ASoC: soc-compress: Send correct stream event for capture start
[firefly-linux-kernel-4.4.55.git] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 struct extent_inode_elem {
29         u64 inum;
30         u64 offset;
31         struct extent_inode_elem *next;
32 };
33
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35                                 struct btrfs_file_extent_item *fi,
36                                 u64 extent_item_pos,
37                                 struct extent_inode_elem **eie)
38 {
39         u64 data_offset;
40         u64 data_len;
41         struct extent_inode_elem *e;
42
43         data_offset = btrfs_file_extent_offset(eb, fi);
44         data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46         if (extent_item_pos < data_offset ||
47             extent_item_pos >= data_offset + data_len)
48                 return 1;
49
50         e = kmalloc(sizeof(*e), GFP_NOFS);
51         if (!e)
52                 return -ENOMEM;
53
54         e->next = *eie;
55         e->inum = key->objectid;
56         e->offset = key->offset + (extent_item_pos - data_offset);
57         *eie = e;
58
59         return 0;
60 }
61
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63                                 u64 extent_item_pos,
64                                 struct extent_inode_elem **eie)
65 {
66         u64 disk_byte;
67         struct btrfs_key key;
68         struct btrfs_file_extent_item *fi;
69         int slot;
70         int nritems;
71         int extent_type;
72         int ret;
73
74         /*
75          * from the shared data ref, we only have the leaf but we need
76          * the key. thus, we must look into all items and see that we
77          * find one (some) with a reference to our extent item.
78          */
79         nritems = btrfs_header_nritems(eb);
80         for (slot = 0; slot < nritems; ++slot) {
81                 btrfs_item_key_to_cpu(eb, &key, slot);
82                 if (key.type != BTRFS_EXTENT_DATA_KEY)
83                         continue;
84                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85                 extent_type = btrfs_file_extent_type(eb, fi);
86                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87                         continue;
88                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90                 if (disk_byte != wanted_disk_byte)
91                         continue;
92
93                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94                 if (ret < 0)
95                         return ret;
96         }
97
98         return 0;
99 }
100
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105         struct list_head list;
106         u64 root_id;
107         struct btrfs_key key_for_search;
108         int level;
109         int count;
110         struct extent_inode_elem *inode_list;
111         u64 parent;
112         u64 wanted_disk_byte;
113 };
114
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  *   block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  *        backref type | shared | indirect | shared | indirect
125  * information         |   tree |     tree |   data |     data
126  * --------------------+--------+----------+--------+----------
127  *      parent logical |    y   |     -    |    -   |     -
128  *      key to resolve |    -   |     y    |    y   |     y
129  *  tree block logical |    -   |     -    |    -   |     -
130  *  root for resolving |    y   |     y    |    y   |     y
131  *
132  * - column 1:       we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  *        backref type | shared | indirect | shared | indirect
138  * information         |   tree |     tree |   data |     data
139  * --------------------+--------+----------+--------+----------
140  *      parent logical |    y   |     -    |    y   |     -
141  *      key to resolve |    -   |     -    |    -   |     y
142  *  tree block logical |    y   |     y    |    y   |     y
143  *  root for resolving |    -   |     y    |    y   |     y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2:    we take the first key from the block to find the parent
147  *                (see __add_missing_keys)
148  * - column 4:    we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155                             struct btrfs_key *key, int level,
156                             u64 parent, u64 wanted_disk_byte, int count)
157 {
158         struct __prelim_ref *ref;
159
160         /* in case we're adding delayed refs, we're holding the refs spinlock */
161         ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162         if (!ref)
163                 return -ENOMEM;
164
165         ref->root_id = root_id;
166         if (key)
167                 ref->key_for_search = *key;
168         else
169                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170
171         ref->inode_list = NULL;
172         ref->level = level;
173         ref->count = count;
174         ref->parent = parent;
175         ref->wanted_disk_byte = wanted_disk_byte;
176         list_add_tail(&ref->list, head);
177
178         return 0;
179 }
180
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182                                 struct ulist *parents, int level,
183                                 struct btrfs_key *key_for_search, u64 time_seq,
184                                 u64 wanted_disk_byte,
185                                 const u64 *extent_item_pos)
186 {
187         int ret = 0;
188         int slot;
189         struct extent_buffer *eb;
190         struct btrfs_key key;
191         struct btrfs_file_extent_item *fi;
192         struct extent_inode_elem *eie = NULL;
193         u64 disk_byte;
194
195         if (level != 0) {
196                 eb = path->nodes[level];
197                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198                 if (ret < 0)
199                         return ret;
200                 return 0;
201         }
202
203         /*
204          * We normally enter this function with the path already pointing to
205          * the first item to check. But sometimes, we may enter it with
206          * slot==nritems. In that case, go to the next leaf before we continue.
207          */
208         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209                 ret = btrfs_next_old_leaf(root, path, time_seq);
210
211         while (!ret) {
212                 eb = path->nodes[0];
213                 slot = path->slots[0];
214
215                 btrfs_item_key_to_cpu(eb, &key, slot);
216
217                 if (key.objectid != key_for_search->objectid ||
218                     key.type != BTRFS_EXTENT_DATA_KEY)
219                         break;
220
221                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223
224                 if (disk_byte == wanted_disk_byte) {
225                         eie = NULL;
226                         if (extent_item_pos) {
227                                 ret = check_extent_in_eb(&key, eb, fi,
228                                                 *extent_item_pos,
229                                                 &eie);
230                                 if (ret < 0)
231                                         break;
232                         }
233                         if (!ret) {
234                                 ret = ulist_add(parents, eb->start,
235                                                 (uintptr_t)eie, GFP_NOFS);
236                                 if (ret < 0)
237                                         break;
238                                 if (!extent_item_pos) {
239                                         ret = btrfs_next_old_leaf(root, path,
240                                                         time_seq);
241                                         continue;
242                                 }
243                         }
244                 }
245                 ret = btrfs_next_old_item(root, path, time_seq);
246         }
247
248         if (ret > 0)
249                 ret = 0;
250         return ret;
251 }
252
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258                                         int search_commit_root,
259                                         u64 time_seq,
260                                         struct __prelim_ref *ref,
261                                         struct ulist *parents,
262                                         const u64 *extent_item_pos)
263 {
264         struct btrfs_path *path;
265         struct btrfs_root *root;
266         struct btrfs_key root_key;
267         struct extent_buffer *eb;
268         int ret = 0;
269         int root_level;
270         int level = ref->level;
271
272         path = btrfs_alloc_path();
273         if (!path)
274                 return -ENOMEM;
275         path->search_commit_root = !!search_commit_root;
276
277         root_key.objectid = ref->root_id;
278         root_key.type = BTRFS_ROOT_ITEM_KEY;
279         root_key.offset = (u64)-1;
280         root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281         if (IS_ERR(root)) {
282                 ret = PTR_ERR(root);
283                 goto out;
284         }
285
286         root_level = btrfs_old_root_level(root, time_seq);
287
288         if (root_level + 1 == level)
289                 goto out;
290
291         path->lowest_level = level;
292         ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
293         pr_debug("search slot in root %llu (level %d, ref count %d) returned "
294                  "%d for key (%llu %u %llu)\n",
295                  (unsigned long long)ref->root_id, level, ref->count, ret,
296                  (unsigned long long)ref->key_for_search.objectid,
297                  ref->key_for_search.type,
298                  (unsigned long long)ref->key_for_search.offset);
299         if (ret < 0)
300                 goto out;
301
302         eb = path->nodes[level];
303         while (!eb) {
304                 if (!level) {
305                         WARN_ON(1);
306                         ret = 1;
307                         goto out;
308                 }
309                 level--;
310                 eb = path->nodes[level];
311         }
312
313         ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
314                                 time_seq, ref->wanted_disk_byte,
315                                 extent_item_pos);
316 out:
317         btrfs_free_path(path);
318         return ret;
319 }
320
321 /*
322  * resolve all indirect backrefs from the list
323  */
324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
325                                    int search_commit_root, u64 time_seq,
326                                    struct list_head *head,
327                                    const u64 *extent_item_pos)
328 {
329         int err;
330         int ret = 0;
331         struct __prelim_ref *ref;
332         struct __prelim_ref *ref_safe;
333         struct __prelim_ref *new_ref;
334         struct ulist *parents;
335         struct ulist_node *node;
336         struct ulist_iterator uiter;
337
338         parents = ulist_alloc(GFP_NOFS);
339         if (!parents)
340                 return -ENOMEM;
341
342         /*
343          * _safe allows us to insert directly after the current item without
344          * iterating over the newly inserted items.
