_token(&token);
4401
4402         leaf = path->nodes[0];
4403
4404         nritems = btrfs_header_nritems(leaf);
4405         data_end = leaf_data_end(root, leaf);
4406
4407         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4408                 btrfs_print_leaf(root, leaf);
4409                 BUG();
4410         }
4411         slot = path->slots[0];
4412         old_data = btrfs_item_end_nr(leaf, slot);
4413
4414         BUG_ON(slot < 0);
4415         if (slot >= nritems) {
4416                 btrfs_print_leaf(root, leaf);
4417                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4418                        slot, nritems);
4419                 BUG_ON(1);
4420         }
4421
4422         /*
4423          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4424          */
4425         /* first correct the data pointers */
4426         for (i = slot; i < nritems; i++) {
4427                 u32 ioff;
4428                 item = btrfs_item_nr(leaf, i);
4429
4430                 ioff = btrfs_token_item_offset(leaf, item, &token);
4431                 btrfs_set_token_item_offset(leaf, item,
4432                                             ioff - data_size, &token);
4433         }
4434
4435         /* shift the data */
4436         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4437                       data_end - data_size, btrfs_leaf_data(leaf) +
4438                       data_end, old_data - data_end);
4439
4440         data_end = old_data;
4441         old_size = btrfs_item_size_nr(leaf, slot);
4442         item = btrfs_item_nr(leaf, slot);
4443         btrfs_set_item_size(leaf, item, old_size + data_size);
4444         btrfs_mark_buffer_dirty(leaf);
4445
4446         if (btrfs_leaf_free_space(root, leaf) < 0) {
4447                 btrfs_print_leaf(root, leaf);
4448                 BUG();
4449         }
4450 }
4451
4452 /*
4453  * this is a helper for btrfs_insert_empty_items, the main goal here is
4454  * to save stack depth by doing the bulk of the work in a function
4455  * that doesn't call btrfs_search_slot
4456  */
4457 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4458                             struct btrfs_root *root, struct btrfs_path *path,
4459                             struct btrfs_key *cpu_key, u32 *data_size,
4460                             u32 total_data, u32 total_size, int nr)
4461 {
4462         struct btrfs_item *item;
4463         int i;
4464         u32 nritems;
4465         unsigned int data_end;
4466         struct btrfs_disk_key disk_key;
4467         struct extent_buffer *leaf;
4468         int slot;
4469         struct btrfs_map_token token;
4470
4471         btrfs_init_map_token(&token);
4472
4473         leaf = path->nodes[0];
4474         slot = path->slots[0];
4475
4476         nritems = btrfs_header_nritems(leaf);
4477         data_end = leaf_data_end(root, leaf);
4478
4479         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4480                 btrfs_print_leaf(root, leaf);
4481                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4482                        total_size, btrfs_leaf_free_space(root, leaf));
4483                 BUG();
4484         }
4485
4486         if (slot != nritems) {
4487                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4488
4489                 if (old_data < data_end) {
4490                         btrfs_print_leaf(root, leaf);
4491                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4492                                slot, old_data, data_end);
4493                         BUG_ON(1);
4494                 }
4495                 /*
4496                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4497                  */
4498                 /* first correct the data pointers */
4499                 for (i = slot; i < nritems; i++) {
4500                         u32 ioff;
4501
4502                         item = btrfs_item_nr(leaf, i);
4503                         ioff = btrfs_token_item_offset(leaf, item, &token);
4504                         btrfs_set_token_item_offset(leaf, item,
4505                                                     ioff - total_data, &token);
4506                 }
4507                 /* shift the items */
4508                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4509                               btrfs_item_nr_offset(slot),
4510                               (nritems - slot) * sizeof(struct btrfs_item));
4511
4512                 /* shift the data */
4513                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4514                               data_end - total_data, btrfs_leaf_data(leaf) +
4515                               data_end, old_data - data_end);
4516                 data_end = old_data;
4517         }
4518
4519         /* setup the item for the new data */
4520         for (i = 0; i < nr; i++) {
4521                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4522                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4523                 item = btrfs_item_nr(leaf, slot + i);
4524                 btrfs_set_token_item_offset(leaf, item,
4525                                             data_end - data_size[i], &token);
4526                 data_end -= data_size[i];
4527                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4528         }
4529
4530         btrfs_set_header_nritems(leaf, nritems + nr);
4531
4532         if (slot == 0) {
4533                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4534                 fixup_low_keys(trans, root, path, &disk_key, 1);
4535         }
4536         btrfs_unlock_up_safe(path, 1);
4537         btrfs_mark_buffer_dirty(leaf);
4538
4539         if (btrfs_leaf_free_space(root, leaf) < 0) {
4540                 btrfs_print_leaf(root, leaf);
4541                 BUG();
4542         }
4543 }
4544
4545 /*
4546  * Given a key and some data, insert items into the tree.
4547  * This does all the path init required, making room in the tree if needed.
4548  */
4549 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4550                             struct btrfs_root *root,
4551                             struct btrfs_path *path,
4552                             struct btrfs_key *cpu_key, u32 *data_size,
4553                             int nr)
4554 {
4555         int ret = 0;
4556         int slot;
4557         int i;
4558         u32 total_size = 0;
4559         u32 total_data = 0;
4560
4561         for (i = 0; i < nr; i++)
4562                 total_data += data_size[i];
4563
4564         total_size = total_data + (nr * sizeof(struct btrfs_item));
4565         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4566         if (ret == 0)
4567                 return -EEXIST;
4568         if (ret < 0)
4569                 return ret;
4570
4571         slot = path->slots[0];
4572         BUG_ON(slot < 0);
4573
4574         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4575                                total_data, total_size, nr);
4576         return 0;
4577 }
4578
4579 /*
4580  * Given a key and some data, insert an item into the tree.