345          * we're also allowed to re-assign ref during iteration.
346          */
347         list_for_each_entry_safe(ref, ref_safe, head, list) {
348                 if (ref->parent)        /* already direct */
349                         continue;
350                 if (ref->count == 0)
351                         continue;
352                 err = __resolve_indirect_ref(fs_info, search_commit_root,
353                                              time_seq, ref, parents,
354                                              extent_item_pos);
355                 if (err == -ENOMEM)
356                         goto out;
357                 if (err)
358                         continue;
359
360                 /* we put the first parent into the ref at hand */
361                 ULIST_ITER_INIT(&uiter);
362                 node = ulist_next(parents, &uiter);
363                 ref->parent = node ? node->val : 0;
364                 ref->inode_list = node ?
365                         (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
366
367                 /* additional parents require new refs being added here */
368                 while ((node = ulist_next(parents, &uiter))) {
369                         new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
370                         if (!new_ref) {
371                                 ret = -ENOMEM;
372                                 goto out;
373                         }
374                         memcpy(new_ref, ref, sizeof(*ref));
375                         new_ref->parent = node->val;
376                         new_ref->inode_list = (struct extent_inode_elem *)
377                                                         (uintptr_t)node->aux;
378                         list_add(&new_ref->list, &ref->list);
379                 }
380                 ulist_reinit(parents);
381         }
382 out:
383         ulist_free(parents);
384         return ret;
385 }
386
387 static inline int ref_for_same_block(struct __prelim_ref *ref1,
388                                      struct __prelim_ref *ref2)
389 {
390         if (ref1->level != ref2->level)
391                 return 0;
392         if (ref1->root_id != ref2->root_id)
393                 return 0;
394         if (ref1->key_for_search.type != ref2->key_for_search.type)
395                 return 0;
396         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
397                 return 0;
398         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
399                 return 0;
400         if (ref1->parent != ref2->parent)
401                 return 0;
402
403         return 1;
404 }
405
406 /*
407  * read tree blocks and add keys where required.
408  */
409 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
410                               struct list_head *head)
411 {
412         struct list_head *pos;
413         struct extent_buffer *eb;
414
415         list_for_each(pos, head) {
416                 struct __prelim_ref *ref;
417                 ref = list_entry(pos, struct __prelim_ref, list);
418
419                 if (ref->parent)
420                         continue;
421                 if (ref->key_for_search.type)
422                         continue;
423                 BUG_ON(!ref->wanted_disk_byte);
424                 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
425                                      fs_info->tree_root->leafsize, 0);
426                 if (!eb || !extent_buffer_uptodate(eb)) {
427                         free_extent_buffer(eb);
428                         return -EIO;
429                 }
430                 btrfs_tree_read_lock(eb);
431                 if (btrfs_header_level(eb) == 0)
432                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
433                 else
434                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
435                 btrfs_tree_read_unlock(eb);
436                 free_extent_buffer(eb);
437         }
438         return 0;
439 }
440
441 /*
442  * merge two lists of backrefs and adjust counts accordingly
443  *
444  * mode = 1: merge identical keys, if key is set
445  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
446  *           additionally, we could even add a key range for the blocks we
447  *           looked into to merge even more (-> replace unresolved refs by those
448  *           having a parent).