4581  * This does all the path init required, making room in the tree if needed.
4582  */
4583 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4584                       *root, struct btrfs_key *cpu_key, void *data, u32
4585                       data_size)
4586 {
4587         int ret = 0;
4588         struct btrfs_path *path;
4589         struct extent_buffer *leaf;
4590         unsigned long ptr;
4591
4592         path = btrfs_alloc_path();
4593         if (!path)
4594                 return -ENOMEM;
4595         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4596         if (!ret) {
4597                 leaf = path->nodes[0];
4598                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4599                 write_extent_buffer(leaf, data, ptr, data_size);
4600                 btrfs_mark_buffer_dirty(leaf);
4601         }
4602         btrfs_free_path(path);
4603         return ret;
4604 }
4605
4606 /*
4607  * delete the pointer from a given node.
4608  *
4609  * the tree should have been previously balanced so the deletion does not
4610  * empty a node.
4611  */
4612 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4613                     struct btrfs_path *path, int level, int slot)
4614 {
4615         struct extent_buffer *parent = path->nodes[level];
4616         u32 nritems;
4617         int ret;
4618
4619         nritems = btrfs_header_nritems(parent);
4620         if (slot != nritems - 1) {
4621                 if (level)
4622                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4623                                              slot + 1, nritems - slot - 1);
4624                 memmove_extent_buffer(parent,
4625                               btrfs_node_key_ptr_offset(slot),
4626                               btrfs_node_key_ptr_offset(slot + 1),
4627                               sizeof(struct btrfs_key_ptr) *
4628                               (nritems - slot - 1));
4629         } else if (level) {
4630                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4631                                               MOD_LOG_KEY_REMOVE);
4632                 BUG_ON(ret < 0);
4633         }
4634
4635         nritems--;
4636         btrfs_set_header_nritems(parent, nritems);
4637         if (nritems == 0 && parent == root->node) {
4638                 BUG_ON(btrfs_header_level(root->node) != 1);
4639                 /* just turn the root into a leaf and break */
4640                 btrfs_set_header_level(root->node, 0);
4641         } else if (slot == 0) {
4642                 struct btrfs_disk_key disk_key;
4643
4644                 btrfs_node_key(parent, &disk_key, 0);
4645                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4646         }
4647         btrfs_mark_buffer_dirty(parent);
4648 }
4649
4650 /*
4651  * a helper function to delete the leaf pointed to by path->slots[1] and
4652  * path->nodes[1].
4653  *
4654  * This deletes the pointer in path->nodes[1] and frees the leaf
4655  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4656  *
4657  * The path must have already been setup for deleting the leaf, including
4658  * all the proper balancing.  path->nodes[1] must be locked.
4659  */
4660 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4661                                     struct btrfs_root *root,
4662                                     struct btrfs_path *path,
4663                                     struct extent_buffer *leaf)
4664 {
4665         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4666         del_ptr(trans, root, path, 1, path->slots[1]);
4667
4668         /*
4669          * btrfs_free_extent is expensive, we want to make sure we
4670          * aren't holding any locks when we call it
4671          */
4672         btrfs_unlock_up_safe(path, 0);
4673
4674         root_sub_used(root, leaf->len);
4675
4676         extent_buffer_get(leaf);
4677         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4678         free_extent_buffer_stale(leaf);
4679 }
4680 /*
4681  * delete the item at the leaf level in path.  If that empties
4682  * the leaf, remove it from the tree
4683  */
4684 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4685                     struct btrfs_path *path, int slot, int nr)
4686 {
4687         struct extent_buffer *leaf;
4688         struct btrfs_item *item;
4689         int last_off;
4690         int dsize = 0;
4691         int ret = 0;
4692         int wret;
4693         int i;
4694         u32 nritems;
4695         struct btrfs_map_token token;
4696
4697         btrfs_init_map_token(&token);
4698
4699         leaf = path->nodes[0];
4700         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4701
4702         for (i = 0; i < nr; i++)
4703                 dsize += btrfs_item_size_nr(leaf, slot + i);
4704
4705         nritems = btrfs_header_nritems(leaf);
4706
4707         if (slot + nr != nritems) {
4708                 int data_end = leaf_data_end(root, leaf);
4709
4710                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4711                               data_end + dsize,
4712                               btrfs_leaf_data(leaf) + data_end,
4713                               last_off - data_end);
4714
4715                 for (i = slot + nr; i < nritems; i++) {
4716                         u32 ioff;
4717
4718                         item = btrfs_item_nr(leaf, i);
4719                         ioff = btrfs_token_item_offset(leaf, item, &token);
4720                         btrfs_set_token_item_offset(leaf, item,
4721                                                     ioff + dsize, &token);
4722                 }
4723
4724                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4725                               btrfs_item_nr_offset(slot + nr),
4726                               sizeof(struct btrfs_item) *
4727                               (nritems - slot - nr));
4728         }
4729         btrfs_set_header_nritems(leaf, nritems - nr);
4730         nritems -= nr;
4731
4732         /* delete the leaf if we've emptied it */
4733         if (nritems == 0) {
4734                 if (leaf == root->node) {
4735                         btrfs_set_header_level(leaf, 0);
4736                 } else {
4737                         btrfs_set_path_blocking(path);
4738                         clean_tree_block(trans, root, leaf);
4739                         btrfs_del_leaf(trans, root, path, leaf);
4740                 }
4741         } else {
4742                 int used = leaf_space_used(leaf, 0, nritems);
4743                 if (slot == 0) {
4744                         struct btrfs_disk_key disk_key;
4745
4746                         btrfs_item_key(leaf, &disk_key, 0);
4747                         fixup_low_keys(trans, root, path, &disk_key, 1);
4748                 }
4749
4750                 /* delete the leaf if it is mostly empty */
4751                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4752                         /* push_leaf_left fixes the path.