449  * mode = 2: merge identical parents
450  */
451 static void __merge_refs(struct list_head *head, int mode)
452 {
453         struct list_head *pos1;
454
455         list_for_each(pos1, head) {
456                 struct list_head *n2;
457                 struct list_head *pos2;
458                 struct __prelim_ref *ref1;
459
460                 ref1 = list_entry(pos1, struct __prelim_ref, list);
461
462                 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
463                      pos2 = n2, n2 = pos2->next) {
464                         struct __prelim_ref *ref2;
465                         struct __prelim_ref *xchg;
466                         struct extent_inode_elem *eie;
467
468                         ref2 = list_entry(pos2, struct __prelim_ref, list);
469
470                         if (mode == 1) {
471                                 if (!ref_for_same_block(ref1, ref2))
472                                         continue;
473                                 if (!ref1->parent && ref2->parent) {
474                                         xchg = ref1;
475                                         ref1 = ref2;
476                                         ref2 = xchg;
477                                 }
478                         } else {
479                                 if (ref1->parent != ref2->parent)
480                                         continue;
481                         }
482
483                         eie = ref1->inode_list;
484                         while (eie && eie->next)
485                                 eie = eie->next;
486                         if (eie)
487                                 eie->next = ref2->inode_list;
488                         else
489                                 ref1->inode_list = ref2->inode_list;
490                         ref1->count += ref2->count;
491
492                         list_del(&ref2->list);
493                         kfree(ref2);
494                 }
495
496         }
497 }
498
499 /*
500  * add all currently queued delayed refs from this head whose seq nr is
501  * smaller or equal that seq to the list
502  */
503 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
504                               struct list_head *prefs)
505 {
506         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
507         struct rb_node *n = &head->node.rb_node;
508         struct btrfs_key key;
509         struct btrfs_key op_key = {0};
510         int sgn;
511         int ret = 0;
512
513         if (extent_op && extent_op->update_key)
514                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
515
516         while ((n = rb_prev(n))) {
517                 struct btrfs_delayed_ref_node *node;
518                 node = rb_entry(n, struct btrfs_delayed_ref_node,
519                                 rb_node);
520                 if (node->bytenr != head->node.bytenr)
521                         break;
522                 WARN_ON(node->is_head);
523
524                 if (node->seq > seq)
525                         continue;
526
527                 switch (node->action) {
528                 case BTRFS_ADD_DELAYED_EXTENT:
529                 case BTRFS_UPDATE_DELAYED_HEAD:
530                         WARN_ON(1);
531                         continue;
532                 case BTRFS_ADD_DELAYED_REF:
533                         sgn = 1;
534                         break;
535                 case BTRFS_DROP_DELAYED_REF:
536                         sgn = -1;
537                         break;
538                 default:
539                         BUG_ON(1);
540                 }
541                 switch (node->type) {
542                 case BTRFS_TREE_BLOCK_REF_KEY: {
543                         struct btrfs_delayed_tree_ref *ref;
544
545                         ref = btrfs_delayed_node_to_tree_ref(node);
546                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
547                                                ref->level + 1, 0, node->bytenr,
548                                                node->ref_mod * sgn);
549                         break;
550                 }
551                 case BTRFS_SHARED_BLOCK_REF_KEY: {
552                         struct btrfs_delayed_tree_ref *ref;
553
554                         ref = btrfs_delayed_node_to_tree_ref(node);
555                         ret = __add_prelim_ref(prefs, ref->root, NULL,
556                                                ref->level + 1, ref->parent,
557                                                node->bytenr,
558                                                node->ref_mod * sgn);
559                         break;
560                 }
561                 case BTRFS_EXTENT_DATA_REF_KEY: {
562                         struct btrfs_delayed_data_ref *ref;
563                         ref = btrfs_delayed_node_to_data_ref(node);
564
565                         key.objectid = ref->objectid;
566                         key.type = BTRFS_EXTENT_DATA_KEY;
567                         key.offset = ref->offset;
568                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
569                                                node->bytenr,
570                                                node->ref_mod * sgn);
571                         break;
572                 }
573                 case BTRFS_SHARED_DATA_REF_KEY: {
574                         struct btrfs_delayed_data_ref *ref;
575
576                         ref = btrfs_delayed_node_to_data_ref(node);
577
578                         key.objectid = ref->objectid;
579                         key.type = BTRFS_EXTENT_DATA_KEY;
580                         key.offset = ref->offset;
581                         ret = __add_prelim_ref(prefs, ref->root, &key, 0,
582                                                ref->parent, node->bytenr,
583                                                node->ref_mod * sgn);
584                         break;
585                 }
586                 default:
587                         WARN_ON(1);
588                 }
589                 if (ret)
590                         return ret;
591         }
592
593         return 0;
594 }
595
596 /*
597  * add all inline backrefs for bytenr to the list
598  */
599 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
600                              struct btrfs_path *path, u64 bytenr,
601                              int *info_level, struct list_head *prefs)
602 {
603         int ret = 0;
604         int slot;
605         struct extent_buffer *leaf;
606         struct btrfs_key key;
607         unsigned long ptr;
608         unsigned long end;
609         struct btrfs_extent_item *ei;
610         u64 flags;
611         u64 item_size;
612
613         /*
614          * enumerate all inline refs
615          */
616         leaf = path->nodes[0];
617         slot = path->slots[0];
618
619         item_size = btrfs_item_size_nr(leaf, slot);
620         BUG_ON(item_size < sizeof(*ei));
621
622         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
623         flags = btrfs_extent_flags(leaf, ei);
624
625         ptr = (unsigned long)(ei + 1);
626         end = (unsigned long)ei + item_size;
627
628         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
629                 struct btrfs_tree_block_info *info;
630
631                 info = (struct btrfs_tree_block_info *)ptr;
632                 *info_level = btrfs_tree_block_level(leaf, info);
633                 ptr += sizeof(struct btrfs_tree_block_info);
634                 BUG_ON(ptr > end);
635         } else {
636                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
637         }
638
639         while (ptr < end) {
640                 struct btrfs_extent_inline_ref *iref;
641                 u64 offset;
642                 int type;
643
644                 iref = (struct btrfs_extent_inline_ref *)ptr;
645                 type = btrfs_extent_inline_ref_type(leaf, iref);
646                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
647
648                 switch (type) {
649                 case BTRFS_SHARED_BLOCK_REF_KEY:
650                         ret = __add_prelim_ref(prefs, 0, NULL,
651                                                 *info_level + 1, offset,
652                                                 bytenr, 1);
653                         break;
654                 case BTRFS_SHARED_DATA_REF_KEY: {
655                         struct btrfs_shared_data_ref *sdref;
656                         int count;
657
658                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
659                         count = btrfs_shared_data_ref_count(leaf, sdref);
660                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
661                                                bytenr, count);
662                         break;
663                 }
664                 case BTRFS_TREE_BLOCK_REF_KEY:
665                         ret = __add_prelim_ref(prefs, offset, NULL,
666                                                *info_level + 1, 0,
667                                                bytenr, 1);
668                         break;
669                 case BTRFS_EXTENT_DATA_REF_KEY: {
670                         struct btrfs_extent_data_ref *dref;
671                         int count;
672                         u64 root;
673
674                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
675                         count = btrfs_extent_data_ref_count(leaf, dref);
676                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
677                                                                       dref);
678                         key.type = BTRFS_EXTENT_DATA_KEY;
679                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
680                         root = btrfs_extent_data_ref_root(leaf, dref);
681                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
682                                                bytenr, count);
683                         break;
684                 }
685                 default:
686                         WARN_ON(1);
687                 }
688                 if (ret)
689                         return ret;
690                 ptr += btrfs_extent_inline_ref_size(type);
691         }
692
693         return 0;
694 }
695
696 /*
697  * add all non-inline backrefs for bytenr to the list
698  */
699 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
700                             struct btrfs_path *path, u64 bytenr,
701                             int info_level, struct list_head *prefs)
702 {
703         struct btrfs_root *extent_root = fs_info->extent_root;
704         int ret;
705         int slot;
706         struct extent_buffer *leaf;
707         struct btrfs_key key;
708
709         while (1) {
710                 ret = btrfs_next_item(extent_root, path);
711                 if (ret < 0)
712                         break;
713                 if (ret) {
714                         ret = 0;
715                         break;
716                 }
717
718                 slot = path->slots[0];
719                 leaf = path->nodes[0];
720                 btrfs_item_key_to_cpu(leaf, &key, slot);
721
722                 if (key.objectid != bytenr)
723                         break;
724                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
725                         continue;
726                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
727                         break;
728
729                 switch (key.type) {
730                 case BTRFS_SHARED_BLOCK_REF_KEY:
731                         ret = __add_prelim_ref(prefs, 0, NULL,
732                                                 info_level + 1, key.offset,
733                                                 bytenr, 1);
734                         break;
735                 case BTRFS_SHARED_DATA_REF_KEY: {
736                         struct btrfs_shared_data_ref *sdref;
737                         int count;
738
739                         sdref = btrfs_item_ptr(leaf, slot,
740                                               struct btrfs_shared_data_ref);
741                         count = btrfs_shared_data_ref_count(leaf, sdref);
742                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
743                                                 bytenr, count);
744                         break;
745                 }
746                 case BTRFS_TREE_BLOCK_REF_KEY:
747                         ret = __add_prelim_ref(prefs, key.offset, NULL,
748                                                info_level + 1, 0,
749                                                bytenr, 1);
750                         break;
751                 case BTRFS_EXTENT_DATA_REF_KEY: {
752                         struct btrfs_extent_data_ref *dref;
753                         int count;
754                         u64 root;
755
756                         dref = btrfs_item_ptr(leaf, slot,
757                                               struct btrfs_extent_data_ref);
758                         count = btrfs_extent_data_ref_count(leaf, dref);
759                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
760                                                                       dref);
761                         key.type = BTRFS_EXTENT_DATA_KEY;
762                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
763                         root = btrfs_extent_data_ref_root(leaf, dref);
764                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
765                                                bytenr, count);
766                         break;
767                 }
768                 default:
769                         WARN_ON(1);
770                 }
771                 if (ret)
772                         return ret;
773
774         }
775
776         return ret;
777 }
778
779 /*
780  * this adds all existing backrefs (inline backrefs, backrefs and delayed
781  * refs) for the given bytenr to the refs list, merges duplicates and resolves
782  * indirect refs to their parent bytenr.