4753                          * make sure the path still points to our leaf
4754                          * for possible call to del_ptr below
4755                          */
4756                         slot = path->slots[1];
4757                         extent_buffer_get(leaf);
4758
4759                         btrfs_set_path_blocking(path);
4760                         wret = push_leaf_left(trans, root, path, 1, 1,
4761                                               1, (u32)-1);
4762                         if (wret < 0 && wret != -ENOSPC)
4763                                 ret = wret;
4764
4765                         if (path->nodes[0] == leaf &&
4766                             btrfs_header_nritems(leaf)) {
4767                                 wret = push_leaf_right(trans, root, path, 1,
4768                                                        1, 1, 0);
4769                                 if (wret < 0 && wret != -ENOSPC)
4770                                         ret = wret;
4771                         }
4772
4773                         if (btrfs_header_nritems(leaf) == 0) {
4774                                 path->slots[1] = slot;
4775                                 btrfs_del_leaf(trans, root, path, leaf);
4776                                 free_extent_buffer(leaf);
4777                                 ret = 0;
4778                         } else {
4779                                 /* if we're still in the path, make sure
4780                                  * we're dirty.  Otherwise, one of the
4781                                  * push_leaf functions must have already
4782                                  * dirtied this buffer
4783                                  */
4784                                 if (path->nodes[0] == leaf)
4785                                         btrfs_mark_buffer_dirty(leaf);
4786                                 free_extent_buffer(leaf);
4787                         }
4788                 } else {
4789                         btrfs_mark_buffer_dirty(leaf);
4790                 }
4791         }
4792         return ret;
4793 }
4794
4795 /*
4796  * search the tree again to find a leaf with lesser keys
4797  * returns 0 if it found something or 1 if there are no lesser leaves.
4798  * returns < 0 on io errors.
4799  *
4800  * This may release the path, and so you may lose any locks held at the
4801  * time you call it.
4802  */
4803 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4804 {
4805         struct btrfs_key key;
4806         struct btrfs_disk_key found_key;
4807         int ret;
4808
4809         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4810
4811         if (key.offset > 0)
4812                 key.offset--;
4813         else if (key.type > 0)
4814                 key.type--;
4815         else if (key.objectid > 0)
4816                 key.objectid--;
4817         else
4818                 return 1;
4819
4820         btrfs_release_path(path);
4821         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4822         if (ret < 0)
4823                 return ret;
4824         btrfs_item_key(path->nodes[0], &found_key, 0);
4825         ret = comp_keys(&found_key, &key);
4826         if (ret < 0)
4827                 return 0;
4828         return 1;
4829 }
4830
4831 /*
4832  * A helper function to walk down the tree starting at min_key, and looking
4833  * for nodes or leaves that are have a minimum transaction id.
4834  * This is used by the btree defrag code, and tree logging
4835  *
4836  * This does not cow, but it does stuff the starting key it finds back
4837  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4838  * key and get a writable path.
4839  *
4840  * This does lock as it descends, and path->keep_locks should be set
4841  * to 1 by the caller.
4842  *
4843  * This honors path->lowest_level to prevent descent past a given level
4844  * of the tree.
4845  *
4846  * min_trans indicates the oldest transaction that you are interested
4847  * in walking through.  Any nodes or leaves older than min_trans are
4848  * skipped over (without reading them).
4849  *
4850  * returns zero if something useful was found, < 0 on error and 1 if there
4851  * was nothing in the tree that matched the search criteria.
4852  */
4853 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4854                          struct btrfs_key *max_key,
4855                          struct btrfs_path *path,
4856                          u64 min_trans)
4857 {
4858         struct extent_buffer *cur;
4859         struct btrfs_key found_key;
4860         int slot;
4861         int sret;
4862         u32 nritems;
4863         int level;
4864         int ret = 1;
4865
4866         WARN_ON(!path->keep_locks);
4867 again:
4868         cur = btrfs_read_lock_root_node(root);
4869         level = btrfs_header_level(cur);
4870         WARN_ON(path->nodes[level]);
4871         path->nodes[level] = cur;
4872         path->locks[level] = BTRFS_READ_LOCK;
4873
4874         if (btrfs_header_generation(cur) < min_trans) {
4875                 ret = 1;
4876                 goto out;
4877         }
4878         while (1) {
4879                 nritems = btrfs_header_nritems(cur);
4880                 level = btrfs_header_level(cur);
4881                 sret = bin_search(cur, min_key, level, &slot);
4882
4883                 /* at the lowest level, we're done, setup the path and exit */
4884                 if (level == path->lowest_level) {
4885                         if (slot >= nritems)
4886                                 goto find_next_key;
4887                         ret = 0;
4888                         path->slots[level] = slot;
4889                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4890                         goto out;
4891                 }
4892                 if (sret && slot > 0)
4893                         slot--;
4894                 /*
4895                  * check this node pointer against the min_trans parameters.
4896                  * If it is too old, old, skip to the next one.