783  * When roots are found, they're added to the roots list
784  *
785  * FIXME some caching might speed things up
786  */
787 static int find_parent_nodes(struct btrfs_trans_handle *trans,
788                              struct btrfs_fs_info *fs_info, u64 bytenr,
789                              u64 time_seq, struct ulist *refs,
790                              struct ulist *roots, const u64 *extent_item_pos)
791 {
792         struct btrfs_key key;
793         struct btrfs_path *path;
794         struct btrfs_delayed_ref_root *delayed_refs = NULL;
795         struct btrfs_delayed_ref_head *head;
796         int info_level = 0;
797         int ret;
798         int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
799         struct list_head prefs_delayed;
800         struct list_head prefs;
801         struct __prelim_ref *ref;
802
803         INIT_LIST_HEAD(&prefs);
804         INIT_LIST_HEAD(&prefs_delayed);
805
806         key.objectid = bytenr;
807         key.type = BTRFS_EXTENT_ITEM_KEY;
808         key.offset = (u64)-1;
809
810         path = btrfs_alloc_path();
811         if (!path)
812                 return -ENOMEM;
813         path->search_commit_root = !!search_commit_root;
814
815         /*
816          * grab both a lock on the path and a lock on the delayed ref head.
817          * We need both to get a consistent picture of how the refs look
818          * at a specified point in time
819          */
820 again:
821         head = NULL;
822
823         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
824         if (ret < 0)
825                 goto out;
826         BUG_ON(ret == 0);
827
828         if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
829                 /*
830                  * look if there are updates for this ref queued and lock the
831                  * head
832                  */
833                 delayed_refs = &trans->transaction->delayed_refs;
834                 spin_lock(&delayed_refs->lock);
835                 head = btrfs_find_delayed_ref_head(trans, bytenr);
836                 if (head) {
837                         if (!mutex_trylock(&head->mutex)) {
838                                 atomic_inc(&head->node.refs);
839                                 spin_unlock(&delayed_refs->lock);
840
841                                 btrfs_release_path(path);
842
843                                 /*
844                                  * Mutex was contended, block until it's
845                                  * released and try again
846                                  */
847                                 mutex_lock(&head->mutex);
848                                 mutex_unlock(&head->mutex);
849                                 btrfs_put_delayed_ref(&head->node);
850                                 goto again;
851                         }
852                         ret = __add_delayed_refs(head, time_seq,
853                                                  &prefs_delayed);
854                         mutex_unlock(&head->mutex);
855                         if (ret) {
856                                 spin_unlock(&delayed_refs->lock);
857                                 goto out;
858                         }
859                 }
860                 spin_unlock(&delayed_refs->lock);
861         }
862
863         if (path->slots[0]) {
864                 struct extent_buffer *leaf;
865                 int slot;
866
867                 path->slots[0]--;
868                 leaf = path->nodes[0];
869                 slot = path->slots[0];
870                 btrfs_item_key_to_cpu(leaf, &key, slot);
871                 if (key.objectid == bytenr &&
872                     key.type == BTRFS_EXTENT_ITEM_KEY) {
873                         ret = __add_inline_refs(fs_info, path, bytenr,
874                                                 &info_level, &prefs);
875                         if (ret)
876                                 goto out;
877                         ret = __add_keyed_refs(fs_info, path, bytenr,
878                                                info_level, &prefs);
879                         if (ret)
880                                 goto out;
881                 }
882         }
883         btrfs_release_path(path);
884
885         list_splice_init(&prefs_delayed, &prefs);
886
887         ret = __add_missing_keys(fs_info, &prefs);
888         if (ret)
889                 goto out;
890
891         __merge_refs(&prefs, 1);
892
893         ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
894                                       &prefs, extent_item_pos);
895         if (ret)
896                 goto out;
897
898         __merge_refs(&prefs, 2);
899
900         while (!list_empty(&prefs)) {
901                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
902                 list_del(&ref->list);
903                 WARN_ON(ref->count < 0);
904                 if (ref->count && ref->root_id && ref->parent == 0) {
905                         /* no parent == root of tree */
906                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
907                         if (ret < 0)
908                                 goto out;
909                 }
910                 if (ref->count && ref->parent) {
911                         struct extent_inode_elem *eie = NULL;
912                         if (extent_item_pos && !ref->inode_list) {
913                                 u32 bsz;
914                                 struct extent_buffer *eb;
915                                 bsz = btrfs_level_size(fs_info->extent_root,
916                                                         info_level);
917                                 eb = read_tree_block(fs_info->extent_root,
918                                                            ref->parent, bsz, 0);
919                                 if (!eb || !extent_buffer_uptodate(eb)) {
920                                         free_extent_buffer(eb);
921                                         return -EIO;
922                                 }
923                                 ret = find_extent_in_eb(eb, bytenr,
924                                                         *extent_item_pos, &eie);
925                                 ref->inode_list = eie;
926                                 free_extent_buffer(eb);
927                         }
928                         ret = ulist_add_merge(refs, ref->parent,
929                                               (uintptr_t)ref->inode_list,
930                                               (u64 *)&eie, GFP_NOFS);
931                         if (ret < 0)
932                                 goto out;
933                         if (!ret && extent_item_pos) {
934                                 /*
935                                  * we've recorded that parent, so we must extend
936                                  * its inode list here
937                                  */
938                                 BUG_ON(!eie);
939                                 while (eie->next)
940                                         eie = eie->next;
941                                 eie->next = ref->inode_list;
942                         }
943                 }
944                 kfree(ref);
945         }
946
947 out:
948         btrfs_free_path(path);
949         while (!list_empty(&prefs)) {
950                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
951                 list_del(&ref->list);
952                 kfree(ref);
953         }
954         while (!list_empty(&prefs_delayed)) {
955                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
956                                        list);
957                 list_del(&ref->list);
958                 kfree(ref);
959         }
960
961         return ret;
962 }
963
964 static void free_leaf_list(struct ulist *blocks)
965 {
966         struct ulist_node *node = NULL;
967         struct extent_inode_elem *eie;
968         struct extent_inode_elem *eie_next;
969         struct ulist_iterator uiter;
970
971         ULIST_ITER_INIT(&uiter);
972         while ((node = ulist_next(blocks, &uiter))) {
973                 if (!node->aux)
974                         continue;
975                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
976                 for (; eie; eie = eie_next) {
977                         eie_next = eie->next;
978                         kfree(eie);
979                 }
980                 node->aux = 0;
981         }
982
983         ulist_free(blocks);
984 }
985
986 /*
987  * Finds all leafs with a reference to the specified combination of bytenr and
988  * offset. key_list_head will point to a list of corresponding keys (caller must
989  * free each list element). The leafs will be stored in the leafs ulist, which
990  * must be freed with ulist_free.