4897                  */
4898                 while (slot < nritems) {
4899                         u64 blockptr;
4900                         u64 gen;
4901
4902                         blockptr = btrfs_node_blockptr(cur, slot);
4903                         gen = btrfs_node_ptr_generation(cur, slot);
4904                         if (gen < min_trans) {
4905                                 slot++;
4906                                 continue;
4907                         }
4908                         break;
4909                 }
4910 find_next_key:
4911                 /*
4912                  * we didn't find a candidate key in this node, walk forward
4913                  * and find another one
4914                  */
4915                 if (slot >= nritems) {
4916                         path->slots[level] = slot;
4917                         btrfs_set_path_blocking(path);
4918                         sret = btrfs_find_next_key(root, path, min_key, level,
4919                                                   min_trans);
4920                         if (sret == 0) {
4921                                 btrfs_release_path(path);
4922                                 goto again;
4923                         } else {
4924                                 goto out;
4925                         }
4926                 }
4927                 /* save our key for returning back */
4928                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4929                 path->slots[level] = slot;
4930                 if (level == path->lowest_level) {
4931                         ret = 0;
4932                         unlock_up(path, level, 1, 0, NULL);
4933                         goto out;
4934                 }
4935                 btrfs_set_path_blocking(path);
4936                 cur = read_node_slot(root, cur, slot);
4937                 BUG_ON(!cur); /* -ENOMEM */
4938
4939                 btrfs_tree_read_lock(cur);
4940
4941                 path->locks[level - 1] = BTRFS_READ_LOCK;
4942                 path->nodes[level - 1] = cur;
4943                 unlock_up(path, level, 1, 0, NULL);
4944                 btrfs_clear_path_blocking(path, NULL, 0);
4945         }
4946 out:
4947         if (ret == 0)
4948                 memcpy(min_key, &found_key, sizeof(found_key));
4949         btrfs_set_path_blocking(path);
4950         return ret;
4951 }
4952
4953 static void tree_move_down(struct btrfs_root *root,
4954                            struct btrfs_path *path,
4955                            int *level, int root_level)
4956 {
4957         BUG_ON(*level == 0);
4958         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4959                                         path->slots[*level]);
4960         path->slots[*level - 1] = 0;
4961         (*level)--;
4962 }
4963
4964 static int tree_move_next_or_upnext(struct btrfs_root *root,
4965                                     struct btrfs_path *path,
4966                                     int *level, int root_level)
4967 {
4968         int ret = 0;
4969         int nritems;
4970         nritems = btrfs_header_nritems(path->nodes[*level]);
4971
4972         path->slots[*level]++;
4973
4974         while (path->slots[*level] >= nritems) {
4975                 if (*level == root_level)
4976                         return -1;
4977
4978                 /* move upnext */
4979                 path->slots[*level] = 0;
4980                 free_extent_buffer(path->nodes[*level]);
4981                 path->nodes[*level] = NULL;
4982                 (*level)++;
4983                 path->slots[*level]++;
4984
4985                 nritems = btrfs_header_nritems(path->nodes[*level]);
4986                 ret = 1;
4987         }
4988         return ret;
4989 }
4990
4991 /*
4992  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4993  * or down.
4994  */
4995 static int tree_advance(struct btrfs_root *root,
4996                         struct btrfs_path *path,
4997                         int *level, int root_level,
4998                         int allow_down,
4999                         struct btrfs_key *key)
5000 {
5001         int ret;
5002
5003         if (*level == 0 || !allow_down) {
5004                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5005         } else {
5006                 tree_move_down(root, path, level, root_level);
5007                 ret = 0;
5008         }
5009         if (ret >= 0) {
5010                 if (*level == 0)
5011                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5012                                         path->slots[*level]);
5013                 else
5014                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5015                                         path->slots[*level]);
5016         }
5017         return ret;
5018 }
5019
5020 static int tree_compare_item(struct btrfs_root *left_root,
5021                              struct btrfs_path *left_path,
5022                              struct btrfs_path *right_path,
5023                              char *tmp_buf)
5024 {
5025         int cmp;
5026         int len1, len2;
5027         unsigned long off1, off2;
5028
5029         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5030         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5031         if (len1 != len2)
5032                 return 1;
5033
5034         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5035         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5036                                 right_path->slots[0]);
5037
5038         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5039
5040         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5041         if (cmp)
5042                 return 1;
5043         return 0;
5044 }
5045
5046 #define ADVANCE 1
5047 #define ADVANCE_ONLY_NEXT -1
5048
5049 /*
5050  * This function compares two trees and calls the provided callback for
5051  * every changed/new/deleted item it finds.
5052  * If shared tree blocks are encountered, whole subtrees are skipped, making
5053  * the compare pretty fast on snapshotted subvolumes.
5054  *
5055  * This currently works on commit roots only. As commit roots are read only,
5056  * we don't do any locking. The commit roots are protected with transactions.
5057  * Transactions are ended and rejoined when a commit is tried in between.
5058  *
5059  * This function checks for modifications done to the trees while comparing.
5060  * If it detects a change, it aborts immediately.