991  *
992  * returns 0 on success, <0 on error
993  */
994 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
995                                 struct btrfs_fs_info *fs_info, u64 bytenr,
996                                 u64 time_seq, struct ulist **leafs,
997                                 const u64 *extent_item_pos)
998 {
999         struct ulist *tmp;
1000         int ret;
1001
1002         tmp = ulist_alloc(GFP_NOFS);
1003         if (!tmp)
1004                 return -ENOMEM;
1005         *leafs = ulist_alloc(GFP_NOFS);
1006         if (!*leafs) {
1007                 ulist_free(tmp);
1008                 return -ENOMEM;
1009         }
1010
1011         ret = find_parent_nodes(trans, fs_info, bytenr,
1012                                 time_seq, *leafs, tmp, extent_item_pos);
1013         ulist_free(tmp);
1014
1015         if (ret < 0 && ret != -ENOENT) {
1016                 free_leaf_list(*leafs);
1017                 return ret;
1018         }
1019
1020         return 0;
1021 }
1022
1023 /*
1024  * walk all backrefs for a given extent to find all roots that reference this
1025  * extent. Walking a backref means finding all extents that reference this
1026  * extent and in turn walk the backrefs of those, too. Naturally this is a
1027  * recursive process, but here it is implemented in an iterative fashion: We
1028  * find all referencing extents for the extent in question and put them on a
1029  * list. In turn, we find all referencing extents for those, further appending
1030  * to the list. The way we iterate the list allows adding more elements after
1031  * the current while iterating. The process stops when we reach the end of the
1032  * list. Found roots are added to the roots list.
1033  *
1034  * returns 0 on success, < 0 on error.
1035  */
1036 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1037                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1038                                 u64 time_seq, struct ulist **roots)
1039 {
1040         struct ulist *tmp;
1041         struct ulist_node *node = NULL;
1042         struct ulist_iterator uiter;
1043         int ret;
1044
1045         tmp = ulist_alloc(GFP_NOFS);
1046         if (!tmp)
1047                 return -ENOMEM;
1048         *roots = ulist_alloc(GFP_NOFS);
1049         if (!*roots) {
1050                 ulist_free(tmp);
1051                 return -ENOMEM;
1052         }
1053
1054         ULIST_ITER_INIT(&uiter);
1055         while (1) {
1056                 ret = find_parent_nodes(trans, fs_info, bytenr,
1057                                         time_seq, tmp, *roots, NULL);
1058                 if (ret < 0 && ret != -ENOENT) {
1059                         ulist_free(tmp);
1060                         ulist_free(*roots);
1061                         return ret;
1062                 }
1063                 node = ulist_next(tmp, &uiter);
1064                 if (!node)
1065                         break;
1066                 bytenr = node->val;
1067         }
1068
1069         ulist_free(tmp);
1070         return 0;
1071 }
1072
1073
1074 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1075                         struct btrfs_root *fs_root, struct btrfs_path *path,
1076                         struct btrfs_key *found_key)
1077 {
1078         int ret;
1079         struct btrfs_key key;
1080         struct extent_buffer *eb;
1081
1082         key.type = key_type;
1083         key.objectid = inum;
1084         key.offset = ioff;
1085
1086         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1087         if (ret < 0)
1088                 return ret;
1089
1090         eb = path->nodes[0];
1091         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1092                 ret = btrfs_next_leaf(fs_root, path);
1093                 if (ret)
1094                         return ret;
1095                 eb = path->nodes[0];
1096         }
1097
1098         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1099         if (found_key->type != key.type || found_key->objectid != key.objectid)
1100                 return 1;
1101
1102         return 0;
1103 }
1104
1105 /*
1106  * this makes the path point to (inum INODE_ITEM ioff)
1107  */
1108 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1109                         struct btrfs_path *path)
1110 {
1111         struct btrfs_key key;
1112         return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1113                                 &key);
1114 }
1115
1116 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1117                                 struct btrfs_path *path,
1118                                 struct btrfs_key *found_key)
1119 {
1120         return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1121                                 found_key);
1122 }
1123
1124 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1125                           u64 start_off, struct btrfs_path *path,
1126                           struct btrfs_inode_extref **ret_extref,
1127                           u64 *found_off)
1128 {
1129         int ret, slot;
1130         struct btrfs_key key;
1131         struct btrfs_key found_key;
1132         struct btrfs_inode_extref *extref;
1133         struct extent_buffer *leaf;
1134         unsigned long ptr;
1135
1136         key.objectid = inode_objectid;
1137         btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1138         key.offset = start_off;
1139
1140         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1141         if (ret < 0)
1142                 return ret;
1143
1144         while (1) {
1145                 leaf = path->nodes[0];
1146                 slot = path->slots[0];
1147                 if (slot >= btrfs_header_nritems(leaf)) {
1148                         /*
1149                          * If the item at offset is not found,
1150                          * btrfs_search_slot will point us to the slot
1151                          * where it should be inserted. In our case
1152                          * that will be the slot directly before the
1153                          * next INODE_REF_KEY_V2 item. In the case
1154                          * that we're pointing to the last slot in a
1155                          * leaf, we must move one leaf over.
1156                          */
1157                         ret = btrfs_next_leaf(root, path);
1158                         if (ret) {
1159                                 if (ret >= 1)
1160                                         ret = -ENOENT;
1161                                 break;
1162                         }
1163                         continue;
1164                 }
1165
1166                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1167
1168                 /*
1169                  * Check that we're still looking at an extended ref key for
1170                  * this particular objectid. If we have different
1171                  * objectid or type then there are no more to be found
1172                  * in the tree and we can exit.
1173                  */
1174                 ret = -ENOENT;
1175                 if (found_key.objectid != inode_objectid)
1176                         break;
1177                 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1178                         break;
1179
1180                 ret = 0;
1181                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1182                 extref = (struct btrfs_inode_extref *)ptr;
1183                 *ret_extref = extref;
1184                 if (found_off)
1185                         *found_off = found_key.offset;
1186                 break;
1187         }
1188
1189         return ret;
1190 }
1191
1192 /*
1193  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1194  * Elements of the path are separated by '/' and the path is guaranteed to be
1195  * 0-terminated. the path is only given within the current file system.
1196  * Therefore, it never starts with a '/'. the caller is responsible to provide
1197  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1198  * the start point of the resulting string is returned. this pointer is within
1199  * dest, normally.
1200  * in case the path buffer would overflow, the pointer is decremented further
1201  * as if output was written to the buffer, though no more output is actually
1202  * generated. that way, the caller can determine how much space would be
1203  * required for the path to fit into the buffer. in that case, the returned
1204  * value will be smaller than dest. callers must check this!
1205  */
1206 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1207                         u32 name_len, unsigned long name_off,
1208                         struct extent_buffer *eb_in, u64 parent,
1209                         char *dest, u32 size)
1210 {
1211         int slot;
1212         u64 next_inum;
1213         int ret;
1214         s64 bytes_left = ((s64)size) - 1;
1215         struct extent_buffer *eb = eb_in;
1216         struct btrfs_key found_key;
1217         int leave_spinning = path->leave_spinning;
1218         struct btrfs_inode_ref *iref;
1219
1220         if (bytes_left >= 0)
1221                 dest[bytes_left] = '\0';
1222
1223         path->leave_spinning = 1;
1224         while (1) {
1225                 bytes_left -= name_len;
1226                 if (bytes_left >= 0)
1227                         read_extent_buffer(eb, dest + bytes_left,
1228                                            name_off, name_len);
1229                 if (eb != eb_in) {
1230                         btrfs_tree_read_unlock_blocking(eb);
1231                         free_extent_buffer(eb);
1232                 }
1233                 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1234                 if (ret > 0)
1235                         ret = -ENOENT;
1236                 if (ret)
1237                         break;
1238
1239                 next_inum = found_key.offset;
1240
1241                 /* regular exit ahead */
1242                 if (parent == next_inum)
1243                         break;
1244
1245                 slot = path->slots[0];
1246                 eb = path->nodes[0];
1247                 /* make sure we can use eb after releasing the path */
1248                 if (eb != eb_in) {
1249                         atomic_inc(&eb->refs);
1250                         btrfs_tree_read_lock(eb);
1251                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1252                 }
1253                 btrfs_release_path(path);
1254                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1255
1256                 name_len = btrfs_inode_ref_name_len(eb, iref);
1257                 name_off = (unsigned long)(iref + 1);
1258
1259                 parent = next_inum;
1260                 --bytes_left;
1261                 if (bytes_left >= 0)
1262                         dest[bytes_left] = '/';
1263         }
1264
1265         btrfs_release_path(path);
1266         path->leave_spinning = leave_spinning;
1267
1268         if (ret)
1269                 return ERR_PTR(ret);
1270
1271         return dest + bytes_left;
1272 }
1273
1274 /*
1275  * this makes the path point to (logical EXTENT_ITEM *)
1276  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1277  * tree blocks and <0 on error.
1278  */
1279 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1280                         struct btrfs_path *path, struct btrfs_key *found_key,
1281                         u64 *flags_ret)
1282 {
1283         int ret;
1284         u64 flags;
1285         u32 item_size;
1286         struct extent_buffer *eb;
1287         struct btrfs_extent_item *ei;
1288         struct btrfs_key key;
1289
1290         key.type = BTRFS_EXTENT_ITEM_KEY;
1291         key.objectid = logical;
1292         key.offset = (u64)-1;
1293
1294         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1295         if (ret < 0)
1296                 return ret;
1297         ret = btrfs_previous_item(fs_info->extent_root, path,
1298                                         0, BTRFS_EXTENT_ITEM_KEY);
1299         if (ret < 0)
1300                 return ret;
1301
1302         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1303         if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1304             found_key->objectid > logical ||
1305             found_key->objectid + found_key->offset <= logical) {
1306                 pr_debug("logical %llu is not within any extent\n",
1307                          (unsigned long long)logical);
1308                 return -ENOENT;
1309         }
1310
1311         eb = path->nodes[0];
1312         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1313         BUG_ON(item_size < sizeof(*ei));
1314
1315         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1316         flags = btrfs_extent_flags(eb, ei);
1317
1318         pr_debug("logical %llu is at position %llu within the extent (%llu "
1319                  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1320                  (unsigned long long)logical,
1321                  (unsigned long long)(logical - found_key->objectid),
1322                  (unsigned long long)found_key->objectid,
1323                  (unsigned long long)found_key->offset,
1324                  (unsigned long long)flags, item_size);
1325
1326         WARN_ON(!flags_ret);
1327         if (flags_ret) {
1328                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1329                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1330                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1331                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1332                 else
1333                         BUG_ON(1);
1334                 return 0;
1335         }
1336
1337         return -EIO;
1338 }
1339
1340 /*
1341  * helper function to iterate extent inline refs. ptr must point to a 0 value
1342  * for the first call and may be modified. it is used to track state.
1343  * if more refs exist, 0 is returned and the next call to
1344  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1345  * next ref. after the last ref was processed, 1 is returned.