5061  */
5062 int btrfs_compare_trees(struct btrfs_root *left_root,
5063                         struct btrfs_root *right_root,
5064                         btrfs_changed_cb_t changed_cb, void *ctx)
5065 {
5066         int ret;
5067         int cmp;
5068         struct btrfs_trans_handle *trans = NULL;
5069         struct btrfs_path *left_path = NULL;
5070         struct btrfs_path *right_path = NULL;
5071         struct btrfs_key left_key;
5072         struct btrfs_key right_key;
5073         char *tmp_buf = NULL;
5074         int left_root_level;
5075         int right_root_level;
5076         int left_level;
5077         int right_level;
5078         int left_end_reached;
5079         int right_end_reached;
5080         int advance_left;
5081         int advance_right;
5082         u64 left_blockptr;
5083         u64 right_blockptr;
5084         u64 left_start_ctransid;
5085         u64 right_start_ctransid;
5086         u64 ctransid;
5087
5088         left_path = btrfs_alloc_path();
5089         if (!left_path) {
5090                 ret = -ENOMEM;
5091                 goto out;
5092         }
5093         right_path = btrfs_alloc_path();
5094         if (!right_path) {
5095                 ret = -ENOMEM;
5096                 goto out;
5097         }
5098
5099         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5100         if (!tmp_buf) {
5101                 ret = -ENOMEM;
5102                 goto out;
5103         }
5104
5105         left_path->search_commit_root = 1;
5106         left_path->skip_locking = 1;
5107         right_path->search_commit_root = 1;
5108         right_path->skip_locking = 1;
5109
5110         spin_lock(&left_root->root_item_lock);
5111         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5112         spin_unlock(&left_root->root_item_lock);
5113
5114         spin_lock(&right_root->root_item_lock);
5115         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5116         spin_unlock(&right_root->root_item_lock);
5117
5118         trans = btrfs_join_transaction(left_root);
5119         if (IS_ERR(trans)) {
5120                 ret = PTR_ERR(trans);
5121                 trans = NULL;
5122                 goto out;
5123         }
5124
5125         /*
5126          * Strategy: Go to the first items of both trees. Then do
5127          *
5128          * If both trees are at level 0
5129          *   Compare keys of current items
5130          *     If left < right treat left item as new, advance left tree
5131          *       and repeat
5132          *     If left > right treat right item as deleted, advance right tree
5133          *       and repeat
5134          *     If left == right do deep compare of items, treat as changed if
5135          *       needed, advance both trees and repeat
5136          * If both trees are at the same level but not at level 0
5137          *   Compare keys of current nodes/leafs
5138          *     If left < right advance left tree and repeat
5139          *     If left > right advance right tree and repeat
5140          *     If left == right compare blockptrs of the next nodes/leafs
5141          *       If they match advance both trees but stay at the same level
5142          *         and repeat
5143          *       If they don't match advance both trees while allowing to go
5144          *         deeper and repeat
5145          * If tree levels are different
5146          *   Advance the tree that needs it and repeat
5147          *
5148          * Advancing a tree means:
5149          *   If we are at level 0, try to go to the next slot. If that's not
5150          *   possible, go one level up and repeat. Stop when we found a level
5151          *   where we could go to the next slot. We may at this point be on a
5152          *   node or a leaf.
5153          *
5154          *   If we are not at level 0 and not on shared tree blocks, go one
5155          *   level deeper.
5156          *
5157          *   If we are not at level 0 and on shared tree blocks, go one slot to
5158          *   the right if possible or go up and right.
5159          */
5160
5161         left_level = btrfs_header_level(left_root->commit_root);
5162         left_root_level = left_level;
5163         left_path->nodes[left_level] = left_root->commit_root;
5164         extent_buffer_get(left_path->nodes[left_level]);
5165
5166         right_level = btrfs_header_level(right_root->commit_root);
5167         right_root_level = right_level;
5168         right_path->nodes[right_level] = right_root->commit_root;
5169         extent_buffer_get(right_path->nodes[right_level]);
5170
5171         if (left_level == 0)
5172                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5173                                 &left_key, left_path->slots[left_level]);
5174         else
5175                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5176                                 &left_key, left_path->slots[left_level]);
5177         if (right_level == 0)
5178                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5179                                 &right_key, right_path->slots[right_level]);
5180         else
5181                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5182                                 &right_key, right_path->slots[right_level]);
5183
5184         left_end_reached = right_end_reached = 0;
5185         advance_left = advance_right = 0;
5186
5187         while (1) {
5188                 /*
5189                  * We need to make sure the transaction does not get committed
5190                  * while we do anything on commit roots. This means, we need to
5191                  * join and leave transactions for every item that we process.
5192                  */
5193                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5194                         btrfs_release_path(left_path);
5195                         btrfs_release_path(right_path);
5196
5197                         ret = btrfs_end_transaction(trans, left_root);
5198                         trans = NULL;
5199                         if (ret < 0)
5200                                 goto out;
5201                 }
5202                 /* now rejoin the transaction */
5203                 if (!trans) {
5204                         trans = btrfs_join_transaction(left_root);
5205                         if (IS_ERR(trans)) {
5206                                 ret = PTR_ERR(trans);
5207                                 trans = NULL;
5208                                 goto out;
5209                         }
5210
5211                         spin_lock(&left_root->root_item_lock);
5212                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5213                         spin_unlock(&left_root->root_item_lock);
5214                         if (ctransid != left_start_ctransid)
5215                                 left_start_ctransid = 0;
5216
5217                         spin_lock(&right_root->root_item_lock);
5218                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5219                         spin_unlock(&right_root->root_item_lock);
5220                         if (ctransid != right_start_ctransid)
5221                                 right_start_ctransid = 0;
5222
5223                         if (!left_start_ctransid || !right_start_ctransid) {
5224                                 WARN(1, KERN_WARNING
5225                                         "btrfs: btrfs_compare_tree detected "
5226                                         "a change in one of the trees while "
5227                                         "iterating. This is probably a "
5228                                         "bug.\n");
5229                                 ret = -EIO;
5230                                 goto out;
5231                         }
5232
5233                         /*
5234                          * the commit root may have changed, so start again
5235                          * where we stopped
5236                          */
5237                         left_path->lowest_level = left_level;
5238                         right_path->lowest_level = right_level;
5239                         ret = btrfs_search_slot(NULL, left_root,
5240                                         &left_key, left_path, 0, 0);
5241                         if (ret < 0)
5242                                 goto out;
5243                         ret = btrfs_search_slot(NULL, right_root,
5244                                         &right_key, right_path, 0, 0);
5245                         if (ret < 0)
5246                                 goto out;
5247                 }
5248
5249                 if (advance_left && !left_end_reached) {
5250                         ret = tree_advance(left_root, left_path, &left_level,
5251                                         left_root_level,
5252                                         advance_left != ADVANCE_ONLY_NEXT,
5253                                         &left_key);
5254                         if (ret < 0)
5255                                 left_end_reached = ADVANCE;
5256                         advance_left = 0;
5257                 }
5258                 if (advance_right && !right_end_reached) {
5259                         ret = tree_advance(right_root, right_path, &right_level,
5260                                         right_root_level,
5261                                         advance_right != ADVANCE_ONLY_NEXT,
5262                                         &right_key);
5263                         if (ret < 0)