1346  * returns <0 on error
1347  */
1348 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1349                                 struct btrfs_extent_item *ei, u32 item_size,
1350                                 struct btrfs_extent_inline_ref **out_eiref,
1351                                 int *out_type)
1352 {
1353         unsigned long end;
1354         u64 flags;
1355         struct btrfs_tree_block_info *info;
1356
1357         if (!*ptr) {
1358                 /* first call */
1359                 flags = btrfs_extent_flags(eb, ei);
1360                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1361                         info = (struct btrfs_tree_block_info *)(ei + 1);
1362                         *out_eiref =
1363                                 (struct btrfs_extent_inline_ref *)(info + 1);
1364                 } else {
1365                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1366                 }
1367                 *ptr = (unsigned long)*out_eiref;
1368                 if ((void *)*ptr >= (void *)ei + item_size)
1369                         return -ENOENT;
1370         }
1371
1372         end = (unsigned long)ei + item_size;
1373         *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1374         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1375
1376         *ptr += btrfs_extent_inline_ref_size(*out_type);
1377         WARN_ON(*ptr > end);
1378         if (*ptr == end)
1379                 return 1; /* last */
1380
1381         return 0;
1382 }
1383
1384 /*
1385  * reads the tree block backref for an extent. tree level and root are returned
1386  * through out_level and out_root. ptr must point to a 0 value for the first
1387  * call and may be modified (see __get_extent_inline_ref comment).
1388  * returns 0 if data was provided, 1 if there was no more data to provide or
1389  * <0 on error.
1390  */
1391 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1392                                 struct btrfs_extent_item *ei, u32 item_size,
1393                                 u64 *out_root, u8 *out_level)
1394 {
1395         int ret;
1396         int type;
1397         struct btrfs_tree_block_info *info;
1398         struct btrfs_extent_inline_ref *eiref;
1399
1400         if (*ptr == (unsigned long)-1)
1401                 return 1;
1402
1403         while (1) {
1404                 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1405                                                 &eiref, &type);
1406                 if (ret < 0)
1407                         return ret;
1408
1409                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1410                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1411                         break;
1412
1413                 if (ret == 1)
1414                         return 1;
1415         }
1416
1417         /* we can treat both ref types equally here */
1418         info = (struct btrfs_tree_block_info *)(ei + 1);
1419         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1420         *out_level = btrfs_tree_block_level(eb, info);
1421
1422         if (ret == 1)
1423                 *ptr = (unsigned long)-1;
1424
1425         return 0;
1426 }
1427
1428 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1429                                 u64 root, u64 extent_item_objectid,
1430                                 iterate_extent_inodes_t *iterate, void *ctx)
1431 {
1432         struct extent_inode_elem *eie;
1433         int ret = 0;
1434
1435         for (eie = inode_list; eie; eie = eie->next) {
1436                 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1437                          "root %llu\n", extent_item_objectid,
1438                          eie->inum, eie->offset, root);
1439                 ret = iterate(eie->inum, eie->offset, root, ctx);
1440                 if (ret) {
1441                         pr_debug("stopping iteration for %llu due to ret=%d\n",
1442                                  extent_item_objectid, ret);
1443                         break;
1444                 }
1445         }
1446
1447         return ret;
1448 }
1449
1450 /*
1451  * calls iterate() for every inode that references the extent identified by
1452  * the given parameters.
1453  * when the iterator function returns a non-zero value, iteration stops.
1454  */
1455 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1456                                 u64 extent_item_objectid, u64 extent_item_pos,
1457                                 int search_commit_root,
1458                                 iterate_extent_inodes_t *iterate, void *ctx)
1459 {
1460         int ret;
1461         struct btrfs_trans_handle *trans;
1462         struct ulist *refs = NULL;
1463         struct ulist *roots = NULL;
1464         struct ulist_node *ref_node = NULL;
1465         struct ulist_node *root_node = NULL;
1466         struct seq_list tree_mod_seq_elem = {};
1467         struct ulist_iterator ref_uiter;
1468         struct ulist_iterator root_uiter;
1469
1470         pr_debug("resolving all inodes for extent %llu\n",
1471                         extent_item_objectid);
1472
1473         if (search_commit_root) {
1474                 trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1475         } else {
1476                 trans = btrfs_join_transaction(fs_info->extent_root);
1477                 if (IS_ERR(trans))
1478                         return PTR_ERR(trans);
1479                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1480         }
1481
1482         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1483                                    tree_mod_seq_elem.seq, &refs,
1484                                    &extent_item_pos);
1485         if (ret)
1486                 goto out;
1487
1488         ULIST_ITER_INIT(&ref_uiter);
1489         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1490                 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1491                                            tree_mod_seq_elem.seq, &roots);
1492                 if (ret)
1493                         break;
1494                 ULIST_ITER_INIT(&root_uiter);
1495                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1496                         pr_debug("root %llu references leaf %llu, data list "
1497                                  "%#llx\n", root_node->val, ref_node->val,
1498                                  (long long)ref_node->aux);
1499                         ret = iterate_leaf_refs((struct extent_inode_elem *)
1500                                                 (uintptr_t)ref_node->aux,
1501                                                 root_node->val,
1502                                                 extent_item_objectid,
1503                                                 iterate, ctx);
1504                 }
1505                 ulist_free(roots);
1506         }
1507
1508         free_leaf_list(refs);
1509 out:
1510         if (!search_commit_root) {
1511                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1512                 btrfs_end_transaction(trans, fs_info->extent_root);
1513         }
1514
1515         return ret;
1516 }
1517
1518 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1519                                 struct btrfs_path *path,
1520                                 iterate_extent_inodes_t *iterate, void *ctx)
1521 {
1522         int ret;
1523         u64 extent_item_pos;
1524         u64 flags = 0;
1525         struct btrfs_key found_key;
1526         int search_commit_root = path->search_commit_root;
1527
1528         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1529         btrfs_release_path(path);
1530         if (ret < 0)
1531                 return ret;
1532         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1533                 return -EINVAL;
1534
1535         extent_item_pos = logical - found_key.objectid;
1536         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1537                                         extent_item_pos, search_commit_root,
1538                                         iterate, ctx);
1539
1540         return ret;
1541 }
1542
1543 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1544                               struct extent_buffer *eb, void *ctx);
1545
1546 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1547                               struct btrfs_path *path,
1548                               iterate_irefs_t *iterate, void *ctx)
1549 {
1550         int ret = 0;
1551         int slot;
1552         u32 cur;
1553         u32 len;
1554         u32 name_len;
1555         u64 parent = 0;
1556         int found = 0;
1557         struct extent_buffer *eb;
1558         struct btrfs_item *item;
1559         struct btrfs_inode_ref *iref;
1560         struct btrfs_key found_key;
1561
1562         while (!ret) {
1563                 path->leave_spinning = 1;
1564                 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1565                                      &found_key);
1566                 if (ret < 0)
1567                         break;