5264                                 right_end_reached = ADVANCE;
5265                         advance_right = 0;
5266                 }
5267
5268                 if (left_end_reached && right_end_reached) {
5269                         ret = 0;
5270                         goto out;
5271                 } else if (left_end_reached) {
5272                         if (right_level == 0) {
5273                                 ret = changed_cb(left_root, right_root,
5274                                                 left_path, right_path,
5275                                                 &right_key,
5276                                                 BTRFS_COMPARE_TREE_DELETED,
5277                                                 ctx);
5278                                 if (ret < 0)
5279                                         goto out;
5280                         }
5281                         advance_right = ADVANCE;
5282                         continue;
5283                 } else if (right_end_reached) {
5284                         if (left_level == 0) {
5285                                 ret = changed_cb(left_root, right_root,
5286                                                 left_path, right_path,
5287                                                 &left_key,
5288                                                 BTRFS_COMPARE_TREE_NEW,
5289                                                 ctx);
5290                                 if (ret < 0)
5291                                         goto out;
5292                         }
5293                         advance_left = ADVANCE;
5294                         continue;
5295                 }
5296
5297                 if (left_level == 0 && right_level == 0) {
5298                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5299                         if (cmp < 0) {
5300                                 ret = changed_cb(left_root, right_root,
5301                                                 left_path, right_path,
5302                                                 &left_key,
5303                                                 BTRFS_COMPARE_TREE_NEW,
5304                                                 ctx);
5305                                 if (ret < 0)
5306                                         goto out;
5307                                 advance_left = ADVANCE;
5308                         } else if (cmp > 0) {
5309                                 ret = changed_cb(left_root, right_root,
5310                                                 left_path, right_path,
5311                                                 &right_key,
5312                                                 BTRFS_COMPARE_TREE_DELETED,
5313                                                 ctx);
5314                                 if (ret < 0)
5315                                         goto out;
5316                                 advance_right = ADVANCE;
5317                         } else {
5318                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5319                                 ret = tree_compare_item(left_root, left_path,
5320                                                 right_path, tmp_buf);
5321                                 if (ret) {
5322                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5323                                         ret = changed_cb(left_root, right_root,
5324                                                 left_path, right_path,
5325                                                 &left_key,
5326                                                 BTRFS_COMPARE_TREE_CHANGED,
5327                                                 ctx);
5328                                         if (ret < 0)
5329                                                 goto out;
5330                                 }
5331                                 advance_left = ADVANCE;
5332                                 advance_right = ADVANCE;
5333                         }
5334                 } else if (left_level == right_level) {
5335                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5336                         if (cmp < 0) {
5337                                 advance_left = ADVANCE;
5338                         } else if (cmp > 0) {
5339                                 advance_right = ADVANCE;
5340                         } else {
5341                                 left_blockptr = btrfs_node_blockptr(
5342                                                 left_path->nodes[left_level],
5343                                                 left_path->slots[left_level]);
5344                                 right_blockptr = btrfs_node_blockptr(
5345                                                 right_path->nodes[right_level],
5346                                                 right_path->slots[right_level]);
5347                                 if (left_blockptr == right_blockptr) {
5348                                         /*
5349                                          * As we're on a shared block, don't
5350                                          * allow to go deeper.
5351                                          */
5352                                         advance_left = ADVANCE_ONLY_NEXT;
5353                                         advance_right = ADVANCE_ONLY_NEXT;
5354                                 } else {
5355                                         advance_left = ADVANCE;
5356                                         advance_right = ADVANCE;
5357                                 }
5358                         }
5359                 } else if (left_level < right_level) {
5360                         advance_right = ADVANCE;
5361                 } else {
5362                         advance_left = ADVANCE;
5363                 }
5364         }
5365
5366 out:
5367         btrfs_free_path(left_path);
5368         btrfs_free_path(right_path);
5369         kfree(tmp_buf);
5370
5371         if (trans) {
5372                 if (!ret)
5373                         ret = btrfs_end_transaction(trans, left_root);
5374                 else
5375                         btrfs_end_transaction(trans, left_root);
5376         }
5377
5378         return ret;
5379 }
5380
5381 /*
5382  * this is similar to btrfs_next_leaf, but does not try to preserve
5383  * and fixup the path.  It looks for and returns the next key in the
5384  * tree based on the current path and the min_trans parameters.
5385  *
5386  * 0 is returned if another key is found, < 0 if there are any errors
5387  * and 1 is returned if there are no higher keys in the tree
5388  *
5389  * path->keep_locks should be set to 1 on the search made before
5390  * calling this function.
5391  */
5392 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5393                         struct btrfs_key *key, int level, u64 min_trans)
5394 {
5395         int slot;
5396         struct extent_buffer *c;
5397
5398         WARN_ON(!path->keep_locks);
5399         while (level < BTRFS_MAX_LEVEL) {
5400                 if (!path->nodes[level])
5401                         return 1;
5402
5403                 slot = path->slots[level] + 1;
5404                 c = path->nodes[level];
5405 next:
5406                 if (slot >= btrfs_header_nritems(c)) {
5407                         int ret;
5408                         int orig_lowest;
5409                         struct btrfs_key cur_key;
5410                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5411                             !path->nodes[level + 1])
5412                                 return 1;
5413
5414                         if (path->locks[level + 1]) {
5415                                 level++;
5416                                 continue;
5417                         }
5418
5419                         slot = btrfs_header_nritems(c) - 1;
5420                         if (level == 0)
5421                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5422                         else
5423                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5424
5425                         orig_lowest = path->lowest_level;
5426                         btrfs_release_path(path);
5427                         path->lowest_level = level;
5428                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5429                                                 0, 0);
5430                         path->lowest_level = orig_lowest;
5431                         if (ret < 0)
5432                                 return ret;
5433
5434                         c = path->nodes[level];
5435                         slot = path->slots[level];
5436                         if (ret == 0)
5437                                 slot++;
5438                         goto next;
5439                 }
5440
5441                 if (level == 0)
5442                         btrfs_item_key_to_cpu(c, key, slot);
5443                 else {
5444                         u64 gen = btrfs_node_ptr_generation(c, slot);
5445
5446                         if (gen < min_trans) {
5447                                 slot++;
5448                                 goto next;
5449                         }
5450                         btrfs_node_key_to_cpu(c, key, slot);
5451                 }
5452                 return 0;
5453         }
5454         return 1;
5455 }
5456
5457 /*
5458  * search the tree again to find a leaf with greater keys
5459  * returns 0 if it found something or 1 if there are no greater leaves.
5460  * returns < 0 on io errors.
5461  */
5462 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5463 {
5464         return btrfs_next_old_leaf(root, path, 0);
5465 }
5466
5467 /* Release the path up to but not including the given level */
5468 static void btrfs_release_level(struct btrfs_path *path, int level)
5469 {
5470         int i;
5471
5472         for (i = 0; i < level; i++) {
5473                 path->slots[i] = 0;
5474                 if (!path->nodes[i])
5475                         continue;
5476                 if (path->locks[i]) {
5477                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5478                         path->locks[i] = 0;
5479                 }
5480                 free_extent_buffer(path->nodes[i]);
5481                 path->nodes[i] = NULL;
5482         }
5483 }
5484
5485 /*
5486  * This function assumes 2 things
5487  *
5488  * 1) You are using path->keep_locks
5489  * 2) You are not inserting items.
5490  *
5491  * If either of these are not true do not use this function. If you need a next
5492  * leaf with either of these not being true then this function can be easily
5493  * adapted to do that, but at the moment these are the limitations.
5494  */
5495 int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5496                           struct btrfs_root *root, struct btrfs_path *path,
5497                           int del)
5498 {
5499         struct extent_buffer *b;
5500         struct btrfs_key key;
5501         u32 nritems;
5502         int level = 1;
5503         int slot;
5504         int ret = 1;
5505         int write_lock_level = BTRFS_MAX_LEVEL;
5506         int ins_len = del ? -1 : 0;
5507
5508         WARN_ON(!(path->keep_locks || path->really_keep_locks));
5509
5510         nritems = btrfs_header_nritems(path->nodes[0]);
5511         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5512
5513         while (path->nodes[level]) {
5514                 nritems = btrfs_header_nritems(path->nodes[level]);
5515                 if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5516 search:
5517                         btrfs_release_path(path);
5518                         ret = btrfs_search_slot(trans, root, &key, path,
5519                                                 ins_len, 1);
5520                         if (ret < 0)
5521                                 goto out;
5522                         level = 1;
5523                         continue;
5524                 }
5525
5526                 if (path->slots[level] >= nritems - 1) {
5527                         level++;
5528                         continue;
5529                 }
5530
5531                 btrfs_release_level(path, level);
5532                 break;
5533         }
5534
5535         if (!path->nodes[level]) {
5536                 ret = 1;
5537                 goto out;
5538         }
5539
5540         path->slots[level]++;
5541         b = path->nodes[level];
5542
5543         while (b) {
5544                 level = btrfs_header_level(b);
5545
5546                 if (!should_cow_block(trans, root, b))
5547                         goto cow_done;
5548
5549                 btrfs_set_path_blocking(path);
5550                 ret = btrfs_cow_block(trans, root, b,
5551                                       path->nodes[level + 1],
5552                                       path->slots[level + 1], &b);
5553                 if (ret)
5554                         goto out;
5555 cow_done:
5556                 path->nodes[level] = b;
5557                 btrfs_clear_path_blocking(path, NULL, 0);
5558                 if (level != 0) {
5559                         ret = setup_nodes_for_search(trans, root, path, b,
5560                                                      level, ins_len,
5561                                                      &write_lock_level);
5562                         if (ret == -EAGAIN)
5563                                 goto search;
5564                         if (ret)
5565                                 goto out;
5566
5567                         b = path->nodes[level];
5568                         slot = path->slots[level];
5569
5570                         ret = read_block_for_search(trans, root, path,
5571                                                     &b, level, slot, &key, 0);
5572                         if (ret == -EAGAIN)
5573                                 goto search;
5574                         if (ret)
5575                                 goto out;
5576                         level = btrfs_header_level(b);
5577                         if (!btrfs_try_tree_write_lock(b)) {
5578                                 btrfs_set_path_blocking(path);
5579                                 btrfs_tree_lock(b);
5580                                 btrfs_clear_path_blocking(path, b,
5581                                                           BTRFS_WRITE_LOCK);
5582                         }
5583                         path->locks[level] = BTRFS_WRITE_LOCK;
5584                         path->nodes[level] = b;
5585                         path->slots[level] = 0;
5586                 } else {
5587                         path->slots[level] = 0;
5588                         ret = 0;
5589                         break;
5590                 }
5591         }
5592
5593 out:
5594         if (ret)
5595                 btrfs_release_path(path);
5596
5597         return ret;
5598 }
5599
5600 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5601                         u64 time_seq)
5602 {
5603         int slot;
5604         int level;
5605         struct extent_buffer *c;
5606         struct extent_buffer *next;
5607         struct btrfs_key key;
5608         u32 nritems;
5609         int ret;
5610         int old_spinning = path->leave_spinning;
5611         int next_rw_lock = 0;
5612
5613         nritems = btrfs_header_nritems(path->nodes[0]);
5614         if (nritems == 0)
5615                 return 1;
5616
5617         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5618 again:
5619         level = 1;
5620         next = NULL;
5621         next_rw_lock = 0;
5622         btrfs_release_path(path);
5623
5624         path->keep_locks = 1;
5625         path->leave_spinning = 1;
5626
5627         if (time_seq)
5628                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5629         else
5630                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5631         path->keep_locks = 0;
5632
5633         if (ret < 0)
5634                 return ret;
5635
5636         nritems = btrfs_header_nritems(path->nodes[0]);
5637         /*
5638          * by releasing the path above we dropped all our locks.  A balance
5639          * could have added more items next to the key that used to be
5640          * at the very end of the block.  So, check again here and
5641          * advance the path if there are now more items available.