1568                 if (ret) {
1569                         ret = found ? 0 : -ENOENT;
1570                         break;
1571                 }
1572                 ++found;
1573
1574                 parent = found_key.offset;
1575                 slot = path->slots[0];
1576                 eb = path->nodes[0];
1577                 /* make sure we can use eb after releasing the path */
1578                 atomic_inc(&eb->refs);
1579                 btrfs_tree_read_lock(eb);
1580                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1581                 btrfs_release_path(path);
1582
1583                 item = btrfs_item_nr(eb, slot);
1584                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1585
1586                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1587                         name_len = btrfs_inode_ref_name_len(eb, iref);
1588                         /* path must be released before calling iterate()! */
1589                         pr_debug("following ref at offset %u for inode %llu in "
1590                                  "tree %llu\n", cur,
1591                                  (unsigned long long)found_key.objectid,
1592                                  (unsigned long long)fs_root->objectid);
1593                         ret = iterate(parent, name_len,
1594                                       (unsigned long)(iref + 1), eb, ctx);
1595                         if (ret)
1596                                 break;
1597                         len = sizeof(*iref) + name_len;
1598                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
1599                 }
1600                 btrfs_tree_read_unlock_blocking(eb);
1601                 free_extent_buffer(eb);
1602         }
1603
1604         btrfs_release_path(path);
1605
1606         return ret;
1607 }
1608
1609 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1610                                  struct btrfs_path *path,
1611                                  iterate_irefs_t *iterate, void *ctx)
1612 {
1613         int ret;
1614         int slot;
1615         u64 offset = 0;
1616         u64 parent;
1617         int found = 0;
1618         struct extent_buffer *eb;
1619         struct btrfs_inode_extref *extref;
1620         struct extent_buffer *leaf;
1621         u32 item_size;
1622         u32 cur_offset;
1623         unsigned long ptr;
1624
1625         while (1) {
1626                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1627                                             &offset);
1628                 if (ret < 0)
1629                         break;
1630                 if (ret) {
1631                         ret = found ? 0 : -ENOENT;
1632                         break;
1633                 }
1634                 ++found;
1635
1636                 slot = path->slots[0];
1637                 eb = path->nodes[0];
1638                 /* make sure we can use eb after releasing the path */
1639                 atomic_inc(&eb->refs);
1640
1641                 btrfs_tree_read_lock(eb);
1642                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1643                 btrfs_release_path(path);
1644
1645                 leaf = path->nodes[0];
1646                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1647                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1648                 cur_offset = 0;
1649
1650                 while (cur_offset < item_size) {
1651                         u32 name_len;
1652
1653                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1654                         parent = btrfs_inode_extref_parent(eb, extref);
1655                         name_len = btrfs_inode_extref_name_len(eb, extref);
1656                         ret = iterate(parent, name_len,
1657                                       (unsigned long)&extref->name, eb, ctx);
1658                         if (ret)
1659                                 break;
1660
1661                         cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1662                         cur_offset += sizeof(*extref);
1663                 }
1664                 btrfs_tree_read_unlock_blocking(eb);
1665                 free_extent_buffer(eb);
1666
1667                 offset++;
1668         }
1669
1670         btrfs_release_path(path);
1671
1672         return ret;
1673 }
1674
1675 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1676                          struct btrfs_path *path, iterate_irefs_t *iterate,
1677                          void *ctx)
1678 {
1679         int ret;
1680         int found_refs = 0;
1681
1682         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1683         if (!ret)
1684                 ++found_refs;
1685         else if (ret != -ENOENT)
1686                 return ret;
1687
1688         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1689         if (ret == -ENOENT && found_refs)
1690                 return 0;
1691
1692         return ret;
1693 }
1694
1695 /*
1696  * returns 0 if the path could be dumped (probably truncated)
1697  * returns <0 in case of an error
1698  */
1699 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1700                          struct extent_buffer *eb, void *ctx)
1701 {
1702         struct inode_fs_paths *ipath = ctx;
1703         char *fspath;
1704         char *fspath_min;
1705         int i = ipath->fspath->elem_cnt;
1706         const int s_ptr = sizeof(char *);
1707         u32 bytes_left;
1708
1709         bytes_left = ipath->fspath->bytes_left > s_ptr ?
1710                                         ipath->fspath->bytes_left - s_ptr : 0;
1711
1712         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1713         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1714                                    name_off, eb, inum, fspath_min, bytes_left);
1715         if (IS_ERR(fspath))
1716                 return PTR_ERR(fspath);
1717
1718         if (fspath > fspath_min) {
1719                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1720                 ++ipath->fspath->elem_cnt;
1721                 ipath->fspath->bytes_left = fspath - fspath_min;
1722         } else {
1723                 ++ipath->fspath->elem_missed;
1724                 ipath->fspath->bytes_missing += fspath_min - fspath;
1725                 ipath->fspath->bytes_left = 0;
1726         }
1727
1728         return 0;
1729 }
1730
1731 /*
1732  * this dumps all file system paths to the inode into the ipath struct, provided
1733  * is has been created large enough. each path is zero-terminated and accessed
1734  * from ipath->fspath->val[i].
1735  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1736  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1737  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1738  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1739  * have been needed to return all paths.
1740  */
1741 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1742 {
1743         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1744                              inode_to_path, ipath);
1745 }
1746
1747 struct btrfs_data_container *init_data_container(u32 total_bytes)
1748 {
1749         struct btrfs_data_container *data;
1750         size_t alloc_bytes;
1751
1752         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1753         data = vmalloc(alloc_bytes);
1754         if (!data)
1755                 return ERR_PTR(-ENOMEM);
1756
1757         if (total_bytes >= sizeof(*data)) {
1758                 data->bytes_left = total_bytes - sizeof(*data);
1759                 data->bytes_missing = 0;
1760         } else {
1761                 data->bytes_missing = sizeof(*data) - total_bytes;
1762                 data->bytes_left = 0;
1763         }
1764
1765         data->elem_cnt = 0;
1766         data->elem_missed = 0;
1767
1768         return data;
1769 }
1770
1771 /*
1772  * allocates space to return multiple file system paths for an inode.
1773  * total_bytes to allocate are passed, note that space usable for actual path
1774  * information will be total_bytes - sizeof(struct inode_fs_paths).
1775  * the returned pointer must be freed with free_ipath() in the end.
1776  */
1777 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1778                                         struct btrfs_path *path)
1779 {
1780         struct inode_fs_paths *ifp;
1781         struct btrfs_data_container *fspath;
1782
1783         fspath = init_data_container(total_bytes);
1784         if (IS_ERR(fspath))
1785                 return (void *)fspath;
1786
1787         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1788         if (!ifp) {
1789                 kfree(fspath);
1790                 return ERR_PTR(-ENOMEM);
1791         }
1792
1793         ifp->btrfs_path = path;
1794         ifp->fspath = fspath;
1795         ifp->fs_root = fs_root;
1796
1797         return ifp;
1798 }
1799
1800 void free_ipath(struct inode_fs_paths *ipath)
1801 {
1802         if (!ipath)
1803                 return;
1804         vfree(ipath->fspath);
1805         kfree(ipath);
1806 }