5642          */
5643         if (nritems > 0 && path->slots[0] < nritems - 1) {
5644                 if (ret == 0)
5645                         path->slots[0]++;
5646                 ret = 0;
5647                 goto done;
5648         }
5649
5650         while (level < BTRFS_MAX_LEVEL) {
5651                 if (!path->nodes[level]) {
5652                         ret = 1;
5653                         goto done;
5654                 }
5655
5656                 slot = path->slots[level] + 1;
5657                 c = path->nodes[level];
5658                 if (slot >= btrfs_header_nritems(c)) {
5659                         level++;
5660                         if (level == BTRFS_MAX_LEVEL) {
5661                                 ret = 1;
5662                                 goto done;
5663                         }
5664                         continue;
5665                 }
5666
5667                 if (next) {
5668                         btrfs_tree_unlock_rw(next, next_rw_lock);
5669                         free_extent_buffer(next);
5670                 }
5671
5672                 next = c;
5673                 next_rw_lock = path->locks[level];
5674                 ret = read_block_for_search(NULL, root, path, &next, level,
5675                                             slot, &key, 0);
5676                 if (ret == -EAGAIN)
5677                         goto again;
5678
5679                 if (ret < 0) {
5680                         btrfs_release_path(path);
5681                         goto done;
5682                 }
5683
5684                 if (!path->skip_locking) {
5685                         ret = btrfs_try_tree_read_lock(next);
5686                         if (!ret && time_seq) {
5687                                 /*
5688                                  * If we don't get the lock, we may be racing
5689                                  * with push_leaf_left, holding that lock while
5690                                  * itself waiting for the leaf we've currently
5691                                  * locked. To solve this situation, we give up
5692                                  * on our lock and cycle.
5693                                  */
5694                                 free_extent_buffer(next);
5695                                 btrfs_release_path(path);
5696                                 cond_resched();
5697                                 goto again;
5698                         }
5699                         if (!ret) {
5700                                 btrfs_set_path_blocking(path);
5701                                 btrfs_tree_read_lock(next);
5702                                 btrfs_clear_path_blocking(path, next,
5703                                                           BTRFS_READ_LOCK);
5704                         }
5705                         next_rw_lock = BTRFS_READ_LOCK;
5706                 }
5707                 break;
5708         }
5709         path->slots[level] = slot;
5710         while (1) {
5711                 level--;
5712                 c = path->nodes[level];
5713                 if (path->locks[level])
5714                         btrfs_tree_unlock_rw(c, path->locks[level]);
5715
5716                 free_extent_buffer(c);
5717                 path->nodes[level] = next;
5718                 path->slots[level] = 0;
5719                 if (!path->skip_locking)
5720                         path->locks[level] = next_rw_lock;
5721                 if (!level)
5722                         break;
5723
5724                 ret = read_block_for_search(NULL, root, path, &next, level,
5725                                             0, &key, 0);
5726                 if (ret == -EAGAIN)
5727                         goto again;
5728
5729                 if (ret < 0) {
5730                         btrfs_release_path(path);
5731                         goto done;
5732                 }
5733
5734                 if (!path->skip_locking) {
5735                         ret = btrfs_try_tree_read_lock(next);
5736                         if (!ret) {
5737                                 btrfs_set_path_blocking(path);
5738                                 btrfs_tree_read_lock(next);
5739                                 btrfs_clear_path_blocking(path, next,
5740                                                           BTRFS_READ_LOCK);
5741                         }
5742                         next_rw_lock = BTRFS_READ_LOCK;
5743                 }
5744         }
5745         ret = 0;
5746 done:
5747         unlock_up(path, 0, 1, 0, NULL);
5748         path->leave_spinning = old_spinning;
5749         if (!old_spinning)
5750                 btrfs_set_path_blocking(path);
5751
5752         return ret;
5753 }
5754
5755 /*
5756  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5757  * searching until it gets past min_objectid or finds an item of 'type'
5758  *
5759  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5760  */
5761 int btrfs_previous_item(struct btrfs_root *root,
5762                         struct btrfs_path *path, u64 min_objectid,
5763                         int type)
5764 {
5765         struct btrfs_key found_key;
5766         struct extent_buffer *leaf;
5767         u32 nritems;
5768         int ret;
5769
5770         while (1) {
5771                 if (path->slots[0] == 0) {
5772                         btrfs_set_path_blocking(path);
5773                         ret = btrfs_prev_leaf(root, path);
5774                         if (ret != 0)
5775                                 return ret;
5776                 } else {
5777                         path->slots[0]--;
5778                 }
5779                 leaf = path->nodes[0];
5780                 nritems = btrfs_header_nritems(leaf);
5781                 if (nritems == 0)
5782                         return 1;
5783                 if (path->slots[0] == nritems)
5784                         path->slots[0]--;
5785
5786                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5787                 if (found_key.objectid < min_objectid)
5788                         break;
5789                 if (found_key.type == type)
5790                         return 0;
5791                 if (found_key.objectid == min_objectid &&
5792                     found_key.type < type)
5793                         break;
5794         }
5795         return 1;
5796 